WorldWideScience

Sample records for ga ge sn

  1. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    International Nuclear Information System (INIS)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Vincent, B.; Gencarelli, F.; Clarysse, T.; Vandervorst, W.; Caymax, M.; Loo, R.; Jensen, A.; Petersen, D.H.; Zaima, S.

    2012-01-01

    We have investigated the Ga and Sn content dependence of the crystallinity and electrical properties of Ga-doped Ge 1-x Sn x layers that are heteroepitaxially grown on Ge(001) substrates. The doping of Ga to levels as high as the solubility limit of Ga at the growth temperature leads to the introduction of dislocations, due to the increase in the strain of the Ge 1-x Sn x layers. We achieved the growth of a fully strained Ge 0.922 Sn 0.078 layer on Ge with a Ga concentration of 5.5 × 10 19 /cm 3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge 1-x Sn x layer decreased as the Sn content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge 1-x Sn x epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge 0.950 Sn 0.050 layer annealed at 600°C for 1 min is 3.6 times less than that of the Ga-doped Ge/Ge sample. - Highlights: ► Heavy Ga-doping into fully strained GeSn layers without the introduction of dislocations ► The uniform Ga depth profile allowed the introduction of Sn ► The decrease in resistivity with an increase in the activation level of Ga was caused by the introduction of Sn

  2. Magnetic and transport behaviour in Pr3X(X=In,Sn,Ga,Ge,Ni,Co,Ru,Ir) systems

    International Nuclear Information System (INIS)

    Garde, C.S.; Ray, J.

    1998-01-01

    Magnetic and transport studies on Pr 3 X (X=In, Sn, Ga, Ge, Ni, Co, Ru, Ir) systems gave evidence for complex magnetic behaviour. All the systems, except X=Sn, exhibit ferromagnetic ordering. The X=Sn system exhibits antiferromagnetic ordering. For X=Ga and Sn, metamagnetic behaviour has been observed. Crystal field effects are found to play an important role in influencing magnetic behaviour. The strength of the crystal field term has also been estimated. (orig.)

  3. Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors

    Science.gov (United States)

    Shah, Syed Hatim; Khan, Shah Haider; Laref, A.; Murtaza, G.

    2018-02-01

    Half-Heusler compounds LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) are comprehensively investigated using state of the art full potential linearized augmented plane wave (FP-LAPW) method. Stable geometry of the compounds obtained through energy minimization procedure. Lattice constant increased while bulk modulus decreased in replacing the ions of size increasing from top to bottom of the periodic table. Band structure calculations show LiInGe and LiInSn as direct bandgap while LiAlSi, LiInGe and LiGaSn indirect bandgap semiconductors. Density of states demonstrates mixed s, p, d states of cations and anions in the valence and conduction bands. These compounds have mixed ionic and covalent bonding. Compounds show dominant optical response in the visible and low frequency ultraviolet energy region. The transport properties of the compounds are described in terms of Seebeck coefficient, electrical and thermal conductivities. The calculated figure of merit of LiAlSi is in good agreement with the recent experimental results.

  4. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides.

    Science.gov (United States)

    de Blois, Erik; Sze Chan, Ho; Naidoo, Clive; Prince, Deidre; Krenning, Eric P; Breeman, Wouter A P

    2011-02-01

    PET scintigraphy with (68)Ga-labelled analogs is of increasing interest in Nuclear Medicine and performed all over the world. Here we report the characteristics of the eluate of SnO(2)-based (68)Ge/(68)Ga generators prepared by iThemba LABS (Somerset West, South Africa). Three purification and concentration techniques of the eluate for labelling DOTA-TATE and concordant SPE purifications were investigated. Characteristics of 4 SnO(2)-based generators (range 0.4-1 GBq (68)Ga in the eluate) and several concentration techniques of the eluate (HCl) were evaluated. The elution profiles of SnO(2)-based (68)Ge/(68)Ga generators were monitored, while [HCl] of the eluens was varied from 0.3-1.0 M. Metal ions and sterility of the eluate were determined by ICP. Fractionated elution and concentration of the (68)Ga eluate were performed using anion and cation exchange. Concentrated (68)Ga eluate, using all three concentration techniques, was used for labelling of DOTA-TATE. (68)Ga-DOTA-TATE-containing solution was purified and RNP increased by SPE, therefore also 11 commercially available SPE columns were investigated. The amount of elutable (68)Ga activity varies when the concentration of the eluens, HCl, was varied, while (68)Ge activity remains virtually constant. SnO(2)-based (68)Ge/(68)Ga generator elutes at 0.6 M HCl >100% of the (68)Ga activity at calibration time and ±75% after 300 days. Eluate at discharge was sterile and Endotoxins were 80%). Highest desorption for cation purification was obtained using a solution containing 90% acetone at increasing molarity of HCl, resulted in a (68)Ga desorption of 68±8%. With all (68)Ge/(68)Ga generators and for all 3 purification methods a SA up to 50 MBq/nmol with >95% incorporation (ITLC) and RCP (radiochemical purity) by HPLC ±90% could be achieved. Purification and concentration of the eluate with anion exchange has the benefit of more elutable (68)Ga with 1 M HCl as eluens. The additional washing step of the anion column

  5. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    DEFF Research Database (Denmark)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.

    2012-01-01

    to the introduction of dislocations, due to the increase in the strain of the Ge1-xSnx layers. We achieved the growth of a fully strained Ge0.922Sn0.078 layer on Ge with a Ga concentration of 5.5×1019 /cm3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge1-xSnx layer decreased as the Sn...... content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge1-xSnx epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge0.950Sn0.050 layer annealed at 600°C...

  6. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  7. Characteristics of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generator and aspects of radiolabelling DOTA-peptides

    Energy Technology Data Exchange (ETDEWEB)

    Blois, Erik de; Chan, Ho Sze [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Naidoo, Clive; Prince, Deidre [iThemba Labs, Somerset West, Republic of South Africa (South Africa); Krenning, Eric P. [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Breeman, Wouter A.P., E-mail: w.a.p.breeman@erasmusmc.n [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands)

    2011-02-15

    Objectives: PET scintigraphy with {sup 68}Ga-labelled analogs is of increasing interest in Nuclear Medicine and performed all over the world. Here we report the characteristics of the eluate of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generators prepared by iThemba LABS (Somerset West, South Africa). Three purification and concentration techniques of the eluate for labelling DOTA-TATE and concordant SPE purifications were investigated. Methods: Characteristics of 4 SnO{sub 2}-based generators (range 0.4-1 GBq {sup 68}Ga in the eluate) and several concentration techniques of the eluate (HCl) were evaluated. The elution profiles of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generators were monitored, while [HCl] of the eluens was varied from 0.3-1.0 M. Metal ions and sterility of the eluate were determined by ICP. Fractionated elution and concentration of the {sup 68}Ga eluate were performed using anion and cation exchange. Concentrated {sup 68}Ga eluate, using all three concentration techniques, was used for labelling of DOTA-TATE. {sup 68}Ga-DOTA-TATE-containing solution was purified and RNP increased by SPE, therefore also 11 commercially available SPE columns were investigated. Results: The amount of elutable {sup 68}Ga activity varies when the concentration of the eluens, HCl, was varied, while {sup 68}Ge activity remains virtually constant. SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generator elutes at 0.6 M HCl >100% of the {sup 68}Ga activity at calibration time and {+-}75% after 300 days. Eluate at discharge was sterile and Endotoxins were <0.5 EU/mL, RNP was always <0.01%. Metal ions in the eluate were <10 ppm (in total). Highest desorption for anion purification was obtained with the 30 mg Oasis WAX column (>80%). Highest desorption for cation purification was obtained using a solution containing 90% acetone at increasing molarity of HCl, resulted in a {sup 68}Ga desorption of 68{+-}8%. With all {sup 68}Ge/{sup 68}Ga generators and for all 3 purification methods a

  8. Syntheses and structural characterization of non-centrosymmetric Na{sub 2}M{sub 2}M'S{sub 6} (M, M′=Ga, In, Si, Ge, Sn, Zn, Cd) sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Seven new non-centrosymmetric Na{sub 2}M{sub 2}M’S{sub 6} sulfides, namely, Na{sub 2}Sn{sub 2}ZnS{sub 6}(1){sub ,} Na{sub 2}Ga{sub 2}GeS{sub 6}(2), Na{sub 2}Ga{sub 2}SnS{sub 6}(3-α), Na{sub 2}Ga{sub 2}SnS{sub 6}(3-β){sub ,} Na{sub 2}Ge{sub 2}ZnS{sub 6}(4){sub ,} Na{sub 2}Ge{sub 2}CdS{sub 6}(5){sub ,} Na{sub 2}In{sub 2}SiS{sub 6}(6) and Na{sub 2}In{sub 2}GeS{sub 6}(7), were synthesized by high temperature solid state reactions and structurally characterized by single crystal X-ray diffraction. They crystallize in non-centrosymmetric Fdd2 and Cc space groups and their three-dimensional [M{sub 2}M′S{sub 6}]{sup 2-}framework structures consist of MS{sub 4} and M′S{sub 4} tetrahedra corner-connected to one another in either orderly or disordered fashion. Sodium ions reside in the tunnels of the anionic framework. Compounds 1, 2 and 3-α have the structure of known Li{sub 2}Ga{sub 2}GeS{sub 6}, whereas compounds 6 and 7 are isostructural with known Li{sub 2}In{sub 2}GeS{sub 6} compound. Isostructural compounds 4 and 5 represent a new structural variant. Compounds 3-α and its new monoclinic structural variant 3-β have disordered structural framework. All of them are wide band gap semiconductors. Na{sub 2}Ga{sub 2}GeS{sub 6}(2), Na{sub 2}Ga{sub 2}SnS{sub 6}(3), Na{sub 2}Ge{sub 2}ZnS{sub 6}(4) and Na{sub 2}In{sub 2}GeS{sub 6}(7) compounds are found to be second-harmonic generation (SHG) active. Compounds 1, 2 and 3-α melt congruently. - Graphical abstract: Na{sub 2}Ga{sub 2}GeS{sub 6}, Na{sub 2}Ga{sub 2}SnS{sub 6}, Na{sub 2}Ge{sub 2}ZnS{sub 6}, Na{sub 2}In{sub 2}GeS{sub 6}, Na{sub 2}Sn{sub 2}ZnS{sub 6}, Na{sub 2}Ge{sub 2}CdS{sub 6} and Na{sub 2}In{sub 2}SiS{sub 6} have non-centrosymmetric structures and the first four compounds are SHG active. Display Omitted - Highlights: • Seven new Na{sub 2}M{sub 2}M′S{sub 6} compounds with non-centrosymmetric structures were synthesized. • They are wide band gap semiconductors. • Na{sub 2}Ga{sub 2}GeS{sub 6}, Na{sub 2

  9. Synthesis and first-principle calculations of the structural and electronic properties of Ge-substituted type-VIII Ba{sub 8}Ga{sub 16}Sn{sub 30} clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lanxian [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Li, Decong [College of Optoelectronic Engineering, Yunnan Open University, Kunming 650500 (China); Liu, Hongxia; Liu, Zuming [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Deng, Shukang, E-mail: skdeng@126.com [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China)

    2016-12-01

    In this study, the structural and electronic structural properties of Ba{sub 8}Ga{sub 16}Sn{sub 30−x}Ge{sub x} (0≤x≤30) are determined by the first-principle method on the basis of density functional theory. Consistent with experimental findings, calculated results reveal that Ge atoms preferentially occupy the 2a and 24g sites in these compounds. As the content of Ge in Ge-substituted clathrate is increased, the lattice parameter is decreased, and the structural stability is enhanced. The bandgaps of the compound at 1≤x≤10 are smaller than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. By contrast, the bandgaps of the compound at x>10 are larger than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. The substitution of Ge for Sn affects p-type conductivity but not n-type conductivity. As Ge content increases, the whole conduction band moves to the direction of high energy, and the density of states of valence-band top decreases. The calculated potential energy versus displacement of Ba indicates that the vibration energy of this atom increases as cage size decreases. Because Ge substitution also affects clathrate structural symmetry, the distance of Ba atom deviation from the center of the cage initially increases and subsequently decreases as the Ge content increases.

  10. Growth and characterization of highly tensile strained Ge{sub 1−x}Sn{sub x} formed on relaxed In{sub y}Ga{sub 1−y}P buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; D' Costa, Vijay Richard; Dong, Yuan; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Loke, Wan Khai; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yin, Tingting; Shen, Zexiang [School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2016-03-28

    Ge{sub 0.94}Sn{sub 0.06} films with high tensile strain were grown on strain-relaxed In{sub y}Ga{sub 1−y}P virtual substrates using solid-source molecular beam epitaxy. The in-plane tensile strain in the Ge{sub 0.94}Sn{sub 0.06} film was varied by changing the In mole fraction in In{sub x}Ga{sub 1−x}P buffer layer. The tensile strained Ge{sub 0.94}Sn{sub 0.06} films were investigated by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. An in-plane tensile strain of up to 1% in the Ge{sub 0.94}Sn{sub 0.06} was measured, which is much higher than that achieved using other buffer systems. Controlled thermal anneal experiment demonstrated that the strain was not relaxed for temperatures up to 500 °C. The band alignment of the tensile strained Ge{sub 0.94}Sn{sub 0.06} on In{sub 0.77}Ga{sub 0.23}P was obtained by high resolution x-ray photoelectron spectroscopy. The Ge{sub 0.94}Sn{sub 0.06}/In{sub 0.77}Ga{sub 0.23}P interface was found to be of the type I band alignment, with a valence band offset of 0.31 ± 0.12 eV and a conduction band offset of 0.74 ± 0.12 eV.

  11. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Yi; Chang, Chih-Chiang [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chih-Hsiung; Huang, Shih-Hsien [Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); National Nano Device Labs, Hsinchu 30077, Taiwan (China); Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping [Applied Materials Inc., Sunnyvale, California 94085 (United States)

    2016-08-29

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al{sub 2}O{sub 3}/SiO{sub 2} passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al{sub 2}O{sub 3}/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al{sub 2}O{sub 3} and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  12. First-principle investigations of the magnetic properties and possible martensitic transformation in Ni2MnX (X=Al, Ga, In, Si, Ge and Sn)

    International Nuclear Information System (INIS)

    Wang, Wei; Gao, She-Sheng; Meng, Yang

    2014-01-01

    The magnetic and electronic properties of Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys have been studied by using the first-principle projector augmented wave potential within the generalized gradient approximation. The possible non-modulated martensitic transformation in these six alloys has been investigated. Both austenitic and martensitic Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys are found to be ferromagnets. In martensitic phase, the energies minimum occurs at c/a=0.99 for Ni 2 MnX (X=Al, In, Ge and Sn), and the energy minimum occurs at c/a=1.02 for Ni 2 MnSi. But there is a negligible energy difference ΔE (<6 meV/cell) between the austenitic and martensitic phases for each alloy. Meanwhile, around c/a=1, an anomaly is observed in the E-c/a curve, which is related to a very slightly tetragonal distortion trend in Ni 2 MnX (X=Al, In, Si, Ge and Sn). The energy difference ΔE between the austenitic and martensitic phases for Ni 2 MnGa is as large as 99 meV/cell, so it is more likely to realize martensitic transformation in it. - Highlights: • Both austenitic and martensitic Ni 2 MnX alloys are found to be ferromagnets. • The energy difference between the martensitic and austenitic phases is negligible. • The total moment in martensitic phase is close to corresponding to austenitic phase

  13. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    Science.gov (United States)

    Mitrović, B.; Schachinger, E.; Carbotte, J. P.

    1984-06-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon-coupling spectra α2F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α2F=CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ0κBTc≅4.6, ΔCγTc≅2.5-2.6,-Tc[dHc(T)dT]TcHc(0)≅2.1, γ[TcHc(0)]2≅0.134, and positive D(t)'s with the maximum value around 0.02. For Nb3Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γ≅52 mJ/mol K2). The same applies to V3Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔCγTc, - Tc[dHc(T)dT]TcHc(0), γ[TcHc(0)]2, and experimental values for Nb3Al and Nb3Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α2F.

  14. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  15. L2₁ and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb).

    Science.gov (United States)

    Wang, Xiaotian; Cheng, Zhenxiang; Wang, Wenhong

    2017-10-20

    For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X₂YZ, i.e., Hf₂VAl, Hf₂CoZ (Z = Ga, In) and Hf₂CrZ (Z = Al, Ga, In). In this work, a series of Hf₂-based Heusler alloys, Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L2₁-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L2₁-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L2₁-type or XA-type structures.

  16. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  17. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    International Nuclear Information System (INIS)

    Mitrovic, B.; Schachinger, E.; Carbotte, J.P.

    1984-01-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon--coupling spectra α 2 F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α 2 F = CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ 0 /k/sub B/T/sub c/approx. =4.6, ΔC/γT/sub c/approx. =2.5--2.6, -T/sub c/[dH/sub c/(T)/dT]c/ H/sub c/(0)approx. =2.1, γ[T/sub c//H/sub c/(0)] 2 approx. =0.134, and positive D(t)'s with the maximum value around 0.02. For Nb 3 Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γapprox. =52 mJ/mol K 2 ). The same applies to V 3 Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔC/γT/sub c/, -T/sub c/[dH/sub c/(T)/dT]c/H/sub c/(0), γ[T/sub c//H/sub c/(0)] 2 , and experimental values for Nb 3 Al and Nb 3 Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α 2 F

  18. 70Ge, 72Ge, 74Ge, 76Ge(d,3He)69Ga, 71Ga, 73Ga, 75Ga reactions at 26 MeV

    International Nuclear Information System (INIS)

    Rotbard, G.; La Rana, G.; Vergnes, M.; Berrier, G.; Kalifa, J.; Guilbaut, G.; Tamisier, R.

    1978-01-01

    The 70 Ge, 72 Ge, 74 Ge, 76 Ge(d, 3 He) 69 Ga, 71 Ga, 73 Ga, 75 Ga reactions have been studied at 26 MeV with 15 keV resolution (F.W.H.M), using the Orsay MP tandem accelerator and a split pole magnetic spectrometer. The spectroscopic factors are determined for 15 levels in 69 Ga and 11 levels in each of the 3 other Ga isotopes. Level schemes are proposed for the practically unknown 73 Ga and 75 Ga. Very simple model wave functions previously proposed for Ge nuclei are seen to reproduce quite well the measured occupation numbers for the proton orbitals. Anomalies in these occupation numbers are observed between Z=31 and 32 and between N=40 and 42, this last one corresponding to the structural transition observed recently in a comparison of the (p,t) and (t,p) reactions. These anomalies could be related to changes in the nuclear shape

  19. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  20. Theoretical study of electronic structures and spectroscopic properties of Ga 3Sn, GaSn 3, and their ions

    Science.gov (United States)

    Zhu, Xiaolei

    2007-01-01

    Ground and excited states of mixed gallium stannide tetramers (Ga 3Sn, Ga 3Sn +, Ga 3Sn -, GaSn 3, GaSn 3+, and GaSn 3-) are investigated employing the complete active space self-consistent-field (CASSCF), density function theory (DFT), and the coupled-cluster single and double substitution (including triple excitations) (CCSD(T)) methods. The ground states of Ga 3Sn, Ga 3Sn +, and Ga 3Sn - are found to be the 2A 1, 3B 1, and 1A 1 states in C2v symmetry with a planar quadrilateral geometry, respectively. The ground states of GaSn 3 and GaSn 3- is predicted to be the 2A 1 and 1A 1 states in C2v point group with a planar quadrilateral structure, respectively, while the ground state of GaSn 3+ is the 1A 1 state with ideal triangular pyramid C3v geometry. Equilibrium geometries, vibrational frequencies, binding energies, electron affinities, ionization energies, and other properties of Ga 3Sn and GaSn 3 are computed and discussed. The anion photoelectron spectra of Ga 3Sn - and GaSn 3- are also predicted. It is interesting to find that the amount of charge transfer between Ga and Sn 2 atoms in the 1A 1 state of GaSn 3+ greatly increases upon electron ionization from the 2A 1 state of GaSn 3, which may be caused by large geometry change. On the other hand, the results of the low-lying states of Ga 3Sn and GaSn 3 are compared with those of Ga 3Si and GaSi 3.

  1. Raman scattering from Ge{sub 1-x}Sn{sub x} (x ≤ 0.14) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Navarro C, H.; Rodriguez, A. G.; Vidal, M. A. [Universidad Autonoma de San Luis Potosi, Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Alvaro Obregon No. 64, 78000 San Luis Potosi, S. L. P. (Mexico); Perez Ladron de G, H. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon No. 1144, Col. Paseos de la Montana, 47460 Lagos de Moreno, Jalisco (Mexico)

    2015-07-01

    Ge{sub 1-x}Sn{sub x} alloys with x concentration up to 0.14 were grown on Ge(001) and GaAs(001) substrates in a conventional R. F. Magnetron Sputtering system at low substrate temperatures. The structural characteristics of these alloys were studied for different Sn concentrations between 1 to 14% by high resolution X-ray diffraction, and Raman spectroscopy. Contrasting characteristics of the grown layers are observed if the Sn concentration is larger or smaller than 6% as revealed by X-ray diffraction and Raman spectroscopy. (Author)

  2. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  3. Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection.

    Science.gov (United States)

    Pham, Thach; Du, Wei; Tran, Huong; Margetis, Joe; Tolle, John; Sun, Greg; Soref, Richard A; Naseem, Hameed A; Li, Baohua; Yu, Shui-Qing

    2016-03-07

    Normal-incidence Ge 1-x Sn x photodiode detectors with Sn compositions of 7 and 10% have been demonstrated. Such detectors were based on Ge/Ge 1-x Sn x /Ge double heterostructures grown directly on a Si substrate via a chemical vapor deposition system. A temperature-dependence study of these detectors was conducted using both electrical and optical characterizations from 300 to 77 K. Spectral response up to 2.6 µm was achieved for a 10% Sn device at room temperature. The peak responsivity and specific detectivity (D*) were measured to be 0.3 A/W and 4 × 10 9 cmHz 1/2 W -1 at 1.55 µm, respectively. The spectral D* of a 7% Sn device at 77 K was only one order-of-magnitude lower than that of an extended-InGaAs photodiode operating in the same wavelength range, indicating the promising future of GeSn-based photodetectors.

  4. GeSn-on-insulator substrate formed by direct wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Lee, Kwang Hong; Wang, Bing [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); Bao, Shuyu [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Chuan Seng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-11

    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge{sub 1-x}Sn{sub x} layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO{sub 2} on Ge{sub 1-x}Sn{sub x}, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge{sub 1-x}Sn{sub x} layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge{sub 1-x}Sn{sub x} epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge{sub 1-x}Sn{sub x} film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  5. Studies of adsorber materials for preparing 68Ge/68Ga generators

    International Nuclear Information System (INIS)

    Brambilla, Tania de Paula

    2013-01-01

    The 68 Ga is a promising radionuclide for nuclear medicine, decaying by positron emission with an abundance of 89%, with physical half-life of 68 minutes, which is compatible with the pharmacokinetics of many biomolecules and low molecular weight substrates. Another important feature is its availability through a generator system, where the parent radionuclide, 68 Ge (t 1/2 = 270.95 days) is adsorbed on a column and the daughter, 68 Ga, is eluted in an ionic form 68Ga 3+ . The development of 68 Ge/ 68 Ga generators began in the 60s, but its clinical use began to be acceptable and relevant only recently. The method of separation of 68 Ge and 68 Ga most used is the ion-exchange chromatographic system, due to its practical operation, but other generator systems have been proposed, such as solvent extraction and evaporation technique. Currently, 68 Ge/ 68 Ga generators are commercially available using inorganic matrices columns prepared with TiO 2 or SnO 2 as well using organic resin. The efficiency of 68 Ga elution ranges from 70% to 80%, decreasing over time. The 68 Ge breakthrough varies from 10 -2 to10 -3 % or lower in a fresh generator, but there is an increase in the levels of contamination after long periods of use. Even with all the technological advances in the development of 68 Ge/ 68 Ga generators in the past decades, the 68 Ga eluted from commercial generators is not suitable for direct use in humans and some improvements in the systems need to be made to reduce the 68 Ge breakthrough and chemical impurities levels. The main objective of this work was to develop a 68 Ge/ 68 Ga generator system is which 68 Ga could be eluted with quality required for clinical use. The chemical behavior of Ge and Ga was evaluated on various inorganic adsorbents materials. Two types of 68 Ge/ 68 Ga generator systems were developed using TiO 2 as adsorbent material: elution system with manual pressure and vacuum controlled. The efficiencies of the generators were similar to

  6. Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds

    International Nuclear Information System (INIS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-01-01

    Ten AInM′S 4 (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS 4 (1-β), RbInGeS 4 (2), CsInGeS 4 (3-β), TlInGeS 4 (4-β), RbInSnS 4 (8-β) and CsInSnS 4 (9) compounds with three-dimensional BaGa 2 S 4 structure and CsInGeS 4 (3-α) and TlInGeS 4 (4-α) compounds with a layered TlInSiS 4 structure have tetrahedral [InM′S 4 ] − frameworks. On the other hand, LiInSnS 4 (5) with spinel structure and NaInSnS 4 (6), KInSnS 4 (7), RbInSnS 4 (8-α) and TlInSnS 4 (10) compounds with layered structure have octahedral [InM′S 4 ] − frameworks. NaInSnS 4 (6) and KInSnS 4 (7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS 4 and KInSnS 4 compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S 4 compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS 4 and KInSnS 4 compounds undergo facile topotactic ion-exchange at room temperature.

  7. Reduction of 68Ge activity containing liquid waste from 68Ga PET chemistry in nuclear medicine and radiopharmacy by solidification

    NARCIS (Netherlands)

    E. de Blois (Erik); H.S. Chan (Ho Sze); K. Roy (Kamalika); E.P. Krenning (Eric); W.A.P. Breeman (Wouter)

    2011-01-01

    textabstractPET with68Ga from the TiO2- or SnO2- based68Ge/68Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity (68Ge vs.68Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts

  8. Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X =Sn ,Ge ,Ga )

    Science.gov (United States)

    Guo, Guang-Yu; Wang, Tzu-Cheng

    2017-12-01

    Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.

  9. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan

    2018-03-01

    We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

  10. Sn-based Ge/Ge{sub 0.975}Sn{sub 0.025}/Ge p-i-n photodetector operated with back-side illumination

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Li, H.; Huang, S. H.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan (China); Sun, G.; Soref, R. A. [Department of Engineering, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States)

    2016-04-11

    We report an investigation of a GeSn-based p-i-n photodetector grown on a Ge wafer that collects light signal from the back of the wafer. Temperature dependent absorption measurements performed over a wide temperature range (300 K down to 25 K) show that (a) absorption starts at the indirect bandgap of the active GeSn layer and continues up to the direct bandgap of the Ge wafer, and (b) the peak responsivity increases rapidly at first with decreasing temperature, then increases more slowly, followed by a decrease at the lower temperatures. The maximum responsivity happens at 125 K, which can easily be achieved with the use of liquid nitrogen. The temperature dependence of the photocurrent is analyzed by taking into consideration of the temperature dependence of the electron and hole mobility in the active layer, and the analysis result is in reasonable agreement with the data in the temperature regime where the rapid increase occurs. This investigation demonstrates the feasibility of a GeSn-based photodiode that can be operated with back-side illumination for applications in image sensing systems.

  11. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  12. Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases

    Science.gov (United States)

    Christopoulos, S.-R. G.; Filippatos, P. P.; Hadi, M. A.; Kelaidis, N.; Fitzpatrick, M. E.; Chroneos, A.

    2018-01-01

    Mn+1AXn phases (M = early transition metal; A = group 13-16 element and X = C or N) have a combination of advantageous metallic and ceramic properties, and are being considered for structural applications particularly where high thermal conductivity and operating temperature are the primary drivers: for example in nuclear fuel cladding. Here, we employ density functional theory calculations to investigate the intrinsic defect processes and mechanical behaviour of a range of Ti3AC2 phases (A = Al, Si, Ga, Ge, In, Sn). Based on the intrinsic defect reaction, it is calculated that Ti3SnC2 is the more radiation-tolerant 312 MAX phase considered herein. In this material, the C Frenkel reaction is the lowest energy intrinsic defect mechanism with 5.50 eV. When considering the elastic properties of the aforementioned MAX phases, Ti3SiC2 is the hardest and Ti3SnC2 is the softest. All the MAX phases considered here are non-central force solids and brittle in nature. Ti3SiC2 is elastically more anisotropic and Ti3AlC2 is nearly isotropic.

  13. Syntheses, structural variants and characterization of AInM′S{sub 4} (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS{sub 4} and KInSnS{sub 4} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Ten AInM′S{sub 4} (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS{sub 4}(1-β), RbInGeS{sub 4}(2), CsInGeS{sub 4}(3-β), TlInGeS{sub 4}(4-β), RbInSnS{sub 4}(8-β) and CsInSnS{sub 4}(9) compounds with three-dimensional BaGa{sub 2}S{sub 4} structure and CsInGeS{sub 4}(3-α) and TlInGeS{sub 4}(4-α) compounds with a layered TlInSiS{sub 4} structure have tetrahedral [InM′S{sub 4}]{sup −} frameworks. On the other hand, LiInSnS{sub 4}(5) with spinel structure and NaInSnS{sub 4}(6), KInSnS{sub 4}(7), RbInSnS{sub 4}(8-α) and TlInSnS{sub 4}(10) compounds with layered structure have octahedral [InM′S{sub 4}]{sup −} frameworks. NaInSnS{sub 4}(6) and KInSnS{sub 4}(7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S{sub 4} compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo facile topotactic ion-exchange at room temperature.

  14. Numerical analysis of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells

    International Nuclear Information System (INIS)

    Lin, Shuo; Li, Xirong; Pan, Huaqing; Chen, Huanting; Li, Xiuyan; Li, Yan; Zhou, Jinrong

    2016-01-01

    Highlights: • In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS solar cells are studied by numerical analysis. • Performances of In_xGa_1_−_xN/SnS solar cells enhanced with decreasing In content. • The electron barrier leads to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. • GaN/SnS solar cell exhibits the highest efficiency 26.34%. - Abstract: In this work the photovoltaic properties of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells are studied by numerical analysis. The photovoltaic performances of In_xGa_1_−_xN/SnS solar cells are enhanced with the decreasing In content and the GaN/SnS solar cell exhibits the highest efficiency. The efficiencies of GaN/SnS solar cell improve with the increased SnS thickness and the reduced GaN thickness. For the Al_xGa_1_−_xN/SnS solar cells, there is electron barrier in the Al_xGa_1_−_xN/SnS interface. The electron barrier becomes larger with increasing Al content and lead to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. The simulation contributes to designing and fabricating SnS solar cells.

  15. Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations

    Science.gov (United States)

    Takase, Ryohei; Ishimaru, Manabu; Uchida, Noriyuki; Maeda, Tatsuro; Sato, Kazuhisa; Lieten, Ruben R.; Locquet, Jean-Pierre

    2016-12-01

    Thermally induced crystallization processes for amorphous GeSn thin films with Sn concentrations beyond the solubility limit of the bulk crystal Ge-Sn binary system have been examined by X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, and (scanning) transmission electron microscopy. We paid special attention to the behavior of Sn before and after recrystallization. In the as-deposited specimens, Sn atoms were homogeneously distributed in an amorphous matrix. Prior to crystallization, an amorphous-to-amorphous phase transformation associated with the rearrangement of Sn atoms was observed during heat treatment; this transformation is reversible with respect to temperature. Remarkable recrystallization occurred at temperatures above 400 °C, and Sn atoms were ejected from the crystallized GeSn matrix. The segregation of Sn became more pronounced with increasing annealing temperature, and the ejected Sn existed as a liquid phase. It was found that the molten Sn remains as a supercooled liquid below the eutectic temperature of the Ge-Sn binary system during the cooling process, and finally, β-Sn precipitates were formed at ambient temperature.

  16. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    Science.gov (United States)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  17. The effect of Ge precursor on the heteroepitaxy of Ge1-x Sn x epilayers on a Si (001) substrate

    Science.gov (United States)

    Jahandar, Pedram; Weisshaupt, David; Colston, Gerard; Allred, Phil; Schulze, Jorg; Myronov, Maksym

    2018-03-01

    The heteroepitaxial growth of Ge1-x Sn x on a Si (001) substrate, via a relaxed Ge buffer, has been studied using two commonly available commercial Ge precursors, Germane (GeH4) and Digermane (Ge2H6), by means of chemical vapour deposition at reduced pressures (RP-CVD). Both precursors demonstrate growth of strained and relaxed Ge1-x Sn x epilayers, however Sn incorporation is significantly higher when using the more reactive Ge2H6 precursor. As Ge2H6 is significantly more expensive, difficult to handle or store than GeH4, developing high Sn content epilayers using the latter precursor is of great interest. This study demonstrates the key differences between the two precursors and offers routes to process optimisation which will enable high Sn content alloys at relatively low cost.

  18. Effect of Sn Composition in Ge1- x Sn x Layers Grown by Using Rapid Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kil, Yeon-Ho; Kang, Sukill; Jeong, Tae Soo; Shim, Kyu-Hwan; Kim, Dae-Jung; Choi, Yong-Dae; Kim, Mi Joung; Kim, Taek Sung

    2018-05-01

    The Ge1- x Sn x layers were grown by using rapid thermal chemical-vapor deposition (RTCVD) on boron-doped p-type Si (100) substrates with Sn compositions up to x = 0.83%. In order to obtain effect of the Sn composition on the structural and the optical characteristics, we utilized highresolution X-ray diffraction (HR-XRD), etch pit density (EPD), atomic force microscopy (AFM), Raman spectroscopy, and photocurrent (PC) spectra. The Sn compositions in the Ge1- x Sn x layers were found to be of x = 0.00%, 0.51%, 0.65%, and 0.83%. The root-mean-square (RMS) of the surface roughness of the Ge1- x Sn x layer increased from 2.02 nm to 3.40 nm as the Sn composition was increased from 0.51% to 0.83%, and EPD was on the order of 108 cm-2. The Raman spectra consist of only one strong peak near 300 cm-1, which is assigned to the Ge-Ge LO peaks and the Raman peaks shift to the wave number with increasing Sn composition. Photocurrent spectra show near energy band gap peaks and their peak energies decrease with increasing Sn composition due to band-gap bowing in the Ge1- x Sn x layer. An increase in the band gap bowing parameter was observed with increasing Sn composition.

  19. Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates

    International Nuclear Information System (INIS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.; Keyes, B. M.

    2000-01-01

    Minority carrier lifetimes and interface recombination velocities for GaAs grown on a Si wafer using compositionally graded GeSi buffers have been investigated as a function of GaAs buffer thickness using monolayer-scale control of the GaAs/Ge interface nucleation during molecular beam epitaxy. The GaAs layers are free of antiphase domain disorder, with threading dislocation densities measured by etch pit density of 5x10 5 -2x10 6 cm -2 . Analysis indicates no degradation in either minority carrier lifetime or interface recombination velocity down to a GaAs buffer thickness of 0.1 μm. In fact, record high minority carrier lifetimes exceeding 10 ns have been obtained for GaAs on Si with a 0.1 μm GaAs buffer. Secondary ion mass spectroscopy reveals that cross diffusion of Ga, As, and Ge at the GaAs/Ge interface formed on the graded GeSi buffers are below detection limits in the interface region, indicating that polarity control of the GaAs/Ge interface formed on GeSi/Si substrates can be achieved. (c) 2000 American Institute of Physics

  20. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    Science.gov (United States)

    2016-05-16

    AFRL-AFOSR-JP-TR-2016-0054 Silicon based mid infrared SiGeSn heterostrcture emitters and detectors Greg Sun UNIVERSITY OF MASSACHUSETTS Final Report... Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors ” February 10, 2016 Principal Investigator: Greg Sun Engineering...diodes are incompatible with the CMOS process and therefore cannot be easily integrated with Si electronics . The GeSn mid IR detectors developed in

  1. Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator

    International Nuclear Information System (INIS)

    Aardaneh, K.; Walt, T.N. van der

    2006-01-01

    The target for the production of 68 Ge consists of a disc of gallium suboxide, Ga 2 O, with a 19 mm diameter. The suboxide was primarily prepared by repeatedly mixing metallic Ga and Ga 2 O 3 at 700 deg C. The target (2.4 g) was quite stable under a long-time irradiation with a 34 MeV proton beam at a current of ∼80 μA. The dissolution of the target was performed using 12M sulphuric acid solution, assisted with the dropwise addition of 30% H 2 O 2 solution, and took less than 4 hours. A solvent extraction method, using a 9M H 2 SO 4 - 0.3M HCl/CCl 4 system, was employed for the radiochemical separation of 68 Ge from Ga and Zn radionuclides, while 0.05M HCl was used for the back extraction of 68 Ge from the organic phase. The 68 Ge obtained in the dilute HCl was directly loaded onto a column containing either a hydrous tin dioxide or a crystalline tin dioxide, obtained by calcinations of the hydrous oxide at 450, 700, and 900 deg C. The calcinated hydrous tin dioxide at 900 deg C showed the highest crystallinity and highest 68 Ga elution yield and was selected for use in the generator. The 68 Ga elution from the column generator packed with 2 g of tin dioxide, using 3 ml of 1M HCl, and yielded an average of 65%. The breakthrough of 68 Ge was 6.1 x 10 -4 %. (author)

  2. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  3. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    Science.gov (United States)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  4. Electromodulation spectroscopy of direct optical transitions in Ge{sub 1−x}Sn{sub x} layers under hydrostatic pressure and built-in strain

    Energy Technology Data Exchange (ETDEWEB)

    Dybała, F.; Żelazna, K.; Maczko, H.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.wroc.pl [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław (Poland); Lin, H.; Chen, R.; Shang, C.; Huo, Y.; Kamins, T. I.; Harris, J. S. [Solid State and Photonics Laboratory, Stanford University, Stanford, California 94305-4075 (United States)

    2016-06-07

    Unstrained Ge{sub 1−x}Sn{sub x} layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge{sub 0.97}Sn{sub 0.03} layers with built-in compressive (ε = −0.5%) and tensile (ε = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge{sub 1−x}Sn{sub x} layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge{sub 1−x}Sn{sub x} alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge{sub 0.97}Sn{sub 0.03} with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge{sub 1−x}Sn{sub x} layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.

  5. Alleviation of Fermi level pinning at metal/n-Ge interface with lattice-matched Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer on Ge

    Science.gov (United States)

    Suzuki, Akihiro; Nakatsuka, Osamu; Sakashita, Mitsuo; Zaima, Shigeaki

    2018-06-01

    The impact of a silicon germanium tin (Si x Ge1‑ x ‑ y Sn y ) ternary alloy interlayer on the Schottky barrier height (SBH) of metal/Ge contacts with various metal work functions has been investigated. Lattice matching at the Si x Ge1‑ x ‑ y Sn y /Ge heterointerface is a key factor for controlling Fermi level pinning (FLP) at the metal/Ge interface. The Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer having a small lattice mismatch with the Ge substrate can alleviate FLP at the metal/Ge interface significantly. A Si0.11Ge0.86Sn0.03 interlayer increases the slope parameter for the work function dependence of the SBH to 0.4. An ohmic behavior with an SBH below 0.15 eV can be obtained with Zr and Al/Si0.11Ge0.86Sn0.03/n-Ge contacts at room temperature.

  6. Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer

    International Nuclear Information System (INIS)

    Merckling, C.; Franquet, A.; Vincent, B.; Vandervorst, W.; Loo, R.; Caymax, M.; Sun, X.; Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Zaima, S.

    2011-01-01

    We investigated the molecular beam deposition of Al 2 O 3 on Ge 0.95 Sn 0.05 surface with and without an ultra thin Ge cap layer in between. We first studied the atomic configuration of both Ge 1-x Sn x and Ge/Ge 1-x Sn x surfaces after deoxidation by reflection high-energy electron diffraction and resulted, respectively, in a c(4x2) and (2x1) surface reconstructions. After in situ deposition of an Al 2 O 3 high-κ gate dielectric we evidenced using time-of-flight secondary ion mass spectroscopy analyses that Sn diffusion was at the origin of high leakage current densities in the Ge 1-x Sn x /Al 2 O 3 gate stack. This damage could be avoided by inserting a thin 5-nm-thick Ge cap between the oxide and the Ge 1-x Sn x layer. Finally, metal-oxide-semiconductor capacitors on the Ge capped sample showed well-behaved capacitance-voltage (C-V) characteristics with interface trap density (D it ) in the range of 10 12 eV -1 cm -2 in mid gap and higher close to the valence band edge.

  7. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  8. Effects of Ge- and Sb-doping and annealing on the tunable bandgaps of SnS films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsuan-Tai; Chiang, Ming-Hung; Huang, Chen-Hao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Wen-Tai, E-mail: wtlin@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Fu, Yaw-Shyan [Department of Greenergy, National University of Tainan, Tainan 700, Taiwan (China); Guo, Tzung-Fang [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-06-01

    SnS, Ge- and Sb-doped SnS films with single orthorhombic SnS phase were fabricated via solvothermal routes and subsequent spin-coating, respectively. The substitution solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. The bandgaps of Ge- and Sb-doped SnS films can be tuned in the ranges of 1.25–1.35 and 1.30–1.39 eV, respectively. The possible mechanisms for the tunable bandgaps of Ge- and Sb-doped SnS films are discussed. For the Ge- and Sb-doped SnS films subjected to annealing at 200–350 °C in N{sub 2}, the bandgaps of 200 °C-annealed films remain unchanged, while those of 300 °C- and 350 °C-annealed films decrease with the annealing temperature because of the evaporation of Ge and Sb respectively. - Highlights: • Ge- and Sb-doped SnS films were fabricated via spin-coating. • The solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. • The bandgaps of SnS films can be tuned by Ge and Sb doping respectively. • Annealing above 300 °C reduces the bandgaps of Ge- and Sb-doped SnS films.

  9. Novel Sn-Based Contact Structure for GeTe Phase Change Materials.

    Science.gov (United States)

    Simchi, Hamed; Cooley, Kayla A; Ding, Zelong; Molina, Alex; Mohney, Suzanne E

    2018-05-16

    Germanium telluride (GeTe) is a phase change material (PCM) that has gained recent attention because of its incorporation as an active material for radio frequency (RF) switches, as well as memory and novel optoelectronic devices. Considering PCM-based RF switches, parasitic resistances from Ohmic contacts can be a limiting factor in device performance. Reduction of the contact resistance ( R c ) is therefore critical for reducing the on-state resistance to meet the requirements of high-frequency RF applications. To engineer the Schottky barrier between the metal contact and GeTe, Sn was tested as an interesting candidate to alter the composition of the semiconductor near its surface, potentially forming a narrow band gap (0.2 eV) SnTe or a graded alloy with SnTe in GeTe. For this purpose, a novel contact stack of Sn/Fe/Au was employed and compared to a conventional Ti/Pt/Au stack. Two different premetallization surface treatments of HCl and deionized (DI) H 2 O were employed to make a Te-rich and Ge-rich interface, respectively. Contact resistance values were extracted using the refined transfer length method. The best results were obtained with DI H 2 O for the Sn-based contacts but HCl treatment for the Ti/Pt/Au contacts. The as-deposited contacts had the R c (ρ c ) of 0.006 Ω·mm (8 × 10 -9 Ω·cm 2 ) for Sn/Fe/Au and 0.010 Ω·mm (3 × 10 -8 Ω·cm 2 ) for Ti/Pt/Au. However, the Sn/Fe/Au contacts were thermally stable, and their resistance decreased further to 0.004 Ω·mm (4 × 10 -9 Ω·cm 2 ) after annealing at 200 °C. In contrast, the contact resistance of the Ti/Pt/Au stack increased to 0.012 Ω·mm (4 × 10 -8 Ω·cm 2 ). Transmission electron microscopy was used to characterize the interfacial reactions between the metals and GeTe. It was found that formation of SnTe at the interface, in addition to Fe diffusion (doping) into GeTe, is likely responsible for the superior performance of Sn/Fe/Au contacts, resulting in one of the lowest reported

  10. Impact of thickness on the structural properties of high tin content GeSn layers

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  11. Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System

    Science.gov (United States)

    2015-10-09

    and conclusions The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8...Abstract The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8, SnD4. The...AFRL-AFOSR-VA-TR-2016-0044 Next generation, Si -compatible materials and devices in the Si - Ge -Sn system John Kouvetakis ARIZONA STATE UNIVERSITY Final

  12. High spin levels in 66Ga, 68Ga, 70Ga and 68Ge, 70Ge, 72Ge via fusion evaporation reactions induced by α-particles

    International Nuclear Information System (INIS)

    Morand, C.

    1979-01-01

    The high spin (J 70 Ga all the members (except the 3 - one) of the (πpsub(3/2), νgsub(9/2)) configuration have been identified, in addition with the (πfsub(5/2), νgsub(9/2))sub(7 - ) and (πgsub(9/2), νgsub(9/2))sub(9 + ) states. In 66 Ga and 68 Ga most of the levels with J>7 ca be described as a result of maximum coupling of a gsub(9/2) neutron with the odd Ga core. Thus the (πgsub(9/2), νgsub(9/2))sub(9 + ) states have been safely located. In the same way the even Ge, the backbending effect at the Jsup(π)=8 + state is less and less pronouced from the 68 Ge to the 72 Ge; that can be explained by the (νgsub(9/2)) 2 sub(8 + ) configuration of this state, so that the 8 + →6 + γ-transition is more and more allowed with increasing N, i.e. as the νgsub(9/2) shell acts more and more in the lower yrast levels Jsup(π)=0 + , 2 + , 4 + , 6 + configurations [fr

  13. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    International Nuclear Information System (INIS)

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.

  14. Determination of a new structure type in the Sc-Fe-Ge-Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Brgoch, Jakoah [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ran, Sheng [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Thimmaiah, Srinivasa [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Canfield, Paul C. [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Miller, Gordon J., E-mail: gmiller@iastate.edu [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer A new structure type with the composition Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)}. Black-Right-Pointing-Pointer Crystallizes in the space group Immm (No. 71, oI144). Black-Right-Pointing-Pointer Sample obtained using a reactive Sn flux. Black-Right-Pointing-Pointer Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc-Fe-Ge-Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)} and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) A, b = 13.467(3) A, and c = 30.003(6) A. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc-Ge as well as Fe-Sn and Fe-Ge contacts can be assigned to this new structure type.

  15. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  16. Uniaxially stressed Ge:Ga and Ge:Be

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1992-12-01

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  17. Development of 68Ge/68Ga Generator using 30 MeV Cyclotron

    International Nuclear Information System (INIS)

    Goo, Hur Min; Dae, Yang Seung; Hoon, Park Jeong; Dae, Park Yong; Je, Lee Eun; Bae, Kong Young; Kim, In Jong; Lee, Jin Woo; Hyun, Yu Kook

    2012-05-01

    The purpose of this research is to develop the 68 Ge/ 68 Ga generator where daughter nuclide 68 Ga can be eluted according to the designated periods from the resin which holds mother nuclide 68 Ge absorbed and to develop the 68 Ga utilization technology. 1. Target development for 68 Ge target and production of 68 Ge - Target designed for 68 Ge production with 30 MeV cyclotron - Target body material evaluation and proton beam irradiation 2. Separation of 68 Ge and development of column material and extraction system for 68 Ge/ 68 Ga separation - Development of 68 Ge separation method from nat Ga target - Development of absorbents for generator using stable isotope 3. Development of 68 Ga labelled radiopharmaceutical - Development of 68 Ga labelled benzamide derivative for diagnosis of melanoma - Development of 68 Ga dendrimer complex using nano-technology 4. Development of shield case for 68 Ge/ 68 Ga generator

  18. Defect properties of Sn- and Ge-doped ZnTe: suitability for intermediate-band solar cells

    Science.gov (United States)

    Flores, Mauricio A.

    2018-01-01

    We investigate the electronic structure and defect properties of Sn- and Ge- doped ZnTe by first-principles calculations within the DFT+GW formalism. We find that ({{{Sn}}}{{Zn}}) and ({{{Ge}}}{{Zn}}) introduce isolated energy levels deep in the band gap of ZnTe, derived from Sn-5s and Ge-4s states, respectively. Moreover, the incorporation of Sn and Ge on the Zn site is favored in p-type ZnTe, in both Zn-rich and Te-rich environments. The optical absorption spectra obtained by solving the Bethe-Salpeter equation reveals that sub-bandgap absorptance is greatly enhanced due to the formation of the intermediate band. Our results suggest that Sn- and Ge-doped ZnTe would be a suitable material for the development of intermediate-band solar cells, which have the potential to achieve efficiencies beyond the single-junction limit.

  19. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  20. Electronic structure and magnetism of Ge(Sn)TM.sub.x./sub.Te.sub.1-x./sub. (TM = V,Cr,Mn): a first principles study

    Czech Academy of Sciences Publication Activity Database

    Liu, Y.; Bose, S. K.; Kudrnovský, Josef

    2016-01-01

    Roč. 6, č. 12 (2016), 1-12, č. článku 125005. ISSN 2158-3226 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : SnTe and GeTe * doping with 3d metals * lattice structure * exchange integrals * Curie temperature * first-priciples study Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.568, year: 2016

  1. Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yiyin; Dou, Wei; Pham, Thach; Ghetmiri, Seyed Amir; Mosleh, Aboozar; Alher, Murtadha; Naseem, Hameed; Yu, Shui-Qing [Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Du, Wei, E-mail: weidu@uark.edu [Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas 71601 (United States); Al-Kabi, Sattar [Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Physics, Wasit University, Kut 52001 (Iraq); Margetis, Joe; Tolle, John [ASM, 3440 East University Drive, Phoenix, Arizona 85034 (United States); Sun, Greg; Soref, Richard [Department of Engineering, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States); Li, Baohua [Arktonics, LLC, 1339 South Pinnacle Drive, Fayetteville, Arkansas 72701 (United States); Mortazavi, Mansour [Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas 71601 (United States)

    2016-07-14

    Temperature-dependent characteristics of GeSn light-emitting diodes with Sn composition up to 9.2% have been systematically studied. Such diodes were based on Ge/GeSn/Ge double heterostructures (DHS) that were grown directly on a Si substrate via a chemical vapor deposition system. Both photoluminescence and electroluminescence spectra have been characterized at temperatures from 300 to 77 K. Based on our theoretical calculation, all GeSn alloys in this study are indirect bandgap materials. However, due to the small energy separation between direct and indirect bandgap, and the fact that radiative recombination rate greater than non-radiative, the emissions are mainly from the direct Γ-valley to valence band transitions. The electroluminescence emissions under current injection levels from 102 to 357 A/cm{sup 2} were investigated at 300 K. The monotonic increase of the integrated electroluminescence intensity was observed for each sample. Moreover, the electronic band structures of the DHS were discussed. Despite the indirect GeSn bandgap owing to the compressive strain, type-I band alignment was achieved with the barrier heights ranging from 11 to 47 meV.

  2. Ab-initio study of the stability of the D8{sub m}-Nb{sub 5}Sn{sub 2}Ga and D8{sub m}-Ta{sub 5}SnGa{sub 2} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Colinet, Catherine, E-mail: ccolinet@simap.grenoble-inp.fr [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères Cedex (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2015-03-15

    Graphical abstract: Thermodynamic data along the sections Ta{sub 5}Sn{sub 3}–Ta{sub 5}Ga{sub 3} at low and high temperature. - Highlights: • First principles calculations were performed along sections V{sub 5}Sn{sub 3}–V{sub 5}Ga{sub 3}, Nb{sub 5}Sn{sub 3}–Nb{sub 5}Ga{sub 3}, and Ta{sub 5}Sn{sub 3}–Ta{sub 5}Ga{sub 3}. • The ternary compound D8{sub m}-Nb{sub 5}Sn{sub 2}Ga is stable. • The phase D8{sub m}-Ta{sub 5}SnGa{sub 2} is stable in the D8{sub m} structure. • In this phase, the Sn and Ga atoms share the 8h sites. - Abstract: First principles calculations have been performed in the T–Sn–Ga (T = V, Nb, Ta) systems along the section x{sub T} = 0.625. The enthalpies of formation of the binary and ternary D8{sub m}, D8{sub 1}, and D8{sub 8} structures have been calculated. In the V–Sn–Ga system, no ternary structure is stable in the section. In the Nb–Sn–Ga system, the ternary compound D8{sub m}-Nb{sub 5}Sn{sub 2}Ga is stable. In the Ta–Sn–Ga system, a combination of the ab-initio calculations and Gibbs energy calculations using the sublattice model allows the show that the phase D8{sub m}-Ta{sub 5}(Sn,Ga){sub 2}Ga with a mixed occupancy of the 8h sites of the structure by Ga and Sn atoms is stable at high temperature due to the configurational entropy. These results are in agreement with the experimental determinations previously published in the literature.

  3. Structural study of Ge/GaAs thin films

    International Nuclear Information System (INIS)

    Lazarov, V K; Lari, L; Lytvyn, P M; Kholevchuk, V V; Mitin, V F

    2012-01-01

    Ge/GaAs heterostructure research is largely motivated by the application of this material in solar cells, metal-oxide-semiconductor field-effect transistors, mm-wave mixer diodes, temperature sensors and photodetectors. Therefore, understanding of how the properties of Ge/GaAs heterostructure depend on its preparation (growth) is of importance for various high-efficiency devices. In this work, by using thermal Ge evaporation on GaAs(100), we studied structural properties of these films as a function of the deposition rate. Film grains size and morphology show strong dependence of the deposition rate. Low deposition rates results in films with large crystal grains and rough surface. At high deposition rates films become flatter and their crystal grains size decreases, while at very high deposition rates films become amorphous. Cross-sectional TEM of the films show that the Ge films are granular single crystal epitaxially grown on GaAs. The Ge/GaAs interface is atomically abrupt and free from misfit dislocations. Stacking faults along the [111] directions that originate at the interface were also observed. Finally by using the Kelvin probe microscopy we show that work function changes are related to the grain structure of the film.

  4. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    National Research Council Canada - National Science Library

    Soret, R. A; Sun, G; Cheng, H; Menendez, J; Khurgin, J

    2007-01-01

    The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band which has a clean offset of 150 meV situated below other energy valleys Gamma and X...

  5. Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM

    International Nuclear Information System (INIS)

    Lorenz, Harald; Zhao Qian; Turner, Stuart; Lebedev, Oleg I.; Van Tendeloo, Gustaaf; Kloetzer, Bernhard; Rameshan, Christoph; Penner, Simon

    2010-01-01

    Structure, morphology and composition of different tin oxide and germanium oxide thin film catalysts for the methanol steam reforming (MSR) reaction have been studied by a combination of (high-resolution) transmission electron microscopy, selected area electron diffraction, dark-field imaging and electron energy-loss spectroscopy. Deposition of the thin films on NaCl(0 0 1) cleavage faces has been carried out by thermal evaporation of the respective SnO 2 and GeO 2 powders in varying oxygen partial pressures and at different substrate temperatures. Preparation of tin oxide films in high oxygen pressures (10 -1 Pa) exclusively resulted in SnO phases, at and above 473 K substrate temperature epitaxial growth of SnO on NaCl(0 0 1) leads to well-ordered films. For lower oxygen partial pressures (10 -3 to 10 -2 Pa), mixtures of SnO and β-Sn are obtained. Well-ordered SnO 2 films, as verified by electron diffraction patterns and energy-loss spectra, are only obtained after post-oxidation of SnO films at temperatures T ≥ 673 K in 10 5 Pa O 2 . Preparation of GeO x films inevitably results in amorphous films with a composition close to GeO 2 , which cannot be crystallized by annealing treatments in oxygen or hydrogen at temperatures comparable to SnO/SnO 2 . Similarities and differences to neighbouring oxides relevant for selective MSR in the third group of the periodic system (In 2 O 3 and Ga 2 O 3 ) are also discussed with the aim of cross-correlation in formation of nanomaterials, and ultimately, also catalytic properties.

  6. Critical thickness for strain relaxation of Ge{sub 1−x}Sn{sub x} (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhou, Qian; Dong, Yuan; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-06-08

    We investigated the critical thickness (h{sub c}) for plastic relaxation of Ge{sub 1−x}Sn{sub x} grown by molecular beam epitaxy. Ge{sub 1−x}Sn{sub x} films with various Sn mole fraction x (x ≤ 0.17) and different thicknesses were grown on Ge(001). The strain relaxation of Ge{sub 1−x}Sn{sub x} films and the h{sub c} were investigated by high-resolution x-ray diffraction and reciprocal space mapping. It demonstrates that the measured h{sub c} values of Ge{sub 1−x}Sn{sub x} layers are as much as an order of magnitude larger than that predicted by the Matthews and Blakeslee (M-B) model. The People and Bean (P-B) model was also used to predict the h{sub c} values in Ge{sub 1−x}Sn{sub x}/Ge system. The measured h{sub c} values for various Sn content follow the trend, but slightly larger than that predicted by the P-B model.

  7. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Energy Technology Data Exchange (ETDEWEB)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  8. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  9. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Science.gov (United States)

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  10. Reduction of 68Ge activity containing liquid waste from 68Ga PET chemistry in nuclear medicine and radiopharmacy by solidification.

    Science.gov (United States)

    de Blois, Erik; Chan, Ho Sze; Roy, Kamalika; Krenning, Eric P; Breeman, Wouter A P

    PET with 68 Ga from the TiO 2 - or SnO 2 - based 68 Ge/ 68 Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity ( 68 Ge vs. 68 Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of 68 Ge activity is produced by eluting the 68 Ge/ 68 Ga generators and residues from PET chemistry. Since clearance level of 68 Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce 68 Ge activity in solution from >10 kBq/g to <10 Bq/g; which implies the solution can be discarded as regular waste. Most efficient method to reduce the 68 Ge activity is by sorption of TiO 2 or Fe 2 O 3 and subsequent centrifugation. The required 10 Bq per mL level of 68 Ge activity in waste was reached by Fe 2 O 3 logarithmically, whereas with TiO 2 asymptotically. The procedure with Fe 2 O 3 eliminates ≥90% of the 68 Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate 68 Ge activity sorption on TiO 2 , Fe 2 O 3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore 68 Ge activity containing waste could directly be used without further interventions. 68 Ge activity containing liquid waste at different HCl concentrations (0.05-1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, 68 Ge activity showed highest sorption.

  11. Characterization of crystallinity of Ge{sub 1−x}Sn{sub x} epitaxial layers grown using metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Inuzuka, Yuki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ike, Shinichi; Asano, Takanori [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8472 (Japan); Takeuchi, Wakana [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-03-01

    The epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer was examined using metal-organic chemical vapor deposition (MOCVD) with two types of Ge precursors; tetra-ethyl-germane (TEGe) and tertiary-butyl-germane (TBGe); and the Sn precursor tri-butyl-vinyl-tin (TBVSn). Though the growth of a Ge{sub 1−x}Sn{sub x} layer on a Ge(001) substrate by MOCVD has been reported, a high-Sn-content Ge{sub 1−x}Sn{sub x} layer and the exploration of MO material combinations for Ge{sub 1−x}Sn{sub x} growth have not been reported. Therefore, the epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer on Ge(001) and Si(001) substrates was examined using these precursors. The Ge{sub 1−x}Sn{sub x} layers were pseudomorphically grown on a Ge(001) substrate, while the Ge{sub 1−x}Sn{sub x} layer with a high degree of strain relaxation was obtained on a Si(001) substrate. Additionally, it was found that the two Ge precursors have different growth temperature ranges, where the TBGe could realize a higher growth rate at a lower growth temperature than the TEGe. The Ge{sub 1−x}Sn{sub x} layers grown using a combination of TBGe and TBVSn exhibited a higher crystalline quality and a smoother surface compared with the Ge{sub 1−x}Sn{sub x} layer prepared by low-temperature molecular beam epitaxy. In this study, a Ge{sub 1−x}Sn{sub x} epitaxial layer with a Sn content as high as 5.1% on a Ge(001) substrate was achieved by MOCVD at 300 °C. - Highlights: • Tertiary-butyl-germane and tri-butyl-vinyl-tin are suitable for Ge{sub 1−x}Sn{sub x} MOCVD growth. • We achieved a Sn content of 5.1% in Ge{sub 1−x}Sn{sub x} epitaxial layer on Ge(001). • The Ge{sub 1−x}Sn{sub x} layers grown on Ge and Si by MOCVD have high crystalline quality.

  12. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.J.; Chia, C.K.; Liu, H.F.; Wong, L.M.; Chai, J.W.; Chi, D.Z.; Wang, S.J., E-mail: sj-wang@imre.a-star.edu.sg

    2016-07-15

    Highlights: • The heterogeneous integration of p-Ge/GaAs by MOCVD indicates significance for the application in optoelectronic devices such as p-MOSFET, dual band photodetector, etc. • Many undesired pillar-structures were observed on the p-Ge epilayers and we found that the cause of the pillar-like structures was related to the Ge-Ga dimers formed during the growth. • We found that a GaAs substrate with fewer Ga or Ge danglings was helpful in suppressing the formation of the unwanted pillar-like structures and thus obtaining high quality p-Ge epilayers. - Abstract: In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  13. N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility.

    Science.gov (United States)

    Fang, Yung-Chin; Chen, Kuen-Yi; Hsieh, Ching-Heng; Su, Chang-Chia; Wu, Yung-Hsien

    2015-12-09

    Solid phase epitaxially grown GeSn was employed as the platform to assess the eligibility of direct O2 plasma treatment on GeSn surface for passivation of GeSn N-MOSFETs. It has been confirmed that O2 plasma treatment forms a GeSnO(x) film on the surface and the GeSnO(x) topped by in situ Al2O3 constitutes the gate stack of GeSn MOS devices. The capability of the surface passivation was evidenced by the low interface trap density (D(it)) of 1.62 × 10(11) cm(-2) eV(-1), which is primarily due to the formation of Ge-O and Sn-O bonds at the surface by high density/reactivity oxygen radicals that effectively suppress dangling bonds and decrease gap states. The good D(it) not only makes tiny frequency dispersion in the characterization of GeSn MOS capacitors, but results in GeSn N-MOSFETs with outstanding peak electron mobility as high as 518 cm(2)/(V s) which outperforms other devices reported in the literature due to reduced undesirable carrier scattering. In addition, the GeSn N-MOSFETs also exhibit promising characteristics in terms of acceptable subthreshold swing of 156 mV/dec and relatively large I(ON)/I(OFF) ratio more than 4 orders. Moreover, the robust reliability in terms small V(t) variation against high field stress attests the feasibility of using the O2 plasma-treated passivation to advanced GeSn technology.

  14. Computational assessment of promising mid-infrared nonlinear optical materials Mg–IV–V2 (IV = Si, Ge, Sn; V = P, As): a first-principles study

    Science.gov (United States)

    Xiao, Jianping; Zhu, Shifu; Zhao, Beijun; Chen, Baojun; Liu, Hui; He, Zhiyu

    2018-03-01

    The mid-infrared (mid-IR) nonlinear optical (NLO) capabilities of Mg–IV–V2 (IV = Si, Ge, Sn; V = P, As) are systematically assessed by the first-principles calculation. The results show that the compounds in this group except MgSiP2 and MgSnP2 have moderate birefringence values to fulfill the phase-matching conditions. In particular, MgGeP2 and MgSiAs2 possess relatively large band gaps and almost three to four times larger static SHG coefficients than the benchmark material AgGaSe2, exhibiting good potential for mid-IR NLO application. According to the detailed analysis of the electronic structures, it is found that the dominant SHG contributions are from the orbitals of the asymmetry anionic unit [IV–V2]2‑. Moreover, the further evaluation reveals that MgSiAs2, MgGeAs2, MgSnP2 and MgSnAs2 are not thermodynamically stable and the new synthesis strategy (i.e. synthesis under non-equilibrium conditions) should be considered.

  15. Coordination Chemistry of [E(Idipp)]2+ Ligands (E = Ge, Sn): Metal Germylidyne [Cp*(CO)2W≡Ge(Idipp)]+ and Metallotetrylene [Cp*(CO)3W–E(Idipp)]+ Cations

    KAUST Repository

    Lebedev, Yury

    2017-04-12

    The synthesis and full characterization of the NHC-stabilized tungstenochlorostannylene [Cp*(CO)3W–SnCl(Idipp)] (1Sn), the NHC-stabilized chlorogermylidyne complex [Cp*(CO)2W═GeCl(Idipp)] (2), the tungsten germylidyne complex salt [Cp*(CO)2W≡Ge(Idipp)][B(C6H3-3,5-(CF3)2)4] (3), and the cationic metallostannylene [Cp*(CO)3W–Sn(Idipp)][Al(OC(CF3)3)4] (4Sn) are reported (Idipp = 2,3-dihydro-1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-2-ylidene, Cp* = η5-C5Me5). Metathetical exchange of SnCl2(Idipp) with Li[Cp*W(CO)3] afforded selectively 1Sn. Photolytic decarbonylation of the Ge analogue [Cp*(CO)3W–GeCl(Idipp)] (1Ge) afforded the NHC-stabilized chlorogermylidyne complex (2), featuring a trigonal-planar coordinated germanium center and a W–Ge double bond (W–Ge 2.3496(5) Å). Chloride abstraction from 2 with Na[B(C6H3-3,5-(CF3)2)4] yielded the germylidyne complex salt 3, which contains an almost linear W–Ge–C1 linkage (angle at Ge = 168.7(1)°) and a W–Ge triple bond (2.2813(4) Å). Chloride elimination from 1Ge afforded the tungstenogermylene salt [Cp*(CO)3W–Ge(Idipp)][B(C6H3-3,5-(CF3)2)4] (4Ge), which in contrast to 1Ge could not be decarbonylated to form 3 despite the less strongly bound carbonyl ligands. The tin compounds 1Sn and 4Sn did not afford products bearing multiple W–Sn bonds. Treatment of 4Ge with Me2NC≡CNMe2 yielded unexpectedly the neutral germyl complex 5 containing a pendant 1-germabicyclo-[3,2,0]-hepta-2,5-diene ligand instead of the anticipated [2 + 1]-cycloaddition product at the Ge-center.

  16. Extreme IR absorption in group IV-SiGeSn core-shell nanowires

    Science.gov (United States)

    Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama

    2018-06-01

    Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.

  17. Above-bandgap optical properties of biaxially strained GeSn alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Richard D’Costa, Vijay, E-mail: elevrd@nus.edu.sg; Wang, Wei; Zhou, Qian; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Soon Tok, Eng [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2014-01-13

    The complex dielectric function of biaxially strained Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.17) alloys grown on Ge (100) has been determined by spectroscopic ellipsometry from 1.2 to 4.7 eV. The effect of substitutional Sn incorporation and the epitaxial strain on the energy transitions E{sub 1}, E{sub 1} + Δ{sub 1}, E{sub 0}′, and E{sub 2} of GeSn alloys is investigated. Our results indicate that the strained GeSn alloys show Ge-like electronic bandstructure with all the transitions shifted downward due to the alloying of Sn. The strain dependence of E{sub 1} and E{sub 1} + Δ{sub 1} transitions is explained using the deformation potential theory, and values of −5.4 ± 0.4 eV and 3.8 ± 0.5 eV are obtained for the hydrostatic and shear deformation potentials, respectively.

  18. Development of high responsivity Ge:Ga photoconductors

    International Nuclear Information System (INIS)

    Haegel, N.M.; Hueschen, M.R.; Haller, E.E.

    1984-06-01

    Czochralski-grown gallium-doped germanium (Ge:Ga) single crystal samples with a compensation of 10 -4 have been modified by the indiffusion of Cu to produce photoconductors which provide NEPs comparable to current optimum Ge:Ga detectors, but exhibit responsivities a factor of 5 to 6 times higher when tested at a background photon flux of 10 8 photons/sec at lambda=93 μm. The introduction of Cu, a triple acceptor in Ge which acts as a neutral scattering center, reduces carrier mobility and extends the breakdown field significantly in this ultra-low compensation material

  19. Fabrication of p-type conductivity in SnO{sub 2} thin films through Ga doping

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Liang, Shan-Chien

    2015-02-15

    Highlights: • P-type Ga-doped SnO{sub 2} semiconductor films were prepared by sol-gel spin coating. • Optical bandgaps of the SnO{sub 2}:Ga films are narrower than that of the SnO{sub 2} film. • SnO{sub 2}:Ga films exhibited p-type conductivity as Ga doping content higher than 10%. • A p-n heterojunction composed of p-type SnO{sub 2}:Ga and n-type ZnO:Al was fabricated. - Abstract: P-type transparent tin oxide (SnO{sub 2}) based semiconductor thin films were deposited onto alkali-free glass substrates by a sol-gel spin-coating method using gallium (Ga) as acceptor dopant. In this study, we investigated the influence of Ga doping concentration ([Ga]/[Sn] + [Ga] = 0%, 5%, 10%, 15%, and 20%) on the structural, optical and electrical properties of SnO{sub 2} thin films. XRD analysis results showed that dried Ga-doped SnO{sub 2} (SnO{sub 2}:Ga) sol-gel films annealed in oxygen ambient at 520 °C for 1 h exhibited only the tetragonal rutile phase. The average optical transmittance of as-prepared thin film samples was higher than 87.0% in the visible light region; the optical band gap energy slightly decreased from 3.92 eV to 3.83 eV with increases in Ga doping content. Hall effect measurement showed that the nature of conductivity of SnO{sub 2}:Ga thin films changed from n-type to p-type when the Ga doping level was 10%, and when it was at 15%, Ga-doped SnO{sub 2} thin films exhibited the highest mean hole concentration of 1.70 × 10{sup 18} cm{sup -3}. Furthermore, a transparent p-SnO{sub 2}:Ga (Ga doping level of 15%)/n-ZnO:Al (Al doping level of 2%) heterojunction was fabricated on alkali-free glass. The I-V curve measurement for the p-n heterojunction diode showed a typical rectifying characteristic with a forward turn-on voltage of 0.65 V.

  20. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  1. Strain relaxation of germanium-tin (GeSn) fins

    Science.gov (United States)

    Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia

    2018-02-01

    Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.

  2. Study of GeSn Alloy for Low Cost Monolithic Mid Infrared Quantum Well Sensor

    Directory of Open Access Journals (Sweden)

    Prakash PAREEK

    2017-02-01

    Full Text Available This paper focuses on theoretical study of Tin incorporated group IV alloys particularly GeSn and design of quantum well sensor for mid infrared sensing applications. Initially, the physics behind the selection of material for midinfrared sensor is explained. The importance of controlling strain in GeSn alloy is also explained. The physical background and motivation for incorporation of Tin(Sn in Germanium is briefly narrated. Eigen energy states for different Sn concentrations are obtained for strain compensated quantum well in G valley conduction band (GCB, heavy hole (HH band and light hole (LH band by solving coupled Schrödinger and Poisson equations simultaneously. Sn concentration dependent absorption spectra for HH- GCB transition reveals that significant absorption observed in mid infrared range (3-5 µm. So, Ge1-x Snx quantum well can be used for mid infrared sensing applications.

  3. Natural SnGeS3 from Radvanice near Trutnov (Czech Republic): its description, crystal structure refinement and solid solution with PbGeS3

    DEFF Research Database (Denmark)

    Sejkora, Jiri; Berlepsch, Peter; Makovicky, Emil

    2001-01-01

    geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure......geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure...

  4. Sn nanothreads in GaAs: experiment and simulation

    Science.gov (United States)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  5. The role of specific features of the electronic structure in electrical resistivity of band ferromagnets Co2Fe Z ( Z = Al, Si, Ga, Ge, In, Sn, Sb)

    Science.gov (United States)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Weber, H. W.

    2017-05-01

    The electrical resistivity ρ( T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev's Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ( T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ( T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ≪ T C).

  6. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    Science.gov (United States)

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  7. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires.

    Science.gov (United States)

    Hsu, Cheng-Liang; Lu, Ying-Ching

    2012-09-21

    This study investigates the feasibility of synthesizing high-density transparent Ga(2)O(3)/SnO(2):Ga core-shell nanowires on a sapphire substrate at 1000 °C by VLS. The doping Ga concentrations are 0.46, 1.07, 2.30 and 17.53 atomic%. The XRD spectrum and HR-TEM reveal Ga(2)O(3) and SnO(2) as having monoclinic and tetragonal rutile structures, respectively. Experimental results indicate that the XRD peak shift of SnO(2) to a larger angle increases with the increasing amount of Ga doping. According to the CL spectrum, SnO(2) and Ga(2)O(3) peak at approximately 528-568 nm and 422-424 nm, respectively. The maximum quantum efficiency of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 0.362%. The UV light on-off current contrast ratio of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 1066.7 at a bias of 5 V. Moreover, the dynamic response of Ga(2)O(3)/SnO(2):Ga core-shell nanowires has an on-off current contrast ratio of around 16. Furthermore, the Ga(2)O(3) region functions similar to a capacitor and continues to accumulate SnO(2):Ga excited electrons under UV light exposure.

  8. Dopant activation in Sn-doped Ga{sub 2}O{sub 3} investigated by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Siah, S. C., E-mail: sincheng@alum.mit.edu; Brandt, R. E.; Jaramillo, R.; Buonassisi, T., E-mail: buonassisi@mit.edu [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Lim, K. [SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Schelhas, L. T.; Toney, M. F. [SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025 (United States); Heinemann, M. D. [PVcomB, Helmholtz-Zentrum Berlin, 12489 Berlin (Germany); Chua, D.; Gordon, R. G. [Department of Chemistry Materials Science and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Wright, J.; Segre, C. U. [Physics Department and CSRRI, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Perkins, J. D. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-12-21

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga{sub 2}O{sub 3}:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga{sub 2}O{sub 3}:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga{sub 2}O{sub 3}:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga{sub 2}O{sub 3}:Sn are present as Sn{sup 4+}, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga{sub 2}O{sub 3}:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga{sub 2}O{sub 3}:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation.

  9. Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge{sub 1−x}Sn{sub x} layer on Ge(0 0 1) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Lingzi; Zhou, Qian [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Pan, Jisheng; Zhang, Zheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-12-01

    Highlights: • Ge{sub 0.915}Sn{sub 0.085} was grown on Ge (0 0 1) by molecular beam epitaxy (MBE). • The impact of annealing on surface morphology and Sn composition was studied. • Sn is found to preferentially segregate towards the surface at 200 °C. • A Sn-rich layer would form on the Ge{sub 1−x}Sn{sub x} surface after annealing at 300 °C. • Sn desorption and formation of Sn-rich islands were found when T > 300 °C. - Abstract: Annealing of strained Ge{sub 1−x}Sn{sub x} epitaxial layers grown on Ge(0 0 1) substrate results in two distinctive regimes marked by changes in composition and morphology. Annealing at low temperatures (200–300 °C or Regime-I) leads to surface enrichment of Sn due to Sn segregation, as indicated by X-ray photoelectron spectroscopy (XPS) results, while the bulk Sn composition (from X-ray diffraction (XRD)) and the surface morphology (from atomic force microscopy (AFM)) do not show discernible changes as compared to the as-grown sample. Annealing at temperatures ranging from 300 °C to 500 °C (Regime-II) leads to a decrease in the surface Sn composition. While the Ge{sub 1−x}Sn{sub x} layer remains fully strained, a reduction in the bulk Sn composition is observed when the annealing temperature reaches 500 °C. At this stage, surface roughening also occurs with formation of 3D islands. The island size increases as the annealing temperature is raised to 600 °C. The decrease in the Sn composition at the surface and in the bulk in Regime-II is attributed to additional thermally activated kinetic processes associated with Sn desorption and formation of Sn-rich 3D islands on the surface.

  10. MAX phase – Alumina composites via elemental and exchange reactions in the Ti{sub n+1}AC{sub n} systems (A=Al, Si, Ga, Ge, In and Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Cuskelly, Dylan, E-mail: dylan.cuskelly@uon.edu.au; Richards, Erin; Kisi, Erich, E-mail: Erich.Kisi@newcastle.edu.au

    2016-05-15

    Extension of the aluminothermal exchange reaction synthesis of M{sub n+1}AX{sub n} phases to systems where the element ‘A’ is not the reducing agent was investigated in systems TiO{sub 2}–A–Al–C for A=Al, Si, Ga, Ge, In and Sn as well as Cr{sub 2}O{sub 3}–Ga–Al–C. MAX phase-Al{sub 2}O{sub 3} composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63–96% without optimisation of starting ratios. Optimisation in the Ti–Si–C system gave a MAX phase component with >98% Ti{sub 3}SiC{sub 2}. - Graphical abstract: A range of Ti{sub n+1}AX{sub n} phases with different A elements were synthesised directly from the M oxide via exchange reactions. The process has now been shown to be general in all the systems marked in green in the table. - Highlights: • Ti{sub n+1}AC{sub n} phases were produced via a single step exchange reaction. • 3 MAX phase systems were successful via this method for the first time. • Cr{sub 2}GeC was also able to be produced via an exchange reaction. • The interconversion reaction in MAX phases is more general than previously thought.

  11. Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering

    Science.gov (United States)

    Lee, Su Yong; Kang, Hyon Chol

    2018-01-01

    We report the synthesis and characterization of Sn-doped β-Ga2O3 nanowires (NWs) deposited using radio frequency powder sputtering. The growth sequence of Sn-doped β-Ga2O3 NWs is similar to that of the undoped β-Ga2O3 NWs. Self-assembled Ga clusters act as seeds for initiating the growth of Sn-doped β-Ga2O3 NWs through a vapor-liquid-solid process, while Sn atoms are incorporated into the trunk of NWs uniformly. Different from the straight shape of undoped NWs, the conical shape of NWs is observed, which is attributed to the change in supersaturation conditions and the diffusion of the catalyst tip and reaction species.

  12. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.

    Science.gov (United States)

    Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying

    2014-12-21

    The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

  13. Fabrication of high quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yongwei; Zhang, Miao [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Deng, Chuang; Men, Chuanling [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Da [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Zhu, Lei; Yu, Wenjie; Wei, Xing [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Xi [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-08-15

    Highlights: • GaAs-on-insulator has been achieved by integrating of epitaxy, ion-cut and selective chemical etching. • Superior to the direct ion-cut of bulk GaAs layer with the H implantation fluence 2.0 × 10{sup 17} cm{sup −2}, the fabrication of GaAs-on-insulator by the transfer of GaAs/Ge heterostructure only needs H implantation fluence as low as 0.8 × 10{sup 17} cm{sup −2}. • The crystalline quality of the top GaAs layer of the final GaAs-on-insulator wafer is not affected by the implantation process and comparable to the as-grown status. - Abstract: Due to the extraordinary electron mobility, III–V compounds are considered as the ideal candidate channel materials for future electronic devices. In this study, a novel approach for the fabrication of high-crystalline quality GaAs-on-insulator has been proposed by integrating of ion-cut and selective chemical etching. GaAs layer with good crystalline quality has been epitaxially grown on Ge by molecular beam epitaxy (MBE). With H implantation and wafer bonding process, the GaAs/Ge heterostructure is transferred onto silicon dioxide wafer after the proper thermal treatment. Superior to the direct ion-cut of GaAs layer, which requires the H implantation fluence as high as 2.0 × 10{sup 17} cm{sup −2}, the transfer of GaAs/Ge heterostructure in the present study only needs the implantation of 0.8 × 10{sup 17} cm{sup −2} H ions. GaAs-on-insulator structure was successfully achieved by the selective chemical etching of defective Ge layer using SF{sub 6} plasma. As the GaAs/Ge heterostructure can be easily epitaxy grown on silicon platform, the proposed approach for GaAs-on-insulator manufacturing is rather compatible with mature Si integrated circuits (ICs) technology and thus can be integrated to push the microelectronic technology to post-Si era.

  14. Fabrication of high quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure

    International Nuclear Information System (INIS)

    Chang, Yongwei; Zhang, Miao; Deng, Chuang; Men, Chuanling; Chen, Da; Zhu, Lei; Yu, Wenjie; Wei, Xing; Di, Zengfeng; Wang, Xi

    2015-01-01

    Highlights: • GaAs-on-insulator has been achieved by integrating of epitaxy, ion-cut and selective chemical etching. • Superior to the direct ion-cut of bulk GaAs layer with the H implantation fluence 2.0 × 10 17 cm −2 , the fabrication of GaAs-on-insulator by the transfer of GaAs/Ge heterostructure only needs H implantation fluence as low as 0.8 × 10 17 cm −2 . • The crystalline quality of the top GaAs layer of the final GaAs-on-insulator wafer is not affected by the implantation process and comparable to the as-grown status. - Abstract: Due to the extraordinary electron mobility, III–V compounds are considered as the ideal candidate channel materials for future electronic devices. In this study, a novel approach for the fabrication of high-crystalline quality GaAs-on-insulator has been proposed by integrating of ion-cut and selective chemical etching. GaAs layer with good crystalline quality has been epitaxially grown on Ge by molecular beam epitaxy (MBE). With H implantation and wafer bonding process, the GaAs/Ge heterostructure is transferred onto silicon dioxide wafer after the proper thermal treatment. Superior to the direct ion-cut of GaAs layer, which requires the H implantation fluence as high as 2.0 × 10 17 cm −2 , the transfer of GaAs/Ge heterostructure in the present study only needs the implantation of 0.8 × 10 17 cm −2 H ions. GaAs-on-insulator structure was successfully achieved by the selective chemical etching of defective Ge layer using SF 6 plasma. As the GaAs/Ge heterostructure can be easily epitaxy grown on silicon platform, the proposed approach for GaAs-on-insulator manufacturing is rather compatible with mature Si integrated circuits (ICs) technology and thus can be integrated to push the microelectronic technology to post-Si era

  15. Controllable synthesis of SnO2 nanowires and nanobelts by Ga catalysts

    International Nuclear Information System (INIS)

    Xie Xing; Shao Zhibin; Yang Qianhui; Shen Xiaoshuang; Zhu Wei; Hong Xun; Wang Guanzhong

    2012-01-01

    We report the morphology control of one-dimensional (1D) SnO 2 nanostructures by Ga catalysts using thermal evaporation method. Gallium (Ga), either from decomposition of GaN powder or from Ga metal, is adopted as a catalyst for the growth of long SnO 2 nanowires and nanobelts. At similar experimental conditions, quantities of nanobelts are formed instead of nanowires when the temperature and reaction time are increased. Such approach enables us to synthesize various morphologies of SnO 2 nanobelts with different side facets. Novel nanobelts with [0 0 1] growth direction with high energy side facets are obtained for the first time, which is attributed to the large amount of oxygen vacancies introduced in the nanobelts by the Ga catalysts. - Graphical abstract: Morphology control of one-dimensional SnO 2 nanostructures are realized via a thermal evaporation method. Novel nanobelts along [0 0 1] direction having high energy side facets were fabricated for the first time. Highlights: ► Morphology control of one-dimensional SnO 2 nanostructures are realized by Ga catalysts using thermal evaporation method. ► Oxygen vacancies influenced the growth directions in order to neutralize thermodynamic instability. ► Novel nanobelts with [0 0 1] growth direction with high energy side facets are obtained for the first time.

  16. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.

    2018-04-01

    Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.

  17. GaAs/Ge solar panels for the SAMPEX program

    Science.gov (United States)

    Dobson, Rodney; Kukulka, Jerry; Dakermanji, George; Roufberg, Lew; Ahmad, Anisa; Lyons, John

    1992-01-01

    GaAs based solar cells have been developed for spacecraft use for several years. However, acceptance and application of these cells for spacecraft missions has been slow because of their high cost and concerns about their integration onto solar panels. Spectrolab has now completed fabrication of solar panels with GaAs/Ge solar cells for a second space program. This paper will focus on the design, fabrication and test of GaAs/Ge solar panels for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) Program.

  18. Backscattering analysis of AuGe-Ni ohmic contacts of n-GaAs

    International Nuclear Information System (INIS)

    Nassibian, A.G.; Kalkur, T.S.; Sutherland, G.J.; Cohen, D.

    1985-01-01

    AuGe-Ni is widely used for the fabrication of ohmic contacts to n-GaAs. The alloying behaviour of evaporated AuGe-Ni alloyed by furnace and Scanning Electron Beam, is characterised by Rutherford backscattering with 2MeV 4 He ions. Since the formation of alloyed AuGe-Ni contacts involves redistribution and diffusion of Ga, As, Ni, Ge and Au, it is difficult to separate the corresponding yields due to gold, Ga As, Ni and Ge in the spectrum. The technique used in the investigation involves assumption of depth distribution of elements and computing the resultant spectrum

  19. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  20. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    Science.gov (United States)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  1. Diffusion slowdown in the nanostructured liquid Ga-Sn alloy

    International Nuclear Information System (INIS)

    Podorozhkin, Dmitri Y.; Charnaya, Elena V.; Lee, Min Kai; Chang, Lieh-Jeng; Haase, Juergen; Michel, Dieter; Kumzerov, Yurii A.; Fokin, Alexsandr V.

    2015-01-01

    The diffusion of gallium in liquid Ga-Sn alloy embedded into different porous silica matrices was studied by NMR. Spin relaxation was measured for two gallium isotopes, 71 Ga and 69 Ga, at two magnetic fields. Pronounced rise of quadrupole contribution to relaxation was observed for the nanostructured alloy which increased with decreasing the pore size. The correlation time of atomic mobility was evaluated and found to be much larger than in the relevant bulk melt which evidenced a pronounced diffusion slowdown in the Ga-Sn alloy under nanoconfinement. It is shown that the diffusion was slower by a factor of 30 for the alloy within 7 nm pores. The spectral densities of electric field gradients at zero frequency were found to double for the finest pores. The Knight shift was found to decrease but slightly for the nanostructured alloy. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Three new chalcohalides, Ba4Ge2PbS8Br2, Ba4Ge2PbSe8Br2 and Ba4Ge2SnS8Br2: Syntheses, crystal structures, band gaps, and electronic structures

    International Nuclear Information System (INIS)

    Lin, Zuohong; Feng, Kai; Tu, Heng; Kang, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng

    2014-01-01

    Highlights: • Three new chalcohalides: Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have been synthesized. • The MQ 5 Br octahedra and GeQ 4 tetrahedra form a three-dimensional framework with Ba 2+ in the channels. • Band Gaps and electronic structures of the three compounds were studied. - Abstract: Single crystals of three new chalcohalides: Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have been synthesized for the first time. These isostructural compounds crystallize in the orthorhombic space group Pnma. In the structure, the tetra-valent Ge atom is tetrahedrally coordinated with four Q (Q = S, Se) atoms, while the bi-valent M atom (M = Pb, Sn) is coordinated with an obviously distorted octahedron of five Q (Q = S, Se) atoms and one Br atom, showing the stereochemical activity of the ns 2 lone pair electron. The MQ 5 Br (M = Sn, Pb; Q = S, Se) distorted octahedra and the GeQ 4 (Q = S, Se) tetrahedra are connected to each other to form a three-dimensional framework with channels occupied by Ba 2+ cations. Based on UV–vis–NIR spectroscopy measurements and the electronic structure calculations, Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have indirect band gaps of 2.054, 1.952, and 2.066 eV respectively, which are mainly determined by the orbitals from the Ge, M and Q atoms (M = Pb, Sn; Q = S, Se)

  3. Shape Engineering Driven by Selective Growth of SnO2 on Doped Ga2O3 Nanowires.

    Science.gov (United States)

    Alonso-Orts, Manuel; Sánchez, Ana M; Hindmarsh, Steven A; López, Iñaki; Nogales, Emilio; Piqueras, Javier; Méndez, Bianchi

    2017-01-11

    Tailoring the shape of complex nanostructures requires control of the growth process. In this work, we report on the selective growth of nanostructured tin oxide on gallium oxide nanowires leading to the formation of SnO 2 /Ga 2 O 3 complex nanostructures. Ga 2 O 3 nanowires decorated with either crossing SnO 2 nanowires or SnO 2 particles have been obtained in a single step treatment by thermal evaporation. The reason for this dual behavior is related to the growth direction of trunk Ga 2 O 3 nanowires. Ga 2 O 3 nanowires grown along the [001] direction favor the formation of crossing SnO 2 nanowires. Alternatively, SnO 2 forms rhombohedral particles on [110] Ga 2 O 3 nanowires leading to skewer-like structures. These complex oxide structures were grown by a catalyst-free vapor-solid process. When pure Ga and tin oxide were used as source materials and compacted powders of Ga 2 O 3 acted as substrates, [110] Ga 2 O 3 nanowires grow preferentially. High-resolution transmission electron microscopy analysis reveals epitaxial relationship lattice matching between the Ga 2 O 3 axis and SnO 2 particles, forming skewer-like structures. The addition of chromium oxide to the source materials modifies the growth direction of the trunk Ga 2 O 3 nanowires, growing along the [001], with crossing SnO 2 wires. The SnO 2 /Ga 2 O 3 junctions does not meet the lattice matching condition, forming a grain boundary. The electronic and optical properties have been studied by XPS and CL with high spatial resolution, enabling us to get both local chemical and electronic information on the surface in both type of structures. The results will allow tuning optical and electronic properties of oxide complex nanostructures locally as a function of the orientation. In particular, we report a dependence of the visible CL emission of SnO 2 on its particular shape. Orange emission dominates in SnO 2 /Ga 2 O 3 crossing wires while green-blue emission is observed in SnO 2 particles attached to Ga 2

  4. First principles study of structural, electronic and magnetic properties of SnGe n (0, ±1) ( n = 1–17) clusters

    Science.gov (United States)

    Djaadi, Soumaia; Eddine Aiadi, Kamal; Mahtout, Sofiane

    2018-04-01

    The structures, relative stability and magnetic properties of pure Ge n +1, neutral cationic and anionic SnGe n (n = 1–17) clusters have been investigated by using the first principles density functional theory implemented in SIESTA packages. We find that with the increasing of cluster size, the Ge n +1 and SnGe n (0, ±1) clusters tend to adopt compact structures. It has been also found that the Sn atom occupied a peripheral position for SnGe n clusters when n 12. The structural and electronic properties such as optimized geometries, fragmentation energy, binding energy per atom, HOMO–LUMO gaps and second-order differences in energy of the pure Ge n +1 and SnGe n clusters in their ground state are calculated and analyzed. All isomers of neutral SnGe n clusters are generally nonmagnetic except for n = 1 and 4, where the total spin magnetic moments is 2μ b. The total (DOS) and partial density of states of these clusters have been calculated to understand the origin of peculiar magnetic properties. The cluster size dependence of vertical ionization potentials, vertical electronic affinities, chemical hardness, adiabatic electron affinities and adiabatic ionization potentials have been calculated and discussed.

  5. Local motifs in GeS{sub 2}–Ga{sub 2}S{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pethes, I., E-mail: pethes.ildiko@wigner.mta.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. 49 (Hungary); Nazabal, V.; Chahal, R.; Bureau, B. [Institut Sciences Chimiques de Rennes, UMR-CNRS 6226, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes, Cedex (France); Kaban, I. [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Belin, S. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif sur Yvette (France); Jóvári, P. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. 49 (Hungary)

    2016-07-15

    The structure of (GeS{sub 2}){sub 0.75}(Ga{sub 2}S{sub 3}){sub 0.25} and (GeS{sub 2}){sub 0.83}(Ga{sub 2}S{sub 3}){sub 0.17} glasses was investigated by Raman scattering, high energy X-ray diffraction and extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges. The reverse Monte Carlo simulation technique (RMC) was used to obtain structural models compatible with diffraction and EXAFS datasets. It was found that the coordination number of Ga is close to four. While Ge atoms have only S neighbors, Ga binds to S as well as to Ga atoms showing a violation of chemical ordering in GeS{sub 2}–Ga{sub 2}S{sub 3} glasses. Analysis of the corner- and edge-sharing between [GeS{sub 4/2}] units revealed that about 30% of germanium atoms participate in the edge-shared tetrahedra. - Highlights: • Structural models of GeS{sub 2}–Ga{sub 2}S{sub 3} glasses consistent with XRD + EXAFS data are created. • Chemical order is respected but Ga–Ga bonds are present caused by S-deficiency. • The coordination number of Ga is 3.7 ± 0.3. • The frequency and geometry of corner/edge-sharing [GeS{sub 4/2}] units were determined.

  6. The phase diagram of annealed Ge(111)/Ga

    DEFF Research Database (Denmark)

    Molinàs-Mata, P.; Böhringer, M.; Artacho, E.

    1995-01-01

    A study of the annealed phases of Ge(111)/Ga for coverages above 0.05 ML is presented. The surfaces are investigated by low-energy electron diffraction, scanning tunneling microscopy, and partly by photoemission and surface X-ray diffraction using synchrotron radiation. For Ga coverages beyond 0....

  7. Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2016-01-14

    The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trap density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.

  8. Production status of GaAs/Ge solar cells and panels

    Science.gov (United States)

    Smith, B.; Gillanders, M.; Vijayakumar, P.; Lillington, D.; Yang, H.; Rolph, R.

    1991-01-01

    GaAs/Ge solar cells with lot average efficiencies in excess of 18 percent were produced by MOCVD growth techniques. A description of the cell, its performance and the production facility are discussed. Production GaAs/Ge cells of this type were recently assembled into circuits and bonded to aluminum honeycomb panels to be used as the solar array for the British UOSAT-F program.

  9. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Ishii, Masaomi [Department of Nuclear Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Muroga, Takeo [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 502-5292 (Japan)

    2015-10-15

    Graphical abstract: Corrosion of RAFM steel, JLF-1, in liquid Sn–20Li was caused by the formation of Fe-Sn alloyed layer. - Highlights: • The corrosion tests were performed for the reduced activation ferritic martensitic steel JLF-1 and the austenitic steel SUS316 in liquid Ga, Sn and Sn-20Li at 873 K up to 750 h. • The weight loss of the specimens exposed to liquid Ga, Sn and Sn-20Li was evaluated. • The corrosion of the steels in liquid Ga was caused by the alloying reaction between Ga and Fe on the steel surface. • The corrosion of the steels in liquid Sn was caused by the alloying reaction between Sn and Fe on the steel surface. • The corrosion of the steels in liquid Sn-20Li was caused by the formation of the Fe-Sn alloyed layer and the diffusion of Sn and Li into the steel matrix. - Abstract: The compatibility of steels in liquid gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li) was investigated by means of static corrosion tests. The corrosion tests were performed for reduced activation ferritic martensitic steel JLF-1 (JOYO-HEAT, Fe–9Cr–2W–0.1C) and austenitic steel SUS316 (Fe–18Cr–12Ni–2Mo). The test temperature was 873 K, and the exposure time was 250 and 750 h. The corrosion of these steels in liquid Ga, Sn and Sn–20Li alloy was commonly caused by the formation of a reaction layer and the dissolution of the steel elements into the melts. The reaction layer formed in liquid Ga was identified as Fe{sub 3}Ga from the results of metallurgical analysis and the phase diagram. The growth rate of the reaction layer on the JLF-1 steel showed a parabolic rate law, and this trend indicated that the corrosion could be controlled by the diffusion process through the layer. The reaction layer formed in liquid Sn and Sn–20Li was identified as FeSn. The growth rate had a linear function with exposure time. The corrosion in Sn and Sn–20Li could be controlled by the interface reaction on the layer. The growth rate of the layer formed

  10. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Ishii, Masaomi; Muroga, Takeo

    2015-01-01

    Graphical abstract: Corrosion of RAFM steel, JLF-1, in liquid Sn–20Li was caused by the formation of Fe-Sn alloyed layer. - Highlights: • The corrosion tests were performed for the reduced activation ferritic martensitic steel JLF-1 and the austenitic steel SUS316 in liquid Ga, Sn and Sn-20Li at 873 K up to 750 h. • The weight loss of the specimens exposed to liquid Ga, Sn and Sn-20Li was evaluated. • The corrosion of the steels in liquid Ga was caused by the alloying reaction between Ga and Fe on the steel surface. • The corrosion of the steels in liquid Sn was caused by the alloying reaction between Sn and Fe on the steel surface. • The corrosion of the steels in liquid Sn-20Li was caused by the formation of the Fe-Sn alloyed layer and the diffusion of Sn and Li into the steel matrix. - Abstract: The compatibility of steels in liquid gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li) was investigated by means of static corrosion tests. The corrosion tests were performed for reduced activation ferritic martensitic steel JLF-1 (JOYO-HEAT, Fe–9Cr–2W–0.1C) and austenitic steel SUS316 (Fe–18Cr–12Ni–2Mo). The test temperature was 873 K, and the exposure time was 250 and 750 h. The corrosion of these steels in liquid Ga, Sn and Sn–20Li alloy was commonly caused by the formation of a reaction layer and the dissolution of the steel elements into the melts. The reaction layer formed in liquid Ga was identified as Fe 3 Ga from the results of metallurgical analysis and the phase diagram. The growth rate of the reaction layer on the JLF-1 steel showed a parabolic rate law, and this trend indicated that the corrosion could be controlled by the diffusion process through the layer. The reaction layer formed in liquid Sn and Sn–20Li was identified as FeSn. The growth rate had a linear function with exposure time. The corrosion in Sn and Sn–20Li could be controlled by the interface reaction on the layer. The growth rate of the layer formed in

  11. Continuation of comprehensive quality control of the itG 68Ge/68Ga generator and production of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC for clinical research studies.

    Science.gov (United States)

    Amor-Coarasa, Alejandro; Kelly, James M; Gruca, Monika; Nikolopoulou, Anastasia; Vallabhajosula, Shankar; Babich, John W

    2017-10-01

    Performance of a second itG 68 Ge/ 68 Ga generator system and production of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC were tested over one year as an accompaniment to a previously published study (J Nucl Med. 2016;57:1402-1405). Performance of a 1951MBq 68 Ge/ 68 Ga generator was characterized and the eluate used for preparation of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC. Weekly elution profiles of 68 Ga elution yield and 68 Ge breakthrough were determined. 68 Ga elution yields averaged 82% (61.8-98.4%) and 68 Ge breakthrough averaged 0.002% (0.0007% to 0.004%). The radiochemical purities of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC were determined by HPLC analysis to be >98% and specific activity was 12.6 and 42GBq/μmol, respectively. 68 Ge contamination in the product was under the detection limit (0.00001%). Final sterile, pyrogen-free formulation of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC in physiologic saline with 5%-7% ethanol was achieved. Performance of a 68 Ge/ 68 Ga generator was studied over one year with satisfactory results. The generator eluate was used to synthesize 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC on a routine basis in high purity. Copyright © 2017. Published by Elsevier Inc.

  12. EOL performance comparison of GaAs/Ge and Si BSF/R solar arrays

    Science.gov (United States)

    Woike, Thomas J.

    1993-01-01

    EOL power estimates for solar array designs are significantly influenced by the predicted degradation due to charged particle radiation. New radiation-induced power degradation data for GaAs/Ge solar arrays applicable to missions ranging from low earth orbit (LEO) to geosynchronous earth orbit (GEO) and compares these results to silicon BSF/R arrays. These results are based on recently published radiation damage coefficients for GaAs/Ge cells. The power density ratio (GaAs/Ge to Si BSF/R) was found to be as high as 1.83 for the proton-dominated worst-case altitude of 7408 km medium Earth orbit (MEO). Based on the EOL GaAs/Ge solar array power density results for MEO, missions which were previously considered infeasible may be reviewed based on these more favorable results. The additional life afforded by using GaAs/Ge cells is an important factor in system-level trade studies when selecting a solar cell technology for a mission and needs to be considered. The data presented supports this decision since the selected orbits have characteristics similar to most orbits of interest.

  13. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    Energy Technology Data Exchange (ETDEWEB)

    Shvarts, Maxim Z., E-mail: shvarts@scell.ioffe.ru; Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021 (Russian Federation); Gudovskikh, Alexander S. [Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to −190 °C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from −20°C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  14. Synthesis of compositionally controllable Cu{sub 2}(Sn{sub 1−x}Ge{sub x})S{sub 3} nanocrystals with tunable band gaps

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qingshuang, E-mail: lqs671@163.com [Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry (China)

    2016-06-15

    In this work, we show that compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals can be successfully synthesized by the hot-injection method through careful tuning the Ge/(Sn+Ge) precursor ratio. The band gaps of the resultant nanocrystals are demonstrated to be linearly tuned from 1.45 to 2.33 eV by adjusting the composition parameter x of the Ge/(Sn+Ge) ratio from 0.0 to 1.0. The crystalline structures of the resultant NCs have been studied by the X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), select area electron diffraction (SAED), and Raman spectroscopy. A ligand exchange procedure is further performed to replace the native ligands on the surface of the NCs with sulfur ions. The photoresponsive behavior indicates the potential use of as-prepared Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals in solar energy conversion systems. The synthesis of compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals reported herein provides a way for probing the effect of Ge inclusion in the Cu-Sn-S system thin films.

  15. Cyclotron production of 68Ge with a Ga2O target

    International Nuclear Information System (INIS)

    Naidoo, C.; Walt, T.N. van der; Raubenheimer, H.G.

    2002-01-01

    Systematic information of exchange behavior of Ge(IV) and Ga(III) in varying oxalic acid (0.05M and 0.25M) and sulphuric acid (0.005M-2M range) mixtures is presented. These findings were used to develop a separation involving 68 Ge from a Ga 2 O target material. A method based on acid dissolution of the target and chromatography on an anion exchange resin (Bio-Rad R AG1-X8) was developed. The separated 68 Ge has high radionuclidic purity and an acceptable chemical purity. (author)

  16. Disposal of radioactive contaminated waste from Ga-68-PET. Calculation of a clearance level for Ge-68+; Entsorgung radioaktiv kontaminierter Reststoffe aus der Ga-68-PET. Berechnung eines Freigabewertes fuer Ge-68+

    Energy Technology Data Exchange (ETDEWEB)

    Solle, Alexander; Wanke, Carsten; Geworksi, Lilli [Medizinische Hochschule Hannover (Germany). Stabsstelle Strahlenschutz und Abt. Medizinische Physik

    2017-05-01

    Ga-68-labeled radiotracers, particularly used for the detection of neuroendocrine tumors by means of Ga-68-DOTA-TATE or -DOTA-TOC or for the diagnosis of prostate cancer by means of Ga-68-labeled antigens (Ga 68-PSMA), become increasingly important. In addition to the high sensitivity and specificity of these radiopharmaceuticals, the short-lived radionuclide Ga-68 offers almost ideal nuclear characteristics for use in PET. Ga-68 is obtained from a germanium-gallium-generator system, so that the availability of Ga-68-labeled radiotracers is independent of an on-site-cyclotron regardless of the short half-life of Ga-68 of about 68 minutes. Regarding the disposal of the radioactively contaminated waste from the preparation of the radiopharmaceutical, the eluted Ga-68 has to be considered to be additionally contaminated with its parent nuclide Ge-68. Due to this production-related impurity in combination with the short half-life of Ga-68, the radioactive waste has to be considered to be contaminated with Ge-68 and Ga-68 in radioactive equilibrium (hereafter referred to as Ge-68+). As there are no clearance levels for Ge-68+ given in the German Radiation Protection Ordinance, this work presents a method to calculate the missing value basing on a recommendation of the German Radiation Protection Commission in combination with simple geometric models of practical radiation protection. Regarding the relevant exposure scenarios, a limit value for the unrestricted clearance of Ge-68+ of 0.4 Bq/g was determined.

  17. GeP and (Ge1−xSnx)(P1−yGey) (x≈0.12, y≈0.05): Synthesis, structure, and properties of two-dimensional layered tetrel phosphides

    International Nuclear Information System (INIS)

    Lee, Kathleen; Synnestvedt, Sarah; Bellard, Maverick; Kovnir, Kirill

    2015-01-01

    GeP and Sn-doped GeP were synthesized from elements in bismuth and tin flux, respectively. The layered crystal structures of these compounds were characterized by single crystal X-ray diffraction. Both phosphides crystallize in a GaTe structure type in the monoclinic space group C2/m (No. 12) with GeP: a=15.1948(7) Å, b=3.6337(2) Å, c=9.1941(4) Å, β=101.239(2)°; Ge 0.93(3) P 0.95(1) Sn 0.12(3) : a=15.284(9) Å, b=3.622(2) Å, c=9.207(5) Å, β=101.79(1)°. The crystal structure of GeP consists of 2-dimensional GeP layers held together by weak electron lone pair interactions between the phosphorus atoms that confine the layer. Each layer is built of Ge–Ge dumbbells surrounded by a distorted antiprism of phosphorus atoms. Sn-doped GeP has a similar structural motif, but with a significant degree of disorder emphasized by the splitting of all atomic positions. Resistivity measurements together with quantum-chemical calculations reveal semiconducting behavior for the investigated phosphides. - Graphical abstract: Layered phosphides GeP and Sn-doped GeP were synthesized from elements in bismuth and tin flux, respectively. The crystal structure of GeP consists of 2-dimensional GeP layers held together by weak electron lone pair interactions between the phosphorus atoms that confine the layer. Sn-doped GeP has a similar structural motif with a significant degree of disorder emphasized by the splitting of all atomic positions. Resistivity measurements together with quantum-chemical calculations reveal semiconducting behavior for the investigated phosphides. - Highlights: • GeP crystallizes in a layered crystal structure. • Doping of Sn into GeP causes large structural distortions. • GeP is narrow bandgap semiconductor. • Sn-doped GeP exhibits an order of magnitude higher resistivity due to disorder

  18. Development of nanotopography during SIMS characterization of thin films of Ge{sub 1−x}Sn{sub x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, M., E-mail: secchi@fbk.eu [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy); Demenev, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Department of Molecular Science and Nanosystems, Ca’Foscari University, Dorsoduro 2137, 30123 Venice (Italy); Colaux, J.L. [Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, Surrey, England (United Kingdom); Giubertoni, D.; Dell’Anna, R.; Iacob, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Gwilliam, R.M.; Jeynes, C. [Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, Surrey, England (United Kingdom); Bersani, M. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy)

    2015-11-30

    Highlights: • SIMS protocol to measure high Sn concentration in GeSn alloy is proposed. • Cs{sup +} as incidence beam, collecting positive ions MCs{sup +} was the chosen configuration. • Applied sputtering conditions induced an early formation of surface topography. • Unusual dot and ripple evolution at oblique incidence angle on Ge were studied. • Two different mechanisms seem to be involved: ripple formation and nanovoids in Ge. - Abstract: This work presents a study of application of secondary ion mass spectrometry (SIMS) to measure tin concentration in Ge{sub 1−x}Sn{sub x} alloy with x higher than solid solubility ∼1%, i.e. well above the diluted regime where SIMS measurements usually provide the most reliable quantitative results. SIMS analysis was performed on Sn{sup +} ion implanted Ge films, epitaxially deposited on Si, and on chemical vapor deposition deposited Ge{sub 0.93}Sn{sub 0.07} alloy. Three SIMS conditions were investigated, varying primary beam ion species and secondary ion polarity keeping 1 keV impact energy. Best depth profile accuracy, best agreement with the fluences measured by Rutherford backscattering spectrometry, good detection limit (∼1 × 10{sup 17} at/cm{sup 3}) and depth resolution (∼2 nm/decade) are achieved in Cs{sup +}/SnCs{sup +} configuration. However, applied sputtering conditions (Cs{sup +} 1 keV, 64° incidence vs. normal) induced an early formation of surface topography on the crater bottom resulting in significant variation of sputtering yield. Atomic force microscopy shows a peculiar topography developed on Ge: for oblique incidence, a topography consisting in a sequence of dots and ripples was observed on the crater bottom. This behavior is unusual for grazing incidence and has been observed to increase with the Cs{sup +} fluence. Rotating sample during sputtering prevents this ripple formation and consequently improves the depth accuracy.

  19. On the decay of 73Ga to levels in 73Ge

    International Nuclear Information System (INIS)

    Forssten, K.; Brenner, M.

    1976-01-01

    The γ-radiation following the β - decay of 73 Ga has been studied. Singles γ and γγ coincidence spectra were recorded with Ge(Li)-detectors. 17 γ-rays were assigned to transitions in 73 Ge, where 11 excited levels are proposed. From log ft values based on γ-transition intensities, spin and parity assignments for the levels were deduced. The half-life of 73 Ga was measured to (4.86 +- 0.03)h. From allowed β-transitions the ground state of 73 Ga was assigned 3/2 - . (orig.) [de

  20. High Quality GaAs Epilayers Grown on Si Substrate Using 100 nm Ge Buffer Layer

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Kuo

    2016-01-01

    Full Text Available We present high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers. The thin Ge buffer layers were modulated by hydrogen flow rate from 60 to 90 sccm to improve crystal quality by electron cyclotron resonance chemical vapor deposition (ECR-CVD at low growth temperature (180°C. The GaAs and Ge epilayers quality was verified by X-ray diffraction (XRD and spectroscopy ellipsometry (SE. The full width at half maximum (FWHM of the Ge and GaAs epilayers in XRD is 406 arcsec and 220 arcsec, respectively. In addition, the GaAs/Ge/Si interface is observed by transmission electron microscopy (TEM to demonstrate the epitaxial growth. The defects at GaAs/Ge interface are localized within a few nanometers. It is clearly showed that the dislocation is well suppressed. The quality of the Ge buffer layer is the key of III–V/Si tandem cell. Therefore, the high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers is suitable to develop the low cost and high efficiency III–V/Si tandem solar cells.

  1. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  2. Compositional dependence of the band-gap of Ge{sub 1−x−y}Si{sub x}Sn{sub y} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wendav, Torsten, E-mail: wendav@physik.hu-berlin.de [AG Theoretische Optik & Photonik, Humboldt Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Fischer, Inga A.; Oehme, Michael; Schulze, Jörg [Institut für Halbleitertechnik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart (Germany); Montanari, Michele; Zoellner, Marvin Hartwig; Klesse, Wolfgang [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Capellini, Giovanni [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma (Italy); Driesch, Nils von den; Buca, Dan [Peter Grünberg Institute 9 (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52428 Jülich (Germany); Busch, Kurt [AG Theoretische Optik & Photonik, Humboldt Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Max-Born-Institut, Max-Born-Str. 2 A, 12489 Berlin (Germany)

    2016-06-13

    The group-IV semiconductor alloy Ge{sub 1−x−y}Si{sub x}Sn{sub y} has recently attracted great interest due to its prospective potential for use in optoelectronics, electronics, and photovoltaics. Here, we investigate molecular beam epitaxy grown Ge{sub 1−x−y}Si{sub x}Sn{sub y} alloys lattice-matched to Ge with large Si and Sn concentrations of up to 42% and 10%, respectively. The samples were characterized in detail by Rutherford backscattering/channeling spectroscopy for composition and crystal quality, x-ray diffraction for strain determination, and photoluminescence spectroscopy for the assessment of band-gap energies. Moreover, the experimentally extracted material parameters were used to determine the SiSn bowing and to make predictions about the optical transition energy.

  3. Studies on the preparation of {sup 68}Ge-{sup 68}Ga generator with inorganic materials

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Tania P.; Osso Junior, Joao A., E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    {sup 68}Ga as a positron emitter is of great interest because of some important advantages. It has a physical half-life of 67.71 min, which is compatible with the pharmacokinetics of many radiopharmaceuticals of low molecular weight. Other important characteristic is its cyclotron-independent availability via the {sup 68}Ge-{sup 68}Ga radionuclide generator system. In Brazil only one positron emitter radionuclide is produced, {sup 18}F, and the medical class has a great interest in using {sup 68}Ga labeled molecules, in particular peptides such as DOTA-octriotide. A project for developing a home made {sup 68}Ge-{sup 68}Ga is under way at IPEN-CNEN/SP. The aim of this work is to develop an efficient and simplified generator system of {sup 68}Ge-{sup 68}Ga that offers {sup 68}Ga{sup 3+} adequate for clinical use. Initial results will be reported concerning the behavior of Ge and Ga in adsorbers such as calcined acid and basic Al{sub 2}O{sub 3}, HZO (hydrous zirconium oxide), TiO{sub 2}, microspheres of Zr (Zr mic) and microspheres of Al (Al mic). Adsorption studies were carried out using {gamma}-emitting tracers, {sup 67}Ga and {sup 68}Ga and chemical tracer, GeO{sub 2}. The samples containing {sup 67}/{sup 68}Ga were analysed using a dose calibrator CRC-15R from Capintec and the samples containing Ge were evaluated by the Optical Emission Spectrometry using Inductively Coupled Plasma (ICP-OES). The ICP-OES equipment used was a Varian Vista-MPX from Varian and calibration curves for Ge were constructed in the range of 0.2 to 1.0 {mu}g.mL{sup -1}. The use of basic Al{sub 2}O{sub 3}, TiO{sub 2}, HZO and Zr mic showed the more promising results. (author)

  4. All-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayers fabricated by Sn-induced low-temperature epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, M.; Ikawa, M.; Arima, K.; Yamada, S.; Kanashima, T.; Hamaya, K., E-mail: hamaya@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531 (Japan)

    2016-01-28

    We demonstrate low-temperature growth of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures by developing Sn-induced surfactant-mediated molecular beam epitaxy (SMBE) of Ge on Co{sub 2}FeSi. Despite the growth of a semiconductor on a metal, we verify that the inserted Sn monolayers between Ge and Co{sub 2}FeSi enable to promote the 2D epitaxial growth of Ge up to 5 nm at a T{sub G} of 250 °C. An understanding of the mechanism of the Sn-induced SMBE leads to the achievement of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures with spin-valve-like magnetization reversals. This study will open a way for vertical-type and high-performance Ge-based spintronics devices.

  5. Performance enhancement in uniaxially tensile stressed GeSn n-channel fin tunneling field-effect transistor: Impact of stress direction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-04-01

    In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.

  6. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    Science.gov (United States)

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  7. Scintillation and optical properties of Sn-doped Ga2O3 single crystals

    Science.gov (United States)

    Usui, Yuki; Nakauchi, Daisuke; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-06-01

    Sn-doped Ga2O3 single crystals were synthesized by the Floating Zone (FZ) method. In photoluminescence (PL) under the excitation wavelength of 280 nm, we observed two types of luminescence: (1) defect luminescence due to recombination of the donor/acceptor pairs which appears at 430 nm and (2) the nsnp-ns2 transitions of Sn2+ which appear at 530 nm. The PL and scintillation decay time curves of the Sn-doped samples were approximated by a sum of exponential decay functions. The faster two components were ascribed to the defect luminescence, and the slowest component was owing to the nsnp-ns2 transitions. In the pulse height spectrum measurements under 241Am α-rays irradiation, all the Sn-doped Ga2O3 samples were confirmed to show a full energy absorption peak but the undoped one. Among the present samples, the 1% Sn-doped sample exhibited the highest scintillation light yield (1,500 ± 150 ph/5.5 MeV-α).

