WorldWideScience

Sample records for fyn regulatory mechanisms

  1. Co-localization of Fyn with CD3 complex, CD45 or CD28 depends on different mechanisms.

    Science.gov (United States)

    zur Hausen, J D; Burn, P; Amrein, K E

    1997-10-01

    The Src family protein tyrosine kinase Fyn (p59fyn) plays an important role in thymocyte development and T cell receptor (TCR) signal transduction. Fyn has been shown to associate with the TCR-CD3 complex, the protein tyrosine phosphatase CD45 and several co-receptors such as CD28 which are crucial for initiating T cell activation and proliferation. The molecular basis of how Fyn is associated with these transmembrane proteins is largely unknown. To investigate the Fyn association with the TCR-CD3 complex, CD45 and CD28 at the molecular level, various Fyn/beta-galactosidase fusion proteins were constructed and expressed in Jurkat cells. Co-localization experiments applying antibody-induced co-capping and double immunofluorescence staining techniques were used to study the association of these fusion proteins with the TCR-CD3 complex, CD45 and CD28. Our results revealed that co-localization of Fyn with the TCR-CD3 complex requires the unique N terminus whereas co-localization with CD45 depends on the unique N terminus, the Src homology (SH)3- and a functional SH2 domain. CD28 co-localizes with Fyn molecules that contain the N terminus and a functional SH2 domain. These results suggest that Fyn association with the TCR-CD3 complex, CD45 and CD28 is mediated by different molecular mechanisms.

  2. Rescue of a trafficking defective human pacemaker channel via a novel mechanism: roles of Src, Fyn, and Yes tyrosine kinases.

    Science.gov (United States)

    Lin, Yen-Chang; Huang, Jianying; Kan, Hong; Frisbee, Jefferson C; Yu, Han-Gang

    2009-10-30

    Therapeutic strategies such as using channel blockers and reducing culture temperature have been used to rescue some long QT-associated voltage-gated potassium Kv trafficking defective mutant channels. A hyperpolarization-activated cyclic nucleotide-gated HCN4 pacemaker channel mutant (D553N) has been recently found in a patient associated with cardiac arrhythmias including long QT. D553N showed the defective trafficking to the cell surface, leading to little ionic current expression (loss-of-function). We show in this report that enhanced tyrosine phosphorylation mediated by Src, Fyn, and Yes kinases was able to restore the surface expression of D553N for normal current expression. Src or Yes, but not Fyn, significantly increased the current density and surface expression of D553N. Fyn accelerated the activation kinetics of the rescued D553N. Co-expression of D553N with Yes exhibited the slowest activation kinetics of D553N. Src, Fyn, and Yes significantly enhanced the tyrosine phosphorylation of D553N. A combination of Src, Fyn, and Yes rescued the current expression and the gating of D553N comparable with those of wild-type HCN4. In conclusion, we demonstrate a novel mechanism using three endogenous Src kinases to rescue a trafficking defective HCN4 mutant channel (D553N) by enhancing the tyrosine phosphorylation of the mutant channel protein.

  3. Roles of Fyn in pancreatic cancer metastasis.

    Science.gov (United States)

    Chen, Zhi-Yu; Cai, Lei; Bie, Ping; Wang, Shu-Guang; Jiang, Yan; Dong, Jia-Hong; Li, Xiao-Wu

    2010-02-01

    Src family kinases have been suggested to be associated with the metastasis of tumors, but their related mechanisms remain unclear. The aims of the present study were to assess the possible mechanisms by which the inhibition of Fyn activation regulates pancreatic cancer metastasis. We examined the expressions of Fyn in human pancreatic cancer tissues by immunohistochemistry and systematically investigated the relationship between Fyn expression and pancreatic cancer metastasis. A nude mouse xenograft model induced by BxPC3 cells with or without the inhibition of Fyn activation was used to explore the effect of the inhibition of Fyn on metastasis in vivo. Methyl thiazolyl tetrazolium and terminal deoxynucleotidyl transferase-labeling assays were used to examine the effect of the inhibition of Fyn on the cell proliferation of BxPC3 pancreatic cancer cells in vitro. Reverse transcription polymerase chain reaction and Western blot analysis were performed to explore the possible mechanism of Fyn-induced metastasis. We found that the upregulation of Fyn expression was correlated with human pancreatic cancer metastasis. In BxPC3 pancreatic cancer cells, the inhibition of Fyn activation by kinase-dead Fyn transfection decreased liver metastasis in nude mice. Further analyses showed that Fyn activity modulated pancreatic cell metastasis through the regulation of proliferation and apoptosis. Our results suggest a possible mechanism by which Fyn activity regulates cell proliferation and apoptosis that exerts an effect on pancreatic cancer metastasis.

  4. The Cbl Proto-Oncogene Product Negatively Regulates the Src-Family Tyrosine Kinase Fyn by Enhancing Its Degradation

    OpenAIRE

    2000-01-01

    Fyn is a prototype Src-family tyrosine kinase that plays specific roles in neural development, keratinocyte differentiation, and lymphocyte activation, as well as roles redundant with other Src-family kinases. Similar to other Src-family kinases, efficient regulation of Fyn is achieved through intramolecular binding of its SH3 and SH2 domains to conserved regulatory regions. We have investigated the possibility that the tyrosine kinase regulatory protein Cbl provides a complementary mechanism...

  5. Mice lacking the IFN-gamma receptor or fyn develop severe experimental autoimmune uveoretinitis characterized by different immune responses.

    Science.gov (United States)

    Fukushima, Atsuki; Yamaguchi, Tomoko; Ishida, Waka; Fukata, Kazuyo; Udaka, Keiko; Ueno, Hisayuki

    2005-06-01

    significantly higher in GRKO and fyn KO mice than in WT mice, suggesting that endogenous IFN-gammaR and fyn negatively regulate the development of EAU. The different cytokine production patterns by the GRKO and fyn KO mice indicate that the negative regulatory mechanism mediated by IFN-gammaR and fyn may differ.

  6. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  7. Tyrosine Phosphorylation of Pyk2 Is Selectively Regulated by Fyn During TCR Signaling

    OpenAIRE

    1997-01-01

    The Src family protein tyrosine kinases (PTKs), Lck and Fyn, are coexpressed in T cells and perform crucial functions involved in the initiation of T cell antigen receptor (TCR) signal transduction. However, the mechanisms by which Lck and Fyn regulate TCR signaling are still not completely understood. One important question is whether Lck and Fyn have specific targets or only provide functional redundancy during TCR signaling. We have previously shown that Lck plays a major role in the tyros...

  8. Fyn Kinase Regulates Microglial Neuroinflammatory Responses in Cell Culture and Animal Models of Parkinson's Disease.

    Science.gov (United States)

    Panicker, Nikhil; Saminathan, Hariharan; Jin, Huajun; Neal, Matthew; Harischandra, Dilshan S; Gordon, Richard; Kanthasamy, Kavin; Lawana, Vivek; Sarkar, Souvarish; Luo, Jie; Anantharam, Vellareddy; Kanthasamy, Anumantha G; Kanthasamy, Arthi

    2015-07-08

    Sustained neuroinflammation mediated by resident microglia is recognized as a key pathophysiological contributor to many neurodegenerative diseases, including Parkinson's disease (PD), but the key molecular signaling events regulating persistent microglial activation have yet to be clearly defined. In the present study, we examined the role of Fyn, a non-receptor tyrosine kinase, in microglial activation and neuroinflammatory mechanisms in cell culture and animal models of PD. The well-characterized inflammogens LPS and TNFα rapidly activated Fyn kinase in microglia. Immunocytochemical studies revealed that activated Fyn preferentially localized to the microglial plasma membrane periphery and the nucleus. Furthermore, activated Fyn phosphorylated PKCδ at tyrosine residue 311, contributing to an inflammogen-induced increase in its kinase activity. Notably, the Fyn-PKCδ signaling axis further activated the LPS- and TNFα-induced MAP kinase phosphorylation and activation of the NFκB pathway, implying that Fyn is a major upstream regulator of proinflammatory signaling. Functional studies in microglia isolated from wild-type (Fyn(+/+)) and Fyn knock-out (Fyn(-/-)) mice revealed that Fyn is required for proinflammatory responses, including cytokine release as well as iNOS activation. Interestingly, a prolonged inflammatory insult induced Fyn transcript and protein expression, indicating that Fyn is upregulated during chronic inflammatory conditions. Importantly, in vivo studies using MPTP, LPS, or 6-OHDA models revealed a greater attenuation of neuroinflammatory responses in Fyn(-/-) and PKCδ (-/-) mice compared with wild-type mice. Collectively, our data demonstrate that Fyn is a major upstream signaling mediator of microglial neuroinflammatory processes in PD. Parkinson's disease (PD) is a complex multifactorial disease characterized by the progressive loss of midbrain dopamine neurons. Sustained microglia-mediated neuroinflammation has been recognized as a major

  9. Post-translational regulation of COX2 activity by FYN in prostate cancer cells

    OpenAIRE

    Alexanian, Anna; Miller, Bradley; Chesnik, Marla; Mirza, Shama; Sorokin, Andrey

    2014-01-01

    While increased COX2 expression and prostaglandin levels are elevated in human cancers, the mechanisms of COX2 regulation at the post-translational level are unknown. Initial observation that COX2 forms adduct with non-receptor tyrosine kinase FYN, prompted us to study FYN-mediated post-translational regulation of COX2. We found that FYN increased COX2 activity in prostate cancer cells DU145, independent of changes in COX2 or COX1 protein expression levels. We report that FYN phosphorylates h...

  10. Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis

    Science.gov (United States)

    Kim, Jong-Eun; Roh, Eunmiri; Lee, Mee Hyun; Yu, Dong Hoon; Kim, Dong Joon; Lim, Tae-Gyu; Jung, Sung Keun; Peng, Cong; Cho, Yong-Yeon; Dickinson, Sally; Alberts, Dave; Bowden, G. Tim; Einspahr, Janine; Stratton, Steven P; Curiel, Clara; Bode, Ann M.; Lee, Ki Won; Dong, Zigang

    2015-01-01

    Solar ultraviolet (UV) light is a major etiological factor in skin carcinogenesis, with solar UV-stimulated signal transduction inducing pathological changes and skin damage. The primary sensor of solar UV-induced cellular signaling has not been identified. We use an experimental system of solar simulated light (SSL) to mimic solar UV and we demonstrate that Fyn is a primary redox sensor involved in SSL-induced signal transduction. Reactive oxygen species (ROS) generated by SSL exposure directly oxidize Cys488 of Fyn, resulting in increased Fyn kinase activity. Fyn oxidation was increased in mouse skin after SSL exposure, and Fyn knockout (Fyn−/−) mice formed larger and more tumors compared to Fyn wildtype mice when exposed to SSL for an extended period of time. Murine embryonic fibroblasts (MEFs) lacking Fyn as well as cells in which Fyn expression was knocked down were resistant to SSL-induced apoptosis. Furthermore, cells expressing mutant Fyn (C448A) were resistant to SSL-induced apoptosis. These findings suggest that Fyn acts as a regulatory nexus between solar UV, ROS and signal transduction during skin carcinogenesis. PMID:26686094

  11. Fyn is an important molecule in cancer pathogenesis and drug resistance

    DEFF Research Database (Denmark)

    Elias, Daniel; Ditzel, Henrik

    2015-01-01

    and breast cancers. Recent studies have demonstrated the importance of Fyn in the resistance or susceptibility of cancer cells to some anti-cancer treatments. We have recently shown that Fyn is upregulated in tamoxifen-resistant breast cancer cell lines and demonstrated that it plays a key role...... in the resistance mechanism. Further, we found that the cellular localization of Fyn within cancer cells of primary ER+ breast tumor tissue may serve as a prognostic marker. Understanding the role of Fyn in initiation and progression of cancer and its contribution to resistance against anti-cancer therapeutic...... agents may facilitate the development and use of novel drugs targeting Fyn for better management of malignancies....

  12. Post-translational regulation of COX2 activity by FYN in prostate cancer cells.

    Science.gov (United States)

    Alexanian, Anna; Miller, Bradley; Chesnik, Marla; Mirza, Shama; Sorokin, Andrey

    2014-06-30

    While increased COX2 expression and prostaglandin levels are elevated in human cancers, the mechanisms of COX2 regulation at the post-translational level are unknown. Initial observation that COX2 forms adduct with non-receptor tyrosine kinase FYN, prompted us to study FYN-mediated post-translational regulation of COX2. We found that FYN increased COX2 activity in prostate cancer cells DU145, independent of changes in COX2 or COX1 protein expression levels. We report that FYN phosphorylates human COX2 on Tyr 446, and while corresponding phospho-mimetic COX2 mutation promotes COX2 activity, the phosphorylation blocking mutation prevents FYN-mediated increase in COX2 activity.

  13. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene

    OpenAIRE

    1997-01-01

    To examine the physiological role of the Fyn tyrosine kinase in neurons, we generated transgenic mice that expressed a fyn cDNA under the control of the calcium/calmodulin-dependent protein kinase IIα promoter. With this promoter, we detected only low expression of Fyn in the neonatal brain. In contrast, there was strong expression of the fyn-transgene in neurons of the adult forebrain. To determine whether the impairment of long-term potentiation (LTP) observed in adult fyn-deficient mice wa...

  14. The Src family kinases: distinct functions of c-Src, Yes, and Fyn in the liver.

    Science.gov (United States)

    Reinehr, Roland; Sommerfeld, Annika; Häussinger, Dieter

    2013-04-01

    The Src family kinases Yes, Fyn, and c-Src play a pivotal role in regulating diverse liver functions such as bile flow, proteolysis, apoptosis, and proliferation and are regulated by anisoosmotic cell volume changes, death receptor ligands, and bile acids. For example, cell swelling leads to an integrin-sensed and focal adhesion kinase-mediated activation of c-Src-triggering choleresis, proteolysis inhibition, regulatory volume decrease via p38MAPK and proliferation via the activation of the epidermal growth factor receptor and extracellular regulated kinases 1 and 2. In contrast, hepatocyte shrinkage generates an almost instantaneous oxidative stress response that triggers the activation of c-Jun N-terminal kinase and the Src family kinases Fyn and Yes. Whereas Fyn activation mediates cholestasis, Yes triggers CD95 activation and apoptosis. This review will discuss the role of Src family kinases in the regulation of liver function with emphasis on their role in osmo-signaling and bile acid signaling.

  15. A study of bacterial gene regulatory mechanisms

    DEFF Research Database (Denmark)

    Hansen, Sabine

    the different regulatory mechanisms affect system dynamics. We have designed a synthetic gene regulatory network (GRN) in bacterial cells that enables us to study the dynamics of GRNs. The results presented in this PhD thesis show that model equations based on the established mechanisms of action of each...... of a particular type of regulatory mechanism. The synthetic system presented in this thesis is, to our knowledge, the first of its kind to allow a direct comparison of the dynamic behaviors of gene regulatory networks that employ different mechanisms of regulation. In addition to studying the dynamic behavior...... of GRNs this thesis also provided the first evidence of the sensor histidine kinase VC1831 being an additional player in the Vibrio cholerae quorum sensing (QS) GRN. Bacteria use a process of cell-cell communication called QS which enable the bacterial cells to collectively control their gene expression...

  16. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons.

    Science.gov (United States)

    Hao, Lingyun; Wei, Xuewen; Guo, Peng; Zhang, Guangyi; Qi, Suhua

    2016-07-12

    Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.

  17. Fyn kinase controls Fc{epsilon}RI receptor-operated calcium entry necessary for full degranulation in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Miranda, Elizabeth; Ibarra-Sanchez, Alfredo [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico); Gonzalez-Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico)

    2010-01-22

    IgE-antigen-dependent crosslinking of the high affinity IgE receptor (Fc{epsilon}RI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca{sup 2+}) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls Fc{epsilon}RI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed Fc{epsilon}RI-dependent Ca{sup 2+} mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca{sup 2+} influx after Fc{epsilon}RI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd{sup 3+}) partially blocked Fc{epsilon}RI-induced Ca{sup 2+} influx in WT cells but, in contrast, completely inhibited Ca{sup 2+} mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca{sup 2+} channels (2-aminoethoxyphenyl-borane, 2-APB) blocked Fc{epsilon}RI-induced maximal Ca{sup 2+} rise in WT but not in Fyn -/- cells. Ca{sup 2+} entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in Fc{epsilon}RI-stimulated mast cells.

  18. The Role of TLR4 and Fyn Interaction on Lipopolysaccharide-Stimulated PAI-1 Expression in Astrocytes.

    Science.gov (United States)

    Ko, Hyun Myung; Lee, Sung Hoon; Kim, Ki Chan; Joo, So Hyun; Choi, Wahn Soo; Shin, Chan Young

    2015-08-01

    Plasminogen activator inhibitor-1 (PAI-1) is an endogenous inhibitor of tissue plasminogen activator (tPA) that acts as a neuromodulator in various neurophysiological and pathological conditions. Several researchers including us reported the induction of PAI-1 during inflammatory condition; however, the mechanism regulating PAI-1 induction is not yet clear. In this study, we investigated the role of non-receptor tyrosine kinase Fyn in the regulation of lipopolysaccharide (LPS)-induced upregulation of PAI-1 in rat primary astrocyte. The activation of toll-like receptor 4 (TLR4) signaling, induced by its ligand LPS, stimulated a physical interaction between TLR4 and Fyn along with phosphorylation of tyrosine residue in both molecules as determined by co-immunoprecipitation experiments. Immunofluorescence staining also showed increased co-localization of TLR4-Fyn on cultured rat primary astrocytes after LPS treatment. The increased TRLR4-Fyn interaction induced expression of PAI-1 through the activation of PI3k/Akt/NFĸB pathway. Treatment with Src kinase inhibitor (PP2) or transfection of Fyn small interfering RNA (siRNA) into cultured rat primary astrocytes inhibited phosphorylation of tyrosine residue of TLR4 and blocked the interaction between TLR4 and Fyn resulting to the inhibition of LPS-induced expression of PAI-1. The activation of PI3K/Akt/NFĸB signaling cascades was also inhibited by Fyn knockdown in rat primary astrocytes. The induction of PAI-1 in rat primary astrocytes, which resulted in downregulation of tPA activity in culture supernatants, inhibited neurite outgrowth in cultured rat primary cortical neuron. The inhibition of neurite extension was prevented by PP2 or Fyn siRNA treatment in rat primary astrocytes. These results suggest the critical physiological role of TRL4-Fyn interaction in the modulation of PAI-1-tPA axis in astrocytes during neuroinflammatory responses such as ischemia/reperfusion injuries.

  19. Gene regulatory mechanisms in infected fish

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Hajiabadi, Seyed Amir Hossein Jalali; Kristensen, Lasse Bøgelund Juel

    2011-01-01

    This talk will highlight the regulatory mechanisms of gene expression especially the programmed form of mRNA decay which is known as RNA interference (RNAi) and how this and other mechanisms contribute to the regulation of genes involved in immunity. In the RNAi mechanism small double stranded RNA...... whole pathways for the fine-tuning of physiological states like immunological reaction. But miRNAs are themselves under control of regulatory sequences for their timed expression. We will give an example of the finding of two rainbow trout microRNAs, which are up-regulated in the liver during infection...

  20. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration.

    Science.gov (United States)

    Feng, Ji-Feng; Gao, Xiao-Fei; Pu, Ying-Yan; Burnstock, Geoffrey; Xiang, Zhenghua; He, Cheng

    2015-09-01

    Recruitment of oligodendrocyte precursor cells (OPCs) to the lesions is the most important event for remyelination after central nervous system (CNS) injury or in demyelinating diseases. However, the underlying molecular mechanism is not fully understood. In the present study, we found high concentrations of ATP could increase the number of migrating OPCs in vitro, while after pretreatment with oxidized ATP (a P2X7 receptor antagonist), the promotive effect was attenuated. The promotive effect of 2'(3')-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) (a P2X7 receptor agonist) was more potent than ATP. After incubation with BzATP, the activity of Fyn, one member of the Src family of kinases, was enhanced. Moreover, the interaction between P2X7 and Fyn was identified by co-immunoprecipitation. After blocking the activity of Fyn or down-regulating the expression of Fyn, the migration of OPCs induced by BzATP was inhibited. These data indicate that P2X7 receptors/Fyn may mediate ATP-induced OPC migration under pathological conditions.

  1. Regulatory mechanisms link phenotypic plasticity to evolvability.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J

    2016-04-18

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question - the optimal timing of bacterial sporulation - we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations.

  2. Induction of lytic pathways in T cell clones derived from wild-type or protein tyrosine kinase Fyn mutant mice.

    Science.gov (United States)

    Lancki, D W; Fields, P; Qian, D; Fitch, F W

    1995-08-01

    detected in CD8+ clones derived from fyn-/- mutant mice. Thus, Fyn is not required for expression of these components of antigen specific lysis by CD8+ alloreactive CTL clones. It appears that CD8+ clones that use multiple lytic mechanisms may selectively employ the perforin or Fas-based pathway depending on properties of the target cell or stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Tyrosine Phosphorylation of Tau by the Src Family Kinases Lck and Fyn

    Directory of Open Access Journals (Sweden)

    Bird Ian N

    2011-01-01

    Full Text Available Abstract Background Tau protein is the principal component of the neurofibrillary tangles found in Alzheimer's disease, where it is hyperphosphorylated on serine and threonine residues, and recently phosphotyrosine has been demonstrated. The Src-family kinase Fyn has been linked circumstantially to the pathology of Alzheimer's disease, and shown to phosphorylate Tyr18. Recently another Src-family kinase, Lck, has been identified as a genetic risk factor for this disease. Results In this study we show that Lck is a tau kinase. In vitro, comparison of Lck and Fyn showed that while both kinases phosphorylated Tyr18 preferentially, Lck phosphorylated other tyrosines somewhat better than Fyn. In co-transfected COS-7 cells, mutating any one of the five tyrosines in tau to phenylalanine reduced the apparent level of tau tyrosine phosphorylation to 25-40% of that given by wild-type tau. Consistent with this, tau mutants with only one remaining tyrosine gave poor phosphorylation; however, Tyr18 was phosphorylated better than the others. Conclusions Fyn and Lck have subtle differences in their properties as tau kinases, and the phosphorylation of tau is one mechanism by which the genetic risk associated with Lck might be expressed pathogenically.

  4. Fyn and Src are Effectors of Oncogenic EGFR Signaling in Glioblastoma Patients

    Science.gov (United States)

    Lu, Kan V.; Zhu, Shaojun; Cvrljevic, Anna; Huang, Tiffany T.; Sarkaria, Shawn; Ahkavan, David; Dang, Julie; Dinca, Eduard B.; Plaisier, Seema B.; Oderberg, Isaac; Lee, Yohan; Chen, Zugen; Caldwell, Jeremy S.; Xie, Yongmin; Loo, Joseph A.; Seligson, David; Chakravari, Arnab; Lee, Francis Y.; Weinmann, Roberto; Cloughesy, Timothy F.; Nelson, Stanley F.; Bergers, Gabriele; Graeber, Thomas; Furnari, Frank B.; James, C. David; Cavenee, Webster K.; Johns, Terrance G.; Mischel, Paul S.

    2009-01-01

    Activating EGFR mutations are common in many cancers including glioblastoma. However, clinical responses to EGFR inhibitors are infrequent and short-lived. We demonstrate that the Src family kinases (SFKs) Fyn and Src are effectors of oncogenic EGFR signaling, enhancing invasion and tumor cell survival in vivo. Expression of a constitutively active EGFR mutant, EGFRvIII, resulted in activating phosphorylation and physical association with Src and Fyn, promoting tumor growth and motility. Gene silencing of Fyn and Src limited EGFR and EGFRvIII-dependent tumor cell motility. The SFK inhibitor dasatinib inhibited invasion, promoted tumor regression and induced apoptosis in vivo, significantly prolonging survival of an orthotopic glioblastoma model expressing endogenous EGFRvIII. Dasatinib enhanced the efficacy of an anti-EGFR monoclonal antibody (mAb 806) in vivo, further limiting tumor growth and extending survival. Examination of a large cohort of clinical samples demonstrated frequent coactivation of EGFR and SFKs in glioblastoma patients. These results establish a mechanism linking EGFR signaling with Fyn and Src activation to promote tumor progression and invasion in vivo and provide rationale for combined anti-EGFR and anti-SFK targeted therapies. PMID:19690143

  5. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling.

    Science.gov (United States)

    Liu, Xiujie; Lu, Yan; Zhang, Yong; Li, Yuanyuan; Zhou, Jiazhen; Yuan, Yimin; Gao, Xiaofei; Su, Zhida; He, Cheng

    2012-05-18

    Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.

  6. Major regulatory mechanisms involved in sperm motility.

    Science.gov (United States)

    Pereira, Rute; Sá, Rosália; Barros, Alberto; Sousa, Mário

    2017-01-01

    The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.

  7. Mechanisms of T regulatory cell function.

    Science.gov (United States)

    Askenasy, Nadir; Kaminitz, Ayelet; Yarkoni, Shai

    2008-05-01

    Regulatory T cells (Treg) play a pivotal role in tolerance to self-antigens and tissue grafts, and suppression of autoimmune reactions. These cells modulate the intensity and quality of immune reactions through attenuation of the cytolytic activities of reactive immune cells. Treg cells operate primarily at the site of inflammation where they modulate the immune reaction through three major mechanisms: a) direct killing of cytotoxic cells through cell-to-cell contact, b) inhibition of cytokine production by cytotoxic cells, in particular interleukin-2, c) direct secretion of immunomodulatory cytokines, in particular TGF-beta and interleukin-10. In addition to differential contributions of these mechanisms under variable inflammatory conditions, mechanistic complexity and diversity evolves from the diverse tasks performed by various Treg cell subsets in different stages of the immune reaction. Here we attempt to integrate the current experimental evidence to delineate the major suppressive pathways of Treg cells.

  8. Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer.

    Science.gov (United States)

    Chen, Zhi-Yu; Cai, Lei; Zhu, Jin; Chen, Min; Chen, Jian; Li, Zhi-Hua; Liu, Xiang-De; Wang, Shu-Guang; Bie, Ping; Jiang, Peng; Dong, Jia-Hong; Li, Xiao-Wu

    2011-10-01

    The Src family kinase Fyn, heterogenous nuclear ribonucleoprotein (HnRNP) A2B1 and Sam68 are thought to be associated with the metastasis of tumors, but their roles in the regulation of apoptosis remain unclear. This study investigated the role of Fyn and its potential relationship with HnRNPA2B1 and Sam68 in the regulation of apoptosis in pancreatic cancer. Experimental design. We examined both the activity of Fyn and the expression of HnRNPA2B1 in human pancreatic cancer tissues and systematically investigated the apoptotic mechanisms induced by Fyn activity using multiple experimental approaches. We found that Fyn activity was increased in metastatic pancreatic cancer tissues. In the pancreatic cancer BxPc3 cell line, the inhibition of Fyn activity by kinase-dead Fyn downregulated HnRNPA2B1 expression. Further analysis showed that HnRNPA2B1 expression was associated with pancreatic cancer progression. In BxPc3 cells, HnRNPA2B1 bound to Bcl-x messenger RNA (mRNA), which affected splicing and therefore, the formation of Bcl-x(s). Downregulation of HnRNPA2B1 by RNA interference (RNAi) resulted in the increased formation of the pro-apoptotic Bcl-x(s) and promoted apoptosis of BxPc3 cells. In addition, deactivation of Fyn in BxPc3 cells reduced Sam68 phosphorylation. This resulted in increased binding between Sam68 and Bcl-x mRNA, promoting the formation of the anti-apoptotic Bcl-x(L). The knockdown of Sam68 by RNAi also increased the formation of Bcl-x(L). Finally, HnRNPA2B1 overexpression or Sam68 knockdown could rescue pancreatic cancer cells from apoptosis. Our results suggest a mechanism by which Fyn requires HnRNPA2B1 and Sam68 to coordinate and regulate apoptosis, thus promoting the proliferation and metastasis of pancreatic cancer.

  9. The prion protein constitutively controls neuronal store-operated Ca2+ entry through Fyn kinase

    Directory of Open Access Journals (Sweden)

    Agnese eDe Mario

    2015-10-01

    Full Text Available The prion protein (PrPC is a cell surface glycoprotein mainly expressed in neurons, whose misfolded isoforms generate the prion responsible for incurable neurodegenerative disorders. Whereas PrPC involvement in prion propagation is well established, PrPC physiological function is still enigmatic despite suggestions that it could act in cell signal transduction by modulating phosphorylation cascades and Ca2+ homeostasis. Because PrPC binds neurotoxic protein aggregates with high-affinity, it has also been proposed that PrPC acts as receptor for amyloid-β (Aβ oligomers associated with Alzheimer’s disease (AD, and that PrPC-Aβ binding mediates AD-related synaptic dysfunctions following activation of the tyrosine kinase Fyn.Here, use of gene-encoded Ca2+ probes targeting different cell domains in primary cerebellar granule neurons expressing, or not, PrPC allowed us to investigate whether PrPC regulates store-operated Ca2+ entry (SOCE and the implication of Fyn in this control. Our findings show that PrPC attenuates SOCE, and Ca2+ accumulation in the cytosol and mitochondria, by constitutively restraining Fyn activation and tyrosine phosphorylation of STIM1, a key molecular component of SOCE. This data establishes the existence of a PrPC-Fyn-SOCE triad in neurons.We also demonstrate that treating cerebellar granule and cortical neurons with soluble Aβ(1-42 oligomers abrogates the control of PrPC over Fyn and SOCE, suggesting a PrPC-dependent mechanism for Aβ-induced neuronal Ca2+ dyshomeostasis.

  10. Multiphoton imaging of renal regulatory mechanisms.

    Science.gov (United States)

    Peti-Peterdi, János; Toma, Ildikó; Sipos, Arnold; Vargas, Sarah L

    2009-04-01

    Most physiological functions of the kidneys, including the clearance of metabolic waste products, maintenance of body fluid, electrolyte homeostasis, and blood pressure, are achieved by complex interactions between multiple renal cell types and previously inaccessible structures in many organ parts that have been difficult to study. Multiphoton fluorescence microscopy offers a state-of-the-art imaging technique for deep optical sectioning of living tissues and organs with minimal deleterious effects. Dynamic regulatory processes and multiple functions in the intact kidney can be quantitatively visualized in real time, noninvasively, and with submicron resolution. This article reviews innovative multiphoton imaging technologies and their applications that provided the most complex, immediate, and dynamic portrayal of renal function-clearly depicting as well as analyzing the components and mechanisms involved in renal (patho)physiology.

  11. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    Directory of Open Access Journals (Sweden)

    Kenji Nakashima

    Full Text Available Hepatitis C virus (HCV infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV implied that NS5A was tyrosine phosphorylated by pervanadate (PV treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST-fusion proteins of various Src homology 2 (SH2 domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3 domain. Substitution of Arg(176 to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334 was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  12. Fyn Kinase Regulates Microglial Neuroinflammatory Responses in Cell Culture and Animal Models of Parkinson's Disease

    OpenAIRE

    2015-01-01

    Sustained neuroinflammation mediated by resident microglia is recognized as a key pathophysiological contributor to many neurodegenerative diseases, including Parkinson's disease (PD), but the key molecular signaling events regulating persistent microglial activation have yet to be clearly defined. In the present study, we examined the role of Fyn, a non-receptor tyrosine kinase, in microglial activation and neuroinflammatory mechanisms in cell culture and animal models of PD. The well-charac...

  13. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  14. Fyn tyrosine kinase regulates oligodendroglial cell development but is not required for morphological differentiation of oligodendrocytes.

    Science.gov (United States)

    Sperber, B R; McMorris, F A

    2001-02-15

    The non-receptor protein tyrosine kinase Fyn, which is a member of the Src family of kinases, has been shown to be essential for normal myelination and has been suggested to play a role in oligodendrocyte development. However, oligodendrocyte development has not been studied directly in cells lacking Fyn. Additionally, because Fyn is expressed in neurons as well as oligodendrocytes, it is possible that normal myelination requires Fyn expression in neurons but not in oligodendrocytes. To address these issues, we analyzed the development of oligodendrocytes in neuron-free glial cell cultures from fyn(-/-) mice that express no Fyn protein. We observed that oligodendrocytes develop to the stage where they elaborate an extensive network of membranous processes and express the antigenic components of mature oligodendrocytes in the complete absence of Fyn. However, as compared with fyn(+/+) controls, fewer oligodendroglia developed in fyn(-/-) cell cultures, and a smaller proportion of them matured to the stage characterized by a high degree of morphological complexity. In addition, we found that insulin-like growth factor-I, a potent stimulator of oligodendrocyte development, failed to stimulate morphological maturation of fyn(-/-) oligodendroglia. The pyrazolopyrimidine PP2, believed to be a selective inhibitor of Fyn, did not prevent the development of morphologically complex oligodendrocytes. Unexpectedly, however, it was toxic to both fyn(+/+) and fyn(-/-) glial cells, indicating that this class of inhibitors can have significant effects that are independent of Fyn.

  15. PDGF-induced phosphorylation of Tyr28 in the N-terminus of Fyn affects Fyn activation

    DEFF Research Database (Denmark)

    Hansen, Klaus; Alonso, G; Courtneidge, S A;

    1997-01-01

    Binding of platelet-derived growth factor (PDGF) to its receptors leads to the activation of members of the Src family of protein tyrosine kinases. We show here that Fyn, a member of the Src family, is phosphorylated on Tyr28 in the unique N-terminal part of the molecule after interaction...... with the intracellular domain of the PDGF beta-receptor. Activated Fyn furthermore undergoes autophosphorylation on Tyr30, Tyr39 and Tyr420. When Fyn mutants with Tyr28, Tyr30 or Tyr39 replaced with phenylalanine residues were transfected into NIH3T3 cells a decreased activation after PDGF stimulation was seen......, suggesting a functional importance of the N-terminal tyrosine phosphorylation of Fyn....

  16. Regulatory capital requirements and bail in mechanisms

    NARCIS (Netherlands)

    Joosen, B.P.M.; Haentjens, M.; Wessels, B.

    2015-01-01

    With the introduction of the Capital Requirements Regulation (CRR) in the European Union, the qualitative requirements for bank regulatory capital have changed. These changes aim at implementing in Europe the Basel III principles for better bank capital that is able to absorb losses of banks,

  17. Regulatory capital requirements and bail in mechanisms

    NARCIS (Netherlands)

    Joosen, B.P.M.; Haentjens, M.; Wessels, B.

    2015-01-01

    With the introduction of the Capital Requirements Regulation (CRR) in the European Union, the qualitative requirements for bank regulatory capital have changed. These changes aim at implementing in Europe the Basel III principles for better bank capital that is able to absorb losses of banks, withou

  18. The glypiated neuronal cell adhesion molecule contactin/F11 complexes with src-family protein tyrosine kinase Fyn.

    Science.gov (United States)

    Zisch, A H; D'Alessandri, L; Amrein, K; Ranscht, B; Winterhalter, K H; Vaughan, L

    1995-06-01

    Glycosyl phosphatidylinositol-anchored glycoproteins of the immunoglobulin superfamily play an important role in the formation of neuronal networks during development. The mechanism whereby neuronal GPI-linked molecules transduce recognition signals remains to be established. Analysis of detergent-resistant immune-complexes reveals that the glypiated neuronal cell adhesion molecule contactin/F11 specifically complexes with the cytoplasmic, nonreceptor type src-family tyrosine kinase Fyn. Antibody-mediated cross-linking of contactin/F11 on embryonic chick neuronal cells leads to an increase of the Fyn-activity coprecipitated with contactin/F11, and elevates phosphorylation of an additional 75/80 K component within the contactin/F11-immune-complex. Additionally, binding of ligands, i.e., contactin/F11-specific antibody or tenascin-R, a natural ligand of contactin/F11, to the surface of HeLa transfectants expressing contactin/F11, causes capping of contactin/F11 and a concomitant change in the distribution of the intracellular kinase Fyn, thus confirming their physical association. This indicates that contactin/F11-mediated signaling requires Fyn.

  19. A study of bacterial gene regulatory mechanisms

    DEFF Research Database (Denmark)

    Hansen, Sabine

    regulator studied accurately reproduced the experimental data. Simulations of system dynamics reveals that even two step regulatory cascades significantly increase response times compared to direct allosteric regulation of a transcription factor. It is observed that while many system behaviors...... of GRNs this thesis also provided the first evidence of the sensor histidine kinase VC1831 being an additional player in the Vibrio cholerae quorum sensing (QS) GRN. Bacteria use a process of cell-cell communication called QS which enable the bacterial cells to collectively control their gene expression...

  20. Fyn kinase is required for optimal humoral responses.

    Directory of Open Access Journals (Sweden)

    Natalia S Chaimowitz

    Full Text Available The generation of antigen-specific antibodies and the development of immunological memory require collaboration between B and T cells. T cell-secreted IL-4 is important for B cell survival, isotype switch to IgG1 and IgE, affinity maturation, and the development of germinal centers (GC. Fyn, a member of the Src family tyrosine kinase, is widely expressed in many cell types, including lymphocytes. This kinase is known to interact with both the B cell and T cell receptor (BCR and TCR, respectively. While Fyn deletion does not impair the development of immature T cells and B cells, TCR signaling is altered in mature T cells. The current study demonstrates that Fyn deficient (KO B cells have impaired IL-4 signaling. Fyn KO mice displayed low basal levels of IgG1, IgE and IgG2c, and delayed antigen-specific IgG1 and IgG2b production, with a dramatic decrease in antigen-specific IgG2c following immunization with a T-dependent antigen. Defects in antibody production correlated with significantly reduced numbers of GC B cells, follicular T helper cells (TFH, and splenic plasma cells (PC. Taken together, our data demonstrate that Fyn kinase is required for optimal humoral responses.

  1. Effects of chronic multiple stress on learning and memory and the expression of Fyn, BDNF, TrkB in the hippocampus of rats

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-heng; LIU Neng-bao; ZHANG Min-hai; ZHOU Yan-ling; LIAO Jia-wan; LIU Xiang-qian; CHEN Hong-wei

    2007-01-01

    Background The effect of chronic stress on cognitive functions has been one of the hot topics in neuroscience. But there has been much controversy over its mechanism. The aim of this study was to investigate the effects of chronic multiple stress on spatial learning and memory as well as the expression of Fyn, BDNF and TrkB in the hippocampus of rats.Methods Adult rats were randomly divided into control and chronic multiple stressed groups. Rats in the multiple stressed group were irregularly and alternatively exposed to situations of vertical revolution, sleep expropriation and restraint lasting for 6 weeks, 6 hours per day with night illumination for 6 weeks. Before and after the period of chronic multiple stresses, the performance of spatial learning and memory of all rats was measured using the Morris Water Maze (MWM). The expression of Fyn, BDNF and TrkB proteins in the hippocampus was assayed by Western blotting and immunohistochemical methods. The levels of Fyn and TrkB mRNAs in the hippocampus of rats were detected by RT-PCR technique.Results The escape latency in the control group and the stressed group were 15.63 and 8.27 seconds respectively.The performance of spatial learning and memory of rats was increased in chronic multiple stressed group (P<0.05). The levels of Fyn, BDNF and TrkB proteins in the stressed group were higher than those of the control group (P<0.05). The results of immunoreactivity showed that Fyn was present in the CA3 region of the hippocampus and BDNF positive particles were distributed in the nuclei of CA1 and CA3 pyramidal cells as well as DG granular cells. Quantitative analysis indicated that level of Fyn mRNA was also upregulated in the hippocampus of the stressed group (P<0.05).Conclusions Chronic multiple stress can enhance spatial learning and memory function of rats. The expression of Fyn,BDNF and TrkB proteins and the level of Fyn mRNA are increased in the stessed rat hippocampus. These suggest that Fyn and BDNF

  2. Self-regulatory mechanisms governing gender development.

    Science.gov (United States)

    Bussey, K; Bandura, A

    1992-10-01

    This study tested predictions about development of gender-related thought and action from social cognitive theory. Children at 4 levels of gender constancy were assessed for their gender knowledge, personal gender standards, and gender-linked behavior under different situational conditions. Irrespective of gender constancy level, all children engaged in more same-sex than cross-sex typed behavior. Younger children reacted in a gender stereotypic manner to peers' gender-linked behavior but did not regulate their own behavior on the basis of personal gender standards. Older children exhibited substantial self-regulatory guidance based on personal standards. They expressed anticipatory self-approval for same-sex typed behavior and self-criticism for cross-sex typed behavior. Their anticipatory self-sanctions, in turn, predicted their actual gender-linked behavior. Neither gender knowledge nor gender constancy predicted gender-linked behavior. These results lend support to social cognitive theory that evaluation and regulation of gender-linked conduct shifts developmentally from anticipatory social sanctions to anticipatory self-sanctions rooted in personal standards.

  3. A novel homolog of protein tyrosine kinase Fyn identified in Lampetra japonica with roles in the immune response.

    Science.gov (United States)

    Zhang, Qiong; Song, Xueying; Su, Peng; Li, Ranran; Liu, Chang; Gou, Meng; Wang, Hao; Liu, Xin; Li, Qingwei

    2016-04-01

    The non-receptor protein tyrosine kinase (nrPTK) Fyn, a member of the avian sarcoma virus transforming gene (Src) kinase family, plays a very significant role in cell growth, survival, apoptosis, tumor formation and immune response. In this study, a homolog of nrPTK Fyn was identified for the first time in the lamprey, Lampetra japonica and was named "Lja-Fyn". The cDNA fragment of lamprey lja-fyn contains a 1611-bp open reading frame, which encodes a protein of 537 amino acids. Multiple sequence alignment analysis showed that it shares four conserved domains (Src homology (SH) 4, SH3, SH2 and protein kinases catalytic domains) and a variable unique domain with vertebrates Fyn molecules. Though Lja-Fyn has high sequence similarity with typical Fyn and Yes molecules of jawed vertebrates, the identities among Lja-Fyn and typical Fyn molecules in unique domain are relatively higher than that among Lja-Fyn and typical Yes molecules. The result indicates that Lja-Fyn is a homolog of Fyn rather than Yes. The phylogenetic analysis showed that Fyn, Yes and Src molecules are grouped into three distinct phylogenetic clusters, and Lja-Fyn is grouped as a single branch in Fyn cluster. The real-time quantitative PCR assay revealed the wide distribution of the lja-fyn mRNA in lamprey immune related tissues. After stimulation with mixed antigens, the levels of lja-fyn mRNA were obviously up-regulated in the gill and lymphocyte-like cells, and the similar results were got by western blot analysis of Lja-Fyn protein expression. These results indicated that nrPTK Lja-Fyn was likely to be involved in immune response. Furthermore, our present findings also provide the necessary information for understanding the distinction between lamprey Lja-Fyn and other members of jawed vertebrates in Src family.

  4. Plant Antifreeze Proteins and Their Expression Regulatory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Lin Yuan-zhen; Lin Shan-zhi; Zhang Zhi-yi; Zhang Wei; Liu Wen-feng

    2005-01-01

    Low temperature is one of the major limiting environmental factors which constitutes the growth, development,productivity and distribution of plants. Over the past several years, the proteins and genes associated with freezing resistance of plants have been widely studied. The recent progress of domestic and foreign research on plant antifreeze proteins and the identification and characterization of plant antifreeze protein genes, especially on expression regulatory mechanism of plant antifreeze proteins are reviewed in this paper. Finally, some unsolved problems and the trend of research in physiological functions and gene expression regulatory mechanism of plant antifreeze proteins are discussed.

  5. Epigenetic regulatory mechanisms associated with infertility

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Madon, Prochi F; Parikh, Firuza R

    2010-01-01

    Infertility is a complex human condition and is known to be caused by numerous factors including genetic alterations and abnormalities. Increasing evidence from studies has associated perturbed epigenetic mechanisms with spermatogenesis and infertility. However, there has been no consensus...... on whether one or a collective of these altered states is responsible for the onset of infertility. Epigenetic alterations involve changes in factors that regulate gene expression without altering the physical sequence of DNA. Understanding these altered epigenetic states at the genomic level along...... with higher order organisation of chromatin in genes associated with infertility and pericentromeric regions of chromosomes, particularly 9 and Y, could further identify causes of idiopathic infertility. Determining the association between DNA methylation, chromatin state, and noncoding RNAs...

  6. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32.

    Science.gov (United States)

    Dunah, Anthone W; Sirianni, Ana C; Fienberg, Allen A; Bastia, Elena; Schwarzschild, Michael A; Standaert, David G

    2004-01-01

    Interactions between dopaminergic and glutamatergic systems in the striatum are thought to underlie both the symptoms and adverse effects of treatment of Parkinson's disease. We have previously reported that activation of the dopamine D1 receptor triggers a rapid redistribution of striatal N-methyl-d-aspartate (NMDA) receptors between intracellular and postsynaptic sub-cellular compartments. To unravel the signaling pathways underlying this trafficking, we studied mice with targeted disruptions of either the gene that encodes the dopamine- and cAMP-regulated phosphoprotein (DARPP-32), a potent and selective inhibitor of protein phosphatase-1, or the protein tyrosine kinase Fyn. In striatal tissue from DARPP-32-depleted mice, basal tyrosine and serine phosphorylation of striatal NMDA receptor subunits NR1, NR2A, and NR2B was normal, and activation of dopamine D1 receptors with the agonist SKF-82958 [(+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetra-hydro-1H-benzazepine] produced redistribution of NMDA receptors from vesicular compartments (P3 and LP2) to synaptosomal membranes (LP1). In the Fyn knockout mice, basal tyrosine phosphorylation of NR2A and NR2B was drastically reduced, whereas serine phosphorylation of these NMDA subunits was unchanged. In the Fyn knockout mice, the dopamine D1 receptor agonist failed to induce subcellular redistribution of NMDA receptors. In addition, Fyn-depleted mice lesioned with 6-hydroxydopamine also failed to exhibit l-DOPA-induced behavioral sensitization, but this may be caused, at least in part, by resistance of these mice to the neurotoxic lesion. These findings suggest a novel mechanism for the trafficking of striatal NMDA receptors by signaling pathways that are independent of DARPP-32 but require Fyn protein tyrosine kinase. Strategies that prevent NMDA receptor subcellular redistribution through inhibition of Fyn kinase may prove useful in the treatment of Parkinson's disease.

  7. Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos.

    Science.gov (United States)

    Lemeer, Simone; Jopling, Chris; Gouw, Joost; Mohammed, Shabaz; Heck, Albert J R; Slijper, Monique; den Hertog, Jeroen

    2008-11-01

    The coordinated movement of cells is indispensable for normal vertebrate gastrulation. Several important players and signaling pathways have been identified in convergence and extension (CE) cell movements during gastrulation, including non-canonical Wnt signaling. Fyn and Yes, members of the Src family of kinases, are key regulators of CE movements as well. Here we investigated signaling pathways in early development by comparison of the phosphoproteome of wild type zebrafish embryos with Fyn/Yes knockdown embryos that display specific CE cell movement defects. For quantitation we used differential stable isotope labeling by reductive amination of peptides. Equal amounts of labeled peptides from wild type and Fyn/Yes knockdown embryos were mixed and analyzed by on-line reversed phase TiO(2)-reversed phase LC-MS/MS. Phosphorylated and non-phosphorylated peptides were quantified, and significant changes in protein expression and/or phosphorylation were detected. We identified 348 phosphoproteins of which 69 showed a decrease in phosphorylation in Fyn/Yes knockdown embryos and 72 showed an increase in phosphorylation. Among these phosphoproteins were known regulators of cell movements, including Adducin and PDLIM5. Our results indicate that quantitative phosphoproteomics combined with morpholino-mediated knockdowns can be used to identify novel signaling pathways that act in zebrafish development in vivo.

  8. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  9. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  10. Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts.

    Directory of Open Access Journals (Sweden)

    Juan Palacios-Moreno

    2015-04-01

    Full Text Available Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma.

  11. Decreased dendritic spine density and abnormal spine morphology in Fyn knockout mice

    OpenAIRE

    2011-01-01

    Fyn is a Src-family tyrosine kinase that affects long term potentiation (LTP), synapse formation, and learning and memory. Fyn is also implicated in dendritic spine formation both in vitro and in vivo. However, whether Fyn’s regulation of dendritic spine formation is brain-region specific and age-dependent is unknown. In the present study, we systematically examined whether Fyn altered dendritic spine density and morphology in the cortex and hippocampus and if these effects were age-dependent...

  12. Overexpression of Fyn tyrosine kinase causes abnormal development of primary sensory neurons in Xenopus laevis embryos.

    Science.gov (United States)

    Saito, R; Fujita, N; Nagata, S

    2001-06-01

    The expression and function of the Src family protein tyrosine kinase Fyn in Xenopus laevis embryos have been examined. In situ hybridization analysis demonstrated nervous system-specific expression of Fyn mRNA in tail-bud embryos. However, a class of primary sensory neurons; that is, Rohon-Beard (RB) neurons, which is positive for immunoglobulin superfamily cell adhesion molecules (CAM), neural cell adhesion molecule (N-CAM) and contactin, is devoid of Fyn expression. Injection of Fyn mRNA into one of the blastomeres at the 2-cell stage led to overexpression of Fyn in the injected half of the tail-bud embryos. Immunolabeling of the embryos with anti-HNK-1 antibody revealed that the peripheral axons of RB neurons were partially misguided and bound to each other to form abnormal subcutaneous fascicles. Similar abnormality was induced by injection of the Fyn overexpression vector. The incidence of abnormality appeared dose-dependent, being 68-92% of the injected embryos at 50-400 pg of mRNA. Co-injection of the contactin antisense vector depleted contactin mRNA accumulation without affecting Fyn overexpression and reduced the incidence of the abnormal RB-cell phenotype. However, the N-CAM antisense was ineffective in reducing this abnormality. These results suggest that Fyn can modify signals regulating axonal guidance or fasciculation in the developing X. laevis nervous system and that contactin may affect this action of Fyn.

  13. Mouse Skeletal Muscle Fiber-Type-Specific Macroautophagy and Muscle Wasting Are Regulated by a Fyn/STAT3/Vps34 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    2012-05-01

    Full Text Available Skeletal muscle atrophy induced by aging (sarcopenia, inactivity, and prolonged fasting states (starvation is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.

  14. Fyn: A Key Regulator of Metastasis in Prostate Cancer

    Science.gov (United States)

    2015-08-01

    reviewed manuscript entitled “SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer ”. This...Genitourinary Malignancies. Advances in Cancer Immunotherapy- Society of Immunologic Therapy for Cancer . June 19, 2015 26. Circulating tumor cell...Medical Center (2011-2014) • Cancer Quality Committee Member- Cedars Sinai Medical Center (2011-2014) • Protocol Review and Monitoring Committee

  15. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kanzaki

    2016-08-01

    Full Text Available It has been reported that reactive oxygen species (ROS, such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis.

  16. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes

    Science.gov (United States)

    Kanzaki, Hiroyuki; Shinohara, Fumiaki; Kanako, Itohiya; Yamaguchi, Yuuki; Fukaya, Sari; Miyamoto, Yutaka; Wada, Satoshi; Nakamura, Yoshiki

    2016-01-01

    It has been reported that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis. PMID:26795736

  17. Gene regulatory network inference using out of equilibrium statistical mechanics.

    Science.gov (United States)

    Benecke, Arndt

    2008-08-01

    Spatiotemporal control of gene expression is fundamental to multicellular life. Despite prodigious efforts, the encoding of gene expression regulation in eukaryotes is not understood. Gene expression analyses nourish the hope to reverse engineer effector-target gene networks using inference techniques. Inference from noisy and circumstantial data relies on using robust models with few parameters for the underlying mechanisms. However, a systematic path to gene regulatory network reverse engineering from functional genomics data is still impeded by fundamental problems. Recently, Johannes Berg from the Theoretical Physics Institute of Cologne University has made two remarkable contributions that significantly advance the gene regulatory network inference problem. Berg, who uses gene expression data from yeast, has demonstrated a nonequilibrium regime for mRNA concentration dynamics and was able to map the gene regulatory process upon simple stochastic systems driven out of equilibrium. The impact of his demonstration is twofold, affecting both the understanding of the operational constraints under which transcription occurs and the capacity to extract relevant information from highly time-resolved expression data. Berg has used his observation to predict target genes of selected transcription factors, and thereby, in principle, demonstrated applicability of his out of equilibrium statistical mechanics approach to the gene network inference problem.

  18. Association between SAP and FynT: Inducible SH3 domain-mediated interaction controlled by engagement of the SLAM receptor.

    Science.gov (United States)

    Chen, Riyan; Latour, Sylvain; Shi, Xiaochu; Veillette, André

    2006-08-01

    SAP is an intracellular adaptor molecule composed almost exclusively of an SH2 domain. It is mutated in patients with X-linked lymphoproliferative disease, a human immunodeficiency. Several immune abnormalities were also identified in SAP-deficient mice. By way of its SH2 domain, SAP interacts with tyrosine-based motifs in the cytoplasmic domain of SLAM family receptors. SAP promotes SLAM family receptor-induced protein tyrosine phosphorylation, due to its capacity to recruit the Src-related kinase FynT. This unusual property relies on the existence of a second binding surface in the SAP SH2 domain, centered on arginine 78 of SAP, that binds directly to the FynT SH3 domain. Herein, we wanted to further understand the mechanisms controlling the interaction between SLAM-SAP and FynT. Our experiments showed that, unlike conventional associations mediated by SH3 domains, the interaction of the FynT SH3 domain with SLAM-SAP was strictly inducible. It was absolutely dependent on engagement of SLAM by extracellular ligands. We obtained evidence that this inducibility was not due to increased binding of SLAM to SAP following SLAM engagement. Furthermore, it could occur independently of any appreciable SLAM-dependent biochemical signal. In fact, our data indicated that the induced association of the FynT SH3 domain with SLAM-SAP was triggered by a change in the conformation of SLAM-associated SAP caused by SLAM engagement. Together, these data elucidate further the events initiating SLAM-SAP signaling in immune cells. Moreover, they identify a strictly inducible interaction mediated by an SH3 domain.

  19. NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model.

    Science.gov (United States)

    Kong, Min; Ba, Maowen; Liu, Chuanyu; Zhang, Yanxiang; Zhang, Hongli; Qiu, Haiyan

    2015-04-01

    The augmented tyrosine phosphorylation of NR2B subunit of N-methyl-d-aspartate receptors (NMDAR) dependent on Fyn kinase has been associated with levodopa (l-dopa)-induced dyskinesia (LID). CP-101,606, one selective NR2B subunit antagonist, can improve dyskinesia. Yet, the accurate action mechanism is less well understood. In the present study, the evidences were investigated. Valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with l-dopa intraperitoneally for 22 days to induce LID rat model. On day 23, rats received either CP-101,606 (0.5mg/kg) or vehicle with each l-dopa dose. On the day of 1, 8, 15, 22, and 23 during l-dopa treatment, we determined abnormal involuntary movements (AIMs) in rats. The levels of NR2B phosphorylation at tyrosine-1472 (pNR2B-Tyr1472) and interactions of NR2B with Fyn in LID rat model were detected by immunoblotting and immunoprecipitation. Results showed that CP-101,606 attenuated l-dopa-induced AIMs. In agreement with behavioral analysis, CP-101,606 reduced the augmented pNR2B-Tyr1472 and its interactions with Fyn triggered during the l-dopa administration in the lesioned striatum of parkinsonian rats. Moreover, CP-101,606 also decreased the level of Ca(2+)/calmodulin-dependent protein kinase II at threonine-286 hyperphosphorylation (pCaMKII-Thr286), which was the downstream signaling amplification molecule of NMDAR overactivation and closely associated with LID. However, the protein level of NR2B and Fyn had no difference under the above conditions. These data indicate that the inhibition of the interactions of NR2B with Fyn and NR2B tyrosine phosphorylation may contribute to the CP-101,606-induced downregulation of NMDAR function and provide benefit for the therapy of LID. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms.

    Science.gov (United States)

    Wang, Yan; Wang, Liuqing; Liu, Fei; Wang, Qi; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhao, Yueju; Liu, Yang

    2016-03-21

    Ochratoxin A (OTA), mainly produced by Aspergillus and Penicillum species, is one of the most important mycotoxin contaminants in agricultural products. It is detrimental to human health because of its nephrotoxicity, hepatotoxicity, carcinogenicity, teratogenicity, and immunosuppression. OTA structurally consists of adihydrocoumarin moiety linked with l-phenylalanine via an amide bond. OTA biosynthesis has been putatively hypothesized, although several contradictions exist on some processes of the biosynthetic pathway. We discuss recent information on molecular studies of OTA biosynthesis despite insufficient genetic background in detail. Accordingly, genetic regulation has also been explored with regard to the interaction between the regulators and the environmental factors. In this review, we focus on three aspects of OTA: OTA-producing strains, OTA biosynthetic pathway and the regulation mechanisms of OTA production. This can pave the way to assist in protecting food and feed from OTA contamination by understanding OTA biosynthetic pathway and regulatory mechanisms.

