WorldWideScience

Sample records for g8r vltf-1 a3l

  1. Phylogenetic analysis of three genes of Penguinpox virus corresponding to Vaccinia virus G8R (VLTF-1, A3L (P4b and H3L reveals that it is most closely related to Turkeypox virus, Ostrichpox virus and Pigeonpox virus

    Directory of Open Access Journals (Sweden)

    Williamson Anna-Lise

    2009-05-01

    Full Text Available Abstract Phylogenetic analysis of three genes of Penguinpox virus, a novel Avipoxvirus isolated from African penguins, reveals its relationship to other poxviruses. The genes corresponding to Vaccinia virus G8R (VLTF-1, A3L (P4b and H3L were sequenced and phylogenetic trees (Neighbour-Joining and UPGMA constructed from MUSCLE nucleotide and amino acid alignments of the equivalent sequences from several different poxviruses. Based on this analysis, PEPV was confirmed to belong to the genus Avipoxvirus, specifically, clade A, subclade A2 and to be most closely related to Turkeypox virus (TKPV, Ostrichpox virus (OSPVand Pigeonpox virus (PGPV.

  2. Vaccinia virus G8R protein: a structural ortholog of proliferating cell nuclear antigen (PCNA.

    Directory of Open Access Journals (Sweden)

    Melissa Da Silva

    Full Text Available BACKGROUND: Eukaryotic DNA replication involves the synthesis of both a DNA leading and lagging strand, the latter requiring several additional proteins including flap endonuclease (FEN-1 and proliferating cell nuclear antigen (PCNA in order to remove RNA primers used in the synthesis of Okazaki fragments. Poxviruses are complex viruses (dsDNA genomes that infect eukaryotes, but surprisingly little is known about the process of DNA replication. Given our previous results that the vaccinia virus (VACV G5R protein may be structurally similar to a FEN-1-like protein and a recent finding that poxviruses encode a primase function, we undertook a series of in silico analyses to identify whether VACV also encodes a PCNA-like protein. RESULTS: An InterProScan of all VACV proteins using the JIPS software package was used to identify any PCNA-like proteins. The VACV G8R protein was identified as the only vaccinia protein that contained a PCNA-like sliding clamp motif. The VACV G8R protein plays a role in poxvirus late transcription and is known to interact with several other poxvirus proteins including itself. The secondary and tertiary structure of the VACV G8R protein was predicted and compared to the secondary and tertiary structure of both human and yeast PCNA proteins, and a high degree of similarity between all three proteins was noted. CONCLUSIONS: The structure of the VACV G8R protein is predicted to closely resemble the eukaryotic PCNA protein; it possesses several other features including a conserved ubiquitylation and SUMOylation site that suggest that, like its counterpart in T4 bacteriophage (gp45, it may function as a sliding clamp ushering transcription factors to RNA polymerase during late transcription.

  3. The role of the LB structural loop and its interactions with the PDZ domain of the human HtrA3 protease.

    Science.gov (United States)

    Wenta, Tomasz; Glaza, Przemysław; Jarząb, Mirosław; Zarzecka, Urszula; Żurawa-Janicka, Dorota; Lesner, Adam; Skórko-Glonek, Joanna; Lipińska, Barbara

    2017-09-01

    Human HtrA3 protease is a proapoptotic protein, involved in embryo implantation and oncogenesis. In stress conditions the protease is activated by removal of its N-terminal domain. The activated form, ΔN-HtrA3L is a homotrimer composed of the protease (PD) and PDZ domains. The LB structural loop of the PD is longer by six amino acid residues than its counterparts of other human HtrA proteins and interacts with the PDZ in a way not observed in other known HtrA structures. By size exclusion chromatography of the ΔN-HtrA3L mutated variants we found that removal of the additional LB loop residues caused a complete loss of the proper trimeric structure while impairing their interactions with the PDZ domain decreased the amount of the trimers. This indicates that the LB loop participates in stabilization of the ΔN-HtrA3L oligomer structure and suggests involvement of the LB-PDZ interactions in the stabilization. Removal of the additional LB loop residues impaired the ΔN-HtrA3L activity against the peptide and protein substrates, including the antiapoptotic XIAP protein, while a decrease in the LB-PDZ interaction caused a diminished efficiency of the peptide cleavage. These results indicate that the additional LB residues are important for the ΔN-HtrA3L proteolytic activity. Furthermore, a monomeric form of the ΔN-HtrA3L is proteolytically inactive. In conclusion, our results suggest that the expanded LB loop promotes the ΔN-HtrA3L activity by stabilizing the protease native trimeric structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis and in vitro evaluation of novel isatinincorporated ...

    African Journals Online (AJOL)

    Purpose: To synthesis and characterize some novel isatin-incorporated thiadiazoles and screen them for anti-breast cancer activity in human breast adenocarcinoma cells (MCF-7). Method: A series of isatin incorporated Schiff bases of thiadiazoles (3a-3l) was synthesized by reaction of substituted thiadiazoles (1a-1d) with ...

  5. Breaking democracy with non renormalizable mass terms

    CERN Document Server

    Silva-Marcos, Joaquim I

    2001-01-01

    The exact democratic structure for the quark mass matrix, resulting from the action of the family symmetry group $A_{3L}\\times A_{3R}$, is broken by the vacuum expectation values of heavy singlet fields appearing in non renormalizable dimension 6 operators. Within this specific context of breaking of the family symmetry we formulate a very simple ansatz which leads to correct quark masses and mixings.

  6. The ArDM experiment

    CERN Document Server

    Haranczyk, M; Badertscher, A; Boccone, V; Bourgeois, N; Bueno, A; Carmona-Benitez, M C; Chorowski, M; Creus, W; Curioni, A; Daw, E; Degunda, U; Dell'Antone, A; Droge, M; Epprecht, L; Haller, C; Horikawa, S; Kaufmann, L; Kisiel, J; Knecht, L; Laffranchi, M; Lagoda, J; Lazzaro, C; Lightfoot, P; Lozano, J; Lussi, D; Maire, G; Mania, S; Marchionni, A; Mavrokoridis, K; Melgarejo, A; Mijakowski, P; Natterer, G; Navas-Concha, S; Otiougova, P; Piotrowska, A; Polinski, J; de Prado, M; Przewlocki, P; Ravat, S; Regenfus, C; Resnati, F; Robinson, M; Rochet, J; Romero, L; Rondio, E; Rubbia, A; Scotto-Lavina, L; Spooner, N; Viant, T; Trawinski, A; Ulbricht, J; Zalewska, A

    2010-01-01

    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.

  7. [LABORATORY AND EXPERIMENTAL STUDY OF THE COMPLEX PROBIOTIC PREPARATION "BIFILACT-BILS" IN CAPSULATED FORM].

    Science.gov (United States)

    Neschislyaev, V A; Stolbova, M G; Mokin, P A; Orlova, E V; Ershov, A E

    2016-01-01

    The composition and technology of complex probiotic in hard gelatin capsules was developed in Perm Branch "Biomed" of "Microgen" State Company. The preparation contains three production strains: Lactobacillus plantarum 8P-A3, L. acidophilus K3W24 and Bifidobacterium bifidum 1. Laboratory and experimental (preclinical) study of the probiotic included investigation of the antagonistic activity, "acute" and "chronic" toxicity, the effect of the preparation on histology and hematology of laboratory animals. The result of these studies suggested of the probiotic had high inhibitory activity against pathogenic microflora when compared with probiotic monopreparations and had no toxic effects on laboratory animals.

  8. Lorentz detuning and tuning system study of 3+1/2 cell DC-SC photo-injector for PKU-FEL

    International Nuclear Information System (INIS)

    Xu Wencan; Quan Shengwen; Zhao Kui; Zhu Feng

    2008-01-01

    A 3+l/2cell DC-SC photo-injector for PKU-FEL facility is under development, which is an up- grade design of the successful 1+1/2cell DC-SC photo-injector. The Lorentz detuning and tuning structure for the 3+1/2cell superconducting cavity is presented in this paper. The Lorentz force detuning coefficient is 1.2 Hz/(MV/m) 2 with double stiffening rings for the half cell and single stiffening rings between the adjacent TESLA cells. With the special stiffening structure, the 3+l/2cell whole cavity needs only one tuner. The influences of the tuning on frequency shift, field flatness and average gradient are discussed in this paper. The simulation results show that the stiffening rings' design is successful. (authors)

  9. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  10. Ultra-Low Inductance Design for a GaN HEMT Based 3L-ANPC Inverter

    DEFF Research Database (Denmark)

    Gurpinar, Emre; Castellazzi, Alberto; Iannuzzo, Francesco

    2016-01-01

    In this paper, an ultra-low inductance power cell design for a 3L-ANPC based on 650 V GaN HEMT devices is presented. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which are the main...... contributors to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a four layer PCB with the aim to maximise the switching performance of GaN HEMTs is explained. Gate driver design for GaN HEMT devices is presented. Common-mode behaviours...

  11. GETDB: 112127 [GETDB

    Lifescience Database Archive (English)

    Full Text Available 112127 Link to Original y[*] w[*]; P{GawB}NP0287 / CyO, P{UAS-lacZ.UW14}UW14 87A3 L...ink to DGRC Genome Viewer: 112127 Hsp70Ab Hsp70Aa CG3281 S-element{}1293 287 - FlyBase Insertion: P{GawB}NP0...luster table 1451 1 Request - scattered cells sg sg, mt internal - - comment1:D d1 - - - Show 11212...7 DGRC Number 112127 Link to Original Genotype y[*] w[*]; P{GawB}NP0287 / CyO, P{UAS-lacZ....UW14}UW14 Insertion Site 87A3 Map Viewer Link to DGRC Genome Viewer: 112127 Related Genes Hsp70Ab Hsp70Aa CG3281 S-element{}12

  12. Extra Higgs boson and Z ' as portals to signatures of heavy neutrinos at the LHC

    Science.gov (United States)

    Accomando, Elena; Rose, Luigi Delle; Moretti, Stefano; Olaiya, Emmanuel; Shepherd-Themistocleous, Claire H.

    2018-02-01

    In this paper, we discuss the potential of observing heavy neutrino ( ν h ) signatures of a U(1) B- L enlarged Standard Model (SM) encompassing three heavy Majorana neutrinos alongside the known light neutrino states at the Large Hadron Collider (LHC). We exploit the theoretical decay via a heavy (non-SM-like) Higgs boson and Z ' production followed by ν h → l ± W ∓(∗) and ν h → ν l Z (∗) decays, ultimately yielding a 3 l + 2 j + E T miss signature and, depending upon how boosted the final state objects are, we define different possible selections aimed at improving the signal to background ratio in LHC Run 2 data for a wide range of heavy neutrino masses.

  13. A GaInAsP/InP Vertical Cavity Surface Emitting Laser for 1.5 m m operation

    Science.gov (United States)

    Sceats, R.; Balkan, N.; Adams, M. J.; Masum, J.; Dann, A. J.; Perrin, S. D.; Reid, I.; Reed, J.; Cannard, P.; Fisher, M. A.; Elton, D. J.; Harlow, M. J.

    1999-04-01

    We present the results of our studies concerning the pulsed operation of a bulk GaInAsP/InP vertical cavity surface emitting laser (VCSEL). The device is tailored to emit at around 1.5 m m at room temperature. The structure has a 45 period n-doped GaInAsP/InP bottom distributed Bragg reflector (DBR), and a 4 period Si/Al2O3 dielectric top reflector defining a 3-l cavity. Electroluminescence from a 16 m m diameter top window was measured in the pulsed injection mode. Spectral measurements were recorded in the temperature range between 125K and 240K. Polarisation, lasing threshold current and linewidth measurements were also carried out at the same temperatures. The threshold current density has a broad minimum at temperatures between 170K and 190K, (Jth=13.2 kA/cm2), indicating a good match between the gain and the cavity resonance in this temperature range. Maximum emitted power from the VCSEL is 0.18 mW at 180K.

  14. Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support.

    Science.gov (United States)

    Chen, Pengcheng; Tao, Shengtao; Zheng, Pu

    2016-07-01

    Here we reported an endeavor in making full use of sugarcane bagasse for biological production of succinic acid. Through NaOH pre-treatment and multi-enzyme hydrolysis, a reducing sugar solution mainly composed of glucose and xylose was obtained from the sugarcane bagasse. By optimizing portions of cellulase, xylanase, β-glucanase and pectinase in the multi-enzyme "cocktail", the hydrolysis percentage of the total cellulose in pre-treated sugarcane bagasse can be as high as 88.5%. A. succinogenes CCTCC M2012036 was used for converting reducing sugars into succinic acid in a 3-L bioreactor with a sugar-fed strategy to prevent cell growth limitation. Importantly, cells were found to be adaptive on the sugarcane bagasse residue, offering possibilities of repeated batch fermentation and replacement for MgCO3 with soluble NaHCO3 in pH modulation. Three cycles of fermentation without activity loss were realized with the average succinic acid yield and productivity to be 80.5% and 1.65g·L(-1)·h(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans.

    Science.gov (United States)

    Zheng, Zhaojuan; Cai, Cong; Jiang, Ting; Zhao, Mingyue; Ouyang, Jia

    2014-08-01

    Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient L-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for L-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett-Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l(-1)  L-lactic acid was obtained from 100 g l(-1) xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l(-1)  L-lactic acid was obtained in 36 h and the yield was 83.09 %.

  16. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production.

    Science.gov (United States)

    Flórez-Miranda, Liliana; Cañizares-Villanueva, Rosa Olivia; Melchy-Antonio, Orlando; Martínez-Jerónimo, Fernando; Flores-Ortíz, Cesar Mateo

    2017-11-20

    A biomass production process including two stages, heterotrophy/photoinduction (TSHP), was developed to improve biomass and lutein production by the green microalgae Scenedesmus incrassatulus. To determine the effects of different nitrogen sources (yeast extract and urea) and temperature in the heterotrophic stage, experiments using shake flask cultures with glucose as the carbon source were carried out. The highest biomass productivity and specific pigment concentrations were reached using urea+vitamins (U+V) at 30°C. The first stage of the TSHP process was done in a 6L bioreactor, and the inductions in a 3L airlift photobioreactor. At the end of the heterotrophic stage, S. incrassatulus achieved the maximal biomass concentration, increasing from 7.22gL -1 to 17.98gL -1 with an increase in initial glucose concentration from 10.6gL -1 to 30.3gL -1 . However, the higher initial glucose concentration resulted in a lower specific growth rate (μ) and lower cell yield (Y x/s ), possibly due to substrate inhibition. After 24h of photoinduction, lutein content in S. incrassatulus biomass was 7 times higher than that obtained at the end of heterotrophic cultivation, and the lutein productivity was 1.6 times higher compared with autotrophic culture of this microalga. Hence, the two-stage heterotrophy/photoinduction culture is an effective strategy for high cell density and lutein production in S. incrassatulus. Copyright © 2017. Published by Elsevier B.V.

  17. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Deng, Yu; Sun, Mingxue; Xu, Sha; Zhou, Jingwen

    2016-07-01

    In order to improve the availability of geranyl diphosphate (GPP) in the mevalonate pathway for enhancing (S)-linalool production in Saccharomyces cerevisiae. A (S)-linalool synthase (LIS): AaLS1 from Actinidia arguta was coexpressed with FPPS with different peptide linkers to redirect the flux from geranyl diphosphate (GPP) to (S)-linalool production in S. cerevisiae. The strain with the best peptide linker ((GGGGS)3 ), produced 101·55 ± 2·97 μg l(-1) (S)-linalool, a 69·7% increase compared to those with two independent LIS and FPPS expressed. In a 3-l fermenter, the (S)-linalool titre was further improved to 240·64 ± 5·31 μg l(-1) . The results demonstrate that the fusion proteins catalysing consecutive steps in a metabolic pathway significantly improved the (S)-linalool production with GPP as precursor. The fusion protein strategy co-expressing AaLS1 and FPPS, assembled with a long peptide linker made S. cerevisiae produced the highest reported (S)-Linalool titre to date. © 2016 The Society for Applied Microbiology.

  18. Optimization and evaluation of multi-bed adsorbent tube method in collection of volatile organic compounds

    Science.gov (United States)

    Ho, Steven Sai Hang; Wang, Liqin; Chow, Judith C.; Watson, John G.; Xue, Yonggang; Huang, Yu; Qu, Linli; Li, Bowei; Dai, Wenting; Li, Lijuan; Cao, Junji

    2018-04-01

    The feasibility of using adsorbent tubes to collect volatile organic compounds (VOCs) has been demonstrated since the 1990's and standardized as Compendium Method TO-17 by the U.S. Environmental Protection Agency (U.S EPA). This paper investigates sampling and analytical variables on concentrations of 57 ozone (O3) precursors (C2-C12 aliphatic and aromatic VOCs) specified for the Photochemical Assessment Monitoring Station (PAMS). Laboratory and field tests examined multi-bed adsorbent tubes containing a sorbate combination of Tenax TA, Carbograph 1 TD, and Carboxen 1003. Analyte stabilities were influenced by both collection tube temperature and ambient O3 concentrations. Analytes degraded during storage, while blank levels were elevated by passive adsorption. Adsorbent tube storage under cold temperatures (- 10 °C) in a preservation container filled with solid silica gel and anhydrous calcium sulfate (CaSO4) ensured sample integrity. A high efficiency (> 99%) O3 scrubber (i.e., copper coil tube filled with saturated potassium iodide [KI]) removed O3 (i.e., 0.995) was achieved for individual analyte calibrations (with the exception of acetylene) for mixing ratios of 0.08-1.96 ppbv. The method detection limits (MDLs) were below 0.055 ppbv for a 3 L sample volume. Replicate analyses showed relative standard deviations (RSDs) of < 10%, with the majority of the analytes within < 5%.

  19. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  20. [Peripheral arterial thromboembolism in Crohn's disease].

    Science.gov (United States)

    Ferrer, Isabel; Benavent, Guillem; Bastida, Guillermo; Arnau, Miguel Ángel; Iborra, Marisa; Beltrán, Belén; Aguas, Mariam; Hinojosa, Joaquín; Nos, Pilar

    2013-01-01

    Inflammatory Bowel Disease (IBD) usually affects the gastrointestinal tract, although some patients can also develop extraintestinal manifestations, such as vascular symptoms both venous and arterial ones. The former being more frequent than the latter. We report the case of a 62-year-old male, diagnosed of Crohńs disease (CD) (A3,L1+L4,B3), admitted to hospital for treatment of a retroperitoneal abscess. He presented a peripheral arterial thromboembolism during his stay, which required urgent embolectomy. After anticoagulation with low-molecular-weight heparin (LMWH), vascular magnetic resonance imaging revealed a large thrombus involving the descent aorta, which was solved with surgery and long-term anticoagulation. Peripheral arterial thrombosis is a rare extraintestinal manifestation of IBD. Nevertheless it is always important to consider it in patients with IBD. Prophylactic treatment should be made with low-molecular-weight heparin (LMWH) and definitive treatment with a combination of LMWH and surgery. Copyright © 2012 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  1. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor.

    Science.gov (United States)

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-01-01

    Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations. © 2013 American Institute of Chemical Engineers.

  2. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  3. Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C.

    Science.gov (United States)

    Su, Lingqia; Jiang, Qi; Yu, Lingang; Wu, Jing

    2017-02-08

    Our laboratory has reported a strategy for improving the extracellular production of recombinant proteins through co-expression with Thermobifida fusca cutinase, which increases membrane permeability via its phospholipid hydrolysis activity. However, the foam generated by the lysophospholipid product makes the fermentation process difficult to control in a fermentor. Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce sn1,2-diacylglycerides and organic phosphate, which do not induce foam formation. Therefore, co-expression with Bacillus cereus PLC was investigated as a method to improve the extracellular production of recombinant proteins. When B. cereus PLC was expressed in Escherichia coli without its signal peptide, 95.3% of the total PLC activity was detected in the culture supernatant. PLC expression enhanced membrane permeability without obvious cell lysis. Then, six test enzymes, three secretory and three cytosolic, were co-expressed with B. cereus PLC. The enhancement of extracellular production correlated strongly with the molecular mass of the test enzyme. Extracellular production of Streptomyces sp. FA1 xylanase (43 kDa), which had the lowest molecular mass among the secretory enzymes, was 4.0-fold that of its individual expression control. Extracellular production of glutamate decarboxylase (51 kDa), which had the lowest molecular mass among the cytosolic enzymes, reached 26.7 U/mL; 88.3% of the total activity produced. This strategy was effectively scaled up using a 3-L fermentor. No obvious foam was generated during this fermentation process. This is the first study to detail the enhanced extracellular production of recombinant proteins through co-expression with PLC. This new strategy, which is especially appropriate for lower molecular mass proteins, allows large-scale protein production in an easily controlled fermentation process.

  4. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07

    Directory of Open Access Journals (Sweden)

    P. Gururaj

    Full Text Available ABSTRACT The purpose of this study was to isolate, purify and optimize the production conditions of an organic solvent tolerant and thermostable lipase from Acinetobacter sp. AU07 isolated from distillery waste. The lipase production was optimized by response surface methodology, and a maximum production of 14.5 U/mL was observed at 30 ºC and pH 7, using a 0.5% (v/v inoculum, 2% (v/v castor oil (inducer, and agitation 150 rpm. The optimized conditions from the shake flask experiments were validated in a 3 L lab scale bioreactor, and the lipase production increased to 48 U/mL. The enzyme was purified by ammonium sulfate precipitation and ion exchange chromatography and the overall yield was 36%. SDS-PAGE indicated a molecular weight of 45 kDa for the purified protein, and Matrix assisted laser desorption/ionization time of flight analysis of the purified lipase showed sequence similarity with GDSL family of lipases. The optimum temperature and pH for activity of the enzyme was found to be 50 ºC and 8.0, respectively. The lipase was completely inhibited by phenylmethylsulfonyl fluoride but minimal inhibition was observed when incubated with ethylenediaminetetraacetic acid and dithiothreitol. The enzyme was stable in the presence of non-polar hydrophobic solvents. Detergents like SDS inhibited enzyme activity; however, there was minimal loss of enzyme activity when incubated with hydrogen peroxide, Tween 80 and Triton X-100. The kinetic constants (Km and Vmax revealed that the hydrolytic activity of the lipase was specific to moderate chain fatty acid esters. The Vmax, Km and Vmax/Km ratio of the enzyme were 16.98 U/mg, 0.51 mM, and 33.29, respectively when 4-nitrophenyl palmitate was used as a substrate.

  5. New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas

    Science.gov (United States)

    Pitre, L.; Sparasci, F.; Risegari, L.; Guianvarc'h, C.; Martin, C.; Himbert, M. E.; Plimmer, M. D.; Allard, A.; Marty, B.; Giuliano Albo, P. A.; Gao, B.; Moldover, M. R.; Mehl, J. B.

    2017-12-01

    The SI unit of temperature will soon be redefined in terms of a fixed value of the Boltzmann constant k derived from an ensemble of measurements worldwide. We report on a new determination of k using acoustic thermometry of helium-4 gas in a 3 l volume quasi-spherical resonator. The method is based on the accurate determination of acoustic and microwave resonances to measure the speed of sound at different pressures. We find for the universal gas constant R  =  8.314 4614(50) J·mol-1·K-1. Using the current best available value of the Avogadro constant, we obtain k  =  1.380 648 78(83)  ×  10-23 J·K-1 with u(k)/k  =  0.60  ×  10-6, where the uncertainty u is one standard uncertainty corresponding to a 68% confidence level. This value is consistent with our previous determinations and with that of the 2014 CODATA adjustment of the fundamental constants (Mohr et al 2016 Rev. Mod. Phys. 88 035009), within the standard uncertainties. We combined the present values of k and u(k) with earlier values that were measured at LNE. Assuming the maximum possible correlations between the measurements, (k present/〈k〉  -  1)  =  0.07  ×  10-6 and the combined u r (k) is reduced to 0.56  ×  10-6. Assuming minimum correlations, (k present/〈k〉  -  1)  =  0.10  ×  10-6 and the combined u r (k) is reduced to 0.48  ×  10-6.

  6. Effective enhancement of polylactic acid-degrading enzyme production by Amycolatopsis sp. strain SCM_MK2-4 using statistical and one-factor-at-a-time approaches.

    Science.gov (United States)

    Penkhrue, Watsana; Kanpiengjai, Apinun; Khanongnuch, Chartchai; Masaki, Kazuo; Pathom-Aree, Wasu; Punyodom, Winita; Lumyong, Saisamorn

    2017-08-09

    This study aims to find the optimal medium and conditions for polylactic acid (PLA)-degrading enzyme production by Amycolatopsis sp. SCM_MK2-4. Screening of the most effective components in the enzyme production medium by Plackett-Burman design revealed that the silk cocoon and PLA film were the most significant variables enhancing the PLA-degrading enzyme production. After an response surface methodology, a maximum amount of PLA-degrading enzyme activity at 0.74 U mL -1 was predicted and successfully validated at 95% after 0.39% (w/v) silk cocoon and 1.62% (w/v) PLA film were applied to the basal medium. The optimal initial pH value, temperature, and inoculum size were evaluated by a method considering one-factor-at-a-time. The values were recorded at an initial pH in the range of 7.5-9.0, a temperature of 30-32°C, and an inoculum size of 4-10%. The highest activity of approximately 0.95 U mL -1 was achieved after 4 days of cultivation using the optimized medium and under optimized conditions in a shake flask. Upscaling to the use of a 3-L stirred tank fermenter was found to be successful with a PLA-degrading activity of 5.53 U mL -1 ; which represents a 51-fold increase in the activity compared with that obtained from the nonoptimized medium and conditions in the shake flask.

  7. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  8. Pilot-scale whole-cell biocatalysis for the hydroxylation of cyclosporine derivative, FR901459, at higher concentrations by Lentzea sp. 7887 using soybean flour as a novel substrate dispersant.

    Science.gov (United States)

    Yabutani, Tetsuya; Shimizu, Shiho; Nakano, Hideo

    2017-01-01

    Pilot-scale hydroxylation of FR901459, an immunosuppressive cyclosporine derivative, was performed using resting cells of a Gram-positive bacteria Lentzea sp. 7887 (as whole-cell biocatalysts) and soybean flour as a substrate dispersant. Through biocatalysis, FR901459 was hydroxylated at position 9, producing AS1837812, an important intermediate in the production of drug candidates against hepatitis C. Since FR901459 is insoluble in water, the conversion ratio ([moles of AS1837812 produced/moles of FR901459 added]×100) of the biocatalysis decreased under conditions with substrate concentrations higher than 0.615 mM. To increase the concentration of FR901459 for biocatalysis, we screened various materials to effectively disperse FR901459 in the biocatalysis mixture and found that soybean flour was the best substrate dispersant. The addition of soybean flour to the biocatalysis mixture increased the FR901459 concentration in a 3-L reactor up to 3-fold (1.85 mM). Thus, we successfully established a pilot-scale (1-m 3 ) biocatalysis with a 2-fold higher concentration (1.23 mM) of FR901459 using soybean flour as the substrate dispersant and obtained 419 g of AS1837812 at a conversion ratio of 34.5% in a 28-h batch reaction. Soybean flour can be used as a substrate dispersant for various industrial biocatalysis processes because of its low cost, high availability, and low environmental impact. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  10. Modification of emodin and aloe-emodin by glycosylation in engineered Escherihia coli.

    Science.gov (United States)

    Ghimire, Gopal Prasad; Koirala, Niranjan; Pandey, Ramesh Prasad; Jung, Hye Jin; Sohng, Jae Kyung

    2015-04-01

    Glycosyltransferase from Bacillus licheniformis DSM13 (YjiC) was used for enzymatic modification of emodin and aloe-emodin in vitro and in vivo. In order to increase the availability of UDP-glucose, three genes involved in the production of precursors of NDP-sugar in Escherichia coli BL21 (DE3) viz. D-glucose phosphate isomerase (pgi), D-glucose-6-phosphate dehydrogenase (zwf), and UDP-sugar hydrolase (ushA) were deleted and glucose-1-phosphate urididyltransferase (galU) gene was over expressed. To improve the yield of the products; substrate, time and media parameters were optimized, and the production was scaled up using a 3 L fermentor. The maximum yield of glycosylated products of emodin (emodin-O-β-D-glucoside) and aloe-emodin (aloe-emodin-O-β-D-glucoside) were approximately 144 µM (38 mg/L) and 168 µM (45 mg/L) respectively, representing almost 72 % and 84 % bioconversion of emodin and aloe-emodin when 200 µM of emodin and aloe-emodin were supplemented in the culture. Additionally, the emodin and aloe emodin major glycosylated products exhibited the highest stability at pH 8.0 and the stability of products was up to 70 °C and 60 °C respectively. Furthermore, the biological activities of emodin and its major glucoside (P1) were compared and their anti-cancer activities were assayed in several cancer cell lines. The results demonstrate that YjiC has the capacity to catalyze the glycosylation of these aromatic compounds and that glycosylation of anthraquinones enhances their aqueous solubility while retaining their biological activities.

  11. Comparison of bacterial communities in the Solimões and Negro River tributaries of the Amazon River based on small subunit rRNA gene sequences.

    Science.gov (United States)

    Peixoto, J C C; Leomil, L; Souza, J V; Peixoto, F B S; Astolfi-Filho, S

    2011-12-08

    The microbiota of the Amazon River basin has been little studied. We compared the structure of bacterial communities of the Solimões and Negro Rivers, the main Amazon River tributaries, based on analysis of 16S rRNA gene sequences. Water was sampled with a 3-L Van Dorn collection bottle; samples were collected at nine different points/depths totaling 27 L of water from each river. Total DNA was extracted from biomass retained by a 0.22-μm filter after sequential filtration of the water through 0.8- and 0.22-μm filters. The 16S rRNA gene was amplified by PCR, cloned and sequenced, and the sequences were analyzed with the PHYLIP and DOTUR programs to obtain the operational taxonomic units (OTUs) and to calculate the diversity and richness indices using the SPADE program. Taxonomic affiliation was determined using the naive Bayesian rRNA Classifier of the RDP II (Ribosomal Database Project). We recovered 158 sequences from the Solimões River grouped into 103 OTUs, and 197 sequences from the Negro River library grouped into 90 OTUs by the DOTUR program. The Solimões River was found to have a greater diversity of bacterial genera, and greater estimated richness of 446 OTUs, compared with 242 OTUs from the Negro River, as calculated by ACE estimator. The Negro River has less bacterial diversity, but more 16S rRNA gene sequences belonging to the bacterial genus Polynucleobacter were detected; 56 sequences from this genus were found (about 30% of the total sequences). We suggest that a more in-depth investigation be made to elucidate the role played by these bacteria in the river environment. These differences in bacterial diversity between Solimões and Negro Rivers could be explained by differences in organic matter content and pH of the rivers.

  12. A study of the process control and hydrolytic characteristics in a thermophilic hydrogen fermentor fed with starch-rich kitchen waste by using molecular-biological methods and amylase assay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Hsuan; Li, Shiue-Lin; Chen, I.-Chieh; Tseng, I.-Cheng; Cheng, Sheng-Shung [Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701 (China)

    2010-12-15

    Starch-rich kitchen waste was chosen as the feedstock in this study, and a 3-L intermittent-continuous stirred tank reactor (I-CSTR) was established. Within 240 days, the maximum average hydrogen production rate of 2.2 L-H{sup 2} L{sup -1} day{sup -1} and the highest average hydrogen yield of 2.1 mmol-H{sub 2} g-COD{sup -1} were both observed in run 3-2, which was operated at an eight-day hydraulic retention time (HRT) and 39 g-COD L{sup -1} day{sup -1} of organic loading rate. According to the analyses of amylase and reducing sugar, the maximum average amylase activity was about 11 U mL{sup -1} in run 1, but the maximum solid carbohydrate hydrolysis rate was about 45% in run 3. Some Michaealis-Menton kinetic parameters, such as K{sub M} (17 g L{sup -1}) and the maximum activity (1.5 U mL{sup -1}) of the amylase were obtained. The best amylase reacting temperature was 55 C, and the best reacting pH was 4.4 tested with acetate buffer. Twenty-seven operational taxonomic units (OTUs) were selected from this reactor by using a cloning method. According to the data of terminal restricted fragment length polymorphism (T-RFLP) and amylase assay, the OTUs that were related to Thermoanaerobacterium thermosaccharolyticum and Clostridium sp. were in direct proportion to the amylase activity. (author)

  13. KARAKTERISTIK DADIH PROBIOTIK MENGGUNAKAN KOMBINASI LACTOBACILLUS CASEI, LACTOBACILLUS PLANTARUM, DAN BIFIDOBACTERIUM LONGUM SELAMA PENYIMPANAN

    Directory of Open Access Journals (Sweden)

    Sri Usmiati

    2012-03-01

    Full Text Available 800x600 Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Some test results hedonic by ordinary people who consume the dadih in West Sumatra in 2009 on dadih made from cow's milk using Lactobacillus casei culture couldn’t be accepted because it was still too acidic than dadih from buffalo milk. One solution to reduce the sour taste is to combine the bacterial culture L. casei with other lactic acid bacteria that produce flavor relatively low acidity. The study aimed to determine the characteristics of probiotic dadih using a combination starter L. casei, L. plantarum and B. longum during storage at room temperature (ambient and cold temperature. The study was designed using randomized block design with 6x3 factorial patterns of three groups as replication. Treatment A (combination of probiotic bacteria that L. casei (A1, B. longum (A2, L. plantarum (A3, L. casei: L. plantarum 1:5 (A4, L. casei: B. longum 1:5 (A5 and L. casei: L. plantarum: B. longum 1:4:1 (A6, and factor B (storage conditions, namely: (B1 room temperature (27oC, and (B2 cold temperature (4-10oC. The results showed that viability and the total lactic acid bacteria in all formulas of cow's milk dadih during storage at room temperature and cold temperature of more than 106 cfu/ml which could be categorized as a probiotic products. The combination of C1L5 (L.casei: B.longum 1: 5 has the lowest acidity value and excellence in character color, flavor, and was generally preferred by the panelists. In terms of flavor and texture characteristics of cow's milk dadih with a combination of C1L5 had a level of hedonic as with other formulas.       Keywords: dadih, cows milk, probiotic, storage

  14. Optimization of culture medium for novel cell-associated tannase production from Bacillus massiliensis using response surface methodology.

    Science.gov (United States)

    Belur, Prasanna D; Goud, Rakesh; Goudar, Dinesh C

    2012-02-01

    Naturally immobilized tannase (tannin acyl hydrolase, E.C. 3.1.1.20) has many advantages, as it avoids the expensive and laborious operation of isolation, purification, and immobilization, plus it is highly stable in adverse pH and temperature. However, in the case of cell-associated enzymes, since the enzyme is associated with the biomass, separation of the pure biomass is necessary. However, tannic acid, a known inducer of tannase, forms insoluble complexes with media proteins, making it difficult to separate pure biomass. Therefore, this study optimizes the production of cell-associated tannase using a "protein-tannin complex" free media. An exploratory study was first conducted in shake-flasks to select the inducer, carbon source, and nitrogen sources. As a result it was found that gallic acid induces tannase synthesis, a tryptose broth gives higher biomass, and lactose supplementation is beneficial. The medium was then optimized using response surface methodology based on the full factorial central composite design in a 3 l bioreactor. A 2(3) factorial design augmented by 7 axial points (alpha = 1.682) and 2 replicates at the center point was implemented in 17 experiments. A mathematical model was also developed to show the effect of each medium component and their interactions on the production of cell-associated tannase. The validity of the proposed model was verified, and the optimized medium was shown to produce maximum cell-associated tannase activity of 9.65 U/l, which is 93.8% higher than the activity in the basal medium, after 12 h at pH 5.0, 30 degrees C. The optimum medium consists of 38 g/l lactose, 50 g/l tryptose, and 2.8 g/l gallic acid.

  15. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

    Science.gov (United States)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  16. Experimental validation of in silico estimated biomass yields of Pseudomonas putida KT2440.

    Science.gov (United States)

    Hintermayer, Sarah Beate; Weuster-Botz, Dirk

    2017-06-01

    Pseudomonas putida is rapidly becoming a microbial cell platform for biotechnological applications. In order to understand genotype-phenotype relationships genome scale models represent helpful tools. However, the validation of in silico predictions of genome scale models is a task that is rarely performed. In this study the theoretical biomass yields of Pseudomonas putida KT2440 were estimated for 57 different carbon sources based on a genome scale stoichiometric model applying flux balance analysis. The batch growth of P. putida KT2440 with six individual carbon sources covering the range of maximal to minimal in silico biomass yields (acetate, glycerol, citrate, succinate, malate and methanol, respectively) was studied in a defined mineral medium in a fully controlled stirred-tank bioreactor on a 3 L scale. The highest growth rate of P. putida KT2440 was measured with succinate as carbon source (0.51 h -1 ). Among the 57 carbon sources tested, glycerol resulted in the highest estimated biomass yield (0.61 molC Biomass molC -1 Glycerol ) which was experimentally confirmed. The comparison of experimental determined biomass yields with a modified version of the model iJP815 showed deviations of only up to 10%. The experimental data generated in this study can also be used in future studies to further improve the genome scale models of P. putida KT2440. Improved models will then help to gain deeper insights in genotype-phenotype relationships. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.

    Science.gov (United States)

    Gu, Yang; Deng, Jieying; Liu, Yanfeng; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-10-01

    N-acetylglucosamine (GlcNAc) is an important amino sugar extensively used in the healthcare field. In a previous study, the recombinant Bacillus subtilis strain BSGN6-P xylA -glmS-pP43NMK-GNA1 (BN0-GNA1) had been constructed for microbial production of GlcNAc by pathway design and modular optimization. Here, the production of GlcNAc is further improved by rewiring both the glucose transportation and central metabolic pathways. First, the phosphotransferase system (PTS) is blocked by deletion of three genes, yyzE (encoding the PTS system transporter subunit IIA YyzE), ypqE (encoding the PTS system transporter subunit IIA YpqE), and ptsG (encoding the PTS system glucose-specific EIICBA component), resulting in 47.6% increase in the GlcNAc titer (from 6.5 ± 0.25 to 9.6 ± 0.16 g L -1 ) in shake flasks. Then, reinforcement of the expression of the glcP and glcK genes and optimization of glucose facilitator proteins are performed to promote glucose import and phosphorylation. Next, the competitive pathways for GlcNAc synthesis, namely glycolysis, peptidoglycan synthesis pathway, pentose phosphate pathway, and tricarboxylic acid cycle, are repressed by initiation codon-optimization strategies, and the GlcNAc titer in shake flasks is improved from 10.8 ± 0.25 to 13.2 ± 0.31 g L -1 . Finally, the GlcNAc titer is further increased to 42.1 ± 1.1 g L -1 in a 3-L fed-batch bioreactor, which is 1.72-fold that of the original strain, BN0-GNA1. This study shows considerably enhanced GlcNAc production, and the metabolic engineering strategy described here will be useful for engineering other prokaryotic microorganisms for the production of GlcNAc and related molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dirac oscillator in a Galilean covariant non-commutative space

    Energy Technology Data Exchange (ETDEWEB)

    Melo, G.R. de [Universidade Federal do Reconcavo da Bahia, BA (Brazil); Montigny, M. [University of Alberta (Canada); Pompeia, P.J. [Instituto de Fomento e Coordecacao Industrial, Sao Jose dos Campos, SP (Brazil); Santos, Esdras S. [Universidade Federal da Bahia, Salvador (Brazil)

    2013-07-01

    Full text: Even though Galilean kinematics is only an approximation of the relativistic kinematics, the structure of Galilean kinematics is more intricate than relativistic kinematics. For instance, the Galilean algebra admits a nontrivial central extension and projective representations, whereas the Poincare algebra does not. It is possible to construct representations of the Galilei algebra with three possible methods: (1) directly from the Galilei algebra, (2) from contractions of the Poincare algebra with the same space-time dimension, or (3) from the Poincare algebra in a space-time with one additional dimension. In this paper, we follow the third approach, which we refer to as 'Galilean covariance' because the equations are Lorentz covariant in the extended manifold. These equations become Galilean invariant after projection to the lower dimension. Our motivation is that this covariant approach provides one more unifying feature of field theory models. Indeed, particle physics (with Poincare kinematics) and condensed matter physics (with Galilean kinematics) share many tools of quantum field theory (e.g. gauge invariance, spontaneous symmetry breaking, Goldstone bosons), but the Galilean kinematics does not admit a metric structure. However, since the Galilean Lie algebra is a subalgebra of the Poincare Lie algebra if one more space-like dimension is added, we can achieve 'Galilean covariance' with a metric in an extended manifold; that makes non-relativistic models look similar to Lorentz-covariant relativistic models. In this context we study the Galilei covariant five-dimensional formulation applied to Galilean Dirac oscillator in a non-commutative situation, with space-space and momentum-momentum non-commutativity. The wave equation is obtained via a 'Galilean covariant' approach, which consists in projecting the covariant motion equations from a (4, l)-dimensional manifold with light-cone coordinates, to a (3, l

  19. Relationship between pulmonary function and indoor air pollution from coal combustion among adult residents in an inner-city area of southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Y.; Houjin, H. [Zunyi Medical University, School of Public Health, Zunyi, Guizhou (China); Xun, M. [Affiliated Hospital of Zunyi Medical University, Department of Medicine Laboratory, Zunyi (China); Kebin, L.; Xuesong, Y.; Jie, X. [Zunyi Medical University, School of Public Health, Zunyi, Guizhou (China)

    2014-09-23

    Few studies evaluate the amount of particulate matter less than 2.5 mm in diameter (PM{sub 2.5}) in relation to a change in lung function among adults in a population. The aim of this study was to assess the association of coal as a domestic energy source to pulmonary function in an adult population in inner-city areas of Zunyi city in China where coal use is common. In a cross-sectional study of 104 households, pulmonary function measurements were assessed and compared in 110 coal users and 121 non-coal users (≥18 years old) who were all nonsmokers. Several sociodemographic factors were assessed by questionnaire, and ventilatory function measurements including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV{sub 1}), the FEV{sub 1}/FVC ratio, and peak expiratory flow rate (PEFR) were compared between the 2 groups. The amount of PM{sub 2.5} was also measured in all residences. There was a significant increase in the relative concentration of PM{sub 2.5} in the indoor kitchens and living rooms of the coal-exposed group compared to the non-coal-exposed group. In multivariate analysis, current exposure to coal smoke was associated with a 31.7% decrease in FVC, a 42.0% decrease in FEV{sub 1}, a 7.46% decrease in the FEV{sub 1}/FVC ratio, and a 23.1% decrease in PEFR in adult residents. The slope of lung function decrease for Chinese adults is approximately a 2-L decrease in FVC, a 3-L decrease in FEV{sub 1}, and an 8 L/s decrease in PEFR per count per minute of PM{sub 2.5} exposure. These results demonstrate the harmful effects of indoor air pollution from coal smoke on the lung function of adult residents and emphasize the need for public health efforts to decrease exposure to coal smoke.

  20. A sustainable use of Ricotta Cheese Whey for microbial biodiesel production.

    Science.gov (United States)

    Carota, Eleonora; Crognale, Silvia; D'Annibale, Alessandro; Gallo, Anna Maria; Stazi, Silvia Rita; Petruccioli, Maurizio

    2017-04-15

    The increasing demand of plant oils for biodiesel production has highlighted the need for alternative strategies based either on non-food crops or agro-industrial wastes that do not compete with food and feed production. In this context, the combined use of wastewater and oleaginous microorganisms could be a valuable production option. Ricotta cheese whey (RCW), one of the major byproducts of the dairy industry, is produced in very high and steadily increasing amounts and, due to its high organic load, its disposal is cost-prohibitive. In the present study, in order to assess the adequacy of RCW as a growth medium for lipid production, 18 strains of oleaginous yeasts were investigated in shaken flask for their growth and lipid-producing capabilities on this substrate. Among them, Cryptococcus curvatus NRRL Y-1511 and Cryptococcus laurentii UCD 68-201 adequately grew therein producing substantial amounts of lipids (6.8 and 5.1gL -1 , respectively). A high similarity between the percent fatty acid methyl esters (FAME) composition of lipids from the former and the latter strain was found with a predominance of oleic acid (52.8 vs. 48.7%) and of total saturated fatty acids (37.9 vs. 40.8%). The subsequent scale transfer of the C. laurentii UCD 68-201 lipid production process on RCW to a 3-L STR led to significantly improved biomass and total lipid productions (14.4 and 9.9gL -1 , respectively) with the biodiesel yield amounting to 32.6%. Although the C. laurentii FAME profile was modified upon process transfer, it resembled that of the Jatropha oil, a well established feedstock for biodiesel production. In conclusion, C. laurentii UCD 68-201, for which there is very limited amount of available information, turned out to be a very promising candidate for biodiesel production and wide margins of process improvement might be envisaged. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metabolic and Kinetic analyses of influenza production in perfusion HEK293 cell culture

    Directory of Open Access Journals (Sweden)

    Lohr Verena

    2011-09-01

    Full Text Available Abstract Background Cell culture-based production of influenza vaccine remains an attractive alternative to egg-based production. Short response time and high production yields are the key success factors for the broader adoption of cell culture technology for industrial manufacturing of pandemic and seasonal influenza vaccines. Recently, HEK293SF cells have been successfully used to produce influenza viruses, achieving hemagglutinin (HA and infectious viral particle (IVP titers in the highest ranges reported to date. In the same study, it was suggested that beyond 4 × 106 cells/mL, viral production was limited by a lack of nutrients or an accumulation of toxic products. Results To further improve viral titers at high cell densities, perfusion culture mode was evaluated. Productivities of both perfusion and batch culture modes were compared at an infection cell density of 6 × 106 cells/mL. The metabolism, including glycolysis, glutaminolysis and amino acids utilization as well as physiological indicators such as viability and apoptosis were extensively documented for the two modes of culture before and after viral infection to identify potential metabolic limitations. A 3 L bioreactor with a perfusion rate of 0.5 vol/day allowed us to reach maximal titers of 3.3 × 1011 IVP/mL and 4.0 logHA units/mL, corresponding to a total production of 1.0 × 1015 IVP and 7.8 logHA units after 3 days post-infection. Overall, perfusion mode titers were higher by almost one order of magnitude over the batch culture mode of production. This improvement was associated with an activation of the cell metabolism as seen by a 1.5-fold and 4-fold higher consumption rates of glucose and glutamine respectively. A shift in the viral production kinetics was also observed leading to an accumulation of more viable cells with a higher specific production and causing an increase in the total volumetric production of infectious influenza particles. Conclusions These results

  2. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.

    Science.gov (United States)

    Wantawin, C; Juateea, J; Noophan, P L; Munakata-Marr, J

    2008-01-01

    Conventional nitrification-denitrification treatment is a common way to treat nitrogen in wastewater, but this process is costly for low COD/N wastewaters due to the addition of air and external carbon-source. However, ammonia may alternatively be converted to dinitrogen gas by autotrophic bacteria utilizing aerobically autotrophically produced nitrite as an electron acceptor under anoxic conditions. Lab-scale sequencing batch biofilm reactors (SBBRs) inoculated with normal nitrifying sludge were employed to study the potential of an oxygen-limited autotrophic nitrification-denitrification process initiated with typical nitrifying sludge for treating a synthetic ammonia wastewater devoid of organic carbon in one step. The ring-laced fibrous carrier (length 0.32 m, surface area 3.4 m2/m) was fixed vertically in a 3 L reactor. Two different air supply modes were applied:continuous aeration to control dissolved oxygen at 1.5 mg/L and intermittent aeration. High nitrogen removals of more than 50% were obtained in both SBBRs. At an ammonia loading of 0.882 gm N/m2-day [hydraulic retention time (HRT) of 24 hr], the SBBR continuously aerated to 1.5 mg DO/L had slightly higher nitrogen removal (64%) than the intermittently alternated SBBR (55%). The main form of residual nitrogen in the effluent was ammonia, at concentrations of 25 mg/L and 37 mg N/L in continuous and intermittent aeration SBBRs, respectively. Ammonia was completely consumed when ammonia loading was reduced to 0.441 gm N/m2-day [HRT extended to 48 hr]. The competitive use of nitrite by aerobic nitrite oxidizing bacteria (ANOB) with anaerobic ammonia-oxidizing bacteria (anammox bacteria) during the expanded aeration period under low remaining ammonia concentration resulted in higher nitrate production and lower nitrogen loss in the continuous aeration SBBR than in the intermittent aeration SBBR. The nitrogen removal efficiencies in SBBRs with continuous and alternating aerated were 80% and 86% respectively

  3. Process intensification for high yield production of influenza H1N1 Gag virus-like particles using an inducible HEK-293 stable cell line.

    Science.gov (United States)

    Venereo-Sanchez, Alina; Simoneau, Melanie; Lanthier, Stéphane; Chahal, Parminder; Bourget, Lucie; Ansorge, Sven; Gilbert, Rénald; Henry, Olivier; Kamen, Amine

    2017-07-24

    Influenza virus dominant antigens presentation using virus like particle (VLP) approach is attractive for the development of new generation of influenza vaccines. Mammalian cell platform offers many advantages for VLP production. However, limited attention has been paid to the processing of mammalian cell produced VLPs. Better understanding of the production system could contribute to increasing the yields and making large-scale VLP vaccine manufacturing feasible. In a previous study, we have generated a human embryonic kidney HEK-293 inducible cell line expressing Hemagglutinin (HA) and Neuraminidase (NA), which was used to produce VLPs upon transient transfection with a plasmid containing HIV-1 Gag. In this work, to streamline the production process, we have developed a new HEK-293 inducible cell line adapted to suspension growth expressing the three proteins HA, NA (H1N1 A/PR/8/1934) and the Gag fused to GFP for monitoring the VLP production. The process was optimized to reach higher volumetric yield of VLPs by increasing the cell density at the time of induction without sacrificing the cell specific productivity. A 5-fold improvement was achieved by doing media evaluation at small scale. Furthermore, a 3-L perfusion bioreactor mirrored the performance of small-scale shake flask cultures with sequential medium replacement. The cell density was increased to 14×10 6 cells/ml at the time of induction which augmented by 60-fold the volumetric yield to 1.54×10 10 Gag-GFP fluorescent events/ml, as measured by flow cytometry. The 9.5-L harvest from the perfusion bioreactor was concentrated by tangential flow filtration at low shear rate. The electron micrographs revealed the presence of VLPs of 100-150nm with the characteristic dense core of HIV-1 particles. The developed process shows the feasibility of producing high quantity of influenza VLPs from an inducible mammalian stable cell line aiming at large scale vaccine manufacturing. Crown Copyright © 2017

  4. Metabolic and kinetic analyses of influenza production in perfusion HEK293 cell culture.

    Science.gov (United States)

    Petiot, Emma; Jacob, Danielle; Lanthier, Stephane; Lohr, Verena; Ansorge, Sven; Kamen, Amine A

    2011-09-01

    Cell culture-based production of influenza vaccine remains an attractive alternative to egg-based production. Short response time and high production yields are the key success factors for the broader adoption of cell culture technology for industrial manufacturing of pandemic and seasonal influenza vaccines. Recently, HEK293SF cells have been successfully used to produce influenza viruses, achieving hemagglutinin (HA) and infectious viral particle (IVP) titers in the highest ranges reported to date. In the same study, it was suggested that beyond 4 × 10(6) cells/mL, viral production was limited by a lack of nutrients or an accumulation of toxic products. To further improve viral titers at high cell densities, perfusion culture mode was evaluated. Productivities of both perfusion and batch culture modes were compared at an infection cell density of 6 × 10(6) cells/mL. The metabolism, including glycolysis, glutaminolysis and amino acids utilization as well as physiological indicators such as viability and apoptosis were extensively documented for the two modes of culture before and after viral infection to identify potential metabolic limitations. A 3 L bioreactor with a perfusion rate of 0.5 vol/day allowed us to reach maximal titers of 3.3 × 10(11) IVP/mL and 4.0 logHA units/mL, corresponding to a total production of 1.0 × 10(15) IVP and 7.8 logHA units after 3 days post-infection. Overall, perfusion mode titers were higher by almost one order of magnitude over the batch culture mode of production. This improvement was associated with an activation of the cell metabolism as seen by a 1.5-fold and 4-fold higher consumption rates of glucose and glutamine respectively. A shift in the viral production kinetics was also observed leading to an accumulation of more viable cells with a higher specific production and causing an increase in the total volumetric production of infectious influenza particles. These results confirm that the HEK293SF cell is an excellent

  5. Attenuation Effects of MR Headphones During Brain PET/MR Studies.

    Science.gov (United States)

    Ferguson, Aaron; McConathy, Jonathan; Su, Yi; Hewing, Debra; Laforest, Richard

    2014-06-01

    PET/MR offers potential advantages over PET/CT that are currently under investigation. One of the challenges of PET/MR is attenuation correction, as there is no simple correlation between MR signal intensity and the attenuation of 511-keV photons detected in PET. Currently, dedicated MR sequences are used to segment voxels into categories that are then assigned a predetermined attenuation coefficient. MR hardware such as the imaging table, coils, and headphones are also sources of attenuation. The purpose of this study was to evaluate the effect of MR-compatible headphones on average activity concentration measured with PET/MR. We also present a practical approach to correct for the attenuation effect of headphones using a CT-derived attenuation map. Phantom studies were performed using a 3-L cylindric phantom containing 55 MBq of (18)F-FDG and water. Images were acquired on a PET/MR device in 2 settings-one with the PET/MR headphones on and one with the headphones off. Phantom images were analyzed to compare activity concentration with headphones on and off. A high-resolution CT and (57)Co transmission scan was obtained to construct a PET attenuation map of the headphones. The resulting attenuation map was registered to the phantom data to evaluate the ability to correct for headphone attenuation. One human subject was scanned to evaluate the clinical impact of headphone attenuation and the accuracy of the proposed correction. Activity concentrations measured in the phantom were reduced by as much as 13.2% with headphones on compared with headphones off. Using the modified attenuation maps that account for attenuation from the headphones resulted in a decrease in the headphone attenuation effect from a maximum of 13.2% to 1.9%. Comparable attenuation effects were observed in the human brain and were similarly reduced with correction using the modified attenuation maps. MR-safe headphones were a source of attenuation on our PET/MR phantom and human studies

  6. Influence of agitation and aeration in xanthan production by Xanthomonas campestris pv pruni strain 101 Influencia de la agitación y la aireación en la producción de xantano por Xanthomonas campestris pv. pruni cepa 101

    Directory of Open Access Journals (Sweden)

    C. D. Borges

    2008-06-01

    Full Text Available Production, viscosity, and chemical composition of xanthan synthesized by bacterium Xanthomonas campestris pv pruni strain 101 were evaluated in bioreactor systems. During the process, the volumetric oxygen mass transfer coefficient (kLa and the biomass were determined and the pH was monitored. The cultures were grown in a 3 l bioreactor, with aeration and agitation varying as follows: conditions (A 300 rpm, 3 vvm and (B 200 rpm, 2 vvm, at 28 °C. Our results showed that gum production was dependent on kLa, with a maximum yield of 8.15 g/l at 300 rpm, 3 vvm, 54 h of fermentation, kLa 21.4/h, while biomass was not affected. All aqueous solutions of 3% (w/v xanthans synthesized showed a pseudoplastic behavior. The highest viscosity was reached under the strongest aeration/agitation conditions. All xanthan samples contained glucose, mannose, rhamnose, and glucuronic acid as their main components. The highest agitation and aeration rates used under condition A (300 rpm and 3 vvm favorably influenced the yield and viscosity of the xanthan produced by bacterium X. campestris pv pruni 101 at different fermentation times.Se evaluó la producción, viscosidad y composición química del xantano sintetizado por la bacteria Xanthomonas campestris pv. pruni cepa 101 en un fermentador. Durante el proceso se controló el pH y se determinaron el coeficiente de transferencia de masa de oxígeno (kLa y la producción de masa celular seca. Los cultivos se realizaron en un fermentador de 3 l variando la aireación y la agitación, en las siguientes condiciones: (A 300 rpm, 3 vvm y (B 200 rpm, 2 vvm; a 28 °C. Nuestros resultados mostraron que la producción de goma fue dependiente del kLa, con un rendimiento máximo de 8,15 g/l a 300 rpm y 3 vvm a las 54 h de fermentación, kLa de 21,4/h, mientras que la producción de biomasa no se afectó. Todas las soluciones acuosas de xantano al 3% (m/v sintetizadas presentaron comportamiento pseudoplástico. La mayor

  7. Métodos de aplicação de diferentes concentrações de H2O2 em milho sob estresse salino

    Directory of Open Access Journals (Sweden)

    Evandro Manoel da Silva

    2016-08-01

    randomized completely design in a factorial 5 x 2 corresponding the hydrogen peroxide concentrations (H2O2 0; 5; 10; 15:20 µmol L-1 applied in sowing by irrigation water and foliar spray at 15 days after sowing (DAS, with four repetitions and experimental unit consisting of vessel a 3 L containing two plants hybrid maize 4051. The plants were irrigated with EC water of 2.0 dS m-1. The 28 DAS  it was found what the application H2O2 at sowing and foliar spraying promote acclimatization of maize plants at salinity irrigation water, increasing tolerance to salt stress.  The more initial growth of maize is obtained in H2O2 concentrations ranging from 7 to 8 µmol L-1, being more efficient the application at sowing. The pretreatment of maize plants with H2O2 from 15 µmol L-1 increasing stress, promoting further damage to vegetative growth.

  8. TANK 7 CHARACTERIZATION AND WASHING STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pareizs, J.; Click, D.

    2010-02-04

    A 3-L PUREX sludge sample from Tank 7 was characterized and then processed through a series of inhibited water washes to remove oxalate, sodium, and other soluble ions. Current plans use Tank 7 as one of the feed sources for Sludge Batch 7 (SB7). Tank 7 is high in oxalate due to the oxalic acid cleaning of the sludge heels from Tanks 5 and 6 and subsequent transfer to Tank 7. Ten decant and nine wash cycles were performed over a 47 day period at ambient temperature. Initially, seven decants and seven washes were completed based on preliminary estimates of the number of wash cycles required to remove the oxalate in the sludge. After reviewing the composition data, SRNL recommended the completion of 2 or 3 more decant/wash cycles to ensure all of the sodium oxalate had redissolved. In the first 7 washes, the slurry oxalate concentration was 12,300 mg/kg (69.6% oxalate removal compared to 96.1% removal of the other soluble ions). After all ten decants were complete, the slurry oxalate concentration was 3,080 mg/kg (89.2% oxalate removal compared to 99.0% of the other soluble ions). The rate of dissolution of oxalate increased significantly with subsequent washes until all of the sodium oxalate had been redissolved after seven decant/wash cycles. The measured oxalate concentrations agreed very well with LWO predictions for washing of the Tank 7 sample. Highlights of the analysis and washing of the Tank 7 sample include: (1) Sodium oxalate was detected in the as-received filtered solids. 95% of the oxalate was insoluble (undissolved) in the as-received slurry. (2) No sodium oxalate was detected in the post-wash filtered solids. (3) Sodium oxalate is the last soluble species that redissolves during washing with inhibited water. In order to significantly reduce the sodium oxalate concentration, the sludge must be highly washed, leaving the other soluble anions and cations (including sodium) very low in concentration. (4) The post-wash slurry had 1% of the soluble anions

  9. Identificação de biótipos de azevém (Lolium multiflorum resistentes ao herbicida glyphosate em pomares de maçã Identification of glyphosate-resistant ryegrass (Lolium multiflorum biotypes in apple orchards

    Directory of Open Access Journals (Sweden)

    L. Vargas

    2004-12-01

    Full Text Available O glyphosate é um herbicida de amplo espectro utilizado há mais de 15 anos em pomares de maçã na região de Vacaria-RS, para manejo da vegetação nas linhas da cultura. São realizadas, em geral, três a quatro aplicações por ciclo e a dose normalmente utilizada é de 720 a 1.080 g e.a. ha-1 de glyphosate (2 a 3 L ha-1 do produto comercial. O azevém (Lolium multiflorum é uma planta daninha comum em pomares e, tradicionalmente, sensível ao glyphosate. Entretanto, nos últimos anos a ocorrência de plantas de azevém que, após receberem o tratamento com glyphosate, não manifestam sintomas significativos de toxicidade sugere que elas adquiriram resistência ao produto. Assim, com o objetivo de avaliar a resposta de uma população de plantas de azevém ao glyphosate, foram realizados três experimentos: um em campo e dois em casa de vegetação. No experimento em campo os tratamentos avaliados constaram de doses crescentes de glyphosate (0, 360, 720, 1.440, 2.880, 5.760 e 11.520 g e.a. ha-1, e os herbicidas paraquat, glufosinate, haloxyfop e diclofop foram empregados como produtos-padrão, aplicados em dois estádios vegetativos do azevém. No experimento em casa de vegetação, os tratamentos constaram de doses crescentes de glyphosate (0, 360, 720, 1.440, 2.880 e 5.760 g e.a. ha-1 mais os herbicidas testemunhas, aplicados sobre plantas do biótipo considerado resistente e de um sensível. No segundo experimento realizado em casa de vegetação foram avaliados tratamentos contendo glyphosate (720, 1.440, 2.880, 720 + 720 e 720 + 1.440 g e.a. ha-1, em aplicações únicas e seqüenciais, mais os herbicidas paraquat, glufosinate, haloxyfop, clethodim, sethoxydim, diclofop, fenoxaprop, fluazifop, paraquat + diuron, atrazine + simazine, trifluralin e metolachlor. A toxicidade dos tratamentos herbicidas foi avaliada aos 15, 30 e 45 DAT (dias após tratamento. Os resultados obtidos nos experimentos em campo e em casa de vegetação, de forma

  10. Produção de isomaltulose a partir da transformação enzimática da sacarose, utilizando-se Erwinia sp D12 imobilizada com alginato de cálcio Production of isomaltulose from enzymatic transformation of sucrose, using Erwinia sp D12 immobilized with calcium alginate

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leite Moraes

    2005-03-01

    used to produce chocolate, chewing gum and candy. The isomaltulose is also used to produce isomalt, a mixture of alcohol-sugar with a low caloric value and low cariogenicity power. In the study of the influence of the components of the culture medium in the glucosyltransferase production in flasks under shaking conditions, the highest activity (12.8 units of activity /mL of culture medium was obtained in culture medium A, containing molasses 12% (p/v of the total soluble solid, peptone 4% (p/v and meat extract 0,4% (p/v. In the study of the effects of time and temperature on the fermentation of Erwinia sp D12 in a 3L New Brunswick fermentor containing culture medium A. the highest glucosyltransferase activity (15.6 units of activity /mL of culture medium was obtained during the exponential growth phase after 8 hours of fermentation at 30ºC. In the production of isomaltulose from enzymatic transformation of sucrose by Erwinia sp D12 cells immobilized in calcium alginate, the effects of the temperature (25-35ºC and substrate concentration (12,5-60% were evaluated, the yield of isomaltulose was approximately 50%, from sucrose solutions ranging from 20 to 30% at 35ºC. Excess of sucrose affected the activity of the immobilized cell, decreasing conversion of sucrose into isomaltulose. The syrup obtained was purified through Ion Exchange Chromatography, and the crystallization of eluent by the decreasing temperature. The obtained crystals presented 91,39% of isomaltulose.

  11. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    ECAwECAwECAwECAwECAwECAwECAwj/AAEIHAgA14wAHVQRXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmyZEWDSxgaDMAywAmTMGPKnEmzps2bOHPq1GkQzcJEAVICiBXA586jSJMqXcq0qdOnDWMlAETwU9CBvrhQhcq1q9evYMOKNfkp4UCDL8eqXcu2rdu3Nn1VYblBTFqBiabC3cu3r9+/bImmtSoUgFyzGuUaVdoTsOPHD2MpCCQTF400kJnGWiCo4WGFQ/UKJFo44ycJl5YmQp25dWtfVlDAVDQBk+ulvq6kYGh18enUAntvFDbnLtLVwG8r/wubSUnatpcnzd2EIHHWAIgjBpB3a0ZcObwf/yW6WLp5uJIpi5QlQM35pJs7C/wsECXB7hvLgj6qff/7/2oJQ4cHq4QkIIEA7jRMHR6wMl8VZhFXVFUTCkTcYkCxVN6Dpe1kn0MrtWTcUyGyNGJSJboUVi41tBSAbDV9MllIljnnkC40uKjCWrjY4OIKS4HCgHzXXSLMHn4UhQsRChkU4Ryi6QdAJOKNJhpSn1z501VDVUgTeFU+BJRQ5MEEZkVjjuZlTbnoMAiaAzgxGgGY1VRjSDKqx1AiBNgYSwFrHIXLDvJNtIgB1QEwywFsLLWLDYkWdNBUciG0X6UtIRYLdg0lcmJORTZEGFZa2XSmRKPOV6pJp6LKpWGr2v/U5psThRInVl3QShNsHxTokYAURLeQKH1i5YWuOQ1aaESfIDrQL14QgtsVIDj4kVXbYVXFhjrRtxBaSLX6ELimhjcRuUjNOhGLMO4kYAXCcgQbggvhuGNTyp5rA5BcLTiBJgbO0SEAvzE2w6f4CWpuRAnbuTDDWu6krkSJNICsThXryZFl9/40I76EGjqkV4k4sKxGn6REXIfEfZqfizCzNHB9BzPkrYcPO3TzlznrDKF/ErspEWwdtJJUxh9xbDMW9DKVb0S/ZNEgySZ7lKGK3/bs4QwDk4ai1gt5fZO4Domd1MQQxUKAnEnlmTQNNhL0Z9xOhxzRopFyJeTJJEn/afDAwuFkVcwuAr4mWYQXLurhNtmaOEtsL2RrnVh+XBUBjwdAd31wM0RsoG0bkHneAzXbqFd7xyTXzGcdlG1J6A7U8EIScmoRUbY3RPaeEQ9Ue3JdBpA7RbvzHqaFcwi/yUC53NBSG8w7j/VFaItpsUPC2DGABLbB9mJwBCRAWfYDtGQj+eZ32oDGGyntMfv15hhAx5XZDdEiI49rQ/n8PjTLA3zrSMkCGBKpHI8gH5rI4B7HutjhpXdnARtF/DYuCcoOgvXJGZh8QQagEc+CFzxgQXhQiIHQYgDQAwYYlgcAW6VQC5GrSPUcUrGLIVBoc+JeduxAOVwIzTJ18uGb/4C4p/W9jX54sZznCBAoX2Bhc6yy30PwR0AAjKIAjYoa6WgywJh4SiKNkcnOCOalC5XuSVzSj4SWsJLCJIJ1CAQhGRdjxuBs52ovWWMbwSjHOfpuDr4JgSsE0rwYEvIGkWNEBwZpkRk2ZHK+swP0ghMCowVHCVtwjjD6wInSVbIgl6FkgYhoHTrA6yPz8tVAPjeQYdDBDQLBUdwS0TQctQR0TixfACLFJ5aAblxSdIjpfFcHWBYEUgNZhAhYIYw6EIANvLABBATRCAM8QSCHatShrpkdZwYASM18ZjSnSRB/AcwkipGIAeU2vI6ECoEzeNKVvjglQNDzi6aw5xGYJP+lOkKkePCUp3foKbu75DMR+1QFBUHURycphDjzvAsjJMBCgky0oopkpAxxCBEWFW2HRsQLCwgSCUM4wgOtwEURLMkdKODllC19abwMY4VefQRYM8WRTV0Z0kRMoBOyo9efAhULCwDVidXBBQ6M+YkRvGJKNvxWMHVngw84qJkNkM8iLuCJZC5TEodoBBKIcIoywAIYWXiDFc9whyj04g+kcKkWFYUBT4BVrERAhVkJkptqwaRgzNrOGK/VO0yxBDHpRJ5PEtsfgrEGFz4AHkNFqC0XIXZb1hFYZs0C2Ap