  8. Magnetic properties of Heusler alloy Mn2RuGe and Mn2RuGa ribbons

    International Nuclear Information System (INIS)

    Yang, Ling; Liu, Bohua; Meng, Fanbin; Liu, Heyan; Luo, Hongzhi; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2015-01-01

    Heusler alloys Mn 2 RuGe and Mn 2 RuGa have been prepared by melt-spinning method successfully. Theoretical and experimental studies reveal a ferrimagnetic ground state in the two alloys. The Curie temperatures are 303 K for Mn 2 RuGe and 272 K for Mn 2 RuGa. The calculated total spin moments of Mn 2 RuGe and Mn 2 RuGa are integral values of 2.00 μ B and 1.03 μ B , respectively. And the theoretical spin polarization ratio is also quite high. However, due to the atomic disorder in the ribbons, the saturation moments of them measured at 5 K are smaller than the calculated values, especially that of Mn 2 RuGa. This coincides with the disappearance of the superlattice reflection (111) and (200) peaks in the XRD pattern of Mn 2 RuGa. Annealing Mn 2 RuGa ribbon at 773 K can enhance the atomic ordering. Both saturation magnetic moment and Curie temperature increase obviously after the heat treatment. - Highlights: • Mn 2 RuGe and Mn 2 RuGa have been prepared by melt-spinning successfully. • Ferrimagnetic ground state has been confirmed in Mn 2 RuGe and Mn 2 RuGa. • High spin polarization has been predicted in Mn 2 RuGe. • Melt-spinning can be a possible way to adjust the atomic order of Heusler alloys

  9. 73Ge, 119Sn and 207Pb: general cooperative effects of single atom ligands on the NMR signals observed in tetrahedral [MXnY4-n] (M = Ge, Sn, Pb; 1 ≤ n ≤ 4; X, Y = Cl, Br, I) coordination compounds of heavier XIV group elements.

    Science.gov (United States)

    Benedetti, M; De Castro, F; Fanizzi, F P

    2017-02-28

    An inverse linear relationship between 73 Ge, 119 Sn and 207 Pb NMR chemical shifts and the overall sum of ionic radii of coordinated halido ligands has been discovered in tetrahedral [MX n Y 4-n ] (M = Ge, Sn, Pb; 1 ≤ n ≤ 4; X, Y = Cl, Br, I) coordination compounds. This finding is consistent with a previously reported correlation found in octahedral, pentacoordinate and square planar platinum complexes. The effect of the coordinated halido ligands acting on the metal as shielding conducting rings is therefore confirmed also by 73 Ge, 119 Sn and 207 Pb NMR spectroscopy.

  10. Synthesis, structure, and luminescence properties of In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghoon; An, Soyeon; Jin, Changhyun; Lee, Chongmu [Inha University, Incheon (Korea, Republic of)

    2012-09-15

    In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires were synthesized by using a two-step process: thermal evaporation of a mixture of In and Ge powders and atomic layer deposition of SnO{sub 2}. The core-shell nanowires were characterized using by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. The In{sub 2}Ge{sub 2}O{sub 7} cores in these core-shell nanowires varied from 50 to 100 nanometers in diameter and up to a few hundreds of micrometers in length, and the SnO{sub 2} shell layer thickness ranged from 5 to 15 nm. Photoluminescence measurements showed that the In{sub 2}Ge{sub 2}O{sub 7} nanowires had a weak broad violet emission band centered at approximately 405 nm. In contrast, the In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires had a taller blue-violet emission peak at approximately 440 nm. The optimum shell layer thickness of the In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires for the highest PL intensity was found to be 15 nm. Our results also showed that the intensity of the blue-violet emission was increased further by thermal annealing in an Ar atmosphere. The origins of the change on and the enhancement of the luminescence of the In{sub 2}Ge{sub 2}O{sub 7} nanowires by SnO{sub 2} coating and annealing are discussed.

  11. InGaP solar cell on Ge-on-Si virtual substrate for novel solar power conversion

    Science.gov (United States)

    Kim, T. W.; Albert, B. R.; Kimerling, L. C.; Michel, J.

    2018-02-01

    InGaP single-junction solar cells are grown on lattice-matched Ge-on-Si virtual substrates using metal-organic chemical vapor deposition. Optoelectronic simulation results indicate that the optimal collection length for InGaP single-junction solar cells with a carrier lifetime range of 2-5 ns is wider than approximately 1 μm. Electron beam-induced current measurements reveal that the threading dislocation density (TDD) of InGaP solar cells fabricated on Ge and Ge-on-Si substrates is in the range of 104-3 × 107 cm-2. We demonstrate that the open circuit voltage (Voc) of InGaP solar cells is not significantly influenced by TDDs less than 2 × 106 cm-2. Fabricated InGaP solar cells grown on a Ge-on-Si virtual substrate and a Ge substrate exhibit Voc in the range of 0.96 to 1.43 V under an equivalent illumination in the range of ˜0.5 Sun. The estimated efficiency of the InGaP solar cell fabricated on the Ge-on-Si virtual substrate (Ge substrate) at room temperature for the limited incident spectrum spanning the photon energy range of 1.9-2.4 eV varies from 16.6% to 34.3%.

  12. The effects of Sn addition on properties and structure in Ge-Se chalcogenide glass

    Science.gov (United States)

    Fayek, S. A.

    2005-01-01

    Far infrared transmission spectra of homogeneous compositions in the glassy alloy system Ge 1- xSn xSe 2.5 0⩽ x⩽0.6 have been observed in the spectral range 200-500 cm -1 at room temperature. The infrared absorption spectra show strong bands around 231, 284 and 311 cm -1 which were assigned to GeSe, SeSn, Se-Se. Tin atoms appear to substitute for the germanium atoms in the outrigger sites of Ge(Se 1/2) 4 tetrahedra up to 0.4. For x>0.5, the glasses show a new vibrational band of an isolated F 2 mode of the Ge-centered tetrahedra outside the clusters. A pronounced peculiarity (maximum or minimum) appeared at around the same value of the average coordination number at Z=2.65 for all composition dependence topological phase transition from two-dimensional (2D) layer type to three- dimensional (3D) cross-linked network structures in the glass. It is clear that the theoretical ν-values for Se-Se bond is less than the experimental one and that for Se-Ge is greater than the experimental one. This difference may be due to the existence of more close lying modes which tends to broaden the absorption bands. Quantitative justification of the absorption bands shows that theoretical wave numbers agree with its experimental values for Ge-Se stretching vibration bond.

  13. Defect phase diagram for doping of Ga2O3

    OpenAIRE

    Stephan Lany

    2018-01-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have d...

  14. GaSb grown from Sn solvent at low temperatures by LPE

    Energy Technology Data Exchange (ETDEWEB)

    Compean, V H; Anda, F de; Mishurnyi, V A; Gorbatchev, A Yu, E-mail: fdeanda@cactus.iico.uaslp.m [Universidad Autonoma de San Luis Potosi, Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Col. Lomas 4a Sec., San Luis Potosi, SLP, CP 78210 (Mexico)

    2009-05-01

    The LPE growth of GaSb using Sn as a solvent has been studied in the temperature range 250-370 C and using liquid solutions covering a wide range of compositions. In order to find the growth conditions the phase diagram has been determined experimentally around the same temperature region. It is shown the Sn incorporates into the grown layers and that it behaves as an acceptor. The photoluminescence spectra of the grown layers with different Sn contents show characteristic peaks that can be attributed to different recombination processes.

  15. Quaternary selenostannates Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} and AGaSnSe{sub 4} (A=K, Rb, and Cs) through rapid cooling of melts. Kinetics versus thermodynamics in the polymorphism of AGaSnSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S -J; Iyer, R G; Kanatzidis, M G

    2004-10-01

    The quaternary alkali-metal gallium selenostannates, Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} and AGaSnSe{sub 4} (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) A, b=7.594(2) A, c=13.842(3) A, {beta}=118.730(4) deg., V=1226.7(5) A{sup 3}. {alpha}-KGaSnSe{sub 4} crystallizes in the tetragonal space group I4/mcm with a=8.186(5) A and c=6.403(5) A, V=429.1(5) A{sup 3}. {beta}-KGaSnSe{sub 4} crystallizes in the space group P2{sub 1}/c with cell constants a=7.490(2) A, b=12.578(3) A, c=18.306(5) A, {beta}=98.653(5) deg., V=1705.0(8) A{sup 3}. The unit cell of isostructural RbGaSnSe{sub 4} is a=7.567(2) A, b=12.656(3) A, c=18.277(4) A, {beta}=95.924(4) deg., V=1741.1(7) A{sup 3}. CsGaSnSe{sub 4} crystallizes in the orthorhombic space group Pmcn with a=7.679(2) A, b=12.655(3) A, c=18.278(5) A, V=1776.1(8) A{sup 3}. The structure of Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} consists of a polar three-dimensional network of trimeric (Sn,Ga){sub 3}Se{sub 9} units with Na atoms located in tunnels. The AGaSnSe{sub 4} possess layered structures. The compounds show nearly the same Raman spectral features, except for Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6}. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} to 1.97 eV in CsGaSnSe{sub 4}. Cooling of the melts of KGaSnSe{sub 4} and RbGaSnSe{sub 4} produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called {gamma}-form (BaGa{sub 2}S{sub 4}-type) of these compounds.

  16. Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Aleshkin, V. Ya.; Dubinov, A. A.; Krasilnik, Z. F.; Kudryavtsev, K. E.; Novikov, A. V.; Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru [Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Baidus, N. V.; Samartsev, I. V. [Physical-Technical Research Institute of Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Fefelov, A. G. [FGUE “Salut,” 603950 Nizhny Novgorod (Russian Federation); Nekorkin, S. M. [Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Physical-Technical Research Institute of Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Pavlov, D. A.; Sushkov, A. A. [Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Skorokhodov, E. V.; Shaleev, M. V.; Yablonskiy, A. N.; Yunin, P. A. [Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation)

    2016-08-08

    We report on realization of the InGaAs/GaAs/AlGaAs quantum well laser grown by metallorganic chemical vapor deposition on a virtual Ge-on-Si(001) substrate. The Ge buffer layer has been grown on a nominal Si(001) substrate by solid-source molecular beam epitaxy. Such Ge buffer possessed rather good crystalline quality and smooth surface and so provided the subsequent growth of the high-quality A{sub 3}B{sub 5} laser structure. The laser operation has been demonstrated under electrical pumping at 77 K in the continuous wave mode and at room temperature in the pulsed mode. The emission wavelengths of 941 nm and 992 nm have been obtained at 77 K and 300 K, respectively. The corresponding threshold current densities were estimated as 463 A/cm{sup 2} at 77 K and 5.5 kA/cm{sup 2} at 300 K.

  17. Interface analysis of Ge ultra thin layers intercalated between GaAs substrates and oxide stacks

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Alessandro, E-mail: alessandro.molle@mdm.infm.i [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Lamagna, Luca; Spiga, Sabina [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Fanciulli, Marco [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (MI) (Italy); Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano (Italy); Brammertz, Guy; Meuris, Marc [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium)

    2010-01-01

    Capping III-V compound surfaces with Ge ultra-thin layer might be a viable pathway to passivate the electrically active interface traps which usually jeopardize the integration of III-V materials in metal-oxide-semiconductor devices. As the physical nature of such traps is intrinsically related to the chemical details of the interface composition, the structural and compositional features of the Ge/GaAs interface were thoroughly investigated in two different configurations, the atomic layer deposition of La-doped ZrO{sub 2} films on Ge-capped GaAs and the ultra-high vacuum based molecular beam deposition of GeO{sub 2}/Ge double stack on in situ prepared GaAs. In the former case, the intercalation of a Ge interface layer is shown to suppress the concentration of interface Ga-O, As-O and elemental As bonding which were significantly detected in case of the direct oxide deposition on GaAs. In the latter case, the incidence of two different in situ surface preparations, the Ar sputtering and the atomic H cleaning, on the interface composition is elucidated and the beneficial role played by the atomic H exposure in reducing the semiconductor-oxygen bonds at the interface level is demonstrated.

  18. Synthesis and optical properties of (GaAs)yGe5-2y alloys assembled from molecular building blocks

    Science.gov (United States)

    Sims, P. E.; Wallace, P. M.; Xu, Chi; Poweleit, C. D.; Claflin, B.; Kouvetakis, J.; Menéndez, J.

    2017-09-01

    Monocrystalline alloys of GaAs and Ge with compositions (GaAs)yGe5-2y have been synthesized following a chemical vapor deposition approach that promotes the incorporation of Ga and As atoms as isolated donor-acceptor pairs. The structural and optical properties show distinct behavior relative to (GaAs)1-xGe2x counterparts produced by conventional routes. Strong band gap photoluminescence is observed in the 0.5-0.6 eV range for samples whose compositions approach the GaAsGe3 limit for isolated Ga-As pairs. In such samples, the Ge-like Raman modes appear at higher frequencies and are considerably narrower than those observed in samples with higher Ge concentrations. These results suggest that the growth mechanism may favor the formation of ordered phases comprising Ga-As-Ge3 tetrahedra. In contrast with the diamond-to-zincblende ordering transition previously reported for III-V-IV alloys, ordered structures built from Ga-As-Ge3 tetrahedra feature III-III and V-V pairs as third-nearest neighbors, and therefore both the III- and V-components are equally present in each of two fcc sublattices of the average diamond-like structure. These bonding arrangements likely lead to the observed optical response, indicating potential applications of these materials in mid-IR technologies integrated on Si.

  19. Preparation of p-type GaN-doped SnO2 thin films by e-beam evaporation and their applications in p-n junction

    Science.gov (United States)

    Lv, Shuliang; Zhou, Yawei; Xu, Wenwu; Mao, Wenfeng; Wang, Lingtao; Liu, Yong; He, Chunqing

    2018-01-01

    Various transparent GaN-doped SnO2 thin films were deposited on glass substrates by e-beam evaporation using GaN:SnO2 targets of different GaN weight ratios. It is interesting to find that carrier polarity of the thin films was converted from n-type to p-type with increasing GaN ratio higher than 15 wt.%. The n-p transition in GaN-doped SnO2 thin films was explained for the formation of GaSn and NO with increasing GaN doping level in the films, which was identified by Hall measurement and XPS analysis. A transparent thin film p-n junction was successfully fabricated by depositing p-type GaN:SnO2 thin film on SnO2 thin film, and a low leakage current (6.2 × 10-5 A at -4 V) and a low turn-on voltage of 1.69 V were obtained for the p-n junction.

  20. Diffusion of $^{56}$Co in GaAs and SiGe alloys

    CERN Multimedia

    Koskelo, O K

    2007-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of cobalt in GaAs and SiGe alloys under intrinsic conditions. In the literature only three previous studies for Co diffusion in GaAs may be found and the results differ by over four orders of magnitude from each other. For Co diffusion in SiGe alloys no previous data is available in the literature. For Co diffusion in Ge one study may be found but the results have been obtained with material having increased dislocation density. For dislocation-free material no previous measurements are available. For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{56}$Co$^{+}$ ion beam.

  1. Coordination Chemistry of [E(Idipp)]2+ Ligands (E = Ge, Sn): Metal Germylidyne [Cp*(CO)2W≡Ge(Idipp)]+ and Metallotetrylene [Cp*(CO)3W–E(Idipp)]+ Cations

    KAUST Repository

    Lebedev, Yury; Das, Ujjal; Schnakenburg, Gregor; Filippou, Alexander C.

    2017-01-01

    The synthesis and full characterization of the NHC-stabilized tungstenochlorostannylene [Cp*(CO)3W–SnCl(Idipp)] (1Sn), the NHC-stabilized chlorogermylidyne complex [Cp*(CO)2W═GeCl(Idipp)] (2), the tungsten germylidyne complex salt [Cp*(CO)2W

  2. Fabrication of GaAs quantum dots by droplet epitaxy on Si/Ge virtual substrate

    International Nuclear Information System (INIS)

    Bietti, S; Sanguinetti, S; Somaschini, C; Koguchi, N; Isella, G; Chrastina, D; Fedorov, A

    2009-01-01

    We present here the fabrication, via droplet epitaxy, of GaAs/AlGaAs quantum dots with high optical efficiency on Si. The growth substrate lattice parameter was adapted to that of (Al)GaAs via Ge virtual substrates (GeVS). The samples clearly show the presence of quantum dot self-assembly, with the designed shape and density. Photoluminescence measurements, performed at low temperature, show an intense emission band from the quantum dots.

  3. Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Li, H.; Chang, C.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2016-01-01

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same order of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.

  4. Nanoscale interfacial engineering to grow Ge on Si as virtual substrates and subsequent integration of GaAs

    International Nuclear Information System (INIS)

    Leonhardt, Darin; Sheng, Josephine; Cederberg, Jeffrey G.; Li Qiming; Carroll, Malcolm S.; Han, Sang M.

    2010-01-01

    We have demonstrated the scalability of a process previously dubbed as Ge 'touchdown' on Si to substantially reduce threading dislocations below 10 7 /cm 2 in a Ge film grown on a 2 inch-diameter chemically oxidized Si substrate. This study also elucidates the overall mechanism of the touchdown process. The 1.4 nm thick chemical oxide is first formed by immersing Si substrates in a solution of H 2 O 2 and H 2 SO 4 . Subsequent exposure to Ge flux creates 3 to 7 nm-diameter voids in the oxide at a density greater than 10 11 /cm 2 . Comparison of data taken from many previous studies and ours shows an exponential dependence between oxide thickness and inverse temperature of void formation. Additionally, exposure to a Ge or Si atom flux decreases the temperature at which voids begin to form in the oxide. These results strongly suggest that Ge actively participates in the reaction with SiO 2 in the void formation process. Once voids are created in the oxide under a Ge flux, Ge islands selectively nucleate within the void openings on the newly exposed Si. Island nucleation and growth then compete with the void growth reaction. At substrate temperatures between 823 and 1053 K, nanometer size Ge islands that nucleate within the voids continue to grow and coalesce into a continuous film over the remaining oxide. Coalescence of the Ge islands is believed to result in the creation of stacking faults in the Ge film at a density of 5 x 10 7 /cm 2 . Additionally, coalescence results in films of 3 μm thickness having a root-mean-square roughness of 8 to 10 nm. We have found that polishing the films with dilute H 2 O 2 results in roughness values below 0.5 nm. However, stacking faults originating at the Ge-SiO 2 interface and terminating at the Ge surface are polished at a slightly reduced rate, and show up as 1 to 2 nm raised lines on the polished Ge surface. These lines are then transferred into the subsequent growth morphology of GaAs deposited by metal-organic chemical vapor

  5. First-principles study of new series of quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Bouabça, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Rozale, H., E-mail: hrozale@yahoo.fr [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Amar, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Wang, X.T. [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400044 (China); Sayade, A. [UCCS, CNRS-UMR 8181, Université d’Artois, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, SP 18, 62307 Lens Cedex (France); Chahed, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria)

    2016-12-01

    The structural, electronic, magnetic, and thermal properties of new quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb) were investigated using the full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient approximation (GGA) and GGA plus modified Becke and Johnson as the exchange correlation. The results showed that all Heusler compounds were stable in Type (I) structure. The CsSrCZ (Z=Si, Ge, Sn) compounds had a nearly HM characteristic, and CsSrCZ (Z=P, As, Sb) compounds were true half-metallic (HM) ferromagnets. The strong spin polarization of p orbital for C, Si, Ge, Sn, P, As, and Sb atoms is found to be the origin of ferromagnetic. The half-metallicity is preserved up to a lattice contraction of 3.45%, 1.69%, 1.69%, 7.16%, 7.16%, and 11.2% for all six quaternary Heusler compounds. We also investigated the thermal effects using the quasi-harmonic Debye model. - Highlights: • Electronic, magnetic, and thermodynamic properties of CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb) are investigated. • Until now, there have been no reports theoretical and experimental studies on d{sup 0} half-metals with quaternary structures. • The strong spin polarization of p orbital for C, Si, Ge, Sn, P, As, and Sb atoms is found to be the origin of ferromagnetic. • The half-metallicity is preserved up to a lattice contraction.

  6. Stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on GaAs and Ge/Si(001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yablonsky, A. N., E-mail: yablonsk@ipm.sci-nnov.ru; Morozov, S. V.; Gaponova, D. M.; Aleshkin, V. Ya. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Shengurov, V. G.; Zvonkov, B. N.; Vikhrova, O. V.; Baidus’, N. V. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Krasil’nik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-11-15

    We report the observation of stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on Si(001) substrates with the application of a relaxed Ge buffer layer. Stimulated emission is observed at 77 K under pulsed optical pumping at a wavelength of 1.11 μm, i.e., in the transparency range of bulk silicon. In similar InGaAs/GaAsSb/GaAs structures grown on GaAs substrates, room-temperature stimulated emission is observed at 1.17 μm. The results obtained are promising for integration of the structures into silicon-based optoelectronics.

  7. Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses

    International Nuclear Information System (INIS)

    Guo Haitao; Zhai Yanbo; Tao Haizheng; Dong Guoping; Zhao Xiujian

    2007-01-01

    Chalcohalide glasses in the GeS 2 -Ga 2 S 3 -CdI 2 pseudo-ternary system were prepared by 3-5N pure raw materials. Structures of these glasses were studied with Raman spectroscopy. Several properties, namely, glass transition temperature, optical transmission, density and microhardness have also been measured. Based on the Raman spectra, it can be speculated that the glass network is mainly constituted by [GeS 4 ], [GaS 4 ] tetrahedra with some mixed-anion tetrahedra [S 3 GeI], [S 2 GeI 2 ] and [S 3 GaI], which are interconnected by bridging sulfurs and/or short S-S chains. In the glasses with little CdI 2 , some part of Ge(Ga) exists in the forms of the ethane-like units [S 3 (Ga)Ge-Ge(Ga)S 3 ] because of the lack of sulfur, but the amount of these units will decrease with the addition of CdI 2 . Additionally, in the glasses with high content of CdI 2 , some [CdI n ] structural units (s.u.) will be formed and dispersed homogenously in glass network. These novel glasses have relatively high glass transition temperatures (T g ranges from 512 to 670 K), good thermal stabilities (the maximum of difference between T x and T g is 185 K) and UV-vis optical transmission, large densities (d ranges from 3.162 to 3.863 g/cm 3 ) and microhardness (large than 150 kg/mm 2 generally). All properties evolutions follow the structural variations

  8. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3

    Science.gov (United States)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.

    2018-03-01

    The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.

  9. The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy

    Czech Academy of Sciences Publication Activity Database

    Shull, R. D.; Provenzano, V.; Shapiro, A. J.; Fu, A.; Lufaso, M. W.; Karapetrova, J.; Kletetschka, Günther; Mikula, V.

    2006-01-01

    Roč. 99, č. 8 (2006), s. 8-8 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetocaloric * (Co, Cu, Ga, Mn, Al, Bi, Sn) additions * Cryogenic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.316, year: 2006

  10. Nanoscale interfacial engineering to grow Ge on Si as virtual substrates and subsequent integration of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Darin [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States); Sheng, Josephine; Cederberg, Jeffrey G.; Li Qiming; Carroll, Malcolm S. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Han, Sang M., E-mail: meister@unm.ed [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-08-31

    subsequent growth morphology of GaAs deposited by metal-organic chemical vapor deposition. Room temperature photoluminescence shows that films of GaAs grown on Ge-on-oxidized Si have an intensity that is 20 to 25% compared to the intensity from GaAs grown on commercial Ge or GaAs substrates. Cathodoluminescence shows that nonradiative defects occur in the GaAs that spatially correspond to the stacking faults terminating at the Ge surface. The exact nature of these nonradiative defects in the GaAs is unknown, however, GaAs grown on annealed samples of Ge-on-oxidized Si, whereby annealing removes the stacking faults, have photoluminescence intensity that is comparable to GaAs grown on a GaAs substrate.

  11. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  12. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    Science.gov (United States)

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  13. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys.

    Science.gov (United States)

    Kubásek, J; Vojtěch, D; Lipov, J; Ruml, T

    2013-05-01

    As-cast Mg-Sn, Mg-Ga and Mg-In alloys containing 1-7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg-Sn and Mg-Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Structural, elastic, electronic, bonding, and optical properties of BeAZ2 (A = Si, Ge, Sn; Z = P, As) chalcopyrites

    International Nuclear Information System (INIS)

    Fahad, Shah; Murtaza, G.; Ouahrani, T.; Khenata, R.; Yousaf, Masood; Omran, S.Bin; Mohammad, Saleh

    2015-01-01

    A first principles density functional theory (DFT) technique is used to study the structural, chemical bonding, electronic and optical properties of BeAZ 2 (A = Si, Ge, Sn; Z = P, As) chalcopyrite materials. The calculated parameters are in good agreement with the available experimental results. The lattice constants and the equilibrium volume increased as we moved from Si to Ge to Sn, whereas the c/a and internal parameters u decreased by shifting the cation from P to As. These compounds are elastically stable. An investigation of the band gap using the WC-GGA, EV-GGA, PBE-GGA and mBJ-metaGGA potentials suggested that BeSiP 2 and BeSiAs 2 are direct band gap compounds, whereas BeGeP 2, BeGeAs 2, BeSnP 2, BeSnAs 2 are indirect band gap compounds. The energy band gaps decreased by changing B from Si to Sn and increased by changing the anion C from P to As. The bonding among the cations and anions is primarily ionic. In the optical properties, the real and imaginary parts of the dielectric functions, reflectivity and optical conductivity have been studied over a wide energy range. - Highlights: • The compounds are studied by FP-LAPW method within mBJ approximation. • All of the studied materials show isotropic behaviour. • All the compounds show direct band gap nature. • Bonding nature is mostly covalent among the studied compounds. • High absorption peaks and reflectivity ensures there utility in optoelectronic devices

  15. [Disposal of radioactive contaminated waste from Ga-68-PET - calculation of a clearance level for Ge-68].

    Science.gov (United States)

    Solle, Alexander; Wanke, Carsten; Geworski, Lilli

    2017-03-01

    Ga-68-labeled radiotracers, particularly used for the detection of neuroendocrine tumors by means of Ga-68-DOTA-TATE or -DOTA-TOC or for the diagnosis of prostate cancer by means of Ga-68-labeled antigens (Ga 68-PSMA), become increasingly important. In addition to the high sensitivity and specificity of these radiopharmaceuticals, the short-lived radionuclide Ga-68 offers almost ideal nuclear characteristics for use in PET. Ga-68 is obtained from a germanium-gallium-generator system, so that the availability of Ga-68-labeled radiotracers is independent of an on-site-cyclotron regardless of the short half-life of Ga-68 of about 68minutes. Regarding the disposal of the radioactively contaminated waste from the preparation of the radiopharmaceutical, the eluted Ga-68 has to be considered to be additionally contaminated with its parent nuclide Ge-68. Due to this production-related impurity in combination with the short half-life of Ga-68, the radioactive waste has to be considered to be contaminated with Ge-68 and Ga-68 in radioactive equilibrium (hereafter referred to as Ge-68+). As there are no clearance levels for Ge-68+ given in the German Radiation Protection Ordinance, this work presents a method to calculate the missing value basing on a recommendation of the German Radiation Protection Commission in combination with simple geometric models of practical radiation protection. Regarding the relevant exposure scenarios, a limit value for the unrestricted clearance of Ge-68+ of 0.4 Bq/g was determined. Copyright © 2016. Published by Elsevier GmbH.

  16. Disposal of radioactive contaminated waste from Ga-68-PET. Calculation of a clearance level for Ge-68+

    International Nuclear Information System (INIS)

    Solle, Alexander; Wanke, Carsten; Geworksi, Lilli

    2017-01-01

    Ga-68-labeled radiotracers, particularly used for the detection of neuroendocrine tumors by means of Ga-68-DOTA-TATE or -DOTA-TOC or for the diagnosis of prostate cancer by means of Ga-68-labeled antigens (Ga 68-PSMA), become increasingly important. In addition to the high sensitivity and specificity of these radiopharmaceuticals, the short-lived radionuclide Ga-68 offers almost ideal nuclear characteristics for use in PET. Ga-68 is obtained from a germanium-gallium-generator system, so that the availability of Ga-68-labeled radiotracers is independent of an on-site-cyclotron regardless of the short half-life of Ga-68 of about 68 minutes. Regarding the disposal of the radioactively contaminated waste from the preparation of the radiopharmaceutical, the eluted Ga-68 has to be considered to be additionally contaminated with its parent nuclide Ge-68. Due to this production-related impurity in combination with the short half-life of Ga-68, the radioactive waste has to be considered to be contaminated with Ge-68 and Ga-68 in radioactive equilibrium (hereafter referred to as Ge-68+). As there are no clearance levels for Ge-68+ given in the German Radiation Protection Ordinance, this work presents a method to calculate the missing value basing on a recommendation of the German Radiation Protection Commission in combination with simple geometric models of practical radiation protection. Regarding the relevant exposure scenarios, a limit value for the unrestricted clearance of Ge-68+ of 0.4 Bq/g was determined.

  17. X-ray spectra and electronic structure of the Ca3Ga2Ge3О12 compound

    Science.gov (United States)

    Shcherba, I. D.; Kostyk, L. V.; Noga, H.; Bekenov, L. V.; Uskokovich, D.; Jatsyk, B. M.

    2017-09-01

    The band structure of Ca3Ga2Ge3О12 with the garnet structure has been determined for the first time by X-ray emission and photoelectron spectroscopy. It has been established that the bottom of the valence band is formed by Ge d states, which are not dominant in the chemical bonding. Strong hybridization of oxygen 2s states with 4p states of Ga and Ge revealed by the presence of an extra structure in the X-ray emission spectra has been found. The middle of the valence band has been demonstrated to be occupied by d states of Ga, while Ga and Ge 4рstates with a considerable admixture of oxygen 2p states form the top of the valence band.

  18. Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO{sub 3} (B = Ti, Hf, Zr, Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.A.P. [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Camilo, A. [Department of Physics, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Lazaro, S.R. de, E-mail: srlazaro@uepg.br [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil)

    2015-11-15

    First-principles calculations were performed in the framework of Density Functional Theory (DFT) within hybrid functional (B3LYP) to study the electronic structure and magnetic properties of new ilmenite FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) materials. In particular, the magnetic exchange interaction between Fe{sup 2+} layers is dependent on the interlayer distance and it can be controlled by ionic radius of B-site cation. Thus, Fe(Ti, Si, Ge)O{sub 3} are antiferromagnetic materials, while Fe(Zr, Hf, Sn)O{sub 3} are ferromagnetic. We also argue that antiferromagnetic materials and FeZrO{sub 3} are convectional semiconductors, whereas FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior, making them promising candidates for spintronic devices. - Highlights: • We study electronic structure and magnetism of new FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) ilmenite materials. • We found that magnetic ordering of Fe-based ilmenite materials can be controlled by size of B-site cation. • Fe(Ti, Zr, Si, Ge)O{sub 3} are convectional semiconductors. • FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior with potential application for spintronic devices.

  19. Development of a nano-zirconia based {sup 68}Ge/{sup 68}Ga generator for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Rubel [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Shukla, Rakesh [Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Ram, Ramu [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Tyagi, Avesh Kumar [Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Dash, Ashutosh, E-mail: adash@barc.gov.i [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Venkatesh, Meera [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2011-05-15

    Introduction: Most of the commercially available {sup 68}Ge/{sup 68}Ga generator systems are not optimally designed for direct applications in a clinical context. We have developed a nano-zirconia based {sup 68}Ge/{sup 68}Ga generator system for accessing {sup 68}Ga amenable for the preparation of radiopharmaceuticals. Methods: Nano-zirconia was synthesized by the in situ reaction of zirconyl chloride with ammonium hydroxide in alkaline medium. The physical characteristics of the material were studied by various analytical techniques. A 740 MBq (20 mCi) {sup 68}Ge/{sup 68}Ga generator was developed using this sorbent and its performance was evaluated for a period of 1 year. The suitability of {sup 68}Ga for labeling biomolecules was ascertained by labeling DOTA-TATE with {sup 68}Ga. Results: The material synthesized was nanocrystalline with average particle size of {approx}7 nm, pore-size of {approx}4 A and a high surface area of 340{+-}10 m{sup 2} g{sup -1}. {sup 68}Ga could be regularly eluted from this generator in 0.01N HCl medium with an overall radiochemical yield >80% and with high radionuclidic (<10{sup -5}% of {sup 68}Ge impurity) and chemical purity (<0.1 ppm of Zr, Fe and Mn ions). The compatibility of the product for preparation of {sup 68}Ga-labeled DOTA-TATE under the optimized reaction conditions was found to be satisfactory in terms of high labeling yields (>99%). The generator gave a consistent performance with respect to the elution yield and purity of {sup 68}Ga over a period of 1 year. Conclusions: The feasibility of preparing an efficient {sup 68}Ge/{sup 68}Ga generator which can directly be used for biomedical applications has been demonstrated.

  20. Characteristics of InAs/InGaAs/GaAs QDs on GeOI substrates with single-peak 1.3 µm room-temperature emission

    International Nuclear Information System (INIS)

    Liang, Y Y; Yoon, S F; Loke, W K; Ngo, C Y; Fitzgerald, E A

    2012-01-01

    GaAs-based quantum dot (QD) systems, especially InAs/InGaAs/GaAs QDs, have demonstrated superior device performances as compared with higher dimensional systems. However, to realize high-speed optical interconnects for Si-based electronics, one will need to grow the QDs on Si substrates. While it is promising to integrate the InAs/InGaAs/GaAs QDs on Si with the use of germanium-on-insulator-on-silicon (GeOI) substrates, reported results exhibit bimodal QD sizes and double emission peaks, i.e. unsatisfactory for realistic applications. In this paper, we showed that with an optimized GaAs buffer, single-peak 1.33 µm room-temperature emission can be obtained from InAs/InGaAs/GaAs QDs on GeOI substrates. (paper)

  1. Electronic structure and optical properties of noncentrosymmetric LiGaGe{sub 2}Se{sub 6}, a promising nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Lavrentyev, A.A.; Gabrelian, B.V.; Vu, V.T.; Ananchenko, L.N. [Department of Electrical Engineering and Electronics, Don State Technical University, 1 Gagarin Square, 344010 Rostov-on-Don (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, 43 Russkaya Street, 630090 Novosibirsk (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk (Russian Federation); Yelisseyev, A.; Krinitsin, P.G. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, 43 Russkaya Street, 630090 Novosibirsk (Russian Federation); Khyzhun, O.Y., E-mail: khyzhun@ipms.kiev.ua [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, UA-03142 Kyiv (Ukraine)

    2016-11-15

    X-ray photoelectron core-level and valence-band spectra are measured for pristine and Ar{sup +} ion-bombarded surfaces of LiGaGe{sub 2}Se{sub 6} single crystal grown by Bridgman-Stockbarger technique. Further, electronic structure of LiGaGe{sub 2}Se{sub 6} is elucidated from both theoretical and experimental viewpoints. Density functional theory (DFT) calculations are made using the augmented plane wave +local orbitals (APW+lo) method to study total and partial densities of states in the LiGaGe{sub 2}Se{sub 6} compound. The present calculations indicate that the principal contributors to the valence band are the Se 4p states: they contribute mainly at the top and in the central portion of the valence band of LiGaGe{sub 2}Se{sub 6}, with also their significant contributions in its lower portion. The Ge 4s and Ge 4p states are among other significant contributors to the valence band of LiGaGe{sub 2}Se{sub 6}, contributing mainly at the bottom and in the central portion, respectively. In addition, the calculations indicate that the bottom of the conduction band is composed mainly from the unoccupied Ge s and Se p states. The present DFT calculations are supported experimentally by comparison on a common energy scale of the X-ray emission bands representing the energy distribution of the 4p states associated with Ga, Ge and Se and the XPS valence-band spectrum of the LiGaGe{sub 2}Se{sub 6} single crystal. The main optical characteristics of the LiGaGe{sub 2}Se{sub 6} compound are elucidated by the first-principles calculations.

  2. Photo-Induced conductivity of heterojunction GaAs/Rare-Earth doped SnO2

    Directory of Open Access Journals (Sweden)

    Cristina de Freitas Bueno

    2013-01-01

    Full Text Available Rare-earth doped (Eu3+ or Ce3+ thin layers of tin dioxide (SnO2 are deposited by the sol-gel-dip-coating technique, along with gallium arsenide (GaAs films, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, because it may combine the emission from the rare-earth-doped transparent oxide, with a high mobility semiconductor. Trivalent rare-earth-doped SnO2 presents very efficient emission in a wide wavelength range, including red (in the case of Eu3+ or blue (Ce3+. The advantage of this structure is the possibility of separation of the rare-earth emission centers, from the electron scattering, leading to an indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films. Monochromatic light excitation shows up the role of the most external layer, which may act as a shield (top GaAs, or an ultraviolet light absorber sink (top RE-doped SnO2. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels in the semiconductors junction with two-dimensional electron gas (2DEG behavior, which are evaluated by excitation with distinct monochromatic light sources, where the samples are deposited by varying the order of layer deposition.

  3. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    . By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  4. Study on synthesis of {sup 68}GeO{sub 2} and behavior of {sup 68}Ga{sup 3+} Generator column

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gun Gyun; Lee, Jun Young; Hur, Min Gu; Yang, Srung Dae; Park, Jeong Hoon [Radiation Instrumentation Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of); Kim, Sang Wook [Dept. of Advanced Materials Chemistry, Dongguk University, Gyeongju (Korea, Republic of)

    2017-02-15

    {sup 68}Ga has emerged as a promising candidate for non-invasive diagnostic imaging within Positron Emission Tomography (PET) because of its advantageous radiochemical characteristics (t{sub 1/2}= 68 min, β{sup +} yield ⁓89%). {sup 68}Ga forms a stable chelation with various ligands and it is possible to be quickly and easily study using a {sup 68}Ge/{sup 68}Ga generator. Commercial {sup 68}Ge/{sup 68}Ga generators are chromatographic system using the inorganic materials such as alumina and tin dioxide which are employed as column matrixes for {sup 68}Ge. In this study, we tried out to make {sup 68}Ge/{sup 68}Ga generator system with the {sup 68}GeO{sub 2} microstructures for column matrix. {sup 68}Ge tends to have stable bond with oxide as {sup 68}GeO{sub 2} microstructures. The {sup 68}GeO{sub 2} has been synthesized by hydrolysis of GeCl{sub 4} (sol-gel method) and characterized by X-ray diffraction and scanning electron microscope for geometrical analysis. The stability of GeO{sub 2} was tested using eluent with diverse solvents (water, ethanol and 0.1 N HCl). The radioactivity of {sup 68}Ga{sup 3+} in eluate through GeO{sub 2} was measured to prove a function as column material for a generation eluate through GeO{sub 2} was measured to prove a function as column material for a generator.

  5. Structural, elastic, electronic, bonding, and optical properties of BeAZ{sub 2} (A = Si, Ge, Sn; Z = P, As) chalcopyrites

    Energy Technology Data Exchange (ETDEWEB)

    Fahad, Shah [Department of Physics, Hazara University Mansehra, KPK, Mansehra (Pakistan); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); Ecole Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Yousaf, Masood [Center for Multidimensional Carbon Materials, Institute for Basic Science, Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Omran, S.Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Mohammad, Saleh [Department of Physics, Hazara University Mansehra, KPK, Mansehra (Pakistan)

    2015-10-15

    A first principles density functional theory (DFT) technique is used to study the structural, chemical bonding, electronic and optical properties of BeAZ{sub 2} (A = Si, Ge, Sn; Z = P, As) chalcopyrite materials. The calculated parameters are in good agreement with the available experimental results. The lattice constants and the equilibrium volume increased as we moved from Si to Ge to Sn, whereas the c/a and internal parameters u decreased by shifting the cation from P to As. These compounds are elastically stable. An investigation of the band gap using the WC-GGA, EV-GGA, PBE-GGA and mBJ-metaGGA potentials suggested that BeSiP{sub 2} and BeSiAs{sub 2} are direct band gap compounds, whereas BeGeP{sub 2,} BeGeAs{sub 2,} BeSnP{sub 2,} BeSnAs{sub 2} are indirect band gap compounds. The energy band gaps decreased by changing B from Si to Sn and increased by changing the anion C from P to As. The bonding among the cations and anions is primarily ionic. In the optical properties, the real and imaginary parts of the dielectric functions, reflectivity and optical conductivity have been studied over a wide energy range. - Highlights: • The compounds are studied by FP-LAPW method within mBJ approximation. • All of the studied materials show isotropic behaviour. • All the compounds show direct band gap nature. • Bonding nature is mostly covalent among the studied compounds. • High absorption peaks and reflectivity ensures there utility in optoelectronic devices.

  6. New members of the A2 M ‧ M2″ structure family (A=Ca, Sr, Yb, La; M ‧ = In , Sn , Pb; M ″ = Si , Ge)

    Science.gov (United States)

    Jehle, Michael; Dürr, Ines; Fink, Saskia; Lang, Britta; Langenmaier, Michael; Steckhan, Julia; Röhr, Caroline

    2015-01-01

    The new mixed tetrelides Sr2PbGe2 and Yb2SnGe2, several mixed Ca/Sr (AII) germanides A2II (Sn, Pb)Ge2 and two polymorphs of La2 InSi2 represent new members of the general structure family of ternary alkaline-earth/lanthanoid main group silicides/germanides A2 M ‧ M2″ (M ‧ = In , Sn , Pb ; M ″ = Si , Ge). All compounds were synthesized from melts of the elements and their crystal structures have been determined by means of single crystal X-ray diffraction. Sr2PbGe2 (Cmmm, a=402.36(11), b=1542.3(4), c=463.27(10) pm) crystallizes with the Mn2AlB2 -type structure. In exhibiting infinite planar Ge zig-zag chains, it represents one border of the compound series. The other borderline case, where only [Ge2 ] dumbbells are left as Ge building units, is represented by the Ca/Yb tin germanides Ca2SnGe2 and Yb2SnGe2 (Mo2FeB2 -type; P4/mbm, a=748.58(13)/740.27(7), c=445.59(8)/435.26(5) pm). In between these two border structures compounds with variable Si/Ge chain lengths could be obtained by varying the averaged size of the AII cations: Ca0.45Sr1.55PbGe2 (new structure type; Pbam, a=791.64(5), b=2311.2(2), c=458.53(3) pm) contains planar six-membered chain segments [Ge6 ]. Tetrameric pieces [Ge4 ] are the conspicuous structure elements in Ca1.16Sr0.84SnGe2 and La2 InSi2 (La2InNi2 -type; Pbam, a=781.01(2)/762.01(13), b=1477.95(3)/1494.38(6), c=457.004(9)/442.1(3) pm). The tetragonal form of 'La2 In Si2‧ (exact composition: La2In1.07Si1.93, P4/mbm, a=1309.11(12), c=443.32(4) pm) also crystallizes in a new structure type, containing only [Si3 ] trimers as cutouts of the planar chains. In all structures the Si/Ge zig-zag chains/chain segments are connected by In/Sn/Pb atoms to form planar M layers, which are separated by pure A layers. Band structure calculations within the FP-LAPW DFT approach together with the Zintl formalism, extended by the presence of hypervalent bonding of the heavier M ‧ elements, give insight into the chemical bonding of this series of p

  7. Processing and characterization of new oxysulfide glasses in the Ge-Ga-As-S-O system

    International Nuclear Information System (INIS)

    Maurel, C.; Petit, L.; Dussauze, M.; Kamitsos, E.I.; Couzi, M.; Cardinal, T.; Miller, A.C.; Jain, H.; Richardson, K.

    2008-01-01

    New oxysulfide glasses have been prepared in the Ge-Ga-As system employing a two-step melting process which involves the processing of the chalcogenide glass (ChG) and its subsequent melting with amorphous GeO 2 powder. Optical characterization of the synthesized oxysulfide glasses has shown that the cut-off wavelength decreases with increasing oxygen content, and this has been correlated to results of Raman and infrared (IR) spectroscopies which show the formation of new oxysulfide structural units. X-ray photoelectron spectroscopy (XPS) analysis to probe the bonding environment of oxygen atoms in the oxysulfide glass network, has revealed the preferred formation of Ga-O and Ge-O bonds in comparison to As-O bonds. This work has demonstrated that melting a ChG glass with GeO 2 leads to the formation of new oxysulfide glassy materials. - Graphical abstract: In this paper, we explain how new oxysulfide glasses are prepared in the Ge-Ga-As system employing a two-step process: (1) the processing of the chalcogenide glass (ChG) and (2) the re-melting of the ChG with GeO 2 powder. Raman, infrared and XPS spectroscopies show the formation of new oxysulfide structural units

  8. Development of GaInP/GaInAs/Ge TRIPLE-junction solar cells for CPV applications

    OpenAIRE

    Barrigón Montañés, Enrique

    2014-01-01

    La concentración fotovoltaica (CPV) es una de las estrategias más prometedoras para reducir el coste de la electricidad de origen fotovoltaico, y está basada en células multiunión de alta eficiencia. En este contexto, esta Tesis trata sobre el desarrollo de células monolíticas de triple unión (GaInP/Ga(In)As/Ge) para sistemas de CPV. Para ello, se ha transferido una estructura de doble unión de GaInP/GaAs —previamente desarrollada en el grupo de Semiconductores III-V del IESUPM— a un sustrato...

  9. Epitaxial Sb-doped SnO_2 and Sn-doped In_2O_3 transparent conducting oxide contacts on GaN-based light emitting diodes

    International Nuclear Information System (INIS)

    Tsai, Min-Ying; Bierwagen, Oliver; Speck, James S.

    2016-01-01

    We demonstrate the growth of epitaxial (100)-oriented, rutile Sb-doped SnO_2 (ATO) and (111)-oriented, cubic Sn-doped In_2O_3 (ITO) transparent conducting oxide (TCO) contacts on top of an InGaN/GaN(0001) light emitting diode (LED) by plasma-assisted molecular beam epitaxy (PAMBE). Both oxides form rotational domains. The in-plane epitaxial alignment of the two ITO(111) rotational domains to the GaN(0001) was: GaN [21-10]|| ITO_D_o_m_a_i_n_1[‐ 211]|| ITO_D_o_m_a_i_n_2[‐ 1‐12]. A growth temperature as low as 600 °C was necessary to realize a low contact resistance between ATO and the top p-GaN layer of the LED but resulted in non-optimal resistivity (3.4 × 10"− "3 Ω cm) of the ATO. The current–voltage characteristics of a processed LED, however, were comparable to that of a reference LED with a standard electron-beam evaporated ITO top contact. At short wavelengths, the optical absorption of ATO was lower than that of ITO, which is beneficial even for blue LEDs. Higher PAMBE growth temperatures resulted in lower resistive ATO but higher contact resistance to the GaN, likely by the formation of an insulating Ga_2O_3 interface layer. The ITO contact grown by PAMBE at 600 °C showed extremely low resistivity (10"−"4 Ω cm) and high crystalline and morphological quality. These proof-of-principle results may lead to the development of epitaxial TCO contacts with low resistivity, well-defined interfaces to the p-GaN to help minimize contact losses, and enable further epitaxy on top of the TCO. - Highlights: • Plasma-assisted molecular beam epitaxy of SnO_2:Sb (ATO) and In_2O_3:Sn (ITO) contacts • Working light emitting diodes processed with the ATO contact on the top p-GaN layer • Low growth temperature ensures low contact resistance (limiting interface reaction). • ITO showed significantly better structural and transport properties than ATO. • ATO showed higher optical transmission at short wavelengths than ITO.

  10. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas

    Science.gov (United States)

    Margetis, J.; Mosleh, A.; Al-Kabi, S.; Ghetmiri, S. A.; Du, W.; Dou, W.; Benamara, M.; Li, B.; Mortazavi, M.; Naseem, H. A.; Yu, S.-Q.; Tolle, J.

    2017-04-01

    High quality, thick (up to 1.1 μm), strain relaxed GeSn alloys were grown on Ge-buffered Si (1 0 0) in an ASM Epsilon® chemical vapor deposition system using SnCl4 and low-cost commercial GeH4 precursors. The significance of surface chemistry in regards to growth rate and Sn-incorporation is discussed by comparing growth kinetics data in H2 and N2 carrier gas. The role of carrier gas is also explored in the suppression of Sn surface segregation and evolution of layer composition and strain profiles via secondary ion mass spectrometry and X-ray diffraction. Transmission electron microscopy revealed the spontaneous compositional splitting and formation of a thin intermediate layer in which dislocations are pinned. This intermediate layer enables the growth of a thick, strain relaxed, and defect-free epitaxial layer on its top. Last, we present photoluminescence results which indicate that both N2 and H2 growth methods produce optoelectronic device quality material.

  11. Third-order nonlinear optical properties of GeSe2-Ga2Se3-PbI2 glasses

    International Nuclear Information System (INIS)

    Tang Gao; Liu Cunming; Luo Lan; Chen Wei

    2010-01-01

    The third-order nonlinear optical (NLO) properties of new selenium-based GeSe 2 -Ga 2 Se 3 -PbI 2 glasses have been measured using the optical Kerr effect (OKE) technique, with picosecond and femtosecond laser pulses. The 0.70GeSe 2 -0.15Ga 2 Se 3 -0.15PbI 2 glass has the largest third-order optical nonlinear susceptibility in GeSe 2 -Ga 2 Se 3 -PbI 2 glass system with χ (3) of 5.28x10 12 esu. In addition, the response time of glasses is sub-picosecond, which is predominantly associated with electron cloud. Local structure of the glasses has been identified by using Raman studies, while the origins of the observed nonlinear optical response are discussed. The [Ge(Ga)Se 4 ] tetrahedral and lone-pair electrons from highly polarizable Pb atom in glasses play an important role in enhanced NLO response. These results as well as their good chemical stability indicate that GeSe 2 -Ga 2 Se 3 -PbI 2 glasses are promising materials for photonic applications of third-order nonlinear optical signal processing.

  12. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer

    Science.gov (United States)

    Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei

    2014-12-01

    High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.

  13. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    Science.gov (United States)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  14. Continuous, flexible, and high-strength superconducting Nb3Ge and Nb3Sn filaments

    International Nuclear Information System (INIS)

    Ahmad, I.; Heffernan, W.J.

    1976-01-01

    Fabrication of continuous, flexible, and high-strength (1600 MN/m 2 ) composite filaments of Nb 3 Ge (T/subc/ 18 0 K) and Nb 3 Sn is reported, involving chemical vapor deposition of these compounds on Nb-coated high-strength W--1% ThO 2 filaments

  15. Comprehensive thermodynamic description of the quasiternary system PbTe-GeTe-SnTe

    International Nuclear Information System (INIS)

    Yashina, Lada V.; Leute, Volkmar; Shtanov, Vladimir I.; Schmidtke, Heinrich M.; Neudachina, Vera S.

    2006-01-01

    The equilibrium phase diagram of the quasiternary system PbTe-GeTe-SnTe was studied experimentally in the ranges of spinodal demixing and (solid + liquid) equilibrium by means of X-ray diffraction (XRD), electron microprobe analysis (EMA) and differential thermal analysis (DTA). A model description of the phase diagram was done on the base of composition dependent interaction parameters, which were determined for the solid and the liquid phases. The interaction parameters for the quasibinary systems were recalculated in order to reach better correlation between all experimental data. It was shown that the quasiternary phase diagram can be principally described using the interaction parameters for the quasibinary subsystems, but an additional ternary interaction parameter has also to be considered. The local structure of the quasiternary solid solution is described by a four-particle cluster model. Due to the tendency of the solid solution to demix, the probability of the (GeGeGe)Te cluster was found to be higher and that of the (PbGeGe)Te cluster to be lower than it is expected for the purely statistical distribution of the clusters

  16. Thermal analysis of sulfide Ge-Ga glasses doped by praseodymium

    Czech Academy of Sciences Publication Activity Database

    Drabik, M.; Kozak, T.; Ležal, Dimitrij; Poulain, M.; Kalužný, J.

    2002-01-01

    Roč. 67, č. 1 (2002), s. 223-227 ISSN 1418-2874 Institutional research plan: CEZ:AV0Z4032918 Keywords : glass transition * Pr dopand * sulfide Ge-Ga glasses Subject RIV: CA - Inorganic Chemistry Impact factor: 0.598, year: 2002

  17. Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses

    Science.gov (United States)

    Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng

    2018-05-01

    The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.

  18. X-ray spectra of He-like ions of Ga and Ge, excited in the low-inductance spark plasma

    International Nuclear Information System (INIS)

    Aglitsky, E.V.; Antsiferov, P.S.; Panin, A.M.

    1984-01-01

    The spectra of Ga XXX and Ge XXXI ions in the interval 1.2-1.4 A excited in the low-inductance vacuum spark plasma have been obtained for the first time. The resonance line 1s 2 -1s2p of Ga XXX and Ge XXXI and a group of satellites, corresponding to transitions in Ga XXIX and Ge XXX can be seen distinctly in the spectra. The spectra were obtained by an electronic-optical image-intensifier tube for one discharge. (orig.)

  19. Relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn: Consistent parameterization and prediction of Seebeck coefficients

    Science.gov (United States)

    Shi, Guangsha; Kioupakis, Emmanouil

    2018-02-01

    We apply density functional and many-body perturbation theory calculations to consistently determine and parameterize the relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn, and predict the Seebeck coefficient as a function of doping and temperature. The quasiparticle band gaps, including spin-orbit coupling effects, are determined to be 0.728 eV, 0.555 eV, and 0.142 eV for Mg2Si, Mg2Ge, and Mg2Sn, respectively. The inclusion of the semicore electrons of Mg, Ge, and Sn in the valence is found to be important for the accurate determination of the band gaps of Mg2Ge and Mg2Sn. We also developed a Luttinger-Kohn Hamiltonian and determined a set of band parameters to model the near-edge relativistic quasiparticle band structure consistently for all three compounds that can be applied for thermoelectric device simulations. Our calculated values for the Seebeck coefficient of all three compounds are in good agreement with the available experimental data for a broad range of temperatures and carrier concentrations. Our results indicate that quasiparticle corrections are necessary for the accurate determination of Seebeck coefficients at high temperatures at which bipolar transport becomes important.

  20. Phonon dynamics of the Sn/Ge(111)-(3 x 3) surface

    International Nuclear Information System (INIS)

    Farias, D.; Kaminski, W.; Lobo, J.; Ortega, J.; Hulpke, E.; Perez, R.; Flores, F.; Michel, E.G.

    2004-01-01

    We present a theoretical and experimental study on the phonon dynamics of the low-temperature Sn/Ge(111)-(3 x 3) structure. High-resolution helium atom scattering (HAS) data show that, besides the Rayleigh wave, there are three surface phonon branches with low dispersion related to the (3 x 3) surface phase. Their energies are approximately 6.5, 4, and 3meV at the Γ-bar point. In addition, we detect phonon peaks in the Q range 0.4-0.5A -1 at ∼2meV, which correspond to (3 x 3) folding of the Rayleigh wave. Ab initio DFT-GGA total energy calculations have been performed to determine the frequencies associated with the vertical displacements of the three Sn atoms in the unit cell. The values obtained are in good agreement with the experiment

  1. Fabrication of PureGaB Ge-on-Si photodiodes for well-controlled 100-pA-level dark currents

    NARCIS (Netherlands)

    Sammak, A.; Aminian, M.; Qi, L.; De Boer, W.B.; Charbon, E.; Nanver, L.K.

    2014-01-01

    The selective epitaxial growth of Ge-on-Si followed by in-situ deposition of a nm-thin Ga/B layer stack (PureGaB) has previously been shown to be a robust CMOS-compatible process for fabrication of Ge-on-Si photodiodes. In this paper, strategies to improve the control and reproducibility of PureGaB

  2. The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25

    International Nuclear Information System (INIS)

    Saparamadu, Udara; Mao, Jun; Dahal, Keshab; Zhang, Hao; Tian, Fei; Song, Shaowei; Liu, Weishu; Ren, Zhifeng

    2017-01-01

    Mg 2 Sn 0.75 Ge 0.25 has been recently demonstrated to be a promising thermoelectric material for power generation in the temperature range from room temperature to 723 K because of the high power factor of ∼54 μW cm −1  K −2 upon Sb doping to the Sn site. The enhanced density of states effective mass and weak electron scattering from the alloying effect are believed to be the main reasons for the high power factor (PF) and hence high figure of merit (ZT). In this study, it is shown that the right choice of carrier donor also plays an important role in obtaining high power factor. The effect of carrier donors Y and La at Mg-site and Bi and P at Sn-site in Mg 2 Sn 0.75 Ge 0.25 is systematically investigated. It is found that charge donors at the Sn-site are much more effective than at the Mg-site in enhancing PF and ZT. Bi doped Mg 2 Sn 0.73 Bi 0.02 Ge 0.25 shows a peak ZT of ∼1.4 at 673 K, a peak PF of ∼54 μW cm −1  K −2 at 577 K, which resulted in an engineering figure of merit (ZT) eng of ∼0.76 and (PF) eng of ∼2.05 W m −1  K −1 for cold side fixed at 323 K and hot side at 723 K.

  3. Defect phase diagram for doping of Ga2O3

    Science.gov (United States)

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  4. Feasibility and availability of 68Ga-labelled peptides

    International Nuclear Information System (INIS)

    Decristoforo, Clemens; Pickett, Roger D.; Verbruggen, Alfons

    2012-01-01

    68 Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from 68 Ge/ 68 Ga generators, making it independent of cyclotron production. 68 Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of 68 Ga-labelled peptides, including generator technology, 68 Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. 68 Ge/ 68 Ga generators based on SnO 2 , TiO 2 or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for 68 Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of 68 Ga-labelled peptides outside the marketing authorization track are also discussed. (orig.)

  5. Structure-composition sensitivity in 'Metallic' Zintl phases: A study of Eu(Ga1-xTtx)2 (Tt=Si, Ge, 0≤x≤1)

    International Nuclear Information System (INIS)

    You, Tae-Soo; Zhao Jingtai; Poettgen, Rainer; Schnelle, Walter; Burkhardt, Ulrich; Grin, Yuri; Miller, Gordon J.

    2009-01-01

    Two isoelectronic series, Eu(Ga 1-x Tt x ) 2 (Tt=Si, Ge, 0≤x≤1), have been synthesized and characterized by powder and single-crystal X-ray diffraction, physical property measurements, and electronic structure calculations. In Eu(Ga 1-x Si x ) 2 , crystal structures vary from the KHg 2 -type to the AlB 2 -type, and, finally, the ThSi 2 -type structure as x increases. The hexagonal AlB 2 -type structure is identified for compositions 0.18(2)≤x 3 nets. As smaller Si atoms replace Ga atoms while the number of valence electrons increases, the lattice parameters, unit cell volumes, and Ga-Si distances in this phase region decrease significantly. Although aspects of X-ray diffraction results suggest puckering of the 6 3 nets for the Si-richest example of the AlB 2 -type Eu(Ga 1-x Si x ) 2 , the complete experimental evidence remains inconclusive. On the other hand, in Eu(Ga 1-x Ge x ) 2 , six different structural types were observed as x varies. In addition to EuGa 2 (KHg 2 -type; space group Imma) and EuGe 2 (own structure type, space group P3-barm1), the ternary phases studied show four different structures: the AlB 2 -type for Ga-rich compositions; the YPtAs-type structure for EuGaGe; and two new structures, which are intergrowths of the YPtAs-type EuGaGe and EuGe 2 , for Ge-rich compositions. These two Ge-rich phases include: (1) Eu(Ga 0.45(2) Ge 0.55(2) ) 2 containing two YPtAs-type motifs of EuGaGe plus one EuGe 2 motif; and (2) Eu(Ga 0.40(2) Ge 0.60(2) ) 2 containing one YPtAs-type motif alternating with a split site at x=2/3 ,y=1/3 and z=0.4798(2) with ca. 50% site occupancy by Ga and Ge along the c-axis. Magnetic susceptibilities of three Eu(Ga 1-x Ge x ) 2 compounds display Curie-Weiss behavior above ca. 100 K, and show effective magnetic moments indicative of divalent Eu with a 4f 7 electronic configuration, consistent with. X-ray absorption spectra (XAS). Density of states (DOS) and crystal orbital Hamilton population (COHP) analyses, based on first

  6. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si

  7. The 76Ge(n,p)76Ga reaction and its relevance to searches for the neutrino-less double-beta decay of 76Ge

    Science.gov (United States)

    Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan, Fnu

    2015-10-01

    The 76Ge(n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.9 keV state of 76Ge, which decays by emission of a 2040.7 keV γ ray. Using HPGe detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrino-less double-beta decay of 76Ge with its Q-value of 2039.0 keV. In the neutron energy range between 10 and 20 MeV the production cross section of the 2040.7 keV γ ray is approximately 0.1 mb. In the same experiment γ rays of energy 2037.9 keV resulting from the 76Ge(n, γ)77Ge reaction were clearly observed. Adding the 76Ge(n,n' γ)76Ge reaction, which also produces the 2040.7 keV γ ray with a cross section value of the order of 0.1 mb clearly shows that great care has to be taken to eliminate neutron-induced backgrounds in searches for neutrino-less double-beta decay of 76Ge. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  8. Production of prototype 68Ge/68Ga generator in Iran

    International Nuclear Information System (INIS)

    Shirazi, B.; Fateh, B.; Mirzaii, M.; Aslani, Gh. R.

    2007-01-01

    Ga-68 is a radioisotope material with a half life of 68 min. As it has a specific decay mode, it is a positron emitter and hence, is popularly used in nuclear medicine. The only way to obtain these nuclides is to produce the mother nuclease which is Germanium-68. There are many nuclear reactions from which the Ge-68 is obtained, however, the best reaction is 6 9 G a(p, 2n) 6 8 G e . The cross section of this nuclear reaction was calculated with the ALICE-91 Code and the result was compared with the practical work made by other researchers, and it was acceptable. Having the cross sections in mind, the best proton energy was calculated to be between 20-25 MeV. Further research showed that Ga 2 O 3 is the best type of target material. Therefore, it was necessary to design and make a suitable target holder for these kind of compositions, which for the first time in Iran was demonstrated in the Atomic Energy Organization of Iran. The thickness of the target, bearing in mind the rate of energy loss inside the target material, was calculated with the SRIM Code and the Ga 2 O 3 tablets were made with FT-IR facilities at the Nuclear Research Center for Agriculture and Medicine (NRCAM). They were, then bombarded with 22.5 MeV proton energy and the beam currents of 2 and 10 μA. Two weeks after the bombardment the radio chemical separation of Ge-68 was accompolished with concentrated acid HN0 3 and by applying heat. Then, the acid solution was evaporated till dried, after that, an EDTA solution (0.005 M, pH=11) was added to recover the Ge-68. By passing the EDTA solution with the rate of 0.5 ml/min through the AI 2 O 3 column, the Ge-68 radioisotope was observed. Then, about 50 ml of EDTA (0.005 M, pH=11) was passed through the loaded column, where almost all the natural Gallium impurities were removed. The prepared generators were milked many times with EDTA solution (0.005 M, pH=8) and the leakage of Ge-68 nuclease and natural Gallium were determined. The average of the

  9. Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge alloys

    Directory of Open Access Journals (Sweden)

    Shimakura Hironori

    2017-01-01

    Full Text Available For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature.

  10. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Science.gov (United States)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  11. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Directory of Open Access Journals (Sweden)

    Wei-Fu Wang

    2018-01-01

    Full Text Available Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3 along with diffused germanium donors whose concentration (>>1018/cm3 determined by electro-chemical capacitance-voltage (ECV profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  12. The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)

    Science.gov (United States)

    Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.

    2018-04-01

    The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.

  13. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system

    International Nuclear Information System (INIS)

    Li, Xiaowei; Wang, Aiying; Lee, Kwang-Ryeol

    2012-01-01

    The interaction between impurity atom (Si, Ge, and Sn) and carbon atom in diamond-like carbon (DLC) system was investigated by the first principles simulation method based on the density functional theory. The tetrahedral configuration was selected as the calculation model for simplicity. When the bond angle varied in a range of 90°–130° from the equivalent state of 109.471°, the distortion energy and the electronic structures including charge density of the highest occupied molecular orbital (HOMO) and partial density of state (PDOS) in the different systems were calculated. The results showed that the addition of Si, Ge and Sn atom into amorphous carbon matrix significantly decreased the distortion energy of the system as the bond angles deviated from the equilibrium one. Further studies of the HOMO and PDOS indicated that the weak covalent bond between Si(Ge, Sn) and C atoms was formed with the decreased strength and directionality, which were influenced by the electronegative difference. These results implied that the electron transfer behavior at the junction of carbon nano-devices could be tailored by the impurity element, and the compressive stress in DLC films could be reduced by the incorporation of Si, Ge and Sn because of the formation of weaker covalent bonds. - Highlights: ►Distortion energy after bond angle distortion was decreased comparing with C-C unit. ►The weak covalent bond was formed between impurity atoms and corner carbon atoms. ►Observed electron transfer behavior affected the strength and directionality of bond. ►Reduction of strength and directionality of bond contributed to small energy change.

  14. Photoluminescence of highly compensated GaAs doped with high concentration of Ge

    Science.gov (United States)

    Watanabe, Masaru; Watanabe, Akira; Suezawa, Masashi

    1999-12-01

    We have studied the photoluminescence (PL) properties of Ge-doped GaAs crystals to confirm the validity of a theory developed by Shklovskii and Efros to explain the donor-acceptor pair (DAP) recombination in potential fluctuation. GaAs crystals doped with Ge of various concentrations were grown by a liquid-encapsulated Czochralski method. They were homogenized by annealing at 1200°C for 20 h under the optimum As vapor pressure. Both quasi-continuous and time-resolved PL spectra were measured at 4.2 K. The quasi-continuous PL spectra showed that the peak position shifted to lower energy as the Ge concentration increased, which was consistent with the Shklovskii and Efros's theory. Under very strong excitation in time-resolved measurements, the exciton peak appeared within short periods after excitation and then the peak shifted to that of DAP recombination. This clearly showed that the potential fluctuation disappeared under strong excitation and then recovered as the recombination proceeded.

  15. Flow patterns of GaInSn liquid on inclined stainless steel plate under a range of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan-Cheng, E-mail: yangjc@xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qi, Tian-Yu [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Wang, Zeng-Hui [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China)

    2016-11-01

    Highlights: • The liquid GaInSn metal flow loop was built to study some fusion related liquid metal MHD phenomenon. • The flow patterns of GaInSn free surface flow with the change of Re number and Ha number were got by lot of experiments. • Some detailed descriptions of these flow patterns were also made, and a solid conclusion which agreed with some previous studies was got. - Abstract: In the present paper, some preliminary experimental studies have been conducted to show the flow pattern of liquid metal flow using visualization method. For the convenience of experiments in lab, Ga{sup 67}In{sup 20.5}Sn{sup 12.5} in liquid state at room temperature is used. A test section made by stainless steel is inserted in a traverse magnetic field with strength (B{sub 0}) varies from 0 to 1.28 T. The inclined angle of stainless steel plate in test section is about 9°. Visualization results obtained by high-speed camera (Phantom M/LC 310) shown that GaInSn liquid flow on inclined stainless steel plate behaved unstable liquid column flow pattern in the low flow rate, while behaved large area spreading flow pattern with small waves on the free surface in the large flow rate. However, in the magnetic field, under the action of electromagnetic force, the flow patterns of GaInSn liquid have some significant changes on the spreading width and surface structure of free surface. Some detailed analyses on these changes have been also showed in the present paper. Plans for future work are also presented.

  16. Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts

    OpenAIRE

    Lee, Kevin C.

    1998-01-01

    Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere preven...

  17. Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    D' Costa, Vijay Richard, E-mail: vdcosta@asu.edu; Wang, Wei; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-08-14

    We investigated the compositional dependence of the near-bandgap dielectric function and the E{sub 0} critical point in pseudomorphic Ge{sub 1-x}Sn{sub x} alloys grown on Ge (100) substrate by molecular beam epitaxy. The complex dielectric functions were obtained using spectroscopic ellipsometry from 0.5 to 4.5 eV at room temperature. Analogous to the E{sub 1} and E{sub 1}+Δ{sub 1} transitions, a model consisting of the compositional dependence of relaxed alloys along with the strain contribution predicted by the deformation potential theory fully accounts for the observed compositional dependence in pseudomorphic alloys.

  18. Numerical study of the electronic structure, elastic and optical properties of defect quaternary semiconductor CuGaSnSe4

    Science.gov (United States)

    Shen, Kesheng; Lu, Hai; Zhang, Xianzhou; Jiao, Zhaoyong

    2018-06-01

    The electronic structure, elastic and optical properties of the defect quaternary semiconductor CuGaSnSe4 in I 4 bar structure are systematically investigated using first-principles calculations. We summarize and discuss some of the studies on CuGaSnSe4 in partially ordered chalcopyrite structure and find that there are three atomic arrangements so far, but it is still uncertain which is the most stable. Through detailed simulation and comparison with the corresponding literature, we get three models and predict that M1 model should be the most stable. The band structure and optical properties of compound CuGaSnSe4, including dielectric constant, refractive index and absorption spectrum, are drawn for a more intuitive understanding. The elastic constants are also calculated, which not only prove that CuGaSnSe4 in I 4 bar structure is stable naturally but also help solve the problem of no data to accurately predict axial thermal expansion coefficients. The calculated values of the zero frequency dielectric constant and refractive index are comparable to those of the corresponding chalcopyrite structure but slightly larger.

  19. Feasibility and availability of ⁶⁸Ga-labelled peptides.

    Science.gov (United States)

    Decristoforo, Clemens; Pickett, Roger D; Verbruggen, Alfons

    2012-02-01

    (68)Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from (68)Ge/(68)Ga generators, making it independent of cyclotron production. (68)Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of (68)Ga-labelled peptides, including generator technology, (68)Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. (68)Ge/(68)Ga generators based on SnO(2), TiO(2) or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for (68)Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of (68)Ga-labelled peptides outside the marketing authorization track are also discussed.

  20. Phase transitions in two dimensions: The case of Sn adsorbed on Ge (111) surfaces

    DEFF Research Database (Denmark)

    Bunk, O.; Zeysing, J.H.; Falkenberg, G.

    1999-01-01

    . In the low-temperature phase one of the three Sn atoms per ( 3×3) unit cell is displaced outwards by 0.26±0.04Å relative to the other two. This displacement is accompanied by an increase in the first to second double-layer spacing in the Ge substrate. © 1999 The American Physical Society...

  1. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg–X (X = Sn, Ga, In) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kubásek, J., E-mail: Jiri.Kubasek@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Vojtěch, D. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Lipov, J.; Ruml, T. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic)

    2013-05-01

    As-cast Mg–Sn, Mg–Ga and Mg–In alloys containing 1–7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg–Sn and Mg–Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In. - Highlights: ► Gallium addition (up to 7 wt.%) improves the strength and toughness of as-cast Mg. ► The effect of indium addition (up to 7 wt.%) on mechanical properties is small. ► Gallium, Tin and Indium addition improves the corrosion resistance of as-cast Mg. ► Gallium shows no toxic effect on osteosarcoma cells. ► Tin and indium show serious toxic effect on osteosarcoma cells.

  2. Possible mechanism for the room-temperature stabilization of the Ge(111) T > 300 deg.C phase by Ga

    DEFF Research Database (Denmark)

    Böhringer, M.; Molinás-Mata, P.; Zegenhagen, J.

    1995-01-01

    At low coverages, Ga on Ge(111) induces a hexagonal, domain wall modulated (2 x 2) adatom phase, stable at room temperature, that is characterized in low energy electron diffraction (LEED) by split 1/2-order reflections. This pattern closely resembles the one observed for a phase of clean Ge(111......) appearing at temperatures above 300 degrees C (T > 300 degrees C phase). We report scanning tunneling microscopy, LEED, as well. as surface x-ray diffraction measurements on the Ga-induced room-temperature (RT) phase and compare it with a model for the T > 300 OC phase of clean Ge(111). RT deposition of Ga...... yields a metastable c(2 x 8) structure which upon annealing transforms to the hexagonal (2 x 2) one. The transition occurs at considerably lower temperatures compared to clean Ge(111) and is irreversible due to pinning of adatom domains at Ga-induced defects, preventing the reordering of the adatoms...

  3. Study of the hyperfine magnetic field at Ta181 site in the Heusler Co2 Sc Sn, Co2 Sc Ga and Co2 Hf Sn alloys

    International Nuclear Information System (INIS)

    Attili, R.N.

    1992-01-01

    The hyperfine magnetic fields acting on 181 Ta nuclei at the Sc and Hf sites have been measured in Heusler alloys Co 2 Sc Sn and Co 2 Sc Ga and Co 2 Hf Sn using the Time Differential Perturbed γ-γ Angular Correlation (TDPAC) technique. The measurements were carried out using an automatic spectrometer consisting of two Ba F 2 detectors and the conventional electronics. The magnitude of hyperfine magnetic field at 181 Ta was measured for all the alloys. The signs of the were determined in the cases of Co 2 Sc Sn and Co 2 Hf Sn alloys by performing the Perturbed Angular Correlation measurements with an external polarizing magnetic field of ≅ 5 k Gauss. The hyperfine magnetic fields obtained are -187,6± 3,3 and 90,0 ± 2,1 kOe measured at 77 K for Co 2 Sc Sn and Co 2 Sc Ga alloys respectively, and -342,4 ± 10,1 kOe measured at the room temperature for Co 2 Hf Sn alloy. These results are discussed and compared with the hyperfine magnetic field systematics in Co-based Heusler alloy. (author)

  4. Adjusted NIEL calculations for estimating proton-induced degradation of GaInP/GaAs/Ge space solar cells

    International Nuclear Information System (INIS)

    Lu Ming; Wang Rong; Liu Yunhong; Hu Wentao; Feng Zhao; Han Zhaolei

    2011-01-01

    The non-ionizing energy loss (NIEL) values for protons in solar cells should be modified by taking into account the distribution of the Bragg damage peak in the active region to calculate the corresponding displacement damage dose. In this paper, based upon a thin target approximation, a new approach is presented to modify NIEL values for protons on a GaAs sub-cell. Adjusted NIEL values can be used to estimate the degradation induced by protons on GaInP/GaAs/Ge triple-junction space solar cells.

  5. Two concepts of introducing thin-film superconductivity in Ge and Si by use of Ga-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Skrotzki, Richard [Dresden High Magnetic Field Laboratory (HLD) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Department of Chemistry and Food Chemistry, TU Dresden (Germany); Herrmannsdoerfer, Thomas; Fiedler, Jan; Heera, Viton; Voelskow, Matthias; Muecklich, Arndt; Schmidt, Bernd; Skorupa, Wolfgang; Helm, Manfred; Wosnitza, Joachim [Dresden High Magnetic Field Laboratory (HLD) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany)

    2012-07-01

    We report on two unconventional routes of embedding superconducting nanolayers in a semiconducting environment. Ion implantation and subsequent annealing have been used for preparation of superconducting thin-films of Ga-doped germanium (Ge:Ga) as well as 10 nm thin amorphous Ga-rich layers in silicon (Si:Ga). Structural investigations by means of XTEM, EDX, RBS/C, and SIMS have been performed in addition to low-temperature electrical transport and magnetization measurements. Regarding Ge:Ga, we unravel the evolution of T{sub c} with charge-carrier concentration while for Si:Ga recently implemented microstructuring renders critical-current densities or more than 50 kA/cm{sup 2}. Combined with a superconducting onset at around 10 K, this calls for on-chip application in novel heterostructured devices.

  6. Epitaxial Sb-doped SnO{sub 2} and Sn-doped In{sub 2}O{sub 3} transparent conducting oxide contacts on GaN-based light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Min-Ying [Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 (United States); Bierwagen, Oliver, E-mail: bierwagen@pdi-berlin.de [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Paul-Drude-Insitut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Speck, James S. [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2016-04-30

    We demonstrate the growth of epitaxial (100)-oriented, rutile Sb-doped SnO{sub 2} (ATO) and (111)-oriented, cubic Sn-doped In{sub 2}O{sub 3} (ITO) transparent conducting oxide (TCO) contacts on top of an InGaN/GaN(0001) light emitting diode (LED) by plasma-assisted molecular beam epitaxy (PAMBE). Both oxides form rotational domains. The in-plane epitaxial alignment of the two ITO(111) rotational domains to the GaN(0001) was: GaN [21-10]|| ITO{sub Domain1}[‐ 211]|| ITO{sub Domain2}[‐ 1‐12]. A growth temperature as low as 600 °C was necessary to realize a low contact resistance between ATO and the top p-GaN layer of the LED but resulted in non-optimal resistivity (3.4 × 10{sup −} {sup 3} Ω cm) of the ATO. The current–voltage characteristics of a processed LED, however, were comparable to that of a reference LED with a standard electron-beam evaporated ITO top contact. At short wavelengths, the optical absorption of ATO was lower than that of ITO, which is beneficial even for blue LEDs. Higher PAMBE growth temperatures resulted in lower resistive ATO but higher contact resistance to the GaN, likely by the formation of an insulating Ga{sub 2}O{sub 3} interface layer. The ITO contact grown by PAMBE at 600 °C showed extremely low resistivity (10{sup −4} Ω cm) and high crystalline and morphological quality. These proof-of-principle results may lead to the development of epitaxial TCO contacts with low resistivity, well-defined interfaces to the p-GaN to help minimize contact losses, and enable further epitaxy on top of the TCO. - Highlights: • Plasma-assisted molecular beam epitaxy of SnO{sub 2}:Sb (ATO) and In{sub 2}O{sub 3}:Sn (ITO) contacts • Working light emitting diodes processed with the ATO contact on the top p-GaN layer • Low growth temperature ensures low contact resistance (limiting interface reaction). • ITO showed significantly better structural and transport properties than ATO. • ATO showed higher optical transmission at short

  7. Magnetocaloric effect and transport properties of Gd5Ge2(Si1-x Sn x )2 (x=0.23 and 0.40) compounds

    International Nuclear Information System (INIS)

    Campoy, J.C.P.; Plaza, E.J.R.; Nascimento, F.C.; Coelho, A.A.; Pereira, M.C.; Fabris, J.D.; Raposo, M.T.; Cardoso, L.P.; Persiano, A.I.C.; Gama, S.

    2007-01-01

    We report a study about the structural properties of polycrystalline samples of nominal composition Gd 5 Ge 2 (Si 1- x Sn x ) 2 (x=0.23, 0.40) that closely influence their physical behavior particularly related to electric resistivity and magnetocaloric (MCE) effect. The samples were characterized by X-ray diffraction (XRD) using the Rietveld refinement method, metallographic analyses, 119 Sn Moessbauer spectroscopy, DC magnetization and electrical transport measurements. It was identified a Gd 5 Si 2 Ge 2 -monoclinic phase for x=0.23 and a Sm 5 Sn 4 -orthorhombic phase (type II) for x=0.40, both with two non-equivalent crystallographic sites for the Sn ions. We were able to infer on the role of tin on the magnetic and transport properties in these compounds

  8. Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

    Science.gov (United States)

    Fukuda, Masahiro; Watanabe, Kazuhiro; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-10-01

    The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 °C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.

  9. Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2006-01-01

    .5 GHz and ≫ 10 GHz for SiGe BiCMOS and GaAs MMIC, respectively. Analysis of the frequency behaviour of frequency converting devices is presented for improved mixer design. Millimeter-wave front-end components for advanced microwave imaging and communications purposes have also been demonstrated......Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a flat...... conversion gain with a 3 dB bandwidth of 10 GHz for SiGe and in excess of 20 GHz for GaAs processes. The concurrent LO-IF isolation is better than -25 dB, without including the improvement due to the combiner circuit. The converter circuits exhibit similar instantaneous bandwidth at IF and RF ports of ≫ 7...

  10. Characterization of core/shell structures based on CdTe and GaAs nanocrystalline layers deposited on SnO2 microwires

    Science.gov (United States)

    Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.

    2018-04-01

    We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.

  11. Defect phase diagram for doping of Ga2O3

    Directory of Open Access Journals (Sweden)

    Stephan Lany

    2018-04-01

    Full Text Available For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn, a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T, O partial pressures (pO2, and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2 conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  12. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors.

    Science.gov (United States)

    Brant, Jacilynn A; Clark, Daniel J; Kim, Yong Soo; Jang, Joon I; Weiland, Ashley; Aitken, Jennifer A

    2015-03-16

    The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 μm) and phase matchability (≥1.6 μm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 μm) and exhibits a laser damage threshold > 16 GW/cm(2).

  13. In-situ gallium-doping for forming p{sup +} germanium-tin and application in germanium-tin p-i-n photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Dong, Yuan; D' Costa, Vijay Richard; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Vajandar, Saumitra; Lim, Sin Leng; Osipowicz, Thomas; Tok, Eng Soon [Department of Physics and Yale-NUS College, National University of Singapore, Singapore 117551 (Singapore)

    2016-04-21

    The in-situ Ga doping technique was used to form heavily p-type doped germanium-tin (Ge{sub 1−x}Sn{sub x}) layers by molecular beam epitaxy, avoiding issues such as Sn precipitation and surface segregation at high annealing temperatures that are associated with the alternative implant and anneal approach. In this way, an electrically active Ga concentration of up to ∼3.2 × 10{sup 20 }cm{sup −3} can be realized for Ge{sub 1−x}Sn{sub x}. The impacts of varying the Ga concentration on the crystalline quality and the mobility of p-type Ge{sub 1−x}Sn{sub x} were investigated. High crystalline quality Ge{sub 0.915}Sn{sub 0.085} can be realized with an active Ga concentration of up to ∼1.2 × 10{sup 20 }cm{sup −3}. More than 98% of the Sn atoms are located on substitutional lattice sites, although the substitutionality of Sn in p-type Ge{sub 1−x}Sn{sub x} decreases with an increasing Ga concentration. When the Ga concentration introduced is higher than 3.2 × 10{sup 20 }cm{sup −3}, excess Ga atoms cannot be substitutionally incorporated, and segregation of Ga and Sn towards the surface during growth is observed. The in-situ Ga-doped Ge{sub 0.915}Sn{sub 0.085} epitaxy was integrated in a Ge{sub 0.915}Sn{sub 0.085}-on-Si p-i-n (PIN) photodiode fabrication process, and well-behaved Ge{sub 0.915}Sn{sub 0.085}/Si PIN junction characteristics were obtained. A large forward-bias current to reverse bias current ratio of 6 × 10{sup 4} and a low reverse current (dark current) of 0.24 μA were achieved at V{sub bias} = −1 V.

  14. Development and Evaluation of User-Friendly Single Vial DOTA-Peptide Kit Formulations, Specifically Designed for Radiolabelling with 68Ga from a Tin Dioxide 68Ge/68Ga Generator.

    Science.gov (United States)

    Prince, Deidré; Rossouw, Daniel; Davids, Claudia; Rubow, Sietske

    2017-12-01

    This study was aimed to develop single vial 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptide kits to be used with fractionated eluates from a SnO 2 -based 68 Ge/ 68 Ga generator. Kits were formulated with 35 μg DOTA-Tyr 3 -Thre 8 -octreotide, DOTA-[Tyr 3 ]-octreotide and DOTA-[NaI 3 ]-octreotide (DOTATATE, DOTATOC and DOTANOC) and sodium acetate powder, vacuum-dried and stored at -20 °C for up to 12 months. Labelling of the kits was carried out with 2 ml 68 Ga eluate. Comparative labelling was carried out using aqueous DOTA-peptide stock solutions kept frozen at -20 °C for up to 12 months. The quality of the kits was found to be suitable over a 1-year storage period (pH, sterility, endotoxin content, radiolabelling efficiency and radiochemical yields of 68 Ga-labelled DOTA-peptides). Radiochemical yields ranged from 73 to 83 %, while those obtained from stock solutions from 64 to 79 %. No significant decline in kit labelling yields was observed over a 12-month storage period. The single vial kit formulations met the quality release specifications for human administration and appear to be highly advantageous over using peptide stock solutions in terms of stability and user-friendliness.

  15. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    Science.gov (United States)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  16. Feasibility and availability of {sup 68}Ga-labelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Decristoforo, Clemens [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); European Directorate of Quality of Medicines, Group 14, Radioactive Compounds, The European Pharmacopeia, Strasbourg (France); Pickett, Roger D. [GE Healthcare, Little Chalfont (United Kingdom); European Directorate of Quality of Medicines, Group 14, Radioactive Compounds, The European Pharmacopeia, Strasbourg (France); Verbruggen, Alfons [University of Leuven, Laboratory of Radiopharmacy, Department of Pharmaceutical Sciences, Leuven (Belgium); European Directorate of Quality of Medicines, Group 14, Radioactive Compounds, The European Pharmacopeia, Strasbourg (France)

    2012-02-15

    {sup 68}Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from {sup 68}Ge/{sup 68}Ga generators, making it independent of cyclotron production. {sup 68}Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of {sup 68}Ga-labelled peptides, including generator technology, {sup 68}Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. {sup 68}Ge/{sup 68}Ga generators based on SnO{sub 2}, TiO{sub 2} or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for {sup 68}Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of {sup 68}Ga-labelled peptides outside the marketing authorization track are also discussed. (orig.)

  17. Organometallic chemical vapor deposition and characterization of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates

    Science.gov (United States)

    Xing, G. C.; Bachmann, Klaus J.; Posthill, J. B.; Timmons, M. L.

    1993-01-01

    The epitaxial growth of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates by open tube organometallic chemical vapor deposition (OMCVD) is reported. The chemical composition of the alloys characterized by energy dispersive X-ray spectroscopy shows that alloys with x up to 0.13 can be deposited on (001) GaP. Epitaxial growth with mirror smooth surface morphology was achieved for x less than or equal to 0.05. Transmission electron microscopy (TEM) micrographs of these alloys show specular epitaxy and the absence of microstructural defects indicating a defect density of less than 10(exp 7) cm(sup -2). Selected area electron diffraction pattern of the alloy shows that the epitaxial layer crystallizes in the chalcopyrite structure with relatively weak superlattice reflections indicating certain degree of randomness in the cation sublattice. Hall measurements show that the alloys are p-type, like the unalloyed films; the carrier concentration, however, dropped about 10 times from 2 x 10(exp 18) to 2 x 10(exp 17) cm(sup -3). Absorption measurements indicate that the band tailing in the absorption spectra of the alloy was shifted about 0.04 eV towards shorter wavelength as compared to the unalloyed material. Diodes fabricated from the n(+)-GaP/p-ZnSiP2-ZnGeP2-Ge heterostructure at x = 0.05 have a reverse break-down voltage of -10.8 V and a reverse saturation current density of approximately 6 x 10(exp -8) A/sq cm.

  18. Hydrostatic pressure effect on the magnetocaloric behavior of Ga-doped MnNiGe magnetic equiatomic alloy

    International Nuclear Information System (INIS)

    Dutta, P; Das, D; Chatterjee, S; Pramanick, S; Majumdar, S

    2016-01-01

    The magnetocaloric properties of a new class of ferromagnetic shape memory alloys of nominal composition MnNiGe 0.928 Ga 0.072 have been investigated in ambient conditions as well as in the presence of external hydrostatic pressure. Both inverse (6.35 Jkg −1 K −1 for 0  −  50 kOe around 160 K) and conventional (−4.54 Jkg −1 K −1 for 0–50 kOe around 210 K) magnetocaloric effects (MCEs) have been observed around the structural and magnetic transitions respectively. The sample can be thought of as being derived from the parent MnNiGe alloy, where Ga was doped at the expense of the Ge atom. Ga doping at Ge sites brings down the martensitic transition temperature to below room temperature and induces ferromagnetism by affecting the lattice volume of the alloy. However, below the first-order martensitic transition the alloy loses its ferromagnetism. Application of external hydrostatic pressure results in a revival of ferromagnetic interactions in the martensitic phase of the alloy and a considerable increase in the refrigeration capacity around the conventional MCE region. (paper)

  19. `Pd20Sn13' revisited: crystal structure of Pd6.69Sn4.31

    Directory of Open Access Journals (Sweden)

    Wilhelm Klein

    2015-07-01

    Full Text Available The crystal structure of the title compound was previously reported with composition `Pd20Sn13' [Sarah et al. (1981. Z. Metallkd, 72, 517–520]. For the original structure model, as determined from powder X-ray data, atomic coordinates from the isostructural compound Ni13Ga3Ge6 were transferred. The present structure determination, resulting in a composition Pd6.69Sn4.31, is based on single crystal X-ray data and includes anisotropic displacement parameters for all atoms as well as standard uncertainties for the atomic coordinates, leading to higher precision and accuracy for the structure model. Single crystals of the title compound were obtained via a solid-state reaction route, starting from the elements. The crystal structure can be derived from the AlB2 type of structure after removing one eighth of the atoms at the boron positions and shifting adjacent atoms in the same layer in the direction of the voids. One atomic site is partially occupied by both elements with a Pd:Sn ratio of 0.38 (3:0.62 (3. One Sn and three Pd atoms are located on special positions with site symmetry 2. (Wyckoff letter 3a and 3b.

  20. Influence of dopant segregation on the work function and electrical properties of Ge-doped in comparison to Sn-doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Karoline L.; Hubmann, Andreas H.; Klein, Andreas [Surface Science Division, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2017-02-15

    Ge-doped In{sub 2}O{sub 3} thin films prepared by magnetron sputtering are studied using photoelectron spectroscopy and Hall effect measurements. Carrier conductivities of up to 8.35 x 10{sup 3} S cm{sup -1} and carrier mobilities of up to 57 cm{sup 2} V{sup -1}s{sup -1} are observed. The surface Ge concentration is enhanced by a factor of 2-3 compared to the concentration in the interior of the films. The surface Ge concentration increases with more oxidizing deposition conditions, in opposite to what has been reported for Sn-doped In{sub 2}O{sub 3}. Ge-doped In{sub 2}O{sub 3} films exhibit higher work functions as compared to Sn-doped films, in particular at oxidizing conditions. This is attributed to the formation of a GeO{sub 2} surface phase. While segregation of Sn reduces the carrier mobility due to grain boundary scattering, Ge segregation does not show such an effect. The differences are attributed to the different oxidation states of the segregated dopants, in agreement with the observed dependence of segregation on oxygen activity. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Design and theoretical calculation of novel GeSn fully-depleted n-tunneling FET with quantum confinement model for suppression on GIDL effect

    Science.gov (United States)

    Liu, Xiangyu; Hu, Huiyong; Wang, Meng; Miao, Yuanhao; Han, Genquan; Wang, Bin

    2018-06-01

    In this paper, a novel fully-depleted Ge1-xSnx n-Tunneling FET (FD Ge1-xSnx nTFET) with field plate is investigated theoretically based on the experiment previously published. The energy band structures of Ge1-xSnx are calculated by EMP and the band-to-band tunneling (BTBT) parameters of Ge1-xSnx are calculated by Kane's model. The electrical characteristics of FD Ge1-xSnx nTFET and FD Ge1-xSnx nTFET with field plate (FD-FP Ge1-xSnx nTFET) having various Sn compositions are investigated and simulated with quantum confinement model. The results indicated that the GIDL effect is serious in FD Ge1-xSnx nTFET. By employing the field plate structure, the GIDL effect of FD-FP Ge1-xSnx nTFET is suppressed and the off-state current Ioff is decreased more than 2 orders of magnitude having Sn compositions from 0 to 0.06 compared with FD Ge1-xSnx nTFET. The impact of the difference of work function between field plate metal and channel Φfps is also studied. With the optimized Φfps = 0.0 eV, the on-state current Ion = 4.6 × 10-5 A/μm, the off-state current Ioff = 1.6 × 10-13 A/μm and the maximum on/off ration Ion/Ioff = 2.9 × 108 are achieved.

  2. Band alignment study of lattice-matched In{sub 0.49}Ga{sub 0.51}P and Ge using x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Man Hon Samuel, E-mail: m.owen.sg@ieee.org, E-mail: yeo@ieee.org; Zhou, Qian; Gong, Xiao; Yeo, Yee-Chia, E-mail: m.owen.sg@ieee.org, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260 (Singapore); Zhang, Zheng; Pan, Ji Sheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Nanyang Avenue, Singapore 639798 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2014-09-08

    Lattice-matched In{sub 0.49}Ga{sub 0.51}P was grown on a p-type Ge(100) substrate with a 10° off-cut towards the (111) by low temperature molecular beam epitaxy, and the band-alignment of In{sub 0.49}Ga{sub 0.51}P on Ge substrate was obtained by high resolution x-ray photoelectron spectroscopy. The valence band offset for the InGaP/Ge(100) interface was found to be 0.64 ± 0.12 eV, with a corresponding conduction band offset of 0.60 ± 0.12 eV. The InGaP/Ge interface is found to be of the type I band alignment.

  3. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-01-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10 6 cm -2 . A threshold current density of J th ∼1.65 kA/cm 2 for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods

  4. Structure and optical properties of [In{sub 1−2x}Sn{sub x}Zn{sub x}]GaO{sub 3}(ZnO){sub m}

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Simon; Mader, Werner, E-mail: mader@uni-bonn.de

    2016-01-15

    Compounds of [In{sub 1−2x}Sn{sub x}Zn{sub x}]GaO{sub 3}(ZnO){sub 1} (x≤0.22) and [In{sub 1−2x}Sn{sub x}Zn{sub x}]GaO{sub 3}(ZnO){sub 2} (x≤0.42) were prepared by solid state processing proving a substantial solid solution of Sn in the layered compounds InGaO{sub 3}(ZnO){sub m} (m=1, 2). Single crystal X-ray diffraction of the compounds reveals two In{sup 3+} ions to be substituted by one Sn{sup 4+} and one Zn{sup 2+} at the octahedral layer preserving the average charge of +3 at these sites. The substitution does not lead to an ordering of the ions but proves for the first time that the octahedral site can be occupied by different ions while all characteristics of the layered structures remain unchanged. Consequences of indium substitution are (i) decrease of the a axis compared to InGaO{sub 3}(ZnO){sub m} according to smaller ionic radii of Sn{sup 4+} and Zn{sup 2+} compared to In{sup 3+} and (ii) shift of the optical band gap to higher energies shown by UV–vis measurements. - Graphical abstract: Substitution limits of indium in InGaO{sub 3}(ZnO){sub m} (IGZO) by Sn and Zn are studied for m=1, 2 by single crystal X-ray diffraction and micro-chemical analysis. - Highlights: • New Oxides [In{sub 1−2x}Sn{sub x}Zn{sub x}]GaO{sub 3}(ZnO){sub m} (m=1, 2) with IGZO type structure. • Sn and Zn substitute for In at octahedral sites. • Crystal structures were characterized by single crystal X-ray diffraction. • Optical band gap energies were determined by UV–vis spectroscopy.

  5. Theoretical study on photon-phonon coupling at (001)-(2 x 1) surfaces of Ge and {alpha}-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F.L. [Escuela de Ciencias, Universidad Autonoma ' ' Benito Juarez' ' de Oaxaca, Av. Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oax., 68120 (Mexico); Perez-Rodriguez, F. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570 (Mexico)

    2011-06-15

    We present a study of the far-infrared reflectance anisotropy spectra for (001) surfaces of Ge and {alpha}-Sn in the (2 x 1) asymmetric dimer geometry, which exhibit a resonance structure associated with the excitation of surface phonon modes. We have employed a theoretical formalism, based on the adiabatic bond-charge model (ABCM), for computing the far-infrared reflectance anisotropy spectra. In comparison with previous theoretical results for silicon and diamond surfaces, the resonance structure in the reflectance anisotropy spectrum for Ge(001)-(2 x 1) turns out to be similar to that observed in the spectrum for the Si(001)-(2 x 1) surface, whereas the spectrum for {alpha}-Sn(001)-(2 x 1) surface is noticeably different from the others. We have established a trend of far-infrared reflectance anisotropy spectra for IV(001) surfaces: the weaker dimer strength, the stronger resonances of low-frequency surface phonons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States)

    2016-03-07

    We demonstrate highly effective strain-induced band-engineering of (111) oriented direct-gap Ge{sub 1−x}Sn{sub x} thin films (0.074 < x < 0.085) crystallized on amorphous SiO{sub 2} towards 3D photonic integration. Due to a much smaller Poisson's ratio for (111) vs. (100) orientation, 0.44% thermally induced biaxial tensile strain reduces the direct-gap by 0.125 eV towards enhanced direct-gap semiconductor properties, twice as effective as the tensile strain in Ge(100) films. Correspondingly, the optical response is extended to λ = 2.8 μm. A dilatational deformation potential of a = −12.8 ± 0.8 eV is derived. These GeSn films also demonstrate high thermal stability, offering both excellent direct-gap optoelectronic properties and fabrication/operation robustness for integrated photonics.

  7. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    Science.gov (United States)

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  8. Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts.

    Science.gov (United States)

    Lee, Kevin C

    1998-01-01

    Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere prevents the contacts from degrading. The devices coated with silicon nitride used in this study, however, showed the effects of a conducting path in parallel with the 2-dimensional electron gas (2-DEG) at temperatures above 1.1 K which interferes with their use as resistance standards. Several possible causes of this parallel conduction are evaluated. On the basis of this work, two methods are proposed for protecting QHR devices with alloyed AuGe/Ni contacts from degradation: the heterostructure can be left unpassivated, but the alloyed contacts can be completely covered with a very thick (> 3 μm) coating of gold; or the GaAs cap layer can be carefully etched away after alloying the contacts and prior to depositing a passivating silicon nitride coating over the entire sample. Of the two, the latter is more challenging to effect, but preferable because both the contacts and the heterostructure are protected from corrosion and oxidation.

  9. Characterization of as-grown and Ge-ion implanted CuGaSe{sub 2} thin films prepared by the CCSVT technique

    Energy Technology Data Exchange (ETDEWEB)

    Doka Yamigno, Serge

    2006-08-15

    Single phase polycrystalline thin films of CuGaSe{sub 2} in the compositional range of 1.0=[Ga]/[Cu]=1.3, corresponding to a thickness ranging from 1.6 {mu}m to 1.9 {mu}m deposited onto plain or Mo-coated soda lime glass (SLG) were prepared and found to be polycrystalline with a strongly preferred <221> orientation. A combination of microstructural investigations of the films by TEM, EDX within the TEM and ERDA measurements has shown that CuGaSe{sub 2} thin films possess high crystalline bulk quality with Cu, Ga and Se homogeneously distributed within the CuGaSe{sub 2} bulk. One of the main result of this present work was found to be the accumulation of Ga in the region of the CuGaSe2/Mo interface and the dependence of the CuGaSe{sub 2} surface composition on the integral [Ga]/[Cu] ratio in the film, namely Ga- and Cu-poor, Se-rich surface for stoichiometric films; and Cu- poor, and Ga- and Se- rich surface for increasing [Ga]/[Cu] ratios. These observations were also supported by optical measurements carried out through photoluminescence and absorption measurements. In order to gain a better understanding of the influence of the extrinsic doping of the CuGaSe{sub 2} films and why many attempts towards the type inversion in the p-type CuGaSe2 compounds by varying the composition or by doping with extrinsic defects have failed, ion implantation was used to introduce Ge into CuGaSe{sub 2}. Photoluminescence of the Ge containing films has evidenced the presence of new defects such as donor levels in the band gap. Electron spin resonance measurements of the Ge- containing CuGaSe2 films has highlighted an additional ESR resonance observed at g=2.003 ascribed to donors. However, Curie paramagnetism up to room temperature for all the Ge implanted films, characteristic of localized states has been observed for this resonance. (orig.)

  10. Structural stability of ternary C22–Zr6X2Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and C22–Zr6Sn2T′ (T′=Fe, Co, Ni, Cu) compounds

    International Nuclear Information System (INIS)

    Colinet, Catherine; Crivello, Jean-Claude; Tedenac, Jean-Claude

    2013-01-01

    The crystal and electronic structures, and the thermodynamic properties of Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu) ternary compounds in the Fe 2 P-type structure have been investigated by means of first principle calculations. The calculated structural parameters are in good agreement with the experimental data. The total electronic densities of states as well as the Bader charges of the atoms have been computed. Both electronic and size effects allow to explain the stability of the ternary Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu) compounds. - Graphical abstract: Valence charge electronic localization function (ELF) calculated for Zr 6 Sb 2 Co compound. Display Omitted - Highlights: • Structural stability of Zr 6 X 2 T′ compounds (X: p element, T′: late transition metal) in the Fe 2 P-type structure. • First principles calculation of lattice parameters and enthalpies of formation. • Electronic densities of state in the series Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu). • Electronic densities of state in the series Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te)

  11. Effect of impurities in niobium on the growth of superconducting Nb/sub 3//Sn. [Al, Cu, Ge, Si, Sn, Zr impurities

    Energy Technology Data Exchange (ETDEWEB)

    Sekizawa, T

    1974-01-01

    In order to examine the possibility of reducing the heat treatment temperature in the manufacturing process of the superconducting intermetallic compounds wire or ribbon by the metallurgical bond method, tin cored specimens of niobium including a small amount of impurity (Al, Cu, Ge, Si, Sn and Zr) have been prepared, and the critical currents measured as a function of the heat treatment temperature and time. Experimental results are summarized as follows. (1) The effect of the impurity added into niobium is to stabilize the dislocation network cell structure in niobium, caused by the cold working, up to the forming temperature of Nb/sub 3/Sn. The stabilized dislocation network structure is considered to serve as diffusion pipes of the tin atom. As this diffusion (microscopic) is predominant over bulk diffusion (macroscopic), the cored specimen made of niobium including impurities has lower forming temperature of Nb/sub 3/Sn compared with the specimen made of pure niobium. (2) The critical current vs. heat treatment temperature characteristics show that the critical current peaks at 900/sup 0/C in the case of niobium including Si, while at 950/sup 0/C in the case of pure niobium. 6 references.

  12. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Isa, F.; Isella, G.; Salvalaglio, M.; Miglio, L.; Wewior, L.; Fuster, D.; Alén, B.; Richter, M.; Uccelli, E.; Niedermann, P.; Neels, A.; Dommann, A.; Mancarella, F.

    2014-01-01

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images

  13. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.; Känel, H. von [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Isa, F.; Isella, G. [L-NESS, Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Salvalaglio, M.; Miglio, L. [L-NESS, Department of Materials Science, Università di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Wewior, L.; Fuster, D.; Alén, B. [IMM, Instituto de Microelectrónica de Madrid (CNM, CSIC), C/Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Richter, M.; Uccelli, E. [Functional Materials Group, IBM Research-Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Niedermann, P.; Neels, A.; Dommann, A. [Centre Suisse d' Electronique et Microtechnique, Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Mancarella, F. [CNR-IMM of Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-01-13

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.

  14. Magnetic and magnetoelastic properties of M-substituted cobalt ferrites (M=Mn, Cr, Ga, Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Hoon [Iowa State Univ., Ames, IA (United States)

    2007-12-15

    Magnetic and magnetoelastic properties of a series of M-substituted cobalt ferrites, CoMxFe2-xO4 (M=Mn, Cr, Ga; x=0.0 to 0.8) and Ge-substituted cobalt ferrites Co1+xGexFe2-2xO4 (x=0.0 to 0.6) have been investigated.

  15. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    International Nuclear Information System (INIS)

    Leem, Jung Woo; Yu, Jae Su; Kim, Jong Nam; Noh, Sam Kyu

    2014-01-01

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J sc . The maximum J sc , which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J sc value of 13.92 mA/cm 2 is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  16. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Kyung Hee University, Yongin (Korea, Republic of); Kim, Jong Nam [Pukyung National University, Pusan (Korea, Republic of); Noh, Sam Kyu [Korea Research Institute of Standards and Science, Daejon (Korea, Republic of)

    2014-05-15

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J{sub sc}. The maximum J{sub sc}, which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J{sub sc} value of 13.92 mA/cm{sup 2} is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  17. Optimization pathways to improve GaInP/GaInAs/Ge triple junction solar cells for CPV applications

    OpenAIRE

    Barrutia Poncela, Laura

    2017-01-01

    La tecnología de concentración fotovoltaica (en inglés, Concentration Photovoltaics, CPV) ha experimentado un intenso desarrollo desde principios de los años 2000. En particular, las células solares de triple unión (GaInP/GaInAs/Ge) ajustadas en red siguen dominando el mercado CPV. Esta tesis pretende contribuir en la investigación de este tipo de célula multiunión desarrollada previamente en el Grupo de Semiconductores III-V del Instituto de Energía Solar de la Universidad Politécnica de Mad...

  18. Synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yang; Zhuang, Yan; Guo, Sheng-Ping [Yangzhou Univ., Jiangsu (China). College of Chemistry and Chemical Engineering

    2017-03-01

    The synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5} are reported. It is synthesized by high-temperature solid-state reaction and crystallizes in the monoclinic space group P2{sub 1}/c (no. 14) with the unit cell parameters a=4.8860(5), b=7.5229(8), c=9.9587(10) Aa, and β=91.709(3) . Its crystal structure features a polyanion-type layer (GeBO{sub 5}){sup 3-} constructed by BO{sub 4} and GeO{sub 4} tetrahedra connected alternatingly. Eu{sup 3+} ions are located in cavities and are coordinated by eight O atoms. Various structures of the related compounds REMM'O{sub 5} (RE=rare earth metal; M=Si, Ge, and Sn; M'=B, Al, and Ga) are also discussed.

  19. The study on Ge-68 production

    International Nuclear Information System (INIS)

    Yang, Seung Dae; Kim, Sang Wook; Hur, Min Goo

    2009-06-01

    The Ge-68 is a correction source of PET and is used in radiopharmaceuticals synthesis. This project is mainly aimed to produce the Ge-68. Based on this project results, the local Ge-68 production can be possible and the revitalization of the radioisotope utilization research areas can be accomplished. The characteristics of the Ge-68 and Ga-68 are obtained and analyzed. The production conditions are also developed, and the domestic and overseas status of the art are considered. The stacked foil target is designed using Al disc and dried Ga 2 O 3 powder, and the irradiation target is also designed. The cross section of the nat. Ga(p,xn) 68 Ge reaction is obtained using the developed target. The separation experiment of cold Ge/Ga in the H 2 SO 4 -HCl solution are carried out as a simulation experiment of the radioactive Ge/Ga sources. The separation of Ge/Ga by liquid extraction of CCl 4 in 8M HCl is also accomplished. And the synthesis experiment of the Hematophorphyrin-Ga complex is performed

  20. Computational analysis of the maximum power point for GaAs sub-cells in InGaP/GaAs/Ge triple-junction space solar cells

    International Nuclear Information System (INIS)

    Cappelletti, M A; Cédola, A P; Peltzer y Blancá, E L

    2014-01-01

    The radiation resistance in InGaP/GaAs/Ge triple-junction solar cells is limited by that of the middle GaAs sub-cell. In this work, the electrical performance degradation of different GaAs sub-cells under 1 MeV electron irradiation at fluences below 4 × 10 15 cm −2 has been analyzed by means of a computer simulation. The numerical simulations have been carried out using the one-dimensional device modeling program PC1D. The effects of the base and emitter carrier concentrations of the p- and n-type GaAs structures on the maximum power point have been researched using a radiative recombination lifetime, a damage constant for the minority carrier lifetime and carrier removal rate models. An analytical model has been proposed, which is useful to either determine the maximum exposure time or select the appropriate device in order to ensure that the electrical parameters of different GaAs sub-cells will have a satisfactory response to radiation since they will be kept above 80% with respect to the non-irradiated values. (paper)

  1. Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC

    International Nuclear Information System (INIS)

    Asti, Mattia; De Pietri, Giovanni; Fraternali, Alessandro; Grassi, Elisa; Sghedoni, Roberto; Fioroni, Federica; Roesch, Frank; Versari, Annibale; Salvo, Diana

    2008-01-01

    Introduction: Imaging of somatostatin receptor expressing tumours has been greatly enhanced by the use of 68 Ga-DOTATOC and PET/CT. Methods: In this work, a purification method for the 68 Ge/ 68 Ga generator eluate and a method to produce 68 Ga-DOTATOC suitable for clinical use were evaluated. The generator eluate was purified and concentrated on a cation-exchange cartridge in HCl/acetone media. The efficacy of this procedure in eliminating metal impurities from the 68 Ga solution was investigated by ICP-MS. The radiotracer quality was evaluated by radio-TLC, GC and γ-ray spectrometry. Results: 68 Ga-DOTATOC preparations (n=33) were carried out with a mean synthesis yield of 59.3±2.8% (not corrected for decay) and a batch activity ranging from 555 to 296 MBq. The radiochemical and radionuclidic purity were >98% and 99.9999%, respectively. With this purification process, >95% of the Fe(III), Zn(II) and Mn(II) were eliminated from the solution. Conclusions: 68 Ga-DOTATOC produced with this method can be efficiently used in nuclear medicine departments for PET evaluations

  2. Spin correlations in the pyrochlore slab compounds Ba2Sn2Ga10-7pZnCr7pO22

    International Nuclear Information System (INIS)

    Bonnet, P; Payen, C; Mutka, H; Danot, M; Fabritchnyi, P; Stewart, J R; Mellergaard, A; Ritter, C

    2004-01-01

    The low-temperature properties of a diluted antiferromagnetic pyrochlore slab of S = 3/2 spins are investigated through a study of the frustrated oxides Ba 2 Sn 2 Ga 10-7p ZnCr 7p O 22 (p>0.85). Powder neutron diffraction and 119 Sn Moessbauer absorption show no evidence of long-range magnetic order above 1.5 K. As in SrCr 9q Ga 12-9q O 19 , diffuse magnetic scattering, indicative of short range spin-spin correlations, is observed at low temperature. The dependence of the low-temperature sub-Curie bulk susceptibility to weak site depletion is the inverse of that observed in SrCr 9q Ga 12-9q O 19

  3. The synthesis and properties of some organometallic compounds containing group IV (Ge, Sn)-group II (Zn, Cd) metal---metal bonds

    NARCIS (Netherlands)

    Des Tombe, F.J.A.; Kerk, G.J.M. van der; Creemers, H.M.J.C.; Carey, N.A.D.; Noltes, J.G.

    1972-01-01

    The reactions of triphenylgermane and triphenyltin hydride with coordinatively saturated organozinc or organocadmium compounds give organometallic complexes containing Group IV (Ge, Sn)-Group II(Zn, Cd) metal---metal bonds. The 2,2′-bipyridine complexes show solvent-dependent charge-transfer

  4. Triple Junction InGaP/GaAs/Ge Solar Cell Optimization: The Design Parameters for a 36.2% Efficient Space Cell Using Silvaco ATLAS Modeling & Simulation

    OpenAIRE

    Tsutagawa, Michael H.; Michael, Sherif

    2009-01-01

    This paper presents the design parameters for a triple junction InGaP/GaAs/Ge space solar cell with a simulated maximum efficiency of 36.28% using Silvaco ATLAS Virtual Wafer Fabrication tool. Design parameters include the layer material, doping concentration, and thicknesses.

  5. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    Science.gov (United States)

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  6. Structural complexity and thermoelectric properties of quaternary and quinary tellurides (Ge{sub x}Sn{sub 1-x}){sub 0.8}(In{sub y}Sb{sub 1-y}){sub 0.13}Te with 0 ≤ x,y ≤ 1

    Energy Technology Data Exchange (ETDEWEB)

    Neudert, Lukas; Scheel, Manuel [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Schwarzmueller, Stefan; Welzmiller, Simon; Oeckler, Oliver [Institut fuer Mineralogie, Kristallographie und Materialwissenschaft, Fakultaet fuer Chemie und Mineralogie, Universitaet Leipzig (Germany)

    2017-12-13

    Starting from stoichiometric mixtures of the elements, quaternary and quinary solid solutions (Ge{sub x}Sn{sub 1-x}){sub 0.8}(In{sub y}Sb{sub 1-y}){sub 0.13}Te were obtained. Concerning the ratio Ge/Sn and Sb/In, respectively, lattice parameters of the metastable phases with rocksalt-type average structures approximately obey Vegard's law. Stable phases correspond to a disordered rocksalt type at high temperature and to trigonal layered structures with van der Waal gaps at lower temperature as shown by temperature-dependent powder X-ray diffraction combined with TEM, which reveals layer-like vacancy ordering, whose extent depends on composition and thermal treatment. In the long-periodically ordered model compounds 21R-Ge{sub 0.5}Sn{sub 0.5}InSbTe{sub 4} and 9P-GeSnInSbTe{sub 5} studied by resonant scattering data at K-absorption edges, Sb and Sn concentrate near the van der Waals gaps. Compared to Ge{sub 0.8}Sb{sub 0.13}Te and Sn{sub 0.8}Sb{sub 0.13}Te, the simultaneous presence of In and Sn combines increased electrical conductivity with low thermal conductivity and enhanced thermoelectric properties in certain temperature ranges. Phase transitions correlate with changes of the thermoelectric properties. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Towards from indirect to direct band gap and optical properties of XYP{sub 2} (X=Zn, Cd; Y=Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sibghat [Department of Physics, Hazara University Mansehra, KPK (Pakistan); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College, Peshawar (Pakistan); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Reshak, A.H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Hayat, S.S. [Department of Physics, Hazara University Mansehra, KPK (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-05-15

    First principle calculations are performed to predict the electronic and optical properties of XYP{sub 2} (X=Zn, Cd; Y=Si, Ge, Sn) compounds. The calculations show an excellent agreement with the available experimental results as compared to previous calculations. The band gap value decreases by changing the cations X from Zn to Cd as well as Y from Si to Ge to Sn in XYP{sub 2}. The d-states of the Zn and Cd contribute majorly in the density of states. Bonding nature in these compounds is analyzed from the electron density plots. Optical response of these compounds is noted from the complex refractive index and reflectivity spectra. The wide direct band gap and the high reflectivity in the visible and ultraviolet regions for these compounds make them potential candidates for optoelectronic and photonic applications.

  8. Effect of high temperature annealing on the thermoelectric properties of GaP doped SiGe

    Science.gov (United States)

    Vandersande, Jan W.; Wood, Charles; Draper, Susan

    1987-01-01

    Silicon-germanium alloys doped with GaP are used for thermoelectric energy conversion in the temperature range 300-1000 C. The conversion efficiency depends on Z = S-squared/rho lambda, a material's parameter (the figure of merit), where S is the Seebeck coefficient, rho is the electrical resistivity and lambda is the thermal conductivity. The annealing of several samples in the temperature range of 1100-1300 C resulted in the power factor P (= S-squared/rho) increasing with increased annealing temperature. This increase in P was due to a decrease in rho which was not completely offset by a drop in S-squared suggesting that other changes besides that in the carrier concentration took place. SEM and EDX analysis of the samples indicated the formation of a Ga-P-Ge rich phase as a result of the annealing. It is speculated that this phase is associated with the improved properties. Several reasons which could account for the improvement in the power factor of annealed GaP doped SiGe are given.

  9. Two-dimensional n -InSe/p -GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance

    Science.gov (United States)

    Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo

    2018-03-01

    Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.

  10. Single crystal growth and structure refinements of CsMxTe2-xO6 (M = Al, Ga, Ge, In) pyrochlores

    International Nuclear Information System (INIS)

    Siritanon, Theeranun; Sleight, A.W.; Subramanian, M.A.

    2011-01-01

    Graphical abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown and structure refinements indicate deviations from ideal stoichiometry presumably related to mixed valency of tellurium. Highlights: → Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown. → Structure refinements from single crystal X-ray diffraction data confirm e structure. → Deviations from ideal stoichiometry suggest mixed valency of tellurium and hence conductivity. -- Abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown from a TeO 2 flux. Structure refinements from single crystal X-ray diffraction data are reported. These results are used to discuss deviations from ideal stoichiometry that result in electronic conductivity presumably related to mixed valency of tellurium.

  11. First-principles study on the structural, electronic and magnetic properties of the Ti{sub 2}VZ (Z = Si, Ge, Sn) full-Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Santao; Shen, Jiang [Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-08-15

    In the present work, we have investigated the structural, electronic and magnetic properties of Ti{sub 2}VZ (Z = Si, Ge, Sn) alloys with Hg{sub 2}CuTi-type structure in the framework of density functional theory with generalized gradient approximation (GGA). The calculated results show that Ti{sub 2}VSi and Ti{sub 2}VGe alloys belong to half-metallic compounds with a perfect 100% spin polarization at the Fermi level while Ti{sub 2}VSn alloy is just a conventional ferrimagnetism compound. And the total magnetic moment of Ti{sub 2}VSi and Ti{sub 2}VGe obey the Slater–Pauling (SP) rule. In a moderate variation range of lattice distortion, Ti{sub 2}VSi and Ti{sub 2}VGe remain half-metallicity. We expect that our calculated results may trigger Ti{sub 2}VZ (Z = Si, Ge, Sn) applying in the future spintronics field. - Highlights: • Structural properties of Ti{sub 2}VZ (Z = Si, Ge, Sn) have been achieved by ab initio. • The calculations proved Ti{sub 2}VSi and Ti{sub 2}VGe to be half-metallic compounds. • The total magnetic moments of Ti{sub 2}VSi and Ti{sub 2}VGe followed the SP rule M{sub t} = Z{sub t} − 18. • Their magnetic and half-metallic properties changed with lattice distortion.

  12. Study of 4f hybridization in CeNiX with X=SnδGe1-δ, 0≤δ≤1

    International Nuclear Information System (INIS)

    Fuente, C. de la; Moral, A. del; Adroja, D.T.; Fraile, A.; Arnaudas, J.I.

    2010-01-01

    We report inelastic neutron scattering and core-level X-ray photoemission spectroscopy experiments for studying the Kondo problem in the CeNiX, X=Sn δ Ge 1-δ 0≤δ≤1 series. The neutron results confirm that they behave like a Kondo lattice for δ≥0.85, showing broad maxima at around 30 meV, typical of a crystal field magnetic scattering. So, the Ge doping could produce the suppression of the cerium magnetism observed for δ≤0.25. To open a more deep sight on this point, we have analyzed the 3d core-level XPS spectra by using the well-known Gunnarsson-Schoenhammer model. From this analysis, we have obtained the 'on-site' Coulomb bare repulsion for f states, U, and hybridization parameter, Δ, related with the hopping from the f states to the conduction ones. These U values are very similar for all compounds, about 7 eV, but the hybridization parameter slightly changes from 0.2 to 0.16 eV on increasing the Sn concentration. In Sn-rich compounds, the 4f occupation is close to spin limit fluctuation, which allows us to obtain an estimation of the Kondo temperatures, ∼1200 K, and the static 0 K susceptibility, ∼1.1x10 -3 emu/mol. Finally, we have done 'ab-initio' calculations based on the LDA+U+SO which confirm the existence of a small electronic gap opening in the DOS of Ge-rich compounds for U values lower than 7 eV.

  13. Structural stability of ternary C22–Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and C22–Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Colinet, Catherine, E-mail: ccolinet@simap.grenoble-inp.fr [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères, Cedex (France); Crivello, Jean-Claude [ICMPE-CMTR, CNRS UMR-7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2013-09-15

    The crystal and electronic structures, and the thermodynamic properties of Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) ternary compounds in the Fe{sub 2}P-type structure have been investigated by means of first principle calculations. The calculated structural parameters are in good agreement with the experimental data. The total electronic densities of states as well as the Bader charges of the atoms have been computed. Both electronic and size effects allow to explain the stability of the ternary Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) compounds. - Graphical abstract: Valence charge electronic localization function (ELF) calculated for Zr{sub 6}Sb{sub 2}Co compound. Display Omitted - Highlights: • Structural stability of Zr{sub 6}X{sub 2}T′ compounds (X: p element, T′: late transition metal) in the Fe{sub 2}P-type structure. • First principles calculation of lattice parameters and enthalpies of formation. • Electronic densities of state in the series Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu). • Electronic densities of state in the series Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te)

  14. Crystallographic and 119Sn and 155Gd Moessbauer analyses of Gd5Ge2(Si1-xSnx)2 (x = 0.23 and x = 0.40)

    International Nuclear Information System (INIS)

    Campoy, J. C. P.; Santos, A. O. dos; Cardoso, L. P.; Paesano, A.; Raposo, M. T.; Fabris, J. D.

    2010-01-01

    We report the structural characterization of Gd 5 Ge 2 (Si 1-x Sn x ) 2 (x = 0.23 and x = 0.40) compounds by means of 100 and 298 K-X-ray diffractometry (XRD) and 4 K- 155 Gd and 298 K- 119 Sn Moessbauer spectroscopy. These compounds order ferromagnetically at 218.4 and 172.7 K, respectively. At ∼100 K, it was identified the Gd 5 Si 4 -orthorhombic phase (type I) for both samples. At ∼298 K, it was identified a Gd 5 Si 2 Ge 2 -monoclinic phase, for x = 0.23 and a Sm 5 Sn 4 -orthorhombic phase (type II), for x 0.40. The Rietveld analysis of XRD data suggests a first order magneto-structural transition at Curie temperature for both compositions. Moessbauer results are well consistent with the proposed crystallographic models for these systems.

  15. Synthesis and characterization of the structural and magnetic properties of new uranium and copper-based silicides and germanides: study of the physical and hydridation properties of some compounds belonging to the Gd-Ni-X systems, where X = Ga, Al, Sn

    International Nuclear Information System (INIS)

    Pechev, St.

    1998-01-01

    Three novel phases, U 3 Cu 4 Si 4 , U 3 Cu 4 Ge 4 and UCuGe 1,77 , were prepared in the U - Cu - X (X = Si or Ge) ternary system. Their structural and magnetic properties were investigated. The magnetic structures of the first two compounds were determined by neutron diffraction. Structural and magnetic behaviour transitions occur as copper substitutes silicon atoms in the UCu x Si 2-x (0,28 ≤ x ≤ 0,96) solid solution. Thus, the structure of the compositions changes in the α-ThSi 2 (tetragonal) → AlB 2 (hexagonal) → Ni 2 In(hexagonal) sequence while a transition from a nonmagnetic to ferromagnetic then antiferromagnetic behaviour is observed. The magnetic properties of the different compositions are governed by a Kondo - RKKY -type interactions competition. Crystallographic disorder and magnetic frustrations are at the origin of a spin glass state between the ferro- and antiferromagnetic areas. The investigations of the GdNi 3 X 2 (X =Ga, Al, Sn) compounds revealed that their structural and magnetic properties are strongly dependent on the nature of the X element as well as the on thermal treatment. A CaCu 5 → HoNi 2,6 Ga 2,4 - type structure transition and a ferro - to antiferromagnetic behaviour evolution are favoured by the increase of the X - atom size. A commensurate modulated crystal structure (described also as a a HoNi 2,6 Ga 2,4 x a HoNi 2,6 Ga 2,4 x 2c HoNi 2,6 Ga 2,4 -type superstructure) has been observed for GdNi 3 Al 2 . Hydrogen absorption in Gd 3 Ni 6 Al 2 and GdNi 3 Al 2 weakens the strength of the magnetic interactions. (author)

  16. Critical thickness of transition from 2D to 3D growth and peculiarities of quantum dots formation in GexSi1-x/Sn/Si and Ge1-ySny/Si systems

    Science.gov (United States)

    Lozovoy, Kirill A.; Kokhanenko, Andrey P.; Voitsekhovskii, Alexander V.

    2018-03-01

    Nowadays using of tin as one of the deposited materials in GeSi/Sn/Si, GeSn/Si and GeSiSn/Si material systems is one of the most topical problems. These materials are very promising for various applications in nanoelectronics and optoelectronics due to possibility of band gap management and synthesis of direct band semiconductors within these systems. However, there is a lack of theoretical investigations devoted to the peculiarities of germanium on silicon growth in the presence of tin. In this paper a new theoretical approach for modeling growth processes of binary and ternary semiconductor compounds during the molecular beam epitaxy in these systems is presented. The established kinetic model based on the general nucleation theory takes into account the change in physical and mechanical parameters, diffusion coefficient and surface energies in the presence of tin. With the help of the developed model the experimentally observed significant decrease in the 2D-3D transition temperatures for GeSiSn/Si system compared to GeSi/Si system is theoretically explained for the first time in the literature. Besides that, the derived expressions allow one to explain the experimentally observed temperature dependencies of the critical thickness, as well as to predict the average size and surface density of quantum dots for different contents and temperatures in growth experiment, that confirms applicability of the model proposed. Moreover, the established model can be easily applied to other material systems in which the Stranski-Krastanow growth mode occurs.

  17. Energies, wavelengths, and transition probabilities for Ge-like Kr, Mo, Sn, and Xe ions

    International Nuclear Information System (INIS)

    Nagy, O.; El Sayed, Fatma

    2012-01-01

    Energy levels, wavelengths, transition probabilities, and oscillator strengths have been calculated for Ge-like Kr, Mo, Sn, and Xe ions among the fine-structure levels of terms belonging to the ([Ar] 3d 10 )4s 2 4p 2 , ([Ar] 3d 10 )4s 4p 3 , ([Ar] 3d 10 )4s 2 4p 4d, and ([Ar] 3d 10 )4p 4 configurations. The fully relativistic multiconfiguration Dirac–Fock method, taking both correlations within the n=4 complex and the quantum electrodynamic effects into account, have been used in the calculations. The results are compared with the available experimental and other theoretical results.

  18. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    International Nuclear Information System (INIS)

    Liping, Mao; Yongfan, Shi; Yu, Han

    2014-01-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti 2 FeZ (Z=Al, Ga, Ge) alloys with Hg 2 CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti 2 FeZ follow the µ t =Z t −18 rule and agree with the Slater–Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. - Highlights: • Ti 2 FeZ (Z=Al, Ga, Ge) are found to be half-metallic ferrimagnets. • The band gaps are mainly determined by the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. • The s–p elements play an important role in the half-metallicity of these Heusler alloys

  19. Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping.

    Science.gov (United States)

    Dalapati, Goutam Kumar; Shun Wong, Terence Kin; Li, Yang; Chia, Ching Kean; Das, Anindita; Mahata, Chandreswar; Gao, Han; Chattopadhyay, Sanatan; Kumar, Manippady Krishna; Seng, Hwee Leng; Maiti, Chinmay Kumar; Chi, Dong Zhi

    2012-02-02

    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV).PACS: 81.15.Gh.

  20. Production of a 68Ge/68Ga generator

    International Nuclear Information System (INIS)

    Behrouz Shirazi; Behrouz Fateh; Mohammad Mirzaii; Gholamreza Aslani

    2004-01-01

    Background: Gallium-68 is a radioisotope with a half life of 68 min. As it has a specific decay mode, it is a positron emitter and hence, it is popularly used in nuclear medicine. The only way to obtain these nuclides is to produced the mother nuclease which is Germanium - 68. There are many nuclear reactions from which the Germanium - 68 is obtained, however, the best reaction is 69Ga (p,2n)68Ge. Materials and Methods: The cross section of this nuclear reaction was calculated with the ALICE-91 Code and the result was compared with the practical work done by other researchers. The comparing result was an acceptable one. Having the cross sections in mind, the best proton energy was calculated to be between 20-25 MeV Further research showed that Ga2O3 is the best type of target material. Therefore, it was necessary to design and make a suitable target holder for these k/nd of compositions, which for the very first time in Iran was done at Atomic Energy Organization of Iran (AEOI). The thickness of the target, bearing in mind the rate of energy loss in side the target material, was calculated with the SRIM Code and the Ga2O3 tablets were made with FT-IR instruments at Nuclear Research Center for Agriculture and Medicine (NRCAM). They were then bombarded with the 20, 21 and 22.5 MeV proton energy and the beam currents of 1.4, 7.5 and 13.3 μA.Two weeks after the bombardment the radio chemical separation of Germanium - 68 was done with concentrated acid HNO3 and applying heat. Then, the acid solution was evaporated till dried, after that, an EDTA solution (0.005 M, pH = 11) was added to recover the Germanium - 68. By passing the EDTA solution through the A12O3 column, Germanium - 68 radioisotope was adsorbed.Then another solution of EDTA (0.005 M, PH=11) was passed thorough the loaded column, almost all the natural Gallium impurities were removed.In this project the behavior of natural Gallium was studied via adding Gallium-67 as a tracer which it's half life is about

  1. Thermoelectric effects of amorphous Ga-Sn-O thin film

    Science.gov (United States)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  2. Penning-trap Q-value determination of the 71Ga(ν,e−)71Ge reaction using threshold charge breeding of on-line produced isotopes

    International Nuclear Information System (INIS)

    Frekers, D.; Simon, M.C.; Andreoiu, C.; Bale, J.C.; Brodeur, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Crespo López-Urrutia, J.R.; Delheij, P.; Ejiri, H.; Ettenauer, S.; Gallant, A.T.; Gavrin, V.; Grossheim, A.; Harakeh, M.N.; Jang, F.; Kwiatkowski, A.A.

    2013-01-01

    We present a first direct Q-value measurement of the 71 Ga(ν,e − ) 71 Ge reaction using the TITAN mass-measurement facility at ISAC/TRIUMF. The measurements were performed in a Penning trap on neon-like 71 Ga 21+ and 71 Ge 22+ using isobar separation of the on-line produced mother and daughter nuclei through threshold charge breeding in an electron-beam ion trap. In addition, isoionic samples of 71 Ga 21+ and 71 Ge 21+ were stored concurrently in the Penning trap and provided a separate Q-value measurement. Both independent measurements result in a combined Q-value of 233.5±1.2 keV, which is in agreement with the previously accepted Q-value for the ν cross-section calculations. Together with a recent measurement of the ν-response from the excited states in 71 Ge, we conclude that there are no further uncertainties in the nuclear structure, which could remove the persistent discrepancy between the SAGE and GALLEX calibration measurements performed with neutrinos from reactor-produced 51 Cr and 37 Ar sources and the theoretical expectation

  3. Study of 4f hybridization in CeNiX with X=Sn{sub d}eltaGe{sub 1-d}elta, 0<=delta<=1

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, C. de la, E-mail: cesar@unizar.e [Depto. Fisica de la Materia Condensada, Laboratorio de Magnetismo, Universidad de Zaragoza and ICMA-CSIC (Spain); Moral, A. del [Depto. Fisica de la Materia Condensada, Laboratorio de Magnetismo, Universidad de Zaragoza and ICMA-CSIC (Spain); Adroja, D.T. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fraile, A. [Depto. Fisica de la Materia Condensada, Laboratorio de Magnetismo, Universidad de Zaragoza and ICMA-CSIC (Spain); Arnaudas, J.I. [Instituto de Nanociencia de Aragon, Universidad de Zaragoza (Spain)

    2010-05-15

    We report inelastic neutron scattering and core-level X-ray photoemission spectroscopy experiments for studying the Kondo problem in the CeNiX, X=Sn{sub d}eltaGe{sub 1-d}elta 0<=delta<=1 series. The neutron results confirm that they behave like a Kondo lattice for delta>=0.85, showing broad maxima at around 30 meV, typical of a crystal field magnetic scattering. So, the Ge doping could produce the suppression of the cerium magnetism observed for delta<=0.25. To open a more deep sight on this point, we have analyzed the 3d core-level XPS spectra by using the well-known Gunnarsson-Schoenhammer model. From this analysis, we have obtained the 'on-site' Coulomb bare repulsion for f states, U, and hybridization parameter, DELTA, related with the hopping from the f states to the conduction ones. These U values are very similar for all compounds, about 7 eV, but the hybridization parameter slightly changes from 0.2 to 0.16 eV on increasing the Sn concentration. In Sn-rich compounds, the 4f occupation is close to spin limit fluctuation, which allows us to obtain an estimation of the Kondo temperatures, approx1200 K, and the static 0 K susceptibility, approx1.1x10{sup -3} emu/mol. Finally, we have done 'ab-initio' calculations based on the LDA+U+SO which confirm the existence of a small electronic gap opening in the DOS of Ge-rich compounds for U values lower than 7 eV.

  4. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander; Bracht, H.; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2009-01-01

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  5. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-06-23

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  6. The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb

    Directory of Open Access Journals (Sweden)

    E. Vessally

    2009-08-01

    Full Text Available Total energy gaps, ∆Et–s, enthalpy gaps, ∆Ht–s, and Gibbs free energy gaps, ∆Gt–s, between singlet (s and triplet (t states were calculated for three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn and Pb at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆Gt–s, for C2H2M (M = C, Si, Ge, Sn and Pb are found to be increased in the order: C2H2Si > C2H2C > C2H2Ge > C2H2Sn > C2H2Pb. The ∆Gt–s of C4H4M are found to be increased in the order: C4H4Pb > C4H4Sn > C4H4Ge > C4H4Si > C4H4C. Also, the ∆Gt–s of C6H6M are determined in the order: C6H6Pb > C6H6Ge ≥ C6H6Sn > C6H6Si > C6H6C. The most stable conformers of C2H2M, C4H4M and C6H6M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  7. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2010-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The changes in microstructure and microhardness associated with the addition of low melting point metals namely In, Sb and Sn to the Au......-Ge-In and Au-Ge-Sn combinations was determined to be the classic solid solution strengthening. The Au-Ge-Sb combination was primarily strengthened by the refined (Ge) dispersed phase. The aging temperature had a significant influence on the microhardness in the case of the Au-Ge-Sn candidate alloy...

  8. Applications of a Ga-68/Ge-68 generator system to brain imaging using a multiwire proportional chamber positron camera

    International Nuclear Information System (INIS)

    Hattner, R.S.; Lim, C.B.; Swann, S.J.; Kaufman, L.; Chu, D.; Perez-Mendez, V.

    1976-01-01

    A Ge-68/Ga-68 generator system has been applied to brain imaging in conjunction with a novel coincidence detection based positron camera. The camera consists of two opposed large area multiwire proportional chamber (MWPC) detectors interfaced to multichannel lead converter plates. Event localization is effected of delay lines. Ten patients with brain lesions have been studied 1-2 hours after the administration of Ga-68 formulated as DTPA. The images were compared to conventional brain scans, and to x-ray section scans (CAT). The positron studies have shown significant mitigation of confusing superficial activity resulting from craniotomy compared to conventional brain scans. Central necrosis of lesions observed in positron images, but not in the conventional scans has been confirmed in CAT. The economy of MWPC positron cameras combined with the ideal characteristics of the Ge-68/Ga-68 generator promise a cost efficient imaging system for the future

  9. First principles study of the ground state properties of Si, Ga, and Ge doped Fe50Al50

    Science.gov (United States)

    Pérez, Carlos Ariel Samudio; dos Santos, Antonio Vanderlei

    2018-06-01

    The first principles calculation of the structural, electronic and associated properties of the Fe50Al50 alloy (B2 phase) doped by s-p elements (Im = Si, Ga, and Ge) are performed as a function of the atomic concentration on the basis of the Full Potential Linear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k code. The Al substitution by Im (Si and Ge) atoms (principally at a concentration of 6.25 at%) induces a pronounced redistribution of the electronic charge leading to a strong Fe-Im interaction with covalent bonding character. At the same time, decrease the lattice volume (V) while increase the bulk modulus (B). For the alloys containing Ga, the Fe-Ga interaction is also observed but the V and B of the alloy are very near to that of pure Fe-Al alloy. The magnetic moment and hyperfine parameters observed at the lattice sites of studied alloys also show variations, they increase or decrease in relation to that in Fe50Al50 according to the Im that substitutes Al.

  10. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    Science.gov (United States)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  11. Layered Halide Double Perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for Photovoltaic Applications.

    Science.gov (United States)

    Tang, Gang; Xiao, Zewen; Hosono, Hideo; Kamiya, Toshio; Fang, Daining; Hong, Jiawang

    2018-01-04

    Over the past few years, the development of lead-free and stable perovskite absorbers with excellent performance has attracted extensive attention. Much effort has been devoted to screening and synthesizing this type of solar cell absorbers. Here, we present a general design strategy for designing the layered halide double perovskites Cs 3+n M(II) n Sb 2 X 9+3n (M = Sn, Ge) with desired photovoltaic-relevant properties by inserting [MX 6 ] octahedral layers, based on the principles of increased electronic dimensionality. Compared to Cs 3 Sb 2 I 9 , more suitable band gaps, smaller carrier effective masses, larger dielectric constants, lower exciton binding energies, and higher optical absorption can be achieved by inserting variable [SnI 6 ] or [GeI 6 ] octahedral layers into the [Sb 2 I 9 ] bilayers. Moreover, our results show that adjusting the thickness of inserted octahedral layers is an effective approach to tune the band gaps and carrier effective masses in a large range. Our work provides useful guidance for designing the promising layered antimony halide double perovskite absorbers for photovoltaic applications.

  12. Determination of a new structure type in the Sc–Fe–Ge–Sn system

    International Nuclear Information System (INIS)

    Brgoch, Jakoah; Ran, Sheng; Thimmaiah, Srinivasa; Canfield, Paul C.; Miller, Gordon J.

    2013-01-01

    Highlights: ► A new structure type with the composition Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) . ► Crystallizes in the space group Immm (No. 71, oI144). ► Sample obtained using a reactive Sn flux. ► Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc–Fe–Ge–Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) Å, b = 13.467(3) Å, and c = 30.003(6) Å. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc–Ge as well as Fe–Sn and Fe–Ge contacts can be assigned to this new structure type.

  13. Using Spin-Coated Silver Nanoparticles/Zinc Oxide Thin Films to Improve the Efficiency of GaInP/(InGaAs/Ge Solar Cells

    Directory of Open Access Journals (Sweden)

    Po-Hsun Lei

    2018-06-01

    Full Text Available We synthesized a silver nanoparticle/zinc oxide (Ag NP/ZnO thin film by using spin-coating technology. The treatment solution for Ag NP/ZnO thin film deposition contained zinc acetate (Zn(CH3COO2, sodium hydroxide (NaOH, and silver nitrate (AgNO3 aqueous solutions. The crystalline characteristics, surface morphology, content of elements, and reflectivity of the Ag NPs/ZnO thin film at various concentrations of the AgNO3 aqueous solution were investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and ultraviolet–visible–near infrared spectrophotometry. The results indicated that the crystalline structure, Ag content, and reflectance of Ag NP/ZnO thin films depended on the AgNO3 concentration. Hybrid antireflection coatings (ARCs composed of SiNx and Ag NPs/ZnO thin films with various AgNO3 concentrations were deposited on GaInP/(InGaAs/Ge solar cells. We propose that the optimal ARC consists of SiNx and Ag NP/ZnO thin films prepared using a treatment solution of 0.0008 M AgNO3, 0.007 M Zn(CH3COO2, and 1 M NaOH, followed by post-annealing at 200 °C. GaInP/(AlGaAs/Ge solar cells with the optimal hybrid ARC and SiNx ARC exhibit a conversion efficiency of 34.1% and 30.2% with Voc = 2.39 and 2.4 V, Jsc = 16.63 and 15.37 mA/cm2, and fill factor = 86.1% and 78.8%.

  14. Direct gap Ge1-ySny alloys: Fabrication and design of mid-IR photodiodes

    Science.gov (United States)

    Senaratne, C. L.; Wallace, P. M.; Gallagher, J. D.; Sims, P. E.; Kouvetakis, J.; Menéndez, J.

    2016-07-01

    Chemical vapor deposition methods were developed, using stoichiometric reactions of specialty Ge3H8 and SnD4 hydrides, to fabricate Ge1-ySny photodiodes with very high Sn concentrations in the 12%-16% range. A unique aspect of this approach is the compatible reactivity of the compounds at ultra-low temperatures, allowing efficient control and systematic tuning of the alloy composition beyond the direct gap threshold. This crucial property allows the formation of thick supersaturated layers with device-quality material properties. Diodes with composition up to 14% Sn were initially produced on Ge-buffered Si(100) featuring previously optimized n-Ge/i-Ge1-ySny/p-Ge1-zSnz type structures with a single defected interface. The devices exhibited sizable electroluminescence and good rectifying behavior as evidenced by the low dark currents in the I-V measurements. The formation of working diodes with higher Sn content up to 16% Sn was implemented by using more advanced n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architectures incorporating Ge1-xSnx intermediate layers (x ˜ 12% Sn) that served to mitigate the lattice mismatch with the Ge platform. This yielded fully coherent diode interfaces devoid of strain relaxation defects. The electrical measurements in this case revealed a sharp increase in reverse-bias dark currents by almost two orders of magnitude, in spite of the comparable crystallinity of the active layers. This observation is attributed to the enhancement of band-to-band tunneling when all the diode layers consist of direct gap materials and thus has implications for the design of light emitting diodes and lasers operating at desirable mid-IR wavelengths. Possible ways to engineer these diode characteristics and improve carrier confinement involve the incorporation of new barrier materials, in particular, ternary Ge1-x-ySixSny alloys. The possibility of achieving type-I structures using binary and ternary alloy combinations is discussed in detail, taking into account

  15. Strain, doping, and disorder effects in GaAs/Ge/Si heterostructures: A Raman spectroscopy investigation

    Science.gov (United States)

    Mlayah, A.; Carles, R.; Leycuras, A.

    1992-01-01

    The present work is devoted to a Raman study of GaAs/Ge/Si heterostructures grown by the vapor-phase epitaxy technique. We first show that the GaAs epilayers are submitted to a biaxial tensile strain. The strain relaxation generates misfit dislocations and thus disorder effects which we analyze in terms of translational invariance loss and Raman selection rules violation. The first-order Raman spectra of annealed samples exhibit an unexpected broadband we identify as due to scattering by a coupled LO phonon-damped plasmon mode. This is corroborated by an accurate line-shape analysis which accounts for the recorded spectra and makes evident the presence of free carriers within the GaAs layers. Their density is estimated from the deduced plasmon frequency and also using a method we have presented in a previous work.

  16. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Meduňa, M.; Salvalaglio, M.; Miglio, L.; Isa, F.; Barthazy Meier, E.; Müller, E.; Isella, G.

    2016-01-01

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images

  17. Multielemental Determination of As, Bi, Ge, Sb, and Sn in Agricultural Samples Using Hydride Generation Coupled to Microwave-Induced Plasma Optical Emission Spectrometry.

    Science.gov (United States)

    Machado, Raquel C; Amaral, Clarice D B; Nóbrega, Joaquim A; Araujo Nogueira, Ana Rita

    2017-06-14

    A microwave-induced plasma optical emission spectrometer with N 2 -based plasma was combined with a multimode sample introduction system (MSIS) for hydride generation (HG) and multielemental determination of As, Bi, Ge, Sb, and Sn in samples of forage, bovine liver, powdered milk, agricultural gypsum, rice, and mineral fertilizer, using a single condition of prereduction and reduction. The accuracy of the developed analytical method was evaluated using certified reference materials of water and mineral fertilizer, and recoveries ranged from 95 to 106%. Addition and recovery experiments were carried out, and the recoveries varied from 85 to 117% for all samples evaluated. The limits of detection for As, Bi, Ge, Sb, and Sn were 0.46, 0.09, 0.19, 0.46, and 5.2 μg/L, respectively, for liquid samples, and 0.18, 0.04, 0.08, 0.19, and 2.1 mg/kg, respectively, for solid samples. The method proposed offers a simple, fast, multielemental, and robust alternative for successful determination of all five analytes in agricultural samples with low operational cost without compromising analytical performance.

  18. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  19. Calculations of the energy spectra of Zn, Ga and Ge isotopes by the shell model

    International Nuclear Information System (INIS)

    Sakakura, M.; Shikata, Y.; Arima, A.; Sebe, T.

    1979-01-01

    The effective Hamiltonian which was determined empirically by Koops and Glaudemans is tested in shell model calculations for the 65-68 Zn, 67-69 Ga, and 68-70 Ge nuclei in the full (1p 3 / 2 , 0f 5 / 2 , 1p 1 / 2 )n space. The resulting energy spectra are compared with the experimental spectra and results of previous calculations. The overall agreement with experiment is as satisfactory for these nuclei as for the Ni and Cu isotopes, by which the Hamiltonian was determined. It is noticed that the spectra of 67 Zn and 67 , 69 Ga calculated in this work are similar to those provided by the Alaga model. (orig.) [de

  20. Effects of a GaSb buffer layer on an InGaAs overlayer grown on Ge(111) substrates: Strain, twin generation, and surface roughness

    Science.gov (United States)

    Kajikawa, Y.; Nishigaichi, M.; Tenma, S.; Kato, K.; Katsube, S.

    2018-04-01

    InGaAs layers were grown by molecular-beam epitaxy on nominal and vicinal Ge(111) substrates with inserting GaSb buffer layers. High-resolution X-ray diffraction using symmetric 333 and asymmetric 224 reflections was employed to analyze the crystallographic properties of the grown layers. By using the two reflections, we determined the lattice constants (the unit cell length a and the angle α between axes) of the grown layers with taking into account the rhombohedral distortion of the lattices of the grown layers. This allowed us the independent determination of the strain components (perpendicular and parallel components to the substrate surface, ε⊥ and ε//) and the composition x of the InxGa1-xAs layers by assuming the distortion coefficient D, which is defined as the ratio of ε⊥ against ε//. Furthermore, the twin ratios were determined for the GaSb and the InGaAs layers by comparing asymmetric 224 reflections from the twin domain with that from the normal domain of the layers. As a result, it has been shown that the twin ratio in the InGaAs layer can be decreased to be less than 0.1% by the use of the vicinal substrate together with annealing the GaSb buffer layer during the growth interruption before the InGaAs overgrowth.

  1. Technology computer aided design for Si, SiGe and GaAs integrated circuits

    CERN Document Server

    Armstrong, GA

    2007-01-01

    The first book to deal with a broad spectrum of process and device design, and modelling issues related to semiconductor devices, bridging the gap between device modelling and process design using TCAD. Examples for types of Si-, SiGe-, GaAs- and InP-based heterostructure MOS and bipolar transistors are compared with experimental data from state-of-the-art devices. With various aspects of silicon heterostructures, this book presents a comprehensive perspective of emerging fields and covers topics ranging from materials to fabrication, devices, modelling and applications. Aimed at research-and-

  2. Design and testing of the measuring equipment for the detection of 71Ge and 69Ge within the gallium-solar-neutrino experiment

    International Nuclear Information System (INIS)

    Huebner, M.

    1980-01-01

    A low level measuring system has been developed for the Ga-solar-neutrino experiment, to detect the reaction 71 Ga (νsub(e),e - ) 71 Ge by the decay 71 Ge (Tsub(1/2) = 11. 4 d, 100% electron capture). An estimate based on the solar standard model gives 15 71 Ge atoms produced by solar neutrinos (pp and pep). As a monitor for background reactions in the target, the detectability of the 69 Ga (p,n) 69 Ge reaction by the decay 69 Ge (Tsub(1/2) = 39 h, 37% β + -decay, 63% electron capture) has been considered. To test the system, the detectors are mounted in a low level laboratory lead box. (orig./WB) [de

  3. Structure and stability of M6N8 clusters (M = Si, Ge, Sn, Ti).

    Science.gov (United States)

    Davydova, Elena I; Timoshkin, Alexey Y; Frenking, Gernot

    2010-06-10

    The structures and stabilities of the M(6)N(8) clusters (M = Si, Ge, Sn, Ti) have been theoretically studied at DFT and ab initio levels of theory. Two new isomers have been considered: cage-like molecules and propeller-like molecules. It is shown that only for M = Si are both isomers true minima on the potential energy surface. The thermodynamics of the dissociation process (1/6)M(6)N(8) --> (1/3)M(3)N(4) is discussed. For each M(3)N(4) molecule, four structures with different multiplicity are considered. The thermodynamic analysis shows that independently of the multiplicity of M(3)N(4) nitrides all M(6)N(8) clusters are stable in the gas phase in a wide temperature range and could be potential intermediates in chemical vapor deposition of the nitride materials.

  4. Structural characterization and compositional dependence of the optical properties of Ge-Ga-La-S chalcohalide glass system

    Science.gov (United States)

    Li, Lini; Jiao, Qing; Lin, Changgui; Dai, Shixun; Nie, Qiuhua

    2018-04-01

    In this paper, chalcogenide glasses of 80GeS2sbnd (20sbnd x)Ga2S3sbnd xLa2S3 (x = 0, 1, 3, 5 mol%) were synthesized through the traditional melt-quenching technique. The effects of La2S3 addition on the thermal, optical, and structural properties of Gesbnd Gasbnd S glasses were investigated. Results showed that the synthesized glasses possessed considerably high glass transition temperature, improved glass forming ability, high refractive index, and excellent infrared transmittance. A redshift at the visible absorbing cut-off edge lower than 500 nm was observed with increasing of La2S3 content. Direct and indirect optical band gap values were calculated. SEM result suggested that this glass system owned better glass forming ability and uniformity. Raman spectral analysis indicated that the introduction of La2S3 induced the dissociation of Gesbnd Ge metal bonds and transformed the [S3Gesbnd GeS3] structure to GeS4 tetrahedrons. Consequently, the connectivity between tetrahedrons of the vitreous network was enhanced. This work suggests that La2S3 modified Ge-Gasbnd Lasbnd S glass is a promising material for infrared optical research.

  5. Structure of the N=50 As, Ge, Ga nuclei

    International Nuclear Information System (INIS)

    Sahin, E.; Angelis, G. de; Duchene, G.; Faul, T.; Gadea, A.; Lisetskiy, A.F.; Ackermann, D.; Algora, A.; Aydin, S.; Azaiez, F.; Bazzacco, D.; Benzoni, G.; Bostan, M.; Byrski, T.; Celikovic, I.; Chapman, R.; Corradi, L.

    2012-01-01

    The level structures of the N=50 83 As, 82 Ge, and 81 Ga isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA-PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the γ-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N=50 shell closure in the region of 78 Ni (Z=28). The comparison of the experimental level schemes with the shell-model calculations yields an N=50 energy gap value of 4.7(3) MeV at Z=28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N=50 shell gap down to Z=28.

  6. Effect of Sn additive on the structure and crystallization kinetics in Ge–Se alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I., E-mail: mostafaia11@yahoo.com; Hafiz, M.M.; Abdelraheem, A.M.; Abu-Sehly, A.A.

    2016-08-05

    The structure of Ge{sub 20}Se{sub 80−x}Snx glassy alloys and crystallization phases are identified using the X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The glass transition kinetics and the crystallization mechanism of the system are studied using Differential Scanning Calorimeter (DSC) under non-isothermal condition. The results reveal that glass transition temperature (Tg) increases with increasing Sn content which is attributed to the increase in the coordination number. The increase of the glass transition activation energy (Eg) with increasing Sn content is attributed to the decrease in the internal energy of the system as Sn increases. The compositional dependence of both glass forming ability and thermal stability are studied. From the experimental data, the thermal stability parameter (S) is found to be maximum for Ge{sub 20}Se{sub 78}Sn{sub 2} alloy, which indicates that this alloy is thermally more stable in the composition range under investigation. The effect of composition on the crystallization mechanism is discussed using different kinetic models. The crystallization activation energy (Ec) decreases with increasing Sn. This is attributed to the addition of Sn increases the tendency of crystallization. The calculated values of Avrami exponent (n) indicates the crystallization process occurs in one-and two dimensions for Sn is less than or equals 12 at%, respectively. - Highlights: • Glass and crystallization transitions in Ge{sub 20}Se{sub 80−x}Sn{sub x} candidate for devices. • The addition of Sn increases the tendency of Ge-Se alloy to crystallization. • The glass forming ability and thermal stability increase as Sn decreases. • The dimension of the crystals growth is one or two depending on the Sn content.

  7. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  8. Optical waveguide based on amorphous Er{sup 3+}-doped Ga-Ge-Sb-S(Se) pulsed laser deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.f [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France); Nemec, P. [Department of General and Inorganic Chemistry and Research Center, Faculty of Chemical Technology, University of Pardubice, Legions Sq. 565, 53210, Pardubice (Czech Republic); Jurdyc, A.M [Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), UMR CNRS 5620, Universite Claude Bernard-Lyon 1, Villeurbanne (France); Zhang, S.; Charpentier, F. [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France); Lhermite, H. [IETR-Microelectronique, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Charrier, J. [FOTON, UMR 6082-ENSSAT, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Guin, J.P. [LARMAUR, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Moreac, A. [Institut de Physique de Rennes, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Frumar, M. [Department of General and Inorganic Chemistry and Research Center, Faculty of Chemical Technology, University of Pardubice, Legions Sq. 565, 53210, Pardubice (Czech Republic); Adam, J.-L. [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France)

    2010-06-30

    Amorphous chalcogenide films play a motivating role in the development of integrated planar optical circuits due to their potential functionality in near infrared (IR) and mid-IR spectral regions. More specifically, the photoluminescence of rare earth ions in amorphous chalcogenide films can be used in laser and amplifier devices in the IR spectral domain. The aim of the present investigation was to optimize the deposition conditions for the fabrication of undoped and Er{sup 3+} doped sulphide and selenide thin films with nominal composition Ga{sub 5}Ge{sub 20}Sb{sub 10}S(Se){sub 65} or Ga{sub 5}Ge{sub 23}Sb{sub 5}S{sub 67} by pulsed laser deposition (PLD). The study of compositional, morphological and structural characteristics of the layers was realized by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy and Raman spectroscopy analyses, respectively. Some optical properties (transmittance, index of refraction, optical band gap, etc.) of prepared chalcogenide films and optical losses were investigated as well. The clear identification of near-IR photoluminescence of Er{sup 3+} ions was obtained for both selenide and sulphide films. The decay of the {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition at 1.54 {mu}m in Er{sup 3+} doped Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} PLD sulphide films was studied to assess the effects of film thickness, rare earth concentration and multilayer PLD deposition on their spectroscopic properties.

  9. Electronic, bonding, linear and non-linear optical properties of novel Li{sub 2}Ga{sub 2}GeS{sub 6} compound

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat, E-mail: wkhan@ntc.zcu.cz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Murtaza, G., E-mail: murtaza@icp.edu.pk [Department of Physics, Islamia College Peshawar, KPK (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); École Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Mahmood, Asif [College of Engineering, Chemical Engineering Department, King Saud University Riyadh (Saudi Arabia); Khenata, R.; El Amine Monir, Mohammed; Baltache, H. [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria)

    2016-07-25

    Recently a new sulphide compound Li{sub 2}Ga{sub 2}GeS{sub 6} was synthesized. It has attracted great attention due to its nonlinear optical properties. Quite surprisingly no theoretical study yet been reported on the physical properties of this important material. We have paid attention to study the electronic and optical properties of Li{sub 2}Ga{sub 2}GeS{sub 6} using first principles techniques of density functional theory. Different exchange-correlation techniques have been applied to study these properties. From local density and generalized gradient approximations the compound is predicted to be direct bandgap. However the band gap is indirect when calculated through the Engle–Vosko and modified Becke–Johnson potentials. Therefore the bandgap of the compound is pseudo direct (direct and indirect band gaps are very close). In optical properties dielectric function, refractive index, reflectivity and absorption coefficient were studied. Furthermore, the second harmonic generation properties of the compound are predicted. - Highlights: • Li{sub 2}Ga{sub 2}GeS{sub 6} studied for the first time using first principles calculations. • Different exchange correlation potentials have been adopted for the calculations. • Bandgap of the compound is pseudo direct. • Optical structures are prominent in the low frequency ultraviolet region. • The lone pair basins seem to have a non-negligible role in the optical properties.

  10. Radiochemical studies relevant to cyclotron production of the radionuclides 71,72As, 68Ge/68Ga and 76,77,80mBr

    International Nuclear Information System (INIS)

    Shehata, Mohamed Mostafa Mostafa

    2011-01-01

    The radionuclides 71,72,73,74 As, 68 Ge/ 68 Ga and 76,77,80m Br are gaining considerable interest in nuclear medicine. A method for the separation of no-carrier-added arsenic radionuclides from the bulk amount of proton-irradiated GeO 2 target as well as from coproduced radiogallium was developed. The extraction of radioarsenic by different organic solvents from acid solutions containing alkali iodide was studied and optimized. The influence of the concentration of various acids (HCl, HClO 4 , HNO 3 , HBr, H 2 SO 4 ) as well as of KI was studied using cyclohexane. The practical application of the optimized procedure in the production of 71 As and 72 As is demonstrated. The batch yields achieved were in the range of 75-84% of the theoretical values. The radiochemical separation of radiogallium from radiogermanium was studied using ion exchange chromatography (Amberlite IR-120) and solvent extraction (Aliquat 336 in o-xylene). At first optimized methods for the separation of no-carrier-added 68 Ge/ 69 Ge formed via the nat Ga(p,xn) 69 Ge process in a Ga 2 O 3 target and for n.c.a. 67 Ga formed via the nat Zn(p,xn) 67 Ga reaction in a Zn target were developed. Using those radionuclides as tracers several factors affecting the separation of radiogallium from radiogermanium were studied and for each procedure the optimum conditions were determined. The solvent extraction using Aliquat 336 was found to be more suitable and was adapted to the separation of n.c.a. 68 Ga from its parent n.c.a. 68 Ge. The quality of the product thus obtained is discussed. The separation of no-carrier-added radiobromine and no-carrier-added radiogallium from proton irradiated ZnSe target was studied in detail. The adsorption behaviour of n.c.a. radiobromine, n.c.a. radiogallium, zinc and selenium towards the cation-exchange resin Amberlyst 15, in H + form, and towards the anion-exchange resin Dowex 1X10 in Cl - and OH - forms, was investigated. The elution of n.c.a. radiobromine and n

  11. Does a network structure exist in molecular liquid SnI4 and GeI4?

    Science.gov (United States)

    Sakagami, Takahiro; Fuchizaki, Kazuhiro

    2017-04-01

    The existence of a network structure consisting of electrically neutral tetrahedral molecules in liquid SnI4 and GeI4 at ambient pressure was examined. The liquid structures employed for the examination were obtained from a reverse Monte Carlo analysis. The structures were physically interpreted by introducing an appropriate intermolecular interaction. A ‘bond’ was then defined as an intermolecular connection that minimizes the energy of intermolecular interaction. However, their ‘bond’ energy is too weak for the ‘bond’ and the resulting network structure to be defined statically. The vertex-to-edge orientation between the nearest molecules is so ubiquitous that almost all of the molecules in the system can take part in the network, which is reflected in the appearance of a prepeak in the structure factor.

  12. Lateral terahertz hot-electron bolometer based on an array of Sn nanothreads in GaAs

    Science.gov (United States)

    Ponomarev, D. S.; Lavrukhin, D. V.; Yachmenev, A. E.; Khabibullin, R. A.; Semenikhin, I. E.; Vyurkov, V. V.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2018-04-01

    We report on the proposal and the theoretical and experimental studies of the terahertz hot-electron bolometer (THz HEB) based on a gated GaAs structure like the field-effect transistor with the array of parallel Sn nanothreads (Sn-NTs). The operation of the HEB is associated with an increase in the density of the delocalized electrons due to their heating by the incoming THz radiation. The quantum and the classical device models were developed, the quantum one was based on the self-consistent solution of the Poisson and Schrödinger equations, the classical model involved the Poisson equation and density of states omitting quantization. We calculated the electron energy distributions in the channels formed around the Sn-NTs for different gate voltages and found the fraction of the delocalized electrons propagating across the energy barriers between the NTs. Since the fraction of the delocalized electrons strongly depends on the average electron energy (effective temperature), the proposed THz HEB can exhibit an elevated responsivity compared with the HEBs based on more standard heterostructures. Due to a substantial anisotropy of the device structure, the THz HEB may demonstrate a noticeable polarization selectivity of the response to the in-plane polarized THz radiation. The features of the THz HEB might be useful in their practical applications in biology, medicine and material science.

  13. Cathodoluminescence studies of anomalous ion implantation defect introduction in lightly and heavily doped liquid phase epitaxial GaAs:Sn

    International Nuclear Information System (INIS)

    Norris, C.B.; Barnes, C.E.

    1980-01-01

    The anomalous postrange defect introduction produced by shallow ion implantation in GaAs has been investigated in Sn-doped liquid phase epitaxial (LPE) material using depth-resolved cathodoluminescence in conjunction with layer removal by chemical etching. 100-keV Ne + or 200-keV Zn + ions were implanted into lightly or heavily Sn-doped LPE layers at temperatures between 80 and 300 K. All implantations were subsequently annealed at 300 K. Although the projected ion ranges for the implants were on the order of 1000 A, significant postrange damage was observed at far greater depths. At depths up to several microns, the damage introduction produced severe nonradiative recombination but simultaneously caused an apparent increase in the concentration of incumbent luminescence centers responsible for an extrinsic band near 1.39 eV. A weak damage-related band near 1.2 eV could also be seen in one instance. At depths of 5--30 μm, the postrange damage had the opposite effect of annihilating incumbent 1.39-eV luminescence centers. The efficiency of the damage introduction has a complicated temperature dependence which is significantly different for the ion/substrate combinations investigated. However, no conditions were found for which the damage introduction could be inhibited. While our measurements are the most extensive to date concerning the anomalous ion implant damage introduction in GaAs, the detailed mechanisms responsible for this effect still remain obscure owing in part to the limited understanding of defects in GaAs

  14. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  15. Stellar Laboratories: New GeV and Ge VI Oscillator Strengths and their Validation in the Hot White Dwarf RE0503-289

    Science.gov (United States)

    Rauch, T.; Werner, K.; Biemont, E.; Quinet, P.; Kruk, J. W.

    2013-01-01

    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. Aims. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths in order to reproduce the observed spectrum. Methods. We newly calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV-VI spectrum exhibited in high-resolution and high-S/N FUV (FUSE) and UV (ORFEUS/BEFS, IUE) observations of RE 0503-289. Results. In the UV spectrum of RE 0503-289, we identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these lines are identified for the first time in any star. We can reproduce almost all Ge IV, GeV, and Ge VI lines in the observed spectrum of RE 0503-289 (T(sub eff) = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). The Ge IV/V/VI ionization equilibrium, that is a very sensitive T(sub eff) indicator, is reproduced well. Conclusions. Reliable measurements and calculations of atomic data are a

  16. Trace element affinities in two high-Ge coals from China

    Energy Technology Data Exchange (ETDEWEB)

    Jing Li; Xinguo Zhuang; Xavier Querol [China University of Geosciences, Wuhan (China). Faculty of Earth Resources

    2011-01-15

    The Lincang (Yunnan Province, Southwest China) and Wulantuga (Inner Mongolia, Northeast China) coal deposits are known because of the high-Ge content. These coals have also a high concentration of a number of other elements. To determine the mode of occurrence of the enriched elements in both coals, six density fractions from {lt} 1.43 to {gt} 2.8 g/cm{sup 3} were obtained from two representative samples using heavy-liquids. A number of peculiar geochemical patterns characterize these high-Ge coals. Thus, the results of the chemical analysis of these density fractions showed that both coals (very distant and of a different geological age) are highly enriched (compared with the usual worldwide coal concentration ranges) in Ge, As, Sb, W, Be, and Tl. This may be due to similar geochemistry of hydrothermal fluids influencing the Earth Crust in these regions of China. Moreover, Wulantuga coal (Early Cretaceous subbituminous coal) is also enriched in Ca, Mg, and Na, and Lincang coal (Neogene subbituminous coal) in K, Rb, Nb, Mo, Sn, Cs, and U. A group of elements consisting of Ge, W, B, Nb, and Sb mostly occur with an organic affinity in both coals. Additionally, Be, U, and Mo (and partially Mn and Zn) in Lincang, and Na and Mg in Wulantuga occur also with a major organic affinity. Both coals have sulfide-arsenide mineral assemblages (Fe, S, As, Sn, and Pb, and in addition to Tl, Ta, and Cs in the Lincang coal). The occurrence of Al, P, Li, Sc, Ti, V, Cr, and Zr in both coals, and Ba in Lincang, are associated with the mineral assemblage of silico-aluminates and minor heavy minerals. Furthermore, P, Na, Li, Sc, Ti, Ga, Rb, Zr, Cr, Ba, Th, and LREE (La, Ce, Pr, Nd, and Gd) in Lincang are associated with mineral assemblages of phosphates and minor heavy minerals. The two later mineral assemblages are derived from the occurrence of detrital minerals. 34 refs., 7 figs., 3 tabs.

  17. 0(gs)+ -->2(1)+ transition strengths in 106Sn and 108Sn.

    Science.gov (United States)

    Ekström, A; Cederkäll, J; Fahlander, C; Hjorth-Jensen, M; Ames, F; Butler, P A; Davinson, T; Eberth, J; Fincke, F; Görgen, A; Górska, M; Habs, D; Hurst, A M; Huyse, M; Ivanov, O; Iwanicki, J; Kester, O; Köster, U; Marsh, B A; Mierzejewski, J; Reiter, P; Scheit, H; Schwalm, D; Siem, S; Sletten, G; Stefanescu, I; Tveten, G M; Van de Walle, J; Van Duppen, P; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Zielińska, M

    2008-07-04

    The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.

  18. Preparation and characterization of co-evaporated Cu{sub 2}ZnGeSe{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Uday Bhaskar, P.; Suresh Babu, G.; Kishore Kumar, Y.B.; Sundara Raja, V., E-mail: sundararajav@rediffmail.com

    2013-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGSe), a member of Cu{sub 2}–II–IV–VI{sub 4} family, is a promising material for solar cell absorber layer in thin film heterojunction solar cells like Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSnSe{sub 4} which have been explored in recent years as alternate to CuInGaSe{sub 2} solar cells. The effect of substrate temperature (523 K–723 K) on the growth of CZGSe films is investigated by studying their structural, morphological and optical properties. Raman spectroscopy studies have been done to identify the phases in addition to X-ray diffraction studies. CZGSe films deposited at different substrate temperatures and annealed at 723 K in selenium atmosphere are Cu-rich and Ge-poor and contained secondary phases Cu{sub (2−x)}Se and ZnSe. CZGSe films obtained by reducing the starting Cu mass by 10% were found to be single phase with stannite structure, the lattice parameters being a = 0.563 nm, c = 1.101 nm. The direct optical band gap of CZGSe films is found to be 1.63 eV which is close to ideal band gap of 1.50 eV for the highest photovoltaic conversion efficiency. The films are found to be p-type. - Highlights: • Synthesis of Cu{sub 2}ZnGeSe{sub 4} films for solar cell absorber layer • Effect of substrate temperature on the growth of co-evaporated Cu{sub 2}ZnGeSe{sub 4} films • X-ray diffraction, Raman and morphological studies of Cu{sub 2}ZnGeSe{sub 4} thin films.

  19. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  20. Superlattice-like SnSb{sub 4}/Ga{sub 3}Sb{sub 7} thin films for ultrafast switching phase-change memory application

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yifeng [Tongji University, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Shanghai (China); Jiangsu University of Technology, School of Mathematics and Physics, Changzhou (China); He, Zifang; Zhai, Jiwei [Tongji University, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Shanghai (China); Wu, Pengzhi; Lai, Tianshu [Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Guangzhou (China); Song, Sannian; Song, Zhitang [Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Shanghai (China)

    2015-11-15

    The carrier concentration of Sb-rich phase SnSb{sub 4}, Ga{sub 3}Sb{sub 7} and superlattice-like [SnSb{sub 4}(3.5 nm)/Ga{sub 3}Sb{sub 7}(4 nm)]{sub 7} (SLL-7) thin films as a function of annealing temperature was investigated to explain the reason of resistance change. The activation energy for crystallization was calculated with a Kissinger equation to estimate the thermal stability. In order to illuminate the transition mechanisms, the crystallization kinetics of SLL-7 were explored by using Johnson-Mehl-Avrami theory. The obtained values of Avrami indexes indicate that a one-dimensional growth-dominated mechanism is responsible for the set transition of SLL-7 thin film. X-ray diffractometer and Raman scattering spectra were recorded to investigate the change of crystalline structure. The measurement of atomic force microscopy indicated that SLL-7 thin film has a good smooth surface. A picosecond laser pump-probe system was used to test and verify phase-change speed of the SLL-7 thin film. (orig.)

  1. Dopant site location in dual-implanted GaP using (111) planar channeling

    International Nuclear Information System (INIS)

    Parikh, N.R.; Kao, C.T.; Lee, D.R.; Muse, J.; Swanson, M.L.; Venkatasubramanian, R.; Timmons, M.

    1990-01-01

    Previous studies have indicated that dual implantation can efficiently introduce group IV dopant onto selected sub-lattice sites in III--V compound semiconductors, thus enhancing electrical activation. The authors have studied this phenomenon in GaP using Rutherford Backscattering Spectroscopy (RBS) to determine the lattice location of Sn atoms. The authors used single crystals of GaP (100) which had been implanted at 400 degrees C with 120 Sn + following previously implanted 69 Ga + or 31 P + . Energies were selected for equivalent projected ranges, and all species were implanted with doses of 1 x 10 15 atoms/cm 2 . Asymmetry in the angular scan of the {111} planar channel was then used to determine the sub-lattice location of the implanted Sn. RBS results indicated that for all implants Sn atoms were substituting Ga and P sites equally. However, Hall effect measurements gave p type conduction for GaP implanted with Sn alone, while those with prior implants of Ga or P resulted in n-type conduction. RBS and Hall effect results are explained by a vacancy complex model

  2. Superconducting properties of powder-metallurgically produced Cu-Nb3Sn composite wires

    International Nuclear Information System (INIS)

    Schaper, W.; Wecker, J.; Heine, K.; Bormann, R.; Freyhardt, H.C.

    1988-01-01

    The critical current density of composite superconducting wires can be improved by ternary or quaternary additions. If these additions are incorporated into the A15 phase the upper critical field can be increased. An increase in this field, however, can only be realized if the additions do not strongly deteriorate the critical temperature. An enhanced upper critical field in connection with a favorable grain size of the A15 phase finally leads to improved critical current densities in the entire field range. With these parameters as guidelines, the effects of Ti, In, Ga, and Ge additions to the bronze and of Ta additions to the niobium on the superconducting properties of PM produced Cu-Nb 3 Sn wires were investigated

  3. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  4. Si, Ge and SiGe wires for sensor application

    International Nuclear Information System (INIS)

    Druzhinin, A.A.; Khoverko, Yu.M.; Ostrovskii, I.P.; Nichkalo, S.I.; Nikolaeva, A.A.; Konopko, L.A.; Stich, I.

    2011-01-01

    Resistance and magnetoresistance of Si, Ge and Si-Ge micro- and nanowires were studied in temperature range 4,2-300 K at magnetic fields up to 14 T. The wires diameters range from 200 nm to 20 μm. Ga-In gates were created to wires and ohmic I-U characteristics were observed in all temperature range. It was found high elastic strain for Ge nanowires (of about 0,7%) as well as high magnitude of magnetoresistance (of about 250% at 14 T), which was used to design multifunctional sensor of simultaneous measurements of strain and magnetic field intensity. (authors)

  5. Numerical Simulation of a Mechanically Stacked GaAs/Ge Solar Cell

    Directory of Open Access Journals (Sweden)

    S. Enayat Taghavi Moghaddam

    2017-06-01

    Full Text Available In this paper, GaAs and Ge solar cells have been studied and simulated separately and the inner characteristics of each have been calculated including the energy band structure, the internal field, carrier density distribution in the equilibrium condition (dark condition and the voltage-current curve in the sun exposure with the output power of each one. Finally, the output power of these two mechanically stacked cells is achieved. Drift-diffusion model have been used for simulation that solved with numerically method and Gummel algorithm. In this simulation, the final cells exposed to sun light in a standard AM 1.5 G conditions and temperatures are 300° K. The efficiency of the proposed structure is 9.47%. The analytical results are compared with results of numerical simulations and the accuracy of the method used is shown.

  6. Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Benkabou, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Département de Physique, Faculté des Sciences, Université Hassiba Benbouali, Chlef 02000 (Algeria); Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); and others

    2015-10-25

    First-principle calculations are performed to predict the electronic structure and elastic and magnetic properties of CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys. The calculations employ the full-potential linearized augmented plane wave. The exchange-correlations are treated within the generalized gradient approximation of Perdew–Burke and Ernzerhof (GGA-PBE). The electronic structure calculations show that these compounds exhibit a gap in the minority states band and are clearly half-metallic ferromagnets, with the exception of the CoRhMnAl and CoRhMnGa, which are simple ferromagnets that are nearly half metallic in nature. The CoRhMnGe and CoRhMnSi compounds and their magnetic moments are in reasonable agreement with the Slater-Pauling rule, which indicates the half metallicity and high spin polarization for these compounds. At the pressure transitions, these compounds undergo a structural phase transition from the Y-type I → Y-type II phase. We have determined the elastic constants C{sub 11}, C{sub 12} and C{sub 44} and their pressure dependence, which have not previously been established experimentally or theoretically. - Highlights: • Based on DFT calculations, CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • The mechanical properties were investigated.

  7. Defining the Thermal Stability of Ba8Ga16Ge30 and its Future in Thermoelectrics

    DEFF Research Database (Denmark)

    Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank

    The majority of research on the auspicious n/p-Ba8Ga16-xGe30+x (BGG) Type-I thermoelectric clathrates has been focused on property measurements at low temperature. High temperature property measurements have also been reported for BGG, although they have not yet been fully explained. Therefore...... to evaluate the underlying chemistry of the anomalies seen in thermoelectric property measurements. Using X-ray diffraction and DTA-TG, we have discovered that BGG is not chemically stable at high temperatures over a range of thermal treatment periods. Our variable temperature synchrotron XRD measurements...... and longer term annealing experiments reveal that Ge evolution is the first indicator of BGG decomposition. This presentation summarizes the results from these research activities and highlight that the slow decomposition kinetics of BGG have been overlooked on the timescales typically used...

  8. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  9. Demonstration of β-(Al x Ga1- x )2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.

    2017-07-01

    β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.

  10. Structural characterization of GaAs self-assembled quantum dots grown by Droplet Epitaxy on Ge virtual substrates on Si

    International Nuclear Information System (INIS)

    Frigeri, C.; Bietti, S.; Isella, G.; Sanguinetti, S.

    2013-01-01

    The structure of self-assembled quantum dots (QDs) grown by Droplet Epitaxy on Ge virtual substrates has been investigated by TEM. The QDs have a pyramidal shape with base and height of 50 nm. By (0 0 2) dark field TEM it was seen that the pyramid top is Ga poor and Al rich most likely because of the higher mobility of Ga along the pyramid sides down to the base. The investigated QDs contain defects identified as As precipitates by Moirè fringes. The smallest ones (3–5 nm) are coherent with the GaAs lattice suggesting that they could be a cubic phase of As precipitation. It seems to be a metastable phase since the hexagonal phase is recovered as the precipitate size increases above ∼5 nm.

  11. RE{sub 3}Ga{sub 9}Ge (RE=Y, Ce, Sm, Gd and Yb): compounds with an open three-dimensional polygallide framework synthesized from liquid gallium

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, M A; Kanatzidis, M G

    2003-07-01

    The RE{sub 3}Ga{sub 9}Ge compounds (RE=Y, Ce, Sm, Gd and Yb) were synthesized at 850 deg. C in quantitative yield from reactions containing excess liquid Ga. The orthorhombic crystal structure is characterized by a unique three-dimensional open Ga framework with parallel straight tunnels. In the tunnels, inserted are arrays of the RE atoms together with interpenetrated monoatomic RE-Ga-Ge planes. A complex disordered arrangement of the RE and Ga atoms is observed in the monoatomic plane. Depending on the extent of disorder, the crystal structure could be presented either in a sub-cell (no ordering) or in a super-cell (partial ordering). Single-crystal X-ray data for Ce{sub 3}Ga{sub 9}Ge sub-structure: space group Immm, Z=2, cell parameters a=4.3400(12) A; b=10.836(3) A; and c=11.545(3) A; super-structure: space group Cmma, Z=8, cell parameters a=8.680(3) A; b=23.090(7) A; and c=10.836(3) A. The refinement based on the full-matrix least squares on F{sub o}{sup 2}[I>2{sigma}(I)] converged to final residuals R{sub 1}/wR{sub 2}=0.0226/0.0528 and 0.0729/0.1569 for the sub- and super-structures, respectively. The relationship between the disordered sub-structure and partially ordered super-structure is discussed. Magnetic susceptibility measurements show Curie-Weiss behavior at the temperatures above 30 K with the negative Weiss constants {theta}=-49(1) and-7.7 K for Gd and Ce analogs, respectively. An antiferromagnetic transition is observed in the Gd analog at T{sub N}=26.1 K. The {mu}{sub eff} obtained for both analogs is close to the RE{sup 3+} free-ion value.

  12. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.

    2018-04-01

    Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.

  13. Submicron resolution X-ray diffraction from periodically patterned GaAs nanorods grown onto Ge[111

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, Anton; Biermanns, Andreas; Pietsch, Ullrich [Solid State Physics, Siegen University (Germany); Grenzer, Joerg [FZ-Dresden Rossendorf, Dresden (Germany); Paetzelt, Hendrik; Gottschalch, Volker; Bauer, Jens [Solid State Chemistry, University of Leipzig (Germany)

    2009-08-15

    We present high-resolution X-ray diffraction pattern of periodic GaAs nanorods (NRs) ensembles and individual GaAs NRs grown catalyst-free throughout a pre-patterned amorphous SiN{sub x} mask onto Ge[111]B surfaces by selective-area MOVPE method. To the best of our knowledge this is the first report about nano-structure X-ray characterization growth on non-polar substrate. The experiment has been performed at home laboratory and using synchrotron radiation using a micro-sized beam prepared by compound refractive lenses. Due to the non-polar character of the substrate the shapes of NRs appear not uniform and vary between deformed hexagonal and trigonal in symmetry. Because the average diameter of NRs equals the experimental resolution certain cuts through slightly inclined edges or corners of individual NRs with lateral size of about 225 nm could be selected using spatially resolved reciprocal space mapping. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. An investigation of semiconducting behavior in the minority spin of Co2CrZ (Z = Ga, Ge, As): LSDA and LSDA + U method

    International Nuclear Information System (INIS)

    Rai, D.P.; Thapa, R.K.

    2012-01-01

    Highlights: ► Volume optimization was done to find the theoretical lattice parameters. ► LSDA was performed to calculate electronic and magnetic properties of Co 2 CrZ. ► The result shows the half-metal ferromagnetic behavior of Co 2 CrGa and Co 2 CrGe. ► Co 2 CrAs fails to give HMF within LSDA thus treated with LSDA + U, to obtain HMF. - Abstract: We have calculated the electronic and magnetic properties of 3d transition metal based full Heusler compounds Co 2 CrZ (Z = Ga, Ge, As), by using full potential linearized augmented plane wave (FP-LAPW) method. The calculated density of states (DOS) and band structure for Co 2 CrZ shows the existence of band gap in their minority-spin channel. The respective energy gaps of Co 2 CrGe and Co 2 CrGa are 0.24 and 0.38 eV with their Fermi energies (E F s) lie exactly at the gap. The compound Co 2 CrAs when treated with local spin density approximation (LSDA) does not show half metallic ferromagnetism (HMF) even though there exist a gap this is because the E F does not lie at the middle of the gap. We have considered Co 2 CrAs as strongly correlated system as Cr-d states at E F are strongly localized thus the system was treated in terms of the LSDA + U. The total magnetic moment of Co 2 CrAs was found to be an exact integer value 5.00 μ B within LSDA + U. We have also found that the total magnetic moments increase as the Z goes from Ga to As.

  15. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1985-01-01

    The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  16. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  17. Near infrared group IV optoelectronics and novel pre-cursors for CVD epitaxy

    Science.gov (United States)

    Hazbun, Ramsey Michael

    Near infrared and mid infrared optoelectronic devices have become increasingly important for the telecommunications, security, and medical imaging industries. The addition of nitrogen to III-V alloys has been widely studied as a method of modifying the band gap for mid infrared (IR) applications. In xGa1-xSb1-y Ny/InAs strained-layer superlattices with type-II (staggered) energy offsets on GaSb substrates, were modeled using eight-band k˙p simulations to analyze the superlattice miniband energies. Three different zero-stress strain balance conditions are reported: fixed superlattice period thickness, fixed InAs well thickness, and fixed InxGa1-xSb 1-yNy barrier thickness. Optoelectronics have traditionally been the realm of III-V semiconductors due to their direct band gap, while integrated circuit chips have been the realm of Group IV semiconductors such as silicon because of its relative abundance and ease of use. Recently the alloying of Sn with Ge and Si has been shown to allow direct band-gap light emission. This presents the exciting prospect of integrating optoelectronics into current Group IV chip fabrication facilities. However, new approaches for low temperature growth are needed to realize these new SiGeSn alloys. Silicon-germanium epitaxy via ultra-high vacuum chemical vapor deposition has the advantage of allowing low process temperatures. Deposition processes are sensitive to substrate surface preparation and the time delay between oxide removal and epitaxial growth. A new monitoring process utilizing doped substrates and defect decoration etching is demonstrated to have controllable and unique sensitivity to interfacial contaminants. Doped substrates were prepared and subjected to various loading conditions prior to the growth of typical Si/SiGe bilayers. The defect densities were correlated to the concentration of interfacial oxygen suggesting this monitoring process may be an effective complement to monitoring via secondary ion mass spectrometry

  18. Thio-, selenido-, and telluridogermanates(III): K/sub 6/Ge/sub 2/S/sub 6/, K/sub 6/Ge/sub 2/Se/sub 6/, and Na/sub 6/Ge/sub 2/Te/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, B; Kieselbach, E; Schaefer, H; Schrod, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1984-09-01

    The new compounds K/sub 6/Ge/sub 2/S/sub 6/ and K/sub 6/Ge/sub 2/Se/sub 6/ crystallize in the monoclinic system, space group C2/m (No 12). The compounds are isotypic and form the K/sub 6/Si/sub 2/Te/sub 6/ structure. Na/sub 6/Ge/sub 2/Te/sub 6/ crystallizes in the K/sub 6/Sn/sub 2/Te/sub 6/ structure, monoclinic, space group P2/sub 1//c (No 14). The lattice constants are given.

  19. Photon energy dependence of photo-induced inverse spin-Hall effect in Pt/GaAs and Pt/Ge

    Energy Technology Data Exchange (ETDEWEB)

    Isella, Giovanni, E-mail: giovanni.isella@polimi.it; Bottegoni, Federico; Ferrari, Alberto; Finazzi, Marco; Ciccacci, Franco [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-06-08

    We report the photon energy dependence of photo-induced inverse spin Hall effect (ISHE) in Pt/GaAs and Pt/Ge Schottky junctions. The experimental results are compared with a spin drift-diffusion model, which highlights the role played by the different spin lifetime in the two semiconductors, in determining the energy dependence of the ISHE signal detected in the Pt layer. The good qualitative agreement between experiments and modelling indicates that photo-induced ISHE can be used as a tool to characterize spin lifetime in semiconductors.

  20. Metallic superconductors. 3. Na3Sn and V3Ga wires (Part one)

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji

    2010-01-01

    Nowadays Nb 3 Sn wires are being widely used as one of the key materials in advanced science and technology, with various applications such as NMR, fusion and cryogen-free superconducting magnets. In this article, at first microstructures and fundamental aspects as well as the effect of additional elements in Nb 3 Sn are outlined. Intrinsic superconducting performances, e.g. T c and B c2 , are quite sensitive to the stoichiometry of the Sn concentration. A small amount of Ti and Ta doping is much effective for the increase of B c2 in Nb 3 Sn. The effect of Cu on the enhancement of Nb 3 Sn synthesis has yielded a significant breakthrough for the industrial production of the wires. At present the bronze process and internal Sn process are the twin major fabrication techniques of Nb 3 Sn wires. The recent status of both processes is reviewed in this article. Pronounced progress has been achieved in the performance of Nb 3 Sn wires fabricated through both techniques. Although just half a century has passed since the first fabrication of Nb 3 Sn wire, further progress in Nb 3 Sn technology may be expected like the proverb saying 'Fresh water still comes out from an old spring'. (author)

  1. The somatic FAH C.1061C>A change counteracts the frequent FAH c.1062+5G>A mutation and permits U1snRNA-based splicing correction.

    Science.gov (United States)

    Scalet, Daniela; Sacchetto, Claudia; Bernardi, Francesco; Pinotti, Mirko; van de Graaf, Stan F J; Balestra, Dario

    2018-05-01

    In tyrosinaemia type 1(HT1), a mosaic pattern of fumarylacetoacetase (FAH) immunopositive or immunonegative nodules in liver tissue has been reported in many patients. This aspect is generally explained by a spontaneous reversion of the mutation into a normal genotype. In one HT1 patient carrying the frequent FAH c.1062+5G>A mutation, a second somatic change (c.1061C>A) has been reported in the same allele, and found in immunopositive nodules. Here, we demonstrated that the c.1062+5G>A prevents usage of the exon 12 5' splice site (ss), even when forced by an engineered U1snRNA specifically designed on the FAH 5'ss to strengthen its recognition. Noticeably the new somatic c.1061C>A change, in linkage with the c.1062+5G>A mutation, partially rescues the defective 5'ss and is associated to trace level (~5%) of correct transcripts. Interestingly, this combined genetic condition strongly favored the rescue by the engineered U1snRNA, with correct transcripts reaching up to 60%. Altogether, these findings elucidate the molecular basis of HT1 caused by the frequent FAH c.1062+5G>A mutation, and demonstrate the compensatory effect of the c.1061C>A change in promoting exon definition, thus unraveling a rare mechanism leading to FAH immune-reactive mosaicism.

  2. Peculiarity of component interaction in {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Pavlyuk, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Jan Dlugosz University, Institute of Chemistry, Environmental Protection and Biotechnology, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Tkachuk, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine)

    2011-07-14

    Highlights: > {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems at 770 K are characterized by formation of stannides with general compositions RMn{sub 6}Sn{sub 6} and R{sub 4}Mn{sub 4}Sn{sub 7}. > The crystal structure of YMn{sub 6}Sn{sub 6} was determined by single crystal and powder diffraction methods. > Structural analysis showed that Dy{sub 4}Mn{sub 4}Sn{sub 7} compound is disordered. > Isostructural R{sub 4}Mn{sub 4}Sn{sub 7} compounds were also found with Gd, Tb, Ho, Er, Tm(confirmed), Yb, and Lu. - Abstract: The phase equilibria in the Y-Mn-Sn and Dy-Mn-Sn ternary systems were studied at 770 K by means of X-ray and metallographic analyses in the whole concentration range. Both Y-Mn-Sn and Dy-Mn-Sn systems are characterized by formation of two ternary compounds RMn{sub 6}Sn{sub 6} (MgFe{sub 6}Ge{sub 6}-type, space group P6/mmm) and R{sub 4}Mn{sub 4}Sn{sub 7} (Zr{sub 4}Co{sub 4}Ge{sub 7}-type, space group I4/mmm). The disorder in Dy{sub 4}Mn{sub 4}Sn{sub 7} compound was found by single crystal method. Compounds with the same type of structure were also found with Gd, Tb, Ho, Er, Tm (confirmed), Yb, and Lu and their lattice parameters were determined.

  3. Phase transformations in ion-mixed metastable (GaSb)1/sub 1 -x/(Ge2)/sub x/ semiconducting alloys

    International Nuclear Information System (INIS)

    Cadien, K.C.; Muddle, B.C.; Greene, J.E.

    1984-01-01

    Low energy (75--175 eV) Ar + ion bombardment during film deposition has been used to produce well-mixed amorphous GaSb/Ge mixtures which, when annealed, transform first to single phase polycrystalline metastable (GaSb)/sub 1-x/(Ge 2 )/sub x/ alloys before eventually transforming to the equilibrium two-phase state. At 500 0 C, for example, the annealing time t/sub a/ required for the amorphous to crystalline metastable (ACM) transformation was approx.10 min, while t/sub a/ for the crystalline metastable to equilibrium (CME) transformation was >6 h. The exothermic enthalpy of crystallization and the onset temperature of the ACM transition were determined as a function of alloy composition using differential thermal analysis. The thermodynamic data was then used to calculate the surface energy per unit area sigma of the amorphous/metastable-crystal interface. sigma was found to exhibit a minimum between x = 0.3 and 0.4. The driving energy for the transition from the crystalline metastable state to the equilibrium two-phase state was of the order of 0.12 kJ cm -3 while the activation barrier was approx.19 kJ cm -3 . Thus, the metastable alloys, which had average grain sizes of 100--200 nm and a lattice constant which varied linearly with x, exhibited good thermal and temporal stability

  4. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  5. P/N InP solar cells on Ge wafers

    Science.gov (United States)

    Wojtczuk, Steven; Vernon, Stanley; Burke, Edward A.

    1994-01-01

    Indium phosphide (InP) P-on-N one-sun solar cells were epitaxially grown using a metalorganic chemical vapor deposition process on germanium (Ge) wafers. The motivation for this work is to replace expensive InP wafers, which are fragile and must be thick and therefore heavy, with less expensive Ge wafers, which are stronger, allowing use of thinner, lighter weight wafers. An intermediate InxGs1-xP grading layer starting as In(0.49)Ga(0.51) at the GaAs-coated Ge wafer surface and ending as InP at the top of the grading layer (backside of the InP cell) was used to attempt to bend some of the threading dislocations generated by lattice-mismatch between the Ge wafer and InP cell so they would be harmlessly confined in this grading layer. The best InP/Ge cell was independently measured by NASA-Lewis with a one-sun 25 C AMO efficiently measured by NASA-Lewis with a one-circuit photocurrent 22.6 mA/sq cm. We believe this is the first published report of an InP cell grown on a Ge wafer. Why get excited over a 9 percent InP/Ge cell? If we look at the cell weight and efficiency, a 9 percent InP cell on an 8 mil Ge wafer has about the same cell power density, 118 W/kg (BOL), as the best InP cell ever made, a 19 percent InP cell on an 18 mil InP wafer, because of the lighter Ge wafer weight. As cell panel materials become lighter, the cell weight becomes more important, and the advantage of lightweight cells to the panel power density becomes more important. In addition, although InP/Ge cells have a low beginning-of-life (BOL) efficiency due to dislocation defects, the InP/Ge cells are very radiation hard (end-of-life power similar to beginning-of-life). We have irradiated an InP/Ge cell with alpha particles to an equivalent fluence of 1.6 x 10(exp 16) 1 MeV electrons/sq cm and the efficiency is still 83 percent of its BOL value. At this fluence level, the power output of these InP/Ge cells matches the GaAs/Ge cell data tabulated in the JPL handbook. Data are presented

  6. Germanium doping of GaN by metalorganic chemical vapor deposition for polarization screening applications

    KAUST Repository

    Young, N.G.

    2016-10-01

    We demonstrate n-type doping of GaN with Ge by MOCVD at high concentrations that are necessary to fully screen the polarization fields in c-plane InGaN/GaN quantum wells. Hall measurements show linear Ge incorporation with dopant flow rate and carrier concentrations exceeding 1×10 cm. GaN:Ge layers exhibit excellent electron mobility, high conductivity, and contact resistivity comparable to the best unannealed contacts to Si-doped GaN. However, the surface morphology begins to degrade with Ge concentrations above 1×10 cm, resulting in severe step bunching and a network of plateaus and trenches, even in layers as thin as 10 nm.

  7. Germanium doping of GaN by metalorganic chemical vapor deposition for polarization screening applications

    KAUST Repository

    Young, N.G.; Farrell, R.M.; Iza, M.; Nakamura, S.; DenBaars, S.P.; Weisbuch, C.; Speck, J.S.

    2016-01-01

    We demonstrate n-type doping of GaN with Ge by MOCVD at high concentrations that are necessary to fully screen the polarization fields in c-plane InGaN/GaN quantum wells. Hall measurements show linear Ge incorporation with dopant flow rate and carrier concentrations exceeding 1×10 cm. GaN:Ge layers exhibit excellent electron mobility, high conductivity, and contact resistivity comparable to the best unannealed contacts to Si-doped GaN. However, the surface morphology begins to degrade with Ge concentrations above 1×10 cm, resulting in severe step bunching and a network of plateaus and trenches, even in layers as thin as 10 nm.

  8. Magnetoresistance of UPdSn and pressure effect

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Alsmadi, A.; Nakotte, H.; Kamarád, Jiří; Sechovský, V.; Lacerda, A. H.; Mihálik, M.

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1197-1200 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GP202/01/D045; GA ČR GA106/02/0943 Grant - others:NSF(US) DMR-0094241; NSF(US) INT-9722777 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * UPdSn * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  9. Microstructural, electrical and frequency-dependent properties of Au/p-Cu2ZnSnS4/n-GaN heterojunction.

    Science.gov (United States)

    Rajagopal Reddy, V; Janardhanam, V; Won, Jonghan; Choi, Chel-Jong

    2017-08-01

    An Au/Cu 2 ZnSnS 4 (CZTS)/n-GaN heterojunction (HJ) is fabricated with a CZTS interlayer and probed its chemical states, structural, electrical and frequency-dependent characteristics by XPS, TEM, I-V and C-V measurements. XPS and TEM results confirmed that the CZTS films are formed on the n-GaN surface. The band gap of deposited CZTS film is found to be 1.55eV. The electrical properties of HJ correlated with the Au/n-GaN Schottky junction (SJ). The Au/CZTS/n-GaN HJ reveals a good rectification nature with high barrier height (0.82eV) compared to the Au/n-GaN SJ (0.69eV), which suggests the barrier height is influenced by the CZTS interlayer. The barrier height values assessed by I-V, Cheung's and Norde functions are closely matched with one other, thus the methods used here are reliable and valid. The extracted interface state density (N SS ) of Au/CZTS/n-GaN HJ is lower compared to the Au/n-GaN SJ that suggests the CZTS interlayer plays an important role in the reduction of N SS . Moreover, the capacitance-frequency (C-f) and conductance-frequency (G-f) characteristics of SJ and HJ are measured in the range of 1kHz-1MHz, and found that the capacitance and conductance strappingly dependent on frequency. It is found that the N SS estimated from C-f and G-f characteristics is lower compared to those estimated from I-V characteristics. Analysis confirmed that Poole-Frenkel emission dominates the reverse leakage current in both SJ and HJ, probably related to the structural defects and trap levels in the CZTS interlayer. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. 71Ga and 73Ga levels as observed in the (t,p) reaction

    International Nuclear Information System (INIS)

    Vergnes, M.N.; Rotbard, G.; Guilbaut, F.; Ardouin, D.; Lebrun, C.

    1978-01-01

    A study of the (t,p) reaction on the two stable Ga isotopes has been performed. The reaction protons were analyzed in a Q3D spectrometer with a resulting energy resolution approximately 18 keV. Levels up to about 3 MeV excitation energy in 71 Ga and 2.75 MeV in 73 Ga were measured with 11 new levels observed in the first case and 18 in the second. The angular distributions have been compared to pure distributions observed in the 72 Ge(t,p) and 74 Ge(t,p) reactions at the same energy and found to correspond mostly to pure angular momentum (L) transfer although mixing of L's is allowed. A number of new spins assignments are made for Ga levels and the results are used to discuss the spin of 73 Znsub(g.s.). The striking splitting of the L=0 strength in three approximately equal components, observed in 73 Ga, strongly supports a transition in nuclear deformation between N=40 and 42

  11. Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution.

    Science.gov (United States)

    Martínez-Criado, Gema; Segura-Ruiz, Jaime; Chu, Manh-Hung; Tucoulou, Remi; López, Iñaki; Nogales, Emilio; Mendez, Bianchi; Piqueras, Javier

    2014-10-08

    Crossed nanowire structures are the basis for high-density integration of a variety of nanodevices. Owing to the critical role of nanowires intersections in creating hybrid architectures, it has become a challenge to investigate the local structure in crossing points in metal oxide nanowires. Thus, if intentionally grown crossed nanowires are well-patterned, an ideal model to study the junction is formed. By combining electron and synchrotron beam nanoprobes, we show here experimental evidence of the role of impurities in the coupling formation, structural modifications, and atomic site configuration based on crossed Ga2O3/SnO2 nanowires. Our experiment opens new avenues for further local structure studies with both nanometer resolution and elemental sensitivity.

  12. Effect of Ge, Sn, Sb on the resistance to swelling of austenitic alloys irradiated by 1 MeV electrons

    International Nuclear Information System (INIS)

    Dubuisson, P.; Levy, V.; Seran, J.L.

    1987-01-01

    The effect of new solute elements namely Ge, Sn and Sb on the void swelling resistance of austenitic alloys irradiated with 1 MeV electrons has been studied. Except for tin in Ti-modified 316, all solute improve the swelling resistance of base alloys. Tin addition shifts the swelling peak of 316 S.S. to high temperature. In fact, these solute additions have the same qualitative effect on the swelling components: they enhance the void density and decrease strongly void growth rate. This effect is opposite to the one of usual swelling inhibitors such as Si or Ti which decrease the void density. We have explained this influence on the void nucleation and void growth by introducing a strong interaction between vacancies and solute atoms in a void growth model

  13. Electrochemical corrosion behaviour of lead-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Mohanty, Udit Surya; Lin, K.-L.

    2005-01-01

    The electrochemical corrosion behaviour of Pb-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution was investigated by using potentiodynamic polarization methods, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) analysis. The results obtained from polarization studies showed that an increase in the Ag content from 0.1 to 1.5 wt% decreased the corrosion current density (I corr ) and shifted the corrosion potential (E corr ) towards more noble values. These changes were also reflected in the linear polarization resistance (LPR), corrosion rate, anodic Tafel slope (b A ) and the cathodic Tafel slope (b c ) values, respectively. Passivation behaviour was noted in the Sn-Zn-X Ag-Al-Ga solders with Ag content > 0.1 wt%. The oxides and hydroxides of zinc were responsible for the formation of passive film. Presence of Ag atoms in the oxide layer also improved the passivation behaviour of solders to a certain extent. X-ray photoelectron spectroscopy revealed that two different oxygen species were formed on the surface films, one was assigned to OH - in Zn(OH) 2 and the other to O 2 - in ZnO. XPS depth profile results revealed that the two species had different depth distribution in the films. SEM and EDX analyses confirmed SnCl 2 as the major corrosion product formed after the electrochemical experiments

  14. NdRhSn: A ferromagnet with an antiferromagnetic precursor

    Czech Academy of Sciences Publication Activity Database

    Mihalik, M.; Prokleška, J.; Kamarád, Jiří; Prokeš, K.; Isnard, O.; McIntyre, G. J.; Dönni, A.; Yoshii, S.; Kitazawa, H.; Sechovský, V.; de Boer, F.R.

    2011-01-01

    Roč. 83, č. 10 (2011), "104403-1"-"104403-10" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : NdRhSn * ferromagnet * antiferromagnetic precursor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  15. Making superconductors

    International Nuclear Information System (INIS)

    McDonald, W.K.

    1981-01-01

    A method is described of producing composite rod or wire of increased strength and fineness wherein the composite is formed by reducing a lamina of two metals which have been rolled to form a cylindrical billet in which one of the metals is in expanded form. The composite produced can be encased in copper and fabricated to produce a superconductor. Alloys contemplated for producing superconductors are Nb 3 Sn, Nb 3 Ga, Nb 3 Ge, Nb 3 Si, Nb-Ti, V 3 Ga, V 3 Si, V 3 Sn, V 3 Al, and V 3 Ge laminated on bronze, Al, Cu, Ta, or combinations thereof. (author)

  16. Recent Progress of B-Ga2O3 MOSFETs for Power Electronic Applications

    Science.gov (United States)

    2017-03-20

    Ge Si Sn M ob ilit y (c m 2 /V *s ) Measured Nd - Na (cm -3) MBE Figure 4. Mobility as a...100 LPCVD MOVPE MOVPE Sn Si Ge C on ta ct R es is ta nc e ( m m ) Measured Nd - Na(cm -3) MBE MOVPE Figure 5. Contact Resistance (Ω*mm) is... Deposition (LPCVD). Epitaxy was grown on compensation doped (Mg or Fe) single crystal substrate with (010) or (100) crystal orientations.

  17. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn2GaC

    International Nuclear Information System (INIS)

    Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J.

    2014-01-01

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn 2 GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn 2 GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M 2 AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.

  18. Ab initio CASSCF study of the electronic structure of the transition-metal alkylidene-like complexes Mo-M[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, A.; Sanz, J.F. (Universidad de Sevilla (Spain))

    1992-12-02

    Experimental and theoretical research on the electronic and geometric structure of transition-metal-carbenes and -alkylidenes is an active area in chemistry nowadays due to their potential activity in catalysis and in organic and organometallic synthesis. A theoretical investigation of the electronic structure of the high-valent, transition-metal, alkylidene-like complexes MoM[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn) is reported. Based on ab initio calculations carried out at the complete active space multiconfiguration self-consistent field (CASSCF) level, the molecular structure of the ground state and some low-lying excited states have been determined. For M[prime] = C, Si, and Ge, the ground state has C[sub 2v] symmetry (state [sup 5]B[sub 1]) and corresponds to pairing each electron of the M[prime]H[sub 2] triplet [sup 3]B[sub 1] with an electron of Mo ([sup 7]S). In the case of MoSnH[sub 2], the lowest state is bent (C[sub s] symmetry, state [sup 7]A[prime]), the out-of-plane angle being 68[degrees], and dissociates into SnH[sub 2] ([sup 1]A[sub 1]) + Mo ([sup 7]S). Dissociation energies, potential energy profiles for the dissociation, harmonic force constants in terms of internal symmetry coordinates, and vibrational frequencies are reported. The comparison of these properties with those of their pentacarbonylated homologous (CO)[sub 5]M[double bond]M[prime]H[sub 2] shows that the carbene-like (Fischer) type of complexation is stronger than the alkylidene-like one (Schrock). 28 refs., 4 figs., 6 tabs.

  19. Electronic structure and p-type doping of ZnSnN2

    Science.gov (United States)

    Wang, Tianshi; Janotti, Anderson; Ni, Chaoying

    ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.

  20. Contribution to the study of electronic structure of crystalline semiconductors (Si, Ge, GaAs, Gap, ZnTe, ZnSe

    Directory of Open Access Journals (Sweden)

    Bouhafs B.

    2012-06-01

    Full Text Available The band structure of semiconductors was described by several theorists since the Fifties. The main objective of the present paper is to do a comparative study between various families of semi-conductors IV (Si,Ge, III-V (GaAs, GaP and II-VI (ZnSe, ZnTe with both methods; tight Binding1 method and pseudo potential method2. This work enables us to understand as well as the mechanism of conduction process in these semiconductors and powers and limits of the above methods. The obtained results allow to conclude that both methods are in a good agreement to describe the morphology of band structures of the cited semiconductors. This encourages us to study in the future the electronic behaviour through the structure of bands for more complex systems such as the heterostructures.

  1. Enhancement of magnetoresistance by inserting thin NiAl layers at the interfaces in Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag/Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} current-perpendicular-to-plane pseudo spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. W.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp; Sasaki, T. T.; Hono, K. [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Y. [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Kyoto Institute of Technology, Electrical Engineering and Electronics, Kyoto 606-8585 (Japan)

    2016-03-07

    We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm{sup 2}) and 77% (31 mΩ μm{sup 2}) at room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.

  2. First principles-based adsorption comparison of group IV elements (C, Si, Ge, and Sn) on Au(111)/Ag(111) surface

    International Nuclear Information System (INIS)

    Chakraborty, Sudip; Rajesh, Ch.

    2012-01-01

    We have reported a first-principle investigation of the structural properties of monomer and dimer for group IV elements (C, Si, Ge, and Sn) adsorbed on the Au(111) and Ag(111) surfaces. The calculations were performed by means of a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of adatom to be adsorbed on the hexagonal closed packed site of the metal (111) surfaces with strong binding energy. The structures introduce interlayer forces in the adsorbate. The strong bonding with the surface atoms is a result of p–d hybridization. The adsorption energy follows a sequence as one goes down in the group IV elements which imply that the interaction of the group IV elements with Au/Ag is decreasing as the atomic number increases.

  3. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  4. New compounds bearing [M(S_2O_7)_3]"2"- anions (M = Si, Ge, Sn): Syntheses and characterization of A_2[Si(S_2O_7)_3] (A = Na, K, Rb), A_2[Ge(S_2O_7)_3] (A = Li, Na, K, Rb, Cs), A_2[Sn(S_2O_7)_3] (A = Na, K), and the unique germanate Hg_2[Ge(S_2O_7)_3]Cl_2 with cationic "1_∞[HgCl_2_/_2]"+ chains

    International Nuclear Information System (INIS)

    Logemann, Christian; Witt, Julia; Wickleder, Mathias S.; Gunzelmann, Daniel; Senker, Juergen

    2012-01-01

    The reaction of the group 14 tetrachlorides MCl_4 (M = Si, Ge, Sn) with oleum (65 % SO_3) at elevated temperatures led to the unique anionic complexes [M(S_2O_7)_3]"2"- that show the central M atoms in coordination of three chelating S_2O_7"2"- groups. The mean distances M-O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S_2O_7)_3]"2"- anions is achieved by alkaline metal ions A"+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A"+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S_2O_7)_3]"2"- anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg_2[Ge(S_2O_7)_3]Cl_2 which forms when HgCl_2 is added as a source for the counter cation. The Hg"2"+ and the Cl"- ions form infinite cationic chains according to "1_∞[HgCl_2_/_2]"+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A_2SO_4 and the dioxides MO_2, whereas Hg_2[Ge(S_2O_7)_3]Cl_2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na_2[Si(S_2O_7)_3] has additionally been examined by solid state "2"9Si and "2"3Na NMR spectroscopic measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. First evidence of low energy enhancement in Ge isotopes

    Directory of Open Access Journals (Sweden)

    Renstrøm T.

    2015-01-01

    Full Text Available The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ∼1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ∼3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  6. Automated synthesis, characterization and biological evaluation of [{sup 68}Ga]Ga-AMBA, and the synthesis and characterization of {sup nat}Ga-AMBA and [{sup 67}Ga]Ga-AMBA

    Energy Technology Data Exchange (ETDEWEB)

    Cagnolini, Aldo; Chen Jianqing; Ramos, Kimberly; Marie Skedzielewski, Tina; Lantry, Laura E.; Nunn, Adrian D.; Swenson, Rolf E. [Ernst Felder Laboratories, Bracco Research USA Inc., 305 College Road East, Princeton, NJ 08540 (United States); Linder, Karen E., E-mail: karen.e.linder@gmail.co [Ernst Felder Laboratories, Bracco Research USA Inc., 305 College Road East, Princeton, NJ 08540 (United States)

    2010-12-15

    Ga-AMBA (Ga-DO3A-CH{sub 2}CO-G-[4-aminobenzoyl]-QWAVGHLM-NH{sub 2}) is a bombesin-like agonist with high affinity for gastrin releasing peptide receptors (GRP-R). Syntheses for {sup nat}Ga-AMBA, [{sup 67}Ga]Ga-AMBA and [{sup 68}Ga]Ga-AMBA were developed. The preparation of HPLC-purified and Sep-Pak purified [{sup 68}Ga]Ga-AMBA were fully automated, using the built-in radiodetector of the Tracerlab FX F-N synthesizer to monitor fractionated {sup 68}Ge/{sup 68}Ga generator elution and purification. The total synthesis time, including the fractional elution of the generator, was 20 min for Sep-Pak purified material and 40 min for HPLC-purified [{sup 68}Ga]Ga-AMBA. Both [{sup 67}Ga]Ga-AMBA and [{sup 177}Lu]Lu-AMBA showed comparable high affinity for GRP-R in the human prostate cancer cell line PC-3 in vitro (k{sub D}=0.46{+-}0.07; 0.44{+-}0.08 nM), high internalization (78; 77%) and low efflux from cells at 2 h (2.4{+-}0.7; 2.9{+-}1.8%). Biodistribution results in PC-3 tumor-bearing male nude mice showed comparable uptake for [{sup 177}Lu]Lu-, [{sup 111}In]In-, [{sup 67}Ga]Ga- and [{sup 68}Ga]Ga-AMBA.

  7. Synthesis and some coordination chemistry of the PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4, attempts to prepare the PSiP analogue, and the effect of the E atom on the molecular structures of E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn).

    Science.gov (United States)

    Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2018-03-26

    The non-donor-stabilized PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4 (1) has been prepared by treating SnCl2 with Li2(NCH2PtBu2)2C6H4. All attempts to synthesize the analogous PSiP silylene by reduction of the (previously unknown) silanes SiCl2(NCH2PtBu2)2C6H4 (2), SiHCl(NCH2PtBu2)2C6H4 (3) and SiH(HMDS)(NCH2PtBu2)2C6H4 (4; HMDS = N(SiMe3)2) have been unsuccessful. The almost planar (excluding the tert-butyl groups) molecular structure of stannylene 1 (determined by X-ray crystallography) has been rationalized with the help of DFT calculations, which have shown that, in the series of diphosphanetetrylenes E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn), the most stable conformation of the compounds with E = Ge and Sn has both P atoms very close to the EN2C6H4 plane, near (interacting with) the E atom, whereas for the compounds with E = C and Si, both phosphane groups are located at one side of the EN2C6H4 plane and far away from the E atom. The size of the E atom and the strength of stabilizing donor-acceptor PE interactions (both increase on going down in group 14) are key factors in determining the molecular structures of these diphosphanetetrylenes. The syntheses of the chloridostannyl complexes [Rh{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η4-cod)] (5), [RuCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η6-cym)] (6) and [IrCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η5-C5Me5)] (7) have demonstrated the tendency of stannylene 1 to insert its Sn atom into M-Cl bonds of transition metal complexes and the preference of the resulting PSnP chloridostannyl group to act as a κ2Sn,P-chelating ligand, maintaining an uncoordinated phosphane fragment. X-ray diffraction data (of 6), 31P{1H} NMR data (of 5-7) and DFT calculations (on 6) are consistent with the existence of a weak PSn interaction involving the non-coordinated P atom of complexes 5-7, similar to that found in stannylene 1.

  8. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  9. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures.

    Science.gov (United States)

    Nogales, E; Hidalgo, P; Lorenz, K; Méndez, B; Piqueras, J; Alves, E

    2011-07-15

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  10. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures

    International Nuclear Information System (INIS)

    Nogales, E; Hidalgo, P; Mendez, B; Piqueras, J; Lorenz, K; Alves, E

    2011-01-01

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga 2 O 3 and GeO 2 structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the 5 D 0 - 7 F 2 Eu 3+ intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga 2 O 3 , which is assigned to the lattice recovery. Gd 3+ as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd 3+ is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd 3+ 6 P 7/2 - 8 S 7/2 intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  11. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4} devices

    Energy Technology Data Exchange (ETDEWEB)

    Varley, J. B.; Lordi, V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-08-14

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se){sub 2} (CIGS) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be less effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.

  12. First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4

    Science.gov (United States)

    Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro

    2018-02-01

    The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.

  13. Formation of the low-resistivity compound Cu_3Ge by low-temperature treatment in an atomic hydrogen flux

    International Nuclear Information System (INIS)

    Erofeev, E. V.; Kazimirov, A. I.; Fedin, I. V.; Kagadei, V. A.

    2016-01-01

    The systematic features of the formation of the low-resistivity compound Cu_3Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i-GaAs substrate. Treatment of the Cu/Ge/i-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10"1"5 at cm"2 s"–"1 for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu_3Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/i-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu_3Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu_3Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/i-GaAs sample.

  14. Development of a production scale purification of Ge-68 from irradiated gallium metal

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Jonathan M.; Mausner, Leonard [Brookhaven National Laboratory, Upton, NY (United States)

    2015-05-01

    Germanium-68 (Ge-68) is produced by proton irradiation of a gallium metal target and purified by organic extraction. The Ge-68 can be used in a medical isotope generator to produce Gallium-68 (Ga-68) which can be used to radiolabel PET imaging agents. The emerging use of Ge-68 in the Ga-68 medical isotope generator has caused us to develop a new purification method for Ge-68 that does not use toxic solvents. The purpose of this work was to develop a production scale separation of Ge-68 that utilizes a leaching step to remove a bulk of the gallium metal, followed by purification with Sephadex {sup copyright} G25. Production scale (300 mCi) purification was performed with the new method. The purified Ge-68 contained the highest radioactivity concentration of Ge-68 produced at BNL; the sample meet Department of Energy specifications and the method had an excellent recovery of Ge-68.

  15. Ab initio calculation of the electronic structure and spectroscopic properties of spinel γ-Sn3N4

    International Nuclear Information System (INIS)

    Ching, W. Y.; Rulis, Paul

    2006-01-01

    The electronic structure and physical properties of γ-Sn 3 N 4 in the spinel structure are investigated by first-principles calculations. The calculated band structure, electronic bonding, and optical properties are compared with two well-studied spinel nitrides γ-Si 3 N 4 and γ-Ge 3 N 4 . γ-Sn 3 N 4 is a semiconductor with a direct band gap of 1.40 eV and an attractive small electron effective mass of 0.17. Its optical properties are different from that of γ-Si 3 N 4 and γ-Ge 3 N 4 because of the difference in the conduction band minimum. The Sn K, Sn L 3 , Sn M 5 , and N K edges of the x-ray-absorption near-edge structure spectra in γ-Sn 3 N 4 are calculated using a supercell approach and are found to be rich in structures. These spectra are discussed in the context of the electronic structure of the unoccupied conduction band in the presence of the electron core-hole interaction. These calculated spectra can be used for the characterization of this novel compound

  16. n+ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhang

    2017-06-01

    Full Text Available To achieve radio frequency (RF power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively.

  17. Thermochemistry of liquid Ni–Sb–Sn alloys

    Czech Academy of Sciences Publication Activity Database

    Mishra, R.; Kroupa, Aleš; Terzieff, P.; Ipser, H.

    2012-01-01

    Roč. 536, MAY (2012), s. 68-73 ISSN 0040-6031 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Ni-Sb-Sn alloys * thermochemistry * vapor pressure measurements Subject RIV: BJ - Thermodynamics Impact factor: 1.989, year: 2012

  18. Cascaded Ga1-xAlxAs/GaAs solar cell with graded i-region

    Science.gov (United States)

    Mil'shtein, Sam; Halilov, Samed

    2018-02-01

    In current study we designed p-i-n junction with extended intrinsic layer, where linearly graded Alx Ga1-x As presents variable energy gap so needed for effective harvesting of sun radiation. The design realization involves two regions of compositional structure in the stacking direction. The top AlxGa1-xAs layer of 1 um total thickness has stoichiometric structure x=0.3-0.2d, where depth d runs from 0 to 1 um, topmost 200 nm of which is Be-doped. Bottom AlxGa1-xAs layer of 3 um total thickness has a variable composition of x=0.133-0.033d, d runs from 1 to 4 um, the very bottom of which with 10 nm thickness is Si-doped. On the top surface, there is a 50 nm layer of p+ doped GaAs as a spacer for growing AuGe/Ni anode electrode of 20% surface area, the bottom is coated with AuGe/Ni cathode electrode. The designed cell demonstrates 89% fill factor and 30% conversion efficiency without anti-reflection coating.

  19. Temperature-dependent electrical characteristics and carrier transport mechanism of p-Cu2ZnSnS4/n-GaN heterojunctions

    Science.gov (United States)

    Niteesh Reddy, Varra; Reddy, M. Siva Pratap; Gunasekhar, K. R.; Lee, Jung-Hee

    2018-04-01

    This work explores the temperature-dependent electrical characteristics and carrier transport mechanism of Au/p-Cu2ZnSnS4/n-type GaN heterojunction (HJ) diodes with a CZTS interlayer. The electrical characteristics were examined by current-voltage-temperature, turn-on voltage-temperature and series resistance-temperature in the high-temperature range of 300-420 K. It is observed that an exponential decrease in the series resistance ( R S) and increase in the ideality factor ( n) and barrier height ( ϕ b) with increase in temperature. The thermal coefficient ( K j) is determined to be - 1.3 mV K-1 at ≥ 300 K. The effective ϕ b is determined to be 1.21 eV. This obtained barrier height is consistent with the theoretical one. The characteristic temperature ( T 0) resulting from the Cheung's functions [d V/d(ln I) vs. I and H( I) vs. I], is seen that there is good agreement between the T 0 values from both Cheung's functions. The relevant carrier transport mechanisms of Au/p-CZTS/n-type GaN HJ are explained based on the thermally decreased energy band gap of n-type GaN layers, thermally activated deep donors and increased further activated shallow donors.

  20. Structure and magnetic properties of new Be-substituted langasites A{sub 3}Ga{sub 3}Ge{sub 2}BeO{sub 14} (A=Pr, Nd, and Sm)

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.Z., E-mail: sharmaa5@myumanitoba.ca [Department of Chemistry, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, Canada R3T 2N2 (Canada); Silverstein, H.J. [Department of Chemistry, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, Canada R3T 2N2 (Canada); Hallas, A.M. [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON, Canada L8S 4M1 (Canada); Luke, G.M. [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON, Canada L8S 4M1 (Canada); Canadian Institute for Advanced Research, 180 Dundas Street W, Suite 1400, Toronto, ON, Canada M5G 1Z8 (Canada); Wiebe, C.R. [Department of Chemistry, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, Canada R3T 2N2 (Canada); Department of Chemistry, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada R3B 2E9 (Canada); Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON, Canada L8S 4M1 (Canada); Canadian Institute for Advanced Research, 180 Dundas Street W, Suite 1400, Toronto, ON, Canada M5G 1Z8 (Canada)

    2016-01-15

    Langasites have been studied extensively in past for their functional properties and use in telecommunication. A thorough understanding of their ground state is limited by the difficulty in synthesizing new members belonging to this series due to the formation of competing phases such as the garnets. Three magnetic langasites A{sub 3}Ga{sub 3}Ge{sub 2}BeO{sub 14} (A=Pr, Nd, and Sm) and a non-magnetic lattice standard La{sub 3}Ga{sub 3}Ge{sub 2}BeO{sub 14} were synthesized using the ceramic method. These were further characterized by X-ray diffraction, magnetization, magnetic susceptibility and heat capacity measurements. All three langasites exhibit net antiferromagnetic interactions at low temperatures and no evidence of long range magnetic ordering was observed down to 0.350 K. - Graphical abstract: Kagome network formed by the magnetic ions in the new Be-langasites. The ground states of three new members were explored using different physical property measurements such as X-ray diffraction, magnetization, magnetic susceptibility and heat capacity (a–d show refinement patterns for the langasites). These can be added to the list of candidate spin liquid materials. - Highlights: • Four new langasites A{sub 3}Ga{sub 3}Ge{sub 2}BeO{sub 14} (A=La, Pr, Nd, and Sm) were synthesized. • These were characterized using physical and magnetic property measurements. • These langasites exhibit net antiferromagnetic interactions at low temperatures. • No evidence of long range magnetic ordering was observed down to 0.350 K. • Can be potential Spin liquid candidates.

  1. Evidence for As lattice location and Ge bound exciton luminescence in ZnO implanted with $^{73}$As and $^{73}$Ge

    CERN Document Server

    Johnston, K; Henry, M O; McGlynn, E; Stachura, M

    2011-01-01

    The results of photoluminescence (PL) measurements performed on high quality single crystal ZnO implanted with radioactive (73)Ga and (73)As, both of which decay to stable (73)Ge, are presented. Identical effects are observed in the two cases, with a sharp line at 3.3225(5) eV found to grow in intensity in accordance with the growth rate of the Ge daughter atom populations. On the strength of the well-established result that Ga occupies Zn sites, we conclude from the identical outcomes for (73)Ga and (73)As implantations that implanted As also preferentially occupies Zn sites. This result supports the findings of others that As preferentially occupies the Zn rather than the O site in ZnO. The thermal quenching energy of the 3.3225(5) eV line is found to be only 2.9(1) meV in contrast to its large spectral shift of 53.4(1) meV with respect to the lowest energy free exciton. The PL is attributed to exciton recombination at neutral Ge double donors on Zn sites involving transitions that leave the donor in an exc...

  2. Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni–Sn

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš; Káňa, Tomáš; Buršík, Jiří; Zemanová, Adéla; Šob, Mojmír

    2015-01-01

    Roč. 17, č. 42 (2015), s. 28200-28210 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA14-15576S; GA MŠk LD11024 Institutional support: RVO:68081723 Keywords : application to Ni–Sn * CALPHAD method * ab initio calculations Subject RIV: BJ - Thermodynamics Impact factor: 4.449, year: 2015

  3. Antiferromagnetism in EuPdGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Albedah, Mohammed A. [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Al-Qadi, Khalid [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Department of Mathematics, Statistics and Physics, Qatar University, P.O. Box 2713, Doha (Qatar); Stadnik, Zbigniew M., E-mail: stadnik@uottawa.ca [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Przewoźnik, Janusz [Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków (Poland)

    2014-11-15

    Highlights: • We show that EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type structure with the lattice constants a = 4.4457(1) Å and c = 10.1703(2). • We demonstrate that EuPdGe{sub 3} is an antiferromagnet with the Néel temperature T{sub N} = 12.16(1) K. • The temperature dependence of the hyperfine magnetic field follows a S = 7/2 Brillouin function. • We find that the Debye temperature of the studied compound is 199(2) K. - Abstract: The results of X-ray diffraction, magnetic susceptibility and magnetization, and {sup 151}Eu Mössbauer spectroscopy measurements of polycrystalline EuPdGe{sub 3} are reported. EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type tetragonal structure (space group I4mm) with the lattice constants a=4.4457(1)Å and c=10.1703(2)Å. The results are consistent with EuPdGe{sub 3} being an antiferromagnet with the Néel temperature T{sub N}=12.16(1)K and with the Eu spins S=7/2 in the ab plane. The temperature dependence of the magnetic susceptibility above T{sub N} follows the modified Curie-Weiss law with the effective magnetic moment of 7.82(1) μ{sub B} per Eu atom and the paramagnetic Curie temperature of -5.3(1)K indicative of dominant antiferromagnetic interactions. The M(H) isotherms for temperatures approaching T{sub N} from above are indicative of dynamical short-range antiferromagnetic ordering in the sample. The temperature dependence of the hyperfine magnetic field follows a S=7/2 Brillouin function. The principal component of the electric field gradient tensor is shown to increase with decreasing temperature and is well described by a T{sup 3/2} power-law relation. The Debye temperature of EuPdGe{sub 3} determined from the Mössbauer data is 199(2) K.

  4. Semi-automated lab-on-a-chip for dispensing GA-68 radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, Irving [Weinberg Medical Physics LLC, Bethesda, MD (United States)

    2014-03-12

    We solved a technical problem that is hindering American progress in molecular medicine, and restricting US citizens from receiving optimal diagnostic care. Specifically, the project deals with a mother/daughter generator of positron-emitting radiotracers (Ge-68/Ga-68). These generator systems are approved in Europe but cannot be used in the USA, because of safety issues related to possible breakthrough of long-lived Ge-68 (mother) atoms. Europeans have demonstrated abilities of Ga-68-labeled radiotracers to image cancer foci with high sensitivity and specificity, and to use such methods to effectively plan therapy.The USA Food and Drug Administration (FDA) and Nuclear Regulatory Commission (NRC) have taken the position that every patient administration of Ga-68 should be preceded by an assay demonstrated that Ge-68 breakthrough is within acceptable limits. Breakthrough of parent elements is a sensitive subject at the FDA, as evidenced by the recent recall of Rb-82 generators due to inadvertent administrations of Sr-82. Commercially, there is no acceptable rapid method for assaying breakthrough of Ge-68 prior to each human administration. The gamma emissions of daughter Ga-68 have higher energies than the parent Ge-68, so that the shielding assays typically employed for Mo-99/Tc-99m generators cannot be applied to Ga-68 generators. The half-life of Ga-68 is 68 minutes, so that the standard 10-half-life delay (used to assess breakthrough in Sr-82/Rb-82 generators) cannot be applied to Ga-68 generators. As a result of the aforementioned regulatory requirements, Ga-68 generators are sold in the USA for animal use only.The American clinical community’s inability to utilize Ga-68 generators impairs abilities to treat patients domestically, and puts the USA at a disadvantage in developing exportable products. The proposed DOE project aimed to take advantage of recent technological advances developed for lab-on-a-chip (LOC) applications. Based on our experiences

  5. Optical absorption, piezoelectric effect and second harmonic generation studies of single crystal AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Myronchuk, G.L.; Krymus, A.S.; Piasecki, M. [Institute of Physics, J. Dlugosz University, Czestochowa (Poland); Eastern European National University, Physics Department, Lutsk (Ukraine); Lakshminarayana, G. [Universiti Putra Malaysia, Wireless and Photonic Networks Research Centre, Faculty of Engineering, Serdang, Selangor (Malaysia); Kityk, I.V. [Czestochowa University of Technology, Faculty of Electrical Engineering, Czestochowa (Poland); Eastern European National University, Physics Department, Lutsk (Ukraine); Parasyuk, O.V. [Eastern European National University, Department of Chemistry, Lutsk (Ukraine); Rudysh, M.Ya.; Shchepanskyi, P.A. [Institute of Physics, J. Dlugosz University, Czestochowa (Poland); Ivan Franko National University of Lviv, Physics Department, Lviv (Ukraine)

    2017-03-15

    Spectral features of absorption were studied for novel AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} solid-state alloys at different temperatures. The synthesized crystals structure parameters are obtained by the X-ray Rietveld refinement method. During increasing temperature from 100 up to 300 K, the energy gap of AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} decreases linearly from 2.05 up to 1.94 eV at a rate 5.7 x 10{sup -4} eV/K. The magnitudes of piezoelectric coefficients are significantly changed and demonstrate substantial anisotropy. At room temperature, these values are equal to 5.2 pm/V (d{sub 11}), 31.5 pm/V (d{sub 22}) and 35.5 pm/V (d{sub 33}). It is crucial that with an increasing temperature the piezoelectric efficiencies are increased. We have explored temperature and laser-induced changes of piezoelectric coefficients. (orig.)

  6. In Situ Integration of Anisotropic SnO₂ Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage.

    Science.gov (United States)

    Yao, Xin; Guo, Guilue; Ma, Xing; Zhao, Yang; Ang, Chung Yen; Luo, Zhong; Nguyen, Kim Truc; Li, Pei-Zhou; Yan, Qingyu; Zhao, Yanli

    2015-12-02

    Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications.

  7. High-field magnetization of UCuGe single crystal

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Mushnikov, N. V.; Gozo, T.; Honda, F.; Sechovský, V.; Prokeš, K.

    346-347, - (2004), s. 132-136 ISSN 0921-4526 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium intermetallics * UCuGe * high fields * magnetic anisotropy * field-induced phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004

  8. Analysis of bias voltage dependent spectral response in Ga0.51In0.49P/Ga0.99In0.01As/Ge triple junction solar cell

    International Nuclear Information System (INIS)

    Sogabe, Tomah; Ogura, Akio; Okada, Yoshitaka

    2014-01-01

    Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR −V bias ) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR −V bias for Ga 0.51 In 0.49 P/Ga 0.99 In 0.01 As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR −V bias measurements. The profile of SR−V bias curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell

  9. GeSn Based Near and Mid Infrared Heterostructure Detectors

    Science.gov (United States)

    2018-02-07

    prestigious journals. 15.  SUBJECT TERMS Plasmonic Enhancement, Metal Nanostructures, CMOS, Photodetectors, Germanium-Tin Diode, IR Focal Plane Array...following features: (1) ease of manufacture in a foundry via a simple epitaxial structure, (2) end- fire coupling into on-chip transparent Ge or Si

  10. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.

    Science.gov (United States)

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-06-17

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.

  11. Gamma-gamma angular correlations in the 71 Ga and 69 Ga nuclei

    International Nuclear Information System (INIS)

    Bairrio Nuevo Junior, A.

    1975-01-01

    The directional correlations of v-transitions in 71 Ga and 69 Ga have been measured from the decay of 71 Z n and 69 Ge respectively using a Ge(Li)-NaI (f pound) gamma spectrometer. Spin assignments to the levels in Ga at 390(1/2), 487 (5/2 ) , 512(3/2 ) , 964(5/2 ) , 1107(7/2 ) , 1494(9/2*) and 2247 KeV(7/2 ), and 69 Ga at 318(1/2) , 574(5/2) , 872(3/2), 1106(5/2 , 3/2 ) , 1336(7/2 ) , and 1923 KeV(7/2) confirm the results of previous studies on these nuclei . The multipole mixing ratios 6(E2/M1) for several γ-transitions in both nuclei have been determined from the present angular correlation data. The results are: 6(121) - -0.2 * 6(142) * 0.04 - - 0.04, 6(386) = -0.003 - 0.014, 6(487) = 0.04 - 0.07, 5(512) - -0.14 - 0.10, 6(620) = 1.3 * j j and, 6(753) - 0.00 - 0.01 and 6(964) = 0.6 + Q 9 for transitions i n 71 Ga and 6(234) much greater than 0.28 - 0.04 or 0.08 - 0.02, 6(587) - -1.1 - 0.08, 6(1051) much greater than 0.0 - 0.10 and 6(1349) - 0.13 - 0.03 for transitions in 69 Ga . The experimental results are discussed in terms of various nuclear models which are applicable for the odd-A nuclei in this mass region. (author)

  12. The tin-rich copper lithium stannides: Li{sub 3}Cu{sub 6}Sn{sub 4} and Li{sub 2}CuSn{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Vienna Univ. (Austria). Inst. of Inorganic Chemistry (Materials Chemisrty); Effenberger, Herta S. [Vienna Univ. (Austria). Inst. of Mineralogy and Crystallography

    2015-05-01

    The Sn rich ternary intermetallic compounds Li{sub 3}Cu{sub 6}Sn{sub 4} (CSD-427097) and Li{sub 2}CuSn{sub 2} (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li{sub 3}Cu{sub 6}Sn{sub 4} crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe{sub 6}Ge{sub 6} (a = 5.095(2) Aa, c = 9.524(3) Aa; wR{sub 2} = 0.059; 239 unique F{sup 2}-values, 17 free variables). Li{sub 3}Cu{sub 6}Sn{sub 4} is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li{sub 2}CuSn{sub 2} (space group I4{sub 1}/amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR{sub 2} = 0.033; 213 unique F{sup 2}-values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  13. Theoretical insights into the minority carrier lifetime of doped Si—A computational study

    Science.gov (United States)

    Iyakutti, K.; Lavanya, R.; Rajeswarapalanichamy, R.; Mathan Kumar, E.; Kawazoe, Y.

    2018-04-01

    Using density functional theory, we have analyzed the ways and means of improving the minority carrier lifetime (MCL) by calculating the band structure dependent quantities contributing to the MCL. We have computationally modeled silicon doped with different elements like B, C, N, O, P, Ti, Fe, Ga, Ge, As, In, Sn, Sb, and Pt and looked at the effect of doping on MCL. In co-doping, the systems Si-B-Ga, Si-B-Ge, Si-B-2Ge, Si-B-Pt, Si-Ga-Ge, Si-Ga-2Ge, and Si-Ga-Pt are investigated. From our calculation, it is found that by doping and co-doping of Si with suitable elements having "s" and "p" electrons, there is a decrease in the recombination activity. The predicted effective minority carrier lifetime indicates the possibility of significant improvements. Based on the above studies, it is now maybe possible, with suitable choice of dopant and co-dopant material, to arrive at part of a standard production process for solar grade Si material.

  14. Energy dispersive X-ray diffraction at high pressure in CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Baublitz, M.A. Jr.

    1981-01-01

    Energy dispersive X-ray techniques were used with a diamond anvil cell in the Cornell High Energy Synchrotron Source (CHESS). It was shown that quantitative relative intensity measurement could be made when the pressure was hydrostatic and the crystals were relatively defect free. The crystal structures of the high pressure polymorphs of Ge, GaAs, GaP, and AlSb were studied. Ge exhibits the β-tetragonal structure as found by Jamieson; however, the transition pressure is 80 +- 5 kbars. GaAs exhibits an orthorhombic structure above 172 +- 7 kbars, GaP the β-Sn structure above 215 +- 8 kbars, and AlSb an orthorhombic structure above 77 +- 5 kbars. (Auth.)

  15. Properties and Microstructures of Sn-Bi-X Lead-Free Solders

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-01-01

    Full Text Available The Sn-Bi base lead-free solders are proposed as one of the most popular alloys due to the low melting temperature (eutectic point: 139°C and low cost. However, they are not widely used because of the lower wettability, fatigue resistance, and elongation compared to traditional Sn-Pb solders. So the alloying is considered as an effective way to improve the properties of Sn-Bi solders with the addition of elements (Al, Cu, Zn, Ga, Ag, In, Sb, and rare earth and nanoparticles. In this paper, the development of Sn-Bi lead-free solders bearing elements and nanoparticles was reviewed. The variation of wettability, melting characteristic, electromigration, mechanical properties, microstructures, intermetallic compounds reaction, and creep behaviors was analyzed systematically, which can provide a reference for investigation of Sn-Bi base solders.

  16. Development of methods for the purification of 67Ga and 68Ga for biomolecules labeling

    International Nuclear Information System (INIS)

    Costa, Renata Ferreira

    2012-01-01

    For more than fifty years, the long-lived 68 Ge/ 68 Ga generators have been in development, obtaining 68 Ga without the need of having in house cyclotron, which is a considerable convenience for PET centers that have no nearby cyclotrons. 68 Ga decays 89% by positron emission and low photon emission (1077 keV) and the physical half life of 67.7 minutes is compatible with the pharmacokinetics of low biomolecular weight substances like peptides and antibody fragments. Moreover, its established metallic chemistry allows it to be stably bound to the carrier peptide sequence via a suitable bifunctional chelator, such as DOTA. All these reasons together with the technology of PET/CT allowed advances in molecular imaging, in particular in the diagnosis of neuroendocrine diseases. However, the eluate from the commercial 68 Ge/ 68 Ga generators still contains high levels of long lived 68 Ge, besides other metallic impurities, which competes with 68 Ga with a consequent reduction of the labeling yield of biomolecules, such as Fe 3+ and Zn 2+ . Thus, the lower the amount of impurities in the eluate, the competition between the radiolabeled and unlabeled peptide by the receptor will be smaller and the quality of imaging will be better, a subsequent purification step is needed after the generator elution. The aim of this work is to evaluate different purifications methods of 68 Ga to label biomolecules, with emphasis on the study of the chemical impurities contained in the eluate and to develop a new purification method. Several purification methods were studied. Many cationic resin were tested simulating the commercial process. 68 Ga is adsorbed in cationic resin, which is not commercial available and eluted in acid/acetone solution. The use of minor particles of cationic resin AG50W-X4 (200-400 mesh) showed the best results. An innovate method was the extraction chromatography, which is based on the absorption of diisopropyl ether in XAD 16 and 68 Ga recovery in deionized

  17. Growth, structure, and properties of GaAs-based (GaAs){sub 1–x–y}(Ge{sub 2}){sub x}(ZnSe){sub y} epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Zaynabidinov, S. Z., E-mail: prof-sirojiddin@mail.ru [Babur Andizhan State University (Uzbekistan); Saidov, A. S.; Leiderman, A. Yu. [Starodubtsev Physical–Technical Institute (Uzbekistan); Kalanov, M. U. [Academy of Sciences of the Republic of Uzbekistan, Institute of Nuclear Physics (Uzbekistan); Usmonov, Sh. N. [Starodubtsev Physical–Technical Institute (Uzbekistan); Rustamova, V. M. [Academy of Sciences of the Republic of Uzbekistan, Institute of Nuclear Physics (Uzbekistan); Boboev, A. Y. [Babur Andizhan State University (Uzbekistan)

    2016-01-15

    The possibility of growing the (GaAs){sub 1–x–y}(Ge{sub 2}){sub x}(ZnSe){sub y} alloy on GaAs substrates by the method of liquid-phase epitaxy from a tin solution–melt is shown. X-ray diffraction shows that the grown film is single-crystal with the (100) orientation and has the sphalerite structure. The crystal-lattice parameter of the film is a{sub f} = 0.56697 nm. The features of the spectral dependence of the photosensitivity are caused by the formation of various complexes of charged components. It is established that the I–V characteristic of such structures is described by the exponential dependence I = I{sub 0}exp(qV/ckT) at low voltages (no higher than 0.4 V) and by the power dependence J ∼ V{sup α}, where the exponent α varies with increasing voltage at high voltages (V > 0.5 V). The results are treated within the framework of the theory of the drift mechanism of current transfer taking into account the possibility of the exchange of free carriers within the recombination complex.

  18. Minority-carrier injection-enhanced annealing of radiation damage to InGaP solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Okuda, T.; Taylor, S.J.

    1997-01-01

    The observation of minority-carrier injection-enhanced annealing of radiation-induced defects in InGaP is reported. 1-MeV electron irradiation results demonstrate superior radiation-resistance of InGa 0.5 P 0.5 solar cells compared to GaAs-on-Ge cells. Moreover, minority-carrier injection under forward bias conditions is shown to enhance defect annealing in InGaP and to result in the recovery of InGaP solar cell properties. These results suggest that the radiation-resistance of InGaP-based devices such as InGaP/GaAs(/Ge) multijunction solar cells and InGaP(As) light-emitting devices is further improved under minority-carrier injection condition. copyright 1997 American Institute of Physics

  19. The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze

    Czech Academy of Sciences Publication Activity Database

    Staněk, David; Neugebauer, K. M.

    2006-01-01

    Roč. 115, č. 5 (2006), s. 343-354 ISSN 0009-5915 R&D Projects: GA ČR(CZ) GA301/05/0601; GA MŠk(CZ) 1K05009; GA MŠk(CZ) LC535 Grant - others:GA-(DE) Max Planck Society; Deutsche Forschung Gemeinschaft(DE) NE909/1-1 Institutional research plan: CEZ:AV0Z50110509 Keywords : Cajal body * spliceosomal snRNP Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.065, year: 2006

  20. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4}-based thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Varley, J. B.; Lordi, V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); He, X.; Rockett, A. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-01-14

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to strongly favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.

  1. Ge-on-Si : Single-Crystal Selective Epitaxial Growth in a CVD Reactor

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.B.; Nanver, L.K.

    2012-01-01

    A standard Si/SiGe ASM CVD reactor that was recently modified for merging GaAs and Si epitaxial growth in one system is utilized to achieve intrinsic and doped epitaxial Ge-on-Si with low threading dislocation and defect densities. For this purpose, the system is equipped with 2% diluted GeH4 as the

  2. Organ biodistribution of Germanium-68 in rat in the presence and absence of [68Ga]Ga-DOTA-TOC for the extrapolation to the human organ and whole-body radiation dosimetry

    Science.gov (United States)

    Velikyan, Irina; Antoni, Gunnar; Sörensen, Jens; Estrada, Sergio

    2013-01-01

    Positron Emission Tomography (PET) and in particular gallium-68 (68Ga) applications are growing exponentially worldwide contributing to the expansion of nuclear medicine and personalized management of patients. The significance of 68Ga utility is reflected in the implementation of European Pharmacopoeia monographs. However, there is one crucial point in the monographs that might limit the use of the generators and consequently expansion of 68Ga applications and that is the limit of 0.001% of Germanium-68 (68Ge(IV)) radioactivity content in a radiopharmaceutical. We have investigated the organ distribution of 68Ge(IV) in rat and estimated human dosimetry parameters in order to provide experimental evidence for the determination and justification of the 68Ge(IV) limit. Male and female rats were injected in the tail vein with formulated [68Ge]GeCl4 in the absence or presence of [68Ga]Ga-DOTA-TOC. The tissue radioactivity distribution data was extrapolated for the estimation of human organ equivalent doses and total effective dose using Organ Level Internal Dose Assessment Code software (OLINDA/EXM). 68Ge(IV) was evenly distributed among the rat organs and fast renal excretion prevailed. Human organ equivalent dose and total effective dose estimates indicated that the kidneys were the dose-limiting organs (185±54 μSv/MBq for female and 171±38 μSv/MBq for male) and the total effective dose was 15.5±0.1 and 10.7±1.2 μSv/MBq, respectively for female and male. The results of this dosimetry study conclude that the 68Ge(IV) limit currently recommended by monographs could be increased considerably (>100 times) without exposing the patient to harm given the small absorbed doses to normal organs and fast excretion. PMID:23526484

  3. Antiproton-nucleus interactions at 5 to 9 GeV/c

    International Nuclear Information System (INIS)

    Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chan, C.S.; Clement, J.M.; Eiseman, S.E.; Empl, A.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Hallman, T.J.; Kramer, M.A.; Kruk, J.; Lindenbaum, S.J.; Longacre, R.S.; Love, W.A.; Madansky, L.; Morris, W.; Mutchler, G.S.; Peaslee, D.C.; Platner, E.D.; Saulys, A.C.; Toshkov, S.

    1993-01-01

    Antiproton beams of 5, 7 and 9 GeV/c were used to interact with C, Al, Cu, Sn and Pb nuclear targets. Charged particle multiplicity distributions, strange particle production cross sections and rapidity distributions were measured. The charged particle multiplicities are reported in this paper. (orig.)

  4. Ultra Fast Timing Measurements at $^{78}$Ni and $^{132}$Sn

    CERN Multimedia

    2002-01-01

    We propose to measure level lifetimes in the exotic nuclei of $^{81}$Ga and $^{80}$Ga in the vicinity of $^{78}$Ni and of $^{135}$Sb and $^{134}$Sb above $^{132}$Sn by the time-delayed technique. These are relatively simple nuclear systems with a few particles and/or holes outside of the doubly-magic core thus can be treated rather precisely within the shell model. The anticipated new structure information on these nuclei, and in particular the lifetime results will put constraints on the model parameters and will serve to verify their predictions. The selected nuclei are some of the most exotic ones just above $^{78}$Ni or $^{132}$Sn, where the transition rates can be studied at present. Of the strongest interest is the nucleus of $^{81}$Ga, which has only 3 valence protons outside of $^{78}$Ni with the lowest proton orbits being $p_{3/2}$ and $f_{5/2}$. The Ml transition between these states, although allowed by the selection rules, should be $\\textit{l}$-forbidden thus very slow. This should give rise to a...

  5. In-beam studies of {sup 98}Cd and {sup 102}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Lipoglavsek, M. [Uppsala Univ. (Sweden)]|[J. Stefan Institute, Ljubljana (Slovenia); Gorska, M.; Schubart, R. [GSI, Darmstadt (Germany)] [and others

    1996-12-31

    For the first time excited states of the neutron deficient nuclei {sup 98}Cd and {sup 102}Sn were identified using in-beam spectroscopy following fusion evaporation reactions. Half lives of long lived isomeric states in both nuclei were also measured. Due to very low cross sections for producing {sup 98}Cd and {sup 102}Sn with stable beams and targets, a special detector setup utilizing NORDBALL ancillary detectors and a recoil catcher device was used. High {gamma}-ray detection efficiency was achieved with two EUROBALL Ge cluster detectors.

  6. Development of methods for the purification of {sup 67}Ga and {sup 68}Ga for biomolecules labeling; Desenvolvimento de metodos de purificacao do {sup 67}Ga e {sup 68}Ga para a marcacao de biomoleculas

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Renata Ferreira

    2012-07-01

    For more than fifty years, the long-lived {sup 68}Ge/{sup 68}Ga generators have been in development, obtaining {sup 68}Ga without the need of having in house cyclotron, which is a considerable convenience for PET centers that have no nearby cyclotrons. {sup 68}Ga decays 89% by positron emission and low photon emission (1077 keV) and the physical half life of 67.7 minutes is compatible with the pharmacokinetics of low biomolecular weight substances like peptides and antibody fragments. Moreover, its established metallic chemistry allows it to be stably bound to the carrier peptide sequence via a suitable bifunctional chelator, such as DOTA. All these reasons together with the technology of PET/CT allowed advances in molecular imaging, in particular in the diagnosis of neuroendocrine diseases. However, the eluate from the commercial {sup 68}Ge/{sup 68}Ga generators still contains high levels of long lived {sup 68}Ge, besides other metallic impurities, which competes with {sup 68}Ga with a consequent reduction of the labeling yield of biomolecules, such as Fe{sup 3+} and Zn{sup 2+}. Thus, the lower the amount of impurities in the eluate, the competition between the radiolabeled and unlabeled peptide by the receptor will be smaller and the quality of imaging will be better, a subsequent purification step is needed after the generator elution. The aim of this work is to evaluate different purifications methods of {sup 68}Ga to label biomolecules, with emphasis on the study of the chemical impurities contained in the eluate and to develop a new purification method. Several purification methods were studied. Many cationic resin were tested simulating the commercial process. {sup 68}Ga is adsorbed in cationic resin, which is not commercial available and eluted in acid/acetone solution. The use of minor particles of cationic resin AG50W-X4 (200-400 mesh) showed the best results. An innovate method was the extraction chromatography, which is based on the absorption of

  7. GeSn/Si Avalanche Photodetectors on Si substrates

    Science.gov (United States)

    2016-09-16

    National Academy Member Shui-Qing Yu 0.00 Hameed Naseem 0.00 0.00 2 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of...second step is a high temperature ( HT ) growth above 500-650 °C. The two-step (LT:HT) growth method adopted for the growth of Ge and the role of pressure...a) (b) Fig. 16. (a) Raman spectroscopy measurements of the two-step (LT:HT) at 400:600 °C and the single-step ( HT ) at 600 °C growth shows

  8. Influence of Group-III-metal and Ag adsorption on the Ge growth on Si(111) and its vicinal surface

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz

    2011-12-15

    In the framework of this thesis the surfactant-mediated heteroepitaxial growth of Ge on different Si surfaces has been investigated by means of low-energy electron microscopy, low-energy electron diffraction, spot-profile analysing low-energy electron diffraction, X-ray standing waves, grazing-incidence X-ray diffraction, x-ray photoemission electron microscopy, X-ray photoemission spectroscopy, scanning tunneling microscopy, scanning electron microscopy, transmission electron microscopy, and density functional theory calculations. As surfactants gallium, indium, and silver were used. The adsorption of Ga or In on the intrinsically faceted Si(112) surface leads to a smoothing of the surface and the formation of (N x 1) reconstructions, where a mixture of building blocks of different sizes is always present. For both adsorbates the overall periodicity on the surface is strongly dependent on the deposition temperature and the coverage. For the experimental conditions chosen here, the periodicities are in the range of 5.2{<=}N{<=}6.5 and 3.4{<=}N{<=}3.7 for Ga and In, respectively. The (N x 1) unit cells of Ga/Si(112) and In/Si(112) are found to consist of adsorbate atoms on terrace and step-edge sites, forming two atomic chains along the [110] direction. In the Ga-induced structures two Ga-vacancies per unit cell (one in the terrace and one in the step-edge site) are found and a continuous vacancy line on the surface is formed. In the In/Si(112) structure only one vacancy per unit cell in the step-edge site exists and, thus, a continuous adsorbate chain on the terrace sites is present. The adsorption of Ga or In on Si(112) strongly influences the subsequent Ge growth. Ge deposition on the Ga-terminated Si(112) surface leads to the formation of Ge nanowires, which are elongated along the Ga chains and reach lengths of up to 2000 nm for a growth temperature of 600 C. On In-covered Si(112), both small dash-like Ge islands and triangularly shaped islands are found, where

  9. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    Directory of Open Access Journals (Sweden)

    Viktor Hlukhyy

    2010-12-01

    Full Text Available The title compound, terbium hexaniobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an intergrowth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodecahedron 6/mmm; Nb (distorted icosahedron 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15 6mm and overline{6}m2; Sn (distorted icosahedron overline{6}m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels.

  10. Fast-neutron-induced potential background near the Q value of neutrinoless double-β decay of 76Ge

    Science.gov (United States)

    Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan

    2016-01-01

    The 76Ge (n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.89-keV state of 76Ge , which decays by the emission of a 2040.70-keV γ ray. Using high-purity germanium detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrinoless double-β decay of 76Ge with its Q value of 2039.0 keV. At 20-MeV neutron energy the production cross section of the 2040.70-keV γ ray is approximately 0.1 mb.

  11. Peculiarities of component interaction in {l_brace}Gd, Er{r_brace}-V-Sn Ternary systems at 870 K and crystal structure of RV{sub 6}Sn{sub 6} stannides

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Stadnyk, Yu. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Demchenko, P.; Stadnyshyn, M.; Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine)

    2011-09-08

    Highlights: > {l_brace}Gd, Er{r_brace}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV{sub 6}Sn{sub 6}. > Isostructural RV{sub 6}Sn{sub 6} compounds were also found with Y, Dy, Ho, Tm, and Lu. > The crystal structure of RV{sub 6}Sn{sub 6} compounds was determined by powder diffraction method. > Structural analysis showed that RV{sub 6}Sn{sub 6} compounds (R = Gd, Dy-Tm, Lu) are disordered; YV{sub 6}Sn{sub 6} is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV{sub 6}Sn{sub 6} (SmMn{sub 6}Sn{sub 6}-type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn{sub 6}Sn{sub 6}-type were also found with Dy, Ho, Tm, and Lu, while YV{sub 6}Sn{sub 6} compound crystallizes in HfFe{sub 6}Ge{sub 6} structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  12. Effect of B, N, Ge, Sn, K doping on electronic-transport properties of (5, 0) zigzag carbon nanotube

    Science.gov (United States)

    Kamalian, Monir; Seyed Jalili, Yousef; Abbasi, Afshin

    2018-04-01

    In this paper the effect of impurity on the electronic properties and quantum conductance of zigzag (5, 0) carbon nanotube have been studied by using the Density Functional Theory (DFT) combined with Non-Equilibrium Green’s Function (NEGF) formalism with TranSIESTA software. The effect of Boron (B), Nitrogen (N), Germanium (Ge), Tin (Sn) and Potassium (K) impurities on the CNT conduction behavior and physical characteristics, like density of states (DOS), band structure, transmission coefficients and quantum conductance was considered and discussed simultaneously. The current‑voltage (I‑V) curves of all the proposed models were studied for comparative study under low-bias conditions. The distinct changes in conductance reported as the positions, number and type of dopants was varied in central region of the CNT between two electrodes at different bias voltages. This suggested conductance enhancement mechanism for the charge transport in the doped CNT at different positions is important for the design of CNT based nanoelectronic devices. The results show that Germanium, Tin and Potassium dopant atoms has increased the conductance of the model manifold than other doping atoms furthermore 10 Boron and 10 Nitrogen dopant atoms showed the amazing property of Negative Differential Resistance (NDR).

  13. Structural and optical features of InGaAs quantum dots grown on Si(001) substrates

    CERN Document Server

    Vdovin, V I; Rzaev, M M; Burbaev, T M

    2002-01-01

    A multilayer GaAs/SiGe/Si heterostructure with InGaAs quantum dots (QDs) embedded in a GaAs layer was grown by molecular beam epitaxy (MBE) on a Si(001) substrate. A step-graded Si sub 1 sub - sub x Ge sub x (0 <= x <= 1) buffer layer and a GaAs layer with In sub y Ga sub 1 sub sub - sub y As (y approx 0.5) QDs were deposited consecutively in two different MBE systems. The heterostructure exhibits intense photoluminescence in the region of 1.3 mu m at room temperature. Perfect crystal InGaAs islands with height less than 10 nm are the sources of this radiation.

  14. A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes

    Science.gov (United States)

    Parlak, Cemal; Alver, Özgür

    2017-06-01

    Amantadine is a well-known drug for its treatment effect on Parkinson's disease and influenza infection or hepatitis. Heteroatom doped fullerenes have been extensively examined for their possible usage in sensor technology and medical applications as drug delivery vehicles. In this research, pristine and B, Al, Si, Ga, Ge doped C60 fullerenes and their interaction with amantadine drug molecule were investigated based on the density functional theory calculations. Findings suggest that doped C60 fullerenes might be used to detect the presence of amantadine and they might be used as drug delivery vehicles because of their moderately high adsorption energies with amantadine.

  15. Magnetic properties and Hall effect of single-crystalline YMn6Sn6

    International Nuclear Information System (INIS)

    Uhlirova, K.; Sechovsky, V.; Boer, F.R. de; Yoshii, S.; Yamamoto, T.; Hagiwara, M.; Lefevre, C.; Venturini, G.

    2007-01-01

    Magnetization behavior and Hall resistivity of YMn 6 Sn 6 , which crystallizes in the hexagonal HfFe 6 Ge 6 -type of structure, have been investigated on single crystals at various temperatures in the ordered magnetic state. The field dependence of the Hall resistivity shows anomalies, which are related to the field-induced spin reorientations occurring in YMn 6 Sn 6 . It is also found that the Hall resistivity cannot simply be described by the anomalous contribution proportional to the magnetization, but that an additional field-dependent contribution is present

  16. Decay spectroscopy with EURICA in the region of {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Faestermann, Thomas; Gernhaeuser, Roman; Lubos, Daniel; Steiger, Konrad [Technische Universitaet Muenchen (Germany); Collaboration: EURICA RIBF09-Collaboration

    2015-07-01

    The most recent experiment on properties of nuclei in the region of {sup 100}Sn has been performed at the radioisotope beam factory (RIBF) at the RIKEN Nishina Center. For the decay spectroscopy, we used the detector arrays EURICA and WASABI which consist of Ge- and LaBr- as well as Si-detectors, respectively. The experiment has revealed new nuclei along the N=Z-2 line and an increase of statistics by a factor of ∝10 for N=Z-1 nuclei and {sup 100}Sn compared to previous experiments. The presentation gives an overview on the dedicated high efficiency setup and the experimental program. A status of the on-going analysis with regard to {sup 100}Sn and selected results for several nuclei and isomers in this region will be discussed.

  17. Studies of the chemical behavior of carrier-free 68Ge. Pt. 1

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Kahn, M.; Grant, P.M.; O'Brien, H.A. Jr.

    1981-01-01

    The diagnostic utilization of the 68 Ge- 68 Ga system in nuclear medicine stimulated the development of a rapid and efficient method for the purification of carrier-free 68 Ge. A standard procedure for the separation of macroscopic quantities for germanium from numerous other elements involves the distillation of Ge(IV) from HCl solution. The applicability of this method for the purification of carrier-free 68 Ge was studied, and it was found that 68 Ge quantitatively and conveniently distills from azetropic HCl. The distillation of 68 Ge from LiCl-HClO 4 , HCl-LiCl, and HCl-HClO 4 systems was also investigated. (orig.) [de

  18. Synthesis and characterization of BaTi1−xSnxO3–0.5 mol%GeO2

    International Nuclear Information System (INIS)

    Bucur, Raul Alin; Bucur, Alexandra Ioana; Novaconi, Stefan; Nicoara, Irina

    2012-01-01

    Highlights: ► BaTi 1−x Sn x O 3 –0.5 mol%GeO 2 (x = 0, 0.1, 0.3, 0.5) ceramics were prepared at 1190 °C. ► GeO 2 improves crystallization and densification. ► Anomalies are noted for the rhombohedral–orthorhombic transition of BT–0.5Ge. ► For x = 0.3 and 0.5, ε′ r exhibit nearly constant variation between 200 and 400 K. - Abstract: Microcrystalline BaTi 1−x Sn x O 3 –0.5 mol%GeO 2 x = 0, 0.1, 0.3, 0.5 (BTSx–0.5Ge) and BaTiO 3 (BT) ceramics (1–0.5 μm) were prepared by a conventional solid-state reaction method. The crystalline structure of the samples was examined using XRD, the microstructure was analyzed by means of electron microscope and the density was measured by the Archimede’s method. The sintered ceramic disks have a tetragonal symmetry for BT, pseudo cubic for BTS1–0.5Ge and cubic symmetry for the other studied materials, with a gradual increase of unit cell dimensions. Small addition of GeO 2 can improve the density of BT ceramics: 97.9% for BT–0.5Ge, and 96.21% for pure BT. The highest degree of densification in the case of tin doping is achieved for BTS1–0.5Ge (96.93%). The formation of a liquid phase can lead to an anomalous grain growth, and in the case of BT–0.5Ge the grains are completely surrounded by a frozen eutectic melt. For the dielectric constant, while increasing the Sn concentration, the T C gradually shifts towards lower temperatures, and the peak of this transition becomes broader. The lowering of T C is mostly due to the concentration of tin ions and in a much delicate way to Ge ions. Anomalies are noticed for the orthorhombic transition, where the permittivity is higher than the same transition of the matrix (BT), with a shift towards higher temperatures. The BTS3–0.5Ge and BTS5–0.5Ge are the most stable compositions in terms of dielectric behavior, since in the temperature range 200–400 K, ε′ r is almost constant. Therefore, these compositions can be used for devices that operate over a

  19. Dipole Resonances of 76Ge

    Science.gov (United States)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  20. Experimental Study of the Sb-Sn-Zn Alloy System

    Czech Academy of Sciences Publication Activity Database

    Zobač, O.; Sopoušek, J.; Buršík, Jiří; Zemanová, Adéla; Roupcová, Pavla

    2014-01-01

    Roč. 45, č. 3 (2014), s. 1181-1188 ISSN 1073-5623 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Sb-Sn-Zn system * thermal analysis * CALPHAD method Subject RIV: BJ - Thermodynamics Impact factor: 1.730, year: 2014

  1. Dimorphism in La{sub 5}Ge{sub 3} and Ce{sub 5}Ge{sub 3}? How exploratory syntheses led to surprising new finds in the La-Ge and Ce-Ge binary phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Nian-Tzu; Bobev, Svilen [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2014-04-15

    Reported are the synthesis, the crystal structures, and the electronic structures of two new tetragonal phases, La{sub 5}Ge{sub 3} and Ce{sub 5}Ge{sub 3}. Both title compounds crystallize in the Pu{sub 5}Rh{sub 3} (P4/ncc) structure type, which has close structural relationship with the W{sub 5}Si{sub 3} (I4/mcm) structure type. The synthetic results, supported by thermal analysis suggest that this tetragonal phase is only stable at relatively low temperature and it transforms to the hexagonal form (Mn{sub 5}Si{sub 3} structure type, P6{sub 3}/mcm) at above 850 C. The structural relationship between La{sub 5}Ge{sub 3} (Pu{sub 5}Rh{sub 3} type) and La{sub 5}Sn{sub 3} (W{sub 5}Si{sub 3} type) is discussed as well. Temperature dependent DC magnetization and resistivity measurements indicate that the tetragonal phase La{sub 5}Ge{sub 3} exhibits Pauli-like paramagnetism and is a good metallic conductor. For the tetragonal phase Ce{sub 5}Ge{sub 3}, the magnetic behavior obeys the Curie-Weiss law in the high-temperature regime, while it deviates from the Curie-Weiss law at low temperature. No long-range magnetic ordering was observed down to 5 K, although short-range correlations can be inferred below ca. 50 K. The resistivity measurements of Ce{sub 5}Ge{sub 3} also show metallic-like temperature dependence, although the low-temperature behavior resembling a T{sup 2} law could signify anomalous electron-scattering (e.g., Kondo-like effect). The electronic structures of multiple phases with the same nominal compositions, computed by the TB-LMTO-ASA method, are compared and discussed. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Analysis of bias voltage dependent spectral response in Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Sogabe, Tomah, E-mail: Sogabe@mbe.rcast.u-tokyo.ac.jp; Ogura, Akio; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8504 (Japan)

    2014-02-21

    Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR −V{sub bias}) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR −V{sub bias} for Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR −V{sub bias} measurements. The profile of SR−V{sub bias} curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell.

  3. Type II band alignment in Ge1-x-ySixSny/Ge1-α-βSiαSnβ heterojunctions

    Science.gov (United States)

    Dey, Swagata; Mukhopadhyay, Bratati; Sen, Gopa; Basu, P. K.

    2018-02-01

    We have examined type II band alignment in Ge1-x-ySixSny/Ge1-α-βSiαSβ heterojunctions grown on virtual substrates in Si platform. It is found that, for different values of x, y, α and β, direct band gap type II band line up can be achieved for both tensile and compressive strains. The calculated band gap energy corresponds to the mid infrared to far infrared regions in the electromagnetic spectrum.

  4. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    Science.gov (United States)

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  5. Measurement of the half-life of 68Ga

    International Nuclear Information System (INIS)

    García-Toraño, Eduardo; Peyrés Medina, Virginia; Romero, Eduardo; Roteta, Miguel

    2014-01-01

    The half-life of the positron-emitter 68 Ga has been measured by following the decay rate with two systems based on ionization chamber and Ge detectors. The decay rate was measured for periods of time up to 10 half-lives. The combination of the 6 results obtained with both systems gives a value of T 1/2 =67.845(18) min, in good agreement with recommended data and with an uncertainty lower than any other previously reported value. - Highlights: • The half-life of the positron-emitter radionuclide 68 Ga was measured. • Two measurement setups (ionization chamber and Ge detector) were used. • Results agree with evaluated data but exhibit lower uncertainty

  6. Influence of Support Material of PtSnNiGa/C Electrocatalysts for Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Deise M Santos

    2017-07-01

    Full Text Available Ethanol is a promising alternative source for fuel cells due to its low toxicity and high power density. However, the cleavage of the C-C bond, CO poisoning, and low electrocatalyst stability are still considered crucial issues. To overcome this limitation, binary, ternary and quaternary electrocatalysts have been investigated along with new carbon supports. This paper presents a physicochemical and electrochemical investigation of quaternary PtSnNiGa/C electrocatalysts supported on Vulcan XC72 and Printex-L6 carbons and also a carbon produced by natural gas pyrolysis in an Argon plasma torch (Black Plasma. The electrochemical characterization was performed through cyclic voltammetry, chronoamperometry, chronopotentiometry and electrochemical impedance spectroscopy in the presence of ethanol 1.0 mol L-1. Energy dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy and transmission electron microscopy were also carried out for physicochemical characterization. The electrochemical results show that the quaternary electrocatalysts supported on Vulcan XC72 and Printex-L6 carbons display a high current normalized by Pt mass and are more stable than the electrocatalyst supported on Black Plasma. In addition, the quaternary electrocatalysts with reduced Pt loading display better electrocatalytic activity towards the EOR compared to high Pt loading electrocatalysts. DOI: http://dx.doi.org/10.17807/orbital.v9i3.949 

  7. Novel barium triel/tetrelides with the Pu3Pd5 structure type

    International Nuclear Information System (INIS)

    Duerr, Ines; Schwarz, Michael; Wendorff, Marco; Roehr, Caroline

    2010-01-01

    A series of ternary barium triel(M III )/tetrel(M IV )-ides Ba 3 M x III M 5-x IV (M III =Ga,In;M IV =Si,Ge,Sn;x=0-0.7) has been prepared from melts of the elements. They all crystallize with the Pu 3 Pd 5 type structure (orthorhombic, space group Cmcm) exhibiting isolated M 5 clusters of slightly distorted nido shape (square pyramids). For the silicides, where the binary border compound Ba 3 Si 5 does not exist, the Pu 3 Pd 5 type is stabilized by substituting 0.7 Si atoms per formula unit against Ga (Ba 3 Ga 0.7 Si 4.3 :a=1024.82(1),b=856.58(1),c=1024.18(1) pm, R1=0.0220) or by a very small substitution of In (Ba 3 In 0.1 Si 4.9 :a=1017.8(2),b=852.5(2),c=1020.1(3) pm, R1=0.0406). A comparable situation is found for the corresponding germanides, where 0.7 atoms of In (Ba 3 In 0.7 Ge 4.3 :a=1051.3(2),b=864.05(14),c=1054.7(3) pm, R1=0.0248) or Ga (Ba 3 Ga x Ge 5-x :a=1035.1(1),b=861.5(1),c=1036.8(1) pm, R1=0.0148) are necessary to stabilize a Ge-rich compound of this structure type. For the stannides, the situation is somewhat different, because the binary phase Ba 3 Sn 5 itself forms the Pu 3 Pd 5 type. In this case, the structure type remains stable up to a Ga content of 0.5 Ga/f.u. (Ba 3 Ga 0.5 Sn 4.5 :a=1100.41(14),b=896.19(11),c=1111.82(14) pm, R1=0.0169) and also with a substantial In content (Ba 3 In x Sn 5-x :x∼0.9(1);a=1110.5(2),b=900.0(2),c=1120.7(2) pm, R1=0.0262). As the five-atom nido cluster requires only 24 valence electrons per formula unit according to Zintl and Wade, an excess of electrons would be assumed for the binary tetrelides such as Ba 3 Sn 5 (26 v.e./f.u.) that even the maximal amount of triel substitution 0.7 M III /f.u. attained in the title compounds cannot sufficiently compensate for. An assessment of the geometric influence of varied valence electron counts however, coupled with a detailed analysis of the calculated electron densities and the partial densities of states in the energy region above the pseudo band gap at 24 v

  8. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    International Nuclear Information System (INIS)

    Schulze, J.; Oehme, M.; Werner, J.

    2012-01-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that – depending on the chosen operating point and device design – the diode serves as a broadband high speed photo detector, Franz–Keldysh effect modulator or light emitting diode.

  9. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, J., E-mail: schulze@iht.uni-stuttgart.de; Oehme, M.; Werner, J.

    2012-02-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that - depending on the chosen operating point and device design - the diode serves as a broadband high speed photo detector, Franz-Keldysh effect modulator or light emitting diode.

  10. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    OpenAIRE

    Sun, Lei; Zhang, Liang

    2015-01-01

    SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth) and nanoparti...

  11. Nuclear structure near the doubly-magic 100Sn

    International Nuclear Information System (INIS)

    Grawe, H.; Hu, Z.; Roeckl, E.; Gorska, M.; Nyberg, J.; Gadea, A.; Angelis, G. de

    1998-09-01

    The single particle (hole) energies in 100 Sn, as extrapolated by a shell model analysis of the neighbouring nuclei, show a remarkable similarity to those in 36 Ni, one major shell lower. This is borne out in nearly identical I π =2 + excitation energies, implying E(2 + )≅3 MeV in 100 Sn, and a large neutron effective E2 charge ε≥1.6ε. In contrast a small proton polarisation charge δε≤0.3ε is found, pointing to a large isovector charge. Mean field predictions for single particle energies show substantial deviations from the experimental extrapolation. From the experimental two-proton hole spectrum in 98 Cd an improved empirical interaction is extracted for the π(p 1/2 ,g 9/2 ) model space yielding a good description of the N=50 isotones 95 Rh to 98 Cd. In 104 Sn, for the first time in this region, strong E3 transitions with B(E3)≥17 W.u. were identified, indicating E(3 - )≅3 MeV in 100 Sn. New experimental devices, as the Ge-cluster cube and total absorption spectrometers, applied in a pioneering experiment to the β + /EC decay of 97 Ag, have led to a consistent picture of the Gamow-Teller quenching around 100 Sn. The experimental results are discussed in the framework of various shell model approaches by using both empirical and realistic interactions. (orig.)

  12. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  13. Core-dependent and ligand-dependent relativistic corrections to the nuclear magnetic shieldings in MH4-n Y n (n = 0-4; M = Si, Ge, Sn, and Y = H, F, Cl, Br, I) model compounds.

    Science.gov (United States)

    Maldonado, Alejandro F; Aucar, Gustavo A; Melo, Juan I

    2014-09-01

    The nuclear magnetic shieldings of Si, Ge, and Sn in MH(4-n) Y(n) (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1-4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to calculate those shieldings and learn whether including only a few of the leading relativistic correction terms is sufficient to be able to quantitatively reproduce the full relativistic value. It was observed that the nuclear magnetic shieldings change as the number of heavy halogen substituents and their weights vary, and the pattern of σ(M) generally does not exhibit the normal halogen dependence (NHD) behavior that can be seen in similar molecular systems containing carbon atoms. We also analyzed each relativistic correction afforded by the LRESC method and split them in two: core-dependent and ligand-dependent contributions; we then looked for the electronic mechanisms involved in the different relativistic effects and in the total relativistic value. Based on this analysis, we were able to study the electronic mechanism involved in a recently proposed relativistic effect, the "heavy atom effect on vicinal heavy atom" (HAVHA), in more detail. We found that the main electronic mechanism is the spin-orbit or σ p (T(3)) correction, although other corrections such as σ p (S(1)) and σ p (S(3)) are also important. Finally, we analyzed proton magnetic shieldings and found that, for molecules containing Sn as the central atom, σ(H) decreases as the number of heavy halogen substituents (of the same type: either F, Cl, or Br) increases, albeit at different rates for different halogens. σ(H) only increase as the number of halogen substituents increases if the halogen is iodine.

  14. Impact of catalyst reduction mode on selective hydrogenation of cinnamaldehyde over Ru-Sn sol-gel catalysts

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Kumar, N.; Salmi, T.; Murzin, DY.; Karhu, H.; Väyrynen, J.; Červený, L.; Paseka, Ivo

    2003-01-01

    Roč. 42, č. 2 (2003), s. 295-305 ISSN 0888-5885 R&D Projects: GA ČR GA104/00/1009 Institutional research plan: CEZ:AV0Z4032918 Keywords : Supported ruthenium catalysts * Ru-Sn-Al2O3 catalysts * benzene Subject RIV: CA - Inorganic Chemistry Impact factor: 1.317, year: 2003

  15. Superthin Solar Cells Based on AIIIBV/Ge Heterostructures

    Science.gov (United States)

    Pakhanov, N. A.; Pchelyakov, O. P.; Vladimirov, V. M.

    2017-11-01

    A comparative analysis of the prospects of creating superthin, light-weight, and highly efficient solar cells based on AIIIBV/InGaAs and AIIIBV/Ge heterostructures is performed. Technological problems and prospects of each variant are discussed. A method of thinning of AIIIBV/Ge heterostructures with the use of an effective temporary carrier is proposed. The method allows the process to be performed almost with no risk of heterostructure fracture, thinning of the Ge junction down to several tens of micrometers (or even several micrometers), significant enhancement of the yield of good structures, and also convenient and reliable transfer of thinned solar cells to an arbitrary light and flexible substrate. Such a technology offers a possibility of creating high-efficiency thin and light solar cells for space vehicles on the basis of mass-produced AIIIBV/Ge heterostructures.

  16. CH 3 NH 3 PbI 3 /GeSe bilayer heterojunction solar cell with high performance

    Science.gov (United States)

    Hou, Guo-Jiao; Wang, Dong-Lin; Ali, Roshan; Zhou, Yu-Rong; Zhu, Zhen-Gang; Su, Gang

    2018-01-01

    Perovskite (CH3NH3PbI3) solar cells have made significant advances recently. In this paper, we propose a bilayer heterojunction solar cell comprised of a perovskite layer combining with a IV-VI group semiconductor layer, which can give a conversion efficiency even higher than the conventional perovskite solar cell. Such a scheme uses a property that the semiconductor layer with a direct band gap can be better in absorption of long wavelength light and is complementary to the perovskite layer. We studied the semiconducting layers such as GeSe, SnSe, GeS, and SnS, respectively, and found that GeSe is the best, where the optical absorption efficiency in the perovskite/GeSe solar cell is dramatically increased. It turns out that the short circuit current density is enhanced 100% and the power conversion efficiency is promoted 42.7% (to a high value of 23.77%) larger than that in a solar cell with only single perovskite layer. The power conversion efficiency can be further promoted so long as the fill factor and open-circuit voltage are improved. This strategy opens a new way on developing the solar cells with high performance and practical applications.

  17. Why can’t I measure the external quantum efficiency of the Ge subcell of my multijunction solar cell?

    Energy Technology Data Exchange (ETDEWEB)

    Barrigón, Enrique, E-mail: enrique.barrigon@ies-def.upm.es; Espinet-González, Pilar; Contreras, Yedileth; Rey-Stolle, Ignacio [Instituto de Energía Solar, Universidad Politécnica de Madrid ETSI de Telecomunicación, Avd. Complutense 30, 28040 Madrid (Spain)

    2015-09-28

    The measurement of the external quantum efficiency (EQE) of low bandgap subcells in a multijunction solar cell can be sometimes problematic. In particular, this paper describes a set of cases where the EQE of a Ge subcell in a conventional GaInP/GaInAs/Ge triple-junction solar cell cannot be fully measured. We describe the way to identify each case by tracing the I-V curve under the same light-bias conditions applied for the EQE measurement, together with the strategies that could be implemented to attain the best possible measurement of the EQE of the Ge subcell.

  18. Cross-correlation analysis of Ge/Li/ spectra

    International Nuclear Information System (INIS)

    MacDonald, R.; Robertson, A.; Kennett, T.J.; Prestwich, W.V.

    1974-01-01

    A sensitive technique is proposed for activation analysis using cross-correlation and improved spectral orthogonality achieved through use of a rectangular zero area digital filter. To test the accuracy and reliability of the cross-correlation procedure five spectra obtained with a Ge/Li detector were combined in different proportions. Gaussian distributed statistics were then added to the composite spectra by means of a pseudo-random number generator. The basis spectra used were 76 As, 82 Br, 72 Ga, 77 Ge, and room background. In general, when the basis spectra were combined in roughly comparable proportions the accuracy of the techique proved to be excelent (>1%). However, of primary importance was the ability of the correlation technique to identify low intensity components in the presence of high intensity components. It was found that the detection threshold for Ge, for example, was not reached until the Ge content in the unfiltered spectrum was <0.16%. (T.G.)

  19. Direct growth of Ge1-xSnx films on Si using a cold-wall ultra-high-vacuum chemical-vapor-deposition system

    Directory of Open Access Journals (Sweden)

    Aboozar eMosleh

    2015-04-01

    Full Text Available Germanium tin alloys were grown directly on Si substrate at low temperatures using a cold-wall ultra-high vacuum chemical vapor deposition system. Epitaxial growth was achieved by adopting commercial gas precursors of germane and stannic chloride without any carrier gases. The X-ray diffraction analysis showed the incorporation of Sn and that the Ge1-xSnx films are fully epitaxial and strain relaxed. Tin incorporation in the Ge matrix was found to vary from 1% to 7%. The scanning electron microscopy images and energy dispersive X-ray spectra maps show uniform Sn incorporation and continuous film growth. Investigation of deposition parameters shows that at high flow rates of stannic chloride the films were etched due to the production of HCl. The photoluminescence study shows the reduction of bandgap from 0.8 eV to 0.55 eV as a result of Sn incorporation.

  20. Phase relations in the quasi-binary Cu{sub 2}GeS{sub 3}-ZnS and quasi-ternary Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems and crystal structure of Cu{sub 2}ZnGeS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine)]. E-mail: oleg@lab.univer.lutsk.ua; Piskach, L.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Romanyuk, Y.E. [Advanced Photonics Laboratory, Institute of Imaging and Applied Optics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Olekseyuk, I.D. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Zaremba, V.I. [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 L' viv (Ukraine); Pekhnyo, V.I. [V.I. Vernadskii Institute of General and Inorganic Chemistry, Ukrainian National Academy of Sciences, Palladina Ave 32-34, 03680 Kiev (Ukraine)

    2005-07-19

    The isothermal section of the Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems at 670K was constructed using X-ray diffraction analysis. At this temperature, two quaternary intermediate phases, Cu{sub 2}CdGeS{sub 4} and {approx}Cu{sub 8}CdGeS{sub 7}, exist in the Cu{sub 2}S-CdS-GeS{sub 2} system, and only one phase, Cu{sub 2}ZnGeS{sub 4}, exists in the Cu{sub 2}S-ZnS-GeS{sub 2} system. The phase diagram of the Cu{sub 2}GeS{sub 3}-ZnS system was constructed using differential-thermal analysis and X-ray diffraction, and the existence of Cu{sub 2}ZnGeS{sub 4} has been confirmed. It forms incongruently at 1359K. Powder X-ray diffraction was used to refine the crystal structure of Cu{sub 2}ZnGeS{sub 4}, which crystallizes in the tetragonal stannite-type structure at 670K (space group I4-bar 2m, a=0.534127(9)nm, c=1.05090(2)nm, R{sub I}=0.0477). The possibility of the formation of quaternary compounds in the quasi-ternary systems A{sup I}{sub 2}X-B{sup II}X-C{sup IV}X{sub 2}, where A{sup I}-Cu, Ag; B{sup II}-Zn, Cd, Hg; C{sup IV}-Si, Ge, Sn and X-S, Se, Te is discussed.

  1. Physico-chemical and optical properties of Er3+-doped and Er3+/Yb3+-co-doped Ge25Ga9.5Sb0.5S65 chalcogenide glass.

    Czech Academy of Sciences Publication Activity Database

    Himics, D.; Střižík, L.; Holubová, J.; Beneš, L.; Pálka, K.; Frumarová, Božena; Oswald, Jiří; Tverjanovich, A. S.; Wágner, T.

    2017-01-01

    Roč. 89, č. 4 (2017), s. 429-436 ISSN 0033-4545. [International Conference Solid State Chemistry 2016 /12./. Prague, 18.09.2016-23.09.2016] Institutional support: RVO:61389013 ; RVO:68378271 Keywords : chalcogenide glasses * erbium * Ga-Ge-Sb-S Subject RIV: CA - Inorganic Chemistry; CA - Inorganic Chemistry (FZU-D) OBOR OECD: Inorganic and nuclear chemistry; Inorganic and nuclear chemistry (FZU-D) Impact factor: 2.626, year: 2016

  2. Effect of NiAl underlayer and spacer on magnetoresistance of current-perpendicular-to-plane spin valves using Co2Mn(Ga0.5Sn0.5) Heusler alloy

    International Nuclear Information System (INIS)

    Hase, N.; Nakatani, T.M.; Kasai, S.; Takahashi, Y.K.; Furubayashi, T.; Hono, K.

    2012-01-01

    We investigated the effect of a NiAl underlayer and spacer on magnetoresistive (MR) properties in current-perpendicular-to-plane spin valves (CPP-SVs) using Co 2 Mn(Ga 0.5 Sn 0.5 ) (CMGS) Heusler alloy ferromagnetic layers. The usage of a NiAl underlayer allowed a high temperature annealing for the L2 1 ordering of the bottom CMGS layer, giving rise to a MR ratio of 10.2% at room temperature. We found that the usage of a NiAl spacer layer also improved the tolerance of the multilayer structure against thermal delamination, which allowed annealing to induce the L2 1 structure in both the bottom and top CMGS layers. However, the short spin diffusion length of NiAl resulted in a lower MR ratio compared to that obtained using a Ag spacer. Transmission electron microscopy of the multilayer structure of CPP-SVs showed that the atomically flat layered structure was maintained after the annealing. - Highlights: → CPP spin valves using Co 2 Mn(Ga 0.5 Sn 0.5 ) ferromagnetic layers with a new underlayer material. → NiAl underlayer and spacer improve the thermal tolerance of the spin valve structure. → NiAl underlayer improves MR ratio compared to Ag because of higher annealing temperature. → NiAl spacer degrades MR ratios compared to Ag because of short spin diffusion length. → Potential of heat resistant underlayer and spacer layer for CPP-SV using Heusler alloy.

  3. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    Science.gov (United States)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  4. Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.

    Science.gov (United States)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-10

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  5. Enhanced stability of magic clusters: A case study of icosahedric Al12X, X=B, Al, Ga, C, Si, Ge, Ti, As

    International Nuclear Information System (INIS)

    Gong, X.G.; Kumar, V.

    1992-10-01

    We present results of the electronic structure and stability of some 40 valence electron icosahedric Al 12 X (X=B, Al, Ga, C, Si, Ge, Ti and As) clusters within the local spin density functional theory. It is shown that the stability of Al 13 cluster can be substantially enhanced by proper doping. For neutral clusters, substitution of C at the center of the icosahedron leads to the largest gain in energy. However, Al 12 B - is the most bounded in this family. These results are in agreement with the recent experiments which also find Al 12 B - to be highly abundant. (author). 12 refs, 4 figs, 2 tabs

  6. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Kalkan, B. [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 20015 (United States); Edwards, T. G.; Sen, S. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Raoux, S. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  7. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Science.gov (United States)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  8. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    International Nuclear Information System (INIS)

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-01-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression

  9. Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities

    Directory of Open Access Journals (Sweden)

    Zdetsis Aristides

    2011-01-01

    Full Text Available Abstract A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.

  10. Electrical characterisation of Sn doped InAs grown by MOVPE

    International Nuclear Information System (INIS)

    Shamba, P.; Botha, L.; Krug, T.; Venter, A.; Botha, J.R.

    2008-01-01

    The feasibility of tetraethyl tin (TESn) as an n-type dopant for InAs is investigated. The electrical properties of Sn doped InAs films grown on semi-insulating GaAs substrates by MOVPE are extensively studied as a function of substrate temperature, V/III ratio, substrate orientation and TESn flow rate. Results from this study show that Sn concentrations can be controlled over 2 orders of magnitude. The Sn doped InAs layers exhibit carrier concentrations between 2.7 x 10 17 and 4.7 x 10 19 cm -3 with 77 K mobilities ranging from 12 000 to 1300 cm 2 /Vs. Furthermore, the influence of the variation of these parameters on the structural properties of InAs are also reported. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Cross sections of neutron production with energies of 7,5-190 MeV in the p+A → n+X reaction at 1-9 GeV/c, π++A → n+X reaction at 1-6 GeV/c, π-+A → n+X reaction at 1,4 and 5 GeV/c

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Gavrilov, V.B.; Goryainov, N.A.

    1983-01-01

    The tables of cross sections of neutron production with energies 7.5-190 MeV for reactions p+A→n+X at 1-9 GeV/c, π + +A→n+X at 1-6 GeV/c and π - +A→n+X at 1.4 and 5 GeV/c are presented. A-dependence (for Be, C, Al, Ti, Fe, Cu, Nb, Cd, Sn, Ta, Pb and U targets) for incident 7.5 GeV/c protons and dependence on incident particle momentum (for protons at 1, 1.4, 2, 3, 5, 6, 6.25, 6.5, 7, 7.5, 8.25, 8.5 and 9 GeV/c, for π + -mesons at 1, 1.4, 2, 3, 4, 5 and 6 GeV/c, π - -mesons at 1,4 and 5 GeV/c) for C, Cu, Pb, U targets are measured in detail, for secondary neutrons at 119 deg. Detailed angular dependences in the range from 10 deg to 160 deg are presented for C, Cu, Pb, U targets for incident 7.5 GeV/c protons and 5 GeV/c π - -mesons. Some of typical dependences are illustrated by diagrams

  12. Processing high-Tc superconductors with GeV heavy ions

    International Nuclear Information System (INIS)

    Marwick, A.D.; Civale, L.; Krusin-Elbaum, L.; Worthington, T.K.; Holtzberg, F.; Thompson, J.R.; Sun, Y.R.; Kerchner, H.R.

    1992-01-01

    Irradiation of high-T c superconducting crystals with low doses (10 10 --10 11 ions/cm 2 ) of GeV heavy ions (0.58 GeV Sn-116; 1.0-GeV Au-197) produces a unique microstructure consisting of discrete amorphous columns which are only a few nm in diameter but tens of microns long. It has been found recently that this columnar microstructure causes larger increases in magnetization and critical current at high temperature and high magnetic field than other types of defects in these materials. This can be understood as a consequence of the effective pinning of magnetic vortex lines provided by the columnar defects. Measurements confirm that the pinning is strongest when the magnetic field is aligned with the ion tracks. Differences in the pinning in different materials can be related to differences in their anisotropy, which affects the structure of the vortices and their pinning at columnar defects

  13. Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition

    Science.gov (United States)

    Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-06-01

    Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.

  14. Ground state properties and thermoelectric behavior of Ru{sub 2}VZ (Z=Si, ge, sn) half-metallic ferromagnetic full-Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, Battal Gazi

    2016-06-15

    The ground state properties namely structural, mechanical, electronic and magnetic properties and thermoelectric behavior of Ru{sub 2}VZ (Z=Si, Ge and Sn) half-metallic ferromagnetic full-Heusler compounds are systematically investigated. These compounds are ferromagnetic and crystallize in the Heusler type L2{sub 1} structure (prototype: Cu{sub 2}MnAl, Fm-3m 225). This result is confirmed for Ru{sub 2}VSi and Ru{sub 2}VSn by experimental work reported by Yin and Nash using high temperature direct reaction calorimetry. The studied materials are half-metallic ferromagnets with a narrow direct band gap in the minority spin channel that amounts to 31 meV, 66 meV and 14 meV for Ru{sub 2}VSi, Ru{sub 2}VGe, and Ru{sub 2}VSn, respectively. The total spin magnetic moment (M{sub tot}) of the considered compounds satisfies a Slater–Pauling type rule for localized magnetic moment systems (M{sub tot}=(N{sub V}−24)µ{sub B}), where N{sub V}=25 is the number of valence electrons in the primitive cell. The Curie temperature within the random phase approximation (RPA) is found to be 23 K, 126 K and 447 K for Ru{sub 2}VSi, Ru{sub 2}VGe and Ru{sub 2}VSn, respectively. Semi-classical Boltzmann transport theories have been used to obtain thermoelectric constants, such as Seebeck coefficient (S), electrical (σ/τ) and thermal conductivity (κ/τ), power factor (PF) and the Pauli magnetic susceptibility (χ). ZT{sub MAX} values of 0.016 (350 K), 0.033 (380 K) and 0.063 (315 K) are achieved for Ru{sub 2}VSi, Ru{sub 2}VGe and Ru{sub 2}VSn, respectively. It is expected that the obtained results might be a trigger in future experimentally interest in this type of full-Heusler compounds. - Graphical abstract: Temperature dependence of figure of merit for Ru{sub 2}VZ (Z=Si, Ge, and Sn) compounds. - Highlights: • The ground state and thermoelectric properties are reported for the first time. • Ru{sub 2}VZ are found to be a half-metallic ferromagnetic full Heusler compound. • The

  15. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2015-01-01

    Full Text Available SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.

  16. High-field magnetostriction in CeNiSn{sub 1-x}Ge{sub x} (0<=x<=1) strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.e [Laboratorio de Magnetismo de Solidos, Departamento de Fisica de Materia Condensada and ICMA, Universidad de Zaragoza and CSIC, 50009 Zaragoza (Spain); Fuente, C. de la [Laboratorio de Magnetismo de Solidos, Departamento de Fisica de Materia Condensada and ICMA, Universidad de Zaragoza and CSIC, 50009 Zaragoza (Spain)

    2010-05-15

    Magnetization (down to 1.8 K and up to 9 T) and magnetostriction (down to 4.2 K and up to 30 T) measurements have been performed in the series of polycrystalline intermetallics CeNiSn{sub 1-x}Ge{sub x} (0<=x<=1), which show a crossover from Kondo-lattice to fluctuating valence behaviors with x increase. Magnetostriction observed can be denominated as 'colossal' for a paramagnet (up to 0.68% at 150 K and 30 T), with no sign of saturation. Field, H, induced metamagnetic transitions associated to a change in Ce valence are observed. Three kinds of analysis of magnetostriction have been performed to ascertain the magnetostriction origin. At relatively low field and low temperatures these systems follow well the standard theory of magnetostriction (STM), revealing single-ion crystal field and exchange origins, and a determination of the alpha-symmetry microscopic magnetoelastic parameters have been performed. The valence transition is well explained in terms of the interconfigurational model, which needs an extension up to power H{sup 4}. Application of the scaling (thermodynamics corresponding low states) allows the obtainment of the Grueneisen constant, which increases with x. Needed elastic constants measurements are also reported.

  17. Thermal Co-Decomposition of Silver Acetylacetonate and Tin (II) Hexafluoroacetylacetonate: Formation of Carbonaceous Ag/AgxSn(x=4 and 6.7)/SnO2 Composites

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Duchek, P.; Urbanová, Markéta; Pokorná, Dana; Bezdička, Petr; Jakubec, Ivo; Pola, M.; Čerstvý, R.; Kovářík, T.; Galíková, Anna; Pola, Josef

    2013-01-01

    Roč. 566, AUG 20 (2013), s. 92-99 ISSN 0040-6031 Grant - others:GA MŠK(CZ) CZ1.05/2.1.00/03.0088 Institutional support: RVO:67985858 ; RVO:61388980 Keywords : co-decomposition * thermal gravimetric analysis * Ag-Sn intermetallic compounds Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.105, year: 2013

  18. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  19. The possibility of the mixed valence state in the uranium intermetallic compounds: UCoGa5, U2Ru2Sn and U2RuGa8

    International Nuclear Information System (INIS)

    Troc, Robert

    2007-01-01

    The mixed valence (MV) phenomenon has been observed so far in a large number of various compounds but containing only lanthanides. These properties are usually associated with the mixing of the localised f-state and the band states. The usual valence state for magnetic uranium intermetallics is the trivalent state 5f 3 or hybridised 5f 2 6d 1 , both are nearly degenerate in energy and can compete for a stability of the compound. In some cases a gain in an energy minimum may be achieved by very fast fluctuating between these two states with a time of 10 -14 s, which does not allow to yield the ordered state even if the exchange interactions (favourite the U-U distances) would be able for that. The latter cases seem to concern the described here intermetallics: one ternary compound based on Co, UCoGa 5 , and the two uranium ternary compounds based on Ru, namely U 2 Ru 2 Sn and U 2 RuGa 8 which all crystallize in a tetragonal unit cell. All these compounds show a maximum in their temperature dependences of the magnetic susceptibility measured along and perpendicular to the c-axis. Such a behaviour, which is reminiscent of a number of Ce (Sm, Eu) and Yb compounds for which χ(T) has in the past been considered by Sales and Wohlleben (SW) by applying their ICF model or by Lawrance et al. following their scaling procedure. It turned out that these phenomenological models can also be applied to the considered here two Ru-based uranium ternaries from which some reliable energy parameters could be found. In order to further support the mixing valence scenario for the first such cases in uranium compounds presented here, the transport and thermodynamic properties are also discussed. However, some of the most important results confirming the MV state, e.g., in U 2 RuGa 8 , has recently been achieved from the inelastic neutron scattering performed in the Rutherford Appleton Laboratory on the ISIS facility. From these measurements a characteristic gap of 60 meV has been

  20. Experimental investigation and thermodynamic description of the In-Sb-Sn ternary system

    Czech Academy of Sciences Publication Activity Database

    Manasijevič, D.; Vřešťál, J.; Minic, D.; Kroupa, Aleš; Zivkovic, D.; Zivkovic, Z.

    2008-01-01

    Roč. 450, 1-2 (2008), s. 193-199 ISSN 0925-8388 R&D Projects: GA MŠk(CZ) OC08053 Institutional research plan: CEZ:AV0Z20410507 Keywords : In-Sb-Sn system * phase diagram * CALPHAD Subject RIV: BJ - Thermodynamics Impact factor: 1.510, year: 2008

  1. Photoproduction of long-lived holes and electronic processes in intrinsic electric fields seen through photoinduced absorption and dichroism in Ca sub 3 Ga sub 2 sub - sub x Mn sub x Ge sub 3 O sub 1 sub 2 garnets

    CERN Document Server

    Eremenko, V V; Kachur, I S; Piryatinskaya, V G; Ratner, A M; Kosmyna, M B; Nazarenko, B P; Puzikov, V M

    2003-01-01

    Long-lived photoinduced absorption and dichroism in the Ca sub 3 Ga sub 2 sub - sub x Mn sub x Ge sub 3 O sub 1 sub 2 garnets with x < 0.06 were examined versus temperature and pumping intensity. Unusual features of the kinetics of photoinduced phenomena are indicative of the underlying electronic processes. The comparison with the case of Ca sub 3 Mn sub 2 Ge sub 3 O sub 1 sub 2 , explored earlier by the authors, permits one to finally establish the main common mechanisms of photoinduced absorption and dichroism caused by random electric fields of photoproduced charges (hole polarons). The rate of their diffusion and relaxation through recombination is strongly influenced by the same fields, whose large statistical straggling is responsible for a broad continuous set of relaxation components (observed in the relaxation time range from 1 to about 1000 min). For Ca sub 3 Ga sub 2 sub - sub x Mn sub x Ge sub 3 O sub 1 sub 2 , the time and temperature dependences of photoinduced absorption and dichroism bear ...

  2. The RELixSn2 (RE=La–Nd, Sm, and Gd; 0≤x<1) series revisited. Synthesis, crystal chemistry, and magnetic susceptibilities

    International Nuclear Information System (INIS)

    Makongo, Julien P.A.; Suen, Nian-Tzu; Guo, Shengping; Saha, Shanta; Greene, Richard; Paglione, Johnpierre; Bobev, Svilen

    2014-01-01

    This study is concerned with the ternary compounds RELi x Sn 2 (RE=La–Nd, Sm, and Gd; 0≤x 2 phases. These materials crystallize with the base-centered orthorhombic space group Cmcm (No. 63), and can be formally assigned with the CeNiSi 2 structure type (Pearson symbol oC16). Our systematic single-crystal X-ray diffraction studies revealed substantial Li-deficiencies in all cases, with SmSn 2 (space group Cmmm, ZrGa 2 structure type, Pearson symbol oC12) and GdSn 2 (space group Cmcm, ZrSi 2 structure type, Pearson symbol oC12) being completely lithium-free. The structure refinements also uncovered positional disorder on the Sn site neighboring the vacancies. The Sn-disorder and the Li-deficiency correlate, and vary monotonically with the decreased size of the rare-earth atoms in the order RE=La–Nd. The SmSn 2 and GdSn 2 structures are devoid of any disorder. Temperature-dependent studies of the magnetic response of the title compounds are also presented and discussed. -- Graphical abstract: RELi x Sn 2 (RE=La–Nd, 0≤x 2 structure type (a). The Sn-disorder and the Li-deficiency correlate, and vary monotonically with the decreased size of the rare-earth atoms in the order RE=La–Nd. The SmSn 2 (b) and GdSn 2 (c) structures are devoid of any disorder. Highlights: • The crystal structures of the RELi x Sn 2 (RE=La–Nd, 0≤x 2 structure type or defect variant of the CeNiSi 2 structure type. • SmSn 2 is isotypic with the ZrGa 2 structure, while RESn 2 (RE=Gd–Lu) are isotypic with the ZrSi 2 structure

  3. Quantum oscillation evidence for a topological semimetal phase in ZrSnTe

    Science.gov (United States)

    Hu, Jin; Zhu, Yanglin; Gui, Xin; Graf, David; Tang, Zhijie; Xie, Weiwei; Mao, Zhiqiang

    2018-04-01

    The layered WHM-type (W =Zr /Hf /La , H =Si /Ge /Sn /Sb , M =S /Se /Te ) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W , H , and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological nontrivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.

  4. Electric field fluctuations in liquid tellurium alloys a hint to bond character

    NARCIS (Netherlands)

    Paulick, C.A.; Brinkmann, R.; Elwenspoek, Michael Curt; von Hartrott, M.; Kiehl, M.; Maxim, P.; Quitmann, D.

    1985-01-01

    Atomic scale electric field fluctuations in liquid tellurium alloys are detected as they induce nuclear spin relaxation rate RQ in noble gas impurity atoms, via quadrupolar interaction. Results for Xe in liquid Ag, Ga, In, Tl, Ge, Sn---Te alloys are discussed, assuming that bonding in these alloys

  5. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  6. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    Science.gov (United States)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  7. The Ni-rich Part of the Ni-P-Sn System: Isothermal Sections

    Czech Academy of Sciences Publication Activity Database

    Schmetterer, C.; Vízdal, J.; Kroupa, Aleš; Kodentsov, A.; Ipser, H.

    2009-01-01

    Roč. 38, č. 11 (2009), s. 2275-2300 ISSN 0361-5235 R&D Projects: GA MŠk(CZ) OC08053 Institutional research plan: CEZ:AV0Z20410507 Keywords : lead free solder * phase diagram * Ni-P-Sn Subject RIV: BJ - Thermodynamics Impact factor: 1.428, year: 2009

  8. Premonochromator characteristics of Si and Ge crystals for nuclear Bragg scattering

    International Nuclear Information System (INIS)

    Harami, Taikan

    1990-07-01

    The use of monochromator plays an important role as monochromatizing the photon from a facility having an electron storage ring to a narrow band width about the wavelength determined by the Bragg condition. This paper describes the dynamical diffraction formulae and collects the characteristics data of premonochromators of Si and Ge crystals for nuclear Bragg scattering. The numerical studies show the following data. (1) Reflectivity, Bragg reflection width, energy resolution and integral reflecting power for the various reflections of Si and Ge crystals at the photon with the resonance excitation energy of the Moessbauer nuclei of 181 Tm(6.21 keV), 169 Tm(8.42 keV), 57 Fe(14.41 keV), 119 Sn(23.87 keV) and 238 U(44.70 keV). (2) Tables of susceptibilities and figures of rocking curves for the various reflections of Si and Ge crystals. (author)

  9. Effect of high-temperature annealing on the microstructure and thermoelectric properties of GaP doped SiGe. M.S. Thesis

    Science.gov (United States)

    Draper, Susan L.

    1987-01-01

    Annealing of GaP doped SiGe will significantly alter the thermoelectric properties of the material resulting in increased performance as measured by the figure of merit Z and the power factor P. The microstructures and corresponding thermoelectric properties after annealing in the 1100 to 1300 C temperature range have been examined to correlate performance improvement with annealing history. The figure of merit and power factor were both improved by homogenizing the material and limiting the amount of cross-doping. Annealing at 1215 C for 100 hr resulted in the best combination of thermoelectric properties with a resultant figure of merit exceeding 1x10 to the -3 deg C to the -1 and a power factor of 44 microW/cm/deg C sq for the temperature range of interest for space power: 400 to 1000 C.

  10. Photoluminescence measurements of the 1,55 eV band of Ge doped Al sub(x)Ga sub(1-x)As

    International Nuclear Information System (INIS)

    Furtado, M.T.; Weid, J.P. von der.

    1984-01-01

    The photoluminescence of the 1,55 eV band of Ge doped Al sub(x)Ga sub(1-x)As, with x=0.30-0.33, grown by liquid phase epitaxy is presented. The broad shape was found to be due to a lattice relaxation upon optical transitions. Resonant modes with (h/2π)ω sub(q) approx. 35 + - 2 meV and (h/2π) ω sub(q) approx. 45 + - 2 meV are found for the optical band, yielding a zero phonon transition energy - 1.73 + - 0.02 eV and a Franck-Condon shift approx. 0.17-0.20 eV for the optical center. The activation energy of thermal quenching yields an associated donnor binding energy of 0.17 + - 0.04 eV. Possible mechanisms for the radiative transitions are discussed. (Author) [pt

  11. Wavelength modulation spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.E.

    1977-10-01

    The use of modulation spectroscopy to study the electronic properties of solids has been very productive. The construction of a wide range Wavelength Modulation Spectrometer to study the optical properties of solids is described in detail. Extensions of the working range of the spectrometer into the vacuum ultraviolet are discussed. Measurements of the reflectivity and derivative reflectivity spectra of the lead chalcogenides, the chalcopyrite ZnGeP/sub 2/, the layer compounds GaSe and GaS and their alloys, the ferroelectric SbSI, layer compounds SnS/sub 2/ and SnSe/sub 2/, and HfS/sub 2/ were made. The results of these measurements are presented along with their interpretation in terms of band structure calculations.

  12. 71Ga-77Se connectivities and proximities in gallium selenide crystal and glass probed by solid-state NMR

    Science.gov (United States)

    Nagashima, Hiroki; Trébosc, Julien; Calvez, Laurent; Pourpoint, Frédérique; Mear, François; Lafon, Olivier; Amoureux, Jean-Paul

    2017-09-01

    We introduce two-dimensional (2D) 71Ga-77Se through-bond and through-space correlation experiments. Such correlations are achieved using (i) the J-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (J-RINEPT) method with 71Ga excitation and 77Se Carr-Purcell-Meiboon-Gill (CPMG) detection, as well as (ii) the J- or dipolar-mediated Hetero-nuclear Multiple-Quantum Correlation (J- or D-HMQC) schemes with 71Ga excitation and quadrupolar CPMG (QCPMG) detection. These methods are applied to the crystalline β-Ga2Se3 and the 0.2Ga2Se3-0.8GeSe2 glass. Such glass leads to a homogeneous and reproducible glass-ceramic, which is a good alternative to single-crystalline Ge and polycrystalline ZnSe materials for making lenses transparent in the IR range for thermal imaging applications. We show that 2D 71Ga-77Se correlation experiments allow resolving the 77Se signals of molecular units, which are not resolved in the 1D 77Se CPMG spectrum. Additionally, the build-up curves of the J-RINEPT and the J-HMQC experiments allow the estimate of the 71Ga-77Se J-couplings via one and three-bonds in the three-dimensional network of β-Ga2Se3. Furthermore, these build-up curves show that the one-bond 1J71Ga-77Se couplings in the 0.2Ga2Se3-0.8GeSe2 glass are similar to those measured for β-Ga2Se3. We also report 2D 71Ga Satellite Transition Magic-Angle Spinning (STMAS) spectrum of β-Ga2Se3 using QCPMG detection at high magnetic field and high Magic-Angle Spinning frequency using large radio frequency field. Such spectrum allows separating the signal of β-Ga2Se3 and that of an impurity.

  13. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Dequan; Liu, Zheng Jiao; Li, Xiuwan; Xie, Wenhe; Wang, Qi; Liu, Qiming; Fu, Yujun; He, Deyan

    2017-12-01

    To satisfy the increasing energy demands of portable electronics, electric vehicles, and miniaturized energy storage devices, improvements to lithium-ion batteries (LIBs) are required to provide higher energy/power densities and longer cycle lives. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes are promising candidates for use as electrodes in next-generation LIBs owing to their extremely high gravimetric and volumetric capacities, low working voltages, and natural abundances. However, due to the violent volume changes that occur during lithium-ion insertion/extraction and the formation of an unstable solid electrolyte interface, the use of Group IVA element-based anodes in commercial LIBs is still a great challenge. Evaluating the electrochemical performance of an anode in a full-cell configuration is a key step in investigating the possible application of the active material in LIBs. In this regard, the recent progress and important approaches to overcoming and alleviating the drawbacks of Group IVA element-based anode materials are reviewed, such as the severe volume variations during cycling and the relatively brittle electrode/electrolyte interface in full-cell LIBs. Finally, perspectives and future challenges in achieving the practical application of Group IVA element-based anodes in high-energy and high-power-density LIB systems are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Standard enthalpies of formation of selected Ru{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2015-06-15

    Highlights: • Standard enthalpies of formation of Ru{sub 2}YZ were measured using a drop calorimeter. • Result of L2{sub 1} structured compounds agrees with first principles data. • Lattice parameters and related phase relationships were consistent with literature data. • Ru{sub 2}HfSn, Ru{sub 2}TiSn, Ru{sub 2}VGa, Ru{sub 2}VSi, Ru{sub 2}VSn of L2{sub 1} structure were reported for the first time. - Abstract: The standard enthalpies of formation of selected ternary Ru-based Heusler compounds Ru{sub 2}YZ (Y = Fe, Hf, Mn, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) were measured using high temperature direct reaction calorimetry. The measured enthalpies of formation (in kJ/mole of atoms) of the Heusler compounds are, Ru{sub 2}FeGe (−19.7 ± 3.3); Ru{sub 2}HfSn (−24.9 ± 3.6); Ru{sub 2}MnSi (−46.0 ± 2.6); Ru{sub 2}MnGe (−29.7 ± 1.0); Ru{sub 2}MnSn (−20.6 ± 2.4); Ru{sub 2}TiSi (−94.9 ± 4.0); Ru{sub 2}TiGe (−79.1 ± 3.2); Ru{sub 2}TiSn (−60.6 ± 1.8); Ru{sub 2}VSi (−55.9 ± 1.7);for the B2-structured compounds, Ru{sub 2}FeSi (−28.5 ± 0.8); Ru{sub 2}HfAl (−70.8 ± 1.9); Ru{sub 2}MnAl (−32.3 ± 1.9); Ru{sub 2}MnGa (−25.3 ± 3.0); Ru{sub 2}TiAl (−62.7 ± 3.5); Ru{sub 2}VAl (−30.9 ± 1.6); Ru{sub 2}ZrAl (−64.5 ± 1.5). Values were compared with those from published first principles calculations and the OQMD (Open Quantum Materials Database). Lattice parameters of these compounds were determined using X-ray diffraction analysis (XRD). Microstructures were identified using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)

  15. Wavelength-tuned light emission via modifying the band edge symmetry: Doped SnO2 as an example

    KAUST Repository

    Zhou, Hang

    2014-03-27

    We report the observation of ultraviolet photoluminescence and electroluminescence in indium-doped SnO2 thin films with modified "forbidden" bandgap. With increasing indium concentration in SnO 2, dominant visible light emission evolves into the ultraviolet regime in photoluminescence. Hybrid functional first-principles calculations demonstrate that the complex of indium dopant and oxygen vacancy breaks "forbidden" band gap to form allowed transition states. Furthermore, undoped and 10% indium-doped SnO2 layers are synthesized on p-type GaN substrates to obtain SnO2-based heterojunction light-emitting diodes. A dominant visible emission band is observed in the undoped SnO 2-based heterojunction, whereas strong near-ultraviolet emission peak at 398 nm is observed in the indium-doped SnO2-based heterojunction. Our results demonstrate an unprecedented doping-based approach toward tailoring the symmetry of band edge states and recovering ultraviolet light emission in wide-bandgap oxides. © 2014 American Chemical Society.

  16. K2 ZnSn3 Se8 : A Non-Centrosymmetric Zinc Selenidostannate(IV) Featuring Interesting Covalently Bonded [ZnSn3 Se8 ]2- Layer and Exhibiting Intriguing Second Harmonic Generation Activity.

    Science.gov (United States)

    Zhou, Molin; Jiang, Xingxing; Yang, Yi; Guo, Yangwu; Lin, Zheshuai; Yao, JJiyong; Wu, Yicheng

    2017-06-19

    Non-centrosymmetric zinc selenidostannate(IV) K 2 ZnSn 3 Se 8 was synthesized. It features interesting covalently bonded [ZnSn 3 Se 8 ] 2- layers with K + cations filling in the interlayer voids. The phonon spectrum was calculated to clarify its structural stability. Based on the X-ray diffraction data along with the Raman spectrum, the major bonding features of the title compound were identified. According to the UV/vis-NIR spectroscopy, K 2 ZnSn 3 Se 8 possesses a typical direct band gap of 2.10 eV, which is in good agreement with the band structure calculations. Moreover, our experimental measurements and detailed theoretical calculations reveal that K 2 ZnSn 3 Se 8 is a new phase-matchable nonlinear optical material with a powder second harmonic generation (SHG) signal about 0.6 times of that of AgGaS 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. NATO Briti peakorter kutsub Eesti kaitseväge endaga liituma / Tuuli Jõesaar

    Index Scriptorium Estoniae

    Jõesaar, Tuuli

    2013-01-01

    Suurbritannias Cornwallis toimunud NATO Briti peakorteri ARRC (Allied Rapid Reaction Corps) staabiõppusest Arrcade Fusion, kus osales ka kaks Eesti ohvitseri. Eesti kaitseväge oodatakse liituma ARRC-ga, Eesti poolt on liitumine esialgu lahtine

  18. The influence of Sn Additions on the Thermoelectric and Transport Properties of FeSb2Te-based Ternary Skutterudites

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Jiří; Plecháček, T.; Drašar, Č.; Kucek, V.; Laufek, František; Černošková, E.; Beneš, L.; Vlček, Milan

    2016-01-01

    Roč. 45, č. 6 (2016), s. 2904-2913 ISSN 0361-5235 R&D Projects: GA ČR(CZ) GA13-33056S Institutional support: RVO:61389013 ; RVO:68378271 Keywords : effective medium theory * FeSb2Te * Sn - addition Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.579, year: 2016

  19. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    International Nuclear Information System (INIS)

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, L.A.; Watkins, S.P.

    2016-01-01

    Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-type dopants. Here we present high-resolution photoluminescence (PL) spectroscopy studies of unintentionally doped and Sn-doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I 10 bound exciton transition that was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. The PL linewidths are exceptionally sharp for these samples, enabling a clear identification of several donor species. Temperature-dependent PL measurements of the I 10 line emission energy and intensity dependence reveal a behavior that is similar to other shallow donors in ZnO. Ionized donor bound-exciton and two-electron satellite transitions of the I 10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule) similar to recently observed carbon related donors, and confirming the shallow nature of this defect center, which was recently attributed to a Sn Zn double donor compensated by an unknown single acceptor.

  20. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display

    International Nuclear Information System (INIS)

    Choi, J.H.; Kang, S.H.; Oh, H.S.; Yu, T.H.; Sohn, I.S.

    2013-01-01

    Indium tin oxide (ITO) thin films doped with various metal atoms were investigated in terms of phase transition behavior and electro-optical properties for the purpose of upgrading ITO and indium zinc oxide (IZO) films, commonly used for pixel electrodes in flat panel displays. We explored Ce, Mg, Zn, and Ga atoms as dopants to ITO by the co-sputtering technique, and Ga-doped ITO films (In:Sn:Ga = 87.4:6.7:5.9 at.%) showed the phase transition behavior at 210 °C within 20 min with high visible transmittance of 91% and low resistivity of 0.22 mΩ cm. The film also showed etching rate similar to amorphous ITO, and no etching residue on glass surfaces. These results were confirmed with the film formed from a single Ga-doped ITO target with slightly different compositions (In:Sn:Ga = 87:9:4 at.%). Compared to the ITO target, Ga-doped ITO target left 1/4 less nodules on the target surface after sputtering. These results suggest that Ga-doped ITO films could be an excellent alternative to ITO and IZO for pixel electrodes in thin film transistor liquid crystal display (TFT-LCD). - Highlights: ► We report Ga-doped In–Sn–O films for a pixel electrode in liquid crystal display. ► Ga-doped In–Sn–O films show phase transition behavior at 210 °C. ► Ga-doped In–Sn–O films show high wet etchability and low resistivity

  1. Mid-infrared emissions of Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunfeng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Guo, Haitao, E-mail: guoht_001@opt.ac.cn [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Xu, Yantao; Hou, Chaoqi; Lu, Min [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); He, Xin [School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Pengfei; Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Peng, Bo, E-mail: bpeng@opt.ac.cn [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China)

    2014-12-15

    Graphical abstract: ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system. - Highlights: • Serial Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses were synthesized. • ∼4.6 μm mid-infrared fluorescence from Pr{sup 3+} was observed at room temperature. • The compositional dependence of luminescence properties was studied. • Radiative properties have been determined using the Judd–Ofelt theory. - Abstract: For elucidation of the glass composition’s influence on the spectroscopic properties in the chalcohalide system and the discovery of a new material for applications in mid-infrared fiber-lasers, a serial Pr{sup 3+}-doped (100 − x)(0.8GeS{sub 2}·0.2Ga{sub 2}S{sub 3})xCdI{sub 2} (x = 5, 10, 15 and 20) chalcohalide glasses were prepared. ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system, and the effective line-width of fluorescence band is 106–227 nm. Intense compositional dependence of mid-infrared emissions is found. The radiative rates of Pr{sup 3+} ions in these glasses were calculated by using the Judd–Ofelt theory.

  2. Magnetic structure of RPdSn (R=Tb, Ho) single crystal compounds under strong magnetic field

    International Nuclear Information System (INIS)

    Andoh, Y.; Kurisu, M.; Nakamoto, G.; Tsutaoka, T.; Kawano, S.

    2003-01-01

    Rare earth compounds RTX, where R stands for rare earth elements, T for Ni, Pd or Rh, and X for Sn or Ge, crystallize to a rhombic ε-TiNiSi structure. Only rare earth elements R contribute to magnetic properties since T and X atoms are nonmagnetic. The competition between RKKY indirect interaction and large magnetic anisotropy generates many complicated magnetic phases. At a low temperature phase, complicated magnetisms such as meta-magnetism were observed in magnetization curves with many steps. In previous experiments dealing with RPdSn where R means Tb or Ho, some characteristics of magnetic properties of these compounds were deduced from magnetization measurements and neutron diffraction without external magnetic field. In this report, the change of magnetic scattering of neutron diffraction was studied under external magnetic fields in order to reveal the mechanism of the phase transformations of the compounds. The difference between TbPdSn and HoPdSn compounds was observed in magnetic field dependence of the wave vectors of the magnetic scattering. Two independent wave vectors in magnetic scattering existed in HoPdSn compound. (Y. Kazumata)

  3. Growth of amorphous Zn–Sn–O thin films by RF sputtering for buffer layers of CuInSe2 and SnS solar cells

    International Nuclear Information System (INIS)

    Chang, Shao-Wei; Ishikawa, Kaoru; Sugiyama, Mutsumi

    2015-01-01

    We propose using amorphous Zn–Sn–O (α-ZTO) deposited by RF sputtering as an alternative n-type buffer layer for Cu(In,Ga)Se 2 and SnS solar cells. The order of the carrier density, n, is increased from the order of 10 15 to 10 17 cm −1 as the Sn/(Sn + Zn) atomic ratio increases from 0.29 to 0.40. On the other hand, the order of n decreased from 10 17 to 10 11 cm −1 as the oxygen partial pressure increased from 0 to 10%. Further, for the α-ZTO film with the Sn/(Sn + Zn) atomic ratio at 0.38 and the oxygen partial pressure at 0%, valence band discontinuities of α-ZTO/CuInSe 2 and α-ZTO/SnS were determined using photoelectron yield spectroscopy measurements. The band discontinuities of each of these interfaces form a spike structure in the conduction band offset, which enables a high-performance solar cell to be obtained. - Highlights: • We propose using amorphous Zn–Sn–O as a n-type layer for Cu(In,Ga)Se 2 and SnS solar cells. • The carrier density was controlled by total and/or oxygen partial pressure during sputtering. • Valence band discontinuities of Zn–Sn–O/CuInSe 2 and Zn–Sn–O/SnS were determined. • The conduction band discontinuities of each of these interfaces form a spike structure

  4. Effect of pressure on the electrical resistivity and magnetism in UPdSn

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Alsmadi, A. M.; Sechovský, V.; Kamarád, Jiří; Nakotte, H.; Lacerda, A. H.; Mihálik, M.

    2003-01-01

    Roč. 23, 1-2 (2003), s. 177-180 ISSN 0895-7959 R&D Projects: GA ČR GP202/01/D045 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : UPdSn * electrical resistivity * magnetoresistance * Si Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.440, year: 2003

  5. Hyperon production in Pb + Pb collisions at 158 A GeV/c

    Czech Academy of Sciences Publication Activity Database

    Andersen, E.; Andrighetto, A.; Antinori, F.; Böhm, Jan; Píška, Karel; Staroba, Pavel; Šťastný, Jan; Vaníčková, Marcela; Závada, Petr

    1996-01-01

    Roč. 4, - (1996), s. 97-103 ISSN 1219-7580. [Workshop on strangeness in Hadronic Matter ( Strangeness 96). Budapest, 15.05.1996-17.05.1996] R&D Projects: GA ČR GA202/95/0217 Keywords : heavy ion collision * lead-lead * hyperon * antihyperon production * yield * (Omega- Xi- Lambda) * enhancement * (Omega- Xi-) * mass spectrum * magnetic spectrometer * OMEGA * CERN SPS * 158 GeV/c/nucleon Subject RIV: BF - Elementary Particles and High Energy Physics

  6. Precision half-life measurement of .sup.140 La with Ge-detector

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich; Belov, A. G.; Brandt, R.; Chaloun, P.; Honusek, Milan; Kalinnikov, V. G.; Krivopustov, M. I.; Kulakov, B. A.; Langrock, E. J.; Pronskikh, V. S.; Sosnin, A. N.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Wan, J. S.; Westmeier, W.

    2002-01-01

    Roč. 187, - (2002), s. 419-426 ISSN 0168-583X R&D Projects: GA AV ČR KSK1048102 Keywords : radioastive nuclei * Ge-detectors * half-life measurements Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.158, year: 2002

  7. Preparation and investigation of GaxGe25As15Se60-x (x = 1 ÷ 5) glasses

    Science.gov (United States)

    Shiryaev, V. S.; Karaksina, E. V.; Velmuzhov, A. P.; Sukhanov, M. V.; Kotereva, T. V.; Plekhovich, A. D.; Churbanov, M. F.; Filatov, A. I.

    2017-05-01

    Chalcogenide glasses of GaxGe25As15Se60-x (x = 0; 1; 2; 3; 4; 5) compositions are prepared; their transmission range, optical band gap energy, thermal properties and stability against crystallization are studied. It is shown that these glasses have a high transparency in the mid-IR region (from 0.8 to 15 μm), a high glass transition temperature (≥320 °C) and a low tendency to crystallize. The optical band gap energy of GaxGe25As15Se60-x (x = 0; 1; 2; 3; 4; 5) glasses decreases from 1.68 to 1.43 eV as the gallium content increases and the selenium decreases. Their glass network, according to IR spectroscopy data, consists of Ge(Se1/2)4 tetrahedrons and AsSe3/2 pyramids. The Ga2Ge25As15Se58 and Ga3Ge25As15Se57 glasses have highest stability against crystallization. The content of hydrogen and oxygen impurities in the purest glass samples, fabricated using a combination of chemical distillation purification method and vapor transport reaction technique, does not exceed 0.06 ppm (wt) and 0.5 ppm (wt), respectively.

  8. Enthalpies of formation of selected Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Chen, Song; Nash, Philip

    2013-11-15

    Highlights: •Enthalpies of formation of selected Co{sub 2}YZ were measured by drop calorimeters. •Enthalpy decreases as the Z element approaches the top right corner of the periodic table. •For the Y element, enthalpy increases on increasing the number of d electrons. •Result of L2{sub 1} structured compounds agrees with first principles data. •Lattice parameters and related phase relationships were consistent with literature data. -- Abstract: Standard enthalpies of formation at 298 K of selected ternary Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Hf, Mn, Ti, V, Zr; Z = Al, Ga, In, Si, Ge, Sn) were measured by high temperature direct synthesis calorimetry. The measured enthalpies of formation (in kJ/mole of atoms) of the L2{sub 1} compounds are: Co{sub 2}FeGa (−25.8 ± 2.6); Co{sub 2}FeSi (−38.4 ± 2.2); Co{sub 2}FeGe (−11.6 ± 2.1); Co{sub 2}MnGa (−30.1 ± 2.3); Co{sub 2}MnSi (−42.4 ± 1.2); Co{sub 2}MnGe (−31.6 ± 3.0); Co{sub 2}MnSn (−15.6 ± 2.8); Co{sub 2}TiAl (−55.0 ± 3.7); Co{sub 2}TiGa (−54.2 ± 2.6); Co{sub 2}TiSi (−61.4 ± 1.7); Co{sub 2}TiGe (−59.3 ± 3.8); Co{sub 2}TiSn (−38.4 ± 2.0); Co{sub 2}VGa (−28.4 ± 1.1) and for the B2 compounds: Co{sub 2}FeAl (−22.5 ± 2.5), Co{sub 2}MnAl (−27.6 ± 2.7). Values are compared with those from first principles calculation when available and the extended semi-empirical model of Miedema. Trends in enthalpy of formation with element atomic number are discussed. Lattice parameters of the compounds with L2{sub 1} structure are determined by X-ray diffraction analysis.

  9. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation

    Science.gov (United States)

    Gonzalez, Joseph F.; Antartis, Dimitrios A.; Chasiotis, Ioannis; Dillon, Shen J.; Lambros, John

    2018-03-01

    Sn has been proposed for use as a high capacity anode material. Because of its ductile metallic nature, Sn may exhibit unique stress evolution during lithiation. Here, 2D radiography and 3D tomography are employed to visualize the evolution of geometry, internal structure, alloying, and damage during lithiation, delithiation, and rest of Sn wires with micron scale diameters. Lithiation proceeds isotropically, resulting in geometric and dimensional changes after 25% of total lithiation when the tensile stresses are sufficiently high to exceed the flow stress of the unlithiated Sn core and cause elongation and diameter increase. Damage occurs at later stages in the form of cracks terminating at the wire surface and voids forming in the unlithiated core. Notably, significant fragmentation occurs during delithiation which, due to void formation that accommodates the resulting stresses, does not measurably alter the wire cross-section and length. The distinguishing feature of the chemo-mechanics of Sn compared to Si or Ge is the pronounced creep rate at applied strain rates as high as 10-6 s-1, which promotes large strains in the core, eventually leading to void nucleation in the unlithiated core during lithiation, and more importantly, continues driving the deformation of the anode while at rest.

  10. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering

    Science.gov (United States)

    Ueno, Kohei; Fudetani, Taiga; Arakawa, Yasuaki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-12-01

    We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD) technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm-3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V-1 s-1 at a carrier concentration of 3.9 × 1020 cm-3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.

  11. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering

    Directory of Open Access Journals (Sweden)

    Kohei Ueno

    2017-12-01

    Full Text Available We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm−3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V−1 s−1 at a carrier concentration of 3.9 × 1020 cm−3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.

  12. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  13. WA97 results on strangeness production in lead lead collisions at 158 A GeV/c

    Czech Academy of Sciences Publication Activity Database

    Andersen, E.; Andrighetto, A.; Antinori, F.; Böhm, Jan; Píška, Karel; Staroba, Pavel; Šťastný, Jan; Vaníčková, Marcela; Závada, Petr

    1996-01-01

    Roč. 610, - (1996), 165c-174c ISSN 0375-9474 R&D Projects: GA ČR GA202/95/0217 Keywords : hyperon * antihyperon production * yield (Lambda Antilambda) * yield (Omega- Xi-) * mass spectrum * CERN SPS * 158 GeV/c/nucleon Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.825, year: 1996

  14. Phase transition temperatures of Sn-Zn-Al system and their comparison with calculated phase diagrams

    Czech Academy of Sciences Publication Activity Database

    Smetana, B.; Zlá, S.; Kroupa, Aleš; Žaludová, M.; Drápala, J.; Burkovič, R.; Petlák, D.

    2012-01-01

    Roč. 110, č. 1 (2012), s. 369-378 ISSN 1388-6150 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Sn-Zn-Al system * DTA * phase transition temperatures Subject RIV: BJ - Thermodynamics Impact factor: 1.982, year: 2012

  15. Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1−x Snx films on Si substrate

    International Nuclear Information System (INIS)

    Mahmodi, H; Hashim, M R

    2017-01-01

    In this study, Ge 1−x Sn x alloy films are co-sputtered on Si(100) substrates using RF magnetron sputtering at different substrate temperatures. Scanning electron micrographs, atomic force microscopy (AFM), Raman spectroscopy, and x-ray photoemission spectroscopy (XPS) are conducted to investigate the effect of substrate temperature on the structural and optical properties of grown GeSn alloy films. AFM results show that RMS surface roughness of the films increases from 1.02 to 2.30 nm when raising the substrate temperature. This increase could be due to Sn surface segregation that occurs when raising the substrate temperature. Raman spectra exhibits the lowest FWHM value and highest phonon intensity for a film sputtered at 140 °C. The spectra show that decreasing the deposition temperature to 140 °C improves the crystalline quality of the alloy films and increases nanocrystalline phase formation. The results of Raman spectra and XPS confirm Ge–Sn bond formation. The optoelectronic characteristics of fabricated metal-semiconductor-metal photodetectors on sputtered samples at room temperature (RT) and 140 °C are studied in the dark and under illumination. The sample sputtered at 140 °C performs better than the RT sputtered sample. (paper)

  16. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  17. New compounds bearing [M(S{sub 2}O{sub 7}){sub 3}]{sup 2-} anions (M = Si, Ge, Sn): Syntheses and characterization of A{sub 2}[Si(S{sub 2}O{sub 7}){sub 3}] (A = Na, K, Rb), A{sub 2}[Ge(S{sub 2}O{sub 7}){sub 3}] (A = Li, Na, K, Rb, Cs), A{sub 2}[Sn(S{sub 2}O{sub 7}){sub 3}] (A = Na, K), and the unique germanate Hg{sub 2}[Ge(S{sub 2}O{sub 7}){sub 3}]Cl{sub 2} with cationic {sup 1}{sub ∞}[HgCl{sub 2/2}]{sup +} chains

    Energy Technology Data Exchange (ETDEWEB)

    Logemann, Christian; Witt, Julia; Wickleder, Mathias S. [Universitaet Oldenburg, Institut fuer Reine und Angewandte Chemie (Germany); Gunzelmann, Daniel; Senker, Juergen [Universitaet Bayreuth, Lehrstuhl fuer Anorganische Chemie III (Germany)

    2012-10-15

    The reaction of the group 14 tetrachlorides MCl{sub 4} (M = Si, Ge, Sn) with oleum (65 % SO{sub 3}) at elevated temperatures led to the unique anionic complexes [M(S{sub 2}O{sub 7}){sub 3}]{sup 2-} that show the central M atoms in coordination of three chelating S{sub 2}O{sub 7}{sup 2-} groups. The mean distances M-O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S{sub 2}O{sub 7}){sub 3}]{sup 2-} anions is achieved by alkaline metal ions A{sup +} (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A{sup +} ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S{sub 2}O{sub 7}){sub 3}]{sup 2-} anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg{sub 2}[Ge(S{sub 2}O{sub 7}){sub 3}]Cl{sub 2} which forms when HgCl{sub 2} is added as a source for the counter cation. The Hg{sup 2+} and the Cl{sup -} ions form infinite cationic chains according to {sup 1}{sub ∞}[HgCl{sub 2/2}]{sup +} which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A{sub 2}SO{sub 4} and the dioxides MO{sub 2}, whereas Hg{sub 2}[Ge(S{sub 2}O{sub 7}){sub 3}]Cl{sub 2} shows a more complicated decomposition. The tris-(disulfato)-silicate Na{sub 2}[Si(S{sub 2}O{sub 7}){sub 3}] has additionally been examined by solid state {sup 29}Si and {sup 23}Na NMR spectroscopic measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Liver and kidney imaging with Ga-68-labeled dihydroxyanthraquinones

    International Nuclear Information System (INIS)

    Schuhmacher, J.; Maier-Borst, W.; Wellman, H.N.

    1980-01-01

    This paper describes the preparation of alizarin (1,2-dihydroxyanthraquinone) and alizarin red S (sodium 1,2-dihydroxyanthraquinone-3-sulfonate) labeled with Ga-68, which is obtained from a new high-yield Ge-68 → Ga-68 generator. The uptake of Ga-68 alizarin by liver and spleen RES was studied in rats, dogs, and humans, and amounted to 80 to 85% of the administered dose within 5 min after i.v. injection. Gallium-68 alizarin red S was preferentially accumulated in the renal parenchyma to an extent of 70% within 2 hr after i.v. administration. Complete labeling of 1 mCi Ga-68 was achieved by 100 μg of each compound, amounts that are without any known measurable harm to humans

  19. Cross Section Measurements of the 76Ge (n ,n' γ) Reaction

    Science.gov (United States)

    Crider, B. P.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2013-10-01

    Neutrinoless double-beta decay (0 νββ) is a topic of great current interest and, as such, is the focus of several experiments and international collaborations. Two of these experiments, Majorana and GERDA, are seeking evidence of 0 νββ in the decay of 76Ge, where the signal would appear as a sharp peak in the energy spectrum at the Q-value of the reaction plus a small amount of recoil energy, or 2039 keV. Due to the high sensitivity of such a measurement, knowledge of background lines is critical. A study of 76Ga β- decay into 76Ge revealed a 2040.70(25)-keV transition from the 3951.70(14)-keV level, which, if populated, could potentially be a background line of concern. In addition to β- decay from 76Ga, a potential population mechanism could be cosmic-ray-induced inelastic neutron scattering. Measurements of the neutron-induced cross section of the 3951.70-keV level have been performed utilizing the 76 Ge (n ,n' γ) reaction at the University of Kentucky at neutron energies ranging from 4.3 to 4.9 MeV. This material is based upon work is supported by the U.S. National Science Foundation under grant no. PHY-0956310.

  20. Toward realization of 'mix-and-use' approach in ⁶⁸Ga radiopharmacy: preparation, evaluation and preliminary clinical utilization of ⁶⁸Ga-labeled NODAGA-coupled RGD peptide derivative.

    Science.gov (United States)

    Chakraborty, Sudipta; Chakravarty, Rubel; Vatsa, Rakhee; Bhusari, Priya; Sarma, H D; Shukla, Jaya; Mittal, B R; Dash, Ashutosh

    2016-01-01

    The present article demonstrates a 'mix-and-use' approach for radiolabeling RGD peptide derivative with (68)Ga, which is easily adaptable in hospital radiopharmacy practice. The radiotracer thus formulated was successfully used for positron emission tomography (PET) imaging of breast cancer in human patients. The conditions for radiolabeling NODAGA-coupled dimeric cyclic RGD peptide derivative [NODAGA-(RGD)2] with (68)Ga were optimized using (68)Ga obtained from a (68)Ge/(68)Ga generator developed in-house with CeO2-PAN composite sorbent as well as from a commercial (68)Ge/(68)Ga generator obtained from ITG, Germany. Preclinical studies were carried out in C57BL/6 mice bearing melanoma tumors. The radiotracer was prepared in a hospital radiopharmacy using (68)Ga obtained from ITG generator and used for monitoring breast cancer patients by positron emission tomography (PET) imaging. (68)Ga-NODAGA-(RGD)2 could be prepared with high radiolabeling yield (>98%) and specific activity (~50 GBq/μmol) within 10 min at room temperature by mixing (68)Ga with the solution of the peptide conjugate. In vivo biodistribution studies showed significant uptake (5.24±0.39% ID/g) in melanoma tumor at 30 min post-injection, with high tumor-to-background contrast. The integrin αvβ3 specificity of the tracer was corroborated by blocking study. Preliminary clinical studies in locally advanced breast cancer (LABC) patients indicated specifically high tumor uptake (SUVmax 10-15) with good contrast. This is one of the very few reports which presents preliminary clinical data on use of (68)Ga-NODAGA-(RGD)2 and the developed 'mix-and-use' holds tremendous prospect in clinical PET imaging using (68)Ga. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Gamma-ray irradiation resistance of silver doped GeS2–Ga2S3–AgI chalcohalide glasses

    International Nuclear Information System (INIS)

    Shen, W.; Baccaro, S.; Cemmi, A.; Ren, J.; Zhang, Z.; Zhou, Y.; Yang, Y.; Chen, G.

    2014-01-01

    Highlights: • The γ-ray irradiation resistance of Ag doped chalcohalide glasses (GeS 2 –Ga 2 S 3 –AgI) has been investigated. • The introduction of silver ions plays a specific role in the modification of the gamma-ray irradiation resistance of glasses. • The sulfur exerts an important effect on the photo-sensitivity of chalcogenide glasses. - Abstract: In the present work, series of silver doped Ge–Ga–S–AgI chalcohalide glasses have been prepared and their optical transmission spectra are compared before and after γ-ray irradiation at different doses. The differential transmission spectra of the irradiated samples with and without Ag doping have been compared to characterize the γ-ray irradiation induced red-shift of electronic absorption and formation of color centers. Ag doping plays an important role in increasing γ-ray irradiation resistance of the chalcohalide glasses due to its specific effect on the valence band and the network structure of glasses

  2. II-IV-V Based Thin Film Tandem Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Nathan [Arizona State Univ., Mesa, AZ (United States); van Schilfgaarde, Mark [Arizona State Univ., Mesa, AZ (United States)

    2012-10-04

    [Through a combination of theory and experiment that, absent unknown mitigating factors, a tandem cell whose (wide-gap. 1.8 eV) top layer is made of ZnSnP2 and whose (narrow gap, 1.1 eV) bottom layer consisting of ZnGeAs2 are near-ideal materials for a tandem cell. Not only are there gaps optimally adjusted to the solar spectrum, but the two compounds are lattice-matched, and their energy band structure and optical absorption are also near-ideal (they closely resemble that of GaAs). Our first major challenge is to establish that high-quality II-IV-V thin films can be synthesized. We have begun growing and characterizing films of ZnGeAs2 and ZnSnP2, initially grown on Ge substrates (the lattice constant of Ge matches these compounds) by pulsed laser ablation and sputtering. In tandem are theoretical calculations to guide the experiments. The goal is to develop methods that can be used to produce a pair of lattice-matched thin films that will be useful in tandem cells.

  3. The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn

    Energy Technology Data Exchange (ETDEWEB)

    Heying, B.; Rodewald, U.C.; Hermes, W.; Schappacher, F.M.; Riecken, J.F.; Poettgen, R. [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Heymann, G.; Huppertz, H. [Muenchen Univ. (Germany). Dept. fuer Chemie und Biochemie; Sebastian, C.P. [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2008-02-15

    The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P6{sub 3}mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F{sup 2}, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag{sub 3}Sn{sub 3}] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag{sub 3}Sn{sub 3}] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F{sup 2}, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F{sup 2}, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with {mu}{sub eff} = 7.53(1) {mu}{sub B}/Tm atom and {theta}P = -15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature {sup 119}Sn Moessbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively. (orig.)

  4. Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors

    International Nuclear Information System (INIS)

    Lin, Xianzhong; Kavalakkatt, Jaison; Kornhuber, Kai; Levcenko, Sergiu; Lux-Steiner, Martha Ch.; Ennaoui, Ahmed

    2013-01-01

    Cu 2 ZnSnS 4 (CZTS) has been considered as an alternative absorber layer to Cu(In,Ga)Se 2 due to its earth abundant and environmentally friendly constituents, optimal direct band gap of 1.4–1.6 eV and high absorption coefficient in the visible range. In this work, we propose a solution-based chemical route for the preparation of CZTS thin film absorbers by spin coating of the precursor inks composed of Cu 3 SnS 4 and ZnS NPs and annealing in Ar/H 2 S atmosphere. X-ray diffraction and Raman spectroscopy were used to characterize the structural properties. The chemical composition was determined by energy dispersive X-ray spectroscopy. Optical properties of the CZTS thin film absorbers were studied by transmission, reflection and photoluminescence spectroscopy

  5. Hydrogen and helium recycling from a JxB-force convected liquid metal Ga{sub 67}In{sub 20.5}Sn{sub 12.5} under steady state plasma bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Yoshi, E-mail: hirooka.yoshihiko@nifs.ac.jp [National institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Graduate University for Advanced Studies, Oroshi, Toki, Gifu 509-5292 (Japan); Bi, Hailin [Graduate University for Advanced Studies, Oroshi, Toki, Gifu 509-5292 (Japan); Shimada, Michiya [Japan Atomic Energy Agency, Rokkasho, Kamikita, Aomori 039-3212 (Japan); Ono, Masa [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2017-04-15

    A series of first-of-a-kind laboratory-scale experiments on the JxB-force convected liquid metal divertor concept have been carried out in the temperature range from room temperature to ∼200 °C, employing a eutectic alloy: Ga{sub 67}In{sub 20.5}Sn{sub 12.5}, the melting point of which is 10.5 °C. The electrical current conducted through the alloy is set at about 70A and the magnetic field is set at about 700 G. It has reproducibly been observed that hydrogen as well as helium particle recycling is noticeably reduced under steady state plasma bombardment when the liquid is convected by the JxB force.

  6. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    Science.gov (United States)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  7. Yb5Ni4Sn10 and Yb7Ni4Sn13: New polar intermetallics with 3D framework structures

    International Nuclear Information System (INIS)

    Lei Xiaowu; Sun Zhongming; Li Longhua; Zhong Guohua; Hu Chunli; Mao Jianggao

    2010-01-01

    The title compounds have been obtained by solid state reactions of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. Yb 5 Ni 4 Sn 10 adopts the Sc 5 Co 4 Si 10 structure type and crystallizes in the tetragonal space group P4/mbm (No. 127) with cell parameters of a=13.785(4) A, c=4.492 (2) A, V=853.7(5) A 3 , and Z=2. Yb 7 Ni 4 Sn 13 is isostructural with Yb 7 Co 4 InGe 12 and crystallizes in the tetragonal space group P4/m (No. 83) with cell parameters of a=11.1429(6) A, c=4.5318(4) A, V=562.69(7) A 3 , and Z=1. Both structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are occupied by the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic. These results are in agreement with those from temperature-dependent resistivity and magnetic susceptibility measurements. - Graphical abstract: Two new ytterbium nickel stannides, namely, Yb 5 Ni 4 Sn 10 and Yb 7 Ni 4 Sn 13 , have been synthesized and structurally characterized by single-crystal X-ray diffraction studies. Both their structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are situated by all the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic, which are in accordance with the results from temperature-dependent resistivity and magnetic susceptibility measurements.

  8. Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B

    Czech Academy of Sciences Publication Activity Database

    Vomáčka, Petr; Štengl, Václav; Henych, Jiří; Kormunda, M.

    2016-01-01

    Roč. 481, NOV (2016), s. 28-38 ISSN 0021-9797 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Sn-doped CuO * Tin doping * Copper oxide * Catalyst * Catalytic activity * Morphology Subject RIV: CA - Inorganic Chemistry Impact factor: 4.233, year: 2016

  9. Single vial kit formulation for preparation of PET radiopharmaceutical. 68Ga-DOTA-TOC

    International Nuclear Information System (INIS)

    Archana Mukherjee; Usha Pandey; Rubel Chakravarty; Ashutosh Dash; Haladhar Dev Sarma

    2014-01-01

    This paper describes the development of a lyophilized cold kit of DOTA-[Tyr 3 ]-Octreotide (DOTA-TOC) for instant compounding of 68 Ga-DOTA-TOC, suitable for diagnosis of neuroendocrine tumors. The work involved formulation of DOTA-TOC kits, optimization of radiolabeling, quality control of 68 Ga-DOTA-TOC and animal biodistribution studies. The prepared kits enable a reliable method for preparation of 68 Ga-DOTA-TOC of high radiochemical purity and excellent stability. Availability of such kits along with 68 Ge/ 68 Ga generators is expected to stimulate the widespread use of 68 Ga-DOTA-TOC in nuclear medicine practice in developing countries. (author)

  10. Improvement of Orange II Photobleaching by Moderate Ga3+ Doping of Titania and Detrimental Effect of Structural Disorder on Ga Overloading

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2014-01-01

    Full Text Available Highly photoactive Ga3+-doped anatase modification of titania was prepared by homogeneous hydrolysis of aqueous solutions mixture of titanium oxo-sulphate TiOSO4 and gallium(III nitrate with urea. Incorporation of Ga3+ into the anatase lattice has a clear positive effect on the photocatalytic activity under UV and Vis light irradiation up to a certain extent of Ga. Ga3+ doping decreased the size of the crystallites, increased surface area, and affected texture of the samples. Higher amount of gallium leads to the formation of a nondiffractive phase, probably photocatalytically inactive. The titania sample with 2.18 wt.% Ge3+ had the highest activity during the photocatalysed degradation in the UV and visible light regions; the total bleaching of dye Orange II was achieved within 29 minutes. Ga concentration larger than 5% (up to 15% significantly inhibited the growth of the anatase crystal domains which formed the nondiffractive phase content and led to remarkable worsening of the photobleaching efficiency.

  11. Beta decays of 126Cd and 126In to levels in 126In and 126Sn

    International Nuclear Information System (INIS)

    Gartner, M.L.

    1979-01-01

    A study of the beta decays of 126 Cd and 126 In using the TRISTAN on-line isotope separator facility is reported. Gamma-ray singles measurements were made for both decays usng Ge(Li) and LEPS (low energy photon spectrometer) detectors. In addition, gamma--gamma coincidence measurements and gamma multiscale measurements were made for both decays using Ge(Li) detectors. The half-life for 126 Cd was determined to be 0.506 +- 0.015 sec., and the half-lives for the low- and high-spin 126 In isomers were determined to be 1.83 +- 0.11 sec. and 1.96 +- 0.10 sec., respectively. A total of 11 gamma rays were observed in the decay of 126 Cd, and all but one were placed in a level scheme for 126 In. A total of 48 gamma rays were observed in the decay of the low- and high-spin 126 In isomers and all were placed in a level scheme for 126 Sn. Spin and parity assignments were deduced, whenever possible, on the basis of logft values and gamma decay selection rules. The 126 In decay schemes (one has been proposed for each isomer) are compared with earlier decay studies and with results from 124 Sn(t,p) 126 Sn reaction experiments. The systematics associated with the level schemes are discussed and a comparison is made with the nuclear shell model. 49 references

  12. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  13. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Sukwon; Kim, Tae Geun

    2015-01-01

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga_2O_3 targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10"−"3 Ω-cm"2 with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga_2O_3 targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10"−"3 Ω-cm"2 contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  14. ORIGIN FOR IRRADIATION EFFECT OF 0.56GeV C6+ ON CaVSn:YIG

    Institute of Scientific and Technical Information of China (English)

    熊宏齐; 侯明东; 等

    1995-01-01

    This paper presents numerous physical characteristics of Ca,V.Sn doped yttrium iron garnet(CaVSn:YIG) irradiated with 0.56GeV carbon ions delivered by the Heavy Ion Research Facility of Lanzhou (HIRFL).The reason for change of the magnetic properties of the samples induced by energetic carbon ions bombardment is discussed.By comparison of this results with the irradiation effects of YIG induced by eneregetic argon,krypton and xenon oibtained on the GANIL,Caen,France,it is concluded that the irradiation effect of 0.56GeV C6+ on CaVSn:YIG arises from the electronic energy losses.

  15. Study of Ge loss during Ge condensation process

    International Nuclear Information System (INIS)

    Xue, Z.Y.; Di, Z.F.; Ye, L.; Mu, Z.Q.; Chen, D.; Wei, X.; Zhang, M.; Wang, X.

    2014-01-01

    Ge loss during Ge condensation process was investigated by transmission electron microscopy, Raman spectroscopy, secondary ion mass spectrometry and Rutherford backscattering spectrometry. This work reveals that Ge loss can be attributed to the Ge oxidation at SiO 2 /SiGe interface, Ge diffusion in SiO 2 layers and Ge trapped at buried SiO 2 /Si interface. During Ge condensation process, with the increase of the Ge content, the Si atoms become insufficient for selective oxidation at the oxide/SiGe interface. Consequently, the Si and Ge are oxidized simultaneously. When the Ge composition in SiGe layer increases further and approaches 100%, the Ge atoms begin to diffuse into the top SiO 2 layer and buried SiO 2 layer. However, the X-ray photoelectron spectrometry analysis manifests that the chemical states of the Ge in top SiO 2 layer are different from those in buried SiO 2 layer, as the Ge atoms diffused into top SiO 2 layer are oxidized to form GeO 2 in the subsequent oxidation step. With the increase of the diffusion time, a quantity of Ge atoms diffuse through buried SiO 2 layer and pile up at buried SiO 2 /Si interface due to the interfacial trapping. The SiO 2 /Si interface acts like a pump, absorbing Ge from a Ge layer continuously through a pipe-buried SiO 2 layer. With the progress of Ge condensation process, the quantity of Ge accumulated at SiO 2 /Si interface increases remarkably. - Highlights: • Ge loss during Ge condensation process is attributed to the Ge oxidation at SiO 2 /SiGe interface. • Ge diffusion in SiO 2 layers and Ge trapped at buried SiO 2 /Si interface • When Ge content in SiGe layer approaches 100%, Ge diffusion into the SiO 2 layer is observed. • Ge then gradually diffuses through buried SiO 2 layer and pile up at SiO 2 /Si interface

  16. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    Science.gov (United States)

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Theoretical optimization of base doping concentration for radiation resistance of InGaP subcells of InGaP/GaAs/Ge based on minority-carrier lifetime

    International Nuclear Information System (INIS)

    Elfiky, Dalia; Yamaguchi, Masafumi; Sasaki, Takuo

    2010-01-01

    One of the fundamental objectives for research and development of space solar cells is to improve their radiation resistance. InGaP solar cells with low base carrier concentrations under low-energy proton irradiations have shown high radiation resistances. In this study, an analytical model for low-energy proton radiation damage to InGaP subcells based on a fundamental approach for radiative and nonradiative recombinations has been proposed. The radiation resistance of InGaP subcells as a function of base carrier concentration has been analyzed by using the radiative recombination lifetime and damage coefficient K for the minority-carrier lifetime of InGaP. Numerical analysis shows that an InGaP solar cell with a lower base carrier concentration is more radiation-resistant. Satisfactory agreements between analytical and experimental results have been obtained, and these results show the validity of the analytical procedure. The damage coefficients for minority-carrier diffusion length and carrier removal rate with low-energy proton irradiations have been observed to be dependent on carrier concentration through this study. As physical mechanisms behind the difference observed between the radiation-resistant properties of various base doping concentrations, two mechanisms, namely, the effect of a depletion layer as a carrier collection layer and generation of the impurity-related complex defects due to low-energy protons stopping within the active region, have been proposed. (author)

  18. Micro structural and magnetic characterization of Gd doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Adhikari, R.; Das, A.K.; Karmakar, D.; Chandrasekhar Rao, T.V.; Ghatak, J.

    2008-01-01

    Gd doped SnO 2 nanoparticles were prepared by a chemical co-precipitation method. The prepared samples were calcined at 600 deg C. The annealed samples were characterized using XRD, TEM and SQUID magnetometry. The structural characterizations showed formation of particles in the nanometer regime. The M(T) and M(H) studies indicated an antiferromagnetic (AFM) interaction in 3 and 6% (at. wt.) Gd doped SnO 2 nanoparticles. The M(H) plot of both samples indicate a super paramagnetic (SPM) behavior at 7K as against the perfect AFM nature at 300K. The samples exhibit an insulating DMS nature, but we do not observe any ferromagnetism as was observed for other Gd doped systems like GaN and ZnO. (author)

  19. Observing the Bose-condensation of Cooper's pairs in superconductors on the isotope 73(73Ge)

    International Nuclear Information System (INIS)

    Nemov, S.A.; Seregin, P.P.; Khujakulov, E.S.; Turaev, N.Yu.

    2007-01-01

    Using the emission Moessbauer spectroscopy method on the isotope 73 ( 73 Ge) it has been established that the superconducting transition in the solid solutions (Pb 1-x Sn x ) 1-z In z Te and superconductor Nb 3 Al leads to the change of the electron density in the metal sites, while in the anion sites no change in the electronic density has been observed. (author)

  20. Synthesis and luminescent properties of novel red-emitting M7Sn(PO46:Eu3+ (M = Sr, Ba phosphors

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2018-03-01

    Full Text Available Novel Eu3+-activated M7Sn(PO46 (where M = Sr, Ba red-emitting phosphors were synthesized via conventional solid-state reaction method at 1200 °C for 2 h. The luminescence properties of the prepared samples and quenching concentration of Sr7-xSn(PO46:xEu3+ and Ba7-xSn(PO46:xEu3+ were investigated. These phosphors can be efficiently excited by UV (395 nm and visible blue (465 nm light nicely matching the output wavelengths of the near-UV LEDs and InGaN blue LED chips and emit the red light. The critical concentrations of the Eu3+ activator were found to be 0.175 mol and 0.21 mol per formula unit for Sr7-xSn(PO46:xEu3+ and Ba7-xSn(PO46:xEu3+, respectively. The M7-xSn(PO46:xEu3+ (M = Sr, Ba phosphor may be a good candidate for light-emitting diodes application.