  1. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms

    Science.gov (United States)

    Wang, Yan; Wang, Liuqing; Liu, Fei; Wang, Qi; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhao, Yueju; Liu, Yang

    2016-01-01

    Ochratoxin A (OTA), mainly produced by Aspergillus and Penicillum species, is one of the most important mycotoxin contaminants in agricultural products. It is detrimental to human health because of its nephrotoxicity, hepatotoxicity, carcinogenicity, teratogenicity, and immunosuppression. OTA structurally consists of adihydrocoumarin moiety linked with l-phenylalanine via an amide bond. OTA biosynthesis has been putatively hypothesized, although several contradictions exist on some processes of the biosynthetic pathway. We discuss recent information on molecular studies of OTA biosynthesis despite insufficient genetic background in detail. Accordingly, genetic regulation has also been explored with regard to the interaction between the regulators and the environmental factors. In this review, we focus on three aspects of OTA: OTA-producing strains, OTA biosynthetic pathway and the regulation mechanisms of OTA production. This can pave the way to assist in protecting food and feed from OTA contamination by understanding OTA biosynthetic pathway and regulatory mechanisms. PMID:27007394

  2. Differential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn

    OpenAIRE

    1992-01-01

    Recent observations suggest that the src-related tyrosine protein kinase p59fyn may be involved in antigen-induced T lymphocyte activation. As a result of alternative splicing, p59fyn exists as two isoforms that differ exclusively within a short sequence spanning the end of the Src Homology 2 (SH2) region and the beginning of the tyrosine protein kinase domain. While one p59fyn isoform (fynB) is highly expressed in brain, the alternative product (fynT) is principally found in T lymphocytes. T...

  3. Toxin-mediated gene regulatory mechanism in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Hwang-Soo Joo

    2016-12-01

    Full Text Available The dangerous human pathogen Staphylococcus aureus relies heavily on toxins to cause disease, but toxin production can put a strong burden on the bacteria’s energy balance. Thus, controlling the synthesis of proteins solely needed in times of toxin production represents a way for the bacteria to avoid wasting energy. One hypothetical manner to accomplish this sort of regulation is by gene regulatory functions of the toxins themselves. There have been several reports about gene regulation by toxins in S. aureus, but these were never verified on the molecular level. In our study published in MBio [Joo et al., 7(5. pii: e01579-16], we show that phenol-soluble modulins (PSMs, important peptide toxins of S. aureus, release a repressor from the promoter of the operon encoding the toxin export system, thereby enabling toxin secretion. This study describes the first molecular regulatory mechanism exerted by an S. aureus toxin, setting a paradigmatic example of how S. aureus toxins may influence cell functions to adjust them to times of toxin production.

  4. Regulatory Mechanisms and Physiological Significance of Reelin Function.

    Science.gov (United States)

    Kohno, Takao

    2017-01-01

     Reelin is a large secreted glycoprotein that regulates embryonic neuronal lamination and adult synaptic function. Secreted Reelin binds to lipoprotein receptors expressed on neurons. The Reelin-receptor interaction induces phosphorylation of an intracellular adaptor protein Dab1, which is required for normal embryonic brain development and adult brain functions. It has been suggested that Reelin hypofunction plays a role in the pathogenesis of several neuropsychiatric diseases, such as schizophrenia, autism, and Alzheimer's disease. Thus upregulation of Reelin activity may ameliorate the symptoms of neuropsychiatric diseases. However, the regulatory mechanism underlying the functions of Reelin is largely unknown and there are no good animal models of Reelin malfunction; thus, causal relations between Reelin and neuropsychiatric diseases remain unclear. Recently, our studies have shown that proteolytic cleavage of the Reelin protein regulates its activity. Herein, we will review recent findings about relations between Reelin and Alzheimer's disease, and the mechanism underlying the regulation of Reelin function by proteolytic cleavage. Also, we will discuss the prospect of treating neuropsychiatric diseases by upregulation of Reelin activity.

  5. Homopolymeric tracts represent a general regulatory mechanism in prokaryotes

    Directory of Open Access Journals (Sweden)

    Bowen Barbara M

    2010-02-01

    Full Text Available Abstract Background While, traditionally, regulation of gene expression can be grouped into transcriptional, translational, and post-translational mechanisms, some mechanisms of rapid genetic variation can also contribute to regulation of gene expression, e.g., phase variation. Results We show here that prokaryotes evolved to include homopolymeric tracts (HTs within coding genes as a system that allows for efficient gene inactivation. Analyses of 81 bacterial and 18 archaeal genomes showed that poly(A and poly(T HTs are overrepresented in these genomes and preferentially located at the 5' end of coding genes. Location of HTs at the 5' end is not driven by a preferential placement of aminoacids encoded by the AAA and TTT codons at the N-terminal of proteins. The inlA gene of the pathogen L. monocytogenes was used as a model to further study the role of HTs in reversible gene inactivation. In a number of L. monocytogenes strains, inlA harbors a 5' poly(A HT, which regularly shows frameshift mutation leading to expression of a truncated 8 aa InlA protein. Translational fusions of the inlA 5' end allowed us to estimate that the frequency of variation in this HT is about 1,000 fold higher than the estimated average point mutation frequency. Conclusions As frameshift mutations in HTs can occur at high frequencies and enable efficient gene inactivation, hypermutable HTs appear to represent a universal system for regulation of gene expression in prokaryotes. Combined with other studies indicating that HTs also enable rapid diversification of both coding and regulatory genetic sequences in eukaryotes, our data suggest that hypermutable HTs represent a general and rapid evolutionary mechanism facilitating adaptation and gene regulation across diverse organisms.

  6. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum.

    Science.gov (United States)

    Kim, Sangwoo; Jang, Yu-Sin; Ha, Sung-Chul; Ahn, Jae-Woo; Kim, Eun-Jung; Lim, Jae Hong; Cho, Changhee; Ryu, Yong Shin; Lee, Sung Kuk; Lee, Sang Yup; Kim, Kyung-Jin

    2015-09-22

    Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378. When CaTHL is overexpressed in wild-type C. acetobutylicum, butanol production is reduced due to the disturbance of acidogenic to solventogenic shift. The CaTHL(V77Q/N153Y/A286K) mutant, which is not able to form disulfide bonds, exhibits higher activity than wild-type CaTHL, and enhances butanol production upon overexpression. On the basis of these results, we suggest that CaTHL functions as a key enzyme in the regulation of the main metabolism of C. acetobutylicum through a redox-switch regulatory mechanism.

  7. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation.

    Science.gov (United States)

    Schmetterer, Klaus G; Neunkirchner, Alina; Pickl, Winfried F

    2012-06-01

    Naturally occurring CD4(+)CD25(high) forkhead box protein 3 (FOXP3)(+) regulatory T cells (nTregs) are key mediators of immunity, which orchestrate and maintain tolerance to self and foreign antigens. In the recent 1.5 decades, a multitude of studies have aimed to define the phenotype and function of nTregs and to assess their therapeutic potential for modulating immune mediated disorders such as autoimmunity, allergy, and episodes of transplant rejection. In this review, we summarize the current knowledge on the biology of nTregs. We address the exact definition of nTregs by specific markers and combinations thereof, which is a prerequisite for the state-of-the-art isolation of defined nTreg populations. Furthermore, we discuss the mechanism by which nTregs mediate immunosuppression and how this knowledge might translate into novel therapeutic modalities. With first clinical studies of nTreg-based therapies being finished, questions concerning the reliable sources of nTregs are becoming more and more eminent. Consequently, approaches allowing conversion of CD4(+) T cells into nTregs by coculture with antigen-presenting cells, cytokines, and/or pharmacological agents are discussed. In addition, genetic engineering approaches for the generation of antigen-specific nTregs are described.

  8. The role of Fyn kinase in the release from metaphase in mammalian oocytes.

    Science.gov (United States)

    Levi, M; Shalgi, R

    2010-01-27

    Meiosis in mammalian oocytes starts during embryonic life and arrests for the first time before birth, at prophase of the first meiotic division. The second meiotic arrest occurs after spindle formation at metaphase of the second meiotic division (MII) in selected oocytes designated for ovulation. The fertilizing spermatozoon induces the release from MII arrest only after the oocyte's spindle assembly checkpoint (SAC) was deactivated. Src family kinases (SFKs) are nine non-receptor protein tyrosine kinases that regulate many key cellular functions. Fyn is an SFK expressed in many cell types, including oocytes. Recent studies, including ours, imply a role for Fyn in exit from meiotic and mitotic metaphases. Other studies demonstrate that SFKs, particularly Fyn, are required for regulation of microtubules polymerization and spindle stabilization. Altogether, Fyn is suggested to play an essential role in signaling events that implicate SAC pathway and hence in regulating the exit from metaphase in oocytes and zygote. 2009 Elsevier Ireland Ltd. All rights reserved.

  9. Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer

    DEFF Research Database (Denmark)

    Sørensen, Karina Dalsgaard; Borre, Michael; Ørntoft, Torben Falck

    2008-01-01

    Loss of heterozygosity (LOH) at 6q is a frequent chromosomal aberration in prostate adenocarcinoma; however, a possible target gene remains to be identified. Findings in this study indicate that the FYN tyrosine kinase gene at 6q21 is a new candidate tumor suppressor in prostate cancer. Initially......, single nucleotide polymorphism microarray analysis of 40 microdissected prostate adenocarcinoma samples revealed 25% LOH at the FYN locus. Furthermore, Western blot analysis and real-time reverse transcriptase PCR (RT-PCR) showed significantly lower FYN expression in prostate cancer tissue than in benign...... prostate hyperplasia (BPH), as well as in 6 prostate adenocarcinoma cell lines compared with that in BPH-1 cells. By immunohistochemistry, FYN protein was detected in nonmalignant prostate epithelium, but not in cancerous glands. Moreover, genomic bisulfite sequencing revealed frequent aberrant methylation...

  10. Train suicide in the county of Fyn 1979-82

    DEFF Research Database (Denmark)

    Lindekilde, K; Wang, A G

    1985-01-01

    The phenomenon of suicide by train in the county of Fyn is examined for the period 1979-82. The reference population comprised all suicides in the county, minus suicide by train, for the period 1979-82, totalling 505 events. The data is based on the death certificates and the relevant psychiatric...... journals in the region for the period under study. Sixteen suicides by train took place in the investigation period and these differed significantly from the reference population on the following points: distribution by age: 44% of the suicide by train population belong to the age group 15-29 years......, whereas in the reference population only 11% were found in this age group; psychiatric or non-psychiatric patient: in the group of train suicides 81% were classifiable as psychiatric patients (inpatient, outpatient, former inpatient), in the reference population 38% were thus classifiable. Of the 13...

  11. Dietary omega-3 deficiency reduces BDNF content and activation NMDA receptor and Fyn in dorsal hippocampus: implications on persistence of long-term memory in rats.

    Science.gov (United States)

    Bach, Simone Azevedo; de Siqueira, Letícia V; Müller, Alexandre P; Oses, Jean P; Quatrim, Andreia; Emanuelli, Tatiana; Vinadé, Lúcia; Souza, Diogo O; Moreira, Júlia D

    2014-07-01

    Omega-3 (n-3) fatty acids are important for adequate brain function and cognition. The aim of the present study was to evaluate how n-3 fatty acids influence the persistence of long-term memory (LTM) in an aversive memory task and to explore the putative mechanism involved. Female rats received isocaloric diets that included n-3 (n-3 group) or not (D group). The adult litters were subjected to an inhibitory avoidance task (0.7 mA, 1.0 seconds foot shock) to elicit persistent LTM. Twelve hours after the training session, the fatty acid profile and the brain derived neurotrophic factor (BDNF) content of the dorsal hippocampus were assessed. In addition, we measured the activation of the NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor and the SRC family protein Fyn. Despite pronounced learning in both groups, the persistence of LTM was abolished in the D group 7 days after the training session. We also observed that the D group presented reductions in hippocampal DHA (22:6 n-3) and BDNF content. Twelve hours after the training session, the D group showed decreased NR2B and Fyn phosphorylation in the dorsal hippocampus, with no change in the total content of these proteins. Further, there was a decrease in the interaction of Fyn with NR2B in the D group, as observed by co-immunoprecipitation. Taken together, these data suggest that n-3 fatty acids influence the persistence of LTM by maintaining adequate levels of DHA and BDNF as well as by influencing the activation of NR2B and Fyn during the period of memory formation.

  12. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence.

    Science.gov (United States)

    Wittkopp, Patricia J; Kalay, Gizem

    2011-12-06

    Cis-regulatory sequences, such as enhancers and promoters, control development and physiology by regulating gene expression. Mutations that affect the function of these sequences contribute to phenotypic diversity within and between species. With many case studies implicating divergent cis-regulatory activity in phenotypic evolution, researchers have recently begun to elucidate the genetic and molecular mechanisms that are responsible for cis-regulatory divergence. Approaches include detailed functional analysis of individual cis-regulatory elements and comparing mechanisms of gene regulation among species using the latest genomic tools. Despite the limited number of mechanistic studies published to date, this work shows how cis-regulatory activity can diverge and how studies of cis-regulatory divergence can address long-standing questions about the genetic mechanisms of phenotypic evolution.

  13. PSD-93 deletion inhibits Fyn-mediated phosphorylation of NR2B and protects against focal cerebral ischemia.

    Science.gov (United States)

    Zhang, Meijuan; Li, Qingjie; Chen, Ling; Li, Jie; Zhang, Xin; Chen, Xiang; Zhang, Qingxiu; Shao, Yuan; Xu, Yun

    2014-08-01

    Modification of N-methyl-d-aspartate receptor (NMDAR)-mediated excitotoxicity appears to be a potential target in the treatment of ischemic stroke. Postsynaptic density protein-93 (PSD-93) specifically binds the C-terminal tails of the NMDAR, which is critical to couple NMDAR activity to specific intracellular signaling. This study is to investigate whether PSD-93 disruption displays neuroprotection in a focal ischemic stroke model of adult mice and, if it does, to explore possible mechanisms. It was found that, following middle cerebral artery occlusion (MCAO), PSD-93 knockout (KO) mice manifested significant reductions in infarcted volume, neurological deficits and number of degenerated neurons. PSD-93 deletion also reduced cultured cortical neuronal death caused by glucose and oxygen deprivation (OGD). Ischemic long term potentiation (i-LTP) could not be induced in the PSD-93 KO group and wild type (WT) groups pretreated with either AP-5 (NMDAR inhibitor) or PP2 (Src family inhibitor). PSD-93 KO decreased the phosphorylation of the NR2B at Tyr1472 and the interaction between NR2B and Fyn after MCAO. Together, our study demonstrated that PSD-93 KO confers profound neuroprotection against ischemic brain injury, which probably links to the inhibitory effect on Fyn-mediated phosphorylation of NR2B caused by PSD-93 deletion. These findings may provide a novel avenue for the treatment of ischemic stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms

    OpenAIRE

    Saad Sulieman; Lam-Son Phan Tran

    2014-01-01

    The special issue “Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms” aims to investigate the physiological and biochemical advances in the symbiotic process with an emphasis on nodule establishment, development and functioning. The original research articles included in this issue provide important information regarding novel aspects of nodule metabolism and various regulatory pathways, which could have important future implications. This issue also included...

  15. p59fyn tyrosine kinase associates with multiple T-cell receptor subunits through its unique amino-terminal domain.

    OpenAIRE

    1992-01-01

    Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn bin...

  16. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-d-aspartate receptor subunit NR2A

    OpenAIRE

    1999-01-01

    Fyn, a member of the Src-family protein-tyrosine kinase (PTK), is implicated in learning and memory that involves N-methyl-d-aspartate (NMDA) receptor function. In this study, we examined how Fyn participates in synaptic plasticity by analyzing the physical and functional interaction between Fyn and NMDA receptors. Results showed that tyrosine phosphorylation of NR2A, one of the NMDA receptor subunits, was reduced in fyn-mutant mice. NR2A was tyrosine-phosphorylated in 293T cells when coexpre...

  17. Resistance to alcohol withdrawal-induced behaviour in Fyn transgenic mice and its reversal by ifenprodil.

    Science.gov (United States)

    Stork, Oliver; Kojima, Nobuhiko; Stork, Simone; Kume, Nobuko; Obata, Kunihiko

    2002-09-30

    Recent studies suggest that the protein tyrosine kinase Fyn constitutes a determinant of fear and anxiety as well as alcohol sensitivity in mice. We investigated these functions and their relatedness in mice with transgenic over-expression of native or mutated, constitutively active Fyn. Fear- and anxiety-related behaviour of these animals were normal under varying levels of stress, but under withdrawal from alcohol both types of transgenic mice failed to show any increase of anxiety-like behaviour or reduction of exploratory activity as seen in their wild-type littermates. This apparent lack of alcohol withdrawal-induced behavioural effects was associated with increased Fyn activity and tyrosine phosphorylation of several proteins including the NMDA receptor subunit NR2B in the different mutant lines. NR2B phosphorylation itself remained unaffected by the chronic alcohol ingestion and subsequent withdrawal, but challenge with an NR2B antagonist, ifenprodil, restored a normal behavioural response in alcohol-withdrawn fyn mutants. Moreover, both types of transgenic mice showed a reduction of voluntary alcohol consumption compared to their wild-type littermates. Together, these results suggest that Fyn can modulate alcohol consumption and prevent behavioural changes during alcohol withdrawal, possibly via phosphorylation of NR2B.

  18. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice.

    Science.gov (United States)

    Suo, Meng; Wang, Ping; Zhang, Mengyuan

    2016-08-01

    Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn(-/-) mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn(-/-) mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes.

  19. DMPD: The interferon regulatory factor family in host defense: mechanism of action. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502370 The interferon regulatory factor family in host defense: mechanism of acti....html) (.csml) Show The interferon regulatory factor family in host defense: mechanism of action. PubmedID 1...7502370 Title The interferon regulatory factor family in host defense: mechanism

  20. Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro

    Directory of Open Access Journals (Sweden)

    Zhimei Lv

    2016-01-01

    Full Text Available Fyn, a member of the Src family of tyrosine kinases, is a key regulator in cytoskeletal remodeling in a variety of cell types. Recent studies have demonstrated that Fyn is responsible for nephrin tyrosine phosphorylation, which will result in polymerization of actin filaments and podocyte damage. Thus detailed involvement of Fyn in podocytes is to be elucidated. In this study, we investigated the potential role of Fyn/ROCK signaling and its interactions with paxillin. Our results presented that high glucose led to filamentous actin (F-actin rearrangement in podocytes, accompanied by paxillin phosphorylation and increased cell motility, during which Fyn and ROCK were markedly activated. Gene knockdown of Fyn by siRNA showed a reversal effect on high glucose-induced podocyte damage and ROCK activation; however, inhibition of ROCK had no significant effects on Fyn phosphorylation. These observations demonstrate that in vitro Fyn mediates high glucose-induced actin cytoskeleton remodeling of podocytes via promoting ROCK activation and paxillin phosphorylation.

  1. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas

    Science.gov (United States)

    Palomero, Teresa; Couronné, Lucile; Khiabanian, Hossein; Kim, Mi-Yeon; Ambesi-Impiombato, Alberto; Perez-Garcia, Arianne; Carpenter, Zachary; Abate, Francesco; Allegretta, Maddalena; Haydu, J. Erika; Jiang, Xiaoyu; Lossos, Izidore S.; Nicolas, Concha; Balbin, Milagros; Bastard, Christian; Bhagat, Govind; Piris, Miguel Angel; Campo, Elias; Bernard, Olivier; Rabadan, Raul; Ferrando, Adolfo

    2014-01-01

    Peripheral T-cell lymphomas (PTCLs) are a heterogeneous and poorly understood group of non Hodgkin lymphomas1,2. Here we combined whole exome sequencing of 12 tumor-normal DNA pairs, RNAseq analysis and targeted deep sequencing to identify new genetic alterations in PTCL transformation. These analyses identified highly recurrent epigenetic factor mutations in TET2, DNMT3A and IDH2 as well as a new highly prevalent RHOA p.Gly17Val (NM_001664) mutation present in 22/35 (67%) of angioimmunoblastic T-cell lymphomas (AITL) and in 8/44 (18%) not otherwise specified PTCL (PTCL NOS) samples. Mechanistically, the RHOA Gly17Val protein interferes with RHOA signaling in biochemical and cellular assays, an effect potentially mediated by the sequestration of activated Guanine Exchange Factor (GEF) proteins. In addition, we describe new and recurrent, albeit less frequent, genetic defects including mutations in FYN, ATM, B2M and CD58 implicating SRC signaling, impaired DNA damage response and escape from immune surveillance mechanisms in the pathogenesis of PTCL. PMID:24413734

  2. Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice.

    Science.gov (United States)

    Eberl, G; Lowin-Kropf, B; MacDonald, H R

    1999-10-15

    Most NK1.1+ T (NKT) cells express a biased TCRalphabeta repertoire that is positively selected by the monomorphic MHC class I-like molecule CD1d. The development of CD1d-dependent NKT cells is thymus dependent but, in contrast to conventional T cells, requires positive selection by cells of hemopoietic origin. Here, we show that the Src protein tyrosine kinase Fyn is required for development of CD1d-dependent NKT cells but not for the development of conventional T cells. In contrast, another Src kinase, Lck, is required for the development of both NKT and T cells. Impaired NKT cell development in Fyn-deficient mice cannot be rescued by transgenic expression of CD8, which is believed to increase the avidity of CD1d recognition by NKT cells. Taken together, our data reveal a selective and nonredundant role for Fyn in NKT cell development.

  3. Alteration of de novo glucose production contributes to fasting hypoglycaemia in Fyn deficient mice.

    Directory of Open Access Journals (Sweden)

    Yingjuan Yang

    Full Text Available Previous studies have demonstrated that glucose disposal is increased in the Fyn knockout (FynKO mice due to increased insulin sensitivity. FynKO mice also display fasting hypoglycaemia despite decreased insulin levels, which suggested that hepatic glucose production was unable to compensate for the increased basal glucose utilization. The present study investigates the basis for the reduction in plasma glucose levels and the reduced ability for the liver to produce glucose in response to gluconeogenic substrates. FynKO mice had a 5-fold reduction in phosphoenolpyruvate carboxykinase (PEPCK gene and protein expression and a marked reduction in pyruvate, pyruvate/lactate-stimulated glucose output. Remarkably, de novo glucose production was also blunted using gluconeogenic substrates that bypass the PEPCK step. Impaired conversion of glycerol to glucose was observed in both glycerol tolerance test and determination of the conversion of (13C-glycerol to glucose in the fasted state. α-glycerol phosphate levels were reduced but glycerol kinase protein expression levels were not changed. Fructose-driven glucose production was also diminished without alteration of fructokinase expression levels. The normal levels of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate observed in the FynKO liver extracts suggested normal triose kinase function. Fructose-bisphosphate aldolase (aldolase mRNA or protein levels were normal in the Fyn-deficient livers, however, there was a large reduction in liver fructose-6-phosphate (30-fold and fructose-1,6-bisphosphate (7-fold levels as well as a reduction in glucose-6-phosphate (2-fold levels. These data suggest a mechanistic defect in the allosteric regulation of aldolase activity.

  4. Structural imprints in vivo decode RNA regulatory mechanisms

    Science.gov (United States)

    Spitale, Robert C.; Flynn, Ryan A.; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y.; Batista, Pedro J.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2015-03-01

    Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N6-methyladenosine (m6A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.

  5. Conservation of apoptosis as an immune regulatory mechanism: effects of cortisol and cortisone on carp lymphocytes.

    NARCIS (Netherlands)

    Weyts, F.A.A.; Verburg-van Kemenade, B.M.L.; Flik, G.; Lambert, J.G.D.; Wendelaar Bonga, S.E.

    1997-01-01

    This is the first study to show that apoptosis as an immune regulatory mechanism is conserved in fish, demonstrating its importance in maintaining immunological homeostasis. The data further show that this mechanism is subject to control by glucocorticosteroids. Carp plasma cortisol concentrations

  6. Conservation of apoptosis as an immune regulatory mechanism: effects of cortisol and cortisone on carp lymphocytes.

    NARCIS (Netherlands)

    Weyts, F.A.A.; Verburg-van Kemenade, B.M.L.; Flik, G.; Lambert, J.G.D.; Wendelaar Bonga, S.E.

    1997-01-01

    This is the first study to show that apoptosis as an immune regulatory mechanism is conserved in fish, demonstrating its importance in maintaining immunological homeostasis. The data further show that this mechanism is subject to control by glucocorticosteroids. Carp plasma cortisol concentrations i

  7. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity.

    Science.gov (United States)

    Zhang, S; Qi, Q; Chan, C B; Zhou, W; Chen, J; Luo, H R; Appin, C; Brat, D J; Ye, K

    2016-01-01

    The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which are mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.

  8. Sociocognitive self-regulatory mechanisms governing judgments of the acceptability and likelihood of sport cheating.

    Science.gov (United States)

    d'Arripe-Longueville, Fabienne; Corrion, Karine; Scoffier, Stéphanie; Roussel, Peggy; Chalabaev, Aïna

    2010-10-01

    This study extends previous psychosocial literature (Bandura et al., 2001, 2003) by examining a structural model of the self-regulatory mechanisms governing the acceptability and likelihood of cheating in a sport context. Male and female adolescents (N = 804), aged 15-20 years, took part in this study. Negative affective self-regulatory efficacy influenced the acceptability and likelihood of cheating through the mediating role of moral disengagement, in females and males. Affective efficacy positively influenced prosocial behavior through moral disengagement or through resistive self-regulatory efficacy and social efficacy, in both groups. The direct effects of affective efficacy on beliefs about cheating were only evident in females. These results extend the findings of Bandura et al. (2001, 2003) to the sport context and suggest that affective and resistive self-regulatory efficacy operate in concert in governing adolescents' moral disengagement and transgressive behaviors in sport.

  9. The prion protein constitutively controls neuronal store-operated Ca2+ entry through Fyn kinase

    Science.gov (United States)

    De Mario, Agnese; Castellani, Angela; Peggion, Caterina; Massimino, Maria Lina; Lim, Dmitry; Hill, Andrew F.; Sorgato, M. Catia; Bertoli, Alessandro

    2015-01-01

    The prion protein (PrPC) is a cell surface glycoprotein mainly expressed in neurons, whose misfolded isoforms generate the prion responsible for incurable neurodegenerative disorders. Whereas PrPC involvement in prion propagation is well established, PrPC physiological function is still enigmatic despite suggestions that it could act in cell signal transduction by modulating phosphorylation cascades and Ca2+ homeostasis. Because PrPC binds neurotoxic protein aggregates with high-affinity, it has also been proposed that PrPC acts as receptor for amyloid-β (Aβ) oligomers associated with Alzheimer’s disease (AD), and that PrPC-Aβ binding mediates AD-related synaptic dysfunctions following activation of the tyrosine kinase Fyn. Here, use of gene-encoded Ca2+ probes targeting different cell domains in primary cerebellar granule neurons (CGN) expressing, or not, PrPC, allowed us to investigate whether PrPC regulates store-operated Ca2+ entry (SOCE) and the implication of Fyn in this control. Our findings show that PrPC attenuates SOCE, and Ca2+ accumulation in the cytosol and mitochondria, by constitutively restraining Fyn activation and tyrosine phosphorylation of STIM1, a key molecular component of SOCE. This data establishes the existence of a PrPC-Fyn-SOCE triad in neurons. We also demonstrate that treating cerebellar granule and cortical neurons with soluble Aβ(1–42) oligomers abrogates the control of PrPC over Fyn and SOCE, suggesting a PrPC-dependent mechanizm for Aβ-induced neuronal Ca2+ dyshomeostasis. PMID:26578881

  10. Regulatory mechanisms of the phasic respiratory activity in cricothyroid muscle.

    Science.gov (United States)

    Dejonckere, P H; Lebacq, J

    1984-01-01

    Phasic respiratory activity of the cricothyroid muscle has been investigated with electromyography in 15 normal subjects, and in 19 pathological cases with well defined neurological troubles. It appears that phasic respiratory activity in the cricothyroid muscle, probably centrally generated, is under control of a complex and intricate mechanisms, in which the nervus laryngeus superior, the nervus laryngeus inferior, the vagus nerve and cross connections all together intervene. Furthermore, a peripheral modulation related somehow to the resistance of the airways is present. Despite differences between animal species, it seems that qualitatively the same contributing elements are present in animals and humans.

  11. Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes.

    Science.gov (United States)

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2013-11-01

    Recent advances in brain energy metabolism support the notion that glycogen in astrocytes is necessary for the clearance of neuronally-released K(+) from the extracellular space. However, how the multiple metabolic pathways involved in K(+)-induced increase in glycogen turnover are regulated is only partly understood. Here we summarize the current knowledge about the mechanisms that control glycogen metabolism during enhanced K(+) uptake. We also describe the action of the ubiquitous Na(+)/K(+) ATPase for both ion transport and intracellular signaling cascades, and emphasize its importance in understanding the complex relation between glycogenolysis and K(+) uptake.

  12. Silver Nanoparticles Disrupt GDNF/Fyn kinase Signaling in Spermatogonial Stem Cells

    Science.gov (United States)

    Braydich-Stolle, Laura K.; Lucas, Benjamin; Schrand, Amanda; Murdock, Richard C.; Lee, Timothy; Schlager, John J.; Hussain, Saber M.; Hofmann, Marie-Claude

    2010-01-01

    Silver nanoparticles (Ag-NPs) are being utilized in an increasing number of fields and are components of antibacterial coatings, antistatic materials, superconductors, and biosensors. A number of reports have now described the toxic effects of silver nanoparticles on somatic cells; however, no study has examined their effects on the germ line at the molecular level. Spermatogenesis is a complex biological process that is particularly sensitive to environmental insults. Many chemicals, including ultrafine particles, have a negative effect on the germ line, either by directly affecting the germ cells or by indirectly acting on the somatic cells of the testis. In the present study, we have assessed the impact of different doses of Ag-NPs, as well as their size and biocompatible coating, on the proliferation of mouse spermatogonial stem cells (SSCs), which are at the origin of the germ line in the adult testis. At concentrations ≥ 10 μg/ml, Ag-NPs induced a significant decline in SSCs proliferation, which was also dependent on their size and coating. At the concentration of 10 μg/ml, reactive oxygen species production and/or apoptosis did not seem to play a major role; therefore, we explored other mechanisms to explain the decrease in cell proliferation. Because glial cell line–derived neurotrophic factor (GDNF) is vital for SSC self-renewal in vitro and in vivo, we evaluated the effects of Ag-NPs on GDNF-mediated signaling in these cells. Although the nanoparticles did not reduce GDNF binding or Ret receptor activity, our data revealed that already at a concentration of 10 μg/ml, silver nanoparticles specifically interact with Fyn kinase downstream of Ret and impair SSC proliferation in vitro. In addition, we demonstrated that the particle coating was degraded upon interaction with the intracellular microenvironment, reducing biocompatibility. PMID:20488942

  13. Regulatory mechanisms of viral hepatitis B and C

    Indian Academy of Sciences (India)

    G Waris; A Siddiqui

    2003-04-01

    Of all the hepatitis viruses, only the hepatitis B virus (HBV) and hepatitis C virus (HCV) cause chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. In this review, we discuss how these two biologically diverse viruses use common pathways to induce oxidative stress and activation of key transcription factors, known to be involved in inflammatory processes in cells. Activation of NF-B and STAT-3 most likely contribute to the progression of viral infections to chronic hepatitis and liver oncogenesis associated with HBV and HCV infections. In this review, we focus on the mechanisms of action of HBx and HCV NS5A proteins in inducing intracellular events associated with the viral infections.

  14. Photosynthesis Control: An underrated short-term regulatory mechanism essential for plant viability.

    Science.gov (United States)

    Colombo, Monica; Suorsa, Marjaana; Rossi, Fabio; Ferrari, Roberto; Tadini, Luca; Barbato, Roberto; Pesaresi, Paolo

    2016-01-01

    Regulation of photosynthetic electron transport provides efficient performance of oxygenic photosynthesis in plants. During the last 15 years, the molecular bases of various photosynthesis short-term regulatory processes have been elucidated, however the wild type-like phenotypes of mutants lacking of State Transitions, Non Photochemical Quenching, or Cyclic Electron Transport, when grown under constant light conditions, have also raised doubts about the acclimatory significance of these short-regulatory mechanisms on plant performance. Interestingly, recent studies performed by growing wild type and mutant plants under field conditions revealed a prominent role of State Transitions and Non Photochemical Quenching on plant fitness, with almost no effect on vegetative plant growth. Conversely, the analysis of plants lacking the regulation of electron transport by the cytochrome b6f complex, also known as Photosynthesis Control, revealed the fundamental role of this regulatory mechanism in the survival of young, developing seedlings under fluctuating light conditions.

  15. Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy

    DEFF Research Database (Denmark)

    Elias, D; (Hansen) Vever, Henriette; Lænkholm, A-V;

    2015-01-01

    To elucidate the molecular mechanisms of tamoxifen resistance in breast cancer, we performed gene array analyses and identified 366 genes with altered expression in four unique tamoxifen-resistant (TamR) cell lines vs the parental tamoxifen-sensitive MCF-7/S0.5 cell line. Most of these genes were...... an important role in tamoxifen resistance, and its subcellular localization in breast tumor cells may be an important novel biomarker of response to endocrine therapy in breast cancer.Oncogene advance online publication, 2 June 2014; doi:10.1038/onc.2014.138.......To elucidate the molecular mechanisms of tamoxifen resistance in breast cancer, we performed gene array analyses and identified 366 genes with altered expression in four unique tamoxifen-resistant (TamR) cell lines vs the parental tamoxifen-sensitive MCF-7/S0.5 cell line. Most of these genes were...... functionally linked to cell proliferation, death and control of gene expression, and include FYN, PRKCA, ITPR1, DPYD, DACH1, LYN, GBP1 and PRLR. Treatment with FYN-specific small interfering RNA or a SRC family kinase inhibitor reduced cell growth of TamR cell lines while exerting no significant effect on MCF...

  16. Mice lacking protein tyrosine kinase fyn develop a T helper-type 1 response and resistLeishmania major infection.

    Science.gov (United States)

    Yamakami, K; Akao, S; Wakabayashi, K; Tadakuma, T; Yoshizawa, N

    2001-07-01

    Fyn is a Src family protein tyrosine kinase associated with TCR/CD3 complex. Fyn appears to play a role in the activation of T cells based on its enzymatic activation and tyrosine phosphorylation following the ligation of TCR/CD3, and it also plays a critical role in the calcium flux and interleukin-2 (IL-2) production. The protective response against murineLeishmania major infection is associated with the T helper-type 1 (Th1) responses and the ability to modulate Th1 cytokines such as IL-2 and interferon-γ, respectively. The role of Fyn tyrosine kinasein vivo was directly examined by the response to infection withL. major in C57BL/6fyn-deficient mice. Despite the absence of Fyn, the mice remained resistant to this infection with only mild lesion development, and, they demonstrated Th1 responses as assessed by the delayed-type hyper-sensitivity response and cytokine milieu. The findings in thefyn-deficient mice failed to support a relationship between the anticipated functions of Fynin vitro and the immune response toL. major infectionin vivo. As a result, in leishmanial disease, Fyn probably plays a minor role in the protective immune response and is, therefore, not a key factor in such a response.

  17. The protein tyrosine kinase Fyn activates transcription from the HIV promoter via activation of NF kappa B-like DNA-binding proteins.

    Science.gov (United States)

    Hohashi, N; Hayashi, T; Fusaki, N; Takeuchi, M; Higurashi, M; Okamoto, T; Semba, K; Yamamoto, T

    1995-11-01

    Protein tyrosine kinase p59fyn (Fyn) associates with the TCR-CD3 complex, which suggests that Fyn plays a significant role in the signal transduction involving TCR complex. In addition to cellular genes, viral promoters such as the HIV long terminal repeat (LTR) are also activated upon T cell activation. To elucidate the functional significance of Fyn in the expression of viral promoters, we transfected a Fyn-expression vector together with a reporter plasmid containing the chloramphenicol acetyltransferase gene driven by HIV LTR into a human T cell line, Jurkat. In this assay, Fyn stimulated the promoter in HIV LTR when the transfected cells were treated with both concanavalin A and PMA as an antigen-mimic stimulation. This activation required the intact SH2 domain of Fyn. Mutational analysis of HIV LTR showed that the NF kappa B binding sites were responsible for this effect. Electrophoretic mobility shift assays and UV cross-linking experiments showed that activation of T cells by anti-CD3 antibody induced four kappa B-binding proteins (50, 60, 65 and 100 kDa) in Fyn-overexpressing cells more efficiently than in the parental cells. Our results suggested that Fyn was able to regulate expression of a subset of genes via kappa B-binding proteins upon T cell activation.

  18. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    DEFF Research Database (Denmark)

    Lenaerts, Tom; Ferkinghoff-Borg, Jesper; Stricher, Francois

    2008-01-01

    that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results: Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular...... distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located...... by crossing the core of the SH2 domain. Conclusion: As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road...

  19. Ly-6A is required for T cell receptor expression and protein tyrosine kinase fyn activity.

    Science.gov (United States)

    Lee, S K; Su, B; Maher, S E; Bothwell, A L

    1994-05-01

    To characterize the function of the Ly-6A antigen in T cell activation, antisense Ly-6 RNA was expressed in a stably transfected antigen-specific T cell clone. Reduced Ly-6A expression results in inhibition of responses to antigen, anti-TCR (anti-T cell receptor) crosslinking and concanavalin A plus recombinant interleukin 1 and causes impairment of in vitro fyn tyrosine kinase activity. More substantial reduction of Ly-6A results in reduction of TCR expression. Analysis of mRNA species indicates that the reduction is specific for the TCR beta chain. These data demonstrate that Ly-6A may regulate TCR expression and may be involved in early events of T cell activation via regulation of fyn tyrosine kinase activity.

  20. Regulatory mechanisms of immune tolerance in type 1 diabetes and their failures.

    Science.gov (United States)

    Kuhn, Chantal; Besançon, Alix; Lemoine, Sébastien; You, Sylvaine; Marquet, Cindy; Candon, Sophie; Chatenoud, Lucienne

    2016-07-01

    In this brief review we propose to discuss salient data showing the importance of immune regulatory mechanisms, and in particular of Treg, for the control of pathogenic anti-β-cell response in autoimmune diabetes. Disease progression that culminates with the massive destruction of insulin-secreting β-cells and advent of hyperglycemia and glycosuria tightly correlates with a functional deficit in immune regulation. Better dissection of the cellular and molecular mechanisms through which the immune system normally sustains tolerance to "self", and which become defective when autoimmune aggression is overt, is the only direct and robust way to learn how to harness these effectively, so as to restore immune tolerance in patients with insulin-dependent type 1 diabetes. No doubt that regulatory T cells are a privileged mechanism underlying this self-tolerance in the periphery. The discovery of the key role of the transcription factor FoxP3, represented the cornerstone leading to the great advances in the field we are witnessing today. Type 1 diabetes is certainly one of the prototypic T cell-mediated autoimmune diseases where immune regulatory mechanisms relying on specialized subsets of T cells have been the most thoroughly analyzed from the fundamental point of view and also largely exploited in a translational therapeutic perspective.

  1. Exploring associations between self-regulatory mechanisms and neuropsychological functioning and driver behaviour after brain injury.

    Science.gov (United States)

    Rike, Per-Ola; Johansen, Hans J; Ulleberg, Pål; Lundqvist, Anna; Schanke, Anne-Kristine

    2016-04-11

    The objective of this prospective one-year follow-up study was to explore the associations between self-regulatory mechanisms and neuropsychological tests as well as baseline and follow-up ratings of driver behaviour. The participants were a cohort of subjects with stroke and traumatic brain injury (TBI) who were found fit to drive after a multi-disciplinary driver assessment (baseline). Baseline measures included neuropsychological tests and ratings of self-regulatory mechanisms, i.e., executive functions (Behavior Rating Inventory of Executive Function-Adult Version; BRIEF-A) and impulsive personality traits (UPPS Impulsive Behavior Scale). The participants rated pre-injury driving behaviour on the Driver Behaviour Qestionnaire (DBQ) retrospectively at baseline and after one year of post-injury driving (follow-up). Better performance on neuropsychological tests was significantly associated with more post-injury DBQ Violations. The BRIEF-A main indexes were significantly associated with baseline and follow-up ratings of DBQ Mistakes and follow-up DBQ Inattention. UPPS (lack of) Perseverance was significantly associated with baseline DBQ Inattention, whereas UPPS Urgency was significantly associated with baseline DBQ Inexperience and post-injury DBQ Mistakes. There were no significant changes in DBQ ratings from baseline (pre-injury) to follow-up (post-injury). It was concluded that neuropsychological functioning and self-regulatory mechanisms are related to driver behaviour. Some aspects of driver behaviour do not necessarily change after brain injury, reflecting the influence of premorbid driving behaviour or impaired awareness of deficits on post-injury driving behaviour. Further evidence is required to predict the role of self-regulatory mechanisms on driver behaviour and crashes or near misses.

  2. Expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Pei, Yongyan; Lu, Xiaonan; He, Libo; Wang, Hao; Zhang, Aidi; Li, Yongming; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2015-12-01

    Noxa, a pro-apoptotic protein, plays an important role in cell apoptosis. The researches about noxa gene were concentrated in mammalians, whereas the role and transcriptional regulatory mechanism of noxa in fish were still unclear. In this study, the expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp were analyzed. Noxa was constitutively expressed in all the examined tissues but the relative expression level differed. After exposure to grass carp reovirus (GCRV), mRNA expression level of noxa was down-regulated at the early phase whereas up-regulated at the late phase of infection. Luciferase assays showed that the promoter region -867 ∼ +107 of noxa had high activity and the region -678 ∼ -603 was important in the response to GCRV infection. By deleting the predicted transcription factor binding sites, transcription factors FOXO1 and CEBPβ were found important for noxa in response to GCRV infection. Moreover, the noxa promoter was biotin-labeled and incubated with nuclear extracts from GCRV infected cells. Mass spectrometry analysis showed that transcription factors FOXO1 and CEBPβ were also enriched in the combined proteins. Therefore, the results suggested that transcription factors FOXO1 and CEBPβ may play an important role in the regulation of noxa. Our study would provide new insight into the transcriptional regulatory mechanism of noxa in teleost fish.

  3. A qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics.

    Science.gov (United States)

    Feng, Lihui; Rutherford, Steven T; Papenfort, Kai; Bagert, John D; van Kessel, Julia C; Tirrell, David A; Wingreen, Ned S; Bassler, Bonnie L

    2015-01-15

    Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR, luxO, luxM, and aphA. We show that a representative Qrr, Qrr3, uses four distinct mechanisms to control its particular targets: the Qrr3 sRNA represses luxR through catalytic degradation, represses luxM through coupled degradation, represses luxO through sequestration, and activates aphA by revealing the ribosome binding site while the sRNA itself is degraded. Qrr3 forms different base-pairing interactions with each mRNA target, and the particular pairing strategy determines which regulatory mechanism occurs. Combined mathematical modeling and experiments show that the specific Qrr regulatory mechanism employed governs the potency, dynamics, and competition of target mRNA regulation, which in turn, defines the overall quorum-sensing response.

  4. Oligodendroglial p130Cas is a target of Fyn kinase involved in process formation, cell migration and survival.

    Directory of Open Access Journals (Sweden)

    Constantin Gonsior

    Full Text Available Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Purification and mass-spectrometric analysis of tyrosine-phosphorylated proteins in response to overexpressed active Fyn in the oligodendrocyte precursor cell line Oli-neu, yielded the adaptor molecule p130Cas. We analyzed the function of this Fyn target in oligodendroglial cells and observed that reduction of p130Cas levels by siRNA affects process outgrowth, the thickness of cellular processes and migration behavior of Oli-neu cells. Furthermore, long term p130Cas reduction results in decreased cell numbers as a result of increased apoptosis in cultured primary oligodendrocytes. Our data contribute to understanding the molecular events taking place during oligodendrocyte migration and morphological differentiation and have implications for myelin formation.

  5. Regulatory mechanisms for absenteeism in the health sector: a systematic review of strategies and their implementation

    Directory of Open Access Journals (Sweden)

    Kisakye AN

    2016-11-01

    Full Text Available Angela N Kisakye,1 Raymond Tweheyo,1 Freddie Ssengooba,1 George W Pariyo,2 Elizeus Rutebemberwa,1 Suzanne N Kiwanuka1 1Department of Health Policy Planning and Management, Makerere University School of Public Health, Kampala, Uganda; 2Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA Background: A systematic review was undertaken to identify regulatory mechanisms aimed at mitigating health care worker absenteeism, to describe where and how they have been implemented as well as their possible effects. The goal was to propose potential policy options for managing the problem of absenteeism among human resources for health in low- and middle-income countries. Mechanisms described in this review are at the local workplace and broader national policy level. Methods: A comprehensive online search was conducted on EMBASE, CINAHL, PubMed, Google Scholar, Google, and Social Science Citation Index using MEDLINE search terms. Retrieved studies were uploaded onto reference manager and screened by two independent reviewers. Only publications in English were included. Data were extracted and synthesized according to the objectives of the review. Results: Twenty six of the 4,975 published articles retrieved were included. All were from high-income countries and covered all cadres of health workers. The regulatory mechanisms and possible effects include 1 organizational-level mechanisms being reported as effective in curbing absenteeism in low- and middle-income countries (LMICs; 2 prohibition of private sector activities in LMICs offering benefits but presenting a challenge for the government to monitor the health workforce; 3 contractual changes from temporary to fixed posts having been associated with no reduction in absenteeism and not being appropriate for LMICs; 4 multifaceted work interventions being implemented in most settings; 5 the possibility of using financial and incentive regulatory mechanisms

  6. Architecture and Molecular Mechanism of PAN, the Archaeal Proteasome Regulatory ATPase*

    Science.gov (United States)

    Medalia, Noa; Beer, Avital; Zwickl, Peter; Mihalache, Oana; Beck, Martin; Medalia, Ohad; Navon, Ami

    2009-01-01

    In Archaea, an hexameric ATPase complex termed PAN promotes proteins unfolding and translocation into the 20 S proteasome. PAN is highly homologous to the six ATPases of the eukaryotic 19 S proteasome regulatory complex. Thus, insight into the mechanism of PAN function may reveal a general mode of action mutual to the eukaryotic 19 S proteasome regulatory complex. In this study we generated a three-dimensional model of PAN from tomographic reconstruction of negatively stained particles. Surprisingly, this reconstruction indicated that the hexameric complex assumes a two-ring structure enclosing a large cavity. Assessment of distinct three-dimensional functional states of PAN in the presence of adenosine 5′-O-(thiotriphosphate) and ADP and in the absence of nucleotides outlined a possible mechanism linking nucleotide binding and hydrolysis to substrate recognition, unfolding, and translocation. A novel feature of the ATPase complex revealed in this study is a gate controlling the “exit port” of the regulatory complex and, presumably, translocation into the 20 S proteasome. Based on our structural and biochemical findings, we propose a possible model in which substrate binding and unfolding are linked to structural transitions driven by nucleotide binding and hydrolysis, whereas translocation into the proteasome only depends upon the presence of an unfolded substrate and binding but not hydrolysis of nucleotide. PMID:19363223

  7. Proterozoic basement and Palaeozoic sediments in the Ringkøbing–Fyn High characterized by zircon U–Pb ages and heavy minerals from Danish onshore wells

    DEFF Research Database (Denmark)

    Olivarius, Mette; Friis, Henrik; Kokfelt, Thomas F.

    2015-01-01

    New data from the Proterozoic basement and scattered Palaeozoic sediments in the Ringkøbing–Fyn High including zircon U–Pb geochronometry, heavy mineral compositions and whole rock geochemistry is presented here to provide a frame of reference for detrital provenance studies. The Ringkøbing–Fyn H...

  8. Latent Tuberculosis: Models, Computational efforts and the Pathogen's regulatory mechanisms during dormancy

    Directory of Open Access Journals (Sweden)

    Gesham eMagombedze

    2013-08-01

    Full Text Available Latent tuberculosis is a clinical syndrome that occurs after an individual has been exposed to the Mycobacterium tuberculosis (Mtb bacillus, the infection has been established and an immune response has been generated to control the pathogen and force it into a quiescent state. Mtb can exit this quiescent state where it is unresponsive to treatment and elusive to the immune response, and enter a rapid replicating state, hence causing infection reactivation. It remains a grey area to understand how the pathogen causes a persistent infection and it is unclear whether the organism will be in a slow replicating state or a dormant non-replicating state. The ability of the pathogen to adapt to changing host immune response mechanisms, in which it is exposed to hypoxia, low pH, nitric oxide (NO, nutrient starvation and several other anti-microbial effectors, is associated with a high metabolic plasticity that enables it to metabolise under these different conditions. Adaptive gene regulatory mechanisms are thought to coordinate how the pathogen changes their metabolic pathways through mechanisms that sense changes in oxygen tension and other stress factors, hence stimulating the pathogen to make necessary adjustments to ensure survival. Here, we review studies that give insights into latency/dormancy regulatory mechanisms that enable infection persistence and pathogen adaptation to different stress conditions. We highlight what mathematical and computational models can do and what they should do to enhance our current understanding of TB latency.

  9. Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory Mechanisms of Intermediate Filaments.

    Science.gov (United States)

    Wang, Chen; Szaro, Ben G

    2016-01-01

    Intermediate filament genes exhibit highly regulated, tissue-specific patterns of expression during development and in response to injury. Identifying the responsible cis-regulatory gene elements thus holds great promise for revealing insights into fundamental gene regulatory mechanisms controlling tissue differentiation and repair. Because much of this regulation occurs in response to signals from surrounding cells, characterizing them requires a model system in which their activity can be tested within the context of an intact organism conveniently. We describe methods for doing so by injecting plasmid DNAs into fertilized Xenopus embryos. A prokaryotic element for site-specific recombination and two dual HS4 insulator elements flanking the reporter gene promote penetrant, promoter-typic expression that persists through early swimming tadpole stages, permitting the observation of fluorescent reporter protein expression in live embryos. In addition to describing cloning strategies for generating these plasmids, we present methods for coinjecting test and reference plasmids to identify the best embryos for analysis, for analyzing reporter protein and RNA expression, and for characterizing the trafficking of expressed reporter RNAs from the nucleus to polysomes. Thus, this system can be used to study the activities of cis-regulatory elements of intermediate filament genes at multiple levels of transcriptional and posttranscriptional control within an intact vertebrate embryo, from early stages of embryogenesis through later stages of organogenesis and tissue differentiation.

  10. Biosafety, biosecurity and internationally mandated regulatory regimes: compliance mechanisms for education and global health security

    Science.gov (United States)

    Sture, Judi; Whitby, Simon; Perkins, Dana

    2015-01-01

    This paper highlights the biosafety and biosecurity training obligations that three international regulatory regimes place upon states parties. The duty to report upon the existence of such provisions as evidence of compliance is discussed in relation to each regime. We argue that such mechanisms can be regarded as building blocks for the development and delivery of complementary biosafety and biosecurity teaching and training materials. We show that such building blocks represent foundations upon which life and associated scientists – through greater awareness of biosecurity concerns – can better fulfil their responsibilities to guard their work from misuse in the future. PMID:24494580

  11. Distinct regulatory mechanisms act to establish and maintain Pax3 expression in the developing neural tube.

    Directory of Open Access Journals (Sweden)

    Steven Moore

    Full Text Available Pattern formation in developing tissues is driven by the interaction of extrinsic signals with intrinsic transcriptional networks that together establish spatially and temporally restricted profiles of gene expression. How this process is orchestrated at the molecular level by genomic cis-regulatory modules is one of the central questions in developmental biology. Here we have addressed this by analysing the regulation of Pax3 expression in the context of the developing spinal cord. Pax3 is induced early during neural development in progenitors of the dorsal spinal cord and is maintained as pattern is subsequently elaborated, resulting in the segregation of the tissue into dorsal and ventral subdivisions. We used a combination of comparative genomics and transgenic assays to define and dissect several functional cis-regulatory modules associated with the Pax3 locus. We provide evidence that the coordinated activity of two modules establishes and refines Pax3 expression during neural tube development. Mutational analyses of the initiating element revealed that in addition to Wnt signaling, Nkx family homeodomain repressors restrict Pax3 transcription to the presumptive dorsal neural tube. Subsequently, a second module mediates direct positive autoregulation and feedback to maintain Pax3 expression. Together, these data indicate a mechanism by which transient external signals are converted into a sustained expression domain by the activities of distinct regulatory elements. This transcriptional logic differs from the cross-repression that is responsible for the spatiotemporal patterns of gene expression in the ventral neural tube, suggesting that a variety of circuits are deployed within the neural tube regulatory network to establish and elaborate pattern formation.

  12. Interleukin 7 receptor functions by recruiting the tyrosine kinase p59fyn through a segment of its cytoplasmic tail.

    OpenAIRE

    1992-01-01

    Engagement of the cell surface receptor for interleukin 7 (IL-7R) provokes protein tyrosine phosphorylation, although the receptor lacks a kinase catalytic domain in its cytoplasmic tail. The molecular basis of this response is not known. Here we report that the IL-7R functions by recruiting p59fyn, an intracellular tyrosine kinase of the src family. Treatment of pre-B cells with IL-7 causes an enhancement of the catalytic activity of p59fyn, but not of the related kinase p62yes. IL-7-depende...

  13. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms

    Science.gov (United States)

    Horikoshi, Momoko; Pasquali, Lorenzo; Wiltshire, Steven; Huyghe, Jeroen R.; Mahajan, Anubha; Asimit, Jennifer L.; Ferreira, Teresa; Locke, Adam E.; Robertson, Neil R.; Wang, Xu; Sim, Xueling; Fujita, Hayato; Hara, Kazuo; Young, Robin; Zhang, Weihua; Choi, Sungkyoung; Chen, Han; Kaur, Ismeet; Takeuchi, Fumihiko; Fontanillas, Pierre; Thuillier, Dorothée; Yengo, Loic; Below, Jennifer E.; Tam, Claudia H.T.; Wu, Ying; Abecasis, Gonçalo; Altshuler, David; Bell, Graeme I.; Blangero, John; Burtt, Noél P.; Duggirala, Ravindranath; Florez, Jose C.; Hanis, Craig L.; Seielstad, Mark; Atzmon, Gil; Chan, Juliana C.N.; Ma, Ronald C.W.; Froguel, Philippe; Wilson, James G.; Bharadwaj, Dwaipayan; Dupuis, Josee; Meigs, James B.; Cho, Yoon Shin; Park, Taesung; Kooner, Jaspal S.; Chambers, John C.; Saleheen, Danish; Kadowaki, Takashi; Tai, E. Shyong; Mohlke, Karen L.; Cox, Nancy J.; Ferrer, Jorge; Zeggini, Eleftheria; Kato, Norihiro; Teo, Yik Ying; Boehnke, Michael; McCarthy, Mark I.; Morris, Andrew P.

    2016-01-01

    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci. PMID:26911676

  14. The underlying molecular and network level mechanisms in the evolution of robustness in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Mario Pujato

    Full Text Available Gene regulatory networks show robustness to perturbations. Previous works identified robustness as an emergent property of gene network evolution but the underlying molecular mechanisms are poorly understood. We used a multi-tier modeling approach that integrates molecular sequence and structure information with network architecture and population dynamics. Structural models of transcription factor-DNA complexes are used to estimate relative binding specificities. In this model, mutations in the DNA cause changes on two levels: (a at the sequence level in individual binding sites (modulating binding specificity, and (b at the network level (creating and destroying binding sites. We used this model to dissect the underlying mechanisms responsible for the evolution of robustness in gene regulatory networks. Results suggest that in sparse architectures (represented by short promoters, a mixture of local-sequence and network-architecture level changes are exploited. At the local-sequence level, robustness evolves by decreasing the probabilities of both the destruction of existent and generation of new binding sites. Meanwhile, in highly interconnected architectures (represented by long promoters, robustness evolves almost entirely via network level changes, deleting and creating binding sites that modify the network architecture.

  15. Newly Described Components and Regulatory Mechanisms of Circadian Clock Function in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Manuel Adrián Troncoso-Ponce; Paloma Mas

    2012-01-01

    The circadian clock temporally coordinates plant growth and metabolism in close synchronization with the diurnal and seasonal environmental changes.Research over the last decade has identified a number of clock components and a variety of regulatory mechanisms responsible for the rhythmic oscillations in metabolic and physiological activities.At the core of the clock,transcriptional/translational feedback loops modulate the expression of a significant proportion of the genome.In this article,we briefly describe some of the very recent advances that have improved our understanding of clock organization and function in Arabidopsis thaliana.The new studies illustrate the role of clock protein complex formation on circadian gating of plant growth and identify alternative splicing as a new regulatory mechanism for clock function.Examination of key clock properties such as temperature compensation has also opened new avenues for functional research within the plant clockwork.The emerging connections between the circadian clock and metabolism,hormone signaling and response to biotic and abiotic stress also add new layers of complexity to the clock network and underscore the significance of the circadian clock regulating the daily life of plants.

  16. An indoxyl compound 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, suppresses activation of Fyn kinase in mast cells and IgE-mediated allergic responses in mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Ho [Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); College of Medicine, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Tae Hyung [College of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Hyuk Soon; Kim, A-Ram [Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Kim, Do-Kyun [Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Her, Erk; Park, Yeong Min [Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Kim, Hyung Sik [College of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Young Mi [College of Pharmacy, Duksung Women' s University, Seoul 132-714 (Korea, Republic of); Choi, Wahn Soo, E-mail: wahnchoi@kku.ac.kr [Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of)

    2015-06-15

    Mast cells, constituents of virtually all organs and tissues, are critical cells in IgE-mediated allergic responses. The aim of this study was to investigate the effect and mechanism of an indoxyl chromogenic compound, 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, on IgE-mediated mast cell activation and allergic responses in mice. CAC-0982 reversibly suppressed antigen-stimulated degranulation in murine mast cells (IC{sub 50}, ~ 3.8 μM) and human mast cells (IC{sub 50}, ~ 3.0 μM). CAC-0982 also inhibited the expression and secretion of IL-4 and TNF-α in mast cells. Furthermore, CAC-0982 suppressed the mast cell-mediated allergic responses in mice in a dose-dependent manner (ED{sub 50} 27.9 mg/kg). As for the mechanism, CAC-0982 largely suppressed the phosphorylation of Syk and its downstream signaling molecules, including LAT, Akt, Erk1/2, p38, and JNK. Notably, the tyrosine kinase assay of antigen-stimulated mast cells showed that CAC-0982 inhibited Fyn kinase, one of the upstream tyrosine kinases for Syk activation in mast cells. Taken together, these results suggest that CAC-0982 may be used as a new treatment for regulating IgE-mediated allergic diseases through the inhibition of the Fyn/Syk pathway in mast cells. - Highlights: • The anti-allergic effect of 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, was measured. • CAC-0982 reversibly suppressed the activation of mast cells by IgE and antigen. • CAC-0982 inhibited passive cutaneous anaphylaxis in mice. • CAC-0982 suppresses mast cells through inhibition of Fyn activation in mast cells.

  17. Differential requirement for protein tyrosine kinase Fyn in the functional activation of antigen-specific T lymphocyte clones through the TCR or Thy-1.

    Science.gov (United States)

    Lancki, D W; Qian, D; Fields, P; Gajewski, T; Fitch, F W

    1995-05-01

    The protein tyrosine kinase Fyn has been shown to be involved in signal transduction through the TCR and the glycosyl-phosphatidylinositol-linked surface molecule Thy-1 expressed on T cells. In this study, we examine the requirement for Fyn expression in signaling through the TCR or Thy-1 using a panel of Ag-specific T cell clones derived from fyn-/- mutant mice. These clones do not express normal Fyn protein, as measured by immune-complex kinase reaction using anti-Fyn Ab. Stimulation through the TCR, either by APC bearing relevant Ag or by immobilized anti-CD3 mAb, resulted in comparable levels of proliferation, lymphokine production, and cytolysis by clones from both wild-type and fyn-/- mice. In contrast, stimulation through Thy-1, using soluble (or cross-linked) anti-Thy-1 mAb, was deficient, as measured by these responses. Thus, Fyn expression is selectively required for functional activation through Thy-1 in these T cell clones.

  18. Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean.

    Directory of Open Access Journals (Sweden)

    Yunfeng Liu

    2016-01-01

    Full Text Available It has been demonstrated that Terminal Flowering 1 (TFL1 in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs, and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductive state that is essential for initiation of terminal flowering and thus formation of determinate stems. However, little is known regarding how semi-determinate stems, which produce terminal racemes similar to those observed in determinate plants, are specified in any flowering plants. Here we show that semi-determinacy in soybean is modulated by transcriptional repression of Dt1, the functional ortholog of TFL1, in SAMs. Such repression is fulfilled by recently enabled spatiotemporal expression of Dt2, an ancestral form of the APETALA1/FRUITFULL orthologs, which encodes a MADS-box factor directly binding to the regulatory sequence of Dt1. In addition, Dt2 triggers co-expression of the putative SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (GmSOC1 in SAMs, where GmSOC1 interacts with Dt2, and also directly binds to the Dt1 regulatory sequence. Heterologous expression of Dt2 and Dt1 in determinate (tfl1 Arabidopsis mutants enables creation of semi-determinacy, but the same forms of the two genes in the tfl1 and soc1 background produce indeterminate stems, suggesting that Dt2 and SOC1 both are essential for transcriptional repression of Dt1. Nevertheless, the expression of Dt2 is unable to repress TFL1 in Arabidopsis, further demonstrating the evolutionary novelty of the regulatory mechanism underlying stem growth in soybean.

  19. Activation of counter-regulatory mechanisms in a rat renal acute rejection model

    Directory of Open Access Journals (Sweden)

    Salomon Daniel R

    2008-02-01

    Full Text Available Abstract Background Microarray analysis provides a powerful approach to identify gene expression alterations following transplantation. In patients the heterogeneity of graft specimens, co-morbidity, co-medications and the challenges in sample collection and preparation complicate conclusions regarding the underlying mechanisms of graft injury, rejection and immune regulation. Results We used a rat kidney transplantation model with strict transplant and sample preparation procedures to analyze genome wide changes in gene expression four days after syngeneic and allogeneic transplantation. Both interventions were associated with substantial changes in gene expression. After allogeneic transplantation, genes and pathways related to transport and metabolism were predominantly down-regulated consistent with rejection-mediated graft injury and dysfunction. Up-regulated genes were primarily related to the acute immune response including antigen presentation, T-cell receptor signaling, apoptosis, interferon signaling and complement cascades. We observed a cytokine and chemokine expression profile consistent with activation of a Th1-cell response. A novel finding was up-regulation of several regulatory and protective genes after allogeneic transplantation, specifically IL10, Bcl2a1, C4bpa, Ctla4, HO-1 and the SOCS family. Conclusion Our data indicate that in parallel with the predicted activation of immune response and tissue injury pathways, there is simultaneous activation of pathways for counter regulatory and protective mechanisms that would balance and limit the ongoing inflammatory/immune responses. The pathophysiological mechanisms behind and the clinical consequences of alterations in expression of these gene classes in acute rejection, injury and dysfunction vs. protection and immunoregulation, prompt further analyses and open new aspects for therapeutic approaches.

  20. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    Directory of Open Access Journals (Sweden)

    Dirk De Vos

    2014-10-01

    Full Text Available In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR to signal the exit of proliferation and start of elongation. This model exploration underlines the

  1. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    Science.gov (United States)

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S

    2014-10-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  2. Putting Theory to the Test: Which Regulatory Mechanisms Can Drive Realistic Growth of a Root?

    Science.gov (United States)

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T. S.

    2014-01-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a ‘Uniform Longitudinal Strain Rule’ (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  3. Catalytic activity of the mouse guanine nucleotide exchanger mSOS is activated by Fyn tyrosine protein kinase and the T-cell antigen receptor in T cells.

    OpenAIRE

    1996-01-01

    mSOS, a guanine nucleotide exchange factor, is a positive regulator of Ras. Fyn tyrosine protein kinase is a potential mediator in T-cell antigen receptor signal transduction in subsets of T cells. We investigated the functional and physical interaction between mSOS and Fyn in T-cell hybridoma cells. Stimulation of the T-cell antigen receptor induced the activation of guanine nucleotide exchange activity in mSOS immunoprecipitates. Overexpression of Fyn mutants with an activated kinase mutati...

  4. Use of lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery.

    Science.gov (United States)

    Diep, D B; Mathiesen, G; Eijsink, V G H; Nes, I F

    2009-01-01

    Lactobacilli are common microorganisms in diverse vegetables and meat products and several of these are also indigenous inhabitants in the gastro-intestinal (GI) tract of humans and animals where they are believed to have health promoting effects on the host. One of the highly appreciated probiotic effects is their ability to inhibit the growth of pathogens by producing antimicrobial peptides, so-called bacteriocins. Production of some bacteriocins has been shown to be strictly regulated through a quorum-sensing based mechanism mediated by a secreted peptide-pheromone (also called induction peptide; IP), a membrane-located sensor (histidine protein kinase; HPK) and a cytoplasmic response regulator (RR). The interaction between an IP and its sensor, which is highly specific, leads to activation of the cognate RR which in turn binds to regulated promoters and activates gene expression. The HPKs and RRs are built up by conserved modules, and the signalling between them within a network is efficient and directional, and can easily be activated by exogenously added synthetic IPs. Consequently, components from such regulatory networks have successfully been exploited in construction of a number of inducible gene expression systems. In this review, we discuss some well-characterised quorum sensing networks involved in bacteriocin production in lactobacilli, with special focus on the use of the regulatory components in gene expression and on lactobacilli as potential delivery vehicle for therapeutic and vaccine purposes.

  5. The Role and Mechanisms of Double Negative Regulatory T Cells in the Suppression of Immune Responses

    Institute of Scientific and Technical Information of China (English)

    WenhaoChen; MeganS.Ford; KevinJ.Young; LiZhang

    2004-01-01

    Accumulating evidence has demonstrated that regulatory T (Treg) cells play an important role in the maintenance of immunologic self-tolerance and in down-regulating various immune responses. Thus, there has recently been an increasing interest in studying the biology of Treg cells as well as their potential application in treating immune diseases. Many types of Treg cell subsets have been reported in a variety of disease models.Among these subsets, αβ-TCR+CD3+CD4*CD8* double negative (DN) Treg cells are defined by their capability of inhibiting immune responses via directly killing effector T cells in an antigen specific fashion. Furthermore,DN Treg cells have been shown to develop regulatory activity after encountering specific antigens, partially mediated by the acquisition of MHC-peptide complexes from antigen presenting cells (APCs). The presentation of acquired alloantigens on DN T cells allows for the specific interaction between DN Treg cells and alloantigen reactive effector T cells. Once the DN Treg and target cells have come into contact, killing is then mediated by Fas/Fas-ligand interactions, and perhaps through other unidentified pathways. Further characterization of the functions, molecular expression and mechanisms of activation of DN Treg cells will help in the development of novel therapies to induce antigen specific tolerance to self and foreign antigens. Cellular & Molecular Immunology. 2004;1(5):328-335.

  6. The Role and Mechanisms of Double Negative Regulatory T Cells in the Suppression of Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Wenhao Chen; Megan S. Ford; Kevin J. Young; Li Zhang

    2004-01-01

    Accumulating evidence has demonstrated that regulatory T (Treg) cells play an important role in the maintenance of immunologic self-tolerance and in down-regulating various immune responses. Thus, there has recently been an increasing interest in studying the biology of Treg cells as well as their potential application in treating immune diseases. Many types of Treg cell subsets have been reported in a variety of disease models.Among these subsets, αβ-TCR+CD3+CD4-CD8- double negative (DN) Treg cells are defined by their capability of inhibiting immune responses via directly killing effector T cells in an antigen specific fashion. Furthermore,DN Treg cells have been shown to develop regulatory activity after encountering specific antigens, partially mediated by the acquisition of MHC-peptide complexes from antigen presenting cells (APCs). The presentation of acquired alloantigens on DN T cells allows for the specific interaction between DN Treg cells and alloantigen reactive effector T cells. Once the DN Treg and target cells have come into contact, killing is then mediated by Fas/Fas-ligand interactions, and perhaps through other unidentified pathways. Further characterization of the functions, molecular expression and mechanisms of activation of DN Treg cells will help in the development of novel therapies to induce antigen specific tolerance to self and foreign antigens. Cellular & Molecular Immunology. 2004;1(5):328-335.

  7. Novel Regulatory Mechanisms of Pathogenicity and Virulence to Combat MDR in Candida albicans

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    2013-01-01

    Full Text Available Continuous deployment of antifungals in treating infections caused by dimorphic opportunistic pathogen Candida albicans has led to the emergence of drug resistance resulting in cross-resistance to many unrelated drugs, a phenomenon termed multidrug resistance (MDR. Despite the current understanding of major factors which contribute to MDR mechanisms, there are many lines of evidence suggesting that it is a complex interplay of multiple factors which may be contributed by still unknown mechanisms. Coincidentally with the increased usage of antifungal drugs, the number of reports for antifungal drug resistance has also increased which further highlights the need for understanding novel molecular mechanisms which can be explored to combat MDR, namely, ROS, iron, hypoxia, lipids, morphogenesis, and transcriptional and signaling networks. Considering the worrying evolution of MDR and significance of C. albicans being the most prevalent human fungal pathogen, this review summarizes these new regulatory mechanisms which could be exploited to prevent MDR development in C. albicans as established from recent studies.

  8. The Regulatory Mechanisms of Tumor Suppressor P16INK4A and Relevance to Cancer†

    Science.gov (United States)

    Li, Junan; Poi, Ming Jye; Tsai, Ming-Daw

    2011-01-01

    P16INK4A (also known as P16 and MTS1), a protein consisting exclusively of four ankyrin repeats, is recognized as a tumor suppressor mainly due to the prevalence of genetic inactivation of the p16INK4A (or CDKN2A) gene in virtually all types of human cancers. However, it has also been shown that elevated expression (up-regulation) of P16 is involved in cellular senescence, aging, and cancer progression, indicating that the regulation of P16 is critical for its function. Here, we discuss the regulatory mechanisms of P16 function at the DNA level, the transcription level, and the posttranscriptional level, as well as their implications in the structure-function relationship of P16 and in human cancers. PMID:21619050

  9. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    Science.gov (United States)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  10. Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Thigarajah, Rushani; Edvinsson, Lars;

    2014-01-01

    drug targets to restore normal cerebral artery contractile function as part of successful neuroprotective therapy. METHODS: We have employed in vitro methods on human and rat cerebral arteries to study the regulatory mechanisms and the efficacy of target selective inhibitor, Mithramycin A (MitA...... arteries. RESULTS: Increased expression of specificity protein (Sp1) was observed in human and rat cerebral arteries after organ culture, strongly correlating with the ETBR upregulation. Similar observations were made in MCAO rats. Treatment with MitA, a Sp1 specific inhibitor, significantly downregulated...... vasoconstriction in focal cerebral ischemia via MEK-ERK signaling, which is also conserved in humans. The results show that MitA can effectively be used to block ETBR mediated vasoconstriction as a supplement to an existing ischemic stroke therapy....

  11. Systemic blood loss affects NF-kappa B regulatory mechanisms in the lungs.

    Science.gov (United States)

    Moine, P; Shenkar, R; Kaneko, D; Le Tulzo, Y; Abraham, E

    1997-07-01

    The nuclear regulatory factor (NF)-kappa B is activated in the lungs of patients with acute respiratory distress syndrome (ARDS). In experimental models of acute lung injury, activation of NF-kappa B contributes to the increased expression of immunoregulatory cytokines and other proinflammatory mediators in the lungs. Because of the important role that NF-kappa B activation appears to play in the development of acute lung injury, we examined cytoplasmic and nuclear NF-kappa B counterregulatory mechanisms in lung mononuclear cells, using a murine model in which inflammatory lung injury develops after blood loss. Sustained activation of NF-kappa B was present in lung mononuclear cells over the 4-h period after blood loss. The activation of NF-kappa B after hemorrhage was accompanied by alterations in levels of the NF-kappa B regulatory proteins I kappa B alpha and Bcl-3. Cytoplasmic and nuclear I kappa B alpha were increased and nuclear Bcl-3 was decreased during the first hour after blood loss, but, by 4 h posthemorrhage, cytoplasmic and nuclear I kappa B alpha levels were decreased and nuclear levels of Bcl-3 were increased. Inhibition of xanthine oxidase activity in otherwise unmanipulated unhemorrhaged mice resulted in increased levels of I kappa B alpha and decreased amounts of Bcl-3 in nuclear extracts from lung mononuclear cells. No changes in the levels of nuclear I kappa B alpha or Bcl-3 occurred after hemorrhage when xanthine oxidase activity was inhibited. These results demonstrate that blood loss, at least partly through xanthine oxidase-dependent mechanisms, produces alterations in the levels of both I kappa B alpha and Bcl-3 in lung mononuclear cell populations. The effects of hemorrhage on proteins that regulate activation of NF-kappa B may contribute to the frequent development of inflammatory lung injury in this setting.

  12. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID.

    Science.gov (United States)

    Bhaumik, Sukesh R

    2011-02-01

    A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!

  13. An indoxyl compound 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, suppresses activation of Fyn kinase in mast cells and IgE-mediated allergic responses in mice.

    Science.gov (United States)

    Lee, Jun Ho; Kim, Tae Hyung; Kim, Hyuk Soon; Kim, A-Ram; Kim, Do-Kyun; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Her, Erk; Park, Yeong Min; Kim, Hyung Sik; Kim, Young Mi; Choi, Wahn Soo

    2015-06-15

    Mast cells, constituents of virtually all organs and tissues, are critical cells in IgE-mediated allergic responses. The aim of this study was to investigate the effect and mechanism of an indoxyl chromogenic compound, 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, on IgE-mediated mast cell activation and allergic responses in mice. CAC-0982 reversibly suppressed antigen-stimulated degranulation in murine mast cells (IC50, ~3.8μM) and human mast cells (IC50, ~3.0μM). CAC-0982 also inhibited the expression and secretion of IL-4 and TNF-α in mast cells. Furthermore, CAC-0982 suppressed the mast cell-mediated allergic responses in mice in a dose-dependent manner (ED50 27.9mg/kg). As for the mechanism, CAC-0982 largely suppressed the phosphorylation of Syk and its downstream signaling molecules, including LAT, Akt, Erk1/2, p38, and JNK. Notably, the tyrosine kinase assay of antigen-stimulated mast cells showed that CAC-0982 inhibited Fyn kinase, one of the upstream tyrosine kinases for Syk activation in mast cells. Taken together, these results suggest that CAC-0982 may be used as a new treatment for regulating IgE-mediated allergic diseases through the inhibition of the Fyn/Syk pathway in mast cells.

  14. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Moine, P; McIntyre, R; Schwartz, M D; Kaneko, D; Shenkar, R; Le Tulzo, Y; Moore, E E; Abraham, E

    2000-02-01

    Activation of the nuclear regulatory factor NF-kappaB occurs in the lungs of patients with the acute respiratory distress syndrome (ARDS) and may contribute to the increased expression of immunoregulatory cytokines and other proinflammatory mediators in this setting. Because of the important role that NF-kappaB activation appears to play in the development of acute lung injury, we examined cytoplasmic and nuclear NF-kapppaB counterregulatory mechanisms, involving IkappaB proteins, in alveolar macrophages obtained from 7 control patients without lung injury and 11 patients with established ARDS. Cytoplasmic levels of the NF-kappaB subunits p50, p65, and c-Rel were significantly decreased in alveolar macrophages from patients with ARDS, consistent with enhanced migration of liberated NF-kappaB dimers from the cytoplasm to the nucleus. Cytoplasmic and nuclear levels of IkappaBalpha were not significantly altered in alveolar macrophages from patients with established ARDS, compared with controls. In contrast, nuclear levels of Bcl-3 were significantly decreased in patients with ARDS compared with controls (P = 0.02). No IkappaBgamma, IkappaBbeta, or p105 proteins were detected in the cytoplasm of alveolar macrophages from control patients or patients with ARDS. The presence of activated NF-kappaB in alveolar macrophages from patients with established ARDS implies the presence of an ongoing stimulus for NF-kappaB activation. In this setting, appropriate counterregulatory mechanisms to normalize nuclear levels of NF-kappaB and to suppress NF-kappaB-mediated transcription, such as increased cytoplasmic and nuclear IkappaBalpha levels or decreased Bcl-3 levels, appeared to be induced. Nevertheless, even though counterregulatory mechanisms to NF-kappaB activation are activated in lung macrophages of patients with ARDS, NF-kappaB remains activated. These results suggest that fundamental abnormalities in transcriptional mechanisms involving NF-kappaB and important in the

  15. A model for the volume regulatory mechanism of the Airway Surface Layer

    Science.gov (United States)

    Lang, Michael; Rubinstein, Michael; Davis, C. William; Tarran, Robert; Boucher, Richard

    2006-03-01

    The airway surface layer (ASL) of a lung consists of two parts: a mucus layer with thickness of about 30 μm in contact with air and a periciliary layer (PCL) of about 7 μm below. Mucus collects dust and bacteria and is swept to throat by beating cilia, while riding on top of PCL. It is important that the thickness of PCL is matched with the length of cilia in order to optimize clearance of mucus. Decrease of PCL thickness would finally lead to an occlusion of the respiratory system. Experiments show that the height of PCL stays constant after removing mucus. When modifying height or composition of this open PCL by removing fluid or adding isotonic solution leads to the same final height of PCL. Thus, there must be a regulatory mechanism, that controls height, i.e. ASL volume. Additional experiments show that mechanical stimulus of the cells like shear leads to an increase of ASL volume, thus, the cell is able to actively adjust this volume. Based on these observations a class of models is introduced that describes the experiments and a specific minimum model for the given problem is proposed.

  16. A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression.

    Directory of Open Access Journals (Sweden)

    Clara Valero

    Full Text Available Wound healing is a process driven by cells. The ability of cells to sense mechanical stimuli from the extracellular matrix that surrounds them is used to regulate the forces that cells exert on the tissue. Stresses exerted by cells play a central role in wound contraction and have been broadly modelled. Traditionally, these stresses are assumed to be dependent on variables such as the extracellular matrix and cell or collagen densities. However, we postulate that cells are able to regulate the healing process through a mechanosensing mechanism regulated by the contraction that they exert. We propose that cells adjust the contraction level to determine the tissue functions regulating all main activities, such as proliferation, differentiation and matrix production. Hence, a closed-regulatory feedback loop is proposed between contraction and tissue formation. The model consists of a system of partial differential equations that simulates the evolution of fibroblasts, myofibroblasts, collagen and a generic growth factor, as well as the deformation of the extracellular matrix. This model is able to predict the wound healing outcome without requiring the addition of phenomenological laws to describe the time-dependent contraction evolution. We have reproduced two in vivo experiments to evaluate the predictive capacity of the model, and we conclude that there is feedback between the level of cell contraction and the tissue regenerated in the wound.

  17. Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms

    Science.gov (United States)

    Guo, Michael H.; Nandakumar, Satish K.; Ulirsch, Jacob C.; Zekavat, Seyedeh M.; Buenrostro, Jason D.; Natarajan, Pradeep; Salem, Rany M.; Chiarle, Roberto; Mitt, Mario; Kals, Mart; Pärn, Kalle; Fischer, Krista; Milani, Lili; Mägi, Reedik; Palta, Priit; Gabriel, Stacey B.; Metspalu, Andres; Lander, Eric S.; Kathiresan, Sekar; Hirschhorn, Joel N.; Esko, Tõnu; Sankaran, Vijay G.

    2017-01-01

    Genetic variants affecting hematopoiesis can influence commonly measured blood cell traits. To identify factors that affect hematopoiesis, we performed association studies for blood cell traits in the population-based Estonian Biobank using high-coverage whole-genome sequencing (WGS) in 2,284 samples and SNP genotyping in an additional 14,904 samples. Using up to 7,134 samples with available phenotype data, our analyses identified 17 associations across 14 blood cell traits. Integration of WGS-based fine-mapping and complementary epigenomic datasets provided evidence for causal mechanisms at several loci, including at a previously undiscovered basophil count-associated locus near the master hematopoietic transcription factor CEBPA. The fine-mapped variant at this basophil count association near CEBPA overlapped an enhancer active in common myeloid progenitors and influenced its activity. In situ perturbation of this enhancer by CRISPR/Cas9 mutagenesis in hematopoietic stem and progenitor cells demonstrated that it is necessary for and specifically regulates CEBPA expression during basophil differentiation. We additionally identified basophil count-associated variation at another more pleiotropic myeloid enhancer near GATA2, highlighting regulatory mechanisms for ordered expression of master hematopoietic regulators during lineage specification. Our study illustrates how population-based genetic studies can provide key insights into poorly understood cell differentiation processes of considerable physiologic relevance. PMID:28031487

  18. Up-regulation of miR-98 and unraveling regulatory mechanisms in gestational diabetes mellitus

    Science.gov (United States)

    Cao, Jing-Li; Zhang, Lu; Li, Jian; Tian, Shi; Lv, Xiao-Dan; Wang, Xue-Qin; Su, Xing; Li, Ying; Hu, Yi; Ma, Xu; Xia, Hong-Fei

    2016-01-01

    MiR-98 expression was up-regulated in kidney in response to early diabetic nephropathy in mouse and down-regulated in muscle in type 2 diabetes in human. However, the expression prolife and functional role of miR-98 in human gestational diabetes mellitus (GDM) remained unclear. Here, we investigated its expression and function in placental tissues from GDM patients and the possible molecular mechanisms. The results showed that miR-98 was up-regulated in placentas from GDM patients compared with normal placentas. MiR-98 over-expression increased global DNA methylational level and miR-98 knockdown reduced global DNA methylational level. Further investigation revealed that miR-98 could inhibit Mecp2 expression by binding the 3′-untranslated region (UTR) of methyl CpG binding protein 2 (Mecp2), and then led to the expression dysregulation of canonical transient receptor potential 3 (Trpc3), a glucose uptake related gene. More importantly, in vivo analysis found that the expression level of Mecp2 and Trpc3 in placental tissues from GDM patients, relative to the increase of miR-98, was diminished, especially for GDM patients over the age of 35 years. Collectively, up-regulation of miR-98 in the placental tissues of human GDM is linked to the global DNA methylation via targeting Mecp2, which may imply a novel regulatory mechanism in GDM. PMID:27573367

  19. Apoptosis as a mechanism of T-regulatory cell homeostasis and suppression.

    Science.gov (United States)

    Yolcu, Esma S; Ash, Shifra; Kaminitz, Ayelet; Sagiv, Yuval; Askenasy, Nadir; Yarkoni, Shai

    2008-01-01

    Activation-induced cell death is a general mechanism of immune homeostasis through negative regulation of clonal expansion of activated immune cells. This mechanism is involved in the maintenance of self- and transplant tolerance through polarization of the immune responses. The Fas/Fas-ligand interaction is a major common executioner of apoptosis in lymphocytes, with a dual role in regulatory T cell (Treg) function: Treg cell homeostasis and Treg cell-mediated suppression. Sensitivity to apoptosis and the patterns of Treg-cell death are of outmost importance in immune homeostasis that affects the equilibrium between cytolytic and suppressor forces in activation and termination of immune activity. Naive innate (naturally occurring) Treg cells present variable sensitivities to apoptosis, related to their turnover rates in tissue under steady state conditions. Following activation, Treg cells are less sensitive to apoptosis than cytotoxic effector subsets. Their susceptibility to apoptosis is influenced by cytokines within the inflammatory environment (primarily interleukin-2), the mode of antigenic stimulation and the proliferation rates. Here, we attempt to resolve some controversies surrounding the sensitivity of Treg cells to apoptosis under various experimental conditions, to delineate the function of cell death in regulation of immunity.

  20. Immunology Mechanism of CD4+ CD25 T Regulatory Cells Acting on Effector T Cells

    Institute of Scientific and Technical Information of China (English)

    FENGNing-han; WUHong-fei; WUJun; ZHANGWei; SUIYuan-gen; HEHou-guang; ZHANGChun-lei; ZHENGJun-song

    2004-01-01

    Objective: To detect the inhibiting co-stimulating molecule CTLA4 and cytokines secreted by Treg cells, and explore the immunology mechanism of T regulatory cells acting on effector T cells in co-cultured system(CCS) and separating-cultured system(SCS). Methods: Detecting the percentage of CTLA4 and CD28 expressed on the Treg ceils and effector T ceils, and then adding Treg cells to mixed lymphocyte reaction(MLR) system in CCS and TransWeil Milliceil-PCF SCS, at the same time, adding or not adding anti-IL-10 or anti-TGF.II1 to the reacting systems, examining the inhibitory capacity of Treg ceils exerting on the MLR. Results: Compared with effector T cells, Treg cells expressed higher level CTLA4 and secreted much more IL-10 and TGF-β(P<0.01). The inhibitory capacity of Treg cells co-cultured with effector T ceils is much stronger than that in separating cultured group(P<0.01). Moreover, the inhibiting rate of Treg ceils exerting on effector T ceils through secretin_g IL-10 was more powerful than that through secreting TGF-β1 (P<0.01). Coaclusion: Both ceil-to-ceil contact and cytokines secretion mechanisms are involved in CD4+ CD25+ Treg ceils operating function. However, the former is more important. Intresfingly, we for the first time pointfound that IL-10 plays more powerful roles than TGF-β1 in the cytokines secretion mechanism.

  1. Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    Full Text Available Embryonic stem cells are conventionally differentiated by modulating specific growth factors in the cell culture media. Recently the effect of cellular mechanical microenvironment in inducing phenotype specific differentiation has attracted considerable attention. We have shown the possibility of inducing endoderm differentiation by culturing the stem cells on fibrin substrates of specific stiffness. Here, we analyze the regulatory network involved in such mechanically induced endoderm differentiation under two different experimental configurations of 2-dimensional and 3-dimensional culture, respectively. Mouse embryonic stem cells are differentiated on an array of substrates of varying mechanical properties and analyzed for relevant endoderm markers. The experimental data set is further analyzed for identification of co-regulated transcription factors across different substrate conditions using the technique of bi-clustering. Overlapped bi-clusters are identified following an optimization formulation, which is solved using an evolutionary algorithm. While typically such analysis is performed at the mean value of expression data across experimental repeats, the variability of stem cell systems reduces the confidence on such analysis of mean data. Bootstrapping technique is thus integrated with the bi-clustering algorithm to determine sets of robust bi-clusters, which is found to differ significantly from corresponding bi-clusters at the mean data value. Analysis of robust bi-clusters reveals an overall similar network interaction as has been reported for chemically induced endoderm or endodermal organs but with differences in patterning between 2-dimensional and 3-dimensional culture. Such analysis sheds light on the pathway of stem cell differentiation indicating the prospect of the two culture configurations for further maturation.

  2. Functional Development of the Human Gastrointestinal Tract: Hormone- and Growth Factor-Mediated Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Daniel Ménard

    2004-01-01

    Full Text Available The present review focuses on the control of gastrointestinal (GI tract development. The first section addresses the differences in general mechanisms of GI development in humans versus rodents, highlighting that morphogenesis of specific digestive organs and the differentiation of digestive epithelia occur not only at different stages of ontogeny but also at different rates. The second section provides an overview of studies from the author's laboratory at the Université de Sherbrooke pertaining to the development of the human fetal small intestine and colon. While both segments share similar morphological and functional characteristics, they are nevertheless modulated by distinct regulatory mechanisms. Using the organ culture approach, the author and colleagues were able to establish that hormones and growth factors, such as glucocorticoids, epidermal growth factor, insulin and keratinocyte growth factor, not only exert differential effects within these two segments, they can also trigger opposite responses in comparison with animal models. In the third section, emphasis is placed on the functional development of human fetal stomach and its various epithelial cell types; in particular, the glandular chief cells responsible for the synthesis and secretion of gastric enzymes such as pepsinogen-5 and gastric lipase. Bearing in mind that limitations of available cell models have, until now, greatly impeded the comprehension of molecular mechanisms regulating human gastric epithelial cell functions, the last section focuses on new human gastric epithelial cell models recently developed in the author's laboratory. These models comprise a novel primary culture system of human fetal gastric epithelium including, for the first time, functional chief cells, and human gastric epithelium cell lines cloned from the parental NCI-N87 strain. These new cells lines could serve important applications in the study of pathogenic action and epithelial

  3. Manassantin B isolated from Saururus chinensis inhibits cyclooxygenase-2-dependent prostaglandin D2 generation by blocking Fyn-mediated nuclear factor-kappaB and mitogen activated protein kinase pathways in bone marrow derived-mast cells.

    Science.gov (United States)

    Lu, Yue; Hwang, Seung-Lark; Son, Jong Keun; Chang, Hyeun Wook

    2013-01-01

    The authors investigated the effect of manassantin B (Man B) isolated from Saururus chinensis (S. chinensis) on cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation in mouse bone marrow derived-mast cells (BMMCs). Man B inhibited the generation of PGD2 dose-dependently by inhibiting COX-2 expression in immunoglobulin E (IgE)/Ag-stimulated BMMCs. To elucidate the mechanism responsible for the inhibition of COX-2 expression by Man B, the effects of Man B on the activation of nuclear factor-kappaB (NF-κB), a transcription factor essential and mitogen-activated protein kinases (MAPKs) for COX-2 induction, were examined. Man B attenuated the nuclear translocation of NF-κB p65 and its DNA-binding activity by inhibiting inhibitors of kappa Bα (IκBα) degradation and concomitantly suppressing IκB kinase (IKK) phosphorylation. In addition, Man B suppressed phosphorylation of MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38. It was also found that Man B suppressed Fyn kinase activation and consequent downstream signaling processes, including those involving Syk, Gab2, and Akt. Taken together, the present results suggest that Man B suppresses COX-2 dependent PGD2 generation by primarily inhibiting Fyn kinase in FcεRI-mediated mast cells.

  4. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    Science.gov (United States)

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  5. Secretion and regulatory mechanism of leptin during pregnancy in the golden hamster (Mesocricetus auratus)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The aim of this study is to investigate the secretion pattern and regulatory mechanism of leptin during pregnancy in the golden hamster (Mesocricetus auratus). 100 pregnant golden hamsters were separated into 16 groups and the serum was sampled daily throughout gestation for the leptin assay. Results indicated that a gestational leptin profile existed during pregnancy in the golden hamster. To investigate if endocrine conditions during pregnancy contribute to this gestational leptin profile, serums collected during different reproductive stages were added to the adipocyte culture medium. Results showed that sera collected from all reproductive stages have significant stimulating effect on the secretion of leptin as compared with the control (P 0.05). However, sera from mid and late pregnancy significantly stimulate leptin secretion as compared with the cycling sera (P < 0.01). Serum collected on day 15 of pregnancy have the strongest stimulating effect on leptin secretion compared with sera collected on day 8 (P < 0.0001) and day 12 (P < 0.001) of the pregnancy. But after the extraction of steroid hormones, sera collected during different reproductive stages have the same effect on leptin secretion in vitro. Further study showed that dexamethason, progesterone and insulin stimulated while estradiol suppressed leptin secretion in vitro. Our results suggested that steroid hormones (or other steroid factors) have significant regulating effect on the leptin secretion during pregnancy and they may be the most important contributors of the gestational leptin profile in the golden hamster.

  6. The Characteristics and Regulatory Mechanisms of Superoxide Generation from eNOS Reductase Domain.

    Directory of Open Access Journals (Sweden)

    Hu Peng

    Full Text Available In addition to superoxide (O2.- generation from nitric oxide synthase (NOS oxygenase domain, a new O2.- generation site has been identified in the reductase domain of inducible NOS (iNOS and neuronal NOS (nNOS. Cysteine S-glutathionylation in eNOS reductase domain also induces O2.- generation from eNOS reductase domain. However, the characteristics and regulatory mechanism of the O2.- generation from NOS reductase domain remain unclear. We cloned and purified the wild type bovine eNOS (WT eNOS, a mutant of Serine 1179 replaced with aspartic acid eNOS (S1179D eNOS, which mimics the negative charge caused by phosphorylationand truncated eNOS reductase domain (eNOS RD. Both WT eNOS and S1179D eNOS generated significant amount of O2.- in the absence of BH4 and L-arginine. The capacity of O2.- generation from S1179D eNOS was significantly higher than that of WT eNOS (1.74:1. O2.- generation from both WT eNOS and S1179D eNOS were not completely inhibited by 100nM tetrahydrobiopterin(BH4. This BH4 un-inhibited O2.- generation from eNOS was blocked by 10mM flavoprotein inhibitor, diphenyleneiodonium (DPI. Purified eNOS reductase domain protein confirmed that this BH4 un-inhibited O2.- generation originates at the FMN or FAD/NADPH binding site of eNOS reductase domain. DEPMPO-OOH adduct EPR signals and NADPH consumptions analyses showed that O2.- generation from eNOS reductase domain was regulated by Serine 1179 phosphorylation and DPI, but not by L-arginine, BH4 or calmodulin (CaM. In addition to the heme center of eNOS oxygenase domain, we confirmed another O2.- generation site in the eNOS reductase domain and characterized its regulatory properties.

  7. Characterization of the regulatory mechanisms of activating transcription factor 3 by hypertrophic stimuli in rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Elina Koivisto

    Full Text Available AIMS: Activating transcription factor 3 (ATF3 is a stress-activated immediate early gene suggested to have both detrimental and cardioprotective role in the heart. Here we studied the mechanisms of ATF3 activation by hypertrophic stimuli and ATF3 downstream targets in rat cardiomyocytes. METHODS AND RESULTS: When neonatal rat cardiomyocytes were exposed to endothelin-1 (ET-1, 100 nM and mechanical stretching in vitro, maximal increase in ATF3 expression occurred at 1 hour. Inhibition of extracellular signal-regulated kinase (ERK by PD98059 decreased ET-1- and stretch-induced increase of ATF3 protein but not ATF3 mRNA levels, whereas protein kinase A (PKA inhibitor H89 attenuated both ATF3 mRNA transcription and protein expression in response to ET-1 and stretch. To characterize further the regulatory mechanisms upstream of ATF3, p38 mitogen-activated protein kinase (MAPK signaling was investigated using a gain-of-function approach. Adenoviral overexpression of p38α, but not p38β, increased ATF3 mRNA and protein levels as well as DNA binding activity. To investigate the role of ATF3 in hypertrophic process, we overexpressed ATF3 by adenovirus-mediated gene transfer. In vitro, ATF3 gene delivery attenuated the mRNA transcription of interleukin-6 (IL-6 and plasminogen activator inhibitor-1 (PAI-1, and enhanced nuclear factor-κB (NF-κB and Nkx-2.5 DNA binding activities. Reduced PAI-1 expression was also detected in vivo in adult rat heart by direct intramyocardial adenovirus-mediated ATF3 gene delivery. CONCLUSIONS: These data demonstrate that ATF3 activation by ET-1 and mechanical stretch is partly mediated through ERK and cAMP-PKA pathways, whereas p38 MAPK pathway is involved in ATF3 activation exclusively through p38α isoform. ATF3 activation caused induction of modulators of the inflammatory response NF-κB and Nkx-2.5, as well as attenuation of pro-fibrotic and pro-inflammatory proteins IL-6 and PAI-1, suggesting cardioprotective role

  8. Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain.

    Science.gov (United States)

    Sato, Izumi; Obata, Yuuki; Kasahara, Kousuke; Nakayama, Yuji; Fukumoto, Yasunori; Yamasaki, Takahito; Yokoyama, Kazunari K; Saito, Takashi; Yamaguchi, Naoto

    2009-04-01

    Src-family tyrosine kinases (SFKs), which participate in a variety of signal transduction events, are known to localize to the cytoplasmic face of the plasma membrane through lipid modification. Recently, we showed that Lyn, an SFK member, is exocytosed to the plasma membrane via the Golgi region along the secretory pathway. We show here that SFK trafficking is specified by the palmitoylation state. Yes is also a monopalmitoylated SFK and is biosynthetically transported from the Golgi pool of caveolin to the plasma membrane. This pathway can be inhibited in the trans-Golgi network (TGN)-to-cell surface delivery by temperature block at 19 degrees C or dominant-negative Rab11 GTPase. A large fraction of Fyn, a dually palmitoylated SFK, is directly targeted to the plasma membrane irrespective of temperature block of TGN exit. Fyn(C6S), which lacks the second palmitoylation site, is able to traffic in the same way as Lyn and Yes. Moreover, construction of Yes(S6C) and chimeric Lyn or Yes with the Fyn N-terminus further substantiates the importance of the dual palmitoylation site for plasma membrane targeting. Taken together with our recent finding that Src, a nonpalmitoylated SFK, is rapidly exchanged between the plasma membrane and late endosomes/lysosomes, these results suggest that SFK trafficking is specified by the palmitoylation state in the SH4 domain.

  9. Mutational analysis of structural elements in a class-I cyclic di-GMP riboswitch to elucidate its regulatory mechanism.

    Science.gov (United States)

    Inuzuka, Saki; Nishimura, Kei-Ichiro; Kakizawa, Hitoshi; Fujita, Yuki; Furuta, Hiroyuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-09-01

    The Vc2 riboswitch possesses an aptamer domain belonging to the class-I c-di-GMP riboswitch family. This domain has been analysed and the molecular mechanism by which it recognizes the c-di-GMP ligand has been elucidated. On the other hand, the regulatory mechanism of the full-length Vc2 riboswitch to control its downstream open reading frame (ORF) remains largely unknown. In this study, we performed in vivo reporter assays and in vitro biochemical analyses of the full-length riboswitch and its aptamer domain. We evaluated the results of in vivo and in vitro analyses to elucidate the regulatory mechanism of the Vc2 riboswitch. The present results suggest that recognition of c-di-GMP ligand by the Vc2 riboswitch aptamer domain downregulates expression of its downstream ORF primarily at the translational level.

  10. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk.

    Science.gov (United States)

    McCraty, Rollin; Shaffer, Fred

    2015-01-01

    Heart rate variability, the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operates on different time scales to adapt to environmental and psychological challenges. This article briefly reviews neural regulation of the heart and offers some new perspectives on mechanisms underlying the very low frequency rhythm of heart rate variability. Interpretation of heart rate variability rhythms in the context of health risk and physiological and psychological self-regulatory capacity assessment is discussed. The cardiovascular regulatory centers in the spinal cord and medulla integrate inputs from higher brain centers with afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. We also discuss the intrinsic cardiac nervous system and the heart-brain connection pathways, through which afferent information can influence activity in the subcortical, frontocortical, and motor cortex areas. In addition, the use of real-time HRV feedback to increase self-regulatory capacity is reviewed. We conclude that the heart's rhythms are characterized by both complexity and stability over longer time scales that reflect both physiological and psychological functional status of these internal self-regulatory systems.

  11. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation

    Science.gov (United States)

    Yu, Yadong; Lü, Xiaoying; Ding, Fei

    2015-08-01

    Objective. Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. Approach. Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. Main results. The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, mi

  12. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    Science.gov (United States)

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  13. Regulatory Mechanisms of the Molecular Pathways in Fibrosis Induced by MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    Cui Yang; Si-Dao Zheng; Hong-Jin Wu; Shao-Jun Chen

    2016-01-01

    Objective:MicroRNAs (miRNAs or miRs) play critical roles in the fibrotic process in different organs.We summarized the latest research progress on the roles and mechanisms of miRNAs in the regulation of the molecular signaling pathways involved in fibrosis.Data Sources:Papers published in English from January 2010 to August 2015 were selected from the PubMed and Web of Science databases using the search terms "microRNA","miR","transforming growth factor β","tgf β","mitogen-activated protein kinase","mapk","integrin","p38","c-Jun NH2-terminal kinase","jnk","extracellular signal-regulated kinase","erk",and "fibrosis".Study Selection:Articles were obtained and reviewed to analyze the regulatory effects of miRNAs on molecular signaling pathways involved in the fibrosis.Results:Recent evidence has shown that miRNAs are involved in regulating fibrosis by targeting different substrates in the molecular processes that drive fibrosis,such as immune cell sensitization,effector cell activation,and extracellular matrix remodeling.Moreover,several important molecular signaling pathways involve in fibrosis,such as the transforming growth factor-beta (TGF-β) pathway,mitogen-activated protein kinase (MAPK) pathways,and the integrin pathway are regulated by miRNAs.Third,regulation of the fibrotic pathways induced by miRNAs is found in many other tissues in addition to the heart,lung,liver,and kidney.Interestingly,the actions of many drugs on the human body are also induced by miRNAs.It is encouraging that the fibrotic process can be blocked or reversed by targeting specific miRNAs and their signaling pathways,thereby protecting the structures and functions of different organs.Conclusions:miRNAs not only regulate molecular signaling pathways in fibrosis but also serve as potential targets of novel therapeutic interventions for fibrosing diseases.

  14. Genome-wide analysis of the salmonella Fis regulon and its regulatory mechanism on pathogenicity islands.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Fis, one of the most important nucleoid-associated proteins, functions as a global regulator of transcription in bacteria that has been comprehensively studied in Escherichia coli K12. Fis also influences the virulence of Salmonella enterica and pathogenic E. coli by regulating their virulence genes, however, the relevant mechanism is unclear. In this report, using combined RNA-seq and chromatin immunoprecipitation (ChIP-seq technologies, we first identified 1646 Fis-regulated genes and 885 Fis-binding targets in the S. enterica serovar Typhimurium, and found a Fis regulon different from that in E. coli. Fis has been reported to contribute to the invasion ability of S. enterica. By using cell infection assays, we found it also enhances the intracellular replication ability of S. enterica within macrophage cell, which is of central importance for the pathogenesis of infections. Salmonella pathogenicity islands (SPI-1 and SPI-2 are crucial for the invasion and survival of S. enterica in host cells. Using mutation and overexpression experiments, real-time PCR analysis, and electrophoretic mobility shift assays, we demonstrated that Fis regulates 63 of the 94 Salmonella pathogenicity island (SPI-1 and SPI-2 genes, by three regulatory modes: i binds to SPI regulators in the gene body or in upstream regions; ii binds to SPI genes directly to mediate transcriptional activation of themselves and downstream genes; iii binds to gene encoding OmpR which affects SPI gene expression by controlling SPI regulators SsrA and HilD. Our results provide new insights into the impact of Fis on SPI genes and the pathogenicity of S. enterica.

  15. Vpu Mediates Depletion of Interferon Regulatory Factor 3 during HIV Infection by a Lysosome-Dependent Mechanism

    OpenAIRE

    Doehle, Brian P.; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M. Juliana; Gale, Michael

    2012-01-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon ...

  16. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy.

    Science.gov (United States)

    Klimczak, Dominika; Jazdzewski, Krystian; Kuch, Marek

    2017-02-01

    Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.

  17. IMPAIRED REGULATORY MECHANISMS OF THE mTOR SIGNALING PATHWAY IN OSTEOARTHROSIS

    Directory of Open Access Journals (Sweden)

    Elena Vasilyevna Chetina

    2012-01-01

    Full Text Available Objective: to study the pattern of impaired regulatory mechanisms of the mammalian target of rapamycin (TOR signaling pathway, by monitoring gene expression in the blood of patients with osteoarthrosis (OA at different stages of the disease. Subjects and methods. The study covered 33 outpatients with OA, 14 patients with this condition prior to knee joint endoprosthesis, and 27 healthy individuals (controls (mean age 58.0+7.4, 56.5+8.9, and 55.0+8.3 years, respectively. Total RNA was isolated from their blood and used to determine the level of gene expression by a real-time polymerase chain reaction for AMP-activated protein kinase (AMPK, hypoxia-inducible factor-1α (HIF1α, the rate-limiting proteins of the hexosamine signaling pathway — glutamine-fructose-6-phosphate amidotransferase and acetylglucosaminyltransferase, as well as the glucose transporter GLUT1 and steps 6 and 7 glycolytic pathway components — glucose-6-phosphate dehydrogenase and phosphoglycerate kinase-1, respectively; the lipogenesis-related genes — fatty acid synthase (FAS and the activity of the pentose phosphate pathway — glucose-6-phosphate dehydrogenase in the blood of patients with OA at different stages of the disease. Results. Analysis of gene expressions showed that in the OA patients with a low expression of the mTOR gene (a LOW subgroup, the expression of AGT and GLUT1 genes proved to be significantly lower and that of the AMPK gene was higher than in the healthy individuals. In the OA patients with a high expression of the mTOR gene (a HIGH subgroup, the expression of all the genes under study was much higher, except for the FAS gene; moreover, the greatest expression excess as compared to the controls was observed for the AMPK and HIFlα genes. In the patients with endstage disease (an ES subgroup, the expression of all the study genes, including the FAS gene, turned out to be higher than in the healthy individuals. Conclusion. The development of OA is

  18. Regulatory Mechanisms of the Molecular Pathways in Fibrosis Induced by MicroRNAs

    Science.gov (United States)

    Yang, Cui; Zheng, Si-Dao; Wu, Hong-Jin; Chen, Shao-Jun

    2016-01-01

    Objective: MicroRNAs (miRNAs or miRs) play critical roles in the fibrotic process in different organs. We summarized the latest research progress on the roles and mechanisms of miRNAs in the regulation of the molecular signaling pathways involved in fibrosis. Data Sources: Papers published in English from January 2010 to August 2015 were selected from the PubMed and Web of Science databases using the search terms “microRNA”, “miR”, “transforming growth factor β”, “tgf β”, “mitogen-activated protein kinase”, “mapk”, “integrin”, “p38”, “c-Jun NH2-terminal kinase”, “jnk”, “extracellular signal-regulated kinase”, “erk”, and “fibrosis”. Study Selection: Articles were obtained and reviewed to analyze the regulatory effects of miRNAs on molecular signaling pathways involved in the fibrosis. Results: Recent evidence has shown that miRNAs are involved in regulating fibrosis by targeting different substrates in the molecular processes that drive fibrosis, such as immune cell sensitization, effector cell activation, and extracellular matrix remodeling. Moreover, several important molecular signaling pathways involve in fibrosis, such as the transforming growth factor-beta (TGF-β) pathway, mitogen-activated protein kinase (MAPK) pathways, and the integrin pathway are regulated by miRNAs. Third, regulation of the fibrotic pathways induced by miRNAs is found in many other tissues in addition to the heart, lung, liver, and kidney. Interestingly, the actions of many drugs on the human body are also induced by miRNAs. It is encouraging that the fibrotic process can be blocked or reversed by targeting specific miRNAs and their signaling pathways, thereby protecting the structures and functions of different organs. Conclusions: miRNAs not only regulate molecular signaling pathways in fibrosis but also serve as potential targets of novel therapeutic interventions for fibrosing diseases. PMID:27647197

  19. Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing.

    Science.gov (United States)

    Hildebrand, Michael E; Xu, Jian; Dedek, Annemarie; Li, Yi; Sengar, Ameet S; Beggs, Simon; Lombroso, Paul J; Salter, Michael W

    2016-12-06

    In chronic pain states, the neurotrophin brain-derived neurotrophic factor (BDNF) transforms the output of lamina I spinal neurons by decreasing synaptic inhibition. Pain hypersensitivity also depends on N-methyl-D-aspartate receptors (NMDARs) and Src-family kinases, but the locus of NMDAR dysregulation remains unknown. Here, we show that NMDAR-mediated currents at lamina I synapses are potentiated in a peripheral nerve injury model of neuropathic pain. We find that BDNF mediates NMDAR potentiation through activation of TrkB and phosphorylation of the GluN2B subunit by the Src-family kinase Fyn. Surprisingly, we find that Cl(-)-dependent disinhibition is necessary and sufficient to prime potentiation of synaptic NMDARs by BDNF. Thus, we propose that spinal pain amplification is mediated by a feedforward mechanism whereby loss of inhibition gates the increase in synaptic excitation within individual lamina I neurons. Given that neither disinhibition alone nor BDNF-TrkB signaling is sufficient to potentiate NMDARs, we have discovered a form of molecular coincidence detection in lamina I neurons.

  20. Regulatory framework and development perspectives of the mechanism of public participation in the management of Russia’s forests

    Directory of Open Access Journals (Sweden)

    Nikolay Mikhaylovich Shmatkov

    2014-03-01

    Full Text Available The article dwells on the current state of the regulatory framework of the Russian Federation and the mechanism of public participation in forest management. The examples of addressing the problems of public participation in forest management in individual regions are disclosed. The article deals with the issues concerning the provision of in-interests of the local population through the voluntary forest certification system under the FSC scheme. Recommendations on improving the mechanism of public participation in solving the forest management issues are suggested

  1. Protein Tyrosine Kinase Fyn Regulates TLR4-Elicited Responses on Mast Cells Controlling the Function of a PP2A-PKCα/β Signaling Node Leading to TNF Secretion.

    Science.gov (United States)

    Martín-Ávila, Alejandro; Medina-Tamayo, Jaciel; Ibarra-Sánchez, Alfredo; Vázquez-Victorio, Genaro; Castillo-Arellano, Jorge Iván; Hernández-Mondragón, Alma Cristal; Rivera, Juan; Madera-Salcedo, Iris K; Blank, Ulrich; Macías-Silva, Marina; González-Espinosa, Claudia

    2016-06-15

    Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/β, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/β activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/β necessary for the secretion of TNF by VAMP3(+) carriers.

  2. Glycosylphosphatidyl Inositol-anchored Proteins and fyn Kinase Assemble in Noncaveolar Plasma Membrane Microdomains Defined by Reggie-1 and -2

    OpenAIRE

    Stürmer, Claudia; Lang, Dirk M.; Kirsch, Friederike; Wiechers, Marianne F.; Deininger, Sören-Oliver; Plattner, Helmut

    2001-01-01

    Using confocal laser scanning and double immunogold electron microscopy, we demonstrate that reggie-1 and -2 are colocalized in ≤0.1-μm plasma membrane microdomains of neurons and astrocytes. In astrocytes, reggie-1 and -2 do not occur in caveolae but clearly outside these structures. Microscopy and coimmunoprecipitation show that reggie-1 and -2 are associated with fyn kinase and with the glycosylphosphatidyl inositol-anchored proteins Thy-1 and F3 that, when activated by antibody cross-link...

  3. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp.

    Science.gov (United States)

    Li, Chaozheng; Li, Haoyang; Chen, Yixiao; Chen, Yonggui; Wang, Sheng; Weng, Shao-Ping; Xu, Xiaopeng; He, Jianguo

    2015-10-13

    There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5'-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism.

  4. Two-Component Regulatory Systems – implication in the quorum sensing mechanisms and bacteriocin production in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Lia–Mara Ditu

    2014-08-01

    Full Text Available For lactic acid bacteria, the mechanisms of quorum sensing and response are mediated by peptides or pheromones that interfere with the synthesis of antimicrobial peptides (AMP called bacteriocins, when these molecules reach a certain critical level of concentration. Generally, the synthesis and activity of pheromones is adjusted by means of a two-component regulatory system. The observation that some microorganisms, in particular lactic acid bacteria, produce bacteriocins according to the cell density, has led to the discovery of the involvement of QS mechanisms in the synthesis of these peptides. Bacteriocins synthesis is inducible, the process requiring the extracellular accumulation of peptides that functions as chemical messengers activators of bacteriocins synthesis. This minireview presents the molecular architecture and functions of two-component regulatory systems and ABC transporters implicated in the synthesis and secretion of nisin, one of the most studied bacteriocin. The elucidation of the intimate mechanisms of bacteriocins synthesis is equally of biotechnological and medical importance, opening interesting perspectives for the development of improved technologies for the production of bacteriocins with good yields, and also, for increasing the beneficial anti-infective roles of probiotic bacteria when administered in vivo.

  5. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells?

    Science.gov (United States)

    Askenasy, Nadir

    2016-02-01

    Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.

  6. Mosaic gene network modelling identified new regulatory mechanisms in HCV infection.

    Science.gov (United States)

    Popik, Olga V; Petrovskiy, Evgeny D; Mishchenko, Elena L; Lavrik, Inna N; Ivanisenko, Vladimir A

    2016-06-15

    Modelling of gene networks is widely used in systems biology to study the functioning of complex biological systems. Most of the existing mathematical modelling techniques are useful for analysis of well-studied biological processes, for which information on rates of reactions is available. However, complex biological processes such as those determining the phenotypic traits of organisms or pathological disease processes, including pathogen-host interactions, involve complicated cross-talk between interacting networks. Furthermore, the intrinsic details of the interactions between these networks are often missing. In this study, we developed an approach, which we call mosaic network modelling, that allows the combination of independent mathematical models of gene regulatory networks and, thereby, description of complex biological systems. The advantage of this approach is that it allows us to generate the integrated model despite the fact that information on molecular interactions between parts of the model (so-called mosaic fragments) might be missing. To generate a mosaic mathematical model, we used control theory and mathematical models, written in the form of a system of ordinary differential equations (ODEs). In the present study, we investigated the efficiency of this method in modelling the dynamics of more than 10,000 simulated mosaic regulatory networks consisting of two pieces. Analysis revealed that this approach was highly efficient, as the mean deviation of the dynamics of mosaic network elements from the behaviour of the initial parts of the model was less than 10%. It turned out that for construction of the control functional, data on perturbation of one or two vertices of the mosaic piece are sufficient. Further, we used the developed method to construct a mosaic gene regulatory network including hepatitis C virus (HCV) as the first piece and the tumour necrosis factor (TNF)-induced apoptosis and NF-κB induction pathways as the second piece. Thus

  7. Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Amard J Abcejo

    Full Text Available Neurotrophins (NTs, which play an integral role in neuronal development and function, have been found in non-neuronal tissue (including lung, but their role is still under investigation. Recent reports show that NTs such as brain-derived neurotrophic factor (BDNF as well as NT receptors are expressed in human airway smooth muscle (ASM. However, their function is still under investigation. We hypothesized that NTs regulate ASM intracellular Ca(2+ ([Ca(2+](i by altered expression of Ca(2+ regulatory proteins. Human ASM cells isolated from lung samples incidental to patient surgery were incubated for 24 h (overnight in medium (control or 1 nM BDNF in the presence vs. absence of inhibitors of signaling cascades (MAP kinases; PI3/Akt; NFκB. Measurement of [Ca(2+](i responses to acetylcholine (ACh and histamine using the Ca(2+ indicator fluo-4 showed significantly greater responses following BDNF exposure: effects that were blunted by pathway inhibitors. Western analysis of whole cell lysates showed significantly higher expression of CD38, Orai1, STIM1, IP(3 and RyR receptors, and SERCA following BDNF exposure, effects inhibited by inhibitors of the above cascades. The functional significance of BDNF effects were verified by siRNA or pharmacological inhibition of proteins that were altered by this NT. Overall, these data demonstrate that NTs activate signaling pathways in human ASM that lead to enhanced [Ca(2+](i responses via increased regulatory protein expression, thus enhancing airway contractility.

  8. Comparative analysis of mutant plants impaired in the main regulatory mechanisms of photosynthetic light reactions - From biophysical measurements to molecular mechanisms.

    Science.gov (United States)

    Tikkanen, Mikko; Rantala, Sanna; Grieco, Michele; Aro, Eva-Mari

    2017-03-01

    Chlorophyll (chl) fluorescence emission by photosystem II (PSII) and light absorption by P700 reaction center chl a of photosystem I (PSI) provide easy means to probe the function of the photosynthetic machinery. The exact relationship between the measured optical variables and the molecular processes have, however, remained elusive. Today, the availability of mutants with distinct molecular characterization of photosynthesis regulatory processes should make it possible to gain further insights into this relationship, yet a systematic comparative analysis of such regulatory mutants has been missing. Here we have systematically compared the behavior of Dual-PAM fluorescence and P700 variables from well-characterized photosynthesis regulation mutants. The analysis revealed a very convincing relationship between the given molecular deficiency in the photosynthetic apparatus and the original fluorescence and P700 signals obtained by using varying intensities of actinic light and by applying a saturating pulse. Importantly, the specific information on the underlying molecular mechanism, present in these authentic signals of a given photosynthesis mutant, was largely nullified when using the commonly accepted parameters that are based on further treatment of the original signals. Understanding the unique relationship between the investigated molecular process of photosynthesis and the measured variable is an absolute prerequisite for comprehensive interpretation of fluorescence and P700 measurements. The data presented here elucidates the relationships between the main regulatory mechanisms controlling the photosynthetic light reactions and the variables obtained by fluorescence and P700 measurements. It is discussed how the full potential of optical photosynthesis measurements can be utilized in investigation of a given molecular mechanism. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  9. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  10. A meta-analysis of caloric restriction gene expression profiles to infer common signatures and regulatory mechanisms.

    Science.gov (United States)

    Plank, Michael; Wuttke, Daniel; van Dam, Sipko; Clarke, Susan A; de Magalhães, João Pedro

    2012-04-01

    Caloric restriction, a reduction in calorie intake without malnutrition, retards age-related degeneration and extends lifespan in several organisms. CR induces multiple changes, yet its underlying mechanisms remain poorly understood. In this work, we first performed a meta-analysis of microarray CR studies in mammals and identified genes and processes robustly altered due to CR. Our results reveal a complex array of CR-induced changes and we re-identified several genes and processes previously associated with CR, such as growth hormone signalling, lipid metabolism and immune response. Moreover, our results highlight novel associations with CR, such as retinol metabolism and copper ion detoxification, as well as hint of a strong effect of CR on circadian rhythms that in turn may contribute to metabolic changes. Analyses of our signatures by integrating co-expression data, information on genetic mutants, and transcription factor binding site analysis revealed candidate regulators of transcriptional modules in CR. Our results hint at a transcriptional module involved in sterol metabolism regulated by Srebf1. A putative regulatory role of Ppara was also identified. Overall, our conserved molecular signatures of CR provide a comprehensive picture of CR-induced changes and help understand its regulatory mechanisms.

  11. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment.

    Science.gov (United States)

    Noble, Mark; Mayer-Pröschel, Margot; Li, Zaibo; Dong, Tiefei; Cui, Wanchang; Pröschel, Christoph; Ambeskovic, Ibro; Dietrich, Joerg; Han, Ruolan; Yang, Yin Miranda; Folts, Christopher; Stripay, Jennifer; Chen, Hsing-Yu; Stevens, Brett M

    2015-02-01

    This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.

  12. Activation of c-Src and Fyn kinases by protein tyrosine phosphatase RPTPalpha is substrate-specific and compatible with lipid raft localization

    DEFF Research Database (Denmark)

    Vacaresse, Nathalie; Møller, Bente; Danielsen, Erik Michael;

    2008-01-01

    and the lipid raft scaffolding protein Cbp/PAG. A significant fraction of RPTPa is present in lipid rafts, where its targets Fyn and Cbp/PAG reside, and growth factor-mediated SFK activation within this compartment is strictly dependent on RPTPa. Forced concentration of RPTPa into lipid rafts is compatible...

  13. Proterozoic basement and Palaeozoic sediments in the Ringkøbing–Fyn High characterized by zircon U–Pb ages and heavy minerals from Danish onshore wells

    DEFF Research Database (Denmark)

    Olivarius, Mette; Friis, Henrik; Kokfelt, Thomas F.

    2015-01-01

    New data from the Proterozoic basement and scattered Palaeozoic sediments in the Ringkøbing–Fyn High including zircon U–Pb geochronometry, heavy mineral compositions and whole rock geochemistry is presented here to provide a frame of reference for detrital provenance studies. The Ringkøbing...

  14. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.

    Science.gov (United States)

    Xu, Xiang; Zhao, Jingyue; Xu, Zhen; Peng, Baozhen; Huang, Qiuhua; Arnold, Eddy; Ding, Jianping

    2004-08-06

    Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.

  15. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs.

    Directory of Open Access Journals (Sweden)

    Huizheng Wang

    Full Text Available BACKGROUND: Polyhydroxyalkanoates (PHAs have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC, which belongs to (R-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. METHODOLOGY/PRINCIPAL FINDINGS: We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. CONCLUSIONS/SIGNIFICANCE: The data in our study reveal the regulatory mechanism of an (R-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  16. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues

    Science.gov (United States)

    Suzuki, Takashi; Swift, Larry L.

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5′-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5′-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  17. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer.

    Science.gov (United States)

    Roche, T E; Hiromasa, Y

    2007-04-01

    The fraction of pyruvate dehydrogenase complex (PDC) in the active form is reduced by the activities of dedicated PD kinase isozymes (PDK1, PDK2, PDK3 and PDK4). Via binding to the inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase (E2 60mer), PDK rapidly access their E2-bound PD substrate. The E2-enhanced activity of the widely distributed PDK2 is limited by dissociation of ADP from its C-terminal catalytic domain, and this is further slowed by pyruvate binding to the N-terminal regulatory (R) domain. Via the reverse of the PDC reaction, NADH and acetyl-CoA reductively acetylate lipoyl group of L2, which binds to the R domain and stimulates PDK2 activity by speeding up ADP dissociation. Activation of PDC by synthetic PDK inhibitors binding at the pyruvate or lipoyl binding sites decreased damage during heart ischemia and lowered blood glucose in insulin-resistant animals. PDC activation also triggers apoptosis in cancer cells that selectively convert glucose to lactate.

  18. 论食品安全奖励机制%Regulatory Mechanism for Food Safety

    Institute of Scientific and Technical Information of China (English)

    施吉龙

    2014-01-01

    In recent years, food safety issues have become increasingly prominent. Despite repeated adjustments of government regulators and its functions, it is still unable to curb the frequent occurrence of food safety incidents. Considering its reason, we will find that we are too over-reliancing on government power, and do not take advantage of market regulation and the role of social cohabitation. In order to alleviate or even to a certain extent to solve the current food security dilemma , we attempts to construct food safety incentives, and improve food safety regulatory system.%近年来,食品安全问题日渐突出。政府监管机构和职能虽经多次调整,但仍无法遏制食品安全事故的频繁发生。究其原因,在于过分依赖政府权力,而没有有效利用市场监管和社会共治的效用。本文试图通过建构食品安全奖励机制,完善食品安全监管制度以缓解甚至一定程度上解决当前食品安全困境。

  19. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria.

    Science.gov (United States)

    Evrin, Cécile; Straut, Monica; Slavova-Azmanova, Neli; Bucurenci, Nadia; Onu, Adrian; Assairi, Liliane; Ionescu, Mihaela; Palibroda, Nicolae; Bârzu, Octavian; Gilles, Anne-Marie

    2007-03-09

    In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.

  20. Effect of radiologic contrast media on cell volume regulatory mechanisms in human red blood cells.

    Science.gov (United States)

    Galtung, Hilde Kanli; Sørlundsengen, Vibeke; Sakariassen, Kjell S; Benestad, Haakon B

    2002-08-01

    The authors performed this study to evaluate cell volume regulation in human red blood cells (RBCs) after incubation in solutions of three contrast media: iohexol (830 mOsm), ioxaglate (520 mOsm), and iodixanol (300 mOsm). Whole blood sampled from six healthy subjects was exposed to Ringer solutions containing 25% or 5% vol/vol iohexol (final osmolality, 440 or 340 mOsm, respectively), ioxaglate (final osmolality, 395 or 335 mOsm, respectively), iodixanol (final osmolality, 330 or 315 mOsm, respectively), or NaCl (control solutions with the same osmolality as that of the contrast media). In some experiments, control RBCs were subjected to a hyposmotic solution (100 mOsm). RBC volumes were obtained with a Coulter counter. The RBCs showed normal regulatory cell shrinkage after hyposmotically induced swelling. All 25% vol/vol contrast material solutions and their control solutions induced RBC shrinkage (range, 6% +/- 1 [standard error] to 22% +/- 3). The same was true for cells exposed to 5% vol/vol contrast material (range, 4% +/- 1 to 7% +/- 1). The shrinkage phase was followed by cell swelling (10% +/- 2 to 20% +/- 2 for 25% contrast material and their control solutions and 8% +/- 1 to 15% +/- 2 for 5% contrast material and their control solutions). No contrast material-exposed RBCs increased their volumes to the level reached with their control solutions. RBCs exposed to hyperosmotic iohexol, ioxaglate, or iodixanol solutions shrank and then swelled. The degree of shrinkage and subsequent swelling could not be explained simply with the osmolality of the test solutions. Physicochemical properties of the contrast media must be involved, putatively affecting electrolyte fluxes over the RBC membrane. Possible targets of these effects are the K+/Cl- symporter, K+ channels, and the Na+/K+/Cl- symporter.

  1. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression

    NARCIS (Netherlands)

    Fu, Jingyuan; Wolfs, Marcel G M; Deelen, Patrick; Westra, Harm Jan; Fehrmann, Rudolf S N; te Meerman, Gerhardus; Buurman, Wim A; Rensen, Sander S M; Groen, Hendricus; Weersma, Rinse K; van den Berg, Leonard H; Veldink, Jan; Ophoff, Roel A; Snieder, Harold; van Heel, David; Jansen, Ritsert C; Hofker, Marten H; Wijmenga, Cisca; Franke, Lude

    2012-01-01

    It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human

  2. [Regulatory role of mechanical stress response in cellular function: development of new drugs and tissue engineering].

    Science.gov (United States)

    Momose, Kazutaka; Matsuda, Takehisa; Oike, Masahiro; Obara, Kazuo; Laher, Ismail; Sugiura, Seiryo; Ohata, Hisayuki; Nakayama, Koichi

    2003-02-01

    The investigation of mechanotransduction in the cardiovascular system is essentially important for elucidating the cellular and molecular mechanisms involved in not only the maintenance of hemodynamic homeostasis but also etiology of cardiovascular diseases including arteriosclerosis. The present review summarizes the latest research performed by six academic groups, and presented at the 75th Annual Meeting of the Japanese Pharmacological Society. Technology of cellular biomechanics is also required for research and clinical application of a vascular hybrid tissue responding to pulsatile stress. 1) Vascular tissue engineering: Design of pulsatile stress-responsive scaffold and in vivo vascular wall reconstruction (T. Matsuda); 2) Cellular mechanisms of mechanosensitive calcium transients in vascular endothelium (M. Oike et al.); 3) Cross-talk of stimulation with fluid flow and lysophosphatidic acid in vascular endothelial cells (K. Momose et al.); 4) Mechanotransduction of vascular smooth muscles: Rate-dependent stretch-induced protein phosphorylations and contractile activation (K. Obara et al.); 5) Lipid mediators in vascular myogenic tone (I. Laher et al.); and 6) Caldiomyocyte regulates its mechanical output in response to mechanical load (S. Sugiura et al.).

  3. c-myc in whitefish (Coregonus lavaretus): structure, expression, and insights into possible posttranscriptional regulatory mechanism.

    Science.gov (United States)

    Brzuzan, P; Kramer, C; Łakomiak, A; Jakimiuk, E; Florczyk, M; Woźny, M

    2015-10-01

    c-myc has a crucial function in growth control, differentiation, and apoptosis of vertebrate cells. Despite the important role of c-myc in mediating the biological effects, studies of c-myc gene expression and factors that control it in organisms other than mammals, such as fish, have been rare. In the current study, we asked whether c-myc mRNA of whitefish, a feasible organism for pollution monitoring in aquatic systems and a model in toxicological research, contains activity sites for regulatory motifs in its 5'- and 3'-UTRs, similar to those found in mammals. We were particularly interested in whether miRNA-34, a known negative regulator of c-myc's in mammals, is able to regulate c-myc in fish. To answer these questions, we determined the mRNA sequence of whitefish c-myc and inferred the structure of the protein that it codes for. We found that the active sites of mRNA and structures of the inferred c-myc protein are similar to those found in mammals and other fish. Remarkably, levels of c-myc mRNA expression were very high in ovaries compared to other tissues of whitefish, thus corroborating previous data in fish. Using bioinformatic searches on c-myc 3'-UTR, we confirmed the presence of two miRNA-34a (miR-34a) response elements. Luciferase reporter assay showed that activity of reporters containing either the miR response elements or entire c-myc 3'-UTR was significantly reduced (p c-myc gene silencing by profiling the expression of both genes in livers of whitefish treated for 8, 24, 48 h with MC-LR, a potent c-myc inducer in mammals. Although the difference was only significant at p = 0.08, the expression of c-myc mRNA in challenged whitefish after 24 h of the treatment was notably higher than that in livers of control fish. Concurrently, we noticed slight but significant up-regulation of miR-34a after 24 and 48 h of the challenge (p c-myc mRNA levels and miR-34a expression. Together, these results suggest that miR-34a might regulate c-myc gene

  4. Boosters of a therapeutic HIV-1 vaccine induce divergent T cell responses related to regulatory mechanisms.

    Science.gov (United States)

    Lind, Andreas; Brekke, Kristin; Sommerfelt, Maja; Holmberg, Jens O; Aass, Hans Christian D; Baksaas, Ingebjørg; Sørensen, Birger; Dyrhol-Riise, Anne Ma; Kvale, Dag

    2013-09-23

    Therapeutic human immunodeficiency virus (HIV) vaccines aim to reduce disease progression by inducing HIV-specific T cells. Vacc-4x are peptides derived from conserved domains within HIV-1 p24 Gag. Previously, Vacc-4x induced T cell responses in 90% of patients which were associated with reduced viral loads. Here we evaluate the effects of Vacc-4x boosters on T cell immunity and immune regulation seven years after primary immunization. Twenty-five patients on effective antiretroviral therapy received two Vacc-4x doses four weeks apart and were followed for 16 weeks. Vacc-4x T cell responses were measured by proliferation (CFSE), INF-γ, CD107a, Granzyme B, Delayed-Type Hypersensitivity test (DTH) and cytokines and chemokines (Luminex). Functional regulation of Vacc-4x-specific T cell proliferation was estimated in vitro using anti-IL-10 and anti-TGF-ß monoclonal antibodies. Vacc-4x-specific CD8(+) T cell proliferation increased in 80% after either the first (64%) or second (16%) booster. Only 40% remained responders after two boosters with permanently increased Vacc-4x-specific proliferative responses (p=0.005) and improved CD8(+) T cell degranulation, IFN-γ production and DTH. At baseline, responders had higher CD8(+) T cell degranulation (p=0.05) and CD4(+) INF-γ production (p=0.01), whereas non-responders had higher production of proinflammatory TNF-α, IL-1α and IL-1ß (p<0.045) and regulatory IL-10 (p=0.07). Notably, IL-10 and TGF-ß mediated downregulation of Vacc-4x-specific CD8(+) T cell proliferation increased only in non-responders (p<0.001). Downregulation during the study correlated to higher PD-1 expression on Vacc-4x-specific CD8(+) T cells (r=0.44, p=0.037), but was inversely correlated to changes in Vacc4x-specific CD8(+) T cell proliferation (r=-0.52, p=0.012). These findings show that Vacc-4x boosters can improve T cell responses in selected patients, but also induce vaccine-specific downregulation of T cell responses in others. Broad

  5. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).

    Science.gov (United States)

    Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare

    2014-11-01

    The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.

  6. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation.

    Science.gov (United States)

    Askenasy, Nadir

    2016-04-01

    Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.

  7. [Research Progress of NOS3 Participation in Regulatory Mechanisms of Cardiovascular Diseases].

    Science.gov (United States)

    Sun, Ting; Chi, Qingjia; Wang, Guixue

    2016-02-01

    Cardiovascular disease has been a major threat to human's health and lives for many years. It is of great importance to explore the mechanisms and develop strategies to prevent the pathogenesis. Generally, cardiovascular disease is associated with endothelial dysfunction, which is closely related to the nitric oxide (NO)-mediated vasodilatation. The release of NO is regulated by NOS3 gene in mammals' vascular system. A great deal of evidences have shown that the polymorphism and epigenetic of NOS3 gene play vital roles in the pathological process of cardiovascular disease. To gain insights into the role of NOS3 in the cardiovascular diseases, we reviewed the molecular mechanisms underlying the development of cardiovascular diseases in this paper, including the uncoupling of NOS3 protein, epigenetic and polymorphism of NOS3 gene. The review can also offer possible strategies to prevent and treat cardiovascular diseases.

  8. Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis

    Directory of Open Access Journals (Sweden)

    Ruffing Anne M

    2012-02-01

    Full Text Available Abstract Background The ability to synthesize exopolysaccharides (EPS is widespread among microorganisms, and microbial EPS play important roles in biofilm formation, pathogen persistence, and applications in the food and medical industries. Although it is well established that EPS synthesis is invariably in response to environmental cues, it remains largely unknown how various environmental signals trigger activation of the biochemical synthesis machinery. Results We report here the transcriptome profiling of Agrobacterium sp. ATCC 31749, a microorganism that produces large amounts of a glucose polymer known as curdlan under nitrogen starvation. Transcriptome analysis revealed a nearly 100-fold upregulation of the curdlan synthesis operon upon transition to nitrogen starvation, thus establishing the prominent role that transcriptional regulation plays in the EPS synthesis. In addition to known mechanisms of EPS regulation such as activation by c-di-GMP, we identify novel mechanisms of regulation in ATCC 31749, including RpoN-independent NtrC regulation and intracellular pH regulation by acidocalcisomes. Furthermore, we show evidence that curdlan synthesis is also regulated by conserved cell stress responses, including polyphosphate accumulation and the stringent response. In fact, the stringent response signal, pppGpp, appears to be indispensible for transcriptional activation of curdlan biosynthesis. Conclusions This study identifies several mechanisms regulating the synthesis of curdlan, an EPS with numerous applications. These mechanisms are potential metabolic engineering targets for improving the industrial production of curdlan from Agrobacterium sp. ATCC 31749. Furthermore, many of the genes identified in this study are highly conserved across microbial genomes, and we propose that the molecular elements identified in this study may serve as universal regulators of microbial EPS synthesis.

  9. Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of key regulatory proteins

    Indian Academy of Sciences (India)

    Veena K Parnaik; Pankaj Chaturvedi; B H Muralikrishna

    2011-08-01

    Lamins are major structural proteins of the nucleus and are essential for nuclear integrity and organization of nuclear functions. Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of different tissues such as muscle, adipose or neuronal tissues, or cause premature ageing syndromes. New findings on the role of lamins in cellular signalling pathways, as well as in ubiquitin-mediated proteasomal degradation, have given important insights into possible mechanisms of pathogenesis.

  10. [Research progress in biofilm formation and regulatory mechanism of Campylobacter jejuni].

    Science.gov (United States)

    Wu, Qingping; Zhong, Xian; Zhang, Jumei

    2016-02-04

    Biofilm of Campylobacter jejuni was formed by cross-linking its extracellular secretion, polysaccharides, various extracellular proteins, nucleic acids etc to enhance its survival in hostile environments, especially for detergents, antibiotics and disinfectants. This paper elaborated C. jejuni biofilm formation and regulation mechanisms in the surface properties of the media, temperatures, gas environment, the regulation of gene etc, also analysed and discussed a variety of biofilm removal practical applications. We hope it can provide a reference for studies on biofilm control of C. jejuni.

  11. Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability.

    Science.gov (United States)

    McIntosh, Matthew; Meyer, Stefan; Becker, Anke

    2009-12-01

    The Sin quorum sensing system of Sinorhizobium meliloti depends upon at least three genes, sinR, sinI and expR, and N-acyl homoserine lactones (AHLs) as signals to regulate multiple processes in its free-living state in the rhizosphere and in the development towards symbiosis with its plant host. In this study, we have characterized novel mechanisms of transcription control through which the system regulates itself. At low AHL levels a positive feedback loop activates expression of sinI (AHL synthase), resulting in amplification of AHL levels. At high AHL levels, expression of sinI is reduced by a negative feedback loop. These feedback mechanisms are mediated by the LuxR-type regulators ExpR and SinR. Expression of sinR and expR is regulated by ExpR in the presence of AHLs. A novel ExpR binding site in the promoter of sinR is responsible for the reduction of expression of this gene. In addition, expression of sinR, upon which sinI expression is dependent, is induced by phoB during growth under phosphate-limiting conditions. This indicates that this response ensures quorum sensing in phosphate-restricted growth.

  12. Subchromoplast sequestration of carotenoids affects regulatory mechanisms in tomato lines expressing different carotenoid gene combinations.

    Science.gov (United States)

    Nogueira, Marilise; Mora, Leticia; Enfissi, Eugenia M A; Bramley, Peter M; Fraser, Paul D

    2013-11-01

    Metabolic engineering of the carotenoid pathway in recent years has successfully enhanced the carotenoid contents of crop plants. It is now clear that only increasing biosynthesis is restrictive, as mechanisms to sequestrate these increased levels in the cell or organelle should be exploited. In this study, biosynthetic pathway genes were overexpressed in tomato (Solanum lycopersicum) lines and the effects on carotenoid formation and sequestration revealed. The bacterial Crt carotenogenic genes, independently or in combination, and their zygosity affect the production of carotenoids. Transcription of the pathway genes was perturbed, whereby the tissue specificity of transcripts was altered. Changes in the steady state levels of metabolites in unrelated sectors of metabolism were found. Of particular interest was a concurrent increase of the plastid-localized lipid monogalactodiacylglycerol with carotenoids along with membranous subcellular structures. The carotenoids, proteins, and lipids in the subchromoplast fractions of the transgenic tomato fruit with increased carotenoid content suggest that cellular structures can adapt to facilitate the sequestration of the newly formed products. Moreover, phytoene, the precursor of the pathway, was identified in the plastoglobule, whereas the biosynthetic enzymes were in the membranes. The implications of these findings with respect to novel pathway regulation mechanisms are discussed.

  13. Regulatory mechanisms and clinical perspectives of miR-34a in cancer

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-01-01

    Full Text Available MicroRNAs (miRNAs are evolutionarily conserved, endogenous, noncoding RNA molecules of about 22-24 nucleotides in length that repress gene expression at the posttranscriptional level. MiR-34a plays an important role in the initiation, progression, and therapy of cancer. In addition, the miR-34a expression has also been identified as a diagnostic and prognostic cancer signature. This article introduces the roles of miR-34a in cancer development, metastasis as well as its mechanism of actions on target genes and the functional outcomes of its actions on radio-sensitivity. The paper ends with a brief perspective to the future of miR-34a.

  14. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Kreiss, C M; Michael, K; Lucassen, M; Jutfelt, F; Motyka, R; Dupont, S; Pörtner, H-O

    2015-10-01

    Ocean warming and acidification are threatening marine ecosystems. In marine animals, acidification is thought to enhance ion regulatory costs and thereby baseline energy demand, while elevated temperature also increases baseline metabolic rate. Here we investigated standard metabolic rates (SMR) and plasma parameters of Atlantic cod (Gadus morhua) after 3-4 weeks of exposure to ambient and future PCO2 levels (550, 1200 and 2200 µatm) and at two temperatures (10, 18 °C). In vivo branchial ion regulatory costs were studied in isolated, perfused gill preparations. Animals reared at 18 °C responded to increasing CO2 by elevating SMR, in contrast to specimens at 10 °C. Isolated gills at 10 °C and elevated PCO2 (≥1200 µatm) displayed increased soft tissue mass, in parallel to increased gill oxygen demand, indicating an increased fraction of gill in whole animal energy budget. Altered gill size was not found at 18 °C, where a shift in the use of ion regulation mechanisms occurred towards enhanced Na(+)/H(+)-exchange and HCO3 (-) transport at high PCO2 (2200 µatm), paralleled by higher Na(+)/K(+)-ATPase activities. This shift did not affect total gill energy consumption leaving whole animal energy budget unaffected. Higher Na(+)/K(+)-ATPase activities in the warmth might have compensated for enhanced branchial permeability and led to reduced plasma Na(+) and/or Cl(-) concentrations and slightly lowered osmolalities seen at 18 °C and 550 or 2200 µatm PCO2 in vivo. Overall, the gill as a key ion regulation organ seems to be highly effective in supporting the resilience of cod to effects of ocean warming and acidification.

  15. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons.

    Directory of Open Access Journals (Sweden)

    Anthony J E Berndt

    2015-12-01

    Full Text Available Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE that binds BMP-activated pMad, and a homeodomain-response element (HD-RE that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp, as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP

  16. Desenho e funcionamento dos mecanismos de controle e accountability das agências reguladoras brasileiras: semelhanças e diferenças Design and operation of the Brazilian regulatory agencies' control and accountability mechanisms: similarities and differences

    National Research Council Canada - National Science Library

    Marcos Vinicius Pó; Fernando Luiz Abrucio

    2006-01-01

    ... agências reguladoras provoca na accountability do Estado brasileiro.This article studies the design and operation of the regulatory agencies' control and accountability mechanisms, underlining...

  17. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants.

    Science.gov (United States)

    Zhai, Xin; Jia, Min; Chen, Ling; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping

    2017-03-01

    A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants.

  18. A competitive regulatory mechanism discriminates between juxtaposed splice sites and pri-miRNA structures.

    Science.gov (United States)

    Mattioli, Chiara; Pianigiani, Giulia; Pagani, Franco

    2013-10-01

    We have explored the functional relationships between spliceosome and Microprocessor complex activities in a novel class of microRNAs (miRNAs), named Splice site Overlapping (SO) miRNAs, whose pri-miRNA hairpins overlap splice sites. We focused on the evolutionarily conserved SO miR-34b, and we identified two indispensable elements for recognition of its 3' splice site: a branch point located in the hairpin and a downstream purine-rich exonic splicing enhancer. In minigene systems, splicing inhibition owing to exonic splicing enhancer deletion or AG 3'ss mutation increases miR-34b levels. Moreover, small interfering-mediated silencing of Drosha and/or DGCR8 improves splicing efficiency and abolishes miR-34b production. Thus, the processing of this 3' SO miRNA is regulated in an antagonistic manner by the Microprocessor and the spliceosome owing to competition between these two machineries for the nascent transcript. We propose that this novel mechanism is commonly used to regulate the relative amount of SO miRNA and messenger RNA produced from primary transcripts.

  19. Social dominance-related major urinary proteins and the regulatory mechanism in mice.

    Science.gov (United States)

    Guo, Huifen; Fang, Qi; Huo, Ying; Zhang, Yaohua; Zhang, Jianxu

    2015-11-01

    Major urinary proteins (MUPs) have been proven to be non-volatile male pheromones in mice. Here, we aimed to elucidate the relationship between MUPs and dominance hierarchy, and the underlying molecular mechanisms. Dominance-submission relationship was established by chronic dyadic encountering. We found that at the urinary protein level and hepatic mRNA level, the expression of major MUPs, including Mup20, was enhanced in dominant males compared with subordinate males, indicating that MUPs might signal the social status of male mice. Meanwhile, the mRNA level of hepatic corticotropin releasing hormone receptor 2 (CRHR2) was higher in subordinate male mice than in dominant male mice. Castration also enhanced the expression of CRHR2, but suppressed that of MUPs. CRHR2 agonist treatment reduced the expression of MUPs in liver. However, male social status failed to exert significant influence on serum testosterone and corticosterone as well as the mRNA expression of their receptors. These findings reveal that some MUPs, especially Mup20, might constitute potential dominance pheromones and could be downregulated by hepatic CRHR2, which is possibly independent of androgen or corticosterone systems.

  20. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  1. The Mechanisms of Water Exchange: The Regulatory Roles of Multiple Interactions in Social Wasps.

    Directory of Open Access Journals (Sweden)

    Devanshu Agrawal

    Full Text Available Evolutionary benefits of task fidelity and improving information acquisition via multiple transfers of materials between individuals in a task partitioned system have been shown before, but in this paper we provide a mechanistic explanation of these phenomena. Using a simple mathematical model describing the individual interactions of the wasps, we explain the functioning of the common stomach, an information center, which governs construction behavior and task change. Our central hypothesis is a symmetry between foragers who deposit water and foragers who withdraw water into and out of the common stomach. We combine this with a trade-off between acceptance and resistance to water transfer. We ultimately derive a mathematical function that relates the number of interactions that foragers complete with common stomach wasps during a foraging cycle. We use field data and additional model assumptions to calculate values of our model parameters, and we use these to explain why the fullness of the common stomach stabilizes just below 50 percent, why the average number of successful interactions between foragers and the wasps forming the common stomach is between 5 and 7, and why there is a variation in this number of interactions over time. Our explanation is that our proposed water exchange mechanism places natural bounds on the number of successful interactions possible, water exchange is set to optimize mediation of water through the common stomach, and the chance that foragers abort their task prematurely is very low.

  2. Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis.

    Science.gov (United States)

    Deranieh, Rania M; He, Quan; Caruso, Joseph A; Greenberg, Miriam L

    2013-09-13

    myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using (32)Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS.

  3. Endocannabinoids are involved in male vertebrate reproduction: regulatory mechanisms at central and gonadal level

    Directory of Open Access Journals (Sweden)

    Patrizia eBovolin

    2014-04-01

    Full Text Available Endocannabinoids are natural lipids regulating a large array of physiological functions and behaviors in vertebrates. The endocannabinoid system is highly conserved in evolution and comprises several specific receptors (type-1 and type-2 cannabinoid receptors, their endogenous ligands (e.g. anandamide and 2-arachidonoylglycerol, and a number of biosynthetic and degradative enzymes. In the last few years, endocannabinoids have been described as critical signals in the control of male and female reproduction at multiple levels: centrally, by targeting hypothalamic Gonadotropin-Releasing-Hormone secreting neurons and pituitary, and locally, with direct effects on the gonads. These functions are supported by the extensive localization of cannabinoid receptors and endocannabinoid metabolic enzymes at different levels of the hypothalamic-pituitary-gonadal axis in mammals, as well as bonyfish and amphibians. In vivo and in vitro studies indicate that endocannabinoids centrally regulate gonadal functions by modulating the Gonadotropin Releasing Hormone-gonadotropin-steroid network through direct and indirect mechanisms. Several proofs of local endocannabinoid regulation have been found in the testis and male genital tracts, since endocannabinoids control Sertoli and Leydig cells activity, germ cell progression, as well as the acquisition of sperm functions. A comparative approach usually is a key step in the study of physiological events leading to the building of a general model. Thus, in this review we summarize the action of endocannabinoids at different levels of the male reproductive axis, with special emphasis, where appropriate, on data from non-mammalian vertebrates.

  4. Seasonality of reproduction in mammals: intimate regulatory mechanisms and practical implications.

    Science.gov (United States)

    Chemineau, P; Guillaume, D; Migaud, M; Thiéry, J C; Pellicer-Rubio, M T; Malpaux, B

    2008-07-01

    Farm mammals generally express seasonal variations in their production traits, thus inducing changing availability of fresh derived animal products (meat, milk and cheese) or performances (horses). This is due to a more or less marked seasonal birth distribution in sheep and goats, in horses but not cattle. Birth peak occurs at the end of winter-early spring, the most favourable period for the progeny to survive. Most species show seasonal variations in their ovulation frequency (presence or absence of ovulation), spermatogenic activity (from moderate decrease to complete absence of sperm production), gamete quality (variations in fertilization rates and embryo survival), and also sexual behaviour. The intimate mechanism involved is a complex combination of endogenous circannual rhythm driven and synchronized by light and melatonin. Profound and long-term neuroendocrine changes involving different neuromediator systems were described to play a role in these processes. In most species artificial photoperiodic treatments consisting of extra-light during natural short days (in sheep and goats and mares) or melatonin during long days (in sheep and goats) are extensively used to either adjust the breeding season to animal producer needs and/or to completely overcome seasonal variations of sperm production in artificial insemination centres. Pure light treatments (without melatonin), especially when applied in open barns, could be considered as non-invasive ones which fully respect animal welfare. Genetic selection could be one of the future ways to decrease seasonality in sheep and goats.

  5. Vpu mediates depletion of interferon regulatory factor 3 during HIV infection by a lysosome-dependent mechanism.

    Science.gov (United States)

    Doehle, Brian P; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M Juliana; Gale, Michael

    2012-08-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV.

  6. Vpu Mediates Depletion of Interferon Regulatory Factor 3 during HIV Infection by a Lysosome-Dependent Mechanism

    Science.gov (United States)

    Doehle, Brian P.; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M. Juliana

    2012-01-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV. PMID:22593165

  7. Electrical stimulation of the substantia nigra reticulata : Detection of neuronal extracellular GABA in the ventromedial thalamus and its regulatory mechanism using microdialysis in awake rats

    NARCIS (Netherlands)

    Timmerman, W; Westerink, BHC

    1997-01-01

    A combination of electrical stimulation and microdialysis was used to study the nigrothalamic gamma aminobutyric acid (GABA)ergic system and its regulatory mechanisms in awake rats. Extracellular GABA levels in the ventromedial nucleus of the thalamus were detected in S-min fractions collected befor

  8. Evidence for the involvement of p59fyn and p53/56lyn in collagen receptor signalling in human platelets.

    Science.gov (United States)

    Briddon, S J; Watson, S P

    1999-02-15

    The binding of collagen to platelet glycoprotein VI (GPVI) leads to the subsequent activation of phospholipase Cgamma2 through a pathway that is dependent on the Fc receptor gamma (FcR gamma) chain and the tyrosine kinase p72syk. We have investigated the role of platelet Src-family kinases in this signalling pathway. The selective Src-family kinase inhibitor PP1 prevented collagen-stimulated increases in whole-cell tyrosine phosphorylation and tyrosine phosphorylation of the FcR gamma chain and p72syk. A similar set of observations was made for a collagen-related peptide (CRP), which binds to GPVI but not to the integrin alpha2beta1 (GPIa/IIa). These effects were seen at a concentration of PP1 that inhibited platelet aggregation, dense granule release and Ca2+ mobilization induced by CRP, but not aggregation and Ca2+ mobilization mediated by the G-protein-coupled receptor agonist thrombin. After stimulation by CRP or collagen, the Src-family kinases p59fyn and p53/56lyn became associated with several tyrosine-phosphorylated proteins including the FcR gamma chain. This was not true of the other platelet Src-family kinases. The association between the FcR gamma chain and p59fyn was also seen under basal conditions, and was stable only in the weak detergent Brij96 but not in Nonidet P40, suggesting a non-SH2-dependent interaction. These results provide strong evidence for the involvement of p59fyn and p53/56lyn in signalling via GPVI, with p59fyn possibly acting upstream of FcR gamma chain phosphorylation.

  9. Purification, crystallization and preliminary X-ray diffraction analysis of the Fyn SH2 domain and its complex with a phosphotyrosine peptide.

    Science.gov (United States)

    Huculeci, Radu; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico A J; Garcia-Pino, Abel

    2012-03-01

    SH2 domains are widespread protein-binding modules that recognize phosphotyrosines and play central roles in intracellular signalling pathways. The SH2 domain of the human protein tyrosine kinase Fyn has been expressed, purified and crystallized in the unbound state and in complex with a high-affinity phosphotyrosine peptide. X-ray data were collected to a resolution of 2.00 Å for the unbound form and 1.40 Å for the protein in complex with the phosphotyrosine peptide.

  10. Cis- and trans-regulatory mechanisms of gene expression in the ASJ sensory neuron of Caenorhabditis elegans

    NARCIS (Netherlands)

    M. González-Barrios (María); J.C. Fierro-González (Juan Carlos); E. Krpelanova (Eva); J.A. Mora-Lorca (José Antonio); J. Rafael Pedrajas (José); X. Peñate (Xenia); S. Chavez (Sebastián); P. Swoboda (Peter); G. Jansen (Gert); A. Miranda-Vizuet (Antonio)

    2015-01-01

    textabstractThe identity of a given cell type is determined by the expression of a set of genes sharing common cis-regulatory motifs and being regulated by shared transcription factors. Here, we identify cis and trans regulatory elements that drive gene expression in the bilateral sensory neuron ASJ

  11. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    Science.gov (United States)

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-12-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.

  12. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    Directory of Open Access Journals (Sweden)

    Yanwei Hao

    2015-12-01

    Full Text Available Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2 which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.

  13. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin.

    Science.gov (United States)

    Tang, Ning; Deng, Wei; Hu, Guojian; Hu, Nan; Li, Zhengguo

    2015-01-01

    Fruit set is a key process for crop production in tomato which occurs after successful pollination and fertilization naturally. However, parthenocarpic fruit development can be uncoupled from fertilization triggered by exogenous auxin or gibberellins (GAs). Global transcriptome knowledge during fruit initiation would help to characterize the molecular mechanisms by which these two hormones regulate pollination-dependent and -independent fruit set. In this work, digital gene expression tag profiling (DGE) technology was applied to compare the transcriptomes from pollinated and 2, 4-D/GA3-treated ovaries. Activation of carbohydrate metabolism, cell division and expansion as well as the down-regulation of MADS-box is a comprehensive regulatory pathway during pollination-dependent and parthenocarpic fruit set. The signaling cascades of auxin and GA are significantly modulated. The feedback regulations of Aux/IAAs and DELLA genes which functioned to fine-tune auxin and GA response respectively play fundamental roles in triggering fruit initiation. In addition, auxin regulates GA synthesis via up-regulation of GA20ox1 and down-regulation of KNOX. Accordingly, the effect of auxin on fruit set is mediated by GA via ARF2 and IAA9 down-regulation, suggesting that both pollination-dependent and parthenocarpic fruit set depend on the crosstalk between auxin and GA. This study characterizes the transcriptomic features of ovary development and more importantly unravels the integral roles of auxin and GA on pollination-dependent and parthenocarpic fruit set.

  14. Regulatory Mechanisms of the Ihh/PTHrP Signaling Pathway in Fibrochondrocytes in Entheses of Pig Achilles Tendon

    Directory of Open Access Journals (Sweden)

    Xuesong Han

    2016-01-01

    Full Text Available This study is aimed at exploring the effect of stress stimulation on the proliferation and differentiation of fibrochondrocytes in entheses mediated via the Indian hedgehog (Ihh/parathyroid hormone-related protein (PTHrP signaling pathway. Differential stress stimulation on fibrochondrocytes in entheses was imposed. Gene expression and protein levels of signaling molecules including collagen type I (Col I, Col II, Col X, Ihh, and PTHrP in the cytoplasm of fibrochondrocytes were detected. Ihh signal blocking group was set up using Ihh signaling pathway-specific blocking agent cyclopamine. PTHrP enhancement group was set up using PTHrP reagent. Ihh/PTHrP double intervention group, as well as control group, was included to study the regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes. Under low cyclic stress tensile (CTS, PTHrP, Col I, and Col II gene expression and protein synthesis increased. Under high CTS, Ihh and Col X gene expression and protein synthesis increased. Blocking Ihh signaling with cyclopamine resulted in reduced PTHrP gene expression and protein synthesis and increased Col X gene expression and protein synthesis. Ihh and PTHrP coregulate fibrochondrocyte proliferation and differentiation in entheses through negative feedback regulation. Fibrochondrocyte is affected by the CTS. This phenomenon is regulated by stress stimulation through the Ihh/PTHrP signaling pathway.

  15. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Jean-François Lemay

    2011-01-01

    Full Text Available Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic. While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms.

  16. Reactive oxygen species regulatory mechanisms associated with rapid response of MC3T3-E1 cells for vibration stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Gan, Xueqi; Zhu, Zhuoli; Yang, Yang; He, Yuting; Yu, Haiyang, E-mail: yhyang6812@scu.edu.cn

    2016-02-12

    Although many previous studies have shown that refractory period-dependent memory effect of vibration stress is anabolic for skeletal homeostasis, little is known about the rapid response of osteoblasts simply derived from vibration itself. In view of the potential role of reactive oxygen species (ROS) in mediating differentiated activity of osteoblasts, whether and how ROS regulates the rapid effect of vibration deserve to be demonstrated. Our findings indicated that MC3T3-E1 cells underwent decreased gene expression of Runx2, Col-I and ALP and impaired ALP activity accompanied by increased mitochondrial fission immediately after vibration loading. Moreover, we also revealed the involvement of ERK-Drp1 signal transduction in ROS regulatory mechanisms responsible for the rapid effect of vibration stress. - Highlights: • ROS contributed to the rapid response of MC3T3-E1 cells for vibration stress. • Imbalance of mitochondrial dynamics were linked to the LMHFV-derived rapid response. • The role of ERK-Drp1 signal pathway in the LMHFV-derived osteoblast rapid response.

  17. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    Science.gov (United States)

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  18. Prefrontal and Striatal Glutamate Differently Relate to Striatal Dopamine: Potential Regulatory Mechanisms of Striatal Presynaptic Dopamine Function?

    Science.gov (United States)

    Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen

    2015-07-01

    Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role

  19. Multistructure index in revealing complexity of regulatory mechanisms of human cardiovascular system at rest and orthostatic stress in healthy humans

    Science.gov (United States)

    Makowiec, Danuta; Graff, Beata; Struzik, Zbigniew R.

    2017-02-01

    Biological regulation is sufficiently complex to pose an enduring challenge for characterization of both its equilibrium and transient non-equilibrium dynamics. Two univariate but coupled observables, heart rate and systolic blood pressure, are commonly characterized in the benchmark example of the human cardiovascular regulatory system. Asymmetric distributions of accelerations and decelerations of heart rate, as well as rises and falls in systolic blood pressure, recorded in humans during a head-up tilt test provide insights into the dynamics of cardiovascular response to a rapid, controlled deregulation of the system's homeostasis. The baroreflex feedback loop is assumed to be the fundamental physiological mechanism for ensuring homeostatic blood supply to distant organs at rest and during orthostatic stress, captured in a classical beat-to-beat autoregressive model of baroreflex by de Boer et al. (1987). For model corroboration, a multistructure index statistic is proposed, seamlessly evaluating the size spectrum of magnitudes of neural reflexes such as baroreflex, responsible for maintaining the homeostatic dynamics. The multistructure index exposes a distinctly different dynamics of multiscale asymmetry between results obtained from real-life signals recorded from healthy subjects and those simulated using both the classical and perturbed versions of the model. Nonlinear effects observed suggest the pronounced presence of complex mechanisms resulting from baroreflex regulation when a human is at rest, which is aggravated in the system's response to orthostatic stress. Using our methodology of multistructure index, we therefore show a marked difference between model and real-life scenarios, which we attribute to multiscale asymmetry of non-linear origin in real-life signals, which we are not reproducible by the classical model.

  20. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Directory of Open Access Journals (Sweden)

    Kathleen Busman-Sahay

    Full Text Available Following antigen recognition, B cell receptor (BCR-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2 is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs. Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.

  1. Regulatory mechanisms that prevent re-initiation of DNA replication can be locally modulated at origins by nearby sequence elements.

    Directory of Open Access Journals (Sweden)

    Christopher D Richardson

    2014-06-01

    Full Text Available Eukaryotic cells must inhibit re-initiation of DNA replication at each of the thousands of origins in their genome because re-initiation can generate genomic alterations with extraordinary frequency. To minimize the probability of re-initiation from so many origins, cells use a battery of regulatory mechanisms that reduce the activity of replication initiation proteins. Given the global nature of these mechanisms, it has been presumed that all origins are inhibited identically. However, origins re-initiate with diverse efficiencies when these mechanisms are disabled, and this diversity cannot be explained by differences in the efficiency or timing of origin initiation during normal S phase replication. This observation raises the possibility of an additional layer of replication control that can differentially regulate re-initiation at distinct origins. We have identified novel genetic elements that are necessary for preferential re-initiation of two origins and sufficient to confer preferential re-initiation on heterologous origins when the control of re-initiation is partially deregulated. The elements do not enhance the S phase timing or efficiency of adjacent origins and thus are specifically acting as re-initiation promoters (RIPs. We have mapped the two RIPs to ∼ 60 bp AT rich sequences that act in a distance- and sequence-dependent manner. During the induction of re-replication, Mcm2-7 reassociates both with origins that preferentially re-initiate and origins that do not, suggesting that the RIP elements can overcome a block to re-initiation imposed after Mcm2-7 associates with origins. Our findings identify a local level of control in the block to re-initiation. This local control creates a complex genomic landscape of re-replication potential that is revealed when global mechanisms preventing re-replication are compromised. Hence, if re-replication does contribute to genomic alterations, as has been speculated for cancer cells, some

  2. Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics.

    Science.gov (United States)

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.

  3. Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics.

    Directory of Open Access Journals (Sweden)

    Chong Fang

    Full Text Available To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE. The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.

  4. Review: Regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH synthesis and release in photoperiodic animals

    Directory of Open Access Journals (Sweden)

    Kazuyoshi eTsutsui

    2013-04-01

    Full Text Available Gonadotropin-inhibitory hormone (GnIH is a novel hypothalamic neuropeptide that was discovered in quail as an inhibitory factor for gonadotropin release. GnIH inhibits gonadotropin synthesis and release in birds through actions on gonadotropin-releasing hormone (GnRH neurons and gonadotropes, mediated via the GnIH receptor (GnIH-R, GPR147. Subsequently, GnIH was identified in mammals and other vertebrates. As in birds, mammalian GnIH inhibits gonadotropin secretion, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal (HPG axis across species. Identification of the regulatory mechanisms governing GnIH expression and release is important in understanding the physiological role of the GnIH system. A nocturnal hormone, melatonin, appears to act directly on GnIH neurons through its receptor to induce expression and release of GnIH in quail, a photoperiodic bird. Recently, a similar, but opposite, action of melatonin on the inhibition of expression of mammalian GnIH was shown in hamsters and sheep, photoperiodic mammals. These results in photoperiodic animals demonstrate that GnIH expression is photoperiodically modulated via a melatonin-dependent process. Recent findings indicate that GnIH may be a mediator of stress-induced reproductive disruption in birds and mammals, pointing to a broad role for this neuropeptide in assessing physiological state and modifying reproductive effort accordingly. This paper summarizes the advances made in our knowledge regarding the regulation of GnIH synthesis and release in photoperiodic birds and mammals. This paper also discusses the neuroendocrine integration of environmental signals, such as photoperiods and stress, and internal signals, such as GnIH, melatonin and glucocorticoids, to control avian and mammalian reproduction.

  5. Functional Analysis of In-frame Indel ARID1A Mutations Reveals New Regulatory Mechanisms of Its Tumor Suppressor Functions

    Directory of Open Access Journals (Sweden)

    Bin Guan

    2012-10-01

    Full Text Available AT-rich interactive domain 1A (ARID1A has emerged as a new tumor suppressor in which frequent somatic mutations have been identified in several types of human cancers. Although most ARID1A somatic mutations are frame-shift or nonsense mutations that contribute to mRNA decay and loss of protein expression, 5% of ARID1A mutations are in-frame insertions or deletions (indels that involve only a small stretch of peptides. Naturally occurring in-frame indel mutations provide unique and useful models to explore the biology and regulatory role of ARID1A. In this study, we analyzed indel mutations identified in gynecological cancers to determine how these mutations affect the tumor suppressor function of ARID1A. Our results demonstrate that all in-frame mutants analyzed lost their ability to inhibit cellular proliferation or activate transcription of CDKN1A, which encodes p21, a downstream effector of ARID1A. We also showed that ARID1A is a nucleocytoplasmic protein whose stability depends on its subcellular localization. Nuclear ARID1A is less stable than cytoplasmic ARID1A because ARID1A is rapidly degraded by the ubiquitin-proteasome system in the nucleus. In-frame deletions affecting the consensus nuclear export signal reduce steady-state protein levels of ARID1A. This defect in nuclear exportation leads to nuclear retention and subsequent degradation. Our findings delineate a mechanism underlying the regulation of ARID1A subcellular distribution and protein stability and suggest that targeting the nuclear ubiquitin-proteasome system can increase the amount of the ARID1A protein in the nucleus and restore its tumor suppressor functions.

  6. Regulatory mechanism of pyrrolidine dithiocarbamate is mediated by nuclear factor-κB and inhibits neutrophil accumulation in ARDS mice.

    Science.gov (United States)

    Wang, Hongman; Xu, Lisheng; Zhao, Jiping; Wang, Donghui; Guo, Ranran; Wang, Junfei; Gong, Wenbin; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-08-01

    The aim of the present study was to investigate the regulatory mechanism of nuclear factor (NF)-κB on polymorphonuclear neutrophil (PMN) accumulation and the inflammatory response in lung tissues with acute respiratory distress syndrome (ARDS), as well as the therapeutic effect of pyrrolidine dithiocarbamate (PDTC). Mouse models of ARDS were established by intraperitoneal injection of lipopolysaccharide (LPS). BALB/c mice were divided into control, LPS and PDTC + LPS groups. The expression of PMN adhesion molecules, CD11b/CD18 and intercellular adhesion molecule-1 (ICAM-1), were detected by immunohistochemistry, while the protein expression levels of NF-κB p65 in the lung tissue were analyzed by western blot analysis. In addition, flow cytometry was used to investigate the apoptosis rate of PMNs in the bronchoalveolar fluid, and the expression levels of interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α and myeloperoxidase (MPO) activity were also determined. Following an intraperitoneal injection of LPS, alveolar septum rupture, pulmonary interstitial hyperemia and PMN infiltration in the alveolar was observed. The protein expression of p65 in the pulmonary cytoplasm decreased, while the expression of p65 in the nucleus increased. The levels of IL-8, IL-1β and TNF-α increased and the high expression status was maintained for 24 h. As the time increased, CD11b/CD18 and ICAM-1 expression increased, as well as MPO activity, while the apoptosis of PMNs was delayed. Compared with the LPS group, the expression of p65 in the pulmonary cytoplasm and the PMN apoptosis rate increased following PDTC intervention, while the expression of p65 in the nucleus decreased, as well as the expression levels of the cytokines and MPO activity. Therefore, PDTC reduced the production of inflammatory cytokines via the NF-κB pathway, which reduced the activation of PMNs in the lung tissue and promoted PMN apoptosis.

  7. Regulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms.

    Science.gov (United States)

    Ridgway, Neale D; Lagace, Thomas A

    2003-06-15

    The synthesis of phosphatidylcholine (PtdCho) by the CDP-choline pathway is under the control of the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CCT). Sterol regulatory element binding proteins (SREBPs) have been proposed to regulate CCT at the transcriptional level, or via the synthesis of lipid activators or substrates of the CDP-choline pathway. To assess the contributions of these two mechanisms, we examined CCTalpha expression and PtdCho synthesis by the CDP-choline pathway in cholesterol and fatty acid auxotrophic CHO M19 cells inducibly expressing constitutively active nuclear forms of SREBP1a or SREBP2. Induction of either SREBP resulted in increased expression of mRNAs for sterol-regulated genes, elevated fatty acid and cholesterol synthesis (>10-50-fold) and increased PtdCho synthesis (2-fold). CCTalpha mRNA was increased 2-fold by enforced expression of SREBP1a or SREBP2. The resultant increase in CCTalpha protein and activity (2-fold) was restricted primarily to the soluble fraction of cells, and increased CCTalpha activity in vivo was not detected. Inhibition of the synthesis of fatty acids or their CoA esters by cerulenin or triacsin C respectively following SREBP induction effectively blocked the accompanying elevation in PtdCho synthesis. Thus PtdCho synthesis was driven by increased synthesis of fatty acids or a product thereof. These data show that transcriptional activation of CCTalpha is modest relative to that of other SREBP-regulated genes, and that stimulation of PtdCho synthesis by SREBPs in CHO cells is due primarily to increased fatty acid synthesis.

  8. Regulatory mechanisms for abnormal expression of the human breast cancer specific gene 1 in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    LU; Aiping; LI; Qing; LIU; Jingwen

    2006-01-01

    Breast cancer-specific gene 1 (BCSG1), also referred as synuclein γ, was originally isolated from a human breast cancer cDNA library and the protein is mainly localized to presynaptic terminals in the nervous system. BCSG1 is not expressed in normal or benign breast lesions, but expressed at an extremely high level in the vast majority of the advanced staged breast carcinomas and ovarian carcinomas. Overexpression of BCSG1 in cancer cells led to significant increase in cell proliferation, motility and invasiveness, and metastasis. To elucidate the molecular mechanism and regulation for abnormal transcription of BCSG1, a variety of BCSG1 promoter luciferase reporters were constructed including 3' end deleted sequences, Sp1 deleted, and activator protein-1 (AP1) domains mutated. Transient transfection assay was used to detect the transcriptional activation of BCSG1 promoters. Results showed that the Sp1 sequence in 5'-flanking region was involved in the basal transcriptional activities of BCSG1 without cell-type specificity. In comparison to pGL3-1249, the reporter activities of pGL3-1553 in BCSG1-negative MCF-7 cells and pGL3-1759 in HepG2 cells were notably decreased. Mutations at AP1 sites in BCSG1 intron 1 significantly reduced the promoter activity in all cell lines. Transcription factors, c-jun, c-fos and cyclin AMP-responsive element binding (CREB) protein, could markedly enhance the promoter activities. Thus, our results suggest that the abnormal expression of BCSG1 in breast cancer cells is likely regulated by multiple mechanisms. The 5' flanking region of BCSG1 provides the basal transcriptional activity without cell type specificity. A critical promoter element involved in abnormal expression of BCSG1 presents in the first exon. The cell type specificity of BCSG1 transcription is probably affected through intronic cis-regulatory sequences. AP1 domains in the first intron play an important role in control of BCSG1 transcription.

  9. Regulatory agencies and regulatory risk

    OpenAIRE

    Knieps, Günter; Weiß, Hans-Jörg

    2007-01-01

    The aim of this paper is to show that regulatory risk is due to the discretionary behaviour of regulatory agencies, caused by a too extensive regulatory mandate provided by the legislator. The normative point of reference and a behavioural model of regulatory agencies based on the positive theory of regulation are presented. Regulatory risk with regard to the future behaviour of regulatory agencies is modelled as the consequence of the ex ante uncertainty about the relative influence of inter...

  10. Contrasting evolutionary dynamics of the developmental regulator PAX9, among bats, with evidence for a novel post-transcriptional regulatory mechanism.

    Directory of Open Access Journals (Sweden)

    Caleb D Phillips

    Full Text Available Morphological evolution can be the result of natural selection favoring modification of developmental signaling pathways. However, little is known about the genetic basis of such phenotypic diversity. Understanding these mechanisms is difficult for numerous reasons, yet studies in model organisms often provide clues about the major developmental pathways involved. The paired-domain gene, PAX9, is known to be a key regulator of development, particularly of the face and teeth. In this study, using a comparative genetics approach, we investigate PAX9 molecular evolution among mammals, focusing on craniofacially diversified (Phyllostomidae and conserved (Vespertilionidae bat families, and extend our comparison to other orders of mammal. Open-reading frame analysis disclosed signatures of selection, in which a small percentage of residues vary, and lineages acquire different combinations of variation through recurrent substitution and lineage specific changes. A few instances of convergence for specific residues were observed between morphologically convergent bat lineages. Bioinformatic analysis for unknown PAX9 regulatory motifs indicated a novel post-transcriptional regulatory mechanism involving a Musashi protein. This regulation was assessed through fluorescent reporter assays and gene knockdowns. Results are compatible with the hypothesis that the number of Musashi binding-elements in PAX9 mRNA proportionally regulates protein translation rate. Although a connection between morphology and binding element frequency was not apparent, results indicate this regulation would vary among craniofacially divergent bat species, but be static among conserved species. Under this model, Musashi's regulatory control of alternative human PAX9 isoforms would also vary. The presence of Musashi-binding elements within PAX9 of all mammals examined, chicken, zebrafish, and the fly homolog of PAX9, indicates this regulatory mechanism is ancient, originating basal

  11. 1H, 13C and 15N backbone and side-chain chemical shift assignment of the Fyn SH2 domain and its complex with a phosphotyrosine peptide.

    Science.gov (United States)

    Huculeci, Radu; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico A J

    2011-10-01

    SH2 domains are interaction modules uniquely dedicated to recognize phosphotyrosine sites, playing a central role in for instance the activation of tyrosine kinases or phosphatases. Here we report the (1)H, (15)N and (13)C backbone and side-chain chemical shift assignments of the SH2 domain of the human protein tyrosine kinase Fyn, both in its free state and bound to a high-affinity phosphotyrosine peptide corresponding to a specific sequence in the hamster middle-T antigen. The BMRB accession numbers are 17,368 and 17,369, respectively.

  12. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins.

    OpenAIRE

    1993-01-01

    Cross-linking of glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins on T cells can trigger cell activation. We and others have shown an association between GPI-anchored proteins and the protein tyrosine kinases (PTKs) p56lck and p59fyn, suggesting a pathway for signaling through GPI-anchored proteins. Studies of decay-accelerating factor (DAF) or CD59 in either the C32 cell line or the HeLa cell line transfected with PTK cDNA demonstrated that the GPI-anchored proteins associated ...

  13. Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels.

    Science.gov (United States)

    Huang, Bo-Wen; Miyazawa, Masaki; Tsuji, Yoshiaki

    2014-12-01

    Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while it upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5'UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels.

  14. Signal transduction in neurons: effects of cellular prion protein on fyn kinase and ERK1/2 kinase

    Directory of Open Access Journals (Sweden)

    Tomasi Vittorio

    2010-12-01

    Full Text Available Abstract Background It has been reported that cellular prion protein (PrPc co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI anchor (secPrP and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals. Results By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11 expressing caveolin-1 at high levels. Conclusions We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.

  15. Signal transduction in neurons: effects of cellular prion protein on fyn kinase and ERK1/2 kinase.

    Science.gov (United States)

    Tomasi, Vittorio

    2010-12-16

    It has been reported that cellular prion protein (PrPc) co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI) anchor (secPrP) and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals. By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s) of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11) expressing caveolin-1 at high levels. We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.

  16. α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism.

    Science.gov (United States)

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system.

  17. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    Directory of Open Access Journals (Sweden)

    Mattia Toni

    2006-01-01

    Full Text Available It has been reported that cellular prion protein (PrPc is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1 participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11, by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2 was triggered, suggesting that following translocations from rafts to caveolae or caveolae-like domains PrPc could interact with Cav-1 and induce signal transduction events.

  18. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets.

    Science.gov (United States)

    Ezumi, Y; Shindoh, K; Tsuji, M; Takayama, H

    1998-07-20

    We have previously shown that uncharacterized glycoprotein VI (GPVI), which is constitutively associated and coexpressed with Fc receptor gamma chain (FcRgamma) in human platelets, is essential for collagen-stimulated tyrosine phosphorylation of FcRgamma, Syk, and phospholipase Cgamma2 (PLCgamma2), leading to platelet activation. Here we investigated involvement of the Src family in the proximal signals through the GPVI-FcRgamma complex, using the snake venom convulxin from Crotalus durissus terrificus, which specifically recognizes GPVI and activates platelets through cross-linking GPVI. Convulxin-coupled beads precipitated the GPVI-FcRgamma complex from platelet lysates. Collagen and convulxin induced tyrosine phosphorylation of FcRgamma, Syk, and PLCgamma2 and recruited tyrosine-phosphorylated Syk to the GPVI-FcRgamma complex. Using coprecipitation methods with convulxin-coupled beads and antibodies against FcRgamma and the Src family, we showed that Fyn and Lyn, but not Yes, Src, Fgr, Hck, and Lck, were physically associated with the GPVI-FcRgamma complex irrespective of stimulation. Furthermore, Fyn was rapidly activated by collagen or cross-linking GPVI. The Src family-specific inhibitor PP1 dose-dependently inhibited collagen- or convulxin-induced tyrosine phosphorylation of proteins including FcRgamma, Syk, and PLCgamma2, accompanied by a loss of aggregation and ATP release reaction. These results indicate that the Src family plays a critical role in platelet activation via the collagen receptor GPVI-FcRgamma complex.

  19. Physical and Functional Association of the Src Family Kinases Fyn and Lyn with the Collagen Receptor Glycoprotein VI-Fc Receptor γ Chain Complex on Human Platelets

    Science.gov (United States)

    Ezumi, Yasuharu; Shindoh, Keisuke; Tsuji, Masaaki; Takayama, Hiroshi

    1998-01-01

    We have previously shown that uncharacterized glycoprotein VI (GPVI), which is constitutively associated and coexpressed with Fc receptor γ chain (FcRγ) in human platelets, is essential for collagen-stimulated tyrosine phosphorylation of FcRγ, Syk, and phospholipase Cγ2 (PLCγ2), leading to platelet activation. Here we investigated involvement of the Src family in the proximal signals through the GPVI–FcRγ complex, using the snake venom convulxin from Crotalus durissus terrificus, which specifically recognizes GPVI and activates platelets through cross-linking GPVI. Convulxin-coupled beads precipitated the GPVI–FcRγ complex from platelet lysates. Collagen and convulxin induced tyrosine phosphorylation of FcRγ, Syk, and PLCγ2 and recruited tyrosine-phosphorylated Syk to the GPVI–FcRγ complex. Using coprecipitation methods with convulxin-coupled beads and antibodies against FcRγ and the Src family, we showed that Fyn and Lyn, but not Yes, Src, Fgr, Hck, and Lck, were physically associated with the GPVI–FcRγ complex irrespective of stimulation. Furthermore, Fyn was rapidly activated by collagen or cross-linking GPVI. The Src family–specific inhibitor PP1 dose-dependently inhibited collagen- or convulxin-induced tyrosine phosphorylation of proteins including FcRγ, Syk, and PLCγ2, accompanied by a loss of aggregation and ATP release reaction. These results indicate that the Src family plays a critical role in platelet activation via the collagen receptor GPVI–FcRγ complex. PMID:9670039

  20. Fyn Kinase regulates GluN2B subunit-dominant NMDA receptors in human induced pluripotent stem cell-derived neurons.

    Science.gov (United States)

    Zhang, Wen-Bo; Ross, P Joel; Tu, YuShan; Wang, Yongqian; Beggs, Simon; Sengar, Ameet S; Ellis, James; Salter, Michael W

    2016-04-04

    NMDA receptor (NMDAR)-mediated fast excitatory neurotransmission is implicated in a broad range of physiological and pathological processes in the mammalian central nervous system. The function and regulation of NMDARs have been extensively studied in neurons from rodents and other non-human species, and in recombinant expression systems. Here, we investigated human NMDARs in situ by using neurons produced by directed differentiation of human induced pluripotent stem cells (iPSCs). The resultant cells showed electrophysiological characteristics demonstrating that they are bona fide neurons. In particular, human iPSC-derived neurons expressed functional ligand-gated ion channels, including NMDARs, AMPA receptors, GABAA receptors, as well as glycine receptors. Pharmacological and electrophysiological properties of NMDAR-mediated currents indicated that these were dominated by receptors containing GluN2B subunits. The NMDAR currents were suppressed by genistein, a broad-spectrum tyrosine kinase inhibitor. The NMDAR currents were also inhibited by a Fyn-interfering peptide, Fyn(39-57), but not a Src-interfering peptide, Src(40-58). Together, these findings are the first evidence that tyrosine phosphorylation regulates the function of NMDARs in human iPSC-derived neurons. Our findings provide a basis for utilizing human iPSC-derived neurons in screening for drugs targeting NMDARs in neurological disorders.

  1. Positive and Negative Regulatory Mechanisms for Fine-Tuning Cellularity and Functions of Medullary Thymic Epithelial Cells

    Science.gov (United States)

    Akiyama, Taishin; Tateishi, Ryosuke; Akiyama, Nobuko; Yoshinaga, Riko; Kobayashi, Tetsuya J.

    2015-01-01

    Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell–cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-β and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell–cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system. PMID:26441966

  2. Mass Spectrometric Analysis of TRPM6 and TRPM7 Phosphorylation Reveals Regulatory Mechanisms of the Channel-Kinases

    Science.gov (United States)

    Cai, Na; Bai, Zhiyong; Nanda, Vikas; Runnels, Loren W.

    2017-01-01

    TRPM7 and TRPM6 were the first identified bifunctional channels to contain their own kinase domains, but how these channel-kinases are regulated is poorly understood. Previous studies identified numerous phosphorylation sites on TRPM7, but very little is known about TRPM6 phosphorylation or sites on TRPM7 transphosphorylated by TRPM6. Our mass spectrometric analysis of homomeric and heteromeric TRPM7 and TRPM6 channels identified phosphorylation sites on both proteins, as well as several prominent sites on TRPM7 that are commonly modified through autophosphorylation and transphosphorylation by TRPM6. We conducted a series of amino acid substitution analyses and identified S1777, in TRPM7’s catalytic domain, and S1565, in TRPM7’s exchange domain that mediates kinase dimerization, as potential regulatory sites. The phosphomimetic S1777D substitution disrupted catalytic activity, most likely by causing an electrostatic perturbation at the active site. The S1565D phosphomimetic substitution also inactivated the kinase but did so without interfering with kinase dimerization. Molecular modeling indicates that phosphorylation of S1565 is predicted to structurally affect TRPM7’s functionally conserved N/D loop, which is thought to influence the access of substrate to the active site pocket. We propose that phosphorylation of S1565 within the exchange domain functions as a regulatory switch to control TRPM7 catalytic activity. PMID:28220887

  3. Post-translational hydroxylation by 2OG/Fe(II-dependent oxygenases as a novel regulatory mechanism in bacteria

    Directory of Open Access Journals (Sweden)

    Laura M van Staalduinen

    2015-01-01

    Full Text Available Protein hydroxylation has been well-studied in eukaryotic systems. The structural importance of hydroxylation of specific proline and lysine residues during collagen biosynthesis is well established while, recently, key roles for post-translational hydroxylation in signalling and degradation pathways have been discovered. The function of hydroxylation in signalling is highlighted by its role in the hypoxic response of eukaryotic cells, where oxygen dependent hydroxylation of the hypoxia inducible transcription factor both targets it for degradation and blocks its activation. In contrast, the role of protein hydroxylation has been largely understudied in prokaryotes. Recently, an evolutionarily conserved class of ribosomal oxygenases (ROX that catalyze the hydroxylation of specific residues in the ribosome has been identified in bacteria. ROX activity has been linked to cell growth, and has been found to have a direct impact on bulk protein translation. This discovery of ribosomal protein hydroxylation in bacteria could lead to new therapeutic targets for regulating bacterial growth, as well as, shed light on new prokaryotic hydroxylation signalling pathways. In this review, recent structural and functional studies will be highlighted and discussed, underscoring the regulatory potential of post-translational hydroxylation in bacteria.

  4. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats.

    Science.gov (United States)

    Xie, Di; Shen, Fengcai; He, Shaoru; Chen, Mengmeng; Han, Qianpeng; Fang, Ming; Zeng, Hongke; Chen, Chunbo; Deng, Yiyu

    2016-04-01

    Neuroinflammation elicited by microglia plays a key role in periventricular white matter (PWM) damage (PWMD) induced by infectious exposure. This study aimed to determine if microglia-derived interleukin-1β (IL-1β) would induce hypomyelination through suppression of maturation of oligodendrocyte progenitor cells (OPCs) in the developing PWM. Sprague-Dawley rats (1-day old) were injected with lipopolysaccharide (LPS) (1 mg/kg) intraperitoneally, following which upregulated expression of IL-1β and IL-1 receptor 1 (IL-1R1 ) was observed. This was coupled with enhanced apoptosis and suppressed proliferation of OPCs in the PWM. The number of PDGFR-α and NG2-positive OPCs was significantly decreased in the PWM at 24 h and 3 days after injection of LPS, whereas it was increased at 14 days and 28 days. The protein expression of Olig1, Olig2, and Nkx2.2 was significantly reduced, and mRNA expression of Tcf4 and Axin2 was upregulated in the developing PWM after LPS injection. The expression of myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3"-phosphodiesterase (CNPase) was downregulated in the PWM at 14 days and 28 days after LPS injection; this was linked to reduction of the proportion of myelinated axons and thinner myelin sheath as revealed by electron microscopy. Primary cultured OPCs treated with IL-1β showed the failure of maturation and proliferation. Furthermore, FYN/MEK/ERK signaling pathway was involved in suppression of maturation of primary OPCs induced by IL-1β administration. Our results suggest that following LPS injection, microglia are activated and produce IL-1β in the PWM in the neonatal rats. Excess IL-1β inhibits the maturation of OPCs via suppression of FYN/MEK/ERK phosphorylation thereby leading to axonal hypomyelination.

  5. Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni

    Directory of Open Access Journals (Sweden)

    Jyuan-Ru Tsai

    2014-05-01

    Full Text Available Brachyuran crabs from diverse habitats show great differences in their osmoregulatory processes, especially in terms of the structural and physiological characteristics of the osmoregulatory organs. In crustaceans, the antennal glands are known to be important in osmoregulation, and they play a functional role analogous to that of the vertebrate kidney. Nevertheless, the detailed structure and function of the antennal glands in different species have rarely been described. The aim of this study is to investigate the role of the antennal gland in ion regulation by examining the ultrastructure of the cells and the distribution of the ion regulatory proteins in each cell type in the antennal gland of a semi-terrestrial crab. The results showed that Na+, K+-ATPase activity significantly increased in the antennal gland after a 4-day acclimation in dilute seawater and returned to its original (day 0 level after 7 days. Three major types of cells were identified in the antennal gland, including coelomic cells (COEs, labyrinthine cells (LBRs and end-labyrinthine cells (ELBRs. The proximal tubular region (PT and distal tubular region (DT of the antennal gland consist of LBRs and COEs, whereas the end tubular region (ET consists of all three types of cells, with fewer COEs and more ELBRs. We found a non-uniform distribution of NKA immunoreactivity, with increasing intensity from the proximal to the distal regions of the antennal gland. We summarise our study with a proposed model for the urine reprocessing pathway and the role of each cell type or segment of the antennal gland.

  6. Control of liver size by RNAi-mediated multiplex knockdown and its application for discovery of regulatory mechanisms

    Science.gov (United States)

    Yin, Hao; Bogorad, Roman L.; Barnes, Carmen; Walsha, Stephen; Zhuang, Iris; Nonaka, Hidenori; Ruda, Vera; Kuchimanchi, Satya; Nechev, Lubomir; Akinc, Akin; Xue, Wen; Zerial, Marino; Langer, Robert; Anderson, Daniel G.; Koteliansky, Victor

    2017-01-01

    Background and aims The Hippo pathway controls organ size through a negative regulation of the transcription co-activator Yap1. The overexpression of hyperactive mutant Yap1 or deletion of key components in the Hippo pathway leads to increased organ size in different species. Analysis of interactions of this pathway with other cellular signals corroborating organ size control is limited in part due to the difficulties associated with development of rodent models. Methods Here, we develop a new model of reversible induction of the liver size in mice using siRNA-nanoparticles targeting two kinases of Hippo pathway, namely, mammalian Ste20 family kinases 1 and 2 (Mst1 and Mst2), and an upstream regulator, neurofibromatosis type II (NF2). Results The triple siRNAs nanoparticle-induced hepatomegaly in mice phenocopies one observed with Mst1-/- Mst2-/- liver-specific depletion, as shown by extensive proliferation of hepatocytes and activation of Yap1. The simultaneous co-treatment with a fourth siRNA nanoparticle against Yap1 fully blocked the liver growth. Hippo pathway-induced liver enlargement is associated with p53 activation, evidenced by its accumulation in the nuclei and upregulation of its target genes. Moreover, injections of the triple siRNAs nanoparticle in p53LSL/LSL mice shows that livers lacking p53 expression grow faster and exceed the size of livers in p53 wild type animals, indicating a role of p53 in controlling Yap1-induced liver growth. Conclusion Our data show that siRNA-nanoparticulate manipulation of gene expression can provide the reversible control of organ size in adult animals, which presents a new avenue for the investigation of complex regulatory networks in liver. PMID:26658687

  7. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy.

    Science.gov (United States)

    Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás

    2015-01-01

    Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.

  8. Potential of acute phase proteins as predictor of postpartum uterine infections during transition period and its regulatory mechanism in dairy cattle

    Directory of Open Access Journals (Sweden)

    A. Manimaran

    2016-01-01

    Full Text Available Among the various systemic reactions against infection or injury, the acute phase response is the cascade of reaction and mostly coordinated by cytokines-mediated acute phase proteins (APPs production. Since APPs are sensitive innate immune molecules, they are useful for early detection of inflammation in bovines and believed to be better discriminators than routine hematological parameters. Therefore, the possibility of using APPs as a diagnostic and prognostic marker of inflammation in major bovine health disorders including postpartum uterine infection has been explored by many workers. In this review, we discussed specifically importance of postpartum uterine infection, the role of energy balance in uterine infections and potential of APPs as a predictor of postpartum uterine infections during the transition period and its regulatory mechanism in dairy cattle.

  9. 基因表达调控机制--操纵子模型的确立%The establishment of genetic regulatory mechanisms-operon model

    Institute of Scientific and Technical Information of China (English)

    向义和

    2013-01-01

    笔者介绍了基因表达调控机制--操纵子模型建立的过程:诱导物和阻遏物的发现及对其性质的研究;调节基因和操纵基因的发现及对其性能的分析;操纵子模型建立和实验验证。%The establishment of genetic regulatory mechanisms-operon model is introduced. The key events include the discovery of inducer, repressor, regulator gene and operator, the study of their properties, the establishment of operon model and the evidence of experiment.

  10. 肺纤维化的信号转导分子调控机制%Signaling molecular regulatory mechanisms of pulmonary fibrosis

    Institute of Scientific and Technical Information of China (English)

    余杰; 毛丽君; 赵金垣

    2015-01-01

    肺纤维化是一组各种原因所导致肺组织损伤的致命性疾病,主要表现为成纤维细胞增殖分化与胶原沉积.肺纤维化的分子机制主要集中于纤维化的始动因素以及成肌纤维母细胞的增殖分化;研究显示整个肺纤维化过程接受细胞因子网络与细胞内信号转导中的调控机制;阐明肺纤维化分子调控机制有利于抗纤维化治疗的开展.%Pulmonary fibrosis is a kind of lethal lung tissue injury diseases caused by various etiologies,with the main performance of fibroblast proliferation and collagen deposition.The molecular mechanisms of pulmonary fibrosis mainly focus on the initiating factors of the fibrosis and the myofibroblast proliferation and differentiation.Studies show that the whole course of pulmonary fibrosis is regulated by the mechanisms of cytokine networks and intracellular signal transduction.The research on molecular regulatory mechanisms of pulmonary fibrosis can be beneficial to the development of anti fibrosis therapy.

  11. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2.

    Science.gov (United States)

    Dempsey, Daniel R; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J

    2015-11-01

    Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app - acetyl-CoA and (kcat/Km)app - acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis.

  12. Immune-Regulatory Mechanisms of Classical and Experimental Multiple Sclerosis Drugs: A Special Focus on Helminth-Derived Treatments.

    Science.gov (United States)

    Peón, Alberto N; Terrazas, Luis I

    2016-01-01

    Multiple sclerosis (MS) is the most prevalent autoimmune disease affecting the central nervous system (CNS). Its pathophysiology is centered on neuron myelin sheath destruction in a manner largely dependent upon CD4+/CD8+ T-cell autoreactivity against myelin antigens, inducing Th1/Th17 pathogenic responses with the resulting production of free radicals and soluble mediators that exhibit the effector mechanisms of neurodegeneration. The immune response responsible for this disease is complex and challenges modern medicine. Consequently, many experimental therapies have been proposed in addition to the classical array of immunoregulatory/ immunosuppressive drugs that are normally used to treat MS. In this review, we will describe the effects and mechanisms of action of widely used disease-modifying MS drugs as well as those of select treatments that are currently in the experimental phase. Special emphasis is placed on helminth-derived immunoregulators, as some of them have shown promising results. Additionally, we will compare the mechanisms of action of both the MS drugs and the helminth-derived treatments to discuss the potential importance of some signaling pathways in the control of MS.

  13. To Gate, or Not to Gate: Regulatory Mechanisms for Intercellular Protein Transport and Virus Movement in Plants

    Institute of Scientific and Technical Information of China (English)

    Shoko Ueki; Vitaly Citovsky

    2011-01-01

    Cell-to-cell signal transduction is vital for orchestrating the whole-body physiology of multi-cellular organisms,and many endogenous macromolecules,proteins,and nucleic acids function as such transported signals.In plants,many of these molecules are transported through plasmodesmata (Pd),the cell wall-spanning channel structures that interconnect plant cells.Furthermore,Pd also act as conduits for cell-to-cell movement of most plant viruses that have evolved to pirate these channels to spread the infection.Pd transport is presumed to be highly selective,and only a limited repertoire of molecules is transported through these channels.Recent studies have begun to unravel mechanisms that actively regulate the opening of the Pd channel to allow traffic.This macromolecular transport between cells comprises two consecutive steps:intracellular targeting to Pd and translocation through the channel to the adjacent cell.Here,we review the current knowledge of molecular species that are transported though Pd and the mechanisms that control this traffic.Generally,Pd traffic can occur by passive diffusion through the trans-Pd cytoplasm or through the membrane/lumen of the trans-Pd ER,or by active transport that includes protein-protein interactions.It is this latter mode of Pd transport that is involved in intercellular traffic of most signal molecules and is regulated by distinct and sometimes interdependent mechanisms,which represent the focus of this article.

  14. Mechanism of Regulatory Effect of MicroRNA-206 on Connexin 43 in Distant Metastasis of Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Zi-Jing Lin; Jia Ming; Lu Yang; Jun-Ze Du; Ning Wang; Hao-Jun Luo

    2016-01-01

    Background: MicroRNA-206 (miR-206) and connexin 43 (Cx43) are related with the distant metastasis of breast cancer.It remains unclear whether the regulatory effect of miR-206 on Cx43 is involved in metastasis of breast cancer.Methods: Using quantitative real-time polymerase chain reaction and Western blot, the expressions of miR-206 and Cx43 were determined in breast cancer tissues, hepatic and pulmonary metastasis (PM), and cell lines (MCF-10A, MCF-7, and MDA-MB-231).MCF-7/MDA-M-231 cells were transfected with lentivirus-shRNA vectors to enhance/inhibit miR-206, and then Cx43 expression was observed.Cell counting kit-8 assay and Transwell method were used to detect their changes in proliferation, migration, and invasion activity.The mutant plasmids of Cx43-3' untranslated region (3'UTR) at position 478-484 and position 1609-1615 were constructed.Luciferase reporter assay was performed to observe the effects of miR-206 on luciferase expression of different mutant plasmids and to confirm the potential binding sites of Cx43.Results: Cx43 protein expression in hepatic and PM was significantly higher than that in the primary tumor, while no significant difference was showed in messenger RNA (mRNA) expression.MiR-206 mRNA expression in hepatic and PM was significantly lower than that in the primary tumor.Cx43 mRNA and protein levels, as well as cell proliferation, migration, and invasion capabilities, were all significantly improved in MDA-MB-231 cells after reducing miR-206 expression but decreased in MCF-7 cells after elevating miR-206 expression, which demonstrated a significantly negative correlation between miR-206 and Cx43 expression (P =0.03).MiR-206 can drastically decrease Cx43 expression of MCF-7 cells but exerts no effects on Cx43 expression in 293 cells transfected with the Cx43 coding region but the lack of Cx43-3'UTR, suggesting that Cx43-3'UTR may be the key in Cx43 regulated by miR-206.Luciferase expression showed that the inhibition efficiency was

  15. Regulatory mechanism on enhancing protein synthesis in skeletal muscles of cold exposed fresh water fish (Channa punctata)

    OpenAIRE

    Md Shahidul Haque; Md. Asraful Haque; Swapan Kumar Roy; M M H Khan; Md Mosharrof Hossain

    2014-01-01

    Channa punctata varieties of fish are energetic and survive in critical environment although the molecular mechanism is not known. They were exposed to cold (4–8 °C) for 30 min, 1 h, 2 h and 4 h and the total protein contents in the liver were not significantly changed up to 4 h of cold exposure while a significantly increased protein level in the skeletal muscle was noted and maximal at 2 h. Groups of fish were exposed to Na2HAsO4 to examine its role on cold-induced protein synthesis in the ...

  16. Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenib in liver fibrosis

    Science.gov (United States)

    Thabut, Dominique; Routray, Chittaranjan; Lomberk, Gwen; Shergill, Uday; Glaser, Kevin; Huebert, Robert; Patel, Leena; Masyuk, Tetyana; Blechacz, Boris; Vercnocke, Andrew; Ritman, Erik; Ehman, Richard; Urrutia, Raul; Shah, Vijay

    2011-01-01

    Background Paracrine signaling between hepatic stellate cells (HSC) and liver endothelial cells (LEC) modulates fibrogenesis, angiogenesis, and portal hypertension. However, mechanisms regulating these processes are not fully defined. Sorafenib is a receptor tyrosine kinase inhibitor that blocks growth factor signaling in tumor cells but also displays important and not yet fully characterized effects on liver nonparenchymal cells including HSC and LEC. The aim of this study was to test the hypothesis that sorafenib influences paracrine signaling between HSC and LEC and thereby regulates matrix and vascular changes associated with chronic liver injury. Results Complementary magnetic resonance elastography, micro-CT, and histochemical analyses indicate that sorafenib attenuates the changes in both matrix and vascular compartments that occur in response to bile-duct ligation induced liver injury in rats. Cell biology studies demonstrate that sorafenib markedly reduces cell to cell apposition and junctional complexes, thus reducing the proximity typically observed between these sinusoidal barrier cells. At the molecular level, sorafenib down-regulates angiopoietin-1 and fibronectin, both released by HSC in a manner dependent on the transcription factor KLF6, suggesting that this pathway underlies both matrix and vascular changes associated with chronic liver disease. Conclusion Collectively, our results demonstrate that sorafenib inhibits both matrix restructuring and vascular remodeling that accompany chronic liver diseases and characterize cell and molecular mechanisms underlying this effect. These data may help to refine future therapies for advanced gastrointestinal and liver diseases characterized by abundant fibrosis and neovascularization. PMID:21567441

  17. Regulatory mechanism on enhancing protein synthesis in skeletal muscles of cold exposed fresh water fish (Channa punctata

    Directory of Open Access Journals (Sweden)

    Md. Shahidul Haque

    2014-06-01

    Full Text Available Channa punctata varieties of fish are energetic and survive in critical environment although the molecular mechanism is not known. They were exposed to cold (4–8 °C for 30 min, 1 h, 2 h and 4 h and the total protein contents in the liver were not significantly changed up to 4 h of cold exposure while a significantly increased protein level in the skeletal muscle was noted and maximal at 2 h. Groups of fish were exposed to Na2HAsO4 to examine its role on cold-induced protein synthesis in the skeletal muscle and the increased protein in the skeletal muscle was reduced significantly. The results appear to indicate that cold acclimation induces a metabolic change involving cellular protein content tissue specifically and arsenic might be involved in impairment of the cold-induced effect. To clarify the molecular mechanism, groups of fish exposed to cold for 1 h and 2 h had significantly increased RNA in the skeletal muscle compared to control fish, however, a higher level was found after 2 h of treatment and the enhanced RNA induced by cold was almost completely prevented by Na2HAsO4. Our findings will give a new insight into the survival process of this species while toxic arsenic prevents this cellular bioprocess.

  18. First Insights into the Subterranean Crustacean Bathynellacea Transcriptome: Transcriptionally Reduced Opsin Repertoire and Evidence of Conserved Homeostasis Regulatory Mechanisms

    Science.gov (United States)

    Kim, Bo-Mi; Kang, Seunghyun; Ahn, Do-Hwan; Kim, Jin-Hyoung; Ahn, Inhye; Lee, Chi-Woo; Cho, Joo-Lae; Min, Gi-Sik; Park, Hyun

    2017-01-01

    Bathynellacea (Crustacea, Syncarida, Parabathynellidae) are subterranean aquatic crustaceans that typically inhabit freshwater interstitial spaces (e.g., groundwater) and are occasionally found in caves and even hot springs. In this study, we sequenced the whole transcriptome of Allobathynella bangokensis using RNA-seq. De novo sequence assembly produced 74,866 contigs including 28,934 BLAST hits. Overall, the gene sequences were most similar to those of the waterflea Daphnia pulex. In the A. bangokensis transcriptome, no opsin or related sequences were identified, and no contig aligned to the crustacean visual opsins and non-visual opsins (i.e. arthropsins, peropsins, and melaopsins), suggesting potential regressive adaptation to the dark environment. However, A. bangokensis expressed conserved gene family sets, such as heat shock proteins and those related to key innate immunity pathways and antioxidant defense systems, at the transcriptional level, suggesting that this species has evolved adaptations involving molecular mechanisms of homeostasis. The transcriptomic information of A. bangokensis will be useful for investigating molecular adaptations and response mechanisms to subterranean environmental conditions. PMID:28107438

  19. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick

    2007-01-01

    molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAP kappa and GFAP kappa transcripts. The GFAP kappa mRNA is distinct from GFAP epsilon mRNA given that it also includes intron 7a......The glial fibrillary acidic protein, GFAP, forms the intermediate cytoskeleton in cells of the glial lineage. Besides the common GFAP alpha transcript, the GFAP epsilon and GFAP kappa transcripts are generated by alternative mRNA 3'-end processing. Here we use a GFAP minigene to characterize...... (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model...

  20. Regulatory Mechanisms of a Highly Pectinolytic Mutant of Penicillium occitanis and Functional Analysis of a Candidate Gene in the Plant Pathogen Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Gustavo Bravo-Ruiz

    2017-09-01

    Full Text Available Penicillium occitanis is a model system for enzymatic regulation. A mutant strain exhibiting constitutive overproduction of different pectinolytic enzymes both under inducing (pectin or repressing conditions (glucose was previously isolated after chemical mutagenesis. In order to identify the molecular basis of this regulatory mechanism, the genomes of the wild type and the derived mutant strain were sequenced and compared, providing the first reference genome for this species. We used a phylogenomic approach to compare P. occitanis with other pectinolytic fungi and to trace expansions of gene families involved in carbohydrate degradation. Genome comparison between wild type and mutant identified seven mutations associated with predicted proteins. The most likely candidate was a mutation in a highly conserved serine residue of a conserved fungal protein containing a GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain and a fungus-specific transcription factor regulatory middle homology region. To functionally characterize the role of this candidate gene, the mutation was recapitulated in the predicted orthologue Fusarium oxysporum, a vascular wilt pathogen which secretes a wide array of plant cell wall degrading enzymes, including polygalacturonases, pectate lyases, xylanases and proteases, all of which contribute to infection. However, neither the null mutant nor a mutant carrying the analogous point mutation exhibited a deregulation of pectinolytic enzymes. The availability, annotation and phylogenomic analysis of the P. occitanis genome sequence represents an important resource for understanding the evolution and biology of this species, and sets the basis for the discovery of new genes of biotechnological interest for the degradation of complex polysaccharides.

  1. Research progress on regulatory mechanism of liver cancer stem cells%肝癌干细胞调控机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    王旭; 王超

    2014-01-01

    肿瘤干细胞学说认为,肝癌的复发和转移主要与肝癌干细胞密切相关.以手术为主的传统治疗肝癌的方法只是杀死了大量快速增殖的肿瘤细胞,并未清除起决定性作用的肝癌干细胞,故术后极易复发转移.调控肝癌干细胞的信号通路及因子较多,如Wnt/β-catenin通路、TGF-β通路、Notch通路、Hedgehog通路、乙型肝炎病毒等.表观遗传学在肝癌干细胞调控机制中的作用亦很重要.深入研究肝癌干细胞的调控机制,可为防止肝癌的复发和转移提供新的治疗依据.%The theory of cancer stem cells proposed that recurrence and metastasis of liver cancer are closely related to liver cancer stem cells.The traditional surgical treatment of liver cancer simply kills those rapidly proliferating tunor cells instead of eliminating hepatic cancer stem cells which play decisive role in recurrence and metastasis.As far as people have concerned,there are many signaling pathways and regulatory factors modulating liver cancer stem cells,such as the Wnt/β-catenin pathway,TGF-β pathway,Notch pathway,Hedgehog pathway,hepatitis B virus,as well as epigenetics.Further studies on regulatory mechanisms of liver cancer stem cells are of great significance,in hope of providing new evidence for treatment and prevention of recurrence and metastasis of liver cancer.

  2. A mathematical model of cancer stem cell driven tumor initiation: implications of niche size and loss of homeostatic regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Sara N Gentry

    Full Text Available Hierarchical organized tissue structures, with stem cell driven cell differentiation, are critical to the homeostatic maintenance of most tissues, and this underlying cellular architecture is potentially a critical player in the development of a many cancers. Here, we develop a mathematical model of mutation acquisition to investigate how deregulation of the mechanisms preserving stem cell homeostasis contributes to tumor initiation. A novel feature of the model is the inclusion of both extrinsic and intrinsic chemical signaling and interaction with the niche to control stem cell self-renewal. We use the model to simulate the effects of a variety of types and sequences of mutations and then compare and contrast all mutation pathways in order to determine which ones generate cancer cells fastest. The model predicts that the sequence in which mutations occur significantly affects the pace of tumorigenesis. In addition, tumor composition varies for different mutation pathways, so that some sequences generate tumors that are dominated by cancerous cells with all possible mutations, while others are primarily comprised of cells that more closely resemble normal cells with only one or two mutations. We are also able to show that, under certain circumstances, healthy stem cells diminish due to the displacement by mutated cells that have a competitive advantage in the niche. Finally, in the event that all homeostatic regulation is lost, exponential growth of the cancer population occurs in addition to the depletion of normal cells. This model helps to advance our understanding of how mutation acquisition affects mechanisms that influence cell-fate decisions and leads to the initiation of cancers.

  3. A novel regulatory mechanism of the mitochondrial Ca2+ uniporter revealed by the p38 mitogen-activated protein kinase inhibitor SB202190.

    Science.gov (United States)

    Montero, Mayte; Lobaton, Carmen D; Moreno, Alfredo; Alvarez, Javier

    2002-12-01

    It is widely acknowledged that mitochondrial Ca2+ uptake modulates the cytosolic [Ca2+] ([Ca2+]c) acting as a transient Ca2+ buffer. In addition, mitochondrial [Ca2+] ([Ca2+]M) regulates the rate of respiration and may trigger opening of the permeability transition pore and start apoptosis. However, no mechanism for the physiological regulation of mitochondrial Ca2+ uptake has been described. We show here that SB202190, an inhibitor of p38 mitogen-activated protein (MAP) kinase, strongly stimulates ruthenium red-sensitive mitochondrial Ca2+ uptake, both in intact and in permeabilized HeLa cells. The [Ca2+]M peak induced by agonists was increased about fourfold in the presence of the inhibitor, with a concomitant reduction in the [Ca2+]c peak. The stimulation occurred fast and was rapidly reversible. In addition, experiments in permeabilized cells perfused with controlled [Ca2+] showed that SB202190 stimulated mitochondrial Ca2+ uptake by more than 10-fold, but only in the physiological [Ca2+]c range (1-4 mM). Other structurally related p38 MAP kinase inhibitors (SB203580, PD169316, or SB220025) produced little or no effect. Our data suggest that in HeLa cells, a protein kinase sensitive to SB202190 tonically inhibits the mitochondrial Ca2+ uniporter. This novel regulatory mechanism may be of paramount importance to modulate mitochondrial Ca2+ uptake under different physiopathological conditions.

  4. 血脑屏障中P-糖蛋白的调节机制%Regulatory mechanisms of P-glycoprotein at the blood-brain barrier

    Institute of Scientific and Technical Information of China (English)

    王玉璘; 王少峡; 郭虹; 胡利民

    2011-01-01

    P-糖蛋白属于ABC转运蛋白超家族.它在脑微血管中大量表达,限制毒性物质和大量治疗中枢神经系统的药物进入脑内,因此弄清P-糖蛋白在血脑屏障中的调节机制对疾病的治疗尤为重要.该文总结了P-糖蛋白基本结构、分布、功能,并讨论了P-糖蛋白在血脑屏障中调节机制的研究进展.%P-glycoprotein (P-gp) belongs to the adenosine triphosphate( ATP )-binding cassette( ABC ) proteins, which is present in the microvessels in the brain, so it can prevent cytotoxic compounds and large amount of CNS agents entering the brain. Thus, it is important to find out the mechanisms that regulate P-gp function and expression in the blood-brain barier for pharmcotherapy. In this review, the structure, tissue distribution and the function of P-glycoprotein were reviewed, focusing on the research advances of regulatory mechanisms at the bloodbrain barrier.

  5. Insights into the mechanism of FTY720 and compatibility with regulatory T cells for the inhibition of graft-versus-host disease (GVHD).

    Science.gov (United States)

    Taylor, Patricia A; Ehrhardt, Michael J; Lees, Christopher J; Tolar, Jakub; Weigel, Brenda J; Panoskaltsis-Mortari, Angela; Serody, Jonathan S; Brinkmann, Volker; Blazar, Bruce R

    2007-11-01

    The immunomodulator FTY720 (FTY) has been shown to be beneficial in experimental models of organ transplantation and autoimmunity. We show that FTY significantly inhibited but did not prevent graft-versus-host disease (GVHD) in lethally irradiated or nonirradiated allogeneic recipients. Although most studies implicate prevention of lymphocyte egress from lymphoid organs as the primary mechanism of action, our data indicate that FTY effects on the host are more likely to be responsible for GVHD inhibition. FTY reduced splenic CD11c+ cells by 50%, and similarly reduced CD4+ and CD8+ T-cell responder frequencies in the spleen early after transplantation. Imaging of GFP+ effectors indicated that FTY modified donor effector T-cell migration to secondary lymphoid organs, but did not uniformly trap T cells in lymph nodes or prevent early effector migration to GVHD parenchymal target organs. Administration of FTY only prior to transplantation inhibited GVHD, indicating that the primary function of FTY may be targeted to host cells. FTY was additive with regulatory T cells for GVHD inhibition. FTY slightly impaired but did not abrogate a graft-versus-leukemia (GVL) effect against C1498, a myeloid leukemia. Our data further define the mechanisms of action and provide insight as to the potential clinical uses of FTY in allogeneic bone marrow transplant recipients.

  6. The RNA-mediated, asymmetric ring regulatory mechanism of the transcription termination Rho helicase decrypted by time-resolved nucleotide analog interference probing (trNAIP).

    Science.gov (United States)

    Soares, Emilie; Schwartz, Annie; Nollmann, Marcello; Margeat, Emmanuel; Boudvillain, Marc

    2014-08-01

    Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2'-hydroxyl group of the incoming 3'-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3'-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, 'test to run' iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems.

  7. Study of the main regulatory mechanisms to encourage renewable and alternative energy applied internationally and in Brazil; Estudo dos principais mecanismos regulatorios de incentivo as fontes renovaveis e alternativas de energia aplicados internacionalmente e no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Juliana M.C.; Cavaliero, Carla Kazue Nakao [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], Emails: jumcm@fem.unicamp.br, cavaliero@fem.unicamp.br

    2009-07-01

    The investment in renewable and alternative energy sources has been stimulated by some countries in Europe and Americas through the introduction of encouragement regulatory mechanisms. This paper considers the most important international mechanisms such as Feed-in System, Tender System and Quota System with green certificates. In Brazil, there are three regulatory mechanisms in course: PROINFA, the 1. Tender of Renewable and 1. Tender Reserve. The carried out preliminary analysis made possible to classify PROINFA as a mechanism similar to Feed-in, while the auction of Renewable and Reserve are more like an auction system. This article points out the differences and similarities between the instruments and gives a preliminary analysis of their effectiveness, emphasizing national mechanisms, especially regarding the criteria for capacity increase and cost reduction of the technological bands, such as for biomass and small hydroelectric. (author)

  8. See the forest for the trees: Whole-plant allocation patterns and regulatory mechanisms in Norway spruce

    Science.gov (United States)

    Huang, Jianbei; Behrendt, Thomas; Hammerbacher, Almuth; Weinhold, Alexander; Hellén, Heidi; Reichelt, Michael; Wisthaler, Armin; Dam, Nicole; Trumbore, Susan; Hartmann, Henrik

    2017-04-01

    acetone) decreased whereas monoterpene and sesquiterpene emissions slightly increased with decreasing [CO2]. Our experimental design provides an excellent platform for studying control mechanisms of C allocation. The range of C availabilities applied in our study will allow partitioning compensatory mechanisms (e.g., up-regulation of C storage due to sugar signalling at high C availability) from evolutionary programming (e.g., storage formation to increase long-term survival at expense of other functions with decreasing C availability). Such partitioning is corroborated via phytohormone and transcriptome analysis, and results will hopefully be available at the time of presentation.

  9. Prediction of regulatory elements

    DEFF Research Database (Denmark)

    Sandelin, Albin

    2008-01-01

    Finding the regulatory mechanisms responsible for gene expression remains one of the most important challenges for biomedical research. A major focus in cellular biology is to find functional transcription factor binding sites (TFBS) responsible for the regulation of a downstream gene. As wet-lab...

  10. Acupuncture Alleviates Colorectal Hypersensitivity and Correlates with the Regulatory Mechanism of TrpV1 and p-ERK

    Directory of Open Access Journals (Sweden)

    Shao-Jun Wang

    2012-01-01

    Full Text Available Here we used a mouse model of zymosan-induced colorectal hypersensitivity, a similar model of IBS in our previous work, to evaluate the effectiveness of the different number of times of acupuncture and elucidate its potential mechanism of EA treatment. Colorectal distension (CRD tests show that intracolonic zymosan injection does, while saline injection does not, induce a typical colorectal hypersensitivity. EA treatment at classical acupoints Zusanli (ST36 and Shangjuxu (ST37 in both hind limbs for 15 min slightly attenuated and significantly blunted the hypersensitive responses after first and fifth acupunctures, respectively, to colorectal distention in zymosan treatment mice, but not in saline treatment mice. Western blot results indicated that ion channel and TrpV1 expression in colorectum as well as ERK1/2 MAPK pathway activation in peripheral and central nerve system might be involved in this process. Hence, we conclude that EA is a potential therapeutic tool in the treatment and alleviation of chronic abdominal pain, and the effectiveness of acupuncture analgesia is accumulative with increased number of times of acupuncture when compared to that of a single time of acupuncture.

  11. Studies on the regulatory effect of Peony-Glycyrrhiza Decoction on prolactin hyperactivity and underlying mechanism in hyperprolactinemia rat model.

    Science.gov (United States)

    Wang, Di; Wang, Wei; Zhou, Yulin; Wang, Juan; Jia, Dongxu; Wong, Hei Kiu; Zhang, Zhang-Jin

    2015-10-08

    Clinical trials have demonstrated the beneficial effects of Peony-Glycyrrhiza Decoction (PGD) in alleviating antipsychotic-induced hyperprolactinemia (hyperPRL) in schizophrenic patients. In previous experiment, PGD suppressed prolactin (PRL) level in MMQ cells, involving modulating the expression of D2 receptor (DRD2) and dopamine transporter (DAT). In the present study, hyperPRL female rat model induced by dopamine blocker metoclopramide (MCP) was applied to further confirm the anti-hyperpPRL activity of PGD and underlying mechanism. In MCP-induced hyperPRL rats, the elevated serum PRL level was significantly suppressed by either PGD (2.5-10 g/kg) or bromocriptine (BMT) (0.6 mg/kg) administration for 14 days. However, in MCP-induced rats, only PGD restored the under-expressed serum progesterone (P) to control level. Both PGD and BMT administration restore the under-expression of DRD2, DAT and TH resulted from MCP in pituitary gland and hypothalamus. Compared to untreated group, hyperPRL animals had a marked reduction on DRD2 and DAT expression in the arcuate nucleus. PGD (10 g/kg) and BMT (0.6 mg/kg) treatment significant reversed the expression of DRD2 and DAT. Collectively, the anti-hyperPRL activity of PGD associates with the modulation of dopaminergic neuronal system and the restoration of serum progesterone level. Our finding supports PGD as an effective agent against hyperPRL.

  12. Studies on gene structure, enzymatic activity and regulatory mechanism of acetohydroxy acid isomeroreductase from G2 pea

    Institute of Scientific and Technical Information of China (English)

    XU Yunjian (徐云剑); GU Xuesong (顾雪松); LI Jun (李珺); LI Qing (李 晴); Peter J. Davies; ZHU Yuxian (朱玉贤)

    2003-01-01

    The AAIR genomic DNA of G2 pea (Pisum sativum L.) was amplified by PCR method. Sequence analysis showed that it was composed of 8 introns and 9 exons with three of the introns containing specific A/T-rich endogenous promoter regions. Molecular hybridization experiments revealed that the expression of AAIR remained at a high level before and after flowering if grown in short day growth chambers. However, when grown under long day conditions, the level of AAIR expression declined very rapidly after flowering. This variation of AAIR expression is consistent with the change of enzymatic activity of acetohydroxy acid isomeroreductase. Functional complementation experiments carried out using an acetohydroxy acid isomeroreductase deficient E. coli strain showed that these cells could not grow on M9 medium without addition of branched-chain amino acids unless they were transformed with the AAIR expression vector. Further study revealed that overexpression of the pea AAIR cDNA in acetohydroxy acid isomeroreductase deficient E. coli strain enhanced significantly its branched-chain amino acid biosynthetic capacity. Results from gel shift experiments showed that fractions of pea nuclear protein extracts could bind specifically to some A/T rich regions present in introns of the AAIR gene. The A/T-rich-region-binding proteins remained at a steady level in the non-senescing apical buds of short-day grown G2 pea. In the rapid-senescing apical buds of long-day grown G2 pea, the levels of these proteins declined rapidly after flower initiation. Therefore, the nuclear protein binding capacities to endogenous promoter regions may constitute an important mechanism to regulate AAIR gene expression.

  13. A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms.

    Science.gov (United States)

    Noronha Fernandes-Brum, Christiane; Marinho Rezende, Pâmela; Cherubino Ribeiro, Thales Henrique; Ricon de Oliveira, Raphael; Cunha de Sousa Cardoso, Thaís; Rodrigues do Amaral, Laurence; de Souza Gomes, Matheus; Chalfun-Junior, Antonio

    2017-01-01

    microRNAs (miRNAs) are derived from self-complementary hairpin structures, while small-interfering RNAs (siRNAs) are derived from double-stranded RNA (dsRNA) or hairpin precursors. The core mechanism of sRNA production involves DICER-like (DCL) in processing the smallRNAs (sRNAs) and ARGONAUTE (AGO) as effectors of silencing, and siRNA biogenesis also involves action of RNA-Dependent RNA Polymerase (RDR), Pol IV and Pol V in biogenesis. Several other proteins interact with the core proteins to guide sRNA biogenesis, action, and turnover. We aimed to unravel the components and functions of the RNA-guided silencing pathway in a non-model plant species of worldwide economic relevance. The sRNA-guided silencing complex members have been identified in the Coffea canephora genome, and they have been characterized at the structural, functional, and evolutionary levels by computational analyses. Eleven AGO proteins, nine DCL proteins (which include a DCL1-like protein that was not previously annotated), and eight RDR proteins were identified. Another 48 proteins implicated in smallRNA (sRNA) pathways were also identified. Furthermore, we identified 235 miRNA precursors and 317 mature miRNAs from 113 MIR families, and we characterized ccp-MIR156, ccp-MIR172, and ccp-MIR390. Target prediction and gene ontology analyses of 2239 putative targets showed that significant pathways in coffee are targeted by miRNAs. We provide evidence of the expansion of the loci related to sRNA pathways, insights into the activities of these proteins by domain and catalytic site analyses, and gene expression analysis. The number of MIR loci and their targeted pathways highlight the importance of miRNAs in coffee. We identified several roles of sRNAs in C. canephora, which offers substantial insight into better understanding the transcriptional and post-transcriptional regulation of this major crop.

  14. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    Science.gov (United States)

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture.

  15. A Novel Regulatory Mechanism of Type II Collagen Expression via a SOX9-dependent Enhancer in Intron 6.

    Science.gov (United States)

    Yasuda, Hideyo; Oh, Chun-do; Chen, Di; de Crombrugghe, Benoit; Kim, Jin-Hoi

    2017-01-13

    Type II collagen α1 is specific for cartilaginous tissues, and mutations in its gene are associated with skeletal diseases. Its expression has been shown to be dependent on SOX9, a master transcription factor required for chondrogenesis that binds to an enhancer region in intron 1. However, ChIP sequencing revealed that SOX9 does not strongly bind to intron 1, but rather it binds to intron 6 and a site 30 kb upstream of the transcription start site. Here, we aimed to determine the role of the novel SOX9-binding site in intron 6. We prepared reporter constructs that contain a Col2a1 promoter, intron 1 with or without intron 6, and the luciferase gene. Although the reporter constructs were not activated by SOX9 alone, the construct that contained both introns 1 and 6 was activated 5-10-fold by the SOX9/SOX5 or the SOX9/SOX6 combination in transient-transfection assays in 293T cells. This enhancement was also observed in rat chondrosarcoma cells that stably expressed the construct. CRISPR/Cas9-induced deletion of intron 6 in RCS cells revealed that a 10-bp region of intron 6 is necessary both for Col2a1 expression and SOX9 binding. Furthermore, SOX9, but not SOX5, binds to this region as demonstrated in an electrophoretic mobility shift assay, although both SOX9 and SOX5 bind to a larger 325-bp fragment of intron 6 containing this small sequence. These findings suggest a novel mechanism of action of SOX5/6; namely, the SOX9/5/6 combination enhances Col2a1 transcription through a novel enhancer in intron 6 together with the enhancer in intron 1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. 海峡两岸货币清算机制监管合作设想%On the Regulatory Mechanisms of Currency Liquidation across the Taiwan Straits

    Institute of Scientific and Technical Information of China (English)

    邱丽洪; 涂晓今; 钱远玲

    2015-01-01

    自海峡两岸货币清算机制实质运作以来,货币清算机制的监管合作显得十分必要与迫切。通过回顾和总结两岸经贸、银行业的合作历程,比较两岸银行监管的差异,从两岸银行规定的协调、货币清算机构间的协调、信息交换与共享以及风险预警与危机处理的协调,积极探索两岸对货币清算机制监管合作的拓展空间,确保两岸货币清算机制的健康运作,从而促进两岸经贸合作的进一步发展。%After the operation of the Currency Liquidation Mechanism across the Taiwan Straits in 2013, there is an urgent need for the establishment of regulatory mechanisms of currency liquidation.On review of the development of economic and trade coop-eration as well as ties-up between banks, together with the difference in banking supervision, the paper puts forward suggestions on coordination of banking laws, coordination between organizations of currency liquidation as well as coordination of information exchange, risk warning system and risk management system.It actively explores the collaboration of banking supervision across the Straits in hope of smooth functioning of currency liquidation mechanism and further development of economic and trade ex-change across the Straits.

  17. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs.

    Directory of Open Access Journals (Sweden)

    Christopher D Brown

    Full Text Available Genetic variants in cis-regulatory elements or trans-acting regulators frequently influence the quantity and spatiotemporal distribution of gene transcription. Recent interest in expression quantitative trait locus (eQTL mapping has paralleled the adoption of genome-wide association studies (GWAS for the analysis of complex traits and disease in humans. Under the hypothesis that many GWAS associations tag non-coding SNPs with small effects, and that these SNPs exert phenotypic control by modifying gene expression, it has become common to interpret GWAS associations using eQTL data. To fully exploit the mechanistic interpretability of eQTL-GWAS comparisons, an improved understanding of the genetic architecture and causal mechanisms of cell type specificity of eQTLs is required. We address this need by performing an eQTL analysis in three parts: first we identified eQTLs from eleven studies on seven cell types; then we integrated eQTL data with cis-regulatory element (CRE data from the ENCODE project; finally we built a set of classifiers to predict the cell type specificity of eQTLs. The cell type specificity of eQTLs is associated with eQTL SNP overlap with hundreds of cell type specific CRE classes, including enhancer, promoter, and repressive chromatin marks, regions of open chromatin, and many classes of DNA binding proteins. These associations provide insight into the molecular mechanisms generating the cell type specificity of eQTLs and the mode of regulation of corresponding eQTLs. Using a random forest classifier with cell specific CRE-SNP overlap as features, we demonstrate the feasibility of predicting the cell type specificity of eQTLs. We then demonstrate that CREs from a trait-associated cell type can be used to annotate GWAS associations in the absence of eQTL data for that cell type. We anticipate that such integrative, predictive modeling of cell specificity will improve our ability to understand the mechanistic basis of human

  18. Honeybee Colony Thermoregulation – Regulatory Mechanisms and Contribution of Individuals in Dependence on Age, Location and Thermal Stress

    Science.gov (United States)

    Stabentheiner, Anton; Kovac, Helmut; Brodschneider, Robert

    2010-01-01

    Honeybee larvae and pupae are extremely stenothermic, i.e. they strongly depend on accurate regulation of brood nest temperature for proper development (33–36°C). Here we study the mechanisms of social thermoregulation of honeybee colonies under changing environmental temperatures concerning the contribution of individuals to colony temperature homeostasis. Beside migration activity within the nest, the main active process is “endothermy on demand” of adults. An increase of cold stress (cooling of the colony) increases the intensity of heat production with thoracic flight muscles and the number of endothermic individuals, especially in the brood nest. As endothermy means hard work for bees, this eases much burden of nestmates which can stay ectothermic. Concerning the active reaction to cold stress by endothermy, age polyethism is reduced to only two physiologically predetermined task divisions, 0 to ∼2 days and older. Endothermic heat production is the job of bees older than about two days. They are all similarly engaged in active heat production both in intensity and frequency. Their active heat production has an important reinforcement effect on passive heat production of the many ectothermic bees and of the brood. Ectothermy is most frequent in young bees (<∼2 days) both outside and inside of brood nest cells. We suggest young bees visit warm brood nest cells not only to clean them but also to speed up flight muscle development for proper endothermy and foraging later in their life. Young bees inside brood nest cells mostly receive heat from the surrounding cell wall during cold stress, whereas older bees predominantly transfer heat from the thorax to the cell wall. Endothermic bees regulate brood comb temperature more accurately than local air temperature. They apply the heat as close to the brood as possible: workers heating cells from within have a higher probability of endothermy than those on the comb surface. The findings show that thermal

  19. Honeybee colony thermoregulation--regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress.

    Directory of Open Access Journals (Sweden)

    Anton Stabentheiner

    Full Text Available Honeybee larvae and pupae are extremely stenothermic, i.e. they strongly depend on accurate regulation of brood nest temperature for proper development (33-36 degrees C. Here we study the mechanisms of social thermoregulation of honeybee colonies under changing environmental temperatures concerning the contribution of individuals to colony temperature homeostasis. Beside migration activity within the nest, the main active process is "endothermy on demand" of adults. An increase of cold stress (cooling of the colony increases the intensity of heat production with thoracic flight muscles and the number of endothermic individuals, especially in the brood nest. As endothermy means hard work for bees, this eases much burden of nestmates which can stay ectothermic. Concerning the active reaction to cold stress by endothermy, age polyethism is reduced to only two physiologically predetermined task divisions, 0 to approximately 2 days and older. Endothermic heat production is the job of bees older than about two days. They are all similarly engaged in active heat production both in intensity and frequency. Their active heat production has an important reinforcement effect on passive heat production of the many ectothermic bees and of the brood. Ectothermy is most frequent in young bees (< approximately 2 days both outside and inside of brood nest cells. We suggest young bees visit warm brood nest cells not only to clean them but also to speed up flight muscle development for proper endothermy and foraging later in their life. Young bees inside brood nest cells mostly receive heat from the surrounding cell wall during cold stress, whereas older bees predominantly transfer heat from the thorax to the cell wall. Endothermic bees regulate brood comb temperature more accurately than local air temperature. They apply the heat as close to the brood as possible: workers heating cells from within have a higher probability of endothermy than those on the comb

  20. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain.

    Directory of Open Access Journals (Sweden)

    Hannah Verdin

    Full Text Available Genomic disorders are often caused by recurrent copy number variations (CNVs, with nonallelic homologous recombination (NAHR as the underlying mechanism. Recently, several microhomology-mediated repair mechanisms--such as microhomology-mediated end-joining (MMEJ, fork stalling and template switching (FoSTeS, microhomology-mediated break-induced replication (MMBIR, serial replication slippage (SRS, and break-induced SRS (BISRS--were described in the etiology of non-recurrent CNVs in human disease. In addition, their formation may be stimulated by genomic architectural features. It is, however, largely unexplored to what extent these mechanisms contribute to rare, locus-specific pathogenic CNVs. Here, fine-mapping of 42 microdeletions of the FOXL2 locus, encompassing FOXL2 (32 or its regulatory domain (10, serves as a model for rare, locus-specific CNVs implicated in genetic disease. These deletions lead to blepharophimosis syndrome (BPES, a developmental condition affecting the eyelids and the ovary. For breakpoint mapping we used targeted array-based comparative genomic hybridization (aCGH, quantitative PCR (qPCR, long-range PCR, and Sanger sequencing of the junction products. Microhomology, ranging from 1 bp to 66 bp, was found in 91.7% of 24 characterized breakpoint junctions, being significantly enriched in comparison with a random control sample. Our results show that microhomology-mediated repair mechanisms underlie at least 50% of these microdeletions. Moreover, genomic architectural features, like sequence motifs, non-B DNA conformations, and repetitive elements, were found in all breakpoint regions. In conclusion, the majority of these microdeletions result from microhomology-mediated mechanisms like MMEJ, FoSTeS, MMBIR, SRS, or BISRS. Moreover, we hypothesize that the genomic architecture might drive their formation by increasing the susceptibility for DNA breakage or promote replication fork stalling. Finally, our locus-centered study

  1. Regulatory Anatomy

    DEFF Research Database (Denmark)

    Hoeyer, Klaus

    2015-01-01

    This article proposes the term “safety logics” to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, le...... they arise. In short, I expose the regulatory anatomy of the policy landscape....

  2. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism.

    Science.gov (United States)

    Shahriari, Ali; Dawson, Neal J; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH) is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD(+), which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28) from foot muscle of aerobic control versus 24 h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in V max (pyruvate-reducing direction) as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves.

  3. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism

    Directory of Open Access Journals (Sweden)

    Ali Shahriari

    2013-01-01

    Full Text Available The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD+, which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28 from foot muscle of aerobic control versus 24 h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in Vmax (pyruvate-reducing direction as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves.

  4. REGULATORY MECHANISMS OF CELLULAR RESPIRATION

    Science.gov (United States)

    Barron, E. S. Guzman; Nelson, Leonard; Ardao, Maria Isabel

    1948-01-01

    Oxidizing agents of sulfhydryl groups such as iodosobenzoate, alkylating agents such as iodoacetamide, and mercaptide-forming agents such as cadmium chloride, mercuric chloride, p-chloromercuribenzoate, sodium arsenite, and p-carboxyphenylarsine oxide, added in small concentrations to a suspension of sea urchin sperm produced an increase in respiration. When the concentration was increased there was an inhibition. These effects are explained by postulating the presence in the cells of two kinds of sulfhydryl groups: soluble sulfhydryl groups, which regulate cellular respiration, and fixed sulfhydryl groups, present in the protein moiety of enzymes. Small concentrations of sulfhydryl reagents combine only with the first, thus producing an increase in respiration; when the concentration is increased, the fixed sulfhydryl groups are also attacked and inhibition of respiration is the consequence. Other inhibitors of cell respiration, such as cyanide and urethanes, which do not combine with —SH groups, did not stimulate respiration in small concentration. PMID:18891144

  5. Regulatory role of acupuncture and moxibustion in immunosenescence and epigenetic mechanisms%针灸调节免疫衰老及其表观遗传机制

    Institute of Scientific and Technical Information of China (English)

    沈文宾; 周次利; 吴焕淦; 黄艳; 赵琛; 崔云华

    2015-01-01

    BACKGROUND:The acupuncture and moxibustion is an effective method to regulate the immunosenescence. The epigenetic modification has become a focus in the research of immunosenescence regulation. OBJECTIVE: To summarize the relationship between epigenetic regulation and the regulatory role of acupuncture and moxibustion on immunosenescence, and to explore the relevant mechanisms. METHODS: We searched CNKI, VIP, WANFANG DATA, SinoMed, Ebsco Medline, Springer, ScienceDirect and Embase by computer for relevant articles published from January 1999 to August 2014. The keywords were “acupuncture”, “moxibustion”, “aging”, “immunosenescence” and “epigenetic” in Chinese and English. Al databases were cross-searched to minimize missing data. We excluded documents based on inclusion and exclusion criteria thereby checking the title and abstract. RESULTS AND CONCLUSION:Finaly 64 articles were included, including 8 Chinese publications and 56 English publications. The innate immune system and the adaptive immune system can vary with aging, which is the most obvious feature in immunosenescence. The acupuncture and moxibustion can improve immunosenescence overal. The epigenetic modification plays an important role in immunosenescence. The acupuncture and moxibustion can affect the epigenetic modification directly. However, the epigenetic mechanism underlying the regulatory role of acupuncture and moxibustion in immunosenescence needs further studies.%背景:针灸可有效调节免疫衰老,运用表观遗传修饰手段研究免疫衰老成为了近年来国内外研究的热点之一。目的:归纳总结针灸对免疫衰老的调节作用及与表观遗传调控的关系,探讨其作用机制。方法:通过计算机检索中国知网(CNKI)、维普期刊资源整合服务平台(VIP)、万方数据知识服务平台(WANFANG DATA)、中国生物医学文献服务系统(SinoMed)、PubMed、Ebsco Medline、Springer、ScienceDirect和Embase,所有

  6. Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms.

    Directory of Open Access Journals (Sweden)

    Alan E Bilsland

    2014-02-01

    Full Text Available Cancer cells depend on transcription of telomerase reverse transcriptase (TERT. Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3'-oxime (BIO predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several

  7. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species.

    Science.gov (United States)

    Liu, Junli; Liu, Jianjian; Chen, Aiqun; Ji, Minjie; Chen, Jiadong; Yang, Xiaofeng; Gu, Mian; Qu, Hongye; Xu, Guohua

    2016-10-01

    In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.

  8. Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression. potential mechanism for the lipogenic effect of progesterone in adipose tissue.

    Science.gov (United States)

    Lacasa, D; Le Liepvre, X; Ferre, P; Dugail, I

    2001-04-13

    Fatty acid synthase (FAS), a nutritionally regulated lipogenic enzyme, is transcriptionally controlled by ADD1/SREBP1c (adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c), through insulin-mediated stimulation of ADD1/SREBP1c expression. Progesterone exerts lipogenic effects on adipocytes, and FAS is highly induced in breast tumor cell lines upon progesterone treatment. We show here that progesterone up-regulates ADD1/SREBP1c expression in the MCF7 breast cancer cell line and the primary cultured preadipocyte from rat parametrial adipose tissue. In MCF7, progesterone induced ADD1/SREBP1c and Metallothionein II (a well known progesterone-regulated gene) mRNAs, with comparable potency. In preadipocytes, progesterone increased ADD1/SREBP1c mRNA dose-dependently, but not SREBP1a or SREBP2. Run-on experiments demonstrated that progesterone action on ADD1/SREBP1c was primarily at the transcriptional level. The membrane-bound and mature nuclear forms of ADD1/SREBP1 protein accumulated in preadipocytes cultured with progesterone, and FAS induction could be abolished by adenovirus-mediated overexpression of a dominant negative form of ADD1/SREBP1 in these cells. Finally, in the presence of insulin, progesterone was unable to up-regulate ADD1/SREBP1c mRNA in preadipocytes, whereas its effect was restored after 24 h of insulin deprivation. Together these results demonstrate that ADD1/SREBP1c is controlled by progesterone, which, like insulin, acts by increasing ADD1/SREBP1c gene transcription. This provides a potential mechanism for the lipogenic actions of progesterone on adipose tissue.

  9. TGF-β1 exerts opposing effects on grass carp leukocytes: implication in teleost immunity, receptor signaling and potential self-regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mu Yang

    Full Text Available In fish immunity, the regulatory role of transforming growth factor-β1 (TGF-β1 has not been fully characterized. Here we examined the immunoregulatory effects of TGF-β1 in grass carp peripheral blood leukocytes (PBL and head kidney leukocytes (HKL. It is interesting that TGF-β1 consistently stimulated the cell viability and the mRNA levels of pro-inflammatory cytokines (Tnfα and Ifnγ and T/B cell markers [Cd4-like (Cd4l, Cd8α, Cd8β and Igμ] in PBL, which contrasted with its inhibitory tone in HKL. Further studies showed that grass carp TGF-β1 type I receptor, activin receptor-like kinase 5 (ALK5, was indispensable for the immunoregulatory effects of TGF-β1 in PBL and HKL. Notably, TGF-β1 persistently attenuated ALK5 expression, whereas immunoneutralization of endogenous grass carp TGF-β1 could increase ALK5 mRNA and protein levels. It is consistent with the observation that TGF-β1 decreased the number of ALK5(+ leukocytes in PBL and HKL, revealing a negative regulation of TGF-β1 signaling at the receptor level. Moreover, transient treatment with TGF-β1 for 24 h was sufficient to induce similar cellular responses compared with the continuous treatment. This indicated a possible mechanism by which TGF-β1 triggered the down-regulation of ALK5 mRNA and protein, leading to the desensitization of grass carp leukocytes toward TGF-β1. Accordingly, our data revealed a dual role of TGF-β1 in teleost immunity in which it can serve as a positive or negative control device and provided additional mechanistic insights as to how TGF-β1 controls its signaling in vertebrate leukocytes.

  10. [On improvement of the mechanism for establishing and changing indicators of quality and food safety in the regulatory and legal acts of the Eurasian Economical Union].

    Science.gov (United States)

    Arnautov, O V

    2016-01-01

    In accordance with the Treaty on the Eurasian Economic Union (EAEU) to ensure the sanitary and epidemiological welfare of the population within the Union, a coordinated policy in agreed policy in the sphere of application of sanitary measures is carried out. Sanitary measures are the obligatory requirements and procedures, including requirements for the final product, processing methods, production, transportation, storage and disposal, sampling procedures, methods of research (tests), risk assessment, the state registration, requirements for packaging directly aimed at ensuring the safety of products (goods) in order to protect human welfare, and they should be applied on the basis having a scientific explanation, and only to the extent that is necessary to protect human welfare. Sanitary measures applied within the Union should be based on international and regional standards, guidelines and (or) the recommendations, except when they based on appropriate scientific studies and explanations. In this case sanitary measures which could provide a higher level of sanitary protection are introduced. At present, the mechanism of the development, justification and approval of common sanitary and epidemiological requirements (ESR) and procedures of the Eurasian Economic Commission (the Commission) is not installed. The absence of a clear mechanism for the development, approval and implementation of the ESR to the products (goods) on the basis having a scientific explanation on the one hand could lead to the creation of unjustified barriers to foreign and mutual trade, on the other--to weaken the level of safety for human life and health of products (goods) placed on markets of the Union. In order to bring the regulatory legal acts of the Customs Union in accordance with the Treaty on the Eurasian Economic Union the Commission in cooperation with the competent authorities of the Member States in the field of sanitary and epidemiological welfare developed the project of

  11. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Directory of Open Access Journals (Sweden)

    Joana P Gonçalves

    Full Text Available Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1 apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2 ignore local patterns, abundant in most interesting cases of transcriptional activity; (3 neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4 limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots. Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in

  12. 硼胁迫下植物生理调控机制的研究进展%The Advances of Physiological Regulatory Mechanism of Plants under Boron Stress

    Institute of Scientific and Technical Information of China (English)

    王瑞东; 姜存仓; 刘桂东; 张祥; 王运华; 彭抒昂

    2011-01-01

    硼是植物的必需营养元素,它对植物的许多生理过程有着重要的作用,特别是在低硼或高硼胁迫情况时会影响植物正常的生理代谢.本文将对最近几年有关硼胁迫下植物生理调节机制的研究成果进行综述,着重阐述低硼胁迫下诱发植物产生硼高效吸收、转运、分配和再利用的机理,以及在高硼胁迫下植物自身可能存在的调控机制.%Boron is an essential nutrient element for plant. It plays an important role in variety of biological processes of plants and may affect the normal physiological metabolism especially in the low B or high boron stress situations. This review is related on recent research about the regulatory mechanisms of plant in boron stress, focusing on the mechanism of B-efficient absorption, transport, distribution and reuse in low B stress and the possible regulatory mechanisms in high B stress in plant.

  13. The SUMOylation of Kif18A and its regulatory mechanism%Kif18A 的 SUMO 化修饰及其调控机制

    Institute of Scientific and Technical Information of China (English)

    李艳; 夏南松; 左勇

    2015-01-01

    Objective To investigate the SUMOylation of Kif18A and its regulatory mechanism.Methods Plas-mids Flag -Kif18A and HA -SUMO1 or His -SUMO1 were co -transfected into HEK293T cells.Flag -Kif18A proteins were pulled down by Flag M2 beads and its SUMOylation was detected by immunoblotting with anti -HA.His -SUMO1 conjugated proteins were also precipitated by TALON Resin and the level of SUMOylated Kif18A was detected by immno-blotting with Flag antibody.The potential sites of Kif18A SUMOlation were predicted by SUMOsp 2.0 software and its coding sequences were mutated from lysine to arginine on the Flag -Kif18A plasmid.Kif18A wide and mutant types were separately expressed in HEK293T cells.The change in the quantity of SUMOylated Kif18A was adopted to determine the site of SUMOylation in Flag -Kif18A.Furthermore, plasmids Flag -Kif18A, HA -SUMO1 and SENP1 WT or mutant were co -transfected into HEK293T cells.Then the amount of SUMOylated Kif18A was detected by immunoprecipitation to determine whether Kif18A can be de -SUMOylated by SENP1.Finally, HeLa cells were synchronized in G2 /M phase by Nocodazole treatment.The SUMOylation of Kif18A in HeLa cells in G2 /M phase were detected by immunoprecipitati-on and immunobloting.Results Kif18A could be SUMOylated by SUMO1 or SUMO2.K47 and K148 were two impor-tant sites for Kif18A SUMOylation.Besides, Kif18A could be de -SUMOylated by SENP1.The SUMOylation of Kif18A was decreased in HeLa cells arrested in G2 /M phase.Conclusion Kif18A can be SUMOylated and its SUMOylation is regulated by mitosis progression.%目的:探讨 Kif18A 的 SUMO 化修饰及其调控机制。方法在 HEK293T 细胞中共转染 Flag -Kif18A、HA -SUMO1或 His -SUMO1质粒,免疫沉淀富集 Flag -Kif18A,免疫印迹检测 HA -SUMO;用 TALON 树脂富集His -SUMO1蛋白,免疫印迹检测 Flag -Kif18A 考察 Kif18A 的 SUMO 化水平。利用 SUMOsp 2.0软件预测Kif18A 可能发生 SUMO 化的潜在位点,将 Flag -Kif18A

  14. Desenho e funcionamento dos mecanismos de controle e accountability das agências reguladoras brasileiras: semelhanças e diferenças Design and operation of the Brazilian regulatory agencies' control and accountability mechanisms: similarities and differences

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Pó

    2006-08-01

    Full Text Available Este artigo estuda o formato e o funcionamento dos mecanismos de controle e accountability das agências reguladoras, ressaltando suas similaridades e distinções. Suas observações permitem abrir novas frentes de investigação para explicar as diferenças e semelhanças encontradas, tais como a influência da burocracia no processo e os contextos histórico e político de cada setor. O artigo analisa a formatação prevista legalmente para os dispositivos que proporcionam maior accountability às agências reguladoras, como a ouvidoria, as consultas públicas e os conselhos, e verifica indicadores de seu funcionamento efetivo, de forma a avaliar se a aparente uniformidade institucional dos órgãos reflete-se em uniformidade de procedimentos e de resultados. Por fim, aponta alguns impactos que o modelo institucional das agências reguladoras provoca na accountability do Estado brasileiro.This article studies the design and operation of the regulatory agencies' control and accountability mechanisms, underlining their similarities and differences. Its observations open new investigation fronts for the explanation of the differences and similarities found, such as the influence of bureaucracy on the process and each sector's historical and political context. The article analyzes the design determined by legislation for mechanisms that provide the regulatory agencies with more accountability, such as the ombudsman department, public consultations and councils, and assesses the indicators of their effectiveness, in order to verify if the apparent institutional uniformity of the agencies corresponds to the uniformity of procedures and results. Finally, it points out some of the impacts of the regulatory agencies' institutional model on the accountability of the Brazilian state.

  15. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of mi...... and siRNAmediated gene knockdown, we showed that both SNAI2 and FYN significantly affect the growth of TamR cell lines. Finally, we show that a combination of 2 miRNAs (miR-190b and miR-516a-5p) exhibiting altered expression in TamR cell lines were predictive of treatment outcome in a cohort of ER......+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer....

  16. An SH3 binding motif within the nucleocapsid protein of porcine reproductive and respiratory syndrome virus interacts with the host cellular signaling proteins STAMI, TXK, Fyn, Hck, and cortactin.

    Science.gov (United States)

    Kenney, Scott P; Meng, Xiang-Jin

    2015-06-02

    Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically important global swine disease, and has a complicated virus-host immunomodulation that often leads to a weak Th2 immune response and viral persistence. In this study, we identified a Src homology 3 (SH3) binding motif, PxxPxxP, that is conserved within the N protein of PRRSV strains. Subsequently, we identified five host cellular proteins [signal transducing adaptor molecule (STAM)I, TXK tyrosine kinase (TXK), protein tyrosine kinase fyn (Fyn), hematopoietic cell kinase (Hck), and cortactin] that interact with this SH3 motif. We demonstrated that binding of SH3 proteins with PRRSV N protein depends on at least one intact PxxP motif as disruption of P53 within the motif significantly reduced interaction of each of the 5 proteins. The first PxxP motif appears to be more important for STAMI-N protein interactions whereas the second PxxP motif was more important for Hck interaction. Both STAMI and Hck interactions with PRRSV N protein required an unhindered C-terminal domain as the interaction was only observed with STAMI and Hck proteins with N-terminal but not C-terminal fluorescent tags. We showed that the P56 residue within the SH3 motif is critical for virus lifecycle as mutation resulted in a loss of virus infectivity, however the P50 and P53 mutations did not abolish virus infectivity suggesting that these highly conserved proline residues within the SH3 motif may provide a selective growth advantage through interactions with the host rather than a vital functional element. These results have important implications in understanding PRRSV-host interactions.

  17. Biomolecular Cell-Signaling Mechanisms and Dental Implants: A Review on the Regulatory Molecular Biologic Patterns Under Functional and Immediate Loading.

    Science.gov (United States)

    Romanos, Georgios E

    2016-01-01

    Bone tissue adapts its structure and mass to the stresses of mechanical loading. The purpose of this review article was to summarize recent advances on cell signaling relating to the phenomenon of bone remodeling, focused on bone ossification and healing at the interface of dental implants and bone under loading conditions. When a dental implant is placed within an osteotomy, osteocytes, osteoblasts, and osteoclasts are all present. As functional loads are imposed, the remodeling processes adapt the peri-implant bony tissues to mechanical stimuli over time and reestablish a steady state. Based on the current literature, this article demonstrates fundamental information to these remodeling processes, such as the conversion of mechanical cues to electrical or biochemical signals. Multiple intracellular signals are involved in cellular mechanotransduction; the two Wnt signaling pathways (the canonical, β-catenin-dependent and the noncanonical, β-catenin-independent Wnt pathway) are particularly significant. Knowledge of how these molecular signaling pathways are translated into intracellular signals that regulate cell behavior may provide new therapeutic approaches to enhancing osteogenesis, especially around implants with immediate function or placed in areas of poor bone quality. New knowledge about the primary cilia as an organelle and bone cellular mechanosensor is critical for endochondral ossification and proper signal transduction. Other mechanisms, such as the expression of sclerostin as a negative regulator of bone formation (due to deactivation of the Wnt receptor) and downregulation of sclerostin under loading conditions, also present new understanding of the cellular and pericellular mechanics of bone. The complexity of the cell signaling pathways and the mechanisms involved in the mechanoregulation of the bone formation provide new technologies and perspectives for mechanically induced cellular response. Future novel therapeutic approaches based on the

  18. Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review.

    Science.gov (United States)

    Holzman, Jacob B; Bridgett, David J

    2017-03-01

    Theoretical perspectives posit that heart-rate variability (HRV) reflects self-regulatory capacity and therefore can be employed as a bio-marker of top-down self-regulation (the ability to regulate behavioral, cognitive, and emotional processes). However, existing findings of relations between self-regulation and HRV indices are mixed. To clarify the nature of such relations, we conducted a meta-analysis of 123 studies (N=14,347) reporting relations between HRV indices and aspects of top-down self-regulation (e.g., executive functioning, emotion regulation, effortful control). A significant, albeit small, effect was observed (r=0.09) such that greater HRV was related to better top-down self-regulation. Differences in relations were negligible across aspects of self-regulation, self-regulation measurement methods, HRV computational techniques, at-risk compared with healthy samples, and the context of HRV measurement. Stronger relations were observed in older relative to younger samples and in published compared to unpublished studies. These findings generally support the notion that HRV indices can tentatively be employed as bio-markers of top-down self-regulation. Conceptual and theoretical implications, and critical gaps in current knowledge to be addressed by future work, are discussed.

  19. Mechanism for transcriptional synergy between interferon regulatory factor (IRF)-3 and IRF-7 in activation of the interferon-beta gene promoter.

    Science.gov (United States)

    Yang, Hongmei; Ma, Gang; Lin, Charles H; Orr, Melissa; Wathelet, Marc G

    2004-09-01

    The interferon-beta promoter has been studied extensively as a model system for combinatorial transcriptional regulation. In virus-infected cells the transcription factors ATF-2, c-Jun, interferon regulatory factor (IRF)-3, IRF-7 and NF-kappaB, and the coactivators p300/CBP play critical roles in the activation of this and other promoters. It remains unclear, however, why most other combinations of AP-1, IRF and Rel proteins fail to activate the interferon-beta gene. Here we have explored how different IRFs may cooperate with other factors to activate transcription. First we showed in undifferentiated embryonic carcinoma cells that ectopic expression of either IRF-3 or IRF-7, but not IRF-1, was sufficient to allow virus-dependent activation of the interferon-beta promoter. Moreover, the activity of IRF-3 and IRF-7 was strongly affected by promoter context, with IRF-7 preferentially being recruited to the natural interferon-beta promoter. We fully reconstituted activation of this promoter in insect cells. Maximal synergy required IRF-3 and IRF-7 but not IRF-1, and was strongly dependent on the presence of p300/CBP, even when these coactivators only modestly affected the activity of each factor by itself. These results suggest that specificity in activation of the interferon-beta gene depends on a unique promoter context and on the role played by coactivators as architectural factors. Copyright 2004 FEBS

  20. Fine-mapping analysis revealed complex pleiotropic effect and tissue-specific regulatory mechanism of TNFSF15 in primary biliary cholangitis, Crohn's disease and leprosy.

    Science.gov (United States)

    Sun, Yonghu; Irwanto, Astrid; Toyo-Oka, Licht; Hong, Myunghee; Liu, Hong; Andiappan, Anand Kumar; Choi, Hyunchul; Hitomi, Yuki; Yu, Gongqi; Yu, Yongxiang; Bao, Fangfang; Wang, Chuan; Fu, Xian; Yue, Zhenhua; Wang, Honglei; Zhang, Huimin; Kawashima, Minae; Kojima, Kaname; Nagasaki, Masao; Nakamura, Minoru; Yang, Suk-Kyun; Ye, Byong Duk; Denise, Yosua; Rotzschke, Olaf; Song, Kyuyoung; Tokunaga, Katsushi; Zhang, Furen; Liu, Jianjun

    2016-08-10

    Genetic polymorphism within the 9q32 locus is linked with increased risk of several diseases, including Crohn's disease (CD), primary biliary cholangitis (PBC) and leprosy. The most likely disease-causing gene within 9q32 is TNFSF15, which encodes the pro-inflammatory cytokine TNF super-family member 15, but it was unknown whether these disparate diseases were associated with the same genetic variance in 9q32, and how variance within this locus might contribute to pathology. Using genetic data from published studies on CD, PBC and leprosy we revealed that bearing a T allele at rs6478108/rs6478109 (r(2) = 1) or rs4979462 was significantly associated with increased risk of CD and decreased risk of leprosy, while the T allele at rs4979462 was associated with significantly increased risk of PBC. In vitro analyses showed that the rs6478109 genotype significantly affected TNFSF15 expression in cells from whole blood of controls, while functional annotation using publicly-available data revealed the broad cell type/tissue-specific regulatory potential of variance at rs6478109 or rs4979462. In summary, we provide evidence that variance within TNFSF15 has the potential to affect cytokine expression across a range of tissues and thereby contribute to protection from infectious diseases such as leprosy, while increasing the risk of immune-mediated diseases including CD and PBC.

  1. A systematic computational analysis of the rRNA–3′ UTR sequence complementarity suggests a regulatory mechanism influencing post-termination events in metazoan translation

    Science.gov (United States)

    Pánek, Josef; Kolář, Michal; Herrmannová, Anna; Valášek, Leoš Shivaya

    2016-01-01

    Nucleic acid sequence complementarity underlies many fundamental biological processes. Although first noticed a long time ago, sequence complementarity between mRNAs and ribosomal RNAs still lacks a meaningful biological interpretation. Here we used statistical analysis of large-scale sequence data sets and high-throughput computing to explore complementarity between 18S and 28S rRNAs and mRNA 3′ UTR sequences. By the analysis of 27,646 full-length 3′ UTR sequences from 14 species covering both protozoans and metazoans, we show that the computed 18S rRNA complementarity creates an evolutionarily conserved localization pattern centered around the ribosomal mRNA entry channel, suggesting its biological relevance and functionality. Based on this specific pattern and earlier data showing that post-termination 80S ribosomes are not stably anchored at the stop codon and can migrate in both directions to codons that are cognate to the P-site deacylated tRNA, we propose that the 18S rRNA–mRNA complementarity selectively stabilizes post-termination ribosomal complexes to facilitate ribosome recycling. We thus demonstrate that the complementarity between 18S rRNA and 3′ UTRs has a non-random nature and very likely carries information with a regulatory potential for translational control. PMID:27190231

  2. Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription.

    Science.gov (United States)

    Qiu, Yu; Liu, Lei; Zhao, Chen; Han, Chuanchun; Li, Fudong; Zhang, Jiahai; Wang, Yan; Li, Guohong; Mei, Yide; Wu, Mian; Wu, Jihui; Shi, Yunyu

    2012-06-15

    Histone acetylation is a hallmark for gene transcription. As a histone acetyltransferase, MOZ (monocytic leukemia zinc finger protein) is important for HOX gene expression as well as embryo and postnatal development. In vivo, MOZ forms a tetrameric complex with other subunits, including several chromatin-binding modules with regulatory functions. Here we report the solution structure of the tandem PHD (plant homeodomain) finger (PHD12) of human MOZ in a free state and the 1.47 Å crystal structure in complex with H3K14ac peptide, which reveals the structural basis for the recognition of unmodified R2 and acetylated K14 on histone H3. Moreover, the results of chromatin immunoprecipitation (ChIP) and RT-PCR assays indicate that PHD12 facilitates the localization of MOZ onto the promoter locus of the HOXA9 gene, thereby promoting the H3 acetylation around the promoter region and further up-regulating the HOXA9 mRNA level. Taken together, our findings suggest that the combinatorial readout of the H3R2/K14ac by PHD12 might represent an important epigenetic regulatory mechanism that governs transcription and also provide a clue of cross-talk between the MOZ complex and histone H3 modifications.

  3. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments.

    Science.gov (United States)

    Harberd, Nicholas P; Belfield, Eric; Yasumura, Yuki

    2009-05-01

    The phytohormone gibberellin (GA) has long been known to regulate the growth, development, and life cycle progression of flowering plants. However, the molecular GA-GID1-DELLA mechanism that enables plants to respond to GA has only recently been discovered. In addition, studies published in the last few years have highlighted previously unsuspected roles for the GA-GID1-DELLA mechanism in regulating growth response to environmental variables. Here, we review these advances within a general plant biology context and speculate on the answers to some remaining questions. We also discuss the hypothesis that the GA-GID1-DELLA mechanism enables flowering plants to maintain transient growth arrest, giving them the flexibility to survive periods of adversity.

  4. Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein.

    Science.gov (United States)

    Manna, Pulak R; Cohen-Tannoudji, Joëlle; Counis, Raymond; Garner, Charles W; Huhtaniemi, Ilpo; Kraemer, Fredric B; Stocco, Douglas M

    2013-03-22

    Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of cholesteryl esters in steroidogenic tissues and, thus, facilitates cholesterol availability for steroidogenesis. The steroidogenic acute regulatory protein (StAR) controls the rate-limiting step in steroid biosynthesis. However, the modes of action of HSL in the regulation of StAR expression remain obscure. We demonstrate in MA-10 mouse Leydig cells that activation of the protein kinase A (PKA) pathway, by a cAMP analog Bt2cAMP, enhanced expression of HSL and its phosphorylation (P) at Ser-660 and Ser-563, but not at Ser-565, concomitant with increased HSL activity. Phosphorylation and activation of HSL coincided with increases in StAR, P-StAR (Ser-194), and progesterone levels. Inhibition of HSL activity by CAY10499 effectively suppressed Bt2cAMP-induced StAR expression and progesterone synthesis. Targeted silencing of endogenous HSL, with siRNAs, resulted in increased cholesteryl ester levels and decreased cholesterol content in MA-10 cells. Depletion of HSL affected lipoprotein-derived cellular cholesterol influx, diminished the supply of cholesterol to the mitochondria, and resulted in the repression of StAR and P-StAR levels. Cells overexpressing HSL increased the efficacy of liver X receptor (LXR) ligands on StAR expression and steroid synthesis, suggesting HSL-mediated steroidogenesis entails enhanced oxysterol production. Conversely, cells deficient in LXRs exhibited decreased HSL responsiveness. Furthermore, an increase in HSL was correlated with the LXR target genes, steroid receptor element-binding protein 1c and ATP binding cassette transporter A1, demonstrating HSL-dependent regulation of steroidogenesis predominantly involves LXR signaling. LXRs interact/cooperate with RXRs and result in the activation of StAR gene transcription. These findings provide novel insight and demonstrate the molecular events by which HSL acts to drive cAMP/PKA-mediated regulation of StAR expression and

  5. Characterization of regulatory mechanism of Poncirus trifoliata microRNAs on their target genes with an integrated strategy of newly developed PPM-RACE and RLM-RACE.

    Science.gov (United States)

    Shangguan, Lingfei; Song, Changnian; Han, Jian; Leng, Xiangpeng; Kibet, Korir Nicholas; Mu, Qian; Kayesh, Emrul; Fang, Jinggui

    2014-02-01

    MicroRNAs (miRNAs) play an important role in post-transcriptional gene regulation that involved various biological and metabolic processes. Many extensive studies have been done in model plant species, to discover miRNAs' regulating expression of their target genes and analyze their functions. But, the function of Poncirus trifoliata miRNAs has not been properly investigated. In this study, we employed the RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-RACE) and the newly developed method called poly (A) polymerase-mediated 3' rapid amplification of cDNA ends (PPM-RACE), which mapped the cleavage site of target mRNAs and detected expression patterns of cleaved fragments that could in turn indicate the regulatory functions of the miRNAs on their target genes. Furthermore, the spatiotemporal expression levels of target genes were analyzed by qRT-PCR, with exhibiting different expression trends from their corresponding miRNAs, thus indicating the cleavage mode of miRNAs on their target genes. The expression patterns of miRNAs, their target mRNAs and cleaved target mRNAs in different organs of juvenile and adult trifoliate orange were studied. The results showed that the expression of miRNAs and their target mRNAs was in a trade-off trend. When the miRNA expression was high, its corresponding target mRNA expression was low, while the cleaved target mRNA expression was high; when the miRNA expression was low, its target mRNA expression was high, while the expression of cleaved target mRNAs follows that of the miRNA. The validation of the cleavage site of target mRNAs and the detection of expression patterns of cleaved fragments can further broaden the knowledge of small RNA-mediated regulation in P. trifoliate.

  6. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle

    DEFF Research Database (Denmark)

    Salleh, M. S.; Mazzoni, G.; Höglund, J. K.

    2017-01-01

    genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency...

  7. Srcasm down-regulates src family tyrosine kinases fyn expression in human esophageal squamohus cell carcinoma TE1 cell line%Srcasm负调控Src家族酪氨酸激酶Fyn在人食管鳞状细胞癌TE1细胞株中的表达

    Institute of Scientific and Technical Information of China (English)

    齐宇; 李鑫; 崔广晖; 胡伟; 赵松

    2010-01-01

    Objective To determine whether Fyn expression was altered in human esophageal squamous cell carcinoma (ESCC) TE1 cell line by TomL1. Methods We transfected 0, 0. 25, 0. 5,1.0, and 2.0 μg Srcasm plasmid DNA into TE1 cells and examined Fyn/Srcasm expression by Western blotting. Results Srcasm decreased the Fyn protein expression in TE1 cells in a dose-dependent manner.Conclusion Srcasm may act as a negative regulator of Fyn in human ESCC, and play an important role in human ESCC progress.%目的 观察人食管鳞状细胞癌TE1细胞株中Srcasm对Src家族酪氨酸激酶Fyn表达的影响.方法 分别转染0、0.25、0.5、1.0、2.0 μg人Srcasm质粒DNA入TE1细胞株中观察其对Fyn表达的影响.结果 转染Srcasm质粒DNA可以降低人食管鳞状细胞癌TE1细胞中Fyn的表达,且呈剂量依赖性.结论 人食管鳞状细胞癌中Srcasm可能是Src家族酪氨酸激酶Fyn的负调控因子,在食管鳞状细胞癌的发生发展过程中起重要作用.

  8. Inferring the Impact of Regulatory Mechanisms that Underpin CD8+ T Cell Control of B16 Tumor Growth In vivo Using Mechanistic Models and Simulation

    Science.gov (United States)

    Klinke, David J.; Wang, Qing

    2017-01-01

    A major barrier for broadening the efficacy of immunotherapies for cancer is identifying key mechanisms that limit the efficacy of tumor infiltrating lymphocytes. Yet, identifying these mechanisms using human samples and mouse models for cancer remains a challenge. While interactions between cancer and the immune system are dynamic and non-linear, identifying the relative roles that biological components play in regulating anti-tumor immunity commonly relies on human intuition alone, which can be limited by cognitive biases. To assist natural intuition, modeling and simulation play an emerging role in identifying therapeutic mechanisms. To illustrate the approach, we developed a multi-scale mechanistic model to describe the control of tumor growth by a primary response of CD8+ T cells against defined tumor antigens using the B16 C57Bl/6 mouse model for malignant melanoma. The mechanistic model was calibrated to data obtained following adenovirus-based immunization and validated to data obtained following adoptive transfer of transgenic CD8+ T cells. More importantly, we use simulation to test whether the postulated network topology, that is the modeled biological components and their associated interactions, is sufficient to capture the observed anti-tumor immune response. Given the available data, the simulation results also provided a statistical basis for quantifying the relative importance of different mechanisms that underpin CD8+ T cell control of B16F10 growth. By identifying conditions where the postulated network topology is incomplete, we illustrate how this approach can be used as part of an iterative design-build-test cycle to expand the predictive power of the model. PMID:28101055

  9. Insights into the mechanism of FTY720 and compatibility with regulatory T cells for the inhibition of graft-versus-host disease (GVHD)

    OpenAIRE

    Taylor, Patricia A.; Ehrhardt, Michael J.; Lees, Christopher J.; Tolar, Jakub; Weigel, Brenda J; Panoskaltsis-Mortari, Angela; Serody, Jonathan S.; Brinkmann, Volker; Blazar, Bruce R.

    2007-01-01

    The immunomodulator FTY720 (FTY) has been shown to be beneficial in experimental models of organ transplantation and autoimmunity. We show that FTY significantly inhibited but did not prevent graft-versus-host disease (GVHD) in lethally irradiated or nonirradiated allogeneic recipients. Although most studies implicate prevention of lymphocyte egress from lymphoid organs as the primary mechanism of action, our data indicate that FTY effects on the host are more likely to be responsible for GVH...

  10. Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870) on Mechanical Sensitivity in Diet-Induced Obesity Model

    Science.gov (United States)

    Brandsborg, Erik

    2016-01-01

    Treatments for obesity have been shown to reduce pain secondary to weight loss. Intestinal microbiota, as an endogenous factor, influences obesity and pain sensitivity but the effect of oral probiotic supplementation on musculoskeletal pain perception has not been studied systematically. The present study examined the effect of a single daily oral dose (1 × 109 CFU) of probiotics (Lactobacillus rhamnosus PB01, DSM14870) supplement on mechanical pain thresholds in behaving diet-induced obese (DIO) mice and their normal weight (NW) controls. The mice (N = 24, 6-week-old male) were randomly divided into four groups on either standard or high fat diet with and without probiotic supplementation. Both DIO and NW groups with probiotic supplementation maintained an insignificant weight gain while the control groups gained significant weight (P < 0.05). Similarly, both DIO and NW probiotics supplemented groups demonstrated a significantly (P < 0.05) lower sensitivity to mechanical stimulation compared to their corresponding control. The results of this study suggest a protective effect of probiotics on nociception circuits, which propose a direct result of the weight reduction or an indirect result of anti-inflammatory properties of the probiotics. Deciphering the exact underlying mechanism of the weight loss and lowering nociception effect of the probiotic applied in this study require further investigation. PMID:27647980

  11. Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870 on Mechanical Sensitivity in Diet-Induced Obesity Model

    Directory of Open Access Journals (Sweden)

    Fereshteh Dardmeh

    2016-01-01

    Full Text Available Treatments for obesity have been shown to reduce pain secondary to weight loss. Intestinal microbiota, as an endogenous factor, influences obesity and pain sensitivity but the effect of oral probiotic supplementation on musculoskeletal pain perception has not been studied systematically. The present study examined the effect of a single daily oral dose (1 × 109 CFU of probiotics (Lactobacillus rhamnosus PB01, DSM14870 supplement on mechanical pain thresholds in behaving diet-induced obese (DIO mice and their normal weight (NW controls. The mice (N=24, 6-week-old male were randomly divided into four groups on either standard or high fat diet with and without probiotic supplementation. Both DIO and NW groups with probiotic supplementation maintained an insignificant weight gain while the control groups gained significant weight (P<0.05. Similarly, both DIO and NW probiotics supplemented groups demonstrated a significantly (P<0.05 lower sensitivity to mechanical stimulation compared to their corresponding control. The results of this study suggest a protective effect of probiotics on nociception circuits, which propose a direct result of the weight reduction or an indirect result of anti-inflammatory properties of the probiotics. Deciphering the exact underlying mechanism of the weight loss and lowering nociception effect of the probiotic applied in this study require further investigation.

  12. The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro.

    Science.gov (United States)

    De Avila, Miguel; Vassall, Kenrick A; Smith, Graham S T; Bamm, Vladimir V; Harauz, George

    2014-12-08

    The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92-R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP-Fyn-SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62-L68), and demonstrate further that residues (V83-P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn-SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.

  13. Regulatory considerations for biosimilars

    Directory of Open Access Journals (Sweden)

    Ranjani Nellore

    2010-01-01

    Full Text Available Currently there is considerable interest in the legislative debate around generic biological drugs or "biosimilars" in the EU and US due to the large, lucrative market that it offers to the industry. While some countries have issued a few regulatory guidelines as well as product specific requirements, there is no general consensus as to a single, simple mechanism similar to the bioequivalence determination that leads to approval of generic small molecules all over the world. The inherent complex nature of the molecules, along with complicated manufacturing and analytical techniques to characterize them make it difficult to rely on a single human pharmacokinetic study for assurance of safety and efficacy. In general, the concept of comparability has been used for evaluation of the currently approved "similar" biological where a step by step assessment on the quality, preclinical and clinical aspects is made. In India, the focus is primarily on the availability and affordability of life-saving drugs. In this context every product needs to be evaluated on its own merit irrespective of the innovator brand. The formation of the National Biotechnology Regulatory Authority may provide a step in the right direction for regulation of these complex molecules. However, in order to have an efficient machinery for initial approval and ongoing oversight with a country-specific focus, cooperation with international authorities for granting approvals and continuous risk-benefit review is essential. Several steps are still needed for India to be perceived as a country that leads the world in providing quality biological products.

  14. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  15. Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and Regulatory Mechanism during Seed Development[OPEN

    Science.gov (United States)

    Yang, Hua; Liu, Xinye; Xin, Mingming; Du, Jinkun; Hu, Zhaorong; Peng, HuiRu; Sun, Qixin; Ni, Zhongfu; Yao, Yingyin

    2016-01-01

    Histone deacetylases (HDACs) regulate histone acetylation levels by removing the acetyl group from lysine residues. The maize (Zea mays) HDAC HDA101 influences several aspects of development, including kernel size; however, the molecular mechanism by which HDA101 affects kernel development remains unknown. In this study, we find that HDA101 regulates the expression of transfer cell-specific genes, suggesting that their misregulation may be associated with the defects in differentiation of endosperm transfer cells and smaller kernels observed in hda101 mutants. To investigate HDA101 function during the early stages of seed development, we performed genome-wide mapping of HDA101 binding sites. We observed that, like mammalian HDACs, HDA101 mainly targets highly and intermediately expressed genes. Although loss of HDA101 can induce histone hyperacetylation of its direct targets, this often does not involve variation in transcript levels. A small subset of inactive genes that must be negatively regulated during kernel development is also targeted by HDA101 and its loss leads to hyperacetylation and increased expression of these inactive genes. Finally, we report that HDA101 interacts with members of different chromatin remodeling complexes, such as NFC103/MSI1 and SNL1/SIN3-like protein corepressors. Taken together, our results reveal a complex genetic network regulated by HDA101 during seed development and provide insight into the different mechanisms of HDA101-mediated regulation of transcriptionally active and inactive genes. PMID:26908760

  16. Deep Sequencing-Based Transcriptome Analysis Reveals the Regulatory Mechanism of Bemisia tabaci (Hemiptera: Aleyrodidae Nymph Parasitized by Encarsia sophia (Hymenoptera: Aphelinidae.

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    Full Text Available The whitefly Bemisia tabaci is a genetically diverse complex with multiple cryptic species, and some are the most destructive invasive pests of many ornamentals and crops worldwide. Encarsia sophia is an autoparasitoid wasp that demonstrated high efficiency as bio-control agent of whiteflies. However, the immune mechanism of B. tabaci parasitization by E. sophia is unknown. In order to investigate immune response of B. tabaci to E. Sophia parasitization, the transcriptome of E. sophia parasitized B. tabaci nymph was sequenced by Illumina sequencing. De novo assembly generated 393,063 unigenes with average length of 616 bp, in which 46,406 unigenes (15.8% of all unigenes were successfully mapped. Parasitization by E. sophia had significant effects on the transcriptome profile of B. tabaci nymph. A total of 1482 genes were significantly differentially expressed, of which 852 genes were up-regulated and 630 genes were down-regulated. These genes were mainly involved in immune response, development, metabolism and host signaling pathways. At least 52 genes were found to be involved in the host immune response, 33 genes were involved in the development process, and 29 genes were involved in host metabolism. Taken together, the assembled and annotated transcriptome sequences provided a valuable genomic resource for further understanding the molecular mechanism of immune response of B. tabaci parasitization by E. sophia.

  17. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    Science.gov (United States)

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.

  18. Genomics in the land of regulatory science.

    Science.gov (United States)

    Tong, Weida; Ostroff, Stephen; Blais, Burton; Silva, Primal; Dubuc, Martine; Healy, Marion; Slikker, William

    2015-06-01

    Genomics science has played a major role in the generation of new knowledge in the basic research arena, and currently question arises as to its potential to support regulatory processes. However, the integration of genomics in the regulatory decision-making process requires rigorous assessment and would benefit from consensus amongst international partners and research communities. To that end, the Global Coalition for Regulatory Science Research (GCRSR) hosted the fourth Global Summit on Regulatory Science (GSRS2014) to discuss the role of genomics in regulatory decision making, with a specific emphasis on applications in food safety and medical product development. Challenges and issues were discussed in the context of developing an international consensus for objective criteria in the analysis, interpretation and reporting of genomics data with an emphasis on transparency, traceability and "fitness for purpose" for the intended application. It was recognized that there is a need for a global path in the establishment of a regulatory bioinformatics framework for the development of transparent, reliable, reproducible and auditable processes in the management of food and medical product safety risks. It was also recognized that training is an important mechanism in achieving internationally consistent outcomes. GSRS2014 provided an effective venue for regulators andresearchers to meet, discuss common issues, and develop collaborations to address the challenges posed by the application of genomics to regulatory science, with the ultimate goal of wisely integrating novel technical innovations into regulatory decision-making.

  19. Improving the Regulatory Framework for the Legal Status of Applicants for International Protection in the Context of the implementation of Relocation Mechanisms

    Directory of Open Access Journals (Sweden)

    Tache Bocaneala

    2016-05-01

    Full Text Available The unprecedented refugee crisis facing the European Union, the impossibility of some Member States unable to cope and to process the massive flow of people on their borders and blocking the “Balkan Route” that moved towards the states where they wanted to reach, led the pressing need for putting in place new instruments to manage the situation. The mechanisms of relocating refugees, the principle of solidarity through quotas imposed on member states put to the authorities in these countries, implicitly in Romania, a number of issues with great difficulty in solving them. By the present study we have highlighted some of these issues in connection with the specific legal status of refugees resettled in other countries in Romania and any possible solutions to solve them.

  20. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis

    DEFF Research Database (Denmark)

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T

    2015-01-01

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can...... promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling...... antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel...

  1. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.

    Science.gov (United States)

    Salleh, M S; Mazzoni, G; Höglund, J K; Olijhoek, D W; Lund, P; Løvendahl, P; Kadarmideen, H N

    2017-03-24

    The selective breeding of cattle with high-feed efficiencies (FE) is an important goal of beef and dairy cattle producers. Global gene expression patterns in relevant tissues can be used to study the functions of genes that are potentially involved in regulating FE. In the present study, high-throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency. On average, 57 million reads (short reads or short mRNA sequences genes showed interaction effects in the Jersey cows. The analyses showed that DEGs act through certain pathways to affect or regulate FE, including steroid hormone biosynthesis, retinol metabolism, starch and sucrose metabolism, ether lipid metabolism, arachidonic acid metabolism and drug metabolism cytochrome P450. We used RNA-Seq-based liver transcriptomic profiling of high- and low-RFI dairy cows in two breeds and identified significantly DEGs, their molecular mechanisms, their interactions with other genes and functional enrichments of different molecular pathways. The DEGs that were identified were the CYP's and GIMAP genes for the Holstein and Jersey cows, respectively, which are related to the primary immunodeficiency pathway and play a major role in feed utilization and the metabolism of lipids, sugars and proteins.

  2. RhoA S-nitrosylation as a regulatory mechanism influencing endothelial barrier function in response to G(+)-bacterial toxins.

    Science.gov (United States)

    Chen, F; Wang, Y; Rafikov, R; Haigh, S; Zhi, W B; Kumar, S; Doulias, P T; Rafikova, O; Pillich, H; Chakraborty, T; Lucas, R; Verin, A D; Catravas, J D; She, J X; Black, S M; Fulton, D J R

    2017-03-01

    Disruption of the endothelial barrier in response to Gram positive (G(+)) bacterial toxins is a major complication of acute lung injury (ALI) and can be further aggravated by antibiotics which stimulate toxin release. The integrity of the pulmonary endothelial barrier is mediated by the balance of disruptive forces such as the small GTPase RhoA, and protective forces including endothelium-derived nitric oxide (NO). How NO protects against the barrier dysfunction is incompletely understood and our goal was to determine whether NO and S-nitrosylation can modulate RhoA activity and whether this mechanism is important for G(+) toxin-induced microvascular permeability. We found that the G(+) toxin listeriolysin-O (LLO) increased RhoA activity and that NO and S-NO donors inhibit RhoA activity. RhoA was robustly S-nitrosylated as determined by biotin-switch and mercury column analysis. MS revealed that three primary cysteine residues are S-nitrosylated including cys16, cys20 and cys159. Mutation of these residues to serine diminished S-nitrosylation to endogenous NO and mutant RhoA was less sensitive to inhibition by S-NO. G(+)-toxins stimulated the denitrosylation of RhoA which was not mediated by S-nitrosoglutathione reductase (GSNOR), thioredoxin (TRX) or thiol-dependent enzyme activity but was instead stimulated directly by elevated calcium levels. Calcium-promoted the direct denitrosylation of WT but not mutant RhoA and mutant RhoA adenovirus was more effective than WT in disrupting the barrier integrity of human lung microvascular endothelial cells. In conclusion, we reveal a novel mechanism by which NO and S-nitrosylation reduces RhoA activity which may be of significance in the management of pulmonary endothelial permeability induced by G(+)-toxins.

  3. Regulatory mechanisms controlling expression of the DAN/TIR mannoprotein genes during anaerobic remodeling of the cell wall in Saccharomyces cerevisiae.

    Science.gov (United States)

    Abramova, N E; Cohen, B D; Sertil, O; Kapoor, R; Davies, K J; Lowry, C V

    2001-03-01

    The DAN/TIR genes of Saccharomyces cerevisiae encode homologous mannoproteins, some of which are essential for anaerobic growth. Expression of these genes is induced during anaerobiosis and in some cases during cold shock. We show that several heme-responsive mechanisms combine to regulate DAN/TIR gene expression. The first mechanism employs two repression factors, Mox1 and Mox2, and an activation factor, Mox4 (for mannoprotein regulation by oxygen). The genes encoding these proteins were identified by selecting for recessive mutants with altered regulation of a dan1::ura3 fusion. MOX4 is identical to UPC2, encoding a binucleate zinc cluster protein controlling expression of an anaerobic sterol transport system. Mox4/Upc2 is required for expression of all the DAN/TIR genes. It appears to act through a consensus sequence termed the AR1 site, as does Mox2. The noninducible mox4Delta allele was epistatic to the constitutive mox1 and mox2 mutations, suggesting that Mox1 and Mox2 modulate activation by Mox4 in a heme-dependent fashion. Mutations in a putative repression domain in Mox4 caused constitutive expression of the DAN/TIR genes, indicating a role for this domain in heme repression. MOX4 expression is induced both in anaerobic and cold-shocked cells, so heme may also regulate DAN/TIR expression through inhibition of expression of MOX4. Indeed, ectopic expression of MOX4 in aerobic cells resulted in partially constitutive expression of DAN1. Heme also regulates expression of some of the DAN/TIR genes through the Rox7 repressor, which also controls expression of the hypoxic gene ANB1. In addition Rox1, another heme-responsive repressor, and the global repressors Tup1 and Ssn6 are also required for full aerobic repression of these genes.

  4. 肥胖状态下L细胞功能状态及调控机制%L-cell function and regulatory mechanism in obesity

    Institute of Scientific and Technical Information of China (English)

    苏静; 李晓华

    2012-01-01

    Obesity is a high risk factor of diabetes.Several studies indicate that plasma glucagon like peptide(GLP) -1 and peptide YY (PYY) levels are decreased because of L-cell dysfunction in non-diabetic obese subjects.However,the mechanism of L-cell dysfunction in obesity is unclear.Abnormal concentrations and composition of plasma free fatty acids ( FFAs),leptin resistance,high level of plasma interleukin-6 (IL-6),aberrant composition and amount of gut microbiota may contribute to L-cell dysfunction.Exploring the mechanism of L-cell dysfunction is helpful to find new therapeutic targets for preventing the progression of obesity to diabetes.%肥胖是2型糖尿病的高危因素.多项研究表明非2型糖尿病肥胖者即出现L细胞功能紊乱,表现为胰高血糖素样肽-1(GLP-1)及肽YY( PYY)水平下降.然而肥胖状态下L细胞功能紊乱的发生机制并不明确,血浆游离脂肪酸( FFAs)浓度及组分异常、瘦素抵抗、白细胞介素-6(IL-6)水平升高以及肠道菌群结构异常以各自不同的方式影响L细胞功能.探索肥胖状态下L细胞功能紊乱的发生机制,有助于寻找新的治疗靶点,控制肥胖向2型糖尿病发展.

  5. Regulatory mechanism of length-dependent activation in skinned porcine ventricular muscle: role of thin filament cooperative activation in the Frank-Starling relation.

    Science.gov (United States)

    Terui, Takako; Shimamoto, Yuta; Yamane, Mitsunori; Kobirumaki, Fuyu; Ohtsuki, Iwao; Ishiwata, Shin'ichi; Kurihara, Satoshi; Fukuda, Norio

    2010-10-01

    Cardiac sarcomeres produce greater active force in response to stretch, forming the basis of the Frank-Starling mechanism of the heart. The purpose of this study was to provide the systematic understanding of length-dependent activation by investigating experimentally and mathematically how the thin filament "on-off" switching mechanism is involved in its regulation. Porcine left ventricular muscles were skinned, and force measurements were performed at short (1.9 µm) and long (2.3 µm) sarcomere lengths. We found that 3 mM MgADP increased Ca(2+) sensitivity of force and the rate of rise of active force, consistent with the increase in thin filament cooperative activation. MgADP attenuated length-dependent activation with and without thin filament reconstitution with the fast skeletal troponin complex (sTn). Conversely, 20 mM of inorganic phosphate (Pi) decreased Ca(2+) sensitivity of force and the rate of rise of active force, consistent with the decrease in thin filament cooperative activation. Pi enhanced length-dependent activation with and without sTn reconstitution. Linear regression analysis revealed that the magnitude of length-dependent activation was inversely correlated with the rate of rise of active force. These results were quantitatively simulated by a model that incorporates the Ca(2+)-dependent on-off switching of the thin filament state and interfilament lattice spacing modulation. Our model analysis revealed that the cooperativity of the thin filament on-off switching, but not the Ca(2+)-binding ability, determines the magnitude of the Frank-Starling effect. These findings demonstrate that the Frank-Starling relation is strongly influenced by thin filament cooperative activation.

  6. The Regulatory Mechanism of Hepcidin Expression by Interleukin 6(IL-6) in Exercise%运动引起的白细胞介素6的改变与铁调素的调控

    Institute of Scientific and Technical Information of China (English)

    闫芬; 李颖; 刘树欣; 刘玉倩

    2011-01-01

    运动可改变机体铁状态,过度运动会引起机体铁缺乏,甚至导致机体出现运动性贫血,影响运动员成绩.近几年研究表明铁调素(Hepcidin)是调控机体铁代谢的关键因素,而运动中产生的白细胞介素6(IL-6)是影响Hepcidin表达变化的重要原因之一.介绍了IL-6对Hepcidin表达的影响、运动对IL-6表达调控的研究进展,综合分析了运动引起的IL-6的改变及其对Hepcidin的调控机制.%The iron status can be changed during exercise. Excessive exercise can lead to iron deficiency, even sports anemia. Accordingly athletes performance is greatly affected by iron status. The researches on the regulatory mechanism of iron metabolism show that hepcidin plays an important role in iron metabolism,and IL -6 is one of the important reasons for the expression of hepcidin in exercise. This review reveals the regulaory mechanism of IL-6 on hepcidin expression in exercise.

  7. Regulatory network operations in the Pathway Tools software

    Directory of Open Access Journals (Sweden)

    Paley Suzanne M

    2012-09-01

    Full Text Available Abstract Background Biologists are elucidating complex collections of genetic regulatory data for multiple organisms. Software is needed for such regulatory network data. Results The Pathway Tools software supports storage and manipulation of regulatory information through a variety of strategies. The Pathway Tools regulation ontology captures transcriptional and translational regulation, substrate-level regulation of enzyme activity, post-translational modifications, and regulatory pathways. Regulatory visualizations include a novel diagram that summarizes all regulatory influences on a gene; a transcription-unit diagram, and an interactive visualization of a full transcriptional regulatory network that can be painted with gene expression data to probe correlations between gene expression and regulatory mechanisms. We introduce a novel type of enrichment analysis that asks whether a gene-expression dataset is over-represented for known regulators. We present algorithms for ranking the degree of regulatory influence of genes, and for computing the net positive and negative regulatory influences on a gene. Conclusions Pathway Tools provides a comprehensive environment for manipulating molecular regulatory interactions that integrates regulatory data with an organism’s genome and metabolic network. Curated collections of regulatory data authored using Pathway Tools are available for Escherichia coli, Bacillus subtilis, and Shewanella oneidensis.

  8. Preliminary research on regulatory effect of estrogen on malignant biological behaviors of triple-negative breast cancer cells and its molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Tian-Fang Zhou

    2016-01-01

    Objective:To study the regulating effect of estrogen on malignant biological behaviors of triple-negative breast cancer cells and its molecular mechanisms. Methods:Triple-negative breast cancer cell lines MDA-MB-468 were cultured and treated with different doses of estrogen and 10-6 mol/L estrogen combined with GPR30 antagonist G15 for 12 h, 24 h and 48 h, and then cell viability, migration as well as mRNA expression levels of ITGβ1, Sema 4D, MK, c-Met and AEG-1 were detected. Results:Estradiol could increase cell viability, reduce scratch area and increase mRNA expression levels of ITGβ1, Sema 4D, MK, c-Met and AEG-1 in dose-dependent and time-dependent manner;after estradiol combined with G15 treatment, cell viability was significantly lower than that of estradiol treatment alone, scratch area was significantly larger than that of estradiol treatment alone, and mRNA contents of ITGβ1, Sema 4D, MK, c-Met and AEG-1 were significantly lower than those of estradiol treatment alone. Conclusion:Estrogen can regulate the malignant biological behaviors of triple-negative breast cancer cells, promote cell proliferation and migration, and increase the expression of related genes through GPR30.

  9. Advance in vitamin D metabolism and its regulatory mechanism%维生素D的代谢及调控研究新进展

    Institute of Scientific and Technical Information of China (English)

    祁珊珊; 王永吉

    2015-01-01

    Discovery and clinical application of vitamin D, a prohormone, result in successful treatment for rickets and osteomalacia. The major biological function of vitamin D is to regulate the metabolism of calcium and phosphate and bone formation. Vitamin D inhibits cell proliferation and regulates immune system, and it is effective in the prevention and treatment of many diseases, such as osteoporosis, hyperparathyroidism, psoriasis, autoimmune disease, and cancer. Therefore, there is a great expectation on gaining healthy benefits from vitamin D supplements. However, overdosing vitamin D may cause severe side effects. This review discusses the effect of the vitamin D hormone system and its self protection function from aspects of metabolism and regulation mechanism of vitamin D.%维生素D是前激素( prohormone),它的发现及其在临床上的成功应用,为治愈佝偻病和成人软骨症开辟了有效途径。维生素D的主要作用是参与调节人体内钙、磷代谢及骨的形成,并有抑制细胞生长、调节免疫作用的功能,尤其对骨质疏松症、自身免疫疾病、肿瘤等多种疾病有防治的功效。正因如此,人们对维生素D的健康效能有着广泛的期待,可是摄入维生素D的同时又担心因过量而引起毒副作用。本文从维生素D的代谢和调控两方面来讨论维生素D激素系统的作用及自我保护功能。

  10. Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies re-veals their diverse roles and regulatory mechanisms in cytokinin signaling

    Institute of Scientific and Technical Information of China (English)

    Bo Ren; Yan Liang; Yan Deng; Qingguo Chen; Jian Zhang; Xiaohui Yang; Jianru Zuo

    2009-01-01

    Cytokinin is a critical growth regulator for various aspects of plant growth and development. In Arabidopsis, cyto-kinin signaling is mediated by a two-component system-based phosphorelay that transmits a signal from the recep-tors, through histidine phosphotransfer proteins, to the downstream response regulators (ARRs). Of these ARRs, type-A ARR genes, whose transcription can be rapidly induced by cytokinin, act as negative regulators of cytokinin signaling. However, because of functional redundancy, the function of type-A ARR genes in plant growth and de-velopment is not well understood by analyzing loss-of-function mutants. In this study, we performed a comparative functional study on all ten type-A ARR genes by analyzing transgenic plants overexpressing these ARR genes fused to a MYC epitope tag. Overexpression of ARR genes results in a variety of cytokinin-associated phenotypes. Notably, overexpression of different ARR transgenes causes diverse phenotypes, even between phylogenetically closely-related gene pairs, such as within the ARR3-ARR4 and ARRS-ARR6 pairs. We found that the accumulation of a subset of ARR proteins (ARR3, ARR5, ARR7, ARR16 and ARR17; possibly ARR8 and ARR15) is increased by MGI32, a spe-cific proteasomal inhibitor, indicating that stability of these proteins is regulated by proteasomal degradation. More-over, similar to that of previously characterized ARR5, ARR6 and ARR7, stability of ARR16 and ARR17, possibly including ARR8 and ARRI5, is regulated by cytokinin. These results suggest that type-A ARR proteins are regulated by a combinatorial mechanism involving both the cytokinin and proteasome pathways, thereby executing distinctive functions in plant growth and development.

  11. Evolutionary dynamics and functional roles of regulatory systems in plants

    NARCIS (Netherlands)

    Berke, L.

    2015-01-01

    Transcription, the process of generating RNA copies of the genetic information stored in the DNA, is crucial for every organism. As with other essential processes in life, correct activation and repression of transcription is governed by complex regulatory mechanisms. These regulatory mechanisms ope

  12. Regulatory T Cells and Parasites

    Directory of Open Access Journals (Sweden)

    TP. Velavan

    2011-01-01

    Full Text Available Human host encounters a wide array of parasites; however, the crucial aspect is the failure of the host immune system to clear these parasites despite antigen recognition. In the recent past, a new immunological concept has emerged, which provides a framework to better understand several aspects of host susceptibility to parasitic infection. It is widely believed that parasites are able to modulate the magnitude of effector responses by inducing regulatory T cell (Tregs population and several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during parasite infection. This review discusses the several mechanism of Treg-mediated immunosuppression in the human host and focuses on the functional role of Tregs and regulatory gene polymorphisms in infectious diseases.

  13. Effects of Sodium Butyrate Treatment on Histone Modifications and the Expression of Genes Related to Epigenetic Regulatory Mechanisms and Immune Response in European Sea Bass (Dicentrarchus Labrax) Fed a Plant-Based Diet

    Science.gov (United States)

    Díaz, Noelia; Rimoldi, Simona; Ceccotti, Chiara; Gliozheni, Emi; Piferrer, Francesc

    2016-01-01

    Bacteria that inhabit the epithelium of the animals’ digestive tract provide the essential biochemical pathways for fermenting otherwise indigestible dietary fibers, leading to the production of short-chain fatty acids (SCFAs). Of the major SCFAs, butyrate has received particular attention due to its numerous positive effects on the health of the intestinal tract and peripheral tissues. The mechanisms of action of this four-carbon chain organic acid are different; many of these are related to its potent regulatory effect on gene expression since butyrate is a histone deacetylase inhibitor that play a predominant role in the epigenetic regulation of gene expression and cell function. In the present work, we investigated in the European sea bass (Dicentrarchus labrax) the effects of butyrate used as a feed additive on fish epigenetics as well as its regulatory role in mucosal protection and immune homeostasis through impact on gene expression. Seven target genes related to inflammatory response and reinforcement of the epithelial defense barrier [tnfα (tumor necrosis factor alpha) il1β, (interleukin 1beta), il-6, il-8, il-10, and muc2 (mucin 2)] and five target genes related to epigenetic modifications [dicer1(double-stranded RNA-specific endoribonuclease), ehmt2 (euchromatic histone-lysine-N-methyltransferase 2), pcgf2 (polycomb group ring finger 2), hdac11 (histone deacetylase-11), and jarid2a (jumonji)] were analyzed in fish intestine and liver. We also investigated the effect of dietary butyrate supplementation on histone acetylation, by performing an immunoblotting analysis on liver core histone extracts. Results of the eight-week-long feeding trial showed no significant differences in weight gain or SGR (specific growth rate) of sea bass that received 0.2% sodium butyrate supplementation in the diet in comparison to control fish that received a diet without Na-butyrate. Dietary butyrate led to a twofold increase in the acetylation level of histone H4 at

  14. Modeling of hysteresis in gene regulatory networks.

    Science.gov (United States)

    Hu, J; Qin, K R; Xiang, C; Lee, T H

    2012-08-01

    Hysteresis, observed in many gene regulatory networks, has a pivotal impact on biological systems, which enhances the robustness of cell functions. In this paper, a general model is proposed to describe the hysteretic gene regulatory network by combining the hysteresis component and the transient dynamics. The Bouc-Wen hysteresis model is modified to describe the hysteresis component in the mammalian gene regulatory networks. Rigorous mathematical analysis on the dynamical properties of the model is presented to ensure the bounded-input-bounded-output (BIBO) stability and demonstrates that the original Bouc-Wen model can only generate a clockwise hysteresis loop while the modified model can describe both clockwise and counter clockwise hysteresis loops. Simulation studies have shown that the hysteresis loops from our model are consistent with the experimental observations in three mammalian gene regulatory networks and two E.coli gene regulatory networks, which demonstrate the ability and accuracy of the mathematical model to emulate natural gene expression behavior with hysteresis. A comparison study has also been conducted to show that this model fits the experiment data significantly better than previous ones in the literature. The successful modeling of the hysteresis in all the five hysteretic gene regulatory networks suggests that the new model has the potential to be a unified framework for modeling hysteresis in gene regulatory networks and provide better understanding of the general mechanism that drives the hysteretic function.

  15. Aortic endothelial cells regulate proliferation of human monocytes in vitro via a mechanism synergistic with macrophage colony-stimulating factor. Convergence at the cyclin E/p27(Kip1) regulatory checkpoint.

    Science.gov (United States)

    Antonov, A S; Munn, D H; Kolodgie, F D; Virmani, R; Gerrity, R G

    1997-06-15

    Monocyte-derived macrophages (Mphis) are pivotal participants in the pathogenesis of atherosclerosis. Evidence from both animal and human plaques indicates that local proliferation may contribute to accumulation of lesion Mphis, and the major Mphi growth factor, macrophage colony stimulating factor (MCSF), is present in atherosclerotic plaques. However, most in vitro studies have failed to demonstrate that human monocytes/Mphis possess significant proliferative capacity. We now report that, although human monocytes cultured in isolation showed only limited MCSF-induced proliferation, monocytes cocultured with aortic endothelial cells at identical MCSF concentrations underwent enhanced (up to 40-fold) and prolonged (21 d) proliferation. In contrast with monocytes in isolation, this was optimal at low seeding densities, required endothelial cell contact, and could not be reproduced by coculture with smooth muscle cells. Intimal Mphi isolated from human aortas likewise showed endothelial cell contact-dependent, MCSF-induced proliferation. Consistent with a two-signal mechanism governing Mphi proliferation, the cell cycle regulatory protein, cyclin E, was rapidly upregulated by endothelial cell contact in an MCSFindependent fashion, but MCSF was required for successful downregulation of the cell cycle inhibitory protein p27(Kip1) before cell cycling. Thus endothelial cells and MCSF differentially and synergistically regulate two Mphi genes critical for progression through the cell cycle.

  16. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  17. Regulatory guidance document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM`s evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7.

  18. Regulatory bioinformatics for food and drug safety.

    Science.gov (United States)

    Healy, Marion J; Tong, Weida; Ostroff, Stephen; Eichler, Hans-Georg; Patak, Alex; Neuspiel, Margaret; Deluyker, Hubert; Slikker, William

    2016-10-01

    "Regulatory Bioinformatics" strives to develop and implement a standardized and transparent bioinformatic framework to support the implementation of existing and emerging technologies in regulatory decision-making. It has great potential to improve public health through the development and use of clinically important medical products and tools to manage the safety of the food supply. However, the application of regulatory bioinformatics also poses new challenges and requires new knowledge and skill sets. In the latest Global Coalition on Regulatory Science Research (GCRSR) governed conference, Global Summit on Regulatory Science (GSRS2015), regulatory bioinformatics principles were presented with respect to global trends, initiatives and case studies. The discussion revealed that datasets, analytical tools, skills and expertise are rapidly developing, in many cases via large international collaborative consortia. It also revealed that significant research is still required to realize the potential applications of regulatory bioinformatics. While there is significant excitement in the possibilities offered by precision medicine to enhance treatments of serious and/or complex diseases, there is a clear need for further development of mechanisms to securely store, curate and share data, integrate databases, and standardized quality control and data analysis procedures. A greater understanding of the biological significance of the data is also required to fully exploit vast datasets that are becoming available. The application of bioinformatics in the microbiological risk analysis paradigm is delivering clear benefits both for the investigation of food borne pathogens and for decision making on clinically important treatments. It is recognized that regulatory bioinformatics will have many beneficial applications by ensuring high quality data, validated tools and standardized processes, which will help inform the regulatory science community of the requirements

  19. Self-Regulatory Mechanisms Governing Gender Development.

    Science.gov (United States)

    Bussey, Kay; Bandura, Albert

    1992-01-01

    Groups of younger and older children in a sample of two to five year olds were assessed for gender knowledge, gender standards, and gender-linked behavior. All children exhibited more same- than cross-sex typed behavior. Older children expressed self-approval for same-sex behavior and self-criticism for cross-sex behavior. (BC)

  20. Gene regulatory mechanisms in infected fish

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Hajiabadi, Seyed Amir Hossein Jalali; Kristensen, Lasse Bøgelund Juel;

    2011-01-01

    miRNAs) are one class of such small RNAs which are expressed from the genome. The RISC system allows for non-perfect base pairing of miRNAs to their target genes why one small RNA can in theory silence large groups of genes at the same time. It is therefore anticipated that they are able to depress...... seem to show that these microRNAs are only expressed above a certain stage in the development of the fish....

  1. Gene regulatory networks elucidating huanglongbing disease mechanisms.

    Science.gov (United States)

    Martinelli, Federico; Reagan, Russell L; Uratsu, Sandra L; Phu, My L; Albrecht, Ute; Zhao, Weixiang; Davis, Cristina E; Bowman, Kim D; Dandekar, Abhaya M

    2013-01-01

    Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur.

  2. Regulatory mechanisms link phenotypic plasticity to evolvability

    NARCIS (Netherlands)

    van Gestel, Jordi; Weissing, Franz J

    2016-01-01

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticit

  3. Investigation of Autophagy Induced by Amino Acid Deprivation and the Regulatory Mechanisms of miRNA in Autophagy%氨基酸缺乏诱导细胞自噬及 miRNA 调控机制

    Institute of Scientific and Technical Information of China (English)

    王琪; 齐仁立; 王敬; 黄金秀

    2016-01-01

    氨基酸是生物体内不可缺少的营养成分和生命活动最基本的物质之一,并对动物体的新陈代谢起到至关重要的作用。自噬是细胞内通过降解和回收细胞内生物大分子和受损细胞器,以完成本身代谢和某些细胞器更新的过程。研究证实氨基酸缺乏能诱导细胞自噬,而这种反应大部分是依赖于 mTORC1信号通路的方式实现的,但总氨基酸或单体氨基酸调节细胞自噬的分子作用机制和自噬水平有很大差别,且相关方面的分子调节机制尚未完全清楚,需要进一步阐明。miRNA 是一类长度为18-24 nt 的非编码核苷酸,参与细胞增殖、分化、自噬与凋亡等多种生命活动。研究表明 miRNA 在氨基酸缺乏诱导细胞自噬过程中的也发挥重要调控机制。就不同氨基酸缺乏调控自噬相关机制加以综述,并探讨 miRNA 在其中起到的关键作用。旨在为治疗自噬相关代谢提供思路。%Amino acid is a kind of indispensable nutriment and basic material for life activities,and it is critical for animal to maintain physiological function. Autophagy is a pathway to accomplish metabolism and regenerate some organelles by the turnover and recycling of intracellular macromolecules and damaged organelles. The studies confirmed that amino acid deprivation induced the cell autophagy through the mTORC1 signal pathway. However,the molecular mechanism and level of autophagy differ significantly between total and individual amino acid,moreover,the molecular regulatory mechanism is still unclear,and further revealing is necessary. miRNA is non-coding nucleotide with 18-24 nt involving in cell proliferation,differentiation,autophagy,and apoptosis. Recent researches show that miRNA plays an important role in regulating autophagy induced by amino acid deprivation. This paper reviewed the regulatory mechanisms of autophagy by different amino acid deprivation and the key effects of miRNA on

  4. EGFR相关的DNA修复及放射抗拒机制研究现状%Relativity of EGFR signal as a regulatory mechanism to DNA repair and radiation resistance

    Institute of Scientific and Technical Information of China (English)

    白静; 白晓平; 赵巧艳

    2012-01-01

    目的:总结国外关于表皮生长因子受体(EGFR)通过各种信号通路调节DNA修复导致辐射抗拒相关机制的研究进展.方法:应用PubMed数据库系统,以“表皮生长因子受体、信号通路、DNA损伤修复、放射抗拒”为关键词检索2005-01-2011-12的相关文献,共检索到英文文献198篇.纳入标准:1)EGFR的表达;2)辐射抗拒和DNA损伤修复机制;3)EGFR和辐射诱导的DNA损伤修复;4)EGFR信号通路调控DNA损伤修复导致放射抗拒的可能机制.根据纳入标准,纳入分析22篇文献.结果:EGFR过表达与放化疗抗拒相关.它可以通过联接DNA蛋白激酶催化亚单位(DNA-PKcs)来调节放疗诱导的DNA损伤的修复.EGFR及其对DNA修复能力之间的分子连接可能通过该受体的一个或多个下游信号通路介导.结论:EGFR作为调节DNA损伤修复机制的信号通路与放射抗拒之间存在相关性,靶向于其中激活的信号通路可以为改善放射抗拒提供新的治疗思路.%OBJECTIVE:To sum up the articles related to improvement that epidermal growth factor receptor (EGFR) modulate DNA repair after radiation-induced damage through many signal pathways. METHODS: Epidermal growth factor receptor,signal pathway ,DNA-damage repair and radiation resistance were searched as key words by Pubmed database system from 2005-01 to 2011-12, Altogether 198 English literatures were obtained. Enrolled criteria: 1, EGFR expression; 2. mechanism of DNA repair and radiation resistances 3, EGFR and radiation resistances 4, EGFR signal as a regulatory mechanism to DNA repair and radiation resistance. By extraction according to enrolled criteria, among roughing hundreds of relative articles,46 papers were selected, and 22 papers were finally analyzed. RESULTS: EGFR Overexpres-sion is associated with resistance to chemotherapy and radiotherapy. It modulates DNA repair after radiation-induced damage through association with the catalytic subunit of DNA protein

  5. Regulatory T cell memory

    Science.gov (United States)

    Rosenblum, Michael D.; Way, Sing Sing; Abbas, Abul K.

    2016-01-01

    Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field. PMID:26688349

  6. NRC regulatory initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T.C. [Nuclear Regulatory Commission (United States)

    1989-11-01

    The US Nuclear Regulatory Commission (NRC) is addressing several low-level waste disposal issues that will be important to waste generators and to States and Compacts developing new disposal capacity. These issues include Greater-Than-Class C (GTCC) waste, mixed waste, below regulatory concern (BRC) waste, and the low-level waste data base. This paper discusses these issues and their current status.

  7. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  8. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.

    Directory of Open Access Journals (Sweden)

    Kevin A James

    Full Text Available The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced "superacceptor" activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD motif in the catalytic loop and the Asp-Phe-Gly (DFG motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not

  9. Regulatory Model Construction of Building Safety Based on Third-Party Assessment Mechanism%基于第三方评估机制的建筑物安全监管模式构建

    Institute of Scientific and Technical Information of China (English)

    陈亮

    2011-01-01

    There exists deficiency in current building safety supervision mode.Therefore,the third-party assessment institution as a"chain"of building safety management is introduced into,the original divided and intermittent ad-ministration functions can be integrated into an organic network,so the supervision system can evolve into a long-lasting and adaptive management system.This paper mainly researches the construction approach and the operating mechanism of this new regulatory model,clarifies the responsibilities of the parties involved in this model.It is hoped that this model can provide a feasible solution to the public management reform on building safety supervi-sion in China.%现有的建筑物安全监管模式存在若干不足。为此引入第三方评估机构作为建筑安全管理的"链",将分属于各部门的、条块的、间歇式的行政管理职能有机地联接成一个网状的、长效的和自适应的管理系统,从而实现政府行政监督与现场技术监督的分离,有效地利用监管资源。文章探讨了新的监管模式的构建途径、系统运行机制及各相关子系统的职责,期冀该模式能为政府机构改革提供监管模式参考。

  10. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice

    Science.gov (United States)

    Lv, Ke; Qu, Lina

    Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless,the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19~22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection

  11. Study on Cell Cycle Regulatory Mechanism in Rat Bladder Carcinogenesis Promoted by Terephthalic Acid%对苯二甲酸促进大鼠膀胱癌发生的细胞周期调节机制研究

    Institute of Scientific and Technical Information of China (English)

    石远; 唐建梅

    2011-01-01

    [ Objective ] To study the cell cycle regulatory mechanism in rat bladder carcinogenesis promoted by terephthalic acid (TPA). [ Methods ] A total of 50 male Wister rats were divided into test group (30 rats) and control group (20 rats), respectively intraperitoneally injected with N-methyl-N-nitrosourea (MNU) and citrate buffer twice a week for 4 weeks, and then basal diet containing 5%TPA were given to the test group and basal diet to the control group separately for the next 22 weeks. Major regulatory proteins in Gl cell cycle checkpoint including pl6INK4a, cyclin-dependent kinase 4 (Cdk4), cyclin Dl, and retinoblastoma protein (pRb) were determined during various stages of urinary bladder carcinogenesis by immunohistochemistry. [ Results ] In MNU-5% TPA treated group, the incidences of overexpression of Cdk4, cyclin Dl and pRb in papilloma were significantly higher than those in epithelial simple hyperplasia (P=0.023, .P<0.001 and P< 0.001, respectively) and in papillary or nodular (PN) hyperplasia (P=0.042, ^=0.012 and P=0.002, respectively). The incidence of absent expression of pl61NK4 in papilloma was much higher than that in epithelial simple hyperplasia {P=0.004) and in PN hyperplasia (P=0.02). [ Conclusion ] Our results clearly reveal that the disorder of pl6INK4-cyclin Dl/Cdk4-pRb pathway is associated with bladder carcinogenesis promoted by TPA-stone.%[目的]研究对苯二甲酸(terephthalic acid,TPA)促进膀胱癌发生的细胞周期调节机制.[方法]50只blister大鼠分为实验组(30只)及对照组(20只),每周两次分别腹腔注射甲基亚硝墓脲(MNU)和冰柠檬酸盐缓冲液,持续4周.在随后的22周,分别给大鼠饲以含5%TPA和0%TPA的饲料.利用免疫组织化学方法检查G1细胞周期关卡的主要调节蛋白包括抑癌基因p16(INK4a)蛋白(pl6(INK4a))、周期素依赖性蛋白激酶4(Cdk4)、细胞周期蛋白D1(cyclin Dl)和成视网膜细胞瘤蛋白(pRb)在大鼠膀胱癌发生各

  12. Rationales for regulatory activity

    Energy Technology Data Exchange (ETDEWEB)

    Perhac, R.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-02-01

    The author provides an outline which touches on the types of concerns about risk evaluation which are addressed in the process of establishing regulatory guides. Broadly he says regulatory activity serves three broad constituents: (1) Paternalism (private risk); (2) Promotion of social welfare (public risks); (3) Protection of individual rights (public risks). He then discusses some of the major issues encountered in reaching a decision on what is an acceptable level of risk within each of these areas, and how one establishes such a level.

  13. Modular arrangement of regulatory RNA elements

    Science.gov (United States)

    Roßmanith, Johanna; Narberhaus, Franz

    2017-01-01

    ABSTRACT Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed. PMID:28010165

  14. Exploration of the effect and regulatory mechanism of Influenza virus on the expression of COX-2%流感病毒对环氧合酶-2表达的影响及其机制探讨

    Institute of Scientific and Technical Information of China (English)

    喻明; 胡耀仁; 高国生; 胡爱荣

    2014-01-01

    Objective To explore the effect of Influenza virus on the expression of cyclooxygenase-2 (COX-2) and its regulatory mechanism.Methods A549 cells were infected with influenza virus and co-transfected with plasmid carrying NS1 gene and reporter plasmid pCOX-2-Luc containing the luciferase gene of COX-2 promoter,luciferase activity was measured,expression of COX-2 was measured by real-time polymerase chain reaction(RT-PCR) and western blot.Results Influenza virus upregulates the expression of COX-2 at mRNA and protein levels,NS1 protein enhances COX-2 gene promoter activity,COX-2 mRNA and protein expression in a concentration-dependent nanner.Conclusion Influenza virus upregulates the expression of COX-2 via with its NS1 protein.%目的 探讨流感病毒对环氧合酶2(COX-2)表达的影响及其调节机制.方法 流感病毒感染A549细胞,将其非结构蛋白NS1真核表达载体与COX-2基因启动子的报告质粒pCOX-2-Luc共转染A549细胞,测定其荧光素酶活性,采用反转录PCR和Western印迹法检测COX-2 mRNA和蛋白表达的变化.结果 流感病毒上调mRNA和蛋白的表达,其NS1蛋白能显著激活COX-2基因启动子的活性,并上调COX-2 mRNA和蛋白的表达,激活作用呈剂量依赖关系.结论 流感病毒通过其NS1蛋白上调COX-2的表达.

  15. Impaired survival of regulatory T cells in pulmonary sarcoidosis

    NARCIS (Netherlands)

    C.E. Broos (Caroline); M. van Nimwegen (Menno); A. Kleinjan (Alex); B. ten Berge (Bregje); F. Muskens (Femke); J.C.C.M. in 't Veen (Johannes); J.T. Annema (Jouke); B.N.M. Lambrecht (Bart); H.C. Hoogsteden (Henk); R.W. Hendriks (Rudi); M. Kool (Mirjam); B. van den Blink (Bernt)

    2015-01-01

    textabstractBackground: Impaired regulatory T cell (Treg) function is thought to contribute to ongoing inflammatory responses in sarcoidosis, but underlying mechanisms remain unclear. Moreover, it is not known if increased apoptotic susceptibility of Tregs may contribute to an impaired

  16. Regulatory focus affects physician risk tolerance.

    Science.gov (United States)

    Veazie, Peter J; McIntosh, Scott; Chapman, Benjamin P; Dolan, James G

    2014-01-01

    Risk tolerance is a source of variation in physician decision-making. This variation, if independent of clinical concerns, can result in mistaken utilization of health services. To address such problems, it will be helpful to identify nonclinical factors of risk tolerance, particularly those amendable to intervention-regulatory focus theory suggests such a factor. This study tested whether regulatory focus affects risk tolerance among primary care physicians. Twenty-seven primary care physicians were assigned to promotion-focused or prevention-focused manipulations and compared on the Risk Taking Attitudes in Medical Decision Making scale using a randomization test. Results provide evidence that physicians assigned to the promotion-focus manipulation adopted an attitude of greater risk tolerance than the physicians assigned to the prevention-focused manipulation (p = 0.01). The Cohen's d statistic was conventionally large at 0.92. Results imply that situational regulatory focus in primary care physicians affects risk tolerance and may thereby be a nonclinical source of practice variation. Results also provide marginal evidence that chronic regulatory focus is associated with risk tolerance (p = 0.05), but the mechanism remains unclear. Research and intervention targeting physician risk tolerance may benefit by considering situational regulatory focus as an explanatory factor.

  17. Regulatory principles governing Salmonella and Yersinia virulence

    Science.gov (United States)

    Erhardt, Marc; Dersch, Petra

    2015-01-01

    Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process. PMID:26441883

  18. Nuclear Regulatory Commission information digest

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide.

  19. Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis.

    Science.gov (United States)

    Yao, Shi; Guo, Yan; Dong, Shan-Shan; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Yi-Xiao; Chen, Jia-Bin; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2017-08-01

    Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.

  20. Hastening the regulatory process

    Energy Technology Data Exchange (ETDEWEB)

    Stringham, G. [Canadian Association of Petroleum Producers, Calgary, AB (Canada)

    2001-07-01

    The state of the Canadian oil industry was discussed during this power point presentation with particular emphasis on its production, exports, drilling, industry revenues and capital investment levels. The proposed projects in each of northern Alberta's oil sands deposits, the Athabasca, Peace River and Cold Lake were were announced, along with the inventory of major Alberta projects and the projection of oil sands capital investment. Since 1998, $9 billion has been invested and a further $33 billion has been announced for new or expanded oil sands projects. The year 2000 estimates for Canadian crude oil and natural gas production are 2.3 million barrels per day and 6.3 trillion cubic feet per year respectively. This represented a record year for production of both crude oil and natural gas. In 2000, more than 15,500 wells were drilled in Canada. A graph depicting Canadian crude oil supply forecasted a steady increase in supply from year 2000 to 2010. The Canadian Association of Petroleum Producers (CAPP) completed a review of the Alberta Energy and Utilities Board regulatory and enforcement processes. Both industry and government efforts are focusing on eliminating regulatory overlap and duplication. Some of the main areas of interest for exploration, drilling, production and pipeline facilities include the examination of regulatory processes for environmentally sensitive areas, rural municipalities with planning bylaws, aboriginal lands and additional fees. 8 figs.

  1. The Michigan regulatory incentives study for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M.W.; Weaver, E.M. (Barakat and Chamberlin, Inc., Oakland, CA (United States))

    1991-06-17

    This is the final report of Phase I of the Michigan Regulatory Incentives Study for Electric Utilities, a three-phase review of Michigan's regulatory system and its effects on resource selection by electric utilities. The goal of Phase I is to identify and analyze financial incentive mechanisms that encourage selection of resources in accord with the principles of integrated resource planning (IRP) or least-cost planning (LCP). Subsequent study phases will involve further analysis of options and possibly a collaborative formal effort to propose regulatory changes. The Phase I analysis proceeded in three steps: (1) identification and review of existing regulatory practices that affect utilities; selection of resources, particularly DSM; (2) preliminary analysis of ten financial mechanisms, and selection of three for further study; (3) detailed analysis of the three mechanisms, including consideration of how they could be implemented in Michigan and financial modeling of their likely impacts on utilities and ratepayers.

  2. 重金属镉(Cd)在植物体内的转运途径及其调控机制%Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant

    Institute of Scientific and Technical Information of China (English)

    王晓娟; 王文斌; 杨龙; 金樑; 宋瑜; 姜少俊; 秦兰兰

    2015-01-01

    重金属镉( Cd)的毒害效应与其由土壤向植物地上部分运输有关,揭示Cd2+转运途径及其调控机制可为提高植物抗镉性以及镉污染的植物修复提供依据。对Cd2+在植物体内的转运途径,特别是限制Cd2+移动的细胞结构和分子调控机制研究进展进行了回顾。 Cd2+通过共质体和质外体途径穿过根部皮层进入木质部的过程中,大部分在皮层细胞间沉积,少部分抵达中柱后转移到地上部分。为了免受Cd2+的危害,植物体产生了多种限制Cd2+吸收和转移的生理生化机制:1)环绕在内皮层径向壁和横向壁上的凯氏带阻止Cd2+以质外体途径进入木质部;2)螯合剂与进入根的Cd2+螯合形成稳定化合物并区隔在液泡中;3)通过H+/Cd2+离子通道等将Cd2+逆向转运出根部。植物共质体和质外体途径转运重金属镉的能力以及两条途径的串扰尚待进一步明晰和阐明。%Heavy metal ( HM ) toxicity is a worldwide concern because it damages plants by altering their major physiological and metabolic processes. The heavy metal cadmium ( Cd) is a nonessential element, and is a valid inhibitor of plant growth. The toxic effect of cadmium is closely related to its transfer from the soil to the plant above ground parts. Understanding the transport pathway and regulatory mechanism of cadmium in plants may improve plant resistance to this heavy metal, in addition to providing a theoretical basis for the phytoremediation soils contaminated by cadmium. In this paper, we reviewed the transport pathways of Cd2+ in plants and what limits its mobility based on the cytological structural and molecular regulation mechanism of plants. As the main organ for transporting water and nutrients to the plant body, the plant root is also the main organ that absorbs toxic metals, such as cadmium. During the process of Cd2+ transfer from the root cortex to the xylem, most Cd2+is deposited between the cells of the

  3. Exploration of the effect and regulatory mechanism of hepatitis B virus on the expression of apolipoprotein B%乙型肝炎病毒对载脂蛋白B表达的影响及其机制探讨

    Institute of Scientific and Technical Information of China (English)

    祝成亮; 李艳; 詹传华; 郝世勇; 张平安; 李从荣; 刘芳

    2011-01-01

    目的 探讨乙型肝炎病毒(HBV)对载脂蛋白B(ApoB)表达的影响,并探讨其调节机制.方法 采用RT-PCR和Western blot法检测HepG2和HepG2.2.15中ApoB mRNA和蛋白的表达,全自动生化分析仪Olympus 5400检测HBV患者和健康对照者ApoB血清学水平,分析健康对照者、慢性乙型肝炎、肝纤维化和肝癌患者中ApoB表达水平的差异,将HBV感染性克隆pHBV1.3转染HepG2细胞,RT-PCR和Western blot法检测ApoB和微粒体甘油三酯转移蛋白(MTP)表达水平的变化.结果 HepG2.2.15细胞中ApoB mRNA和蛋白的表达水平较HepG2低;ApoB在慢性乙型肝炎患者和肝纤维化患者的血清学水平明显低于健康对照者(P<0.05);HBV能够在mRNA和蛋白水平抑制ApoB和MTP的表达.结论 HBV可能通过抑制MTP的表达抑制ApoB的合成和分泌.%Objective To explore the effect of hepatitis B virus(HBV) on the expression of apolipoprotein B(ApoB) and its regulatory mechanism. Methods mRNA and protein expression of ApoB in HepG2 and HepG2.2.15 cells was measured by RT-PCR and Western blot, serum ApoB levels in patients with HBV infection and in healthy individuals were measured by biochemical analyzer Olympus 5400, the expression of ApoB difference among healthy individuals, patients with chronic hepatitis B, liver cirrhosis, and hepatocellular carcinoma were analyzed, HBV infectious clone pHBV1.3 was tranfected into HepG2 cells,and expression of ApoB and microsomal triglyceride transfer protein(MTP) was measured by RT-PCR and Western blot. Results Expression of ApoB mRNA and protein was lower in HepG2.2.15 cells than in HepG2 cells, serum apoB levels was much lower in patients with chronic hepatitis B and liver cirrhosis as compared to healthy individuals( P <0.05 ), HBV could inhibit the expression of ApoB and MTP at mRNA and protein levels. Conclusion HBV may downregulate the synthesis and secretion of ApoB via inhibits the expression of MTP.

  4. Matrix metalloproteinase-2 mediates a mechanism of metabolic cardioprotection consisting of negative regulation of the sterol regulatory element-binding protein-2/3-hydroxy-3-methylglutaryl-CoA reductase pathway in the heart.

    Science.gov (United States)

    Wang, Xiang; Berry, Evan; Hernandez-Anzaldo, Samuel; Takawale, Abhijit; Kassiri, Zamaneh; Fernandez-Patron, Carlos

    2015-04-01

    Previously, we reported that cardiac matrix metalloproteinase (MMP)-2 is upregulated in hypertensive mice. How MMP-2 affects the development of cardiac disease is unclear. Here, we report that MMP-2 protects from hypertensive cardiac disease. In mice infused with angiotensin II, the lack of MMP-2 (Mmp2(-/-)) did not affect the severity of the hypertension but caused cardiac hypertrophy to develop earlier and to a greater extent versus wild-type (Mmp2(+/+)) mice, as measured by heart weight:body weight ratio and upregulation of hypertrophy and fibrosis markers. We further found numerous metabolic and inflammatory gene expression abnormalities in the left ventricle of Mmp2(-/-) mice. Interestingly, Mmp2(-/-) mice expressed greater amounts of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (a target of sterol regulatory element-binding protein-2-mediated transcription and rate limiting enzyme in cholesterol and isoprenoids biosynthesis) in addition to markers of inflammation including chemokines of the C-C motif ligand family. We focused on the functionally related genes for sterol regulatory binding protein-2 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, lovastatin, attenuated angiotensin II-induced cardiac hypertrophy and fibrosis in Mmp2(-/-) and wild-type (Mmp2(+/+)) mice, with Mmp2(-/-) mice showing resistance to cardioprotection by lovastatin. MMP-2 deficiency predisposes to cardiac dysfunction as well as metabolic and inflammatory gene expression dysregulation. This complex phenotype is, at least in part, because of the cardiac sterol regulatory element-binding protein-2/3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway being upregulated in MMP-2 deficiency.

  5. MicroRNA and transcription factor mediated regulatory network analysis reveals critical regulators and regulatory modules in myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Guangde Zhang

    Full Text Available Myocardial infarction (MI is a severe coronary artery disease and a leading cause of mortality and morbidity worldwide. However, the molecular mechanisms of MI have yet to be fully elucidated. In this study, we compiled MI-related genes, MI-related microRNAs (miRNAs and known human transcription factors (TFs, and we then identified 1,232 feed-forward loops (FFLs among these miRNAs, TFs and their co-regulated target genes through integrating target prediction. By merging these FFLs, the first miRNA and TF mediated regulatory network for MI was constructed, from which four regulators (SP1, ESR1, miR-21-5p and miR-155-5p and three regulatory modules that might play crucial roles in MI were then identified. Furthermore, based on the miRNA and TF mediated regulatory network and literature survey, we proposed a pathway model for miR-21-5p, the miR-29 family and SP1 to demonstrate their potential co-regulatory mechanisms in cardiac fibrosis, apoptosis and angiogenesis. The majority of the regulatory relations in the model were confirmed by previous studies, which demonstrated the reliability and validity of this miRNA and TF mediated regulatory network. Our study will aid in deciphering the complex regulatory mechanisms involved in MI and provide putative therapeutic targets for MI.

  6. YTRP: a repository for yeast transcriptional regulatory pathways.

    Science.gov (United States)

    Yang, Tzu-Hsien; Wang, Chung-Ching; Wang, Yu-Chao; Wu, Wei-Sheng

    2014-01-01

    Regulatory targets of transcription factors (TFs) can be identified by the TF perturbation experiments, which reveal the expression changes owing to the perturbation (deletion or overexpression) of TFs. But the identified targets of a given TF consist of both direct and indirect regulatory targets. It has been shown that most of the TFPE-identified regulatory targets are indirect, indicating that TF-gene regulation is mainly through transcriptional regulatory pathways (TRPs) consisting of intermediate TFs. Without identification of these TRPs, it is not easy to understand how a TF regulates its indirect targets. Because there is no such database depositing the potential TRPs for Saccharomyces cerevisiae now, this motivates us to construct the YTRP (Yeast Transcriptional Regulatory Pathway) database. For each TF-gene regulatory pair under different experimental conditions, all possible TRPs in two underlying networks (constructed using experimentally verified TF-gene binding pairs and TF-gene regulatory pairs from the literature) for the specified experimental conditions were automatically enumerated by TRP mining procedures developed from the graph theory. The enumerated TRPs of a TF-gene regulatory pair provide experimentally testable hypotheses for the molecular mechanisms behind a TF and its regulatory target. YTRP is available online at http://cosbi3.ee.ncku.edu.tw/YTRP/. We believe that the TRPs deposited in this database will greatly improve the usefulness of TFPE data for yeast biologists to study the regulatory mechanisms between a TF and its knocked-out targets. Database URL: http://cosbi3.ee.ncku.edu.tw/YTRP/.

  7. The design of China's food safety regulatory system and mechanism:The principle of consumer priority should be established%我国食品安全监管体制机制设计:贯彻消费者优先原则

    Institute of Scientific and Technical Information of China (English)

    周应恒; 马仁磊

    2014-01-01

    贯彻消费者优先原则是解决我国食品安全问题的必要举措,而现阶段政府食品安全监管体制改革也为该原则的落实提供了条件。目前我国食品安全监管体制机制设计中消费者优先原则缺失,导致我国食品安全监管面临政府监管缺位、部门利益优先、违法惩处不足、信息披露低效、消费者教育缺乏等困境,影响了我国食品安全监管绩效。在借鉴美国、欧盟、日本等发达国家食品安全监管经验的基础上,提出了从法律上明确消费者优先的食品安全监管理念,并在监管处罚制度、信息披露制度和消费者教育制度的优化设计中切实贯彻消费者优先原则,完善我国食品安全监管。%Implementing the principle of consumer priority is necessary to solve the food safety problems.And China's food safety regulatory system revolution also provides the conditions for the implementation.Now the absence of consumer priority principle in our food safety regulatory system and mechanism results in China's food safety regulatory facing five problems, such as absence of government regulation , sector interests priority , regulatory incentives distorted, inadequate punishment on illegal behavior, low-efficiency information disclosure and lack of consumer education.Drawing on the food safety regulation experience of developed countries like U.S., EU and Japan, this paper points out that we should make con-sumer priority principle clear in food safety regulatory legally , and implement the principle of consumer priority in regulatory penalty system, information disclosure system and consumer education system to improve China's food safety regulation.

  8. Politically Induced Regulatory Risk and Independent Regulatory Agencies

    OpenAIRE

    Strausz, Roland

    2015-01-01

    Uncertainty in election outcomes generates politically induced regulatory risk. Political parties' risk attitudes towards such risk depend on a fluctuation effect that hurts both parties and an output--expansion effect that benefits at least one party. Notwithstanding the parties' risk attitudes, political parties have incentives to negotiate away all regulatory risk by pre-electoral bargaining. Efficient pre-electoral bargaining outcomes fully eliminate politically induced regulatory risk. P...

  9. Decoding the role of regulatory element polymorphisms in complex disease.

    Science.gov (United States)

    Vockley, Christopher M; Barrera, Alejandro; Reddy, Timothy E

    2017-04-01

    Genetic variation in gene regulatory elements contributes to diverse human diseases, ranging from rare and severe developmental defects to common and complex diseases such as obesity and diabetes. Early examples of regulatory mechanisms of human diseases involve large chromosomal rearrangements that change the regulatory connections within the genome. Single nucleotide variants in regulatory elements can also contribute to disease, potentially via demonstrated associations with changes in transcription factor binding, enhancer activity, post-translational histone modifications, long-range enhancer-promoter interactions, or RNA polymerase recruitment. Establishing causality between non-coding genetic variants, gene regulation, and disease has recently become more feasible with advances in genome-editing and epigenome-editing technologies. As establishing causal regulatory mechanisms of diseases becomes routine, functional annotation of target genes is likely to emerge as a major bottleneck for translation into patient benefits. In this review, we discuss the history and recent advances in understanding the regulatory mechanisms of human disease, and new challenges likely to be encountered once establishing those mechanisms becomes rote. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Regulatory T-cells and autoimmunity.

    LENUS (Irish Health Repository)

    Ni Choileain, Niamh

    2012-02-03

    Approximately 20% of the population is affected by autoimmune or inflammatory diseases mediated by an abnormal immune response. A characteristic feature of autoimmune disease is the selective targeting of a single cell type, organ or tissue by certain populations of autoreactive T-cells. Examples of such diseases include rheumatoid arthritis, insulin-dependent diabetes mellitus, and systemic lupus erythematosus (SLE), all of which are characterized by chronic inflammation, tissue destruction and target organ malfunction. Although strong evidence links most autoimmune diseases to specific genes, considerable controversy prevails regarding the role of regulatory T-cell populations in the disease process. These cells are now also believed to play a key role in mediating transplantation tolerance and inhibiting the induction of tumor immunity. Though the concept of therapeutic immune regulation aimed at treating autoimmune pathology has been validated in many animal models, the development of strategies for the treatment of human autoimmune disorders remains in its infancy. The main obstacles to this include the conflicting findings of different model systems, as well as the contrasting functions of regulatory T-cells and cytokines involved in the development of such disorders. This review examines the role of regulatory T-cells in the pathogenesis of autoimmunity and describes the therapeutic potential of these cells for the prevention of immune-mediated pathologies in the future. Although much remains to be learned about such pathologies, a clearer understanding of the mechanisms by which regulatory T-cells function will undoubtedly lead to exciting new possibilities for immunotherapeutics.

  11. Clinical research: regulatory issues.

    Science.gov (United States)

    Wermeling, D P

    1999-02-01

    The regulatory issues faced by institutions performing clinical research are described. Many institutions do not have on staff an expert who understands the regulatory issues involved in managing investigational new drug research and who knows the institution's obligations under the federal rules. Because pharmacists understand the FDA regulations that apply to the management of drugs in clinical research, institutions are asking pharmacists to expand their role and manage clinical research offices. Many authorities govern various aspects of investigational drug research. FDA has published regulations for good clinical practice (GCP), and the International Conference on Harmonisation is developing an international standard for the proper management of clinical trials. The guidelines published by the Joint Commission on Accreditation of Healthcare Organizations aim to protect patients who are in the institution to receive health care and also participate in clinical trials. The Social Security Administration Acts specifically state that only items and services that are reasonable and necessary for the diagnosis and treatment of injury or disease can be billed to the government; research-related billings are excluded from coverage. Proper management of drug research is crucial to the success of a research program that is integrated with patient care.

  12. Toxicogenomics in regulatory ecotoxicology

    Science.gov (United States)

    Ankley, Gerald T.; Daston, George P.; Degitz, Sigmund J.; Denslow, Nancy D.; Hoke, Robert A.; Kennedy, Sean W.; Miracle, Ann L.; Perkins, Edward J.; Snape, Jason; Tillitt, Donald E.; Tyler, Charles R.; Versteeg, Donald

    2006-01-01

    Recently, we have witnessed an explosion of different genomic approaches that, through a combination of advanced biological, instrumental, and bioinformatic techniques, can yield a previously unparalleled amount of data concerning the molecular and biochemical status of organisms. Fueled partially by large, well-publicized efforts such as the Human Genome Project, genomic research has become a rapidly growing topical area in multiple biological disciplines. Since 1999, when the term “toxicogenomics” was coined to describe the application of genomics to toxicology (1), a rapid increase in publications on the topic has occurred (Figure 1). The potential utility of toxicogenomics in toxicological research and regulatory activities has been the subject of scientific discussions and, as with any new technology, has evoked a wide range of opinion (2–6). VIEWPOINT © 2006 american chemical Society july 1, 2006 / EnvironmEntal SciEncE & tEchnology n 4055 The purpose of this feature article is to consider the roles of toxicogenomics in the field of regulatory ecotoxicology, explore current limitations in the science and practice of genomics, and propose possible avenues to approach and resolve some of the major challenges. A significant amount of input to our analysis came from a workshop sponsored by the Society of Environmental Toxicology and Chemistry (SETAC) in Pellston, Mich., in September 2005. A complete list of names and affiliations of the experts participating in that workshop is provided online in Table 1 of the Supporting Information for this paper.

  13. 基于调节焦点理论的领导语言框架对下属创造力的影响研究%The effect mechanism of leaders' linguistic frame on followers' creativity based on regulatory focus theory

    Institute of Scientific and Technical Information of China (English)

    李磊; 尚玉钒; 席酉民

    2012-01-01

    The regulatory focus theory is introduced to the research field of leader' s influence on follower' s creativity, and a conceptual framework about the effect mechanism of leaders' linguistic frame on followers' creativity is theoretically proposed and empirically verified. Based on a sample of 143 students and by using an experiment method, the influence process of leaders' linguistic frame on followers' creativity is deeply analyzed. The research results reveal that followers' situational regulatory focus partly mediates the relationship between leaders' linguistic frame and followers' creativity, and followers' chronic regulatory fo- cus moderates the relationship between followers' situational regulatory focus and their creativity. Finally, the main findings, theoretical and practical contributions, and the limitations of this study are discussed.%尝试把调节焦点理论引入领导对下属创造力影响的研究领域,构建并验证了基于该理论的领导语言框架对下属创造力的影响机理模型。以143名学生为样本,采用实验研究方法,对领导语言框架影响下属创造力的作用机制进行了深入考察,实验结果表明,下属情境调节焦点部分中介了领导语言框架与下属创造力间的关系,下属特质调节焦点则调节了情境调节焦点与下属创造力间的关系。最后,就论文的主要研究结论、主要贡献及不足之处进行了总结。

  14. Radiation and the regulatory landscape of neo2-Darwinism.

    Science.gov (United States)

    Rollo, C David

    2006-05-11

    Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo2-Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology.

  15. Genetic Regulatory Networks in Embryogenesis and Evolution

    Science.gov (United States)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  16. Global properties and functional complexity of human gene regulatory variation.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2013-05-01

    Full Text Available Identification and functional interpretation of gene regulatory variants is a major focus of modern genomics. The application of genetic mapping to molecular and cellular traits has enabled the detection of regulatory variation on genome-wide scales and revealed an enormous diversity of regulatory architecture in humans and other species. In this review I summarise the insights gained and questions raised by a decade of genetic mapping of gene expression variation. I discuss recent extensions of this approach using alternative molecular phenotypes that have revealed some of the biological mechanisms that drive gene expression variation between individuals. Finally, I highlight outstanding problems and future directions for development.

  17. (Q)SAR modeling and safety assessment in regulatory review.

    Science.gov (United States)

    Kruhlak, N L; Benz, R D; Zhou, H; Colatsky, T J

    2012-03-01

    The ability to predict clinical safety based on chemical structures is becoming an increasingly important part of regulatory decision making. (Quantitative) structure-activity relationship ((Q)SAR) models are currently used to evaluate late-arising safety concerns and possible nonclinical effects of a drug and its related compounds when adequate safety data are absent or equivocal. Regulatory use will likely increase with the standardization of analytical approaches, more complete and reliable data collection methods, and a better understanding of toxicity mechanisms.

  18. The Regulatory Mechanism of the Lipid Metabolism Pathways During Male Germ Cell Differentiation in Chickens%脂代谢通路对鸡雄性生殖细胞分化的调控机制

    Institute of Scientific and Technical Information of China (English)

    左其生; 赵瑞峰; 张文慧; 张亚妮; 李碧春; 张蕾; 连超; 肖天荣; 王颖洁; 汤贝贝; 王飞; 纪艳芹; 路镇宇

    2015-01-01

    [Objective] This research explores the regulatory mechanism of the lipid metabolic signaling pathways and its related genes during the process of chickens’ male germ cell differentiation to provide a basis for improving the efficiency of the in vitroinduction system.[Method] Fluorescence activated cell sorting (FACS) was used to obtain highly purified ESC (embryonic stem cell), PGC (Primitive germ cells) and SSC (spermatogonial stem cells), to extract total RNA from each type of cell. High throughput analysis methods-RNA-seq and Microarray were used to sequence the transcriptome level of obtained cells. Gene ontology analysis (GO) and the KEGG database were used to look for lipid metabolism signaling pathways and related genes. RA (Retinoic acid), the end-product of retinol metabolism pathway, was used to induce ESC in vitro differentiation into male germ cell combination with Piloty’s Acid. qRT-PCR was used to detect the expression changes of the genes involved in the retinol metabolic pathways.[Result] From the results of RNA-seq, we found that there were 328 genes in 27 lipid metabolic pathways that were continuously involved in lipid metabolism regulation in the process of ESC differentiation into SSC in vivo. Some of these pathways, included retinol metabolism. primary bile acid synthesis, steroid hormone biosynthesis, metabolism of fatty acid metabolism, glyceride metabolism and the steroid biosynthesis pathway. In the retinol metabolism pathways; ADH5 was expressed in PGC specifically; ALDH1A1 increased persistently throughout the entire development process; both two genes were involved in retinoic acid synthesis in the cell. CYP26b1 was involved in the degradation of retinoic acid and down expressed throughout the entire development process. The experiment that induced ESC differentiation to SSC with RA shows that the changing process of ADH5, ALDH1A1 and CYP26b1 family genes were consistent with RNA-seq results. SSC-like cells generated in RA induced

  19. Regulatory mark; Marco regulatorio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This chapter is based on a work performed in distinct phases. The first phase consisted in of the analysis regulatory legislation existent in Brazil for the sugar-alcohol sector since the beginning of the X X century. This analysis allowed the identification of non existent points and legal devices related to the studied aspects, and that were considered as problematic for the sector expansion. In the second phase, related treaties and international agreements was studied and possible obstacles for the brazilian bio ethanol exportation for the international market. Initiatives were examined at European Union, United States of America, Caribbean and countries of the sub-Saharan Africa. In this phase, policies were identified related to the incentives and adoption of use of bio fuels added to the gasoline in countries or group of countries considered as key for the consolidation of bio ethanol as a world commodity.

  20. Regulatory T cells in viral hepatitis

    Institute of Scientific and Technical Information of China (English)

    Eva Billerbeck; Tobias B(o)ttler; Robert Thimme

    2007-01-01

    The pathogenesis and outcome of viral infections are significantly influenced by the host immune response.The immune system is able to eliminate many viruses in the acute phase of infection. However, some viruses,like hepatitis C virus (HCV) and hepatitis B virus (HBV),can evade the host immune responses and establish a persistent infection. HCV and HBV persistence is caused by various mechanisms, like subversion of innate immune responses by viral factors, the emergence of T cell escape mutations, or T cell dysfunction and suppression.Recently, it has become evident that regulatory T cells may contribute to the pathogenesis and outcome of viral infections by suppressing antiviral immune responses.Indeed, the control of HCV and HBV specific immune responses mediated by regulatory T cells may be one mechanism that favors viral persistence, but it may also prevent the host from overwhelming T cell activity and liver damage. This review will focus on the role of regulatory T cells in viral hepatitis.

  1. 75 FR 54210 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of...

    Science.gov (United States)

    2010-09-03

    ...-2010-032] Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of... Transactions August 30, 2010. On June 17, 2010, the Financial Industry Regulatory Authority, Inc....

  2. Emerging regulatory paradigms in glutathione metabolism

    Science.gov (United States)

    Liu, Yilin; Hyde, Annastasia S.; Simpson, Melanie A.; Barycki, Joseph J.

    2015-01-01

    One of the hallmarks of cancer is the ability to generate and withstand unusual levels of oxidative stress. In part, this property of tumor cells is conferred by elevation of the cellular redox buffer glutathione. Though enzymes of the glutathione synthesis and salvage pathways have been characterized for several decades, we still lack a comprehensive understanding of their independent and coordinate regulatory mechanisms. Recent studies have further revealed that overall central metabolic pathways are frequently altered in various tumor types, resulting in significant increases in biosynthetic capacity, and feeding into glutathione synthesis. In this review, we will discuss the enzymes and pathways affecting glutathione flux in cancer, and summarize current models for regulating cellular glutathione through both de novo synthesis and efficient salvage. In addition, we examine the integration of glutathione metabolism with other altered fates of intermediary metabolites, and highlight remaining questions about molecular details of the accepted regulatory modes. PMID:24974179

  3. Metabolic constraint-based refinement of transcriptional regulatory networks.

    Science.gov (United States)

    Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    There is a strong need for computational frameworks that integrate different biological processes and data-types to unravel cellular regulation. Current efforts to reconstruct transcriptional regulatory networks (TRNs) focus primarily on proximal data such as gene co-expression and transcription factor (TF) binding. While such approaches enable rapid reconstruction of TRNs, the overwhelming combinatorics of possible networks limits identification of mechanistic regulatory interactions. Utilizing growth phenotypes and systems-level constraints to inform regulatory network reconstruction is an unmet challenge. We present our approach Gene Expression and Metabolism Integrated for Network Inference (GEMINI) that links a compendium of candidate regulatory interactions with the metabolic network to predict their systems-level effect on growth phenotypes. We then compare predictions with experimental phenotype data to select phenotype-consistent regulatory interactions. GEMINI makes use of the observation that only a small fraction of regulatory network states are compatible with a viable metabolic network, and outputs a regulatory network that is simultaneously consistent with the input genome-scale metabolic network model, gene expression data, and TF knockout phenotypes. GEMINI preferentially recalls gold-standard interactions (p-value = 10(-172)), significantly better than using gene expression alone. We applied GEMINI to create an integrated metabolic-regulatory network model for Saccharomyces cerevisiae involving 25,000 regulatory interactions controlling 1597 metabolic reactions. The model quantitatively predicts TF knockout phenotypes in new conditions (p-value = 10(-14)) and revealed potential condition-specific regulatory mechanisms. Our results suggest that a metabolic constraint-based approach can be successfully used to help reconstruct TRNs from high-throughput data, and highlights the potential of using a biochemically-detailed mechanistic framework to

  4. Research advances in association between regulatory T cells and hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    HE Junnan

    2016-02-01

    Full Text Available Regulatory T cells are a subset of T cells, and can inhibit the body′s immune response and induce immune tolerance, which has become one of the hot topics in the field of immunological research in recent years. Regulatory T cell dysfunction and the change in the number of regulatory T cells are closely associated with the progression and treatment of autoimmune diseases, infectious diseases, tumor immune tolerance, transplant rejection, and allergic diseases. This article summarizes the surface markers and immunological mechanism of regulatory T cells, as well as the association of regulatory T cells with the pathogenesis of hepatitis B and antiviral therapy.

  5. Regulatory focus in groupt contexts

    NARCIS (Netherlands)

    Faddegon, Krispijn Johannes

    2009-01-01

    The thesis examines the influence of group processes on the regulatory focus of individual group members. It is demonstrated that the group situation can affect group members' regulatory focus both in a top-down fashion (via the identitiy of the group) and in a bottom-up fashion (emerging from the g

  6. Reconsidering Styles of Regulatory Enforcement

    DEFF Research Database (Denmark)

    May, Peter J.; Winter, Søren

    2000-01-01

    This study addresses enforcement styles of regulatory inspectors, based on an examination of the municipal enforcement of agro-environmental policies in Denmark. Our findings make three contributions to the regulatory literature. One contribution is to add empirical support for theorizing about i...

  7. Reconsidering Styles of Regulatory Enforcement

    DEFF Research Database (Denmark)

    J. May, Peter; Winter, Søren

    2007-01-01

    This study addresses enforcement styles of regulatory inspectors based on an examination of the municipal enforcement of agro-environmental policies in Denmark. Our findings make three contributions to the regulatory literature. One contribution is to add empirical support for theorizing about in...

  8. Regulatory Foci and Organizational Commitment

    Science.gov (United States)

    Markovits, Yannis; Ullrich, Johannes; van Dick, Rolf; Davis, Ann J.

    2008-01-01

    We use regulatory focus theory to derive specific predictions regarding the differential relationships between regulatory focus and commitment. We estimated a structural equation model using a sample of 520 private and public sector employees and found in line with our hypotheses that (a) promotion focus related more strongly to affective…

  9. Disclosure as a regulatory tool

    DEFF Research Database (Denmark)

    2006-01-01

    The chapter analyses how disclure can be used as a regulatory tool and analyses how it has been applied so far in the area of financial market law and consumer law.......The chapter analyses how disclure can be used as a regulatory tool and analyses how it has been applied so far in the area of financial market law and consumer law....

  10. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...... responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells...

  11. Regulatory Streamlining and Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Carl

    2006-07-11

    The Interstate Oil and Gas Compact Commission (IOGCC) engaged in numerous projects outlined under the scope of work discussed in the United States Department of Energy (DOE) grant number DE-FC26-04NT15456 awarded to the IOGCC. Numerous projects were completed that were extremely valuable to state oil and gas agencies as a result of work performed utilizing resources provided by the grant. There are numerous areas in which state agencies still need assistance. This additional assistance will need to be addressed under future scopes of work submitted annually to DOE's Project Officer for this grant. This report discusses the progress of the projects outlined under the grant scope of work for the 2005-2006 areas of interest, which are as follows: Area of Interest No. 1--Regulatory Streamlining and Improvement: This area of interest continues to support IOGCC's regulatory streamlining efforts that include the identification and elimination of unnecessary duplications of efforts between and among state and federal programs dealing with exploration and production on public lands. Area of Interest No. 2--Technology: This area of interest seeks to improve efficiency in states through the identification of technologies that can reduce costs. Area of Interest No. 3--Training and Education: This area of interest is vital to upgrading the skills of regulators and industry alike. Within the National Energy Policy, there are many appropriate training and education opportunities. Education was strongly endorsed by the President's National Energy Policy Development group. Acting through the governors offices, states are very effective conduits for the dissemination of energy education information. While the IOGCC favors the development of a comprehensive, long-term energy education plan, states are also supportive of immediate action on important concerns, such as energy prices, availability and conservation. Area of Interest No. 4--Resource Assessment and

  12. 75 FR 30453 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving...

    Science.gov (United States)

    2010-06-01

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving..., Financial Industry Regulatory Authority, Inc. (``FINRA'') (f/k/a National Association of Securities Dealers... National Association of Securities Dealers, Inc., the Financial Industry Regulatory Authority, Inc., or...

  13. 75 FR 40000 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving...

    Science.gov (United States)

    2010-07-13

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving Proposed Rule Change Relating to the Restated Certificate of Incorporation of Financial Industry Regulatory Authority, Inc. July 2, 2010. On May 21, 2010, Financial Industry Regulatory Authority, Inc....

  14. Regulating regulatory T cells.

    Science.gov (United States)

    Le, N T; Chao, N

    2007-01-01

    Regulatory T cells (Tregs) are a specialized subpopulation of T cells that act to suppress activation of other immune cells and thereby maintain immune system homeostasis, self-tolerance as well as control excessive response to foreign antigens. The mere concept of Tregs was the subject of significant controversy among immunologists for many years owing to the paucity of reliable markers for defining these cells and the ambiguity of the nature and molecular basis of suppressive phenomena. However, recent advances in the molecular characterization of this cell population have firmly established their existence and their vital role in the vertebrate immune system. Of interest, accumulating evidence from both humans and experimental animal models has implicated the involvement of Tregs in the development of graft-versus-host disease (GVHD). The demonstration that Tregs could separate GVHD from graft-versus-tumor (GVT) activity suggests that their immunosuppressive potential could be manipulated to reduce GVHD without detrimental consequence on GVT effect. Although a variety of T lymphocytes with suppressive capabilities have been reported, the two best-characterized subsets are the naturally arising, intrathymic-generated Tregs (natural Tregs) and the peripherally generated, inducible Tregs (inducible Tregs). This review summarizes our current knowledge of the generation, function and regulation of these two populations of Tregs during an immune response. Their role in the development of GVHD and their therapeutic potential for the prevention and treatment of GVHD will also be described.

  15. Internationalization of regulatory requirements.

    Science.gov (United States)

    Juillet, Y

    2003-02-01

    The aim of harmonisation of medicines regulatory requirements is to allow the patient quicker access to new drugs and to avoid animal and human duplications. Harmonisation in the European Union (EU) is now completed, and has led to the submission of one dossier in one language study leading to European marketing authorizations, thanks in particular to efficacy guidelines published at the European level. With the benefit of the European experience since 1989, more than 40 guidelines have been harmonised amongst the EU, Japan and the USA through the International Conference on Harmonisation (ICH). ICH is a unique process gathering regulators and industry experts from the three regions. Its activity is built on expertise and trust. The Common Technical Document (CTD), an agreed common format for application in the three regions, is a logical follow-up to the ICH first phase harmonising the content of the dossier. The CTD final implementation in July 2003 will have considerable influence on the review process and on the exchange of information in the three regions.

  16. Re-evaluation of Non-regulatory Asbestos Group Minerals for Regulatory Agencies

    Science.gov (United States)

    Dogan, M.; Dogan, A.

    2013-05-01

    There are established rules and regulations for some asbestos group minerals - amphibole group minerals of actinolite, amosite, anthophyllite, crocidolite, tremolite; and serpentine group minerals of chrysotile- called "regulatory". There are also "non-regulatory" naturally occurring asbestos (NOA) group minerals as constituent of rocks and soil, including richterite, winchite, fluoro-edenite, balangeroite, carlosturanite, gageite, arfvedsonite, and magnesio-arfvedsonite. Strong evidences for carcinogenicity of these NOA minerals in later cohorts of cancer patients demonstrated the risks associated with these minerals. In addition, although the chrysotile asbestos regulated by some organizations such as WHO, World Trade Organization, United Nations, US EPA, International Labour Organization, and EU Countries; however, controversies still continue surrounding the use of chrysotile. Determinations of polymineralic fibrous veins, mixed particles, amphibole cleavage fragments, and genetic predisposition are also important issues (i.e. Dogan et al., 2006).Therefore, accurate characterizations of chemical composition, morphology, structure, and defects are necessary in order to find out mechanism(s) of carcinogenicity of all asbestos group minerals. Calculation methods of chemical composition are still under debate because of assumption of no vacancies at any sites and intergrowth of minerals. Substitution(s) may cause deviations from the ideal chemical formula and wide variations in chemical compositions. Detail morphological and chemical quantification of individual asbestos group minerals in micro- and nano-scale may help to evaluate its true carcinogenetic mechanism(s), and consequently prevention and possibly treatment of related diseases. we propose that nonregulatory asbestos minerals and the chrysotile should be re-evaluated. The amount of fibers inhaled, in terms of weight percent and number, need also be re-evaluated by mineralogists. Finally, Regulatory

  17. 77 FR 52090 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing and Immediate Effectiveness of...

    Science.gov (United States)

    2012-08-28

    ... Regulatory Bulletin any applicable minimum, maximum and/or default settings for the Risk Limitation... Regulatory Bulletin the applicable time period(s) for the Risk Limitation Mechanisms proposed under Rule... COMMISSION Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing and Immediate Effectiveness...

  18. Healthcare regulatory concepts in Brazil.

    Science.gov (United States)

    Oliveira, Robson Rocha de; Elias, Paulo Eduardo Mangeon

    2012-06-01

    The healthcare regulatory concepts used in Brazilian scientific publications on healthcare management were reviewed. A typo-logical classification for regulatory concepts was developed from the most current ideas in five disciplines: life sciences, law, economics, sociology and political science. Four ideas stood out: control, balance, adaptation and direction, with greatest emphasis on the technical nature of regulation. The political nature of regulation was secondary. It was considered that dis-cussion of healthcare regulatory concepts was connected with comprehension of the role that the state plays in this sector. De-finition of the forms of state intervention is the key convergence point between the different ways of conceptualizing healthcare regulation.

  19. Development of Questionnaire for Self-Assessment of Regulatory Capture

    Energy Technology Data Exchange (ETDEWEB)

    Muhmood, Ul Hassan; Lee, Young Eal [Pakistan Nuclear Regulatory Authority, Islamabad (Pakistan); Choi, Kwang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    Nuclear industry with its evolution in 60s came with a number of pros and cons. In order to avoid any accident or incident, highest safety standards and quality control mechanism were established. The relation of regulator with its licensee is critical in the sense of public safety and welfare. The situation when the regulator starts to work for the interests of the industry instead of the public interest and fails to cling with his mission is known as 'regulatory capture' which may cause a number of serious negative effects like radiological or radiation risk. According to George Stigler, as a rule regulation is acquired by the industry and is designed and operated primarily for its benefit. The phenomenon of regulatory capture may hamper the safety culture and can also be considered as regulatory failure. It is therefore necessary to clearly understand this type of government failure to avoid the happening of serious accidents like TMI and Fukushima in the future. This paper aims to explore whether the regulatory body works independently and effectively to achieve its assigned tasks and objectives. Hence we proposed a questionnaire for the self-assessment of regulatory capture within the regulatory body. It also includes the results of an experimental assessment which was carried out to check the relevance and reliability of the questions to this subject. This assessment survey was conducted with the officers and staff members of Pakistan Nuclear Regulatory Authority (PNRA). We checked the significance of the proposed questionnaire and found some of the questions like Q. 27, 30 and 33 (written in italic) are not directly related to the phenomenon of regulatory capture. However, the existence of the situation which has been asked in these questions may lead towards the hampering of regulatory culture.

  20. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling

    Science.gov (United States)

    Corral-Jara, Karla F.; Gómez-Leyva, Juan F.; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  1. Regulatory treatment of allowances and compliance costs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K. [National Regulatory Research Institute, Columbus, OH (United States)

    1993-07-01

    The Clean Air Act Amendments of 1990 (CAAA) established a national emission allowance trading system, a market-based form of environmental regulation designed to reduce and limit sulfur dioxide emissions. However, the allowance trading system is being applied primarily to an economically regulated electric utility industry. The combining of the new form of environmental regulation and economic regulation of electric utilities has raised a number of questions including what the role should be of the federal and state utility regulating commissions and how those actions will affect the decision making process of the utilities and the allowance market. There are several dimensions to the regulatory problems that commissions face. Allowances and utility compliance expenditures have implications for least-cost/IPR (integrated resource planning), prudence review procedures, holding company and multistate utility regulation and ratemaking treatment. The focus of this paper is on the ratemaking treatment. The following topics are covered: ratemaking treatment of allowances and compliance costs; Traditional cost-recovery mechanisms; limitations to the traditional approach; traditional approach and the allowance trading market; market-based cost recovery mechanisms; methods of determining the benchmark; determining the split between ratepayers and the utility; other regulatory approaches; limitations of incentive mechanisms.

  2. The Danish Regulatory Reform of Telecommunications

    DEFF Research Database (Denmark)

    Skouby, Knud Erik

    1998-01-01

    An overview of the liberalisation process and regulatory reform of telecommunications in Denmark......An overview of the liberalisation process and regulatory reform of telecommunications in Denmark...

  3. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  4. Population Dynamics of Genetic Regulatory Networks

    Science.gov (United States)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  5. Taking Stock of Regulatory Variation.

    Science.gov (United States)

    Maurano, Matthew T; Stamatoyannopoulos, John A

    2015-07-29

    Three recent studies measure individual variation in regulatory DNA accessibility. What do they tell us about the prospects of assessing variation in single cells and across populations? Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Current Regulations and Regulatory Actions

    Science.gov (United States)

    This site will provide basic information on clean air permitting under the title V operating permits program, provide access to state and regional permitting programs, and maintain access to proposed and final regulatory requirements.

  7. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  8. Electronic Commerce Removing Regulatory Impediments

    Science.gov (United States)

    1992-05-01

    AD-A252 691 ELECTRONIC COMMERCE Removing Regulatory Impediments ~DuiG A% ELECTE I JUL1 8 1992 0 C D Daniel J. Drake John A. Ciucci ... - ""N ST AT KE...Management Institute 6400 Goldsboro Road Bethesda, Maryland 20817-5886 92 LMI Executive Summary ELECTRONIC COMMERCE : REMOVING REGULATORY IMPEDIMENTS... Electronic Commerce techniques, such as electronic mail and electronic data interchange (EDI), enable Government agencies to conduct business without the

  9. Regulatory T Cells and Their Role in Animal Disease.

    Science.gov (United States)

    Veiga-Parga, T

    2016-07-01

    In humans and mouse models, Foxp3(+) regulatory T cells are known to control all aspects of immune responses. However, only limited information exists on these cells' role in diseases of other animals. In this review, we cover the most important features and different types of regulatory T cells, which include those that are thymus-derived and peripherally induced, the mechanisms by which they control immune responses by targeting effector T cells and antigen-presenting cells, and most important, their role in animal health and diseases including cancer, infections, and other conditions such as hypersensitivities and autoimmunity. Although the literature regarding regulatory T cells in domestic animal species is still limited, multiple articles have recently emerged and are discussed. Moreover, we also discuss the evidence suggesting that regulatory T cells might limit the magnitude of effector responses, which can have either a positive or negative result, depending on the context of animal and human disease. In addition, the issue of plasticity is discussed because plasticity in regulatory T cells can result in the loss of their protective function in some microenvironments during disease. Lastly, the manipulation of regulatory T cells is discussed in assessing the possibility of their use as a treatment in the future. © The Author(s) 2016.

  10. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.L.; Sullivan, E.J.

    1997-02-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with.

  11. [Regional differences in the level of ERK1/2 phosphorylation and expression of the myogenic regulatory factors following electrostimulation with different mechanic and metabolic action on the gastrocnemius muscle].

    Science.gov (United States)

    Borzykh, A A; Kuz'min, I V; Lysenko, E A; Vinogradova, O L

    2014-01-01

    Effect of high-frequency electrical stimulation of the sciatic nerve on ERK1/2 kinase phosphorylation and mRNA expression in MyoD (myogenic regulation factor) and myogenin in the red (RGM) and white (WGM) parts of the medial head in rat's m. gastrocnemius was studied. Two stimulation regimes were equalized both lengthwise and in total effort but differed in duration and number of contractions and, therefore, in mechanic and metabolic effects on the muscle. It was shown that growth of the number of phosphorylated ERK1/2 was particularly high in WCM due to application of the protocol for multiple short-time contractions. Whatever the stimulation regime, MyoD mRNA expression in RGM and WGM increases to the same extent, whereas myogenin mRNA expression does not change. Consequently, the regime with the predominantly mechanic effect is favorable to activation of the ERK signaling pathway in glycolytic myofibers.

  12. REGULATORY T–CELLS: ORIGIN AND FUNCTION

    Directory of Open Access Journals (Sweden)

    I. S. Freidlin

    2005-01-01

    Full Text Available Abstract. Over the past decade a population of so–called “regulatory T cells” (Treg cells has been linked to the prevention of autoimmunity. In this review we discuss the molecular mechanisms of Treg cells development and function including the identification of the unique molecular marker of Treg cells – the transcription factor Foxp3. We discuss also the mechanisms of suppression, which include the direct cell contact through binding of cell surface molecules CTLA–4 on Treg cells to CD80/CD86 molecules of effector T cells and the local secretion of cytokines (IL–10, TGFβ. Deficiency in or dysfunction of these cells can be a cause of autoimmune disease. These cells are a good target for designing ways to induce or abrogate immunological tolerance to self and non–self antigens. (Med. Immunol., 2005, vol.7, № 4, pp. 347–354

  13. Steam generators regulatory practices and issues in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, C.; Castelao, C.; Ruiz-Colino, J.; Figueras, J.M. [CSN, Madrid (Spain)

    1997-02-01

    This paper presents the actual status of Spanish Steam Generator tubes, actions developed by PWR plant owners and submitted to CSN, and regulatory activities related to tube degradation mechanisms analysis; NDT tube inspection techniques; tube, tubesheet and TSPs integrity studies; tube plugging/repair criteria; preventive and corrective measures including whole SGs replacement; tube leak measurement methods and other operational aspects.

  14. REGULATORY AND PRACTICAL MATTERS REGARDING CHILD PROTECTION IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Mihaela Tofan

    2013-11-01

    Full Text Available Social protection of children as prerequisite of social economy is a topic of theoretical and practical analysis over Romanian law system. Addressing the regulatory framework in force and following the practical impact of the effects that legal rules may generate, the article leads to conclusions on improving and developing institutions and mechanisms that support the coherent functioning of the social economy.

  15. Impaired survival of regulatory T cells in pulmonary sarcoidosis

    NARCIS (Netherlands)

    C.E. Broos (Caroline); M. van Nimwegen (Menno); A. Kleinjan (Alex); B. ten Berge (Bregje); F. Muskens (Femke); J.C.C.M. in 't Veen (Johannes); J.T. Annema (Jouke); B.N.M. Lambrecht (Bart); H.C. Hoogsteden (Henk); R.W. Hendriks (Rudi); M. Kool (Mirjam); B. van den Blink (Bernt)

    2015-01-01

    textabstractBackground: Impaired regulatory T cell (Treg) function is thought to contribute to ongoing inflammatory responses in sarcoidosis, but underlying mechanisms remain unclear. Moreover, it is not known if increased apoptotic susceptibility of Tregs may contribute to an impaired immunosuppres

  16. Regulatory Expectations for Safety Culture

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Su Jin; Oh, Jang Jin; Choi, Young Sung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The oversight of licensee's safety culture becomes an important issue that attracts great public and political concerns recently in Korea. Beginning from the intended violation of rules, a series of corruptions, documents forgery and disclosure of wrong-doings made the public think that the whole mindset of nuclear workers has been inadequate. Thus, they are demanding that safety culture shall be improved and that regulatory body shall play more roles and responsibilities for the improvements and oversight for them. This paper introduces, as an effort of regulatory side, recent changes in the role of regulators in safety culture, regulatory expectations on the desired status of licensee's safety culture, the pilot inspection program for safety culture and research activity for the development of oversight system. After the Fukushima accident in Japan 2011, many critics has searched for cultural factors that caused the unacceptable negligence pervaded in Japan nuclear society and the renewed emphasis has been placed on rebuilding safety culture by operators, regulators, and relevant institutions globally. Significant progress has been made in how to approach safety culture and led to a new perspective different from the existing normative assessment method both in operators and regulatory side. Regulatory expectations and oversight of them are based on such a new holistic concept for human, organizational and cultural elements to maintain and strengthen the integrity of defense in depth and consequently nuclear safety.

  17. Regulatory processes in Aspergillus niger

    DEFF Research Database (Denmark)

    Poulsen, Lars

    some disadvantages as well, those are byproduct formation, secretion of proteolytic enzymes and formation of mycotoxins. The aim of this project was to reduce these disadvantages, though investigating the regulatory processes. The first objective was to study the regulatory events leading to A. niger......T. The physiological batch characterization showed that the ΔprtT strain had the lowest protease activity (fivefold reduced), but also featured excessive CO2 yield, reduced growth rate and lower biomass yields. The ΔprtB strain had a close to twofold reduced levels of secreted proteases but with additional beneficial...

  18. [The role of regulatory T cells in allergic contact dermatitis].

    Science.gov (United States)

    Krecisz, Beata; Chomiczewska, Dorota; Kieć-Swierczyńska, Marta

    2009-01-01

    Regulatory T cells (Treg) play a crucial role in the regulatory mechanisms of immune system. They are responsible for the induction and maintenance of immune tolerance. They are also involved in the pathogenesis of autoimmune and allergic diseases and implicated in transplant rejection and immunopathology of cancers. Treg cells constitute the population of lymphocytes heterogeneous in their phenotype. CD4+CD25+Foxp3+ cells are most important among Treg subsets. Modification of Treg actvity may be useful in the therapy of different diseases, including allergic disorders.

  19. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution.

    Science.gov (United States)

    Keys, D N; Lewis, D L; Selegue, J E; Pearson, B J; Goodrich, L V; Johnson, R L; Gates, J; Scott, M P; Carroll, S B

    1999-01-22

    The origin of new morphological characters is a long-standing problem in evolutionary biology. Novelties arise through changes in development, but the nature of these changes is largely unknown. In butterflies, eyespots have evolved as new pattern elements that develop from special organizers called foci. Formation of these foci is associated with novel expression patterns of the Hedgehog signaling protein, its receptor Patched, the transcription factor Cubitus interruptus, and the engrailed target gene that break the conserved compartmental restrictions on this regulatory circuit in insect wings. Redeployment of preexisting regulatory circuits may be a general mechanism underlying the evolution of novelties.

  20. 调节性T细胞与肿瘤相互作用机制的研究进展%Research Advances on Interaction Mechanism of Regulatory T Cells and Tumor

    Institute of Scientific and Technical Information of China (English)

    谷伟伟

    2012-01-01

    In recent years the incidence of tumor showed an upward trend year after year, which is a serious threat to human health and quality of life. Occurrence and development of tumor are closely related with immune status of organism. Treg cells has become a hot research field in tumor immunology because of its special immune mechanism,obtaining unprecedented attention in the world. A growing number of tumors have been found with Treg cells accumulating in microenvironment and peripheral blood; depletion of Treg cells or blocking its immune inhibitory role can enhance the anti-tumor immune response. The generation mode and inhibition mechanism of Treg cells is diversified in the tumor microenvironment.%近年来恶性肿瘤发病率呈逐年上升趋势,严重威胁着人类的健康和生存质量.肿瘤的发生、发展与机体的免疫状态密切相关.调节性T(Treg)细胞因其特殊的免疫调节作用成为肿瘤免疫学领域的研究热点之一,引起了国内外学者前所未有的重视.目前研究陆续发现各种恶性肿瘤患者外周血及肿瘤微环境中Treg细胞比例增加,去除Treg细胞或封闭其抑制功能可以增强抗肿瘤免疫反应.Treg细胞在肿瘤微环境中的产生方式和抑制机制均呈现多样化.

  1. 75 FR 70757 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a...

    Science.gov (United States)

    2010-11-18

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a... 12, 2010. I. Introduction On August 6, 2010, the Financial Industry Regulatory Authority, Inc... Kimmel, Executive Director, Financial Information Forum, to Elizabeth M. Murphy, Secretary,...

  2. 77 FR 47470 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of...

    Science.gov (United States)

    2012-08-08

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Withdrawal... FINRA Rulebook August 2, 2012. On April 22, 2009, the Financial Industry Regulatory Authority,...

  3. 77 FR 55517 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a...

    Science.gov (United States)

    2012-09-10

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a.... Introduction On May 24, 2012, Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with the... General Counsel, Securities Industry and Financial Markets Association, dated June 26, 2012...

  4. 75 FR 62439 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a...

    Science.gov (United States)

    2010-10-08

    ...-2010-043] Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving..., 2010. I. Introduction On August 6, 2010, the Financial Industry Regulatory Authority, Inc. (``FINRA..., 2010 (``Wiesenberg Letter''); Letter from Manisha Kimmel, Executive Director, Financial...

  5. 77 FR 12340 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Granting...

    Science.gov (United States)

    2012-02-29

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Granting... Accounting Support Fee February 23, 2012. I. Introduction On December 20, 2011, the Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with the Securities and Exchange Commission...

  6. 76 FR 20757 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Granting...

    Science.gov (United States)

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Granting... February 4, 2011, the Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with the...

  7. 75 FR 61793 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving...

    Science.gov (United States)

    2010-10-06

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving... Encrypted September 29, 2010. I. Introduction On June 2, 2010, the Financial Industry Regulatory Authority... Taunt, Chief Executive Officer, Regal Financial Group, to Elizabeth M. Murphy, Secretary,...

  8. Subordinate regulatory mode and leader power: Interpersonal regulatory complementarity predicts task performance

    NARCIS (Netherlands)

    Hamstra, M.R.W.; Orehek, E.; Holleman, M.

    2014-01-01

    This research examines the implications of locomotion regulatory mode (orientation toward making progress on goals) and assessment regulatory mode (orientation toward critically evaluating alternatives) for employees' performance. Regulatory mode theory suggests that, although these are both integra

  9. Advancement in the research of mechanism of immune dysfunction in sepsis and the regulatory effects of Xuebijing injection%脓毒症免疫功能障碍机制及血必净调节效应研究进展

    Institute of Scientific and Technical Information of China (English)

    高玉雷; 柴艳芬; 姚咏明

    2013-01-01

    Sepsis is a systemic inflammatory response syndrome resulting from a host response to infection.The early stage of sepsis is characterized by excessive inflammatory response,accompanied by immune dysfunction characterized by aggravating cellular immunosuppression.The vast majority of patients with sepsis survive the initial excessive inflammatory response,but die of hospital-acquired infection,opportunistic pathogenic bacteria infection,latent virus reactivation,and multiple organ dysfunction syndrome.These facts indicate that immunosuppression may be a significant cause of exacerbation of the illness even death of the septic patients.The primary cellular mechanisms in inducing immune dysfunction include immune dysfunction of T lymphocytes,negative regulation of regulatory T lymphocytes and dendritic cells,and damage of intestinal mucosa associated lymphoid tissue.Xuebijing injection is a complex Chinese patent medicine,which is widely used in the treatment of sepsis.It has a potential immunoregulation ability,as well as effects on bacteriostasis,anti-endotoxin and anti-inflammation.Its target and mechanism of action need to be explored further.

  10. Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework.

    Science.gov (United States)

    Maeso, Ignacio; Tena, Juan J

    2016-09-01

    Cis-regulatory changes are arguably the primary evolutionary source of animal morphological diversity. With the recent explosion of genome-wide comparisons of the cis-regulatory content in different animal species is now possible to infer general principles underlying enhancer evolution. However, these studies have also revealed numerous discrepancies and paradoxes, suggesting that the mechanistic causes and modes of cis-regulatory evolution are still not well understood and are probably much more complex than generally appreciated. Here, we argue that the mutational mechanisms and genomic regions generating new regulatory activities must comply with the constraints imposed by the molecular properties of cis-regulatory elements (CREs) and the organizational features of long-range chromatin interactions. Accordingly, we propose a new integrative evolutionary framework for cis-regulatory evolution based on two major premises for the origin of novel enhancer activity: (i) an accessible chromatin environment and (ii) compatibility with the 3D structure and interactions of pre-existing CREs. Mechanisms and DNA sequences not fulfilling these premises, will be less likely to have a measurable impact on gene expression and as such, will have a minor contribution to the evolution of gene regulation. Finally, we discuss current comparative cis-regulatory data under the light of this new evolutionary model, and propose that the two most prominent mechanisms for the evolution of cis-regulatory changes are the overprinting of ancestral CREs and the exaptation of transposable elements.

  11. Noncatalytic cGMP-binding sites of amphibian rod cGMP phosphodiesterase control interaction with its inhibitory gamma-subunits. A putative regulatory mechanism of the rod photoresponse.

    Science.gov (United States)

    Arshavsky, V Y; Dumke, C L; Bownds, M D

    1992-12-05

    The cGMP phosphodiesterase (PDE) of retinal rods plays a central role in phototransduction. Illumination leads to its activation by a rod G-protein (Gt, transducin), thus causing a decrease in intracellular cGMP concentration, closure of plasma membrane cationic channels gated by cGMP, and development of the photoresponse. The PDE holoenzyme is an alpha beta gamma 2 tetramer. The alpha- and beta-subunits each contain one catalytic and one, or possibly two, noncatalytic cGMP-binding sites. Two identical gamma-subunits serve as protein inhibitors of the enzyme. Their inhibition is removed when they bind to Gt-GTP during PDE activation. Here we report that the noncatalytic cGMP-binding sites regulate the binding of PDE alpha beta with PDE gamma and as a result determine the mechanism of PDE activation by Gt. If the noncatalytic sites are empty, Gt-GTP physically removes PDE gamma from PDE alpha beta upon activation. Alternatively, if the noncatalytic sites are occupied by cGMP, Gt-GTP releases PDE gamma inhibitory action but remains bound in a complex with the PDE heterotetramer. The kinetic parameters of activated PDE in these two cases are indistinguishable. This mechanism appears to have two implications for the physiology of photoreceptor cells. First, the tight binding of PDE gamma with PDE alpha beta when the noncatalytic sites are occupied by cGMP may be responsible for the low level of basal PDE activity observed in dark-adapted cells. Second, occupancy of the noncatalytic sites ultimately controls the rate of PDE inactivation (cf. Arshavsky, V. Yu., and Bownds, M. D. (1992) Nature 357, 416-417), for the GTPase activity that terminates PDE activity is slower when these sites are occupied and Gt stays in a complex with PDE holoenzyme. In contrast GTPase acceleration is maximal when the noncatalytic sites are empty and Gt-PDE gamma dissociates from PDE alpha beta. Because cGMP levels are known to decrease upon illumination over a concentration range

  12. RNA regulatory elements and polyadenylation in plants

    Directory of Open Access Journals (Sweden)

    Arthur G. Hunt

    2012-01-01

    Full Text Available Alternative poly(A site choice (also known as alternative polyadenylation, or APA has the potential to affect gene expression in qualitative and quantitative ways. Alternative polyadenylation may affect as many as 82% of all expressed genes in a plant. The consequences of APA include the generation of transcripts with differing 3’-UTRs (and thus differing potential regulatory potential and of transcripts with differing protein-coding potential. Genome-wide studies of possible APA suggest a linkage with pre-mRNA splicing, and indicate a coincidence of and perhaps cooperation between RNA regulatory elements that affect splicing efficiency and the recognition of novel intronic poly(A sites. These studies also raise the possibility of the existence of a novel class of polyadenylation-related cis elements that are distinct from the well-characterized plant polyadenylation signal. Many potential APA events, however, have not been associated with identifiable cis elements. The present state of the field reveals a broad scope of APA, and also numerous opportunities for research into mechanisms that govern both choice and regulation of poly(A sites in plants.

  13. Fur-mediated global regulatory circuits in pathogenic Neisseria species.

    Science.gov (United States)

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-12-01

    The ferric uptake regulator (Fur) protein has been shown to function as a repressor of transcription in a number of diverse microorganisms. However, recent studies have established that Fur can function at a global level as both an activator and a repressor of transcription through both direct and indirect mechanisms. Fur-mediated indirect activation occurs via the repression of additional repressor proteins, or small regulatory RNAs, thereby activating transcription of a previously silent gene. Fur mediates direct activation through binding of Fur to the promoter regions of genes. Whereas the repressive mechanism of Fur has been thoroughly investigated, emerging studies on direct and indirect Fur-mediated activation mechanisms have revealed novel global regulatory circuits.

  14. Evolution of communication protocols using an artificial regulatory network.

    Science.gov (United States)

    Mitchener, W Garrett

    2014-01-01

    I describe the Utrecht Machine (UM), a discrete artificial regulatory network designed for studying how evolution discovers biochemical computation mechanisms. The corresponding binary genome format is compatible with gene deletion, duplication, and recombination. In the simulation presented here, an agent consisting of two UMs, a sender and a receiver, must encode, transmit, and decode a binary word over time using the narrow communication channel between them. This communication problem has chicken-and-egg structure in that a sending mechanism is useless without a corresponding receiving mechanism. An in-depth case study reveals that a coincidence creates a minimal partial solution, from which a sequence of partial sending and receiving mechanisms evolve. Gene duplications contribute by enlarging the regulatory network. Analysis of 60,000 sample runs under a variety of parameter settings confirms that crossover accelerates evolution, that stronger selection tends to find clumsier solutions and finds them more slowly, and that there is implicit selection for robust mechanisms and genomes at the codon level. Typical solutions associate each input bit with an activation speed and combine them almost additively. The parents of breakthrough organisms sometimes have lower fitness scores than others in the population, indicating that populations can cross valleys in the fitness landscape via outlying members. The simulation exhibits back mutations and population-level memory effects not accounted for in traditional population genetics models. All together, these phenomena suggest that new evolutionary models are needed that incorporate regulatory network structure.

  15. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2016-01-01

    Full Text Available With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA based on gene coexpression network (GCN increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies.

  16. Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation

    Directory of Open Access Journals (Sweden)

    Asiel Arce-Sillas

    2016-01-01

    Full Text Available T regulatory cells play a key role in the control of the immune response, both in health and during illness. While the mechanisms through which T regulatory cells exert their function have been extensively described, their molecular effects on effector cells have received little attention. Thus, this revision is aimed at summarizing our current knowledge on those regulation mechanisms on the target cells from a molecular perspective.

  17. Effects and Gene Regulatory Mechanism of Polysavone on Cholesterol Metabolism of Laying Hens%苜草素对蛋鸡胆固醇代谢的影响及其基因调控机制

    Institute of Scientific and Technical Information of China (English)

    李宁; 刘鑫; 曲正祥; 刘通; 杜宇; 高玉鹏; 闵育娜

    2016-01-01

    The experiment was carried out to evaluate the effects of dietary different polysavone supplemental level on cholesterol metabolism of laying hens, and discussed its regulation mechanism of gene expression. A total of 540 twenty⁃six⁃week⁃old Nick laying hens were randomly divided into 5 groups with 6 replicates per group and 18 birds per replicate. Laying hens in control group were fed with a basal diet, and other were fed with the basal diets supplemented with 300, 600, 900 and 1 200 mg/kg polysavone, respectively. The pre⁃test lasted for 7 days, and the experiment lasted for 70 days. The results showed as follows:1) on day 35 and day 70, the yolk cholesterol content in 900 mg/kg polysavone group was significantly lower than that in control group (P0.05) . 3) Compared with the control group, the mRNA expression of 3⁃hydroxy⁃3⁃methylglutaryl coenzyme A reductase ( HMGCR) in liver of laying hens in 600, 900 and 1 200 mg/kg polysavone groups significantly de⁃creased (P0.05). Our present study indicates that dietary supplemented with polysavone can reduce the whole egg and egg yolk cholesterol content. The possible mechanism of cholesterol lowering effects can result from reducing endogenous synthesis and more cholesterol excretion. The suitable dietary polysavone supplemented level of laying hens aged from 26 to 35 weeks is 900 mg/kg.%本试验旨在研究饲粮中添加不同水平苜草素对蛋鸡胆固醇代谢的影响,并探讨其基因表达调控机制。选取体重和产蛋率相近的26周龄尼克蛋鸡540只,随机分为5组,每组6个重复,每个重复18只。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加300、600、900、1200 mg/kg的苜草素。预试期7 d,正试期70 d。结果表明:1)试验第35天和第70天,900 mg/kg苜草素组的蛋黄胆固醇含量显著低于对照组( P<0.05)。2)与对照组相比,900 mg/kg苜草素组显著升高了蛋鸡血清中

  18. Regulatory T cells in the treatment of autoimmune myositis in mice:efficacy and mechanism%调节性T细胞治疗实验性小鼠多发性肌炎及机制研究

    Institute of Scientific and Technical Information of China (English)

    石强; 田成林; 刘洁晓; 蒲传强

    2015-01-01

    目的:探讨CD4+CD25+Foxp3+Treg细胞对于实验性自身免疫性肌炎(EAM)小鼠的治疗价值及机制。方法免疫磁珠分选技术从BALC/c小鼠脾脏中分选出足量CD4+CD25+Foxp3+Treg细胞以备回输,观察干预组及未干预组EAM小鼠肌肉组织病理学变化,流式细胞仪检测两组小鼠脾脏CD4+CD25+Foxp3+Treg细胞表面PD-1及CTLA-4的表达变化,双抗体夹心ELISA法检测外周血IL-10、TGF-β的变化。结果干预组小鼠较未干预组肌肉病理炎性细胞浸润明显减轻,其外周血IL-10、TGF-β含量较未干预组明显升高(P<0.05),脾脏CD4+CD25+Foxp3+Treg细胞表面PD-1及CTLA-4表达明显升高(P<0.05)。结论CD4+CD25+Foxp3+Treg细胞回输对于EAM小鼠的治疗效果是通过增加外周血IL-10及TGF-β水平和增高脾脏CD4+CD25+Foxp3+Treg细胞表面PD-1及CTLA-4的表达发挥作用。%Objective To investigate effect of CD4+CD25+Foxp3+Tregs in the treatment of autoimmune myositis (EAM) in mice and explore the possible mechanisms. Methods Mouse models of EAM were divided randomly into model group and treatment group, and the latter received infusion of CD4 + CD25 + Foxp3 + Tregs separated from normal mouse spleen by magnetic activated cell sorting. The changes of muscle pathology was observed, and the expression of PD-1 and CTLA-4 in spleen CD4+ CD25+ Foxp3+ Tregs was analyzed using flow cytometry; peripheral blood IL-10 and TGF-β levels were tested using double antibody sandwich ELISA. Results Compare with the model group, the mice in the treatment group showed significantly reduced muscular inflammatory cell infiltration, increased blood levels of IL-10 and TGF-β (P<0.05), and increased expression of PD-1 and CTLA-4 in spleen CD4+CD25+Foxp3+Tregs (P<0.05). Conclusion CD4+CD25+Foxp3+Tregs reinfusion produces therapeutic effect in mice with EAM by increasing peripheral blood IL-10 and TGF-βlevels and PD-1 and CTLA-4 expressions in spleen CD4+CD25+Foxp3+Tregs.

  19. 基于博弈模型的旅游市场监管机制研究%Study on Regulatory Mechanisms of the Tourism Market based on the Interests of the Game Model

    Institute of Scientific and Technical Information of China (English)

    周常春; 贺云

    2013-01-01

    In recent years, tourism of China maintain rapid growth in general, showing a trend of vigorous development and the status of tourism in the national economy continue to improve. Tourism has become a new point of economic growth and as a strategic pillar of China's economic. However, with the continuous development of the tourism industry, the competition of market is becoming fierce increasingly, the illegal phenomenon emerge in the tourism market in an endless stream and bring a lot of problems in market regulation. Not only damage the legitimate rights and interests of tourism consumers, but also tarnishes the image of tourism enterprises. It is also not good to the development of the tourism market and healthy, orderly, normal development of tourism industry. Therefore, in the new situation, how to strengthen the supervision of China's tourism market, to protect consumers' legitimate rights and interests, to promote the development of the tourism market health, orderly and sustainable development has become a new topic. This article exploring the supervision mechanism of the administrative department for Industry and commerce, bureau of tourism and the association of travel industry from the perspective of economic and put forward measures and suggestions based on it.%  近年来,我国国内旅游业总体保持较快增长,呈现出蓬勃发展的趋势,在国民经济中所占的地位不断提高,旅游业已经成为国民经济新的经济增长点和我国经济发展的战略性支柱产业之一。但是,随着旅游业的不断发展,市场竞争日益激烈,旅游市场违法违规现象层出不穷,不仅损害了旅游消费者的合法权益,同时也抹黑了旅游企业的形象,不利于旅游市场的发育和旅游业的正常、健康、有序发展。因此,在新形势下如何加强我国旅游市场的监管,保护旅游消费者的合法权益,促进旅游市场的发育,实现旅游业的健康、有序

  20. The Political Economy of Regulatory Risk

    OpenAIRE

    Roland Strausz

    2009-01-01

    I investigate the argument that, in a two–party system with different regulatory objectives, political uncertainty generates regulatory risk. I show that this risk has a fluctuation effect that hurts both parties and an output–expansion effect that benefits one party. Consequently, at least one party dislikes regulatory risk. Moreover, both political parties gain from eliminating regulatory risk when political divergence is small or the winning probability of the regulatory–risk–averse party ...

  1. The political economy of regulatory risk

    OpenAIRE

    Strausz, Roland

    2009-01-01

    I investigate the argument that, in a twoparty system with different regulatory objectives, political uncertainty generates regulatory risk. I show that this risk has a fluctuation effect that hurts both parties and an outputexpansion effect that benefits one party. Consequently, at least one party dislikes regulatory risk. Moreover, both political parties gain from eliminating regulatory risk when political divergence is small or the winning probability of the regulatoryriskaverse party is n...

  2. Nuclear Regulatory Commission 1989 Information Digest

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1989-03-01

    The Nuclear Regulatory Commission 1989 Information Digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the Commission. This is the first of an annual publication for the general use of the NRC staff and is available to the public. The Digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide.

  3. 21 CFR 500.88 - Regulatory method.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Regulatory method. 500.88 Section 500.88 Food and... § 500.88 Regulatory method. (a) The sponsor shall submit for evaluation and validation a regulatory method developed to monitor compliance with FDA's operational definition of no residue. (b)...

  4. 77 FR 10351 - Regulatory Review Plan

    Science.gov (United States)

    2012-02-22

    ... XII Regulatory Review Plan AGENCY: Federal Housing Finance Agency. ACTION: Notice of final regulatory review plan. SUMMARY: The Federal Housing Finance Agency (FHFA) is issuing a notice of the final FHFA regulatory review plan for review of existing regulations under Executive Order 13579, ``Regulation...

  5. Regulatory Status of Dissimilar Metal Weld (DMW)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. C.; Hong, J. K.; Shin, H. S.; Kang, S. S.; Song, M. H.; Chung, H. D. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-05-15

    In this technical article, the regulatory status for Dissimilar Metal Water (DMW) was discussed. In order to decide the regulatory direction of DMW, the USA's accidents of PWSCC and their regulatory directions were reviewed. By reviewing their experiences, the Korean DMW regulation approach was decided.

  6. 40 CFR 94.6 - Regulatory structure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Regulatory structure. 94.6 Section 94... for Compression-Ignition Marine Engines § 94.6 Regulatory structure. This section provides an overview of the regulatory structure of this part. (a) The regulations of this Part 94 are intended to...

  7. 40 CFR 92.6 - Regulatory structure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Regulatory structure. 92.6 Section 92... Regulations for Locomotives and Locomotive Engines § 92.6 Regulatory structure. This section provides an overview of the regulatory structure of this part. (a) The regulations of this part 92 are intended...

  8. Regulatory institutions in liberalised electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The reform of the electricity supply industry is gathering pace in many countries. Independent regulatory agencies and other regulatory bodies have been created, and regulatory responsibilities redefined. This book reviews the evolving institutional structures to regulate the electricity supply industry in IEA member countries. It is the latest in a series of IEA publications on energy market reform.

  9. Genetic flexibility of regulatory networks.

    Science.gov (United States)

    Hunziker, Alexander; Tuboly, Csaba; Horváth, Péter; Krishna, Sandeep; Semsey, Szabolcs

    2010-07-20

    Gene regulatory networks are based on simple building blocks such as promoters, transcription factors (TFs) and their binding sites on DNA. But how diverse are the functions that can be obtained by different arrangements of promoters and TF binding sites? In this work we constructed synthetic regulatory regions using promoter elements and binding sites of two noninteracting TFs, each sensing a single environmental input signal. We show that simply by combining these three kinds of elements, we can obtain 11 of the 16 Boolean logic gates that integrate two environmental signals in vivo. Further, we demonstrate how combination of logic gates can result in new logic functions. Our results suggest that simple elements of transcription regulation form a highly flexible toolbox that can generate diverse functions under natural selection.

  10. Reconsidering Styles of Regulatory Enforcement

    DEFF Research Database (Denmark)

    May, Peter J.; Winter, Søren

    2000-01-01

    This study addresses enforcement styles of regulatory inspectors, based on an examination of the municipal enforcement of agro-environmental policies in Denmark. Our findings make three contributions to the regulatory literature. One contribution is to add empirical support for theorizing about...... inspectors’ enforcement styles as consisting of multiple components, rather than a single continuum. We show that inspectors’ enforcement styles comprise the degree of formalism and the degree of coercion that they exercise when carrying out inspections. A second contribution is in showing the relationship...... of different types of enforcement styles to the two underlying dimensions of the concept. A third contribution is an examination of the ways in which inspectors’ enforcement styles relate to their enforcement actions. The consistency of our findings with those of other studies suggests that the dimensions...

  11. Regulatory Changes in Depository Institutions

    OpenAIRE

    Yang, Brian Sejoon

    2016-01-01

    In this dissertation we investigate the effect of monetary policy and regulatory changes on asset pricing and investor behavior. In the first chapter, using unique data on over-the-counter bank stock prices and balance sheet information from 1940 to 1968, we find that the largest commercial bank stocks, ranked by market value or gross deposits, have significant lower risk-adjusted annual returns than do small sized bank stocks even after controlling for standard risk factors including size. ...

  12. Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Agustino Martinez-Antonio

    2011-06-01

    Full Text Available Escherichia coli is the most well-know bacterial model about the function of its molecular components. In this review are presented several structural and functional aspects of their transcriptional regulatory network constituted by transcription factors and target genes. The network discussed here represent to 1531 genes and 3421 regulatory interactions. This network shows a power-law distribution with a few global regulators and most of genes poorly connected. 176 of genes in the network correspond to transcription factors, which form a sub-network of seven hierarchical layers where global regulators tend to be set in superior layers while local regulators are located in the lower ones. There is a small set of proteins know as nucleoid-associated proteins, which are in a high cellular concentrations and reshape the nucleoid structure to influence the running of global transcriptional programs, to this mode of regulation is named analog regulation. Specific signal effectors assist the activity of most of transcription factors in E. coli. These effectors switch and tune the activity of transcription factors. To this type of regulation, depending of environmental signals is named the digital-precise-regulation. The integration of regulatory programs have place in the promoter region of transcription units where it is common to observe co-regulation among global and local TFs as well as of TFs sensing exogenous and endogenous conditions. The mechanistic logic to understand the harmonious operation of regulatory programs in the network should consider the globalism of TFs, their signal perceived, coregulation, genome position, and cellular concentration. Finally, duplicated TFs and their horizontal transfer influence the evolvability of members of the network. The most duplicated and transferred TFs are located in the network periphery.

  13. 77 FR 1524 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving...

    Science.gov (United States)

    2012-01-10

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving..., 2011, the Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with the Securities and... effective date of the proposed rule change in a Regulatory Notice to be published no later than 60...

  14. 78 FR 54359 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2013-09-03

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... Rule 19b-4 thereunder,\\2\\ notice is hereby given that on August 20, 2103, Financial Industry Regulatory.... \\3\\ 15 U.S.C. 78s(b)(3)(A)(i). \\4\\ 17 CFR 240.19b-4(f)(1). ] I. Self-Regulatory...

  15. 78 FR 10655 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a...

    Science.gov (United States)

    2013-02-14

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a...) February 8, 2013. I. Introduction On December 20, 2012, Financial Industry Regulatory Authority, Inc... Equity Securities.\\5\\ FINRA may impose a ``Foreign Regulatory Halt'' when a foreign securities...

  16. 77 FR 33527 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2012-06-06

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... hereby given that on May 23, 2012, Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with.... 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of...

  17. 77 FR 12092 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2012-02-28

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...\\ notice is hereby given that February 9, 2012, Financial Industry Regulatory Authority, Inc. (``FINRA... interested persons. \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory...

  18. 75 FR 28841 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2010-05-24

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... thereunder,\\2\\ notice is hereby given that on May 18, 2010, Financial Industry Regulatory Authority, Inc.... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of...

  19. 76 FR 2739 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2011-01-14

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... is hereby given that on January 5, 2011, the Financial Industry Regulatory Authority, Inc. (``FINRA...-Regulatory Organization's Statement of the Terms of Substance of the Proposed Rule Change FINRA is...

  20. 76 FR 20065 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2011-04-11

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... Rule 19b-4 thereunder,\\2\\ notice is hereby given that on March 30, 2011, Financial Industry Regulatory... interested persons. \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory...

  1. 75 FR 49542 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2010-08-13

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... 19b-4 thereunder,\\2\\ notice is hereby given that on July 27, 2010, Financial Industry Regulatory... from interested persons. \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory...

  2. 76 FR 70195 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2011-11-10

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...,\\2\\ notice is hereby given that on October 28, 2011, Financial Industry Regulatory Authority, Inc.... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of...

  3. 78 FR 42581 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2013-07-16

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... thereunder,\\2\\ notice is hereby given that on June 27, 2013, Financial Industry Regulatory Authority, Inc.... 78s(b)(3)(A)(i). \\4\\ 17 CFR 240.19b-4(f)(1). I. Self-Regulatory Organization's Statement of the...

  4. 77 FR 12098 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2012-02-28

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... February 9, 2012, Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with the Securities and...). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of Substance of...

  5. 76 FR 72463 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2011-11-23

    ...-FINRA-2011-044] Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of... is hereby given that on November 8, 2011, Financial Industry Regulatory Authority, Inc. (``FINRA...\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the...

  6. 76 FR 9840 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2011-02-22

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... that on February 4, 2011, the Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with the.... 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of...

  7. 78 FR 78451 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2013-12-26

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... thereunder,\\2\\ notice is hereby given that on December 9, 2013, Financial Industry Regulatory Authority, Inc.... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of...

  8. 78 FR 25331 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of...

    Science.gov (United States)

    2013-04-30

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Withdrawal.... On January 7, 2013, Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with the... Regulatory Policy, Wells Fargo Advisors, LLC, dated Feb. 15, 2013; Letter from Tamara K. Salmon,...

  9. 76 FR 67787 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2011-11-02

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... thereunder,\\2\\ notice is hereby given that on October 13, 2011, Financial Industry Regulatory Authority, Inc.... 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of...

  10. 78 FR 76341 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2013-12-17

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... thereunder,\\2\\ notice is hereby given that, on December 2, 2013, Financial Industry Regulatory Authority, Inc... considers the subscriber's financial condition and its regulatory history. FINRA believes that the...

  11. 75 FR 2899 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving...

    Science.gov (United States)

    2010-01-19

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving... January 12, 2010. On November 24, 2009, the Financial Industry Regulatory Authority, Inc. (``FINRA'') (f/k...- regulatory organizations.\\6\\ \\6\\ See, e.g., Nasdaq Rule 4761 and NYSE-Arca Rule 7.39. It is therefore...

  12. 78 FR 24261 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2013-04-24

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... Rule 19b-4 thereunder,\\2\\ notice is hereby given that on April 15, 2013, Financial Industry Regulatory...\\ 17 CFR 240.19b-4(f)(6). I. Self-Regulatory Organization's Statement of the Terms of Substance of...

  13. 75 FR 7532 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2010-02-19

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and...,\\2\\ notice is hereby given that on February 4, 2010, Financial Industry Regulatory Authority, Inc... in Regulatory Notice 09-71 that the new financial responsibility rules will be implemented...

  14. 77 FR 58880 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2012-09-24

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and...,\\2\\ notice is hereby given that on September 17, 2012, Financial Industry Regulatory Authority, Inc...\\ 15 U.S.C. 78s(b)(3)(A). \\4\\ 17 CFR 240.19b-4(f)(6). I. Self-Regulatory Organization's Statement...

  15. 75 FR 58004 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2010-09-23

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... is hereby given that on September 7, 2010, Financial Industry Regulatory Authority, Inc. (``FINRA... Securities Exchange, LLC, Financial Industry Regulatory Authority, Inc., The New York Stock Exchange,...

  16. 76 FR 78706 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a...

    Science.gov (United States)

    2011-12-19

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a... On October 20, 2011, the Financial Industry Regulatory Authority, Inc. (``FINRA'') filed with the... advised that it would announce the implementation date of the proposed rule change in a Regulatory...

  17. 75 FR 9459 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2010-03-02

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... hereby given that Financial Industry Regulatory Authority, Inc. (``FINRA'') (f/k/a National Association... National Association of Securities Dealers, Inc., the Financial Industry Regulatory Authority, Inc., or...

  18. 75 FR 39069 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2010-07-07

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... Rule 19b-4 thereunder,\\2\\ notice is hereby given that on June 30, 2010, Financial Industry Regulatory.... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of...

  19. 77 FR 33537 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2012-06-06

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... is hereby given that on May 24, 2012, Financial Industry Regulatory Authority, Inc. (``FINRA'') filed.... 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of...

  20. 78 FR 75954 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2013-12-13

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... thereunder,\\2\\ notice is hereby given that on November 25, 2013, Financial Industry Regulatory Authority, Inc.... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of...

  1. 75 FR 69503 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2010-11-12

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...\\ notice is hereby given that on October 29, 2010, Financial Industry Regulatory Authority, Inc. (``FINRA.... 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of...

  2. 75 FR 15470 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2010-03-29

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... thereunder,\\2\\ notice is hereby given that, on March 9, 2010, Financial Industry Regulatory Authority, Inc...-Regulatory Organization's Statement of the Terms of Substance of the Proposed Rule Change FINRA is...

  3. 75 FR 53998 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2010-09-02

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... Rule 19b-4 thereunder,\\2\\ notice is hereby given that on August 16, 2010, Financial Industry Regulatory.... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of...

  4. 77 FR 5611 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a...

    Science.gov (United States)

    2012-02-03

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving a..., 2012. I. Introduction On October 13, 2011, the Financial Industry Regulatory Authority, Inc. (``FINRA... change in a Regulatory Notice to be published no later than 90 days following Commission approval,...

  5. 76 FR 66344 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving...

    Science.gov (United States)

    2011-10-26

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving.... Introduction On August 31, 2011, Financial Industry Regulatory Authority, Inc. (``FINRA'') (f/k/a National... Regulatory Notice to be published no later than 90 days following this Commission approval. The...

  6. 75 FR 62901 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2010-10-13

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... thereunder,\\2\\ notice is hereby given that on September 27, 2010, the Financial Industry Regulatory Authority....19b-4(f)(6). I. Self-Regulatory Organization's Statement of the Terms of Substance of the...

  7. 76 FR 50515 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2011-08-15

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and... Rule 19b-4 thereunder,\\2\\ notice is hereby given that on August 5, 2011, Financial Industry Regulatory...-4(f)(6). I. Self-Regulatory Organization's Statement of the Terms of Substance of the Proposed...

  8. 76 FR 65758 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Science.gov (United States)

    2011-10-24

    ... COMMISSION Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of... thereunder,\\2\\ notice is hereby given that on October 5, 2011, Financial Industry Regulatory Authority, Inc.... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of...

  9. 75 FR 18245 - Public Federal Regulatory Enforcement Fairness Hearing Region IX Regulatory Fairness Board

    Science.gov (United States)

    2010-04-09

    ... ADMINISTRATION Public Federal Regulatory Enforcement Fairness Hearing Region IX Regulatory Fairness Board.... Small Business Administration (SBA) Region IX Regulatory Fairness Board and the SBA Office of the National Ombudsman will hold a National Regulatory Fairness Hearing on Monday, April 26, 2010, at 1:30 p.m...

  10. 78 FR 30384 - Federal Regulatory Enforcement Fairness Hearing; Region X Regulatory Fairness Board

    Science.gov (United States)

    2013-05-22

    ... ADMINISTRATION Federal Regulatory Enforcement Fairness Hearing; Region X Regulatory Fairness Board AGENCY: U.S... Business Regulatory Fairness Board. SUMMARY: The (SBA) Office of the National Ombudsman is issuing this notice to announce the location, date and time of the Regional Small Business Regulatory Fairness hearing...

  11. 75 FR 17793 - Public Federal Regulatory Enforcement Fairness Hearing; Region III Regulatory Fairness Board

    Science.gov (United States)

    2010-04-07

    ... ADMINISTRATION Public Federal Regulatory Enforcement Fairness Hearing; Region III Regulatory Fairness Board.... Small Business Administration (SBA) Region III Regulatory Fairness Board and the SBA Office of the National Ombudsman will hold a National Regulatory Fairness Hearing on Tuesday, May 18, 2010, at 10 a.m...

  12. 78 FR 36011 - Region VII Regulatory Fairness Board; Federal Regulatory Enforcement Fairness Hearing

    Science.gov (United States)

    2013-06-14

    ... ADMINISTRATION Region VII Regulatory Fairness Board; Federal Regulatory Enforcement Fairness Hearing AGENCY: U.S... Business Regulatory Fairness Board. SUMMARY: The (SBA) Office of the National Ombudsman is issuing this notice to announce the location, date and time of the Regional Small Business Regulatory Fairness hearing...

  13. Followers feel valued : When leaders' regulatory focus makes leaders exhibit behavior that fits followers' regulatory focus

    NARCIS (Netherlands)

    Hamstra, Melvyn; Sassenberg, K.; Van Yperen, Nico W.; Wisse, Barbara

    2014-01-01

    When do followers feel valued by their leader? We propose that leaders' regulatory focus can make followers feel valued when leaders' regulatory focus is the same as followers' regulatory focus, that is, when there is regulatory fit between leaders and followers. We further propose that the reason w

  14. 75 FR 11166 - Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission...

    Science.gov (United States)

    2010-03-10

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission; Notice of Joint Meeting of the Nuclear Regulatory Commission and the...

  15. B-type suppression: a role played by "regulatory B cells" or "regulatory plasma cells"?

    Science.gov (United States)

    Ries, Stefanie; Hilgenberg, Ellen; Lampropoulou, Vicky; Shen, Ping; Dang, Van Duc; Wilantri, Siska; Sakwa, Imme; Fillatreau, Simon

    2014-05-01

    B-cell depletion can improve disease in some patients with rheumatoid arthritis or multiple sclerosis, indicating the pathogenic contribution of B cells to autoimmunity. However, studies in mice have demonstrated that B cells have immunosuppressive functions as well, with IL-10 being a critical mediator of B-cell-mediated suppression. IL-10-secreting B cells have been shown to promote disease remission in some mouse models of autoimmune disorders. Human B cells also produce IL-10, and evidence is accumulating that human IL-10-producing B cells might inhibit immunity. There is considerable interest in identifying the phenotype of B cells providing IL-10 in a suppressive manner, which would facilitate the analysis of the molecular mechanisms controlling this B-cell property. Here, we review current knowledge on the B-cell subpopulations found to provide suppressive functions in mice, considering both the pathological context in which they were identified and the signals that control their induction. We discuss the phenotype of B cells that have IL-10-dependent regulatory activities in mice, which leads us to propose that antibody-secreting cells are, in some cases at least, the major source of B-cell-derived regulatory IL-10 in vivo. Anti-inflammatory cytokine production by antibody-secreting cells offers a novel mechanism for the coordination of innate and humoral immune responses.

  16. The Michigan regulatory incentives study for electric utilities. Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M.W.; Weaver, E.M. [Barakat and Chamberlin, Inc., Oakland, CA (United States)

    1991-06-17

    This is the final report of Phase I of the Michigan Regulatory Incentives Study for Electric Utilities, a three-phase review of Michigan`s regulatory system and its effects on resource selection by electric utilities. The goal of Phase I is to identify and analyze financial incentive mechanisms that encourage selection of resources in accord with the principles of integrated resource planning (IRP) or least-cost planning (LCP). Subsequent study phases will involve further analysis of options and possibly a collaborative formal effort to propose regulatory changes. The Phase I analysis proceeded in three steps: (1) identification and review of existing regulatory practices that affect utilities; selection of resources, particularly DSM; (2) preliminary analysis of ten financial mechanisms, and selection of three for further study; (3) detailed analysis of the three mechanisms, including consideration of how they could be implemented in Michigan and financial modeling of their likely impacts on utilities and ratepayers.

  17. 基于信用创造机制下金融衍生工具交易后风险分类及法律监管%Risk Classification and Legal Regulatory after Financial Derivative Transactions under the Credit Creation Mechanism

    Institute of Scientific and Technical Information of China (English)

    梁涛

    2013-01-01

    Financial derivatives market has credit creation function principle, the big difference comparing the currency creation principle, collateral, securitization to credit expansion ability and the traditional commercial bank credit creation mechanism is different collateral, securities degree. The unique credit creation mechanisms magnify the financial derivatives trading post facing the market risk, credit risk, liquidity risk, legal risk, and increase the likelihood of a systemic crisis. Recommend building financial derivatives regulatory framework to strengthen information disclosure, macro and micro prudential supervision combine to strengthen the monitoring of systemic risk in the credit creation process.%金融衍生市场具有信用创造功能,其货币创造原理、抵押品、证券化程度以及对信用扩张能力与商业银行传统的信用创造机制相比有很大的区别。独特的信用创造机制放大了金融衍生工具交易后面临的市场风险、信用风险、流动性风险、法律风险,从而增加了系统性危机发生的可能性。重新构建我国金融衍生工具交易后监管的框架,是达到对系统性风险有效监控的必然选择。

  18. Evolution of anterior Hox regulatory elements among chordates

    Directory of Open Access Journals (Sweden)

    Natale Alfonso

    2011-11-01

    Full Text Available Abstract Background The Hox family of transcription factors has a fundamental role in segmentation pathways and axial patterning of embryonic development and their clustered organization is linked with the regulatory mechanisms governing their coordinated expression along embryonic axes. Among chordates, of particular interest are the Hox paralogous genes in groups 1-4 since their expression is coupled to the control of regional identity in the anterior nervous system, where the highest structural diversity is observed. Results To investigate the degree of conservation in cis-regulatory components that form the basis of Hox expression in the anterior nervous system, we have used assays for transcriptional activity in ascidians and vertebrates to compare and contrast regulatory potential. We identified four regulatory sequences located near the CiHox1, CiHox2 and CiHox4 genes of the ascidian Ciona intestinalis which direct neural specific domains of expression. Using functional assays in Ciona and vertebrate embryos in combination with sequence analyses of enhancer fragments located in similar positions adjacent to Hox paralogy group genes, we compared the activity of these four Ciona cis-elements with a series of neural specific enhancers from the amphioxus Hox1-3 genes and from mouse Hox paralogous groups 1-4. Conclusions This analysis revealed that Kreisler and Krox20 dependent enhancers critical in segmental regulation of the hindbrain appear to be specific for the vertebrate lineage. In contrast, neural enhancers that function as Hox response elements through the action of Hox/Pbx binding motifs have been conserved during chordate evolution. The functional assays reveal that these Hox response cis-elements are recognized by the regulatory components of different and extant species. Together, our results indicate that during chordate evolution, cis-elements dependent upon Hox/Pbx regulatory complexes, are responsible for key aspects of

  19. 75 FR 28073 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-05-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Draft Regulatory Guide, DG-3039, ``Standard Format and Content...

  20. 75 FR 48382 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-08-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Draft Regulatory Guide, DG-1228, ``Standard Format and Content...