WorldWideScience

Sample records for fy1997 national laboratory

  1. Oak Ridge National Laboratory institutional plan, FY 1992--FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    In operation for fifty years, the Oak Ridge National Laboratory (ORNL) is managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy (DOE). ORNL is one of DOE's major multiprogram national laboratories. Activities at the Laboratory are focused on basic and applied research, on technology development, and on other technological challenges that are important to DOE and to the nation. The Laboratory also performs research and development (R D) for non-DOE sponsors when such activities complement DOE missions and address important national or international issues. The Laboratory is committed to the pursuit of excellence in all its activities, including the commitment to carry out its missions in compliance with environmental, safety, and health laws and regulations. The principal elements of the Laboratory's missions in support of DOE include activities in each of the following areas: (1) Energy production and conservation technologies; (2) physical and life sciences; (3) scientific and technical user facilities; (4) environmental protection and waste management; (5) science technology transfer; and, (6) education. This institutional plan for ORNL activities is for the next five years: FY 1992--1997.

  2. Analytical chemistry laboratory. Progress report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  3. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  4. Fuel cells for transportation program: FY1997 national laboratory annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

  5. Environmental management compliance reengineering project, FY 1997 report

    International Nuclear Information System (INIS)

    VanVliet, J.A.; Davis, J.N.

    1997-09-01

    Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL''s environment, safety, and health requirements and milestone commitments. Compliance reengineer''s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL

  6. Environmental management compliance reengineering project, FY 1997 report

    Energy Technology Data Exchange (ETDEWEB)

    VanVliet, J.A.; Davis, J.N.

    1997-09-01

    Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL`s environment, safety, and health requirements and milestone commitments. Compliance reengineer`s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL.

  7. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  8. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-01-01

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  9. NREL photovoltaic program FY 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.D.; Hansen, A.; Smoller, S.

    1998-06-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

  10. Institutional plan. FY 1997-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The FY 1997-2002 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. Of particular significance this year is the role of computing sciences in supporting a broad range of research activities, at Berkeley Lab in particular and throughout the entire Department of Energy system in general. The Institutional Plan is a management report for integration with the Department of Energy`s mission and programs and is an element of Department of Energy`s strategic management planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives.

  11. Hydrologic resources management program and underground test area operable unit fy 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  12. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    International Nuclear Information System (INIS)

    1983-11-01

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed

  13. BNL National Synchrotron Light Source activity report 1997

    International Nuclear Information System (INIS)

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications

  14. BNL National Synchrotron Light Source activity report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  15. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  16. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.

  17. Argonne National Laboratory institutional plan FY 2002 - FY 2007

    International Nuclear Information System (INIS)

    Beggs, S. D.

    2001-01-01

    The national laboratory system provides a unique resource for addressing the national needs inherent in the mission of the Department of Energy. Argonne, which grew out of Enrico Fermi's pioneering work on the development of nuclear power, was the first national laboratory and, in many ways, has set the standard for those that followed. As the Laboratory's new director, I am pleased to present the Argonne National Laboratory Institutional Plan for FY 2002 through FY 2007 on behalf of the extraordinary group of scientists, engineers, technicians, administrators, and others who re responsible for the Laboratory's distinguished record of achievement. Like our sister DOE laboratories, Argonne uses a multifaceted approach to advance U.S. R and D priorities. First, we assemble interdisciplinary teams of scientists and engineers to address complex problems. For example, our initiative in Functional Genomics will bring together biologists, computer scientists, environmental scientists, and staff of the Advanced Photon Source to develop complete maps of cellular function. Second, we cultivate specific core competencies in science and technology; this Institutional Plan discusses the many ways in which our core competencies support DOE's four mission areas. Third, we serve the scientific community by designing, building, and operating world-class user facilities, such as the Advanced Photon Source, the Intense Pulsed Neutron Source, and the Argonne Tandem-Linac Accelerator System. This Plan summarizes the visions, missions, and strategic plans for the Laboratory's existing major user facilities, and it explains our approach to the planned Rare Isotope Accelerator. Fourth, we help develop the next generation of scientists and engineers through educational programs, many of which involve bright young people in research. This Plan summarizes our vision, objectives, and strategies in the education area, and it gives statistics on student and faculty participation. Finally, we

  18. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  19. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  20. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  1. Sandia National Laboratories Institutional Plan: FY 1999-2004

    Energy Technology Data Exchange (ETDEWEB)

    Garber, D.P.

    1999-01-06

    This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

  2. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  3. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  4. FY 1999 Annual Self-Evaluation Report of the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Randy R. LaBarge

    1999-11-05

    This is a report of the Pacific Northwest National Laboratory's (Pacific Northwest's) FY1999 Annual Self-Evaluation Report. This report summarizes our progress toward accomplishment of the critical outcomes, objectives, and performance indicators as delineated in the FY1999 Performance Evaluation & Fee Agreement. It also summarizes our analysis of the results of Pacific Northwest's Division and Directorate annual self-assessments, and the implementation of our key operational improvement initiatives. Together, these provide an indication of how well we have used our Integrated Assessment processes to identify and plan improvements for FY2000. As you review the report you will find areas of significantly positive progress; you will also note areas where I believe the Laboratory could make improvements. Overall, however, I believe you will be quite pleased to note that we have maintained, or exceeded, the high standards of performance we have set for the Laboratory.

  5. FY2000 Annual Self-Evaluation Report for the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    RR Labarge

    2000-11-15

    This self-evaluation report offers a summary of results from FY2000 actions to achieve Pacific Northwest National Laboratory's strategy and provides an analysis of the state of their self-assessment process. The result of their integrated planning and assessment process identifies Laboratory strengths and opportunities for improvement. Critical elements of that process are included in this report; namely, a high-level summary of external oversight activities, progress against Operations Improvement Initiatives, and a summary of Laboratory strengths and areas for improvement developed by management from across the laboratory. Some key areas targeted for improvement in FY2001 are: systems approach to resource management; information protection; integrated safety management flow-down to the benchtop; cost management; integrated assessment; Price Anderson Amendments Act (PAAA) Program; and travel risk mitigation.

  6. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1997

    International Nuclear Information System (INIS)

    Lansford, R.R.; Nielsen, T.G.; Schultz, J.; Adcock, L.D.; Gentry, L.M.

    1998-01-01

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation's nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1997 (October 1, 1996, through September 30, 1997) and includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect respending by business, including induced effects (respending by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico. 5 figs., 12 tabs

  7. FY 1997 Progress report on tube propagation testing of tank waste using the PRSST

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1997-01-01

    The subject of this FY 1997 progress report is tube propagation tests of actual, dried tank waste to verify the contact temperature ignition (CTI) criterion for point-source ignition in the Hanford Site waste tanks. Testing is in support of the Organic Tanks Safety Project and will help resolve safety issues with waste containing organic constituents. In FY 1997, improvements were made to the laboratory apparatus and procedures for conducting the testing, and the final testing strategy was formulated. The strategy lays out details of the tests to be performed, samples to be tested, and modes of reporting results

  8. FY 1997 cost savings report

    International Nuclear Information System (INIS)

    Sellards, J.B.

    1998-01-01

    With the end of the cold war, funding for the Environmental Management program increased rapidly as nuclear weapons production facilities were shut down, cleanup responsibilities increased, and facilities were transferred to the cleanup program. As funding for the Environmental Management (EM) program began to level off in response to Administration and Congressional efforts to balance the Federal budget, the program redoubled its efforts to increase efficiency and get more productivity out of every dollar. Cost savings and enhanced performance are an integral pair of Hanford Site operations. FY1997 was the third year of a cost savings program that was initially defined in FY 1995. The definitions and process remained virtually the same as those used in FY 1996

  9. Environmental report 1997, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Morris, J.C.; Harrach, R.J.

    1998-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  10. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  11. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  12. Oak Ridge National Laboratory DOE Site Sustainability Plan (SSP) with FY 2013 Performance Data

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Teresa A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    Oak Ridge National Laboratory (ORNL) is both the largest science and energy laboratory of the US Department of Energy (DOE) and one of the oldest national laboratories still operating at its original site. These characteristics provide the Sustainable Campus Initiative (SCI) both a unique opportunity and a unique challenge to integrate sustainability into facilities and activities. As outlined in this report, SCI is leveraging the outcomes of ORNL’s DOE-sponsored research and development programs to maximize the efficient use of energy and natural resources across ORNL. Wherever possible, ORNL is integrating technical innovations into new and existing facilities, systems, and processes with a widespread approach to achieving Executive Order 13514. ORNL continues to pursue and deploy innovative solutions and initiatives to advance regional, national, and worldwide sustainability and continues to transform its culture and engage employees in supporting sustainability at work, at home, and in the community. Table 1 summarizes ORNL's FY 2013 performance and planned actions to attain future goals. ORNL has achieved numerous successes during FY 2013, which are described in detail throughout this document.

  13. Idaho National Laboratory Quarterly Performance Analysis - 1st Quarter FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (27 from the 1St Qtr FY-15 and 46 from the prior three reporting quarters), as well as 38 other issue reports (including nine not reportable events and Significant Category A and B conditions reported during the1st Qtr FY-15) identified at INL during the past 12 months.

  14. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    International Nuclear Information System (INIS)

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail

  15. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  16. Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.

  17. Organic analysis progress report FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, S.A.; Grant, K.E.; Hoopes, V.; Mong, G.M.; Steele, R.; Bellofatto, D.; Sharma, A.

    1998-04-01

    The Organic Analysis and Methods Development Task is being conducted by Pacific Northwest National Laboratory (PNNL) as part of the Organic Tank Waste Safety Project. The objective of the task is to apply developed analytical methods to identify and/or quantify the amount of particular organic species in tank wastes. In addition, this task provides analytical support for the Gas Generation Studies Task, Waste Aging, and Solubility Studies. This report presents the results from analyses of tank waste samples archived at Pacific Northwest National Laboratory (PNNL) and received from the Project Hanford Management Contractor (PHMC), which included samples associated with both the Flammable Gas and Organic Tank Waste Safety Programs. The data are discussed in Section 2.0. In addition, the results of analytical support for analyzing (1) simulated wastes for Waste Aging, (2) tank waste samples for Gas Generation, and (3) simulated wastes associated with solubility studies discussed in Sections 3.0, 4.0, and 5.0, respectively. The latter part of FY 1997 was devoted to documenting the analytical procedures, including derivation gas chromatography/mass spectrometry (GC/MS) and GC/FID for quantitation, ion-pair chromatography (IPC), IC, and the cation exchange procedure for reducing the radioactivity of samples. The documentation of analytical procedures is included here and discussed in Section 6.0 and Section 7.0 discusses other analytical procedures. The references are listed in Section 8.0 and future plans are discussed in Section 9.0. Appendix A is a preprint of a manuscript accepted for publication. Appendix B contains the cc mail messages and chain-of-custody forms for the samples received for analyses. Appendix C contains the test plan for analysis of tank waste samples.

  18. Organic analysis progress report FY 1997

    International Nuclear Information System (INIS)

    Clauss, S.A.; Grant, K.E.; Hoopes, V.; Mong, G.M.; Steele, R.; Bellofatto, D.; Sharma, A.

    1998-04-01

    The Organic Analysis and Methods Development Task is being conducted by Pacific Northwest National Laboratory (PNNL) as part of the Organic Tank Waste Safety Project. The objective of the task is to apply developed analytical methods to identify and/or quantify the amount of particular organic species in tank wastes. In addition, this task provides analytical support for the Gas Generation Studies Task, Waste Aging, and Solubility Studies. This report presents the results from analyses of tank waste samples archived at Pacific Northwest National Laboratory (PNNL) and received from the Project Hanford Management Contractor (PHMC), which included samples associated with both the Flammable Gas and Organic Tank Waste Safety Programs. The data are discussed in Section 2.0. In addition, the results of analytical support for analyzing (1) simulated wastes for Waste Aging, (2) tank waste samples for Gas Generation, and (3) simulated wastes associated with solubility studies discussed in Sections 3.0, 4.0, and 5.0, respectively. The latter part of FY 1997 was devoted to documenting the analytical procedures, including derivation gas chromatography/mass spectrometry (GC/MS) and GC/FID for quantitation, ion-pair chromatography (IPC), IC, and the cation exchange procedure for reducing the radioactivity of samples. The documentation of analytical procedures is included here and discussed in Section 6.0 and Section 7.0 discusses other analytical procedures. The references are listed in Section 8.0 and future plans are discussed in Section 9.0. Appendix A is a preprint of a manuscript accepted for publication. Appendix B contains the cc mail messages and chain-of-custody forms for the samples received for analyses. Appendix C contains the test plan for analysis of tank waste samples

  19. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    International Nuclear Information System (INIS)

    Appel, Gordon John

    2016-01-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  20. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  1. Consolidation Process for FY 1997 Financial Statements for Other Defense Organizations

    National Research Council Canada - National Science Library

    1998-01-01

    ... to prepare consolidated financial statements for FY 1996 and each succeeding year. The DoD Consolidated Financial Statements for FY 1997 include financial statements for a reporting entity entitled "Other Defense Organizations...

  2. FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

  3. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  4. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  5. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  6. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  7. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  8. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  9. Active sites environmental monitoring program FY 1997 annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1998-03-01

    This report summarizes the activities conducted by the Active Sites Environmental Monitoring Program (ASEMP) from October 1996 through September 1997. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North. This report continues a series of annual and semiannual reports that present the results of ASEMP monitoring activities. This report details monitoring results for fiscal year (FY) 1997 from SWSA 6, including the Interim Waste Management Facility (IWMF) and the Hillcut Disposal Test Facility (HDTF), and (2) TRU-waste storage areas in SWSA 5 N. This report presents a summary of the methodology used to gather data for each major area along with the FY 1997 results. Figures referenced in the text are found in Appendix A and data tables are presented in Appendix B

  10. High Temperature Materials Laboratory, Eleventh Annual Report: October 1997 through September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, A.E.; Russell, B.J.

    2000-03-01

    The High Temperature Materials Laboratory (HTML) has completed its eleventh year of operation as a designated US Department of Energy User Facility at the Oak Ridge National Laboratory. This document profiles the historical growth of the HTML User and Fellowship Programs since their inception in 1987. Growth of the HTML programs has been demonstrated by the number of institutions executing user agreements and by the number of days of instrument use (user days) since the HTML began operation.A total of 522 agreements (351 industry,156 university,and 15 other federal agency) are now in effect (452 nonproprietary and 70 proprietary). This represents an increase of 75 user agreements since the last reporting period (for FY 1997). A state-by-state summary of the nonproprietary user agreements is given in Appendix A. Forty-six states are represented. During FY 1998, the HTML User Program evaluated 80 nonproprietary proposals (32 from industry, 45 from universities, and 3 from other government facilities) and several proprietary proposals. Appendix B provides a detailed breakdown of the nonproprietary proposals received during FY 1998. The HTML User Advisory Committee approved about 95% of those proposals, sometimes after the prospective user revised the proposal based on comments from the committee. This annual report discusses activities in the individual user centers as well as plans for the future. It also gives statistics about users, proposals, and publications as well as summaries of the nonproprietary research projects active during 1998.

  11. National laboratory of hydraulics. 1997 progress report; Laboratoire national d`hydraulique. Rapport d`activite 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report summaries the 1997 activity of the national laboratory of hydraulics from the direction of studies and researches (DER) of Electricite de France (EdF). The report comprises two parts. Part 1 gives an overview of the studies carried out for other EdF departments or for other companies or partners (functioning of nuclear reactors and fossil fuel power plants, equipments and operation of fossil fuel, nuclear and hydraulic power plants, studies related to the use of electric power, maritime and fluvial studies). Part 2 concerns the research and development of tools for industrial fluid mechanics and environmental hydraulics and the development of computer codes. A selection of relevant publications is given. (J.S.) 23 refs.

  12. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  13. Idaho National Laboratory's FY13 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  14. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  15. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Thorson, Patrick

    1998-01-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  16. Carbon Dioxide Analysis Center and World Data Center-A for Atmospheric Trace Gases fiscal year 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. [comp.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Kaiser, D.P.; Nelson, T.R.

    1998-03-01

    Fiscal year (FY) 1997 was another exciting and productive one for the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory. During FY 1997, CDIAC launched the Quality Systems Science Center for the North American Research Strategy for Tropospheric Ozone (NARSTO). The purpose of NARSTO--a US-Canada-Mexico initiative of government agencies, industry, and the academic research community--is to improve the understanding of the formation and transport of tropospheric ozone.

  17. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  18. The economic impact of Sandia National Laboratories on central New Mexico and the state of New Mexico fiscal year 1997

    International Nuclear Information System (INIS)

    Lansford, R.R.; Nielsen, T.G.; Schultz, J.; Adcock, L.D.; Gentry, L.M.

    1998-01-01

    Sandia National Laboratories (SNL) was established in 1949 to perform the engineering development and ordnance responsibilities associated with nuclear weapons. By the early 1960's the facility had evolved into an engineering research and development laboratory and became a multiprogram laboratory during the 1970s. Sandia is operated for the US Department of Energy by the Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin, Incorporated. For several years, the US Department of Energy (DOE) Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained an inter-industry, input-output model with capabilities to assess the impacts of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy. This model will be used to assess economic, personal income and employment impacts of SNL on central New Mexico and the state of New Mexico. For this report, the reference period is FY 1997 (October 1, 1996, through September 30, 1997) and includes two major impact analyses: the impact of SNL activities on central New Mexico and the economic impacts of SNL on the state of New Mexico. For purposes of this report, the central New Mexico region includes Bernalillo, Sandoval, Valencia, and Torrance counties. Total impact represents both direct and indirect respending by business, including induced effects (respending by households). The standard multipliers used in determining impacts results from the inter-industry, input-output models developed for the four-county region and the state of New Mexico. 6 figs., 10 tabs

  19. Review of Sandia National Laboratories - Albuquerque New Mexico DOE/DP Critical Skills Development Progrmas FY04.

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Anna K; Wilson, Dominique; CLARK, KATHERINE

    2005-09-01

    Sandia National Laboratories has developed a portfolio of programs to address the critical skills needs of the DP labs, as identified by the 1999 Chiles Commission Report. The goals are to attract and retain the best and the brightest students and transition them into Sandia - and DP Complex - employees. The US Department of Energy/Defense Programs University Partnerships funded ten laboratory critical skills development programs in FY04. This report provides a qualitative and quantitative evaluation of these programs and their status. 3

  20. Analytical Chemistry Laboratory progress report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  1. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  2. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  3. Associated Western Universities summer participant program at the Lawrence Livermore National Laboratory, Summer 1997

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.

    1997-08-01

    The Associated Western Universities, Inc. (AWU) supports a student summer program at Lawrence Livermore National Laboratory (LLNL). This program is structured so that honors undergraduate students may participate in the Laboratory`s research program under direct supervision of senior Laboratory scientists. Included in this report is a list of the AWU participants for the summer of 1997. All students are required to submit original reports of their summer activities in a format of their own choosing. These unaltered student reports constitute the major portion of this report.

  4. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  5. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  6. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  7. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  8. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  9. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  10. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).

  11. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).

  12. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standard for Hazardous Air Pollutants - Radionuclides. Annual report

    International Nuclear Information System (INIS)

    1998-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions

  13. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Julie B. Braun

    2009-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  14. Association Euratom - Risoe National Laboratory annual progress report 1997

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au)

  15. Compilation of the FY 1997 Financial Statements for Other Defense Organizations

    National Research Council Canada - National Science Library

    1998-01-01

    ... statements to the Office of Management and Budget. The DoD Consolidating Financial Statements for FY 1997 included financial statements for a reporting entity called "Other Defense Organizations" that represents a consolidation of financial...

  16. High performance computing and communications: FY 1997 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  17. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  18. The economic impact of Sandia National Laboratories on Central New Mexico and the State of New Mexico Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, Robert R.; Adcock, Larry D.; Gentry, Lucille M.; Ben-David, Shaul; Temple, John

    1999-08-09

    Sandia National Laboratories (SNL) is a Department of Energy federally funded national security laboratory that uses engineering and science to ensure the security of the Nation. SNL provides scientific and engineering solutions to meet national needs in nuclear weapons and related defense systems, energy security, and environmental integrity. SNL works in partnerships with universities and industry to enhance their mission and transfer technology that will address emerging national challenges for both government and industry. For several years, the U.S. Department of Energy (DOE) Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained an inter-industry, input-output (I/O) model with capabilities to assess the impacts of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy. This model will be used to assess economic, personal income and employment impacts of SNL on Central New Mexico and the State of New Mexico. Caution should be exercised when comparing economic impacts between fiscal years prior to this report. The I/O model was rebased for FY 1998. The fringe benefits coefficients have been updated for the FY 1996 and FY 1997 economic impacts analysis. Prior to FY 1993 two different I/O base models were used to estimate the impacts. New technical information was released by the Bureau of Economic Analysis (BEA), U.S. Department of Commerce in 1991 and in 1994 and was incorporated in FY 1991, FY 1993, and FY 1994 I/O models. Also in 1993, the state and local tax coefficients and expenditure patterns were updated from a 1986 study for the FY 1992 report. Further details about the input-output model can be found in ''The Economic Impact of the Department of Energy on the State of New Mexico--FY 1998'' report by Lansford, et al. (1999). For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998) and includes two major

  19. Association Euratom - Risoe National Laboratory annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au) 5 tabs., 30 ills., 12 refs.

  20. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  1. Compilation Process for the DOD Consolidated Financial Statements for FY 1997

    National Research Council Canada - National Science Library

    1998-01-01

    ... statements beginning in FY 1997. Office of Management and Budget and DoD Guidance on Form and Content of Audited Financial Statements requires that amounts reported in the footnotes be consistent with amounts reported as line items...

  2. The economic impact of Sandia National Laboratories on Central New Mexico and the State of New Mexico Fiscal Year 1998; ANNUAL

    International Nuclear Information System (INIS)

    Lansford, Robert R.; Adcock, Larry D.; Gentry, Lucille M.; Ben-David, Shaul; Temple, John

    1999-01-01

    Sandia National Laboratories (SNL) is a Department of Energy federally funded national security laboratory that uses engineering and science to ensure the security of the Nation. SNL provides scientific and engineering solutions to meet national needs in nuclear weapons and related defense systems, energy security, and environmental integrity. SNL works in partnerships with universities and industry to enhance their mission and transfer technology that will address emerging national challenges for both government and industry. For several years, the U.S. Department of Energy (DOE) Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained an inter-industry, input-output (I/O) model with capabilities to assess the impacts of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy. This model will be used to assess economic, personal income and employment impacts of SNL on Central New Mexico and the State of New Mexico. Caution should be exercised when comparing economic impacts between fiscal years prior to this report. The I/O model was rebased for FY 1998. The fringe benefits coefficients have been updated for the FY 1996 and FY 1997 economic impacts analysis. Prior to FY 1993 two different I/O base models were used to estimate the impacts. New technical information was released by the Bureau of Economic Analysis (BEA), U.S. Department of Commerce in 1991 and in 1994 and was incorporated in FY 1991, FY 1993, and FY 1994 I/O models. Also in 1993, the state and local tax coefficients and expenditure patterns were updated from a 1986 study for the FY 1992 report. Further details about the input-output model can be found in ''The Economic Impact of the Department of Energy on the State of New Mexico-FY 1998'' report by Lansford, et al. (1999). For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998) and includes two major impact analyses: The

  3. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  4. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  5. Idaho National Laboratory Integrated Safety Management System FY 2012 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2012-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for fiscal year (FY) 2013. Results of the FY 2012 annual effectiveness review demonstrated that the INL’s ISMS program was significantly strengthened. Actions implemented by the INL demonstrate that the overall Integrated Safety Management System is sound and ensures safe and successful performance of work while protecting workers, the public, and environment. This report also provides several opportunities for improvement that will help further strengthen the ISM Program and the pursuit of safety excellence. Demonstrated leadership and commitment, continued surveillance, and dedicated resources have been instrumental in maturing a sound ISMS program. Based upon interviews with personnel, reviews of assurance activities, and analysis of ISMS process implementation, this effectiveness review concludes that ISM is institutionalized and is “Effective”.

  6. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  7. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  8. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace.

  9. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    International Nuclear Information System (INIS)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace

  10. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    , industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year

  11. Internal Controls and Compliance with Laws and Regulations for the FY 1997 Financial Statements of Other Defense Organizations

    National Research Council Canada - National Science Library

    1998-01-01

    ... consolidated financial statements for FY 1996 and each succeeding year. The DoD Consolidated Financial Statements for FY 1997 include financial statements for a reporting entity entitled "Other Defense Organizations...

  12. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  13. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  14. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  15. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  16. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  17. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  18. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  19. Fusion safety program annual report fiscal year 1997

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2)

  20. Fusion safety program annual report fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C. [and others

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  1. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  2. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    International Nuclear Information System (INIS)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R ampersand D). To be able to meet these R ampersand D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES ampersand H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES ampersand H regulations. The Laboratory conducts applied R ampersand D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R ampersand D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R ampersand D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R ampersand D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs

  3. Idaho National Laboratory Quarterly Occurrence Analysis for the 1st Quarter FY2017

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 82 reportable events (13 from the 1st quarter (Qtr) of fiscal year (FY) 2017 and 68 from the prior three reporting quarters), as well as 31 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (seven from this quarter and 24 from the prior three quarters).

  4. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    International Nuclear Information System (INIS)

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A.; Craig, P.M.

    1987-01-01

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants

  5. Fiscal year 1996 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Waste Management Program, Decontamination and Decommissioning Projects Department

    International Nuclear Information System (INIS)

    1996-01-01

    The Photobriefing Book describes the Decontamination and Decommissioning (D and D) Program at the Argonne National Laboratory-East Site (ANL-E) near Lemont, Illinois. This book summarizes current D and D projects, reviews fiscal year (FY) 1996 accomplishments, and outlines FY 1997 goals. A section on D and D Technology Development provides insight on new technologies for D and D developed or demonstrated at ANL-E. Past projects are recapped and upcoming projects are described as Argonne works to accomplish its commitment to, ''Close the Circle on the Splitting of the Atom.'' Finally, a comprehensive review of the status and goals of the D and D Program is provided to give a snap-shot view of the program and the direction it's taking as it moves into FY 1997. The D and D projects completed to date include: Plutonium Fuel Fabrication Facility; East Area Surplus Facilities; Experimental Boiling Water Reactor; M-Wing Hot Cell Facilities; Plutonium Gloveboxes; and Fast Neutron Generator

  6. Major Deficiencies Preventing Favorable Audit Opinions on the FY 1997 DoD Financial Statements

    National Research Council Canada - National Science Library

    Lane, F

    1998-01-01

    The audit objective was to identify and summarize the major deficiencies that prevented favorable audit opinions on the FY 1997 DoD Financial Statements, and to identify the actions taken or under way...

  7. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  8. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  9. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  10. Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e

  11. Hydrologic resources management program, FY 1998 progress report; FINAL

    International Nuclear Information System (INIS)

    Benedict, F.C.; Criss, R.E.; Davisson, M.L.; Eaton, G.F.; Hudson, G.B.; Kenneally, J.M.; Rose, T.P.; Smith, D.

    1999-01-01

    This report presents the results from FY 1998 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) project. The HRMP is sponsored by Defense Programs (DP) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV), and supports DP operations at the Nevada Test Site (NTS) through studies of radiochemistry and resource management related to the defense programs mission. Other participating organizations include the Los Alamos National Laboratory (LANL), the United States Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the United States Environmental Protection Agency (EPA), and Bechtel-Nevada (BN). The UGTA project is an Environmental Management (EM) activity of DOE/NV that supports a Federal Facilities Agreement and Consent Order between the Department of Energy, the Department of Defense, and the State of Nevada. UGTA's primary function is to address the legacy release of hazardous constituents at the Nevada Test Site, the Tonopah Test Range, and off-Nevada Test Site underground nuclear testing areas. Participating contractors include LLNL (Earth and Environmental Sciences Directorate, Analytical and Nuclear Chemistry Division), LANL, DRI, USGS, BN, HSI-GeoTrans, and IT Corporation. The FY 1998 HRMP and UGTA annual progress report follows the organization and contents of our FY 1997 report (Smith et al., 1998), and includes our results from CY 1997-1998 technical studies of radionuclide migration and isotope hydrology at the Nevada Test Site. During FY 1998, LLNL continued its efforts under the HRMP to pursue a technical agenda relevant to the science-based stockpile stewardship program at DOE/NV. Support to UGTA in FY 1998 included efforts to quantitatively define the radionuclide source term residual from underground nuclear weapons testing and the derivative solution, or hydrologic source

  12. AGS experiments -- 1995, 1996 and 1997

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  13. AGS experiments - 1995, 1996 and 1997

    International Nuclear Information System (INIS)

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments

  14. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

    1987-09-30

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

  15. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of 90 Sr and 137 Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment

  16. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  17. Final Report Sustained Spheromak Physics Project FY 1997 - FY 1999

    International Nuclear Information System (INIS)

    Hooper, E.B.; Hill, D.N.

    2000-01-01

    This is the final report on the LDRD SI-funded Sustained Spheromak Physics Project for the years FY1997-FY1999, during which the SSPX spheromak was designed, built, and commissioned for operation at LLNL. The specific LDRD project covered in this report concerns the development, installation, and operation of specialized hardware and diagnostics for use on the SSPX facility in order to study energy confinement in a sustained spheromak plasma configuration. The USDOE Office of Fusion Energy Science funded the construction and routine operation of the SSPX facility. The main distinctive feature of the spheromak is that currents in the plasma itself produce the confining toroidal magnetic field, rather than external coils, which necessarily thread the vacuum vessel. There main objective of the Sustained Spheromak Physics Project was to test whether sufficient energy confinement could be maintained in a spheromak plasma sustained by DC helicity injection. Achieving central electron temperatures of several hundred eV would indicate this. In addition, we set out to determine how the energy confinement scales with T c and to relate the confinement time to the level of internal magnetic turbulence. Energy confinement and its scaling are the central technical issues for the spheromak as a fusion reactor concept. Pending the outcome of energy confinement studies now under way, the spheromak could be the basis for an attractive fusion reactor because of its compact size, simply-connected magnetic geometry, and potential for steady-state current drive

  18. Idaho National Engineering and Environmental Laboratory site environmental report for calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.B.; Brooks, R.W.; Roush, D.; Martin, D.B. [Environmental Science and Research Foundation, Idaho Falls, ID (United States); Lantz, B.S. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Operations Office

    1998-08-01

    To verify that exposures resulting from operations at Department of Energy (DOE) nuclear facilities remain very small, each site at which nuclear activities are conducted operates an environmental surveillance program to monitor the air, water and any other pathway whereby radionuclides from operations might conceivably reach workers and members of the public. Environmental surveillance and monitoring results are reported annually to the DOE-Headquarters. This report presents a compilation of data collected in 1997 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering and Environmental Laboratory (INEEL). The results of the various monitoring programs for 1997 indicated that radioactivity from the INEEL operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines.

  19. Idaho National Engineering and Environmental Laboratory site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Evans, R.B.; Brooks, R.W.; Roush, D.; Martin, D.B.; Lantz, B.S.

    1998-08-01

    To verify that exposures resulting from operations at Department of Energy (DOE) nuclear facilities remain very small, each site at which nuclear activities are conducted operates an environmental surveillance program to monitor the air, water and any other pathway whereby radionuclides from operations might conceivably reach workers and members of the public. Environmental surveillance and monitoring results are reported annually to the DOE-Headquarters. This report presents a compilation of data collected in 1997 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering and Environmental Laboratory (INEEL). The results of the various monitoring programs for 1997 indicated that radioactivity from the INEEL operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines

  20. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  1. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  2. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  3. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  4. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  5. FY 1997 basic survey project (database construction project) for enhancing energy consumption efficiency in developing countries; 1997 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo. Database kochiku jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    NEDO is promoting a database construction project to collect and supply various technical/systematical information on energy related data and energy effective utilization. In FY 1997, about the Philippines, Indonesia and China, the data collected in a year were renewed, and seminar/workshop were held as a part of the promotion activities. About Thailand, Malaysia, Korea, Taiwan and Japan, Japan has independently been collecting the data. Also in FY 1997, Japan arranged the existing data and arranged/collected the data. About Vietnam, India, Myanmer and Pakistan, which became the objects for the project newly in FY 1996, the state of data arrangement was confirmed and the data were collected. Moreover, functional improvement of the system was made so that each country can use the database more easily and maintain the data independently. (NEDO)

  6. Results of single borehole hydraulic tests in the Mizunami Underground Research Laboratory project. FY 2012 - FY 2015

    International Nuclear Information System (INIS)

    Onoe, Hironori; Takeuchi, Ryuji

    2016-11-01

    This report summarize the results of the single borehole hydraulic tests of 151 sections carried out at the -300 m Stage and the -500 m Stage of the Mizunami Underground Research Laboratory from FY 2012 to FY 2015. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical methods used are presented in this report. Furthermore, the previous results of the single borehole hydraulic tests carried out in the Regional Hydrogeological Study Project and the Mizunami Underground Research Laboratory Project before FY 2012 are also summarized in this report. (author)

  7. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  8. Idaho National Laboratory Integrated Safety Management System FY 2013 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Farren [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for Fiscal Year (FY) 2014. Results of the FY 2013 annual effectiveness review demonstrate that the INL’s ISMS program is “Effective” and continually improving and shows signs of being significantly strengthened. Although there have been unacceptable serious events in the past, there has also been significant attention, dedication, and resources focused on improvement, lessons learned and future prevention. BEA’s strategy of focusing on these improvements includes extensive action and improvement plans that include PLN 4030, “INL Sustained Operational Improvement Plan, PLN 4058, “MFC Strategic Excellence Plan,” PLN 4141, “ATR Sustained Excellence Plan,” and PLN 4145, “Radiological Control Road to Excellence,” and the development of LWP 20000, “Conduct of Research.” As a result of these action plans, coupled with other assurance activities and metrics, significant improvement in operational performance, organizational competence, management oversight and a reduction in the number of operational events is being realized. In short, the realization of the fifth core function of ISMS (feedback and continuous improvement) and the associated benefits are apparent.

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  10. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  11. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  12. Oak Ridge National Laboratory institutional plan, FY 1990--FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    The Oak Ridge National Laboratory is one of DOE's major multiprogram energy laboratories. ORNL's program missions are (1) to conduct applied research and engineering development in support of DOE's programs in fusion, fission, fossil, renewables (biomass), and other energy technologies, and in the more efficient conversion and use of energy (conservation) and (2) to perform basic scientific research in selected areas of the physical and life sciences. These missions are to be carried out in compliance with environmental, safety, and health regulations. Transfer of science and technology is an integral component of our missions. A complementary mission is to apply the Laboratory's resources to other nationally important tasks when such work is synergistic with the program missions. Some of the issues addressed include education, international competitiveness, hazardous waste research and development, and selected defense technologies. In addition to the R D missions, ORNL performs important service roles for DOE; these roles include designing, building, and operating user facilities for the benefit of university and industrial researchers and supplying radioactive and stable isotopes that are not available from private industry. Scientific and technical efforts in support of the Laboratory's missions cover a spectrum of activities. In fusion, the emphasis is on advanced studies of toroidal confinement, plasma heating, fueling systems, superconducting magnets, first-wall and blanket materials, and applied plasma physics. 69 figs., 49 tabs.

  13. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  14. Annual report of STACY operation in F.Y. 1997. 280mm thickness slab core {center_dot} 10% enriched uranyl nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Seiji; Sono, Hiroki; Hirose, Hideyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-06-01

    Fifty-three times critical experiments (run number R0104 to R0156) with STACY in NUCEF, were performed in F.Y. 1997. During these experiments, 10% enriched uranyl nitrate solution was used as fuel, and core configuration was 280mm thickness and 1.5m height slab core tank with various rectangular solid reflectors; ordinary or borated concrete, polyethylene and so on, to measure mainly reactivity worth by changes of reflecting material and its thickness. Operation data of STACY in F.Y. 1997 are summarized in this report. (author)

  15. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  16. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  17. Education and Training Report. Performance Report, FY 1997

    Science.gov (United States)

    1997-01-01

    During FY 97, 152 MUREP education and training projects were conducted at OMU institutions. The institutions conducted precollege and bridge programs, education partnerships with other universities and industry, NRTS, teacher training, and graduate and/or PI undergraduate programs. These programs reached a total of 23,748 participants, with the predominant number at the precollege level and achieved major goals of heightening students' interest and awareness of career opportunities in MSET fields, and exposing students to the NASA mission, research and advanced technology through role models, mentors, and participation in research and other educational activities. Also in FY 1997, NASA continued a very meaningful relationship with the Hispanic Association of Colleges students and Universities (HACU) through Proyecto Access, a consortium through which HACU links seven HSI's together to conduct 8-week summer programs. OMU Institutions reported 4,334 high school student in NASA programs and 3,404 of those students selected college preparatory MSET courses. Three hundred and forty-nine (349) graduated from high school, 343 enrolled in college, and 199 selected MSET majors. There were 130 high school graduates (bridge students) in NASA programs, 57 of whom successfully completed their freshman year. There were 307 teachers in teacher programs and 48 teachers received certificates. Of the 389 undergraduate students, 75 received under graduate degrees, and eight students are employed in a NASA-related field.

  18. Oak Ridge National Laboratory remedial investigation/feasibility study

    International Nuclear Information System (INIS)

    Glenn, R.D.; Hoffman, J.M.; Hyde, L.D.

    1988-01-01

    The Oak Ridge National Laboratory (ORNL) Remedial Investigation/ Feasibility Study (RI/FS) began in June 1987 to evaluate 13 contaminated waste area groupings (WAGs) to determine the feasibility and benefits of potential remedial action. The RI/FS and any future remedial action at ORNL will be of national significance and will likely lead to developments that will become models for environmental investigations and cleanups. Bechtel National, Inc. and a team of subcontractors will be working with Martin Marietta Energy systems to conduct intensive field investigations to obtain data required to evaluate the WAGs. The RI/F project continued in FY 1988 with project planning and preparation for field activities. Remedial Investigation (RI) Plans were prepared for 10 of the 13 WAGs. These plans were developed with sufficient information to ensure compliance with regulatory requirements, with intensive attention given to environmental, safety, and health protection; waste management; data management; and quality assurance. This paper reports on the progress made during FY 1988 and discusses activities planned for FY 1989

  19. FY09 recycling opportunity assessment for Sandia National Laboratories/New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    McCord, Samuel Adam

    2010-07-01

    This Recycling Opportunity Assessment (ROA) is a revision and expansion of the FY04 ROA. The original 16 materials are updated through FY08, and then 56 material streams are examined through FY09 with action items for ongoing improvement listed for most. In addition to expanding the list of solid waste materials examined, two new sections have been added to cover hazardous waste materials. Appendices include energy equivalencies of materials recycled, trends and recycle data, and summary tables of high, medium, and low priority action items.

  20. Valuation and Presentation of Inactive Inventory on the FY 1997 Defense Logistics Agency Working Capital Fund Financial Statements

    National Research Council Canada - National Science Library

    1998-01-01

    The overall objective of our audit was to determine whether the FY 1997 Financial Statements of the DLA Working Capital Fund were presented fairly and in accordance with Office of Management and Budget Bulletin...

  1. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, S.D.

    2000-12-07

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes

  2. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  3. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  4. Annual report of JMTR. FY1997 (April 1, 1997 - March 31, 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, Norikazu; Hoshiya, Taiji; Tabata, Toshio [eds.; Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; and others

    1999-03-01

    During FY1997, the JMTR was operated for 3 complete cycles (120th, 121st and 122nd cycles) and was utilized for the research and development programs on the technology of LWRs and fusion reactor, as well as for fundamental research of fuels and materials, and for radioisotope productions. The improvement of evaluation technique in a local neutron spectrum for irradiation utilization and development of capsule having the vertical migration, the reinstrumentation and loading mechanism have been carried out. Development of a new oxygen potential sensor for oxide fuel pellets has been done as an elemental technology of irradiation for high burn-up fuels. As for post irradiation examination, the techniques for measuring of crack length using an alternating current potential drop method and machining of miniaturized specimen by the remote handling have been developed. A research on the blanket materials and components for thermonuclear fusion reactor were also progressed. (author)

  5. Compilation of the FY 1997 Navy General Fund Financial Statements at the Defense Finance and Accounting Service Cleveland Center

    National Research Council Canada - National Science Library

    1998-01-01

    Audit Report on tile Compilation of the FY 1997 Navy General Fund Financial Statements at the Defense Finance and Accounting Service Cleveland Center Our objective was to determine whether the DFAS...

  6. 1997 LMITCO Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, B.; Street, L.; Wilhelmsen, R.

    1998-09-01

    This report describes the calendar year 1997 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs and compares 1997 data with program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standard, and to ensure protection of human health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends indicating a loss of control or unplanned releases from facility operations. With the exception of one nitrogen sample in the disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond, compliance with permits and applicable regulations was achieved. Data collected by the Environmental Monitoring Program demonstrate that public health and the environment were protected.

  7. LLE 1997. Annual report, October 1996-September 1997

    International Nuclear Information System (INIS)

    1998-01-01

    The fiscal year ending September 1997 (FY97) concluded the fifth year of the cooperative agreement (DE-FC03-92SF19460) with the U.S. Department of Energy (DOE). This report summarizes research at the Laboratory for Laser Energetics (LLE) and is the final report for the first five years of the cooperative agreement. In September 1997, the cooperative agreement was renewed for an additional five years. We summarize our research during FY97, the operation of the National Laser Users' Facility (NLUF), and the education of high school, undergraduate, and graduate students in LLE programs. A general introduction to LLE's experimental physics program and a report on recent results are found on pp. 161-167. This article includes a useful summary of the system's operational capabilities and system parameters after three years of operation. Direct-drive inertial confinement fusion requires precise drive uniformity, the control of hydrodynamic instabilities during the implosion of the fusion target, and accurate target fabrication and characterization. The article summarizes a wide variety of experiments relating to direct-drive laser fusion, from high-yield implosion experiments to planar and spherical Rayleigh-Taylor experiments, laser-imprinting experiments, and laser-plasma interaction experiments. A detailed analysis of the equation of motion for an electron in a plane wave is presented beginning on p. 24. A guiding center model is postulated and compared to numerical simulation of the actual particle motion. The formula is also verified analytically using the method of multiple scales. Work continues on this formalism to study the effects of the pondermotive force on laser-plasma interactions. A theoretical calculation of the dephasing time of an electron accelerated by a laser pulse is found on pp. 92-100. The trajectory of a charged particle, determined analytically for various pulse shapes, is then used to determine the dephasing time of an accelerated particle

  8. LLE 1997. Annual report, October 1996--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The fiscal year ending September 1997 (FY97) concluded the fifth year of the cooperative agreement (DE-FC03-92SF19460) with the U.S. Department of Energy (DOE). This report summarizes research at the Laboratory for Laser Energetics (LLE) and is the final report for the first five years of the cooperative agreement. In September 1997, the cooperative agreement was renewed for an additional five years. We summarize our research during FY97, the operation of the National Laser Users` Facility (NLUF), and the education of high school, undergraduate, and graduate students in LLE programs. A general introduction to LLE`s experimental physics program and a report on recent results are found on pp. 161-167. This article includes a useful summary of the system`s operational capabilities and system parameters after three years of operation. Direct-drive inertial confinement fusion requires precise drive uniformity, the control of hydrodynamic instabilities during the implosion of the fusion target, and accurate target fabrication and characterization. The article summarizes a wide variety of experiments relating to direct-drive laser fusion, from high-yield implosion experiments to planar and spherical Rayleigh-Taylor experiments, laser-imprinting experiments, and laser-plasma interaction experiments. A detailed analysis of the equation of motion for an electron in a plane wave is presented beginning on p. 24. A guiding center model is postulated and compared to numerical simulation of the actual particle motion. The formula is also verified analytically using the method of multiple scales. Work continues on this formalism to study the effects of the pondermotive force on laser-plasma interactions. A theoretical calculation of the dephasing time of an electron accelerated by a laser pulse is found on pp. 92-100. The trajectory of a charged particle, determined analytically for various pulse shapes, is then used to determine the dephasing time of an accelerated particle.

  9. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  10. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  11. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  12. Implementation plan for waste management reengineering at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Berry, J.B.

    1997-10-01

    An intensive reengineering evaluation of the Oak Ridge National Laboratory (ORNL) waste management program was conducted from February to July 1997 resulting in the following vision for ORNL waste management: ORNL Waste Management will become an integrated Waste Management/Generator function that: (1) Treats ORNL as a single generator for expert-based waste characterization and certification purposes; (2) Recognizes Generators, Department of Energy (DOE), and the Management and Integration (M ampersand I) contractor as equally important customers; (3) Focuses on pollution prevention followed by waste generation, collection, treatment, storage, and disposal operations that reflect more cost-effective commercial approaches; and (4) Incorporates new technology and outsourcing of services where appropriate to provide the lowest cost solutions. A cross-functional Core Team recommended 15 cost-effectiveness improvements that are expected to reduce the fiscal year (FY) 1996 ORNL waste management costs of $75M by $10-$15M annually. These efficiency improvements will be realized by both Research and Waste Management Organizations

  13. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  14. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  15. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  16. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    R. B. Evans; D. Roush; R. W. Brooks; D. B. Martin

    1998-08-01

    The results of the various monitoring programs for 1997 indicated that radioactivity from the Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.2 person-rem (2 x 10-3 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0005% of the estimated 43,700 person-rem (437 person-Sv) population dose from background radioactivity.

  17. Pacific Northwest National Laboratory FY96 Annual Self-Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory (PNNL) research and development efforts are concentrated on DOE`s environmental quality mission and the scientific research required to support that mission. The Laboratory also supports the energy resources and national security missions in areas where an overlap between our core competencies and DOE`s goals exists. Fiscal year 1996 saw the Laboratory focus its efforts on the results necessary for us to meet DOE`s most important needs and expectations. Six Critical Outcomes were established in partnership with DOE. The Laboratory met or exceeded performance expectations in most areas, including these outcomes and the implementation of the Laboratory`s Integrated Assessment Program. We believe our overall performance for this evaluation period has been outstanding. A summary of results and key issues is provided.

  18. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  19. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  20. Proceedings of the second FY87 meeting of the National Working Group for Reduction in Transuranic Waste Arisings

    International Nuclear Information System (INIS)

    1987-09-01

    The Second FY87 Meeting of the National Working Group for Reduction in Transuranic Waste Arisings (NWGRTWA) was held at the Lawrence Livermore National Laboratory, Tuesday and Wednesday, July 28--29, 1987. The purpose of the meeting was to discuss (1) modeling programs for waste reduction, (2) proposed FY88 and out-year tasks including the SRL Pu incineration, immobilization improvement, erbia coating technology, and (3) improvements in up-stream recovery operations to effect waste reduction. In addition, tours were made of the LLNL Waste Operations, the Laser Fusion (NOVA), and the Magnetic Fusion (MFTF)

  1. NREL Partnership Survey - FY 2016 Results

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The National Renewable Energy Laboratory (NREL) conducts an annual partnership satisfaction survey in which we ask our clients to rate NREL in a number of areas. As a national laboratory, the principal areas we focus on include value, timeliness, quality, price, and capabilities. This fact sheet shows the results of a survey with 300 customers responding to 11 questions using ratings that vary from 'strongly agree' to 'strongly disagree.' In FY 16, 100% of the scores improved or were equal to FY 15 numbers.

  2. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  3. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  4. FY 1994 annual summary report of the surveillance and maintenance activities for the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-11-01

    The Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Surveillance and Maintenance (S and M) Program was initiated to manage former waste management and environmental research sites contaminated with radioactive materials and/or hazardous chemicals. The S and M Program is responsible for managing designated sites/facilities from the end of their operating lives until final disposition or site stabilization. To effectively manage and perform the various S and M Program responsibilities, five summary-level work breakdown structure (WBS) elements have been established: S and M Preliminary Investigations, Special Projects, Routine S and M, Inactive Groundwater Wells, and Project Management. Routine S and M activities were conducted as scheduled throughout fiscal years (FY) 1994 at applicable inactive waste management (WM) and other contaminated areas. Overall, the ER S and M Program maintains 47 facilities, performs vegetation maintenance on approximately 230 acres, maintains 54 inactive tanks, and provides overall site management on over 700 acres. In addition to the routine S and M activities, detailed site inspections were conducted at established frequencies on appropriate sites in the ER S and M Program. This document provides a summary of the FY 1994 ORNL ER S and M Program accomplishments

  5. Pacific Northwest National Laboratory institutional plan FY 1998--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research the lab creates fundamental knowledge of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. They solve legacy environmental problems by delivering technologies that remedy existing environmental hazards, they address today`s environmental needs with technologies that prevent pollution and minimize waste, and they are laying the technical foundation for tomorrow`s inherently clean energy and industrial processes. The lab also applies their capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. The paper summarizes individual research activities under each of these areas.

  6. Annual report of decommissioning and remedial action S and M activities for the Environmental Management Program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    The Oak Ridge National Laboratory (ORNL) Surveillance and Maintenance (S ampersand M) Program performs a variety of activities to ensure that sites and facilities within its responsibility remain in a safe condition and in compliance with applicable regulations. All S ampersand M Program activities during fiscal year (FY) 1997 were accomplished safely, with no health and safety incidents, no lost work days, and no environmental noncompliances. In addition, all activities were performed within schedule thresholds and under budget. Many remedial action (RA) sites and decontamination and decommissioning (D ampersand D) facilities are inspected and maintained by the S ampersand M Program. RA sites encompass approximately 650 acres and 33 D ampersand D facilities, including 4 inactive reactors. During FY 1997, routine, preventative, and emergency maintenance activities were performed as needed at these sites and facilities. Stabilization activities were also performed to reduce risks and reduce future S ampersand M costs. Major activities at the RA sites during FY 1997 included maintaining proper liquid levels in surface impoundments and inactive -liquid low-level waste storage tanks as well as installing a new cover at the tumulus pads in Waste Area Grouping (WAG) 6, planting trees in the First Creek Riparian Corridor, and performing over 900 well inspections. Postremediation monitoring was conducted at the 3001 Canal, Core Hole 8, the WAG 6 Resource Conservation and Recovery caps, and WAG 5 Seeps C and D; groundwater monitoring was performed in WAGs 4, 5, and 6 and at the 3001 Canal Well. At ORNL D ampersand D facilities, significant accomplishments included contaminated lead brick removal, asbestos abatement, contaminated equipment and debris removal, and radiologically contaminated area painting

  7. Idaho National Engineering Laboratory decontamination and decommissioning summary

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1981-01-01

    Topics covered concern the decontamination and decommissioning (D and D) work performed at the Idaho National Engineering Laboratory (INEL) during FY 1979 and include both operations and development projects. Briefly presented are the different types of D and D projects planned and the D and D projects completed. The problems encountered on these projects and the development program recommended are discussed

  8. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  9. Idaho National Laboratory 2013-2022 Ten-Year Site Plan

    Energy Technology Data Exchange (ETDEWEB)

    Calvin Ozaki; Sheryl L. Morton; Elizabeth A. Connell; William T. Buyers; Craig L. Jacobson; Charles T. Mullen; Christopher P. Ischay; Ernest L. Fossum; Robert D. Logan

    2011-06-01

    The Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of transforming the laboratory to meet Department of Energy (DOE) national nuclear research and development (R&D) goals, as outlined in DOE strategic plans. The plan links R&D mission goals and INL core capabilities with infrastructure requirements (single- and multi-program), establishs the 10-year end-state vision for INL complexes, and identifies and prioritizes infrastructure needs and capability gaps. The TYSP serves as the basis for documenting and justifying infrastructure investments proposed as part of the FY 2013 budget formulation process.

  10. Oak Ridge National Laboratory Institutional Plan for FY 1999 Through FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, A.W.

    1998-01-01

    In January 1996, when the management and operation (M and O) contract for the Oak Ridge National Laboratory (ORNL) was awarded to Lockheed Martin Energy Research Corporation, they were presented with the opportunity to develop and implement a management structure tailored to the Laboratory's needs and functions. In response, they launched a Laboratory-wide reengineering effort and undertook other work with the goal of fostering excellence, relevance, and stewardship in all aspects of the Laboratory's operations. This effort is paying off in improvements in their ability to meet the expectations established for ORNL as a Department of Energy laboratory overseen by the Office of Science: delivering advances in science and technology, securing new capabilities, improving the ability to operate safely and efficiently at reasonable cost, and being a good neighbor. The development of critical outcomes and objectives, now under way in partnership with the Department's Oak Ridge Operations Office, is aimed at providing a performance-based means of determining how ORNL measures up to these expectations.

  11. Lawrence Livermore National Laboratory DIII-D cooperation: 1987 annual report

    International Nuclear Information System (INIS)

    Allen, S.L.; Calderon, M.O.; Ellis, R.M.

    1988-01-01

    This report summarizes the Lawrence Livermore National Laboratory (LLNL) DIII-D cooperation during FY87. The LLNL participation in DIII-D concentrated on three principal areas: ECH and current-drive physics, divertor and edge physics, and tokamak operations. These topics are dicussed in this report. 27 refs., 11 figs

  12. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  13. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1996 - September 30, 1997

    International Nuclear Information System (INIS)

    Gibson, J.

    1998-03-01

    This report documents the technical activities of the period October 1, 1996 through September 30, 1997. During this period, GA and their partner Schafer Corporation were assigned 13 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct open-quotes Onsite Supportclose quotes at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). Over 700 gold-plated hohlraum mandrels were fabricated and delivered to LLNL, LANL and SNLA. More than 1600 glass and plastic target capsules were produced for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). Nearly 2000 various target foils and films were delivered for Naval Research Lab (NRL) and UR/LLE in FY97. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D 2 or deuterium-tritium (DT) fuel. This project is part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. During FY97, significant progress was made in the design and component testing of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA. This included major design changes, reduction in equipment, and process simplifications. This report summarizes and documents the technical progress made on these tasks

  14. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1996--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. [ed.

    1998-03-01

    This report documents the technical activities of the period October 1, 1996 through September 30, 1997. During this period, GA and their partner Schafer Corporation were assigned 13 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct {open_quotes}Onsite Support{close_quotes} at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). Over 700 gold-plated hohlraum mandrels were fabricated and delivered to LLNL, LANL and SNLA. More than 1600 glass and plastic target capsules were produced for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). Nearly 2000 various target foils and films were delivered for Naval Research Lab (NRL) and UR/LLE in FY97. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. This project is part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. During FY97, significant progress was made in the design and component testing of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA. This included major design changes, reduction in equipment, and process simplifications. This report summarizes and documents the technical progress made on these tasks.

  15. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  16. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  17. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  18. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  19. Summary of FY 17 Assessments Sandia National Laboratories: Evaluation of FY16 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John

    2017-03-01

    This report is the milestone deliverable M4FT-17SN111102091 “Summary of Assessments Performed FY17 by SNL QA POC” for work package FT-17SN11110209 titled “Quality Assurance – SNL”. This report summarizes the FY17 assessment performed on Fuel Cycle Technologies / Spent Fuel and Waste Disposition efforts.

  20. FY 1997 basic survey for coal resource development. Data collection of the joint research of new technology in the geophysical exploration of coal resources (water area medium depth seam survey); 1997 nendo sekitan shigen kaihatsu kiso chosa shiryoshu. Shintansa gijutsu chosa kaihatsu (suiiki chushindoso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In 'the new exploration technology test on coal resource' (water area medium depth seam exploration) jointly conducted between Japan and China, tests have been carried out for 5 years on the BDR-5 test boring measurement monitoring system and the diamond bit which are items of the technology development of high resolution seismic survey system and high efficiency test boring system. As a result, the new technology test was successful, and technical economic effects were obtained. The situation of the test was summarized. The following data were compiled as shown in Data No.1-12. 1. The proceedings of the FY 1997 Japan-China steering committee (No.9). 2. Report on the survey of China verification field South Sihu water level situation. 3. The proceedings of the FY 1997 Japan-China steering committee (final). 4. Report on the FY 1997 reflection seismic exploration survey. 5. Report on the FY 1997 No.2 test boring survey. 6. Summarization of the test on 'the new exploration technology of coal source' conducted between Japan and China. 7. Report on the drilling data measurement. 8. Various sections of the reflection seismic survey data processing. 9. Traverse line chart. 10. T3 isochrone chart. 11. T3 depth structural chart. 12. Report on the new exploration technology survey development (water area medium depth seam exploration) geological model making. (NEDO)

  1. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1998; TOPICAL

    International Nuclear Information System (INIS)

    Lansford, R.R.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.

    1999-01-01

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation's nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998). It includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect responding by business, including induced effects (responding by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico

  2. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  3. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  4. Tanks focus area site needs assessment FY 1997

    International Nuclear Information System (INIS)

    1997-04-01

    The Tanks Focus Area's (TFA's) mission is to manage an integrated technology development program that results in the application of technology to safely and efficiently accomplish tank waste remediation across the U.S. Department of Energy (DOE) complex. The TFA uses a systematic process for developing its annual program that draws from the tanks technology development needs expressed by four DOE tank waste sites - Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). The process is iterative and involves six steps: (1) Site needs identification and documentation, (2) Site communication of priority needs, (3) Technical response development, (4) Review technical responses, (5) Develop program planning documents, and (6) Review planning documents. This document describes the outcomes of the first two steps: site needs identification and documentation, and site communication of priority needs. It also describes the initial phases of the third and fourth steps: technical response development and review technical responses. Each site's Site Technology Coordination Group (STCG) was responsible for developing and delivering priority tank waste needs. This was accomplished using a standardized needs template developed by the National STCG. The standard template helped improve the needs submission process this year. The TFA received the site needs during December 1996 and January 1997

  5. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 1: Results of treatability study

    International Nuclear Information System (INIS)

    Spalding, B.P.; Naney, M.T.; Cline, S.R.; Bogle, M.A.

    1997-12-01

    A treatability study was initiated in October 1993 to apply in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was later extended to include all of Pit 1 and was performed to support a possible Interim Record of Decision or removal action for closure of one or more of the seepage pits and trenches beginning as early as FY 1997. This treatability study was carried out to establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlap of melt settings which will be necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of 137 Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. In April 1996 an expulsion of an estimated 10% of the 196 Mg (216 tons) melt body occurred resulting in significant damage to ISV equipment and, ultimately, led to an indefinite suspension of further ISV operations at Pit 1. This report summarizes the technical accomplishments and status of the project in fulfilling these objectives through September 1997

  6. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 1: Results of treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, B.P.; Naney, M.T.; Cline, S.R.; Bogle, M.A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Tixier, J.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-01

    A treatability study was initiated in October 1993 to apply in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was later extended to include all of Pit 1 and was performed to support a possible Interim Record of Decision or removal action for closure of one or more of the seepage pits and trenches beginning as early as FY 1997. This treatability study was carried out to establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlap of melt settings which will be necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. In April 1996 an expulsion of an estimated 10% of the 196 Mg (216 tons) melt body occurred resulting in significant damage to ISV equipment and, ultimately, led to an indefinite suspension of further ISV operations at Pit 1. This report summarizes the technical accomplishments and status of the project in fulfilling these objectives through September 1997.

  7. A plan for administrative computing at ANL FY1991 through FY1993

    Energy Technology Data Exchange (ETDEWEB)

    Caruthers, L.E. (ed.); O' Brien, D.E.; Bretscher, M.E.; Hischier, R.C.; Moore, N.J.; Slade, R.G.

    1990-10-01

    In July of 1988, Argonne National Laboratory management approved the restructuring of Computing Services into the Computing and Telecommunications Division, part of the Physical Research area of the Laboratory. One major area of the Computing and Telecommunications Division is Management Information Systems (MIS). A significant aspect of Management Information Systems' work is the development of proposals for new and enhanced administrative computing systems based on an analysis of informational needs. This document represent the outcome of the planning process for FY1991 through FY1993. The introduction of the FY1991 through FY1993 Long-Range Plan assesses the state of administrative computing at ANL and the implications of FY1991 funding recommendations. It includes a history of MIS planning for administrative data processing. This document discusses the strategy and goals which are an important part of administrative data processing plans for the Laboratory. It also describes the management guidelines established by the Administrative Data Processing Oversight Committee for the proposal and implementation of administrative computing systems. Summaries of the proposals for new or enhanced administrative computing systems presented by individual divisions or departments with assistance of Management Information Systems, to the Administrative Data Processing Oversight Committee are given. The detailed tables in this paper give information on how much the resources to develop and implement a given systems will cost its users. The tables include development costs, computing/operations costs, software and hardware costs, and efforts costs. They include both systems funded by Laboratory General Expense and systems funded by the users themselves.

  8. ANL site response for the DOE FY1994 information resources management long-range plan

    Energy Technology Data Exchange (ETDEWEB)

    Boxberger, L.M.

    1992-03-01

    Argonne National Laboratory`s ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory`s previous submissions. The response contains both narrative and tabular material. It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory`s Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, ``Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.

  9. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-03-01

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

  10. Engineered Barrier Testing at the INEEL Engineered Barriers Test Facility: FY-1997 and FY-1998

    International Nuclear Information System (INIS)

    Keck, K. N.; Porro, I.

    1998-01-01

    Engineered barriers of two designs are being tested at the Engineered Barriers Test Facility (EBTF) at the Idaho National Engineering and Environmental Laboratory. This report describes the test facility, barrier designs, and instruments used to monitor the test plots. Wetting tests conducted on the test plots in FY-97 are described and data collected from monitoring the test plots before, during and after the wetting tests are used to evaluate the performance of the covers during FY-97 and FY-98. Replicates of two engineered barrier designs were constructed in the EBTF cells. The first design comprises a thick, vegetated soil cover. The second design incorporates a capillary/biobarrier within the vegtated soil cover. The capillary barrier uses the textural break between an upper, fine textured soil and a lower, coarser-textured gravel layer to inhibit drainage under unsaturated conditions while increasing soil moisture storage in the root zone. Evaporation and transpiration by plants (although the test plots have not yet been vegetated) are used to recycle water stored in the soil back to the atmosphere. A geotextile fabric is used to maintain separation of the soil and gravel layers. A thick layer of cobbles beneath the gravel layer serves as a biobarrier to prevent intrusion of plant roots and burrowing animals into underlying waste (there is no waste in the test plots). Each test plot was instrumented with time domain reflectometry probes and neutron probe access tubes to measure moisture contents, tensiometers, heat dissipation sensors, and thermocouple psychrometers to measure matric potentials, thermocouples to measure soil temperature, and ion-exchange resin beads to monitor tracer movement. Each drainage sump is equipped with a tipping bucket instrument and pressure transducer to measure drainage. Precipitation is measured using a heated rain gauge located at the EBTF. Instrument calibration equation coefficients are presented, and data reduction

  11. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P

    2017-08-11

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritized and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.

  12. Fusion Safety Program. Annual report, FY 1982

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1983-07-01

    The Fusion Safety Program major activities for Fiscal Year 1982 are summarized in this report. The program was started in FY-79, with the Idaho National Engineering Laboratory (INEL) designated as lead laboratory and EG and G Idaho, Inc., named as prime contractor to implement this role. The report contains four sections: EG and G Idaho, Inc., Activities at INEL includes major portions of papers dealing with ongoing work in tritium implantation experiments, tritium risk assessment, transient code development, heat transfer and fluid flow analysis, and high temperature oxidation and mobilization of structural material experiments. The section Outside Contracts includes studies of superconducting magnet safety conducted by Argonne National Laboratory, experiments concerning superconductor safety issues performed by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety and environmental studies by MIT, a summary of lithium safety experiments at Hanford Engineering Development Laboratory, and the results of tritium gas conversion to oxide experiments at Oak Ridge National Laboratory. A List of Publications and Proposed FY-83 Activities are also presented

  13. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  14. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  15. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R. [Oak Ridge National Laboratory, TN (United States)

    1991-12-31

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  16. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  17. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    International Nuclear Information System (INIS)

    Hunt, Farren J.

    2016-01-01

    Idaho National Laboratory's (INL's) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL's management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL's sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidenced by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory's overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes and define actions

  18. LLE 1998 annual report, October 1997 -September 1998. Inertial fusion program and National Laser Users' Facility program

    International Nuclear Information System (INIS)

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users' Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets

  19. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  20. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-10

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

  1. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2007

    International Nuclear Information System (INIS)

    Brenda R. Pace

    2007-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory's (INL) Cultural Resource Management (CRM) Office during fiscal year 2007 (FY 2007). In FY 2007, 40 localities were revisited: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, three butte/craters, twelve prehistoric archaeological sites, two historic stage stations, nine historic homesteads, a portion of Goodale's Cutoff of the Oregon Trail, a portion of historic trail T-16, one World War II dump, four buildings from the World War II period, and Experimental Breeder Reactor-I, a modern scientific facility and National Historic Landmark. Several INL project areas were also monitored in FY 2007. This included direct observation of ground disturbing activities within the Power Burst Facility (PBF, now designated as the Critical Infrastructure Test Range Complex-CITRC), backfilling operations associated with backhoe trenches along the Big Lost River, and geophysical surveys designed to pinpoint subsurface unexploded ordnance in the vicinity of the Naval Ordnance Disposal Area. Surprise checks were also made to three ongoing INL projects to ensure compliance with INL CRM Office recommendations to avoid impacts to cultural resources. Although some impacts were documented, no significant adverse effects that would threaten the National Register eligibility of any resource were observed at any location

  2. ANL site response for the DOE FY1994 information resources management long-range plan

    Energy Technology Data Exchange (ETDEWEB)

    Boxberger, L.M.

    1992-03-01

    Argonne National Laboratory's ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory's previous submissions. The response contains both narrative and tabular material. It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory's Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.

  3. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  4. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  5. AGS experiments -- 1996, 1997, 1998, 1999. Fifteenth edition

    Energy Technology Data Exchange (ETDEWEB)

    Lo Presti, P.

    1999-03-01

    This report is a compilation of two-page summaries for AGS experiments for FY 1996, FY 1997, FY 1998, FY 1999. The bulk of the experiments are for high energy physics and nuclear physics programs. Also included are the run schedules for the AGS for each of those years and a listing of publications of AGS experiments for 1982--1999.

  6. AGS experiments - 1996, 1997, 1998, 1999. Fifteenth edition

    International Nuclear Information System (INIS)

    Lo Presti, P.

    1999-03-01

    This report is a compilation of two-page summaries for AGS experiments for FY 1996, FY 1997, FY 1998, FY 1999. The bulk of the experiments are for high energy physics and nuclear physics programs. Also included are the run schedules for the AGS for each of those years and a listing of publications of AGS experiments for 1982--1999

  7. Final Environmental Impact Statement/Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume 1 and also provide additional information and references

  8. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mccloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lepry, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rodriguez, Carmen P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Windisch, Charles F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rieck, Bennett T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lang, Jesse B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pierce, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-17

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  9. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  10. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Boniface, Nicole; Dumas, Jean-Marc; Jos, Jeanne

    1998-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1996-1997: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP (DELPHI), Neutrinos oscillation DIRAC experiment, Neutrinos oscillation (NOMAD, TONIC), HERA-H1 experiment, CP Violation (BaBar), DΦ experiment at Tevatron, study of gamma radiation sources (CAT), Supernovae, Auger Laboratory project; 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  11. Idaho National Laboratory’s FY14 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Frerichs, Kimberly Irene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high emissions were

  12. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and

  13. Sandia National Laboratories/California site environmental report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  14. Sandia National Laboratories, California: site environmental report for 1997

    International Nuclear Information System (INIS)

    Condouris, R.A.; Holland, R.C.

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California's environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California's environmental management performance and documents the site's regulatory compliance status

  15. In summary: Idaho National Engineering and Environmental Laboratory site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Mitchell, R.G.; Roush, D.E. Jr.; Evans, R.B.

    1998-10-01

    Every human is exposed to natural radiation. This exposure comes from many sources, including cosmic radiation from outer space, naturally-occurring radon, and radioactivity from substances in the body. In addition to natural sources of radiation, humans can also be exposed to human-generated sources of radiation. Some examples of these sources include nuclear medicine, X-rays, nuclear weapons testing, and accidents at nuclear power plants. The Idaho National Engineering and Environmental Laboratory (INEEL) is a US Department of Energy (DOE) research facility that deals, in part, with studying nuclear reactors and the storage and cleanup of radioactive materials. Careful handling and rigorous procedures do not completely eliminate the risk of releasing radioactivity. So, there is a possibility for a member of the public near the INEEL to be exposed to radioactivity from the INEEL. Extensive monitoring of the environment takes place one and around the INEEL. These programs search for radionuclides and other contaminants. The results of these programs are presented each year in a site environmental report. This document summarizes the INEEL site environmental report for 1997

  16. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains copies of the written comments and transcripts of individual statements at the public hearing and the responses to them

  17. Laboratory directed research and development program FY 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized

  18. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  19. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  20. List of ERDA radioisotope (customers with summary of radioisotope shipments FY 1975

    International Nuclear Information System (INIS)

    Simmons, J.L.; Gano, S.R.

    1976-01-01

    The twelfth edition of the ERDA radioisotope customer list has been prepared at the request of the Division of Biomedical and Environmental Research. The purpose of this document is to list the FY 1975 commercial radioisotope production and distribution activities of USERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, United Nuclear Inc., Idaho Operations Office, Hanford Engineering Development Laboratory, Mound Laboratory, Oak Ridge National Laboratory, and Savannah River Plant

  1. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  2. 76 FR 6827 - Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract...

    Science.gov (United States)

    2011-02-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract Inventory AGENCY: National Aeronautic and Space Administration. ACTION: Notice of public availability of FY 2010 Service Contract Inventories. [[Page 6828...

  3. Inventory of data bases, models, and graphics packages at the Pacific Northwest Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, P.J.; Mathisen, D.I.

    1978-10-01

    The Information Coordination Focal Point (ICFP) was initiated in FY77 because DOE had a need for improved access to information at the Lawrence Berkeley Laboratory, the Savannah River Laboratory, and the six DOE national laboratories. The task for FY77 was to establish guidelines and procedures for this activity with plans of implementing the procedures in FY78 and FY79. The purpose of this report is to document the progress that has been made during FY78 for this project.

  4. Inventory of data bases, models, and graphics packages at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dionne, P.J.; Mathisen, D.I.

    1978-10-01

    The Information Coordination Focal Point (ICFP) was initiated in FY77 because DOE had a need for improved access to information at the Lawrence Berkeley Laboratory, the Savannah River Laboratory, and the six DOE national laboratories. The task for FY77 was to establish guidelines and procedures for this activity with plans of implementing the procedures in FY78 and FY79. The purpose of this report is to document the progress that has been made during FY78 for this project

  5. 78 FR 13383 - Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract...

    Science.gov (United States)

    2013-02-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract Inventory (SCI) AGENCY: Office of Procurement, National Aeronautics and Space Administration. ACTION: Notice of Public Availability of the FY 2012 Service Contract...

  6. 77 FR 7183 - Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract...

    Science.gov (United States)

    2012-02-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract Inventory AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Public Availability of Analysis of the FY 2010 Service Contract Inventories and...

  7. List of ERDA radioisotope customers with summary of radioisotope shipments, FY 1976

    International Nuclear Information System (INIS)

    Simmons, J.L.

    1977-03-01

    The thirteenth edition of the ERDA radioisotope customer list has been prepared at the request of the Office of Program Coordination, Office of the Assistant Administrator. The purpose of the document is to list the FY 1976 commercial radioisotope production and distribution activities of ERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho Operations Office, Los Alamos Scientific Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Savannah River Laboratory, and United Nuclear Industries, Inc

  8. NCPV FY 1998 Annual Report

    International Nuclear Information System (INIS)

    McConnell, R. D.; Hansen, A.

    1999-01-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) from October 1, 1997 through September 30, 1998 (FY 1998). The NCPV is part of the U.S. Department of Energy's (DOE's) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996-2000. The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy--as an industry and as an energy resource. The two primary goals of the national program are to (1) maintain the U.S. industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NCPV provides leadership and support to the national program toward achieving its mission and goals

  9. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  10. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-09-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL

  11. Area monitoring dosimeter program for the Pacific Northwest National Laboratory: Results for CY 1997

    International Nuclear Information System (INIS)

    Bivins, S.R.; Stoetzel, G.A.

    1998-07-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the US Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)--(3) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually, and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years (CY) 1993--1996 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 93 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during CY 1997. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusions that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas

  12. Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2011-12-01

    Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

  13. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  14. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  15. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    International Nuclear Information System (INIS)

    Valero, O.J.

    1997-01-01

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data that was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview

  16. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives

  17. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  18. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  19. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1982

    International Nuclear Information System (INIS)

    Richards, M.P.

    1983-08-01

    The radioisotope production and distribution activities by facilities at Argonne National Laboratory, Pacific Northwest Laboratory, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho Operations Office, Los Alamos Scientific Laboratory, Oak Ridge National Laboratory, Savannah River Laboratory, and UNC Nuclear Industries, Inc. are listed. The information is divided into five sections: isotope suppliers, facility, contacts, and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customs numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1982

  20. NCPV FY 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R. D.; Hansen, A.

    1999-07-19

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) from October 1, 1997 through September 30, 1998 (FY 1998). The NCPV is part of the U.S. Department of Energy's (DOE's) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996-2000. The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy--as an industry and as an energy resource. The two primary goals of the national program are to (1) maintain the U.S. industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NCPV provides leadership and support to the national program toward achieving its mission and goals.

  1. Advanced Light Source Activity Report 1997/1998

    International Nuclear Information System (INIS)

    Greiner, Annette

    1999-01-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year

  2. Advanced Light Source Activity Report 1997/1998

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Annette (ed.)

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  3. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  4. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  5. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Farren J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    Idaho National Laboratory’s (INL’s) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL’s management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL’s sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidenced by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory’s overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes and

  6. Laboratory and field studies related to radionuclide migration at the Nevada Test Site. Progress report, October 1, 1996 - September 30, 1997

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1998-02-01

    In this report the authors describe the work done at Los Alamos National Laboratory in FY 1997 for the Hydrologic Resources Management Program funded by the Nevada Operations Office of the US Department of Energy. A major part of their work is the study of the movement underground of radioactive material from nuclear tests at the Nevada Test Site. This year water samples from near the nuclear tests BULLION, BILBY, DALHART, CHESHIRE, and TYBO were analyzed for radionuclides. Data from the first four sites were consistent with expectations based on previous measurements; however, the water from TYBO contained unexpected amounts of plutonium. This plutonium was subsequently found to originate from the BENHAM test which was located 1.3 km distant. The low concentration of plutonium was associated with natural groundwater colloids and could be largely removed by filtration. The authors are attempting to identify the physical and chemical form of the plutonium and to assess the mechanism(s) of its movement over the observed distance. They report the successful testing of small diameter pumps in tandem to extract water form tubing too small to accommodate other means of pumping. And finally, they review this year's consultative and educational activities and list their publications

  7. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  8. Support for the in situ vitrification treatability study at the Idaho National Engineering Laboratory: FY 1988 summary

    International Nuclear Information System (INIS)

    Oma, K.H.; Reimus, M.A.H.; Timmerman, C.L.

    1989-02-01

    The objective of this project is to determine if in situ vitrification (ISV) is a viable, long-term confinement technology for previously buried solid transuranic and mixed waste at the Radioactive Waste Management Complex (RWMC). The RWMC is located at the Idaho National Engineering Laboratory (INEL). In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable glass and crystalline form. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure, and organic constituents are typically destroyed or removed for capture by an off-gas treatment system. The primary FY 1988 activities included engineering-scale feasibility tests on INEL soils containing a high metals loading. Results of engineering-scale testing indicate that wastes with a high metals content can be successfully processed by ISV. The process successfully vitrified soils containing localized metal concentrations as high as 42 wt % without requiring special methods to prevent electrical shorting within the melt zone. Vitrification of this localized concentration resulted in a 15.9 wt % metals content in the entire ISV test block. This ISV metals limit is related to the quantity of metal that accumulates at the bottom of the molten glass zone. Intermediate pilot-scale testing is recommended to determine metals content scale-up parameters in order to project metals content limits for large-scale ISV operation at INEL

  9. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  10. National History Day 1997 Supplement: Triumph & Tragedy in History.

    Science.gov (United States)

    Gorn, Cathy

    1996-01-01

    Reports on the procedures, standards, and topics involved in the 1997 National History Day. National History Day is a year-long contest where students research primary sources and prepare papers, projects, performances, and media based on a historical theme. The 1997 theme is "Triumph and Tragedy in History." (MJP)

  11. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1983

    International Nuclear Information System (INIS)

    Baker, D.A.

    1984-08-01

    This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Idaho Operations Office; Los Alamos National Laboratory; Oak Ridge National Laboratory; Savannah River Plant; and UNC Nuclear Industries, Inc. The information is divided into five sections: isotope suppliers, facility contacts, and isotopes or services supplied; lists of customers, suppliers and isotopes purchased; list of isotopes purchased cross-referenced to customer codes; geographic locations of radioisotope customers; and radioisotope sales and transfers - FY 1983

  12. Princeton Plasma Physics Laboratory for FY2003. Annual Highlights

    International Nuclear Information System (INIS)

    Phillips, Carol A.; DeMeo, Anthony R.

    2004-01-01

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports at pppl.gov. Be sure to include your complete mailing address

  13. National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997

    International Nuclear Information System (INIS)

    Rittenberg, R.B.

    1998-03-01

    The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP's activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states' and compacts' siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997

  14. Rotavirus in Ireland: national estimates of disease burden, 1997 to 1998.

    LENUS (Irish Health Repository)

    Lynch, M

    2012-02-03

    BACKGROUND: We estimated the disease burden caused by rotavirus hospitalizations in the Republic of Ireland by using national data on the number of hospitalizations for diarrhea in children and laboratory surveillance of confirmed rotavirus detections. METHODS: We examined trends in diarrheal hospitalizations among children <5 years old as coded by ICD-9-CM for the period January, 1997, to December, 1998. We collated data on laboratory-confirmed rotavirus detections nationally for the same period among children <2 years old. We calculated the overall contribution of rotavirus to laboratory-confirmed intestinal disease in children <5 years old from INFOSCAN, a disease bulletin for one-third of the population. We compared data from all sources and estimated the proportion of diarrheal hospitalizations that are likely the result of rotavirus in children <5 years old. RESULTS: In children <5 years old, 9% of all hospitalizations are for diarrheal illness. In this age group 1 in 8 are hospitalized for a diarrheal illness, and 1 in 17 are hospitalized for rotavirus by 5 years of age. In hospitalized children <2 years old, 1 in 38 have a laboratory confirmed rotavirus infection. CONCLUSIONS: The disease burden of rotavirus hospitalizations is higher than in other industrialized countries. Access to comprehensive national databases may have contributed to the high hospitalization rates, as well as a greater tendency to hospitalize children with diarrhea in Ireland.

  15. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2016

    International Nuclear Information System (INIS)

    Gilbert, Hollie Kae; Holmer, Marie Pilkington; Olson, Christina Liegh; Pace, Brenda Ringe

    2016-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory's (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2016. Overall monitoring included surveillance of the following 23 individual cultural resource localities: two locations with human remains, one of which is also a cave; seven additional caves; six prehistoric archaeological sites; four historic archaeological sites; one historic trail; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located at EBR-I; and one Arco Naval Proving Ground (NPG) property, CF-633 and related objects and structures. Several INL work processes and projects were also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On one occasion, ground disturbing activities within the boundaries of the Critical Infrastructure Test Range Complex (CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Additionally, the CRM office was notified during two Trespass Investigations conducted by INL Security. Most of the cultural resources monitored in FY 2016 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted five times. Three previously reported Type 2 impacts were once again documented at the EBR-I National Historic Landmark, including spalling and deterioration of bricks due to inadequate drainage, minimal maintenance, and rodent infestation. The ANP engines and locomotive on display at the EBR-I Visitors Center also exhibited impacts related to long term exposure. Finally, most of the Arco NPG properties monitored at Central Facilities Area exhibited problems with lack of timely and appropriate maintenance as well as inadequate drainage. No new Type 3 or Type 4 impacts that adversely affected significant cultural resources and threatened National

  16. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  17. High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R.

    1998-01-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included

  18. Lawrence Berkeley National Laboratory 2016 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P.; Williams, Kim, P.

    2017-06-27

    FY2016 was a year of significant change and progress at Berkeley Lab. In March, Laboratory Director Michael Witherell assumed his new role when former Lab Director Paul Alivisatos became Vice Chancellor for Research at UC Berkeley. Dr. Witherell has solidified the Lab’s strategy, with a focus on long term science and technology priorities. Large-scale science efforts continued to expand at the Lab, including the Dark Energy Spectroscopic Instrument now heading towards construction, and the LUX-ZEPLIN dark matter detector to be built underground in South Dakota. Another proposed project, the Advanced Light Source-Upgrade, was given preliminary approval and will be the Lab’s largest scientific investment in years. Construction of the Integrative Genomics Building began, and will bring together researchers from the Lab’s Joint Genome Institute, now based in Walnut Creek, and the Systems Biology Knowledgebase (K-Base) under one roof. Investment in the Lab’s infrastructure also continues, informed by the Lab’s Infrastructure Strategic Plan. Another important focus is on developing the next generation of scientists with the talent and diversity needed to sustain Berkeley Lab’s scientific leadership and mission contributions to DOE and the Nation. Berkeley Lab received $897.5M in new FY2016 funding, a 12.5% increase over FY2015, for both programmatic and infrastructure activities. While the Laboratory experienced a substantial increase in funding, it was accompanied by only a modest increase in spending, as areas of growth were partially offset by the completion of several major efforts in FY2015. FY2016 costs were $826.9M, an increase of 1.9% over FY2015. Similar to the prior year, the indirect-funded Operations units worked with generally flat budgets to yield more funding for strategic needs. A key challenge for Berkeley Lab continues to be achieving the best balance to fund essential investments, deliver highly effective operational mission support and

  19. Institutional research and development, FY 1987

    International Nuclear Information System (INIS)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S.

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87

  20. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  1. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  2. Data book on new energy technology development in FY 1997. Fuel cells; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Nenryo denchi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this survey is to grasp the trends of technology development of fuel cells and their market, and to provide data required for supporting the introduction and diffusion of fuel cells. This report consists of Part 1 titled as `Trends of development of fuel cells in FY 1997`, and Part 2 titled as `Compiled data`. The Part 1 consists of three chapters, i.e., Chapter 1 titled as `Introduction`, Chapter 2 as `Development trends of fuel cells for on-site power generation`, and Chapter 3 as `Trends of development of fuel cells for mobile objects and fuel cell-powered vehicles`. The introductory chapter not only outlines the development trends but also describes the results of the 5th Grove Fuel Cell Symposium noticed as the major global international symposium on fuel cell in general and the environmental problems discussed at the COP3 Kyoto Conference, both held in TY 1997. The Part 2 contains the principles, system configurations and applications of fuel cells, PAFC, MCFC, SOFC, PEFC, modifier, DMFC, development trend of fuel cell-powered vehicles, and national policies for fuel cells in Japan. The Appendix features a report of the new technique investigation working group and information on fuel cells from newspapers. 100 refs., 4 figs.

  3. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  4. FY 1995 remedial investigation work plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Watkins, D.R.; Herbes, S.E.

    1994-09-01

    Field activities to support the remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) include characterization of the nature and extent of contamination in WAG 2, specifically to support risk-based remediation decisions. WAG 2 is the major drainage system downgradient of other WAGs containing significant sources of contamination at ORNL. The RI of WAG 2 is developed in three phases: Phase 1, initial scoping characterization to determine the need for early action; Phase 2, interim activities during remediation of upgradient WAGs to evaluate potential changes in the contamination status of WAG 2 that would necessitate reevaluation of the need for early action; and Phase 3, completion of the RI process following remediation of upslope WAGs. Specifically, Phase 2 activities are required to track key areas to determine if changes have occurred in WAG 2 that would require (1) interim remedial action to protect human health and the environment or (2) changes in remedial action plans and schedules for WAG2 because of changing contaminant release patterns in upslope WAGs or because of the effects of interim remedial or removal actions in other WAGs. This report defines activities to be conducted in FY 1995 for completion of the Phase 1 RI and initiation of limited Phase 2 field work

  5. Institutional research and development, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  6. Los Alamos Waste Management FY96 and FY97 Tactical Plan, March 1, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The Los Alamos National Laboratory (LANL) Waste Management Program (WMP) began a transition to become a open-quotes best of classclose quotes waste management program during fiscal year 1995 (FY95). A best of class waste management program means that LANL will provide cost-effective and compliant management of the minimum amount of waste. In FY94, the WMP could be characterized as a level of effort program requiring several new facilities and new LANL-developed technologies to carry out its waste management responsibilities. By the end of FY95, significant progress had been made in the transition to best of class. The FY96 WMP is realigned and reorganized. Its budget and scope of work are built upon discrete work packages. It is committed to achieving improved cost-effectiveness, providing significant tangible technical results, and to having its performance measured. During FY95, over $11,000,000 in facility and operational costs were avoided. The need for three new major facilities was reexamined and lower cost solutions, not requiring the development of new facilities, were agreed to. Technology development activities were terminated and replaced with the use of commercial facilities to achieve aggressive reductions in the Low-Level Mixed Waste legacy inventory. In addition, over $14,000,000 in improved cost-effectiveness has been included in the FY96 Baseline. An overall WMP vision, specific milestones, performance measures, and commitments are in place for FY96 to ensure that LANL continues the transition to a best of class waste management program. The following table identifies the overall vision and success indicators for FY96

  7. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) to analyze the impacts of the proposed action. In addition, this document discusses a no action alternative for continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative focused on specific adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative. This document also examines the alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. The environmental documentation process provides information to the public, government agencies, and decision makers about the environmental impacts of implementing the proposed and alternative actions. In addition, this environmental documentation identifies alternatives and possible ways to reduce or prevent environmental impacts. A list of the issues raised through the EIS/EIR scoping process is presented

  8. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  9. Arid-site SLB technology development at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1981-01-01

    The program goal for shallow land burial (SLB) Technology Development at the Los Alamos National Laboratory is to field test new disposal concepts and strategies for all aspects of arid SLB on an accelerated basis and on a reasonable scale. The major accomplishments during FY-1981 were the development of the Los Alamos Experimental Engineered Test Facility, the emplacement of the biointrusion barrier testing experiments, the design and emplacement of the moisture cycling experiments, the design and construction of the experiment clusters, and the planning for the experiments to be emplaced in these units. This paper will describe the site development work, the design and construction of the experiment clusters, and the experiments planned for these units. The experimental Engineered Test Facility was brought from idea to reality and two experiments were emplaced (biointrusion barrier and moisture cycling). The experiment clusters were designed and constructed, and are now available for experimentation. These units are reusable. After an experiment is complete it can be removed and another experiment put in its place. Several of the experiments were planned and designed while some of the other experiments are still in the planning stage. Based on the work done in FY-1981, significant progress toward Milestones, C, D, and E should be made in FY-1982

  10. Twenty-Five Year Site Plan FY2013 - FY2037

    Energy Technology Data Exchange (ETDEWEB)

    Jones, William H. [Los Alamos National Laboratory

    2012-07-12

    Los Alamos National Laboratory (the Laboratory) is the nation's premier national security science laboratory. Its mission is to develop and apply science and technology to ensure the safety, security, and reliability of the United States (U.S.) nuclear stockpile; reduce the threat of weapons of mass destruction, proliferation, and terrorism; and solve national problems in defense, energy, and the environment. The fiscal year (FY) 2013-2037 Twenty-Five Year Site Plan (TYSP) is a vital component for planning to meet the National Nuclear Security Administration (NNSA) commitment to ensure the U.S. has a safe, secure, and reliable nuclear deterrent. The Laboratory also uses the TYSP as an integrated planning tool to guide development of an efficient and responsive infrastructure that effectively supports the Laboratory's missions and workforce. Emphasizing the Laboratory's core capabilities, this TYSP reflects the Laboratory's role as a prominent contributor to NNSA missions through its programs and campaigns. The Laboratory is aligned with Nuclear Security Enterprise (NSE) modernization activities outlined in the NNSA Strategic Plan (May 2011) which include: (1) ensuring laboratory plutonium space effectively supports pit manufacturing and enterprise-wide special nuclear materials consolidation; (2) constructing the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRR-NF); (3) establishing shared user facilities to more cost effectively manage high-value, experimental, computational and production capabilities; and (4) modernizing enduring facilities while reducing the excess facility footprint. Th is TYSP is viewed by the Laboratory as a vital planning tool to develop an effi cient and responsive infrastructure. Long range facility and infrastructure development planning are critical to assure sustainment and modernization. Out-year re-investment is essential for sustaining existing facilities, and will be re-evaluated on an annual

  11. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  12. Hearth monitoring project annual report for FY-1981

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Lawrence, R.S.

    1981-08-01

    Progress during FY 1981 in the Hearth Monitoring project for the Idaho National Engineering Laboratory Transuranic Waste Treatment Facility is reported. Results of calculational, experimental and instrumental phases of the program are presented. Recommendations and plans for continuation of the program are displayed. Schedules for future efforts are included

  13. Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1997-08-01

    The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na 3 PO 4 . Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111

  14. 94-1 Research and development project lead laboratory support. Status report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Rink, N.A. [comp.

    1997-08-01

    This status report is published for Los Alamos National Laboratory 94-1 Research and Development Project Support. The Department of Energy Office of Environmental Management funds these projects in order to support the storage or disposal of legacy plutonium and plutonium-bearing materials that resulted from weapons production throughout the DOE complex. This report summarizes status and technical progress for Los Alamos 94-1 projects during the second quarter of fiscal year 1997.

  15. 94-1 Research and development project lead laboratory support. Status report, January 1--March 31, 1997

    International Nuclear Information System (INIS)

    Rink, N.A.

    1997-08-01

    This status report is published for Los Alamos National Laboratory 94-1 Research and Development Project Support. The Department of Energy Office of Environmental Management funds these projects in order to support the storage or disposal of legacy plutonium and plutonium-bearing materials that resulted from weapons production throughout the DOE complex. This report summarizes status and technical progress for Los Alamos 94-1 projects during the second quarter of fiscal year 1997

  16. FY 1997 Report on New Sunshine Project. International co-operative projects (Australia-Japan solar energy technology cooperation, etc); 1997 nendo kokusai kyoryoku jigyo. Nichigonado taiyo energy gijutsu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Described herein are the progresses, memorandum concluded for the new project, NEDO/MUERI project activities, among others, for, e.g., Australia-Japan solar energy technology co-operative project. The photovoltaic cell outdoor exposure test project has been progressing as expected in Australia since FY 1996. The test data have been collected for one year and analyzed successively. The second information exchange workshop is scheduled in June 1998 in Sydney for the thin-film, polycrystalline photovoltaic cell manufacturing technologies. The new type photovoltaic cell long-term exposure test project has been started in FY 1997 as the new project in Oman. The weather conditions of the test site are very severe, very high both in temperature and humidity. The new type photovoltaic cell modules, centered by the amorphous silicon, will be exposure-tested in the severe atmospheres, to verify long-term reliability of the photovoltaic cells. A total of 5 types of the modules are to be exposure-tested; 3 types of 6 amorphous silicon cells, one type of 2 CdS/CdTe cells, and one type of 2 thin-film polycrystalline cells. (NEDO)

  17. FY 2014 LDRD Annual Report Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Tomchak, Dena [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  18. Annual report on surveillance and maintenance activities at Oak Ridge National Laboratory, Oak Ridge, Tennessee, fiscal year 1996

    International Nuclear Information System (INIS)

    1996-11-01

    In fiscal year (FY) 1995, the sites and facilities from both the Remedial Action (RA) and Decontamination and Decommissioning (D and D) programs were combined to form the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Surveillance and Maintenance (S and M) Program. Surveillance and Maintenance activities were conducted throughout FY 1996 at the RA facilities. Overall, the RA S and M Program consists of approximately 650 acres that include 14 waste area groupings with approximately 200 sites. These sites include 46 major facilities, several leak and contaminated soil sites, 38 inactive tanks, approximately 50 environmental study areas and approximately 2,973 wells and boreholes. Site inspections were conducted at established frequencies on appropriate sites in the RA S and M Program in accordance with the established S and M FY 1996 Incentive Task Order (ITO)

  19. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 2: Site characterization report of the Pit 1 area

    International Nuclear Information System (INIS)

    Spalding, B.P.; Bogle, M.A.; Cline, S.R.; Naney, M.T.; Gu, B.

    1997-12-01

    A treatability study was initiated in October 1993, initially encompassing the application of in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was to have supported a possible Interim Record of Decision (IROD) or removal action for closure of one or more of the seepage pits and trenches as early as FY 1997. The Remedial Investigation/Feasibility Study for Waste Area Grouping (WAG) 7, which contains these seven seepage pits and trenches, will probably not begin until after the year 2000. This treatability study will establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability to overlap melt settings that are necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of 137 Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. This report summarizes the site characterization information gathered through the end of September 1996 which supports the planning and assessment of ISV for Pit 1 (objective 4 above)

  20. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 2: Site characterization report of the Pit 1 area

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, B.P.; Bogle, M.A.; Cline, S.R.; Naney, M.T.; Gu, B.

    1997-12-01

    A treatability study was initiated in October 1993, initially encompassing the application of in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was to have supported a possible Interim Record of Decision (IROD) or removal action for closure of one or more of the seepage pits and trenches as early as FY 1997. The Remedial Investigation/Feasibility Study for Waste Area Grouping (WAG) 7, which contains these seven seepage pits and trenches, will probably not begin until after the year 2000. This treatability study will establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability to overlap melt settings that are necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. This report summarizes the site characterization information gathered through the end of September 1996 which supports the planning and assessment of ISV for Pit 1 (objective 4 above).

  1. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1991--March 31, 1993

    International Nuclear Information System (INIS)

    Carlson, P.T.

    1993-06-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities for the Department of Energy (DOE) Assistant Secretary for Fossil Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory's fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1991, through March 31, 1993

  2. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  3. Subsurface Investigations Program at the radioactive waste management complex of the Idaho National Engineering Laboratory. Annual progress report, FY-1985

    International Nuclear Information System (INIS)

    Hubbell, J.M.; Hull, L.C.; Humphrey, T.G.; Russell, B.F.; Pittman, J.R.; Cannon, K.M.

    1985-12-01

    This report describes work conducted in FY-85 in support of the Subsurface Investigation Program at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. The work is part of a continuing effort to define and predict radionuclide migration from buried waste. The Subsurface Investigation Program is a cooperative study conducted by EG and G Idaho and the US Geological Survey, INEL Office. EG and G is responsible for the shallow drilling, solution chemistry, and net downward flux portions of this program, while the US Geological Survey is responsible for the weighing lysimeters and test trench. Data collection was initiated by drilling, sampling, and instrumenting shallow wells, continuing the installation of test trenches, and modifying the two weighing lysimeters. Twenty-one shallow auger holes were around the Radioactive Waste Management Complex (RWMC) to evaluate radionuclide content in the surficial sediments, to determine the geologic and hydrologic characteristics of the surficial sediments, and to provide as monitoring sites for moisture in these sediments. Eighteen porous cup lysimeters were installed in 12 auger holes to collect soil water samples from the surficial sediments. Fourteen auger holes were instrumented with tensiometers, gypsum blocks and/or psychrometers at various depths throughout the RWMC. Readings from these instruments are taken on a monthly basis

  4. Summaries of FY 1997 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1997, it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The individual project summaries follow the program overview. The summaries are ordered alphabetically by name of institution; the table of contents lists all the institutions at which projects were sponsored in fiscal year 1997. Each project entry begins with an institutional-departmental heading. The names of investigators are listed immediately below the title. The funding level for fiscal year 1997 appears to the right of address. The summary description of the project completes the entry. A separate index of Principal Investigators includes phone number, fax number and e-main address, where available.

  5. Final Report to the National Energy Technology Laboratory on FY14- FY15 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Tempe, AZ (United States); Lampis, Anna Rosa [Arizona State Univ., Tempe, AZ (United States)

    2018-01-16

    The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such as renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting

  6. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  7. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  8. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

    2007-04-01

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  9. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

    2008-03-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  10. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  11. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  12. 1997 U.S. Department of Energy Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1997-09-01

    With the end of the Cold War and the election of President Clinton, the Department of Energy (DOE) set a new course which began with the publication of its first departmental strategic plan in April 1994. Entitled ``Fueling a Competitive Economy, it provided the framework and shared vision for meeting responsibilities in energy, national security, environmental quality, and science and technology. The strategic plan was the guidepost for the formulation of the Department`s FY 1996, FY 1997, and FY 1998 budgets and was critical to the development of the Department`s Strategic Alignment Initiative, designed to save $1.7 billion over five years. This current plan, which has been significantly improved through a very close consultation process with Congress and customers stakeholders, takes DOE to the next important performance level by being more directly linked to actions and results. It defines a strategic goal for each of the Department`s four business lines and, in the spirit of the Government Performance and Results Act and the National Performance Review, identifies a fifth goal addressing corporate management. Reengineering the business practices, managing for results, being open with neighbors and stakeholders, and ensuring the safety and health of DOE workers and the public are, and will continue to be, among the highest of priorities. Over the coming years, DOE plans to achieve their strategic goals through specific identifiable strategies. Each business line has clear objectives and straightforward ways of defining whether DOE has succeeded in meeting those objectives.

  13. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    Energy Technology Data Exchange (ETDEWEB)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  14. Photovoltaic Subcontract Program. Annual report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  15. Annual Report: Photovoltaic Subcontract Program FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  16. DOD Military Retirement Health Benefits Liability for FY 1997

    National Research Council Canada - National Science Library

    1998-01-01

    ...) and the Federal Financial Management Act of 1994 (Public Law 103-356). Public Law 103-356 requires DoD and other Government agencies to prepare consolidated financial statements for FY 1996 and each succeeding year...

  17. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979

  18. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1982-09-01

    The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980

  19. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Atchley, Adam Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Elizabeth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-24

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  20. Berkeley Lab Pilot on External Regulation of DOE National Laboratories by the U.S. NRC

    International Nuclear Information System (INIS)

    Zeman, Gary H.

    1999-01-01

    The US Department of Energy and the US Nuclear Regulatory Commission entered into an agreement in November 1997 to pursue external regulation of radiation safety at DOE national laboratories through a Pilot Program of simulated regulation at 6-10 sites over a 2 year period. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab), the oldest of the DOE national laboratories, volunteered and was selected as the first Pilot site. Based on the similarities and linkages between Berkeley Lab and nearby university research laboratories, Berkeley Lab seemed a good candidate for external regulation and a good first step in familiarizing NRC with the technical and institutional issues involved in regulating laboratories in the DOE complex. NRC and DOE team members visited Berkeley Lab on four occasions between October 1997 and January 1998 to carry out the Pilot. The first step was to develop a detailed Work Plan, then to carry out both a technical review of the radiation safety program and an examination of policy and regulatory issues. The Pilot included a public meeting held in Oakland, CA in December 1997. The Pilot concluded with NRC's assessment that Berkeley Lab has a radiation protection program adequate to protect workers, the public and the environment, and that it is ready to be licensed by the NRC with minor programmatic exceptions. A draft final report of the Pilot was prepared and circulated for comment as a NUREG document (dated May 7, 1998). The report's recommendations include extending NRC regulatory authority to cover all ionizing radiation sources (including accelerators, x-ray units, NARM) at Berkeley Lab. Questions remaining to be resolved include: who should be the licensee (DOE, the Lab, or both)?; dealing with legacy issues and NRC D and D requirements; minimizing dual oversight; quantifying value added in terms of cost savings, enhanced safety, and improved public perception; extrapolating results to other national laboratories; and

  1. 76 FR 40937 - Public Availability of National Labor Relations Board's FY 2010 Service Contract Inventory

    Science.gov (United States)

    2011-07-12

    ... NATIONAL LABOR RELATIONS BOARD Public Availability of National Labor Relations Board's FY 2010 Service Contract Inventory AGENCY: National Labor Relations Board. ACTION: Notice of public availability... Consolidated Appropriations Act of 2010 (Pub. L. 111-117), the National Labor Relations Board (NLRB) is...

  2. 77 FR 5062 - Public Availability of National Labor Relations Board's FY 2011 Service Contract Inventory

    Science.gov (United States)

    2012-02-01

    ... NATIONAL LABOR RELATIONS BOARD Public Availability of National Labor Relations Board's FY 2011 Service Contract Inventory AGENCY: National Labor Relations Board. ACTION: Notice of public availability... Consolidated Appropriations Act of 2010 (Pub. L. 111-117), the National Labor Relations Board (NLRB) is...

  3. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  4. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  5. Water quality and quantity of selected springs and seeps along the Colorado River corridor, Utah and Arizona: Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park, 1997-98

    Science.gov (United States)

    Taylor, Howard E.; Spence, John R.; Antweiler, Ronald C.; Berghoff, Kevin; Plowman, Terry I.; Peart, Dale B.; Roth, David A.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service conducted an intensive assessment of selected springs along the Colorado River Corridor in Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park in 1997 and 1998, for the purpose of measuring and evaluating the water quality and quantity of the resource. This study was conducted to establish baseline data for the future evaluation of possible effects from recreational use and climate change. Selected springs and seeps were visited over a study period from 1997 to 1998, during which, discharge and on-site chemical measurements were made at selected springs and seeps, and samples were collected for subsequent chemical laboratory analysis. This interdisciplinary study also includes simultaneous studies of flora and fauna, measured and sampled coincidently at the same sites. Samples collected during this study were transported to U.S. Geological Survey laboratories in Boulder, Colorado, where analyses were performed using state-of-the-art laboratory technology. The location of the selected springs and seeps, elevation, geology, aspect, and onsite measurements including temperature, discharge, dissolved oxygen, pH, and specific conductance, were recorded. Laboratory analyses include determinations for alkalinity, aluminum, ammonium (nitrogen), antimony, arsenic, barium, beryllium, bismuth, boron, bromide, cadmium, calcium, cerium, cesium, chloride, chromium, cobalt, copper, dissolved inorganic carbon, dissolved organic carbon, dysprosium, erbium, europium, fluoride, gadolinium, holmium, iodine, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, nitrate (nitrogen), nitrite (nitrogen), phosphate, phosphorus, potassium, praseodymium, rhenium, rubidium, samarium, selenium, silica, silver, sodium, strontium, sulfate, tellurium, terbium, thallium, thorium, thulium, tin, titanium, tungsten

  6. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 1996-1997: 1 - Presentation of LAPP; 2 - Data acquisition experiments: e"+e"- annihilations at LEP (standard model and beyond the standard model - ALEPH, Study of hadronic final state events and Search for supersymmetric particles at L3 detector); Neutrino experiments (neutrino oscillation search at 1 km of the Chooz reactors, search for neutrino oscillations at the CERN Wide Band neutrino beam - NOMAD); Quarks-Gluons plasma; Hadronic spectroscopy; 3 - Experiments under preparation (CP violation study - BABAR, Anti Matter Spectrometer in Space - AMS, Search for gravitational waves - VIRGO, Search for the Higgs boson - ATLAS and CMS); 4 - Technical departments; 5 - Theoretical physics; 6 - Other activities

  7. USDA Section 9006 Program: Status and Energy Benefits of Grant Awards in FY 2003-2005

    Energy Technology Data Exchange (ETDEWEB)

    Walters, T.; Savage, S.; Brown, J.

    2006-08-01

    At the request of the U. S. Department of Agriculture (USDA) Rural Development, the National Renewable Energy Laboratory reviewed projects awarded in the Section 9006 Program: Renewable Energy Systems and Energy Efficiency Improvements Program. This report quantifies federal and private investment, outlines project status based on recent field updates, and calculates the effects on energy and emissions of energy efficiency and renewable energy projects awarded grants in FY 2003, FY 2004, and FY 2005. An overview of the program challenges and modifications in the first three years of operation is also included.

  8. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1981-08-01

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980

  9. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  10. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  11. VT County National Resources Inventory Data 1982-1997

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This collection provides tabular USDA - Natural Resource Conservation Service (NRCS), National Resources Inventory (NRI) data (1982-1997), by...

  12. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY2009

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Wietsma, Thomas W.; Truex, Michael J.

    2010-03-31

    This report documents the progress made through FY 2009 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The study seeks also to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. In previous years the work was funded as two separate projects by various sponsors, all of whom received their funding from the U.S. Department of Energy (DOE). In FY2009, the projects were combined and funded by CH2MHill Plateau Remediation Corporation (CHPRC). Work in FY2009 was performed by staff at the Pacific Northwest National Laboratory (PNNL). Staff from the State University of New York at Cortland (SUNY–Cortland) contributed in previous years.

  13. Life cycle baseline summary for ADS 6504IS Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    The purpose of the Isotopes Facility Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. This baseline plan establishes the official target schedule for completing the deactivation work and the associated budget required for deactivation and the necessary S ampersand M. Deactivation of the facilities 3026C, 3026D, 3028, 3029, 3038E, 3038M, and 3038AHF, the Center Circle buildings 3047, 3517, and 7025 will continue though Fiscal Year (FY) 1999. The focus of the project in the early years will be on the smaller buildings that require less deactivation and can bring an early return in reducing S ampersand M costs. This baseline plan covers the period from FY1995 throughout FY2000. Deactivation will continue in various facilities through FY1999. A final year of S ampersand M will conclude the project in FY2000. The estimated total cost of the project during this period is $51M

  14. Third annual environmental restoration monitoring and assessment report for FY 1994 of the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Clapp, R.B.; Watts, J.A.; Guth, M.A.S. [eds.

    1994-09-01

    This report summarizes the salient features of the annual efforts of environmental monitoring, field investigations, and assessments conducted to support the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL). This report focuses on the watershed scale, providing an ORNL site-wide perspective on types, distribution, and transport of contamination. The results presented are used to enhance the conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. This report summarizes the efforts of the Waste Area Grouping (WAG) 2 and Site Investigations (SI) Project. WAG 2 is the lower portion of the White Oak Creek system which drains the major contaminated sites at ORNL and discharges to the Clinch River where public access is allowed. The Remedial Investigation Plan (DOE 1992) for WAG 2 includes a long-term multimedia environmental monitoring effort that takes advantage of WAG 2`s role as an integrator and the major conduit of contaminants from the ORNL site. During FY 1992, the remedial investigation activities were integrated with a series of environmental monitoring and SI activities at ORNL that address pathways and processes important for contaminant movement to gain a more integrated perspective of contamination movement at the watershed scale.

  15. Third annual environmental restoration monitoring and assessment report for FY 1994 of the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Clapp, R.B.; Watts, J.A.; Guth, M.A.S.

    1994-09-01

    This report summarizes the salient features of the annual efforts of environmental monitoring, field investigations, and assessments conducted to support the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL). This report focuses on the watershed scale, providing an ORNL site-wide perspective on types, distribution, and transport of contamination. The results presented are used to enhance the conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. This report summarizes the efforts of the Waste Area Grouping (WAG) 2 and Site Investigations (SI) Project. WAG 2 is the lower portion of the White Oak Creek system which drains the major contaminated sites at ORNL and discharges to the Clinch River where public access is allowed. The Remedial Investigation Plan (DOE 1992) for WAG 2 includes a long-term multimedia environmental monitoring effort that takes advantage of WAG 2's role as an integrator and the major conduit of contaminants from the ORNL site. During FY 1992, the remedial investigation activities were integrated with a series of environmental monitoring and SI activities at ORNL that address pathways and processes important for contaminant movement to gain a more integrated perspective of contamination movement at the watershed scale

  16. Nevada nuclear waste storage investigations: FY 1980 Project Plan and FY 1981 forecast

    International Nuclear Information System (INIS)

    1980-02-01

    The DOE is responsible for developing or improving the technology for safely and permanently isolating radioactive wastes from the biosphere. The National Waste Terminal Storage Program, which is a part of the US Nuclear Waste Management Program, is concerned with disposing of the high-level wastes associated with DOE and commercial nuclear reactor fuel cycles. The DOE/NV has been delegated the responsibility to evaluate the geohydrologic setting and underground rock masses of the Nevada Test Site (NTS) area to determine whether a suitable site exists for constructing a repository for isolating highly radioactive solid wastes. Accordingly, the Nevada Nuclear Waste Storage Investigations (NNWSI) were established by NV to conduct these evaluations. The NNWSI are managed by the DOE/NV, but the field and laboratory investigations are being performed by scientific investigators from several organizations. The four primary organizations involved are: Los Alamos Scientific Laboratory (LASL), Lawrence Livermore Laboratory (LLL), Sandia Laboratories (SL), and the US Geological Survey (USGS). DOE/NV is responsible for coordinating these investigations. This document presents the Project Plan for the NNWSI for FY 1980 and forecasts activities for FY 1981. Each task is divided into subtasks and described. This Plan is subject ot periodic review and revision by the DOE/NV. Changes will be addressed as they occur in NNWSI Quarterly Reports. This document also presents information on the Project's technical approach as well as its history, organization, and management

  17. Decommissioning of the Fission Product Development Laboratory at Holifield National Laboratory

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1975-01-01

    The decontamination of the Fission Product Development Laboratory was initiated in FY 1975 after 17 years of processing fission product waste streams to produce commercial quantities of 90 Sr, 137 Cs, 144 Ce, and 147 Pm. The objective of the decommissioning program is the removal of all radiation and contamination areas in the facility to a level which will be compatible with the environment in the foreseeable future

  18. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  19. Underground Test Area Fiscal Year 2012 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Marutzky, Sam [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-01-01

    This report is mandated by the Underground Test Area (UGTA) Quality Assurance Project Plan (QAPP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2012. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2012. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, revising the QAPP, and publishing documents. In addition, processes and procedures were developed to address deficiencies identified in the FY 2011 QAPP gap analysis.

  20. Electrically switched cesium ion exchange. FY 1997 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.

    1997-09-01

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 10 4 , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  2. Pilot chargeback system program plan

    International Nuclear Information System (INIS)

    Smith, P.

    1997-03-01

    This planning document outlines the steps necessary to develop, test, evaluate, and potentially implement a pilot chargeback system at the Idaho National Engineering and Environmental Laboratory for the treatment, storage, and disposal of current waste. This pilot program will demonstrate one system that can be used to charge onsite generators for the treatment and disposal of low-level radioactive waste. In FY 1997, mock billings will begin by July 15, 1997. Assuming approvals are received to do so, FY 1998 activities will include modifying the associated automated systems, testing and evaluating system performance, and estimating the amount generators will spend for waste storage, treatment, and disposal in FY 1999. If the program is fully implemented in FY 1999, generators will pay actual, automated bills for waste management services from funds transferred to their budgets from Environmental Management

  3. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    International Nuclear Information System (INIS)

    Lamar, D.A.

    1988-01-01

    Data were collected and compiled on radioisotopes produced and sold by Department of Energy (DOE) facilities, and on services rendered by DOE facilities. Compiled data were published and distributed in the document list of DOE Radioisotope Customers with Summary of Radioisotope Shipments, FY 1986, PNL-6361, October 1987. The DOE facilities that supplied information for the compilation were Argonne National Laboratory, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho National Engineering Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratory, Savannah River Plant, and UNC Nuclear Industries, Inc. (Hanford). The data provided were reported in several different ways: (1) a list of radioisotopes and services provided by each facility; (2) a list of radioisotope customers, the supplying DOE facility, and the radioisotope or service provided to each customer; and (3) a list of the quantity and value of each radioisotope or service sold by each DOE facility. The sales information covered foreign customers, domestic private customers, and domestic DOE customers

  4. KURRI progress report 1996. April 1996 - March 1997

    International Nuclear Information System (INIS)

    1997-11-01

    This report describes the activities of the Research Reactor Institute, Kyoto University (KURRI) during the fiscal year (FY) of 1996. A total of 1506 researchers visited the KURRI to perform 106 experimental applications or to attend 17 symposia and 3 workshops. At the end of a three-year period, the scientific achievements of two research projects, 'Residual Stress and Strip Investigations of Metallic Materials by Neutron Scattering' and 'Radiation Protection to the Manageable Ionizing Radiation in the KUR facilities' were reviewed during the annual Scientific Meeting of the KURRI, held on Jan 21-23, 1997. The five-year modernization Program of the KUR and its related facirities was in progress since the reorganization for a Center of Excellence on April 1, 1995. In the FY, 1996 the maintenance and close inspections of the heavy water facility and the graphite thermal column were carried out during the reactor shutdown from Feb 24, 1997 to May 9, 1997. A total of 174 reports of project and general researches in 1996 were outlined. (M.N.)

  5. KURRI progress report 1996. April 1996 - March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report describes the activities of the Research Reactor Institute, Kyoto University (KURRI) during the fiscal year (FY) of 1996. A total of 1506 researchers visited the KURRI to perform 106 experimental applications or to attend 17 symposia and 3 workshops. At the end of a three-year period, the scientific achievements of two research projects, `Residual Stress and Strip Investigations of Metallic Materials by Neutron Scattering` and `Radiation Protection to the Manageable Ionizing Radiation in the KUR facilities` were reviewed during the annual Scientific Meeting of the KURRI, held on Jan 21-23, 1997. The five-year modernization Program of the KUR and its related facirities was in progress since the reorganization for a Center of Excellence on April 1, 1995. In the FY, 1996 the maintenance and close inspections of the heavy water facility and the graphite thermal column were carried out during the reactor shutdown from Feb 24, 1997 to May 9, 1997. A total of 174 reports of project and general researches in 1996 were outlined. (M.N.)

  6. Nevada Test Site-Directed Research and Development, FY 2007 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2008-01-01

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R and D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL

  7. Nevada Test Site-Directed Research and Development, FY 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2008-02-20

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory

  8. Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project: FY 1994--FY 2001

    International Nuclear Information System (INIS)

    1993-12-01

    This Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993

  9. Idaho National Laboratory Integrated Safety Management System 2010 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Haney

    2010-12-01

    Idaho National Laboratory completes an annual Integrated Safety Management System effectiveness review per 48 CFR 970.5223-1 “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assesses ISMS effectiveness, provides feedback to maintain system integrity, and helps identify target areas for focused improvements and assessments for the following year. Using one of the three Department of Energy (DOE) descriptors in DOE M 450.4-1 regarding the state of ISMS effectiveness during Fiscal Year (FY) 2010, the information presented in this review shows that INL achieved “Effective Performance.”

  10. 77 FR 7184 - Public Availability of the National Archives and Records Administration FY 2011 Service Contract...

    Science.gov (United States)

    2012-02-10

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Public Availability of the National Archives and... Administration. ACTION: Notice of public availability of FY 2011 Service Contract Inventory. SUMMARY: In...), the National Archives and Records Administration (NARA) is publishing this notice to advise the public...

  11. Idaho National Laboratory Cultural Resource Management Office FY 2010 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Hollie K. Gilbert; Clayton F. Marler; Christina L. Olson; Brenda R. Pace; Julie Braun Williams

    2011-09-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history. This report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2010. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders and to serve as a planning tool for future INL cultural resource management work.

  12. Fusion reactor safety studies, FY 1977

    International Nuclear Information System (INIS)

    Darby, J.B. Jr.

    1978-04-01

    This report reviews the technical progress in the fusion reactor safety studies performed during FY 1977 in the Fusion Power Program at the Argonne National Laboratory. The subjects reported on include safety considerations of the vacuum vessel and first-wall design for the ANL/EPR, the thermal responses of a tokamak reactor first wall, the vacuum wall electrical resistive requirements in relationship to magnet safety, and a major effort is reported on considerations and experiments on air detritiation

  13. FUNCTIONS AND REQUIREMENTS FOR RUSSIAN PULSATING MONITOR DEPLOYMENT IN THE GUNITE AND ASSOCIATED TANKS AT OAK RIDGE NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Thomas Albert

    1999-01-01

    This document provides functions and requirements to support deployment of pulsating mixer pump technology in the Oak Ridge National Laboratory (ORNL) Gunite and Associated Tanks to mobilize and mix the settled sludge and solids in these tanks. In FY 1998 pulsating mixer pump technology, a jet mixer powered by a reciprocating air supply, was selected for FY 1999 deployment in one of the GAAT tanks to mobilize settled solids. Pulsating mixer pump technology was identified in FY 1996 during technical exchanges between the US Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the US. The pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to mobilize settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for bulk mobilization of Gunite tank sludge prior to deployment of other retrieval systems. The deployment of this device is expected to significantly reduce the costs of operation and maintenance of more expensive retrieval systems. The functions and requirements presented here were developed by evaluating the results and recommendations that resulted from the pulsating mixer pump demonstration at PNNL, and by coupling this with the remediation needs identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks

  14. Los Alamos National Laboratory 1995 self assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results.

  15. Los Alamos National Laboratory 1995 self assessment report

    International Nuclear Information System (INIS)

    1995-01-01

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results

  16. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, F. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Melton, Stephanie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  17. Final report for the Idaho National Engineering Laboratory Central Facilities Area Landfill 2

    International Nuclear Information System (INIS)

    Doornbos, M.H.; Morgan, M.E.; Hubbell, J.M.

    1991-04-01

    This report summarize activities completed during FY-88 through FY-91 for the US Department of Energy's (DOE's) Hazardous Waste Remedial Actions Program (HAZWRAP) at the Idaho National Engineering Laboratory (INEL) Central Facilities Area (CFA) Landfill 2. The objectives of this program are to demonstrate new technologies or innovative uses of existing technologies for the identification and remediation of hazardous wastes within a municipal-type landfill. The site was chosen as a candidate site because it represents a problem typical of both DOE and public landfills. The HAZWRAP Technology Demonstration Project began at the INEL CFA Landfill 2 in 1987. During characterization and identification activities, several organic ''hotspots'' or anomalies were identified. Proposals were then solicited from the private sector for innovative technologies to remediate the isolated areas. Remediation was planned to be implemented using horizontal wells installed underneath a portion of the landfill. These innovative technologies and the well installation were planned to support the current goals of the DOE and the Environmental Protection Agency to treat hazardous waste in place. 2 refs., 2 figs., 2 tabs

  18. Baseline ecological footprint of Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Coplen, Amy K.; Mizner, Jack Harry,; Ubechel, Norion M.

    2009-01-01

    The Ecological Footprint Model is a mechanism for measuring the environmental effects of operations at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM). This analysis quantifies environmental impact associated with energy use, transportation, waste, land use, and water consumption at SNL/NM for fiscal year 2005 (FY05). Since SNL/NMs total ecological footprint (96,434 gha) is greater than the waste absorption capacity of its landholdings (338 gha), it created an ecological deficit of 96,096 gha. This deficit is equal to 886,470lha, or about 3,423 square miles of Pinyon-Juniper woodlands and desert grassland. 89% of the ecological footprint can be attributed to energy use, indicating that in order to mitigate environmental impact, efforts should be focused on energy efficiency, energy reduction, and the incorporation of additional renewable energy alternatives at SNL/NM.

  19. Abstracts and papers of the 1997 International RERTR Meeting

    International Nuclear Information System (INIS)

    1997-10-01

    The 1997 International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR) was sponsored by the Argonne National Laboratory and was held in Jackson Hole, Wyoming, U.S.A. on 5-10 October 1997. The abstracts and available papers that were presented at this meeting are dealing with: National RERTR Programs; Fuel Development, Testing and Evaluation; Safety Tests and Evaluations; Core Conversion Studies; New LEU Reactors; Mo-99 Production From LEU Fission; Spent Fuel Management; Fuel Cycle issues

  20. Idaho National Laboratory Cultural Resource Management Office FY 2011 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams; Brenda R. Pace; Hollie K. Gilbert; Christina L. Olson

    2012-09-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history. This report is intended as a stand-alone document that summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2011. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders, serve as a planning tool for future INL cultural resource management work, and meet an agreed upon legal requirement.

  1. Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Michael; Hansen, Todd, editors

    2000-07-01

    The FY 2001-2005 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  2. Environmental Management System Objectives & Targets Results Summary - FY 2015.

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Douglas W

    2016-02-01

    Sandia National Laboratories (SNL) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL's operations on the environment. An annual summary of the results achieved towards meeting established Sandia Corporation and SNL Site-specific objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY 2015.

  3. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).

  4. Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report

    Energy Technology Data Exchange (ETDEWEB)

    Addleman, Raymond S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Naes, Benjamin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olsen, Khris B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chouyyok, Wilaiwan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Willingham, David G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spigner, Angel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-30

    The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmental sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for

  5. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  6. Aespoe Hard Rock Laboratory. Annual report 1997

    International Nuclear Information System (INIS)

    1998-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The surface and borehole investigations and the research work performed in parallel with construction have provided a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The experimental results of the first tracer test with sorbing radioactive tracers have been obtained. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. The manufacturing of the CHEMLAB probe was completed during 1996, and the first experiments were started early in 1997. During 1997 three experiments on diffusion in bentonite using 57 Co, 114 Cs, 85 Sr, 99 Tc, and 131 I were conducted. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. The characterization of the rock mass in the area of the prototype repository is in progress. The objectives of the Demonstration of Repository Technology are to develop, test, and demonstrate methodology and equipment for encapsulation and deposition of spent nuclear fuel. The demonstration of handling and deposition will be made in a new drift. The Backfill and Plug Test includes tests of backfill materials and emplacement methods and a test of a full scale plug. The backfill and rock will be instrumented with about 230 transducers for measuring the thermo-hydro-mechanical processes. The Retrieval Test is

  7. A report on IPv6 deployment activities and issues at Sandia National Laboratories:FY2007.

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang; Maestas, Joseph H.

    2007-06-01

    Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. As the emerging Internet network protocol, SNL needs to prepare for its eventual deployment in international, national, customer, and local networks. Additionally, the United States Office of Management and Budget has mandated that IPv6 deployment in government network backbones occurs by 2008. This paper explores the readiness of the Sandia National Laboratories network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution, the Communication & Network Systems, and Network System Design & Implementation Departments.

  8. Fuels Inventories in the Los Alamos National Laboratory Region: 1997

    International Nuclear Information System (INIS)

    Balice, R.G.; Oswald, B.P.; Martin, C.

    1999-01-01

    Fifty-four sites were surveyed for fuel levels, vegetational structures, and topographic characteristics. Most of the surveyed sites were on Los Alamos National Laboratory property, however, some surveys were also conducted on U.S. Forest Service property. The overall vegetation of these sites ranged from pinon-juniper woodlands to ponderosa pine forests to mixed conifer forests, and the topographic positions included canyons, mesas, and mountains. The results of these surveys indicate that the understory fuels are the greatest in mixed conifer forests and that overstory fuels are greatest in both mixed conifer forests and ponderosa pine forests on mesas. The geographic distribution of these fuels would suggest a most credible wildfire scenario for the Los Alamos region. Three major fires have occurred since 1954 and these fires behaved in a manner that is consistent with this scenario. The most credible wildfire scenario was also supported by the results of BEHAVE modeling that used the fuels inventory data as inputs. Output from the BEHAVE model suggested that catastrophic wildfires would continue to occur during any season with sufficiently dry, windy weather

  9. RHIC and quark matter: proposal for a relativistic heavy ion collider at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    1984-08-01

    This document describes the Brookhaven National Laboratory Proposal for the construction of a Relativistic Heavy Ion Collider (RHIC). The construction of this facility represents the natural continuation of the laboratory's role as a center for nuclear and high-energy physics research and extends and uses the existing AGS, Tandem Van de Graaff and CBA facilities at BNL in a very cost effective manner. The Administration and Congress have approved a project which will provide a link between the Tandem Van de Graaf and the AGS. Completion of this project in 1986 will provide fixed target capabilities at the AGS for heavy ions of about 14 GeV/amu with masses up to approx. 30 (sulfur). The addition of an AGS booster would extend the mass range to the heaviest ions (A approx. 200, e.g., gold); its construction could start in 1986 and be completed in three years. These two new AGS experimental facilities can be combined with the proposed Relativistic Heavy Ion Collider to extend the energy range to 100 x 100 GeV/amu for the heaviest ions. BNL proposes to start construction of RHIC in FY 86 with completion in FY 90 at a total cost of 134 M$

  10. FY05 FM Dial Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T.

    2005-12-01

    Pacific Northwest National Laboratory's Infrared Sensors team is focused on developing methods for standoff detection of nuclear proliferation. In FY05, PNNL continued the development of the FM DIAL (frequency-modulated differential absorption LIDAR) experiment. Additional improvements to the FM DIAL trailer provided greater stability during field campaigns which made it easier to explore new locations for field campaigns. In addition to the Hanford Townsite, successful experiments were conducted at the Marine Science Laboratory in Sequim, WA and the Nevada Test Site located outside Las Vegas, NV. The range of chemicals that can be detected by FM DIAL has also increased. Prior to FY05, distributed feedback quantum cascade lasers (DFB-QCL) were used in the FM DIAL experiments. With these lasers, only simple chemicals with narrow (1-2 cm-1) absorption spectra, such as CO2 and N2O, could be detected. Fabry-Perot (FP) QC lasers have much broader spectra (20-40 cm-1) which allows for the detection of larger chemicals and a wider array of chemicals that can be detected. A FP-QCL has been characterized and used during initial studies detecting DMMP (dimethyl methylphosphonate).

  11. FY 1997 Scientific and Technical Reports, Articles, Papers, and Presentations

    Science.gov (United States)

    Waits, J. E. Turner (Compiler)

    1998-01-01

    This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY97. The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

  12. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  13. Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004

    Energy Technology Data Exchange (ETDEWEB)

    Enge, R.S.

    1999-12-01

    In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this institutional plan will offer additional content and resource refinements.

  14. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  15. List of ERDA radioisotope customers with summary of radioisotope shipments, FY-1974

    International Nuclear Information System (INIS)

    Simmons, J.L.; Mandell, S.

    1974-01-01

    The eleventh edition of the AEC radioisotope customer list has been prepared at the request of the Division of Biomedical and Environmental Research. The purpose of this document is to list the FY 1974 commercial radioisotope production and distribution activities of USAEC facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, United Nuclear Inc., Idaho Operations Office, Hanford Engineering Development Laboratory, Mound Laboratory, Oak Ridge National Laboratory, and Savannah River Plant. The information is divided into four sections. Section I is an alphabetical list of domestic and foreign customers and their addresses. Each customer has been designated a number according to its alphabetical position which provides a means of cross-referencing in the following sections. The isotopes purchased are listed after the address of the customer and the laboratory supplying each isotope is indicated by a letter set off by parentheses. Section II is an alphabetical list of isotopes, cross-referenced to customer numbers and again divided into the domestic and foreign categories. This section provides a quick idea of the amount of companies purchasing a particular isotope. If more information is needed, the reader can locate the customer by number and determine the laboratory supplying the isotope. The third section is an alphabetical list of states and countries, also cross-referenced to customer numbers, indicating geographical concentrations of isotope users. Section IV summarizes the FY 1974 radioisotope shipment activities of USAEC laboratories in a comprehensive table providing an alphabetical listing of the isotopes and their suppliers. The shipments, quantities and dollars are broken down for each isotope under the Domestic, Foreign, and Project (AEC facilities) categories, and the total figures for each isotope are also provided. (U.S.)

  16. National Ignition Facility (NIF) FY2015 Facility Use Plan

    Energy Technology Data Exchange (ETDEWEB)

    Folta, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wisoff, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-18

    Major features of the FY2015 NIF Use Plan include: • Performing a record number of layered DT experiments with 28 planned compared with 15 in FY2014. Executing the first plutonium experiments on the NIF in support of the Science Campaigns. • Over 300 targets shots, a 57% increase compared to FY14. This is a stretch goal defined in the 120-Day Study document, and relies upon the success of many shot-rate improvement actions, as well as on the distribution of shot type selected by the users. While the Plan is consistent with this goal, the increased proportion of layered DT experiments described above reduces the margin against this goal. • Commissioning of initial ARC capability, which will support both SSP-HED and SSPICF programs. • Increase in days allocated to Discovery Science to a level that supports an ongoing program for academic use of NIF and an annual solicitation for new proposals. • Six Facility Maintenance and Reconfiguration (FM&R) periods totaling 30 days dedicated to major facility maintenance and modifications. • Utilization of the NIF Facility Advisory Schedule Committee (FASC) to provide stakeholder review and feedback on the NIF schedule. The Use Plan assumes a total FY2015 LLNL NIF Operations funding in MTE 10.7 of $229.465M and in MTE 10.3 of 47.0M. This Use Plan will be revised in the event of significant changes to the FY2015 funding or if NNSA provides FY2016 budget guidance significantly reduced compared to FY2015.

  17. Final report of the Multiprogram Laboratory Panel Energy Research Advisory Board. Volume II. Support studies

    International Nuclear Information System (INIS)

    Spiewak, I.; Guthrie, M.P.; Nichols, J.P.; Preston, E.L.; West, C.D.; Wilbanks, T.J.; Wilkes, B.Y.; Zerby, A.C.

    1982-09-01

    Volume II - support studies for nine national laboratories include: report of statistical data on the multiprogram laboratories; examples of national laboratory use in foreign countries; domestic models for national laboratory utilization; relationships of laboratories with industry and universities; uses of laboratories for training industrial R and D personnel; legal mandates and constraints on the national laboratories; with appendices on facts about Harwell, CEN-Saclay, TNO, Studsvik, and JAERI-Tokai; the Requirements Boards of the United Kingdom Department of Industry; impact of President's FY 1983 budget; and the PNL experiment

  18. A report on FY06 IPv6 deployment activities and issues at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang

    2006-06-01

    Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. IPv6 deployment in government network backbones has been mandated to occur by 2008. This paper explores the readiness of the Sandia National Laboratories' network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint, work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution and Network System Design & Implementation Departments.

  19. FY2011 Annual Report for NREL Energy Storage Projects

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  20. LDRD Annual Report FY2006

    International Nuclear Information System (INIS)

    Sketchley, J A; Kotta, P; De Yoreo, J; Jackson, K; van Bibber, K

    2007-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest

  1. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  2. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  3. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  4. Federal Research and Development Funding: FY2014

    Science.gov (United States)

    2014-02-19

    1.12 billion for FY2014. The FY2014 request proposed $155 million to replace the agency’s Southeast Poultry Disease Research Laboratory in Athens...formula funding, and special grants. 94 U.S. Department of Agriculture, “Statement by Thomas J

  5. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom and Switzerland), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report outlines the current design status of the GFR, and includes work done in the areas mentioned above for this fiscal year. In addition, this report fulfills the Level 2 milestones, ''Complete annual status report on GFR reactor design'', and ''Complete annual status report on pre-conceptual GFR reactor designs'' in work package GI0401K01. GFR funding for FY05 included FY04 carryover funds, and was comprised of multiple tasks. These tasks involved a consortium of national laboratories and universities, including the Idaho National Laboratory (INL), Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Oak Ridge National Laboratory (ORNL), Auburn University (AU), Idaho State University (ISU), and the University of Wisconsin-Madison (UW-M). The total funding for FY05 was $1000K, with FY04 carryover of $174K. The cost breakdown can be seen in Table 1.

  6. Science-Driven Candidate Search for New Scintillator Materials: FY 2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Wu, Dangxin; Prange, Micah P.

    2014-10-01

    This annual reports presents work carried out during Fiscal Year (FY) 2014 at Pacific Northwest National Laboratory (PNNL) under the project entitled “Science-Driven Candidate Search for New Scintillator Materials” (Project number: PL13-SciDriScintMat-PD05) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project is divided into three tasks: 1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; 2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and 3) Kinetics and efficiency of scintillation: nonproportionality, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the results obtained in each of the three tasks is provided in this Annual Report. Furthermore, peer-reviewed articles published this FY or currently under review and presentations given this FY are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  7. Aespoe Hard Rock Laboratory. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The surface and borehole investigations and the research work performed in parallel with construction have provided a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The experimental results of the first tracer test with sorbing radioactive tracers have been obtained. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. The manufacturing of the CHEMLAB probe was completed during 1996, and the first experiments were started early in 1997. During 1997 three experiments on diffusion in bentonite using {sup 57}Co, {sup 114}Cs,{sup 85}Sr, {sup 99}Tc, and {sup 131}I were conducted. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. The characterization of the rock mass in the area of the prototype repository is in progress. The objectives of the Demonstration of Repository Technology are to develop, test, and demonstrate methodology and equipment for encapsulation and deposition of spent nuclear fuel. The demonstration of handling and deposition will be made in a new drift. The Backfill and Plug Test includes tests of backfill materials and emplacement methods and a test of a full scale plug. The backfill and rock will be instrumented with about 230 transducers for measuring the thermo-hydro-mechanical processes. The

  8. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  9. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  10. YUCCA Mountain Project - Argonne National Laboratory, Annual Progress Report, FY 1997 for activity WP 1221 unsaturated drip condition testing of spent fuel and unsaturated dissolution tests of glass.

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J. K.; Buck, E. C.; Emery, J. W.; Finch, R. J.; Finn, P. A.; Fortner, J.; Hoh, J. C.; Mertz, C.; Neimark, L. A.; Wolf, S. F.; Wronkiewicz, D. J.

    1998-09-18

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division of Argonne National Laboratory in the period of October 1996 through September 1997. Studies have been performed to evaluate the behavior of nuclear waste glass and spent fuel samples under the unsaturated conditions (low-volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with actinide-doped waste glasses, in progress for over 11 years, indicate that the transuranic element release is dominated by colloids that continuously form and span from the glass surface. The nature of the colloids that form in the glass and spent fuel testing programs is being investigated by dynamic light scattering to determine the size distribution, by autoradiography to determine the chemistry, and by zeta potential to measure the electrical properties of the colloids. Tests with UO{sub 2} have been ongoing for 12 years. They show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases forming on the sample surface is similar to that observed for uranium found in natural oxidizing environments. The reaction of spent fuel samples in conditions similar to those used with UO{sub 2} have been in progress for over six years, and the results suggest that spent fuel forms many of the same alteration products as UO{sub 2}. With spent fuel, the bulk of the reaction occurs via a through-grain reaction process, although grain boundary attack is sufficient to have reacted all of the grain boundary regions in the samples. New test methods are under development to evaluate the behavior of spent fuel samples with intact cladding: the rate at which alteration and radionuclide release occurs when water penetrates fuel sections and whether the reaction causes the cladding to split. Alteration phases have been formed on fine grains of UO

  11. YUCCA Mountain Project - Argonne National Laboratory, Annual Progress Report, FY 1997 for activity WP 1221 unsaturated drip condition testing of spent fuel and unsaturated dissolution tests of glass

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.; Emery, J.W.; Finch, R.J.; Finn, P.A.; Fortner, J.; Hoh, J.C.; Mertz, C.; Neimark, L.A.; Wolf, S.F.; Wronkiewicz, D.J.

    1998-01-01

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division of Argonne National Laboratory in the period of October 1996 through September 1997. Studies have been performed to evaluate the behavior of nuclear waste glass and spent fuel samples under the unsaturated conditions (low-volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with actinide-doped waste glasses, in progress for over 11 years, indicate that the transuranic element release is dominated by colloids that continuously form and span from the glass surface. The nature of the colloids that form in the glass and spent fuel testing programs is being investigated by dynamic light scattering to determine the size distribution, by autoradiography to determine the chemistry, and by zeta potential to measure the electrical properties of the colloids. Tests with UO 2 have been ongoing for 12 years. They show that the oxidation of UO 2 occurs rapidly, and the resulting paragenetic sequence of secondary phases forming on the sample surface is similar to that observed for uranium found in natural oxidizing environments. The reaction of spent fuel samples in conditions similar to those used with UO 2 have been in progress for over six years, and the results suggest that spent fuel forms many of the same alteration products as UO 2 . With spent fuel, the bulk of the reaction occurs via a through-grain reaction process, although grain boundary attack is sufficient to have reacted all of the grain boundary regions in the samples. New test methods are under development to evaluate the behavior of spent fuel samples with intact cladding: the rate at which alteration and radionuclide release occurs when water penetrates fuel sections and whether the reaction causes the cladding to split. Alteration phases have been formed on fine grains of UO 2 in contact with

  12. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2007-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2007 (FY 2007). In FY 2007, 40 localities were revisited: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, three butte/craters, twelve prehistoric archaeological sites, two historic stage stations, nine historic homesteads, a portion of Goodale’s Cutoff of the Oregon Trail, a portion of historic trail T-16, one World War II dump, four buildings from the World War II period, and Experimental Breeder Reactor –I, a modern scientific facility and National Historic Landmark. Several INL project areas were also monitored in FY 2007. This included direct observation of ground disturbing activities within the Power Burst Facility (PBF, now designated as the Critical Infrastructure Test Range Complex – CITRC), backfilling operations associated with backhoe trenches along the Big Lost River, and geophysical surveys designed to pinpoint subsurface unexploded ordnance in the vicinity of the Naval Ordnance Disposal Area. Surprise checks were also made to three ongoing INL projects to ensure compliance with INL CRM Office recommendations to avoid impacts to cultural resources. Although some impacts were documented, no significant adverse effects that would threaten the National Register eligibility of any resource were observed at any location.

  13. Linear Accelerator Reactors (LARs) year end report, FY 1977--September 30, 1977

    International Nuclear Information System (INIS)

    Powell, J.R.; Steinberg, M.; Takahashi, H.

    1977-01-01

    Under the Nuclear Alternative Systems Assessment Program (NASAP), Brookhaven National Laboratory has initiated a study of Linear Accelerator Assisted Reactors to assess their potential and feasibility in a nuclear energy scenario which will minimize the risk of weapons proliferation. This report covers the period from the inception of the project to the end of FY 1977

  14. FY 2017 – Thermal Aging Effects on Advanced Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Wei-Ying [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  15. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  16. Waste Processing Cost Recovery at Los Alamos National Laboratory-Analysis and Recommendations

    International Nuclear Information System (INIS)

    Booth, St. R.

    2009-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit of waste. Therefore, the fixed cost ends at the point just before waste begins to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  17. Energy storage systems program report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  18. Underground Test Area Fiscal Year 2013 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Marutzky, Sam [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-01-01

    This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2013. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2013. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. In addition, integrated UGTA required reading and corrective action tracking was instituted.

  19. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  20. Wind Powering America FY06 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  1. Oak Ridge National Laboratory Site Sustainability Plan with FY 2016 Performance Data

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Teresa A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    Campus sustainability is part of an ongoing process of modernization at Oak Ridge National Laboratory (ORNL). Initiated in 2002, it grew to include the Sustainable Campus Initiative (SCI) as of 2008. The SCI embodies a diversity of areas, reflecting the multifaceted nature of sustainability and the resulting need for a holistic approach, by tapping ORNL’s multiplatform science and technology expertise in a pathway critical in catalyzing change and shaping the Laboratory’s future. The past year has shown significant progress for the SCI as well as for sustainable development at large, with the 21st Session of the Conference of the Parties (COP21) in Paris setting a new pace and direction for worldwide mitigation of climate change in the coming decades.

  2. Synergy for a Strong Future FY 2008

    International Nuclear Information System (INIS)

    Devore, L.; Chrzanowski, P.

    2008-01-01

    Lawrence Livermore National Security, LLC is committed to delivering the best combination of scientific research, technology development, business management, and safe, secure operations in support of Lawrence Livermore National Laboratory's critical national security mission. LLNS was formed specifically to manage LLNL for the Department of Energy's National Nuclear Security Administration. LLNS consists of a team of five organizations renowned for their expertise and accomplishments throughout the U.S. nuclear weapons complex and beyond - Bechtel National, University of California, Babcock and Wilcox, Washington Division of URS Corporation, and Battelle. Bechtel is the nation's largest engineering and construction firm and a leader in project management. The University of California is the world's largest public research institution. Babcock and Wilcox and the Washington Division of URS Corporation are top nuclear facilities contractors and between them manage four of DOE's five safest sites. Battelle is a global leader in science and technology development and commercialization. The LLNS Board of Governors provides oversight for the management of the Laboratory and holds the Director and LLNS President responsible for the Laboratory's performance. The Board has seven standing committees that assist in assessing Laboratory performance and monitoring risks and internal controls. Through the Board of Governors, the Laboratory can reach back to LLNS partner organizations to help ensure that it fulfills its national security mission with excellence in scientific research, technology development, business management, and safe, secure operations. LLNS assumed management of LLNL on October 1, 2007. This report highlights LLNS accomplishments in FY2008, its first year as the Laboratory's managing contractor. It is clear that LLNS and the Laboratory have exploited numerous synergies inherent in their relationship - for example, science and engineering, mission and

  3. Underground Test Area Fiscal Year 2014 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Krenzien, Susan

    2015-01-01

    This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities from October 1, 2013, through September 30, 2014 (fiscal year [FY] 2014). All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); National Security Technologies, LLC (NSTec); Navarro-Intera, LLC (N-I); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2014. The activities included conducting oversight assessments for QAP compliance, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. UGTA Activity participants conducted 25 assessments on topics including safe operations, QAP compliance, activity planning, and sampling. These assessments are summarized in Section 2.0. Corrective actions tracked in FY 2014 are presented in Appendix A. Laboratory performance was evaluated based on three approaches: (1) established performance evaluation programs (PEPs), (2) interlaboratory comparisons, or (3) data review. The results of the laboratory performance evaluations, and interlaboratory comparison results are summarized in Section 4.0. The UGTA Activity published three public documents and a variety of other publications in FY 2014. The titles, dates, and main authors are identified in Section 5.0. The Contract Managers, Corrective Action Unit (CAU) Leads, Preemptive Review (PER) Committee members, and Topical Committee members are listed by name and organization in Section 6.0. Other activities that affected UGTA quality are discussed in Section 7.0. Section 8.0 provides the FY 2014 UGTA QA program conclusions, and Section 9.0 lists the references not identified in Section 5.0.

  4. Decontamination and decommissioning activities photobriefing book FY 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The Chicago Pile 5 (CP-5) Reactor, the first reactor built on the Argonne National Laboratory-East site, followed a rich history that had begun in 1942 with Enrico Fermi's original pile built under the west stands at the Stagg Field Stadium of The University of Chicago. CP-5 was a 5-megawatt, heavy water-moderated, enriched uranium-fueled reactor used to produce neutrons for scientific research from 1954--79. The reactor was shut down and defueled in 1979, and placed into a lay-up condition pending funding for decontamination and decommissioning (D and D). In 1990, work was initiated on the D and D of the facility in order to alleviate safety and environmental concerns associated with the site due to the deterioration of the building and its associated support systems. A decision was made in early Fiscal Year (FY) 1999 to direct focus and resources to the completion of the CP-5 Reactor D and D Project. An award of contract was made in December 1998 to Duke Engineering and Services (Marlborough, MA), and a D and D crew was on site in March 1999 to begin work, The project is scheduled to be completed in July 2000. The Laboratory has determined that the building housing the CP-5 facility is surplus to the Laboratory's needs and will be a candidate for demolition. In addition to a photographic chronology of FY 1999 activities at the CP-5 Reactor D and D Project, brief descriptions of other FY 1999 activities and of projects planned for the future are provided in this photobriefing book

  5. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  6. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  7. Laboratory Directed Research and Development FY2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  8. LBNL Institutional Plan, FY 1996--2001. Draft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The FY 1996-2001 Institutional Plan provides an overview of the Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  9. NREL Energy Storage Projects. FY2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeff [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grad, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprague, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Han, Taeyoung [General Motors, Detroit, MI (United States); Hartridge, Steve [CD-adapco, Detroit, MI (United States); Shaffer, Christian E. [EC Power, Aurora, CO (United States)

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  10. Safeguards and Security Technology Development Directory. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  11. Institutional research and development, FY 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance

  12. High Temperature Materials Laboratory seventh annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Teague, P.A.

    1994-12-01

    The High Temperature Materials Laboratory (HTML) has completed its seventh year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the User Program has been demonstrated by the number of institutions executing user agreements since the HTML began operation in 1987. A total of 193 nonproprietary agreements (91 industry and 102 university) and 41 proprietary agreements (39 industry and two university) are now in effect. This represents an increase of 21 nonproprietary user agreements during FY 1994. Forty-one states are represented by these users. During FY 1994, the HTML User Program evaluated 106 nonproprietary proposals (46 from industry, 52 from universities, and 8 from other government facilities) and 8 proprietary proposals. The HTML User Advisory Committee approved about ninety-five percent of those evaluated proposals, sometimes after the prospective user revised the proposal based on comments from the Committee. This annual report discusses FY 1994 activities in the individual user centers, as well as plans for the future. It also gives statistics about users and their proposals and FY 1994 publications, and summarizes nonproprietary research projects active in FY 1994.

  13. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  14. Environment | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National Security User Facilities Science Work with Us Environment Atmospheric and Climate Science Ecological

  15. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  16. National Aeronautics and Space Administration FY 2001 Accountability Report

    Science.gov (United States)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  17. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Gregory, Louis

    2014-01-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.

  18. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project FY16 Annual Review

    Science.gov (United States)

    Grindle, Laurie; Hackenberg, Davis

    2016-01-01

    This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS FY16 progress and future directions.

  19. Theoretical Division annual report, FY 1975

    International Nuclear Information System (INIS)

    Carruthers, P.A.

    1976-02-01

    This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures

  20. Annual Water Management Program Report Prime Hook National Wildlife Refuge 1997

    Data.gov (United States)

    Department of the Interior — This report summarizes the results of Prime Hook National Wildlife Refuge’s 1996 annual water management program and describes plans for 1997. The main objective of...

  1. Fiscal Year (FY) 2017 Activities for the Spent Fuel Nondestructive Assay Project

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McMath, Garrett Earl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grogan, Brandon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-11

    The main focus of research in the NA-241 spent fuel nondestructive assay (NDA) project in FY17 has been completing the fabrication and testing of two prototype instruments for upcoming spent fuel measurements at the Clab interim storage facility in Sweden. One is a passive instrument: Differential Die-away Self Interrogation-Passive Neutron Albedo Reactivity (DDSI), and one is an active instrument: Differential Die-Away-Californium Interrogation with Prompt Neutron (DDA). DDSI was fabricated and tested with fresh fuel at Los Alamos National Laboratory in FY15 and FY16, then shipped to Sweden at the beginning of FY17. Research was performed in FY17 to simplify results from the data acquisition system, which is complex because signals from 56 different 3He detectors must be processed using list mode data. The DDA instrument was fabricated at the end of FY16. New high count rate electronics better suited for a spent fuel environment (i.e., KM-200 preamplifiers) were built specifically for this instrument in FY17, and new Tygon tubing to house electrical cables was purchased and installed. Fresh fuel tests using the DDA instrument with numerous configurations of fuel rods containing depleted uranium (DU), low enriched uranium (LEU), and LEU with burnable poisons (Gd) were successfully performed and compared to simulations.1 Additionally, members of the spent fuel NDA project team travelled to Sweden for a “spent fuel characterization and decay heat” workshop involving simulations of spent fuel and analysis of uncertainties in decay heat calculations.

  2. Systems Analysis department. Annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Olsson, Charlotte; Petersen, Kurt E

    1998-03-01

    The report describes the work of the Systems Analysis Department at Risoe National Laboratory during 1997. The department is undertaking research within Energy systems Analysis, Integrated Energy, Environment and Development Planning - UNEP Centre, Industrial Safety and Reliability and Man/Machine Interaction. The report includes lists of publications lectures, committees and staff members. (au) 110 refs.

  3. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoniette J [Los Alamos National Laboratory

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen

  4. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM. ANNUAL REPORT TO THE DEPARTMENT OF ENERGY, DECEMBER 1998.

    Energy Technology Data Exchange (ETDEWEB)

    OGEKA,G.J.

    1998-12-31

    In FY 1998, the BNL LDBD Program funded 20 projects, 4 of which were new starts, at a total cost of $2,563,681. The small number of new starts was a consequence of severe financial problems that developed between FY 1997 and 1998. Emphasis was given to complete funding for approved multi-year proposals. Following is a table which lists all of the FY 1998 funded projects and gives a history of funding for each by year. Several of these projects have already experienced varying degrees of success as indicated in the individual Project Program Summaries which follow. A total of 17 informal publications (abstracts, presentations, BNL reports and workshop papers) were reported and an additional 13 formal (full length) papers were either published, are in press or being prepared for publication. The investigators on five projects have filed for a patent. Seven of the projects reported that proposals/grants had either been funded or were submitted for funding. In conclusion, a significant measure of success is already attributable to the FY 1998 LDBD Program in the short period of time involved. The Laboratory has experienced a significant scientific gain by these achievements.

  5. FY97 nuclear-related budgets total 493 billion yen (4.4 billion dollars)

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    On September 13, the Atomic Energy Commission of Japan announced the estimated nuclear-related budget requests for FY1997 (April, 1997 - Mach, 1998), giving the breakdowns for eight ministries and agencies. The total amount requested by the government bodies was 493.3 billion yen, 0.8% increase as compared with FY96. this figure includes the budget requests of the Science and Technology Agency (STA), the Ministry of International Trade and Industry (MITI), the Ministry of Foreign Affairs, the Ministry of Transport, the Ministry of Agriculture, Forestry and Fisheries, the Okinawa Development Agency, and the Ministry of Home Affairs, but excludes the budget request made by the Ministry of Education. The budget requests of STA and MITI are 360 billion yen and 126 billion yen, respectively. On August 29, STA released its estimated FY97 budget request. The nuclear-related 360.4 billion yen is 0.9% more than that in year before. Of this sum, 199.9 billion yen is in the general account, and 160.6 billion yen is in the special account for power source development. The details of the nuclear-related amounts are explained. On August 26, MITI released its estimated budget request for FY97, and of the nuclear-related 125.7 billion yen (0.1% increase from FY96), 200 million yen is in the general account, and 98.9 billion yen and 26.6 billion yen are in the special accounts for power resource development and power source diversification, respectively. (K.I.)

  6. Time to pregnancy among Danish laboratory technicians who were a part of the National Birth Cohort

    DEFF Research Database (Denmark)

    Zhu, Jin Liang; Knudsen, Lisbeth E; Andersen, Anne-Marie Nybo

    2005-01-01

    in 1997-2003. Altogether 6250 female teachers formed the reference group. A discrete-time survival analysis with a complementary log-log link was applied to estimate the fecundability ratio between the exposed and unexposed women, with adjustment for maternal age, gravidity, smoking, prepregnancy body......OBJECTIVES: The Danish National Birth Cohort was used to examine whether laboratory work was associated with reduced fecundity. METHODS: Self-reported data on laboratory work and waiting time to pregnancy (0-2, 3-5, 6-12 and > 12 months) were used for 829 female laboratory technicians interviewed...... mass index, and paternal job. RESULTS: No difference in time to pregnancy was found between the laboratory technicians and teachers or between the laboratory technicians with different exposures. The adjusted fecundability ratio for the laboratory technicians was 0.94 [95% confidence interval (95% CI...

  7. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  8. Pacific Northwest Laboratory Institutional Plan FY 1995-2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report serves as a document to describe the role PNL is positioned to take in the Department of Energy`s plans for its national centers in the period 1995-2000. It highlights the strengths of the facilities and personnel present at the laboratory, touches on the accomplishments and projects they have contributed to, and the direction being taken to prepare for the demands to be placed on DOE facilities in the near and far term. It consists of sections titled: director`s statement; laboratory mission and core competencies; laboratory strategic plan; laboratory initiatives; core business areas; critical success factors.

  9. LDRD FY2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, K. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’s success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle

  10. FY16 Analysis report: Financial systems dependency on communications

    Energy Technology Data Exchange (ETDEWEB)

    Beyeler, Walter E.

    2017-03-01

    Within the Department of Homeland Security (DHS), the Office of Cyber and Infrastructure Analysis (OCIA)'s National Infrastructure Simulation and Analysis Center (NISAC) develops capabilities to support the DHS mission and the resilience of the Nation’s critical infrastructure. At Sandia National Laboratories, under DHS/OCIA direction, NISAC is developing models of financial sector dependence on communications. This capability is designed to improve DHS's ability to assess potential impacts of communication disruptions to major financial services and the effectiveness of possible mitigations. This report summarizes findings and recommendations from the application of that capability as part of the FY2016 NISAC program plan.

  11. Application of engineered sorbent barriers Summary of Laboratory Data for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.

    1989-09-01

    Laboratory studies were conducted in FY 1988 Pacific Northwest Laboratory to determine the effect of contact time, pH, solution to solid ratio, and particle size on the performance of a number of materials in adsorbing radioactive cobalt, strontium, and cesium. The laboratory studies were conducted to provide background information useful in designing an engineered sorbent barrier, which restricts the migration of radionuclides from low-level waste sites. Understanding how the variables affect the adsorption of ions on the sorbent materials is the key to estimating the performance of sorbent barriers under a variety of conditions. The scope of the studies was limited to three radionuclides and four sorbent materials, but the general approach can be used to evaluate other radionuclides and conditions. The sorbent materials evaluated in this study included clinoptilolite, activated carbon, bentonite clay, and Savannah River soil. The clinoptilolite and activated carbon were identified in previous studies as the most cost-effective materials for sorption of the three radionuclides under consideration. The bentonite clay was evaluated as a component of the barrier that could be used to modify the permeability of the barrier system. The Savannah River soil was used to represent soil from a humid site. 3 refs., 14 figs., 1 tab.

  12. LBNL Institutional Plan, FY 1996--2001. Draft

    International Nuclear Information System (INIS)

    1995-06-01

    The FY 1996-2001 Institutional Plan provides an overview of the Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy's strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Communications from information contributed by the Laboratory's scientific and support divisions

  13. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  14. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  15. Institutional research and development, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

  16. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  17. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z.; Hastings, J.B. [eds.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  18. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Hollie Kae [Idaho National Lab. (INL), Idaho Falls, ID (United States); Holmer, Marie Pilkington [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, Christina Liegh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pace, Brenda Ringe [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2016. Overall monitoring included surveillance of the following 23 individual cultural resource localities: two locations with human remains, one of which is also a cave; seven additional caves; six prehistoric archaeological sites; four historic archaeological sites; one historic trail; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located at EBR-I; and one Arco Naval Proving Ground (NPG) property, CF-633 and related objects and structures. Several INL work processes and projects were also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On one occasion, ground disturbing activities within the boundaries of the Critical Infrastructure Test Range Complex (CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Additionally, the CRM office was notified during two Trespass Investigations conducted by INL Security. Most of the cultural resources monitored in FY 2016 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted five times. Three previously reported Type 2 impacts were once again documented at the EBR-I National Historic Landmark, including spalling and deterioration of bricks due to inadequate drainage, minimal maintenance, and rodent infestation. The ANP engines and locomotive on display at the EBR-I Visitors Center also exhibited impacts related to long term exposure. Finally, most of the Arco NPG properties monitored at Central Facilities Area exhibited problems with lack of timely and appropriate maintenance as well as inadequate drainage. No new Type 3 or Type 4 impacts that adversely affected significant cultural resources and threatened National

  19. Theoretical Division annual report, FY 1975. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P.A.

    1976-02-01

    This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures. (auth)

  20. GAAT dry well conductivity monitoring report, July 1997 through January 1998, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    A waste removal program is being implemented for the Gunite and Associated Tanks (GAAT) Operable Unit at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. The waste is being removed by means of remotely operated, in-tank, confined sluicing equipment. The waste removal operations in Tanks W-3 and W-4 in the North Tank Farm (NTF) have been completed and the equipment is being moved to the South Tank Farm (STF), where it will be used to remove the sludges from the six STF tanks (W-5, W-6, W-7, W-8, W-9, and W-10) beginning later this year. During sluicing operations the dry wells adjacent to each of the tanks are instrumented so that potential releases can be detected by means external to the tank. The method of detection is by monitoring the electrical conductivity of the water in the dry well associated with each tank. This report documents the dry well conductivity monitoring data for the period from July 1997 through January 1998. The dry wells monitored during this period include DW-3, DW-4, DW-8, DW-9, and DW-10. The conductivity of the water passing through Pump Station 1 (PS 1) was also monitored. The principal activities that occurred during this period were the sluicing of Tanks W-3 and W-4 in the NTF, transfer of tank liquids from the NTF to the STF, and the installation of new risers, tank dome leveling, and emplacement of stabilized base backfill in the STF. Presented in this report are the dry well conductivity, rainfall, tank level, and STF construction information that is relevant to the analysis and interpretation of the monitoring data for the reporting period. A thorough analysis of the monitoring results for the period indicates that no releases have occurred from the gunite tanks being monitored

  1. U.S. Department of Energy Report 1997 LANL Radionuclide Air Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K.W.

    1998-09-01

    Presented is the Laboratory-wide certified report regarding radioactive effluents released into the air by the Los Alamos National Laboratory (LANL) in 1997. This information is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an offsite member of the public was calculated using procedures specified by the EPA and described in this report. For 1997, the dose was 3.51 mrem. Airborne effluents from a 1mA, 800 MeV proton accelerator contributed to over 90% of the EDE; more than 86% of the total dose contribution was through the air immersion pathway.

  2. U.S. Department of Energy Report 1997 LANL Radionuclide Air Emissions

    International Nuclear Information System (INIS)

    Jacobson, K.W.

    1998-01-01

    Presented is the Laboratory-wide certified report regarding radioactive effluents released into the air by the Los Alamos National Laboratory (LANL) in 1997. This information is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an offsite member of the public was calculated using procedures specified by the EPA and described in this report. For 1997, the dose was 3.51 mrem. Airborne effluents from a 1mA, 800 MeV proton accelerator contributed to over 90% of the EDE; more than 86% of the total dose contribution was through the air immersion pathway

  3. Exploratory research and development FY90

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G.

    1990-01-01

    In general, the Exploratory Research and Development (ER ampersand D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR ampersand D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER ampersand D projects are included in the Publications List at the back of this report

  4. Building America Systems Integration Research Annual Report: FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  5. Building America Systems Integration Research Annual Report. FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  6. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements.

  7. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements

  8. ''We crash, burn, and crush'': A history of packaging at Sandia National Laboratories, 1978 -1997

    International Nuclear Information System (INIS)

    Mora, C.J.; McConnell, P.

    1997-11-01

    Even prior to the beginning of the nuclear age, the packaging and transportation of nuclear materials was a prime national concern. Nuclear materials such as uranium and plutonium had to be transported safely (and secretly) to the Manhattan Engineer District Laboratory in Los Alamos, New Mexico. The subsequent post war use of nuclear power for the generation of electricity and accelerated weapons development programs resulted in radioactive waste byproducts, such as spent fuel and plutonium, that were stored on site at utilities and federal weapons sites. While projected repositories for long term storage of radioactive waste are being planned, both low and high level radioactive materials on occasion must be moved safely. Movement to interim storage and, for low level waste, repository sites, is accomplished by a combination of truck, rail, ship, and air. The US Department of Energy (DOE) directs transportation activities including cask development technology for use in single or multimodal (a combination of land, water, and air) transport. In 1978, Sandia National Laboratories was selected as the lead contractor for basic transportation technology. This report is divided into the following topics: (1) early research and development (1936--1978); (2) radioactive material package test (1975--1977); (3) the SNL Transportation Technology Center; (4) TRUPACT-II; (5) beneficial uses of shipping system casks; (6) C-141B drop tests; (7) MIDAS; (8) MOSAIK; (9) SEARAM; (10) PATRAM; and (11) a chronology of transportation activities

  9. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. [ed.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ``On-site Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks.

  10. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997 - September 30, 1998

    International Nuclear Information System (INIS)

    Gibson, J.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ''On-site Support'' at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D 2 or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks

  11. FY 1999 research report on the evaluation/analysis of the data collected in the field test project for the photovoltaic power system for public facility use; 1999 nendo kokyo shisetsu nadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In this research, the photovoltaic power system is experimentally installed at various facilities (public facilities such as public hall, school and museum), and operated on a long term basis under the actual loads. Various kinds of data are collected/analyzed and used as the data useful for the full-scale introduction and spread. The photovoltaic power generation field test project for public facilities using the photovoltaic power system was started in FY 1992 by NEDO. Systems at 116 sites started operation by FY 1996, and in FY 1997 systems were installed at a total of 70 sites. The paper outlined the project and described the results of the collection/analyses of the operational data obtained at 145 sites where systems were installed from FY 1995 to FY 1997. The term of analysis in FY 1999 was made from April 1999 to December 1999, being different from usual, to avoid the Y2K problem on data collecting software, measuring use personal computer, etc. Further, since there are no sites where no systems were newly installed in and after FY 1998, there are no analyses of economical efficiency in and after FY 1999. The paper indicated a list of all the sites with system installation in FY 1995-1997 including the main items. (NEDO)

  12. Time to pregnancy among Danish laboratory technicians who were a part of the National Birth Cohort

    DEFF Research Database (Denmark)

    Zhu, Jin Liang; Knudsen, Lisbeth E; Andersen, Anne-Marie Nybo

    2005-01-01

    OBJECTIVES: The Danish National Birth Cohort was used to examine whether laboratory work was associated with reduced fecundity. METHODS: Self-reported data on laboratory work and waiting time to pregnancy (0-2, 3-5, 6-12 and > 12 months) were used for 829 female laboratory technicians interviewed...... in 1997-2003. Altogether 6250 female teachers formed the reference group. A discrete-time survival analysis with a complementary log-log link was applied to estimate the fecundability ratio between the exposed and unexposed women, with adjustment for maternal age, gravidity, smoking, prepregnancy body......) 0.86-1.02] for all pregnancies and 0.98 (95% CI 0.86-1.13) for first pregnancies. A healthy worker effect was found for the laboratory technicians working with the work processes under study. CONCLUSIONS: The results do not suggest that laboratory work in Denmark at present impairs female fecundity....

  13. Proposals for ORNL [Oak Ridge National Laboratory] support to Tiber LLNL [Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Berry, L.A.; Rosenthal, M.W.; Saltmarsh, M.J.; Shannon, T.E.; Sheffield, J.

    1987-01-01

    This document describes the interests and capabilities of Oak Ridge National Laboratory in their proposals to support the Lawrence Livermore National Laboratory (LLNL) Engineering Test Reactor (ETR) project. Five individual proposals are cataloged separately. (FI)

  14. Optimizing Federal Fleet Vehicle Acquisitions: An Eleven-Agency FY 2012 Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Daley, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    This report focuses on the National Renewable Energy Laboratory's (NREL) fiscal year (FY) 2012 effort that used the NREL Optimal Vehicle Acquisition (NOVA) analysis to identify optimal vehicle acquisition recommendations for eleven diverse federal agencies. Results of the study show that by following a vehicle acquisition plan that maximizes the reduction in greenhouse gas (GHG) emissions, significant progress is also made toward the mandated complementary goals of acquiring alternative fuel vehicles, petroleum use reduction, and alternative fuel use increase.

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  16. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  17. Operating plan FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

  18. Fiscal 1997 report on the survey for a data book on new energy technology development. Waste power generation, solar energy utilization. geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traverse themes; 1997 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki theme)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper collected and arranged data on new energy technology. As to the waste power generation, in terms of general waste, 161 places have power generation facilities, 657,000 kW in output, as of the end of FY 1996. Out of them, 100 facilities (scale of output: 555,000 kW) are selling power. In terms of industrial waste, 53 places (209,000 kW) have power generation facilities. The output will be 2 million kW in FY 2000. In relation to the solar energy utilization, the number of solar systems introduced in FY 1996 is 25,000, that of water heating appliances produced in FY 1996 is 170,000. Geothermal power of 494,000 kW and 37,000 kW was introduced for electric power industry use and private use, respectively. Clean energy vehicles have not been so much spread, but the hybrid car was put on sale in 1997. Concerning the coal liquefaction, the R and D were made at a pilot plant of NEDOL process, and operation started in 1997. As to the coal gasification, investigational study and element study on the demonstration plant are being conducted in FY 1997 and 1998, making use of the research results obtained from the existing pilot plant of coal gasification combined power generation

  19. Program report for FY 1980. Atmospheric and Geophysical Sciences Division of the Physics Department

    International Nuclear Information System (INIS)

    Knox, J.B.; Orphan, R.C.

    1981-02-01

    The FY 1980 research program conducted by the Atmospheric and Geophysical Sciences Division and supporting segments at Lawrence Livermore National Laboratory is reviewed briefly. The work is divided into five research themes: advanced modeling, regional modeling and assessments, CO 2 and climate research, stratospheric research, and special projects. Specific projects are described, and significant findings of the work are indicated. Unique numerical modeling capabilities in use and under development are described

  20. Batelle Energy Alliance, LLC (BEA) 2014 Annual report for Idaho National Laboratory (INL)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Juan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    This Fiscal Year (FY) 2014 annual report provides the Department of Energy (DOE) with BEA’s self-assessment of performance managing and operating the INL for the period ending September 30, 2014. After considering all of the information related to INL performance during the rating period against the Goals, Objectives and Notable Outcomes in the FY 2014 Performance Evaluation and Measurement Plan (PEMP), BEA believes it earned an overall grade closest to an A. The paragraphs below highlight how INL excelled in delivering innovative and impactful research across the three mission areas; how INL has successfully positioned itself for future growth and sustainment; and how, through strong leadership, INL has set and implemented a strategic direction to ensure we meet and exceed the expectations of DOE and other customers. Attachments 1 through 5 provide additional detail on FY 2014 mission accomplishments, outline corporate contributions for success, highlight national and international awards and recognitions at the organization and individual levels, and describe the performance issues and challenges faced in FY 2014. • Attachment 1, “Self-Assessed PEMP Ratings” • Attachment 2, “INL Mission Accomplishments” • Attachment 3, “Battelle Energy Alliance, LLC Contributions to INL Success” • Attachment 4, “FY 2014 Awards, Recognition, Professional Roles and Certifications” • Attachment 5, “Performance Issues and Challenges.”

  1. Long-range plan for buried transuranic waste studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    This document presents a plan to perform detailed studies of alternatives considered for the long-term management of buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The studies will provide the technical basis for DOE to make a decision on the future management of that waste. Although the waste is currently being handled in an acceptable manner, new solutions are continually being researched to improve management techniques. Three alternatives are being considered: (a) leave the waste as is; (b) improve in situ confinement of the waste; and (c) retrieve, process, and certify the waste for disposal at a federal repository. Fourteen studies are described in this plan for Alternatives 2 and 3. The leave-as-is alternative involves continuing present procedures for managing the buried waste. An ongoing environmental surveillance program, a low-level-waste stabilization program, and enhanced subsurface migration studies begun in FY-1984 at the INEL will provide data for the decision-making process for the INEL buried TRU waste. These ongoing studies for the leave-as-is alternative are summarized in this plan in limited detail. The improved-confinement alternative involves leaving the waste in place, but providing additional protection against wind, water penetration, erosion, and plant and animal intrusion. Several studies proposed under this alternative will examine special techniques to immobilize or encapsulate the buried waste. An in situ grouting study was implemented at the INEL starting in FY-1985 and will be completed at the end of FY-1986 with the grouting of a simulated INEL buried TRU waste trench. Studies of the third alternative will investigate improved retrieval, processing, and certification techniques. New equipment, such as industrial manipulators and excavating machinery, will be tested in the retrieval studies. Processing and certification studies will examine rapidly changing or new technologies

  2. Advanced Light Source. Compendium of User Abstracts and Technical Reports 1997

    International Nuclear Information System (INIS)

    Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.

    1998-01-01

    The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998

  3. Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

    1998-07-01

    The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

  4. Analytical Chemistry Laboratory: Progress report for FY 1988

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  5. Analytical Chemistry Laboratory progress report for FY 1989

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1989-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  6. Analytical Chemistry Laboratory: Progress report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  7. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  8. Chemical and Radiochemical Constituents in Water from Wells in the Vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; L. L. Knobel; B. J. Tucker; B. V. Twining (USGS)

    2000-06-01

    The US Geological Survey, in response to a request from the U.S Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled water from 13 wells during 1997-98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A total of 91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen quality-assurance samples were also collected and analyzed; seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  9. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  10. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    Energy Technology Data Exchange (ETDEWEB)

    Valero, O.J.

    1996-10-03

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  11. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994

    International Nuclear Information System (INIS)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, open-quotes Waste Management Plan Outline.close quotes These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES ampersand H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are

  12. Exploratory research and development FY90

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G. (eds.)

    1990-01-01

    In general, the Exploratory Research and Development (ER D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER D projects are included in the Publications List at the back of this report.

  13. Materials Research Department annual report 1997

    International Nuclear Information System (INIS)

    Soerensen, B.F.; Hansen, N.

    1998-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1997 are described. The scientific work is presented in four chapters: Materials Science, Materials Chemistry, Materials Engineering and Materials Technology. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au)

  14. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  15. Report of Laboratory Activity, 1996 - 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report presents the activity of the Laboratory of Particle Physics and Cosmology of College de France on the years 1996-1997 in the fields of Cosmic Physics, Observational Cosmology, Neutrino Experiments, HELLAZ Project, Instrumentation, DELPHI Experiment, Research of Quark-Gluon Plasma, Research on Dark Matter, Theory, Parallel Processing. Also, are mentioned the activities in computer software, electronics, mechanics, general service, publications, external relations, seminars and collaborations. In the field of Cosmic Physics there are described the current experiments on cosmic gamma rays, the work with AUGER observatory and simulations. In the field of observational cosmology there are mentioned the search for baryonic dark matter and studies on type Ia supernovae. In the field of neutrino studies there are described the searches on neutrino oscillations on a 1 km base, while in the framework of HELLAZ project there is reported the work on solar neutrinos. In the field of instrumentation there are mentioned the work on Hybrid Photon Detector and the contribution of the laboratory to the LHC-B Experiment at CERN and on long-base RICH experiment. In the framework of DELPHI experiment at LEP there are reported investigations on beauty particles, new particles and detector performances. There are given results obtained in the field of Quark-Gluon Plasma studies. There are described the research and development works with the dark matter detectors. In the field of theory there are reported studies on the proton structure, photon-photon collisions, the physics of the excited leptons and studies on neutron stars. Also, in this field there is reported the studies in Quantum Chromodynamics and physics of top quark. In the section devoted to parallel processing there are mentioned the research activities related to actinide burning by accelerators and simulations in nuclear medicine issues, electron channelling in crystals and beam-beam effect in colliders. The

  16. Analytical Chemistry Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  17. Laboratory directed research and development FY91

    International Nuclear Information System (INIS)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K.

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator

  18. Argonne Laboratory Computing Resource Center - FY2004 Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.

    2005-04-14

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  19. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  20. Small cetacean aerial survey conducted in Alaskan waters by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 1997-05-08 to 1999-07-04 (NCEI Accession 0131991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys were conducted to produce abundance estimates for the three Alaska stocks of harbor porpoise. Surveys occurred from May to July 1997 for the Southeast...

  1. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  2. National Ignition Facility risk management plan, rev. 1

    International Nuclear Information System (INIS)

    Brereton, S J; Lane, M A

    1998-01-01

    The initial release of the National Ignition Facility (AUF) Risk Management Plan (LLNL, 1997a) was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported Critical Decision 3 (CD3), Approval to Initiate Construction (DOE, 1997a). The objectives of the plan were to: (1) Identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule. (2) Assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES and H (environmental, safety and health), costs, and schedule. (3) Address suitable risk mitigation measures for each identified risk. This revision of the Risk Management Plan considers project risks and vulnerabilities after CD3 (DOE, 1997a) was approved by the Secretary of Energy. During the one-year period since the initial release, the vulnerabilities of greatest concern have been the litigation of the Programmatic Environmental Impact Statement (PEIS) (DOE, 1996b) by a group of environmental organizations led by the Natural Resources Defense Council; the finding and successful clean-up of polychlorinated biphenyl (PCB)-filled electrical capacitors at the NIF site excavation; the FY98 congressional budget authorization and request for the FY99 budget authorization; funding for Inertial Confinement Fusion (ICF)/NIF programmatic activities (including French and other sources of funding); and finally, progress in the core science and technology, and optics program that form the basis for the NIF design

  3. Risoe Publication Activities in 1997; Risoes publikationsvirksomhed i 1997

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, Hanne; Bennov, Solvejg

    1998-08-01

    Risoe`s publication and lecture activities in the last decades are presented through data of total number of publications, distribution of types of publications, number of citations to the international scientific journal articles, and institutions with which Risoe has published the largest number of articles. The data are derived from Risoe`s in-house Publications Database and from the Risoe Institutional Citation Report database produced by the Institute for Scientific Information. The largest part of the report contains a list of references to the scientific and technical journal articles, books, reports, lectures, and to publications for a broader readership authored by researchers at Risoe National Laboratory during the year 1997. The references are organised according to the programme areas of Risoe. (au)

  4. Waste reduction program at Oak Ridge National Laboratory during CY 1989

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.M.

    1990-05-01

    Hazardous, radioactive, and mixed wastes are generated at Oak Ridge National Laboratory (ORNL). The State of Tennessee has requested that ORNL organize the waste streams into approximately 30 generic categories for the CY 1989 report so the information is more manageable. The wide diversity of waste complicates both management and compliance with reporting requirements that are designed to apply to production facilities. In recent years, increased effort has been devoted to the minimization of hazardous and radioactive wastes at ORNL. Policy statements supporting such efforts have been issued by both Martin Marietta Energy Systems, Inc., and ORNL management. Motivation is found in federal regulations, DOE policies and guidelines, increased costs and liabilities associated with the management of wastes, and limited disposal options and facility capacities. ORNL's waste minimization efforts have achieved some success. However, because of the diversity and predominantly nonroutine nature of ORNL's containerized wastes, goals for their reduction are difficult to establish. Efforts continue to establish goals that account separately for wastes generated from laboratory cleanouts, to avoid a waste minimization penalty'' for this good housekeeping practice. Generator evaluations to prioritize hazardous waste streams for waste minimization opportunities are planned for FY 1990. These are important first steps to enable the waste reduction program to assign realistic goals. 22 refs., 13 figs., 10 tabs.

  5. Waste reduction program at Oak Ridge National Laboratory during CY 1989

    International Nuclear Information System (INIS)

    Schultz, R.M.

    1990-05-01

    Hazardous, radioactive, and mixed wastes are generated at Oak Ridge National Laboratory (ORNL). The State of Tennessee has requested that ORNL organize the waste streams into approximately 30 generic categories for the CY 1989 report so the information is more manageable. The wide diversity of waste complicates both management and compliance with reporting requirements that are designed to apply to production facilities. In recent years, increased effort has been devoted to the minimization of hazardous and radioactive wastes at ORNL. Policy statements supporting such efforts have been issued by both Martin Marietta Energy Systems, Inc., and ORNL management. Motivation is found in federal regulations, DOE policies and guidelines, increased costs and liabilities associated with the management of wastes, and limited disposal options and facility capacities. ORNL's waste minimization efforts have achieved some success. However, because of the diversity and predominantly nonroutine nature of ORNL's containerized wastes, goals for their reduction are difficult to establish. Efforts continue to establish goals that account separately for wastes generated from laboratory cleanouts, to avoid a waste minimization ''penalty'' for this good housekeeping practice. Generator evaluations to prioritize hazardous waste streams for waste minimization opportunities are planned for FY 1990. These are important first steps to enable the waste reduction program to assign realistic goals. 22 refs., 13 figs., 10 tabs

  6. Wind Powering America FY07 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  7. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  8. Hanford, diversification, and the Tri-Cities Economy FY 1998

    International Nuclear Information System (INIS)

    SCOTT, M.J.

    1999-01-01

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study (see Figure 1). In the federal fiscal year (IV) 1998 (October 1, 1997 through September 30, 1998), the total impact of DOEs local $1.6 billion budget was felt through payrolls of $519 million and local purchases of goods and services of $246 million. The total local spending of $765 million was down slightly from the FY 1997 total of $774 million. Taking into account the slightly greater multiplier effects of this spending due to changes in its mix, the DOE/RL budget sustained an estimated 36% of all local employment (31,200 out of 86,000 jobs) and up to 64% of local wage income ($1.55 billion out of $2.40 billion). This was up slightly from the year before (29,500 jobs, $1.49 billion income). DOE budget increases in FY 1999 are expected to result in a net increase of about 200 local DOE contractor jobs over the September 30, 1998 level, or about equal to the FY 1998 average. In addition, economic diversification more than offset the impact of the local DOE losses in FY 1998 and, together with an initial economic boost from privatization of Hanford's tank waste cleanup, is expected to play a significant expansive role in FY 1999

  9. Laboratory directed research and development FY91

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. (eds.)

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  10. Materials Research Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B F; Hansen, N [eds.

    1998-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1997 are described. The scientific work is presented in four chapters: Materials Science, Materials Chemistry, Materials Engineering and Materials Technology. A survey is given of the Department`s participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au) 278 refs.

  11. Analytical Chemistry Laboratory progress report for FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  12. Analytical Chemistry Laboratory progress report for FY 1985

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab

  13. Tank Vapor Characterization Project: Annual status report for FY 1996

    International Nuclear Information System (INIS)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA trademark and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks

  14. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  15. FY 2017 Stockpile Stewardship and Management Plan - Biennial Plan Summary

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-03-01

    This year’s summary report updates the Fiscal Year 2016 Stockpile Stewardship and Management Plan (FY 2016 SSMP), the 25-year strategic program of record that captures the plans developed across numerous NNSA programs and organizations to maintain and modernize the scientific tools, capabilities, and infrastructure necessary to ensure the success of NNSA’s nuclear weapons mission. The SSMP is a companion to the Prevent, Counter, and Respond: A Strategic Plan to Reduce Global Nuclear Threats (FY 2017-2021) report, the planning document for NNSA’s nuclear threat reduction mission. New versions of both reports are published each year in response to new requirements and challenges. Much was accomplished in FY 2015 as part of the program of record described in this year’s SSMP. The science-based Stockpile Stewardship Program allowed the Secretaries of Energy and Defense to certify for the twentieth time that the stockpile remains safe, secure, and effective without the need for underground nuclear explosive testing. The talented scientists, engineers, and technicians at the three national security laboratories, the four nuclear weapons production plants, and the national security site are primarily responsible for this continued success. Research, development, test, and evaluation programs have advanced NNSA’s understanding of weapons physics, component aging, and material properties through first-of-a-kind shock physics experiments, along with numerous other critical experiments conducted throughout the nuclear security enterprise. The multiple life extension programs (LEPs) that are under way made progress toward their first production unit dates. The W76-1 LEP is past the halfway point in total production, and the B61-12 completed three development flight tests. Critical to this success is the budget. The Administration’s budget request for NNSA’s Weapons Activities has increased for all but one of the past seven years, resulting in a total increase of

  16. Test plan for FY-94 digface characterization field experiments

    International Nuclear Information System (INIS)

    Josten, N.E.; Roybal, L.G.

    1994-08-01

    The digface characterization concept has been under development at the Idaho National Engineering Laboratory (INEL) since fiscal year (FY) 1992 through the support of the Buried Waste Integrated Demonstration Program. A digface characterization system conducts continuous subsurface characterization simultaneously with retrieval of hazardous and radioactive waste from buried waste sites. The system deploys multiple sensors at the retrieval operation digface and collects data that provide a basis for detecting, locating, and classifying buried materials and hazardous conditions before they are disturbed by the retrieval equipment. This test plan describes ongoing efforts to test the digface characterization concept at the INEL's Cold Test Pit using a simplified prototype deployment apparatus and off-the-shelf sensors. FY-94 field experiments will explore problems in object detection and classification. Detection and classification of objects are fundamental to three of the four primary functions of digface characterization during overburden removal. This test plan establishes procedures for collecting and validating the digface characterization data sets. Analysis of these data will focus on testing and further developing analysis methods for object detection and classification during overburden removal

  17. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  18. Scientific Openness and National Security at the National Laboratories

    Science.gov (United States)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  19. National Geographic en España (1997-2007

    Directory of Open Access Journals (Sweden)

    Vicente Domínguez, Aída María de

    2011-06-01

    Full Text Available En español: La investigación tiene como objeto de estudio aportar la historia de la edición en español de la revista National Geographic en su primera década de existencia (1997-2007, y analizar su evolución en este periodo cronológico. La metodología ha consistido en una revisión bibliográfica en repertorios, catálogos, metabuscadores, y diversas bases de datos (Teseo, TDR, Dialnet, Compludoc, Rebiun, CSIC, junto a una entrevista personal y exclusiva al director de la revista en España, Josep Cabello. Tras recopilar los datos históricos, para analizar su evolución (contenidos, publicidad, difusión y suscriptores, se han tomado como base de estudio los datos aportados por la Oficina de Justificación de la Difusión y otros elaborados por la analista. Los resultados aportan la historia de la revista, y desvelan que la edición española de National Geographic se convierte en su primera década de existencia en una de las revistas de referencia en el campo de la divulgación científica en España.In english: The investigation aims study provide the history of the Spanish edition of National Geographic magazine in its first decade of existence (1997-2007, and to analyze its evolution in this chronological period. The methodology has consisted in a bibliographic review on directories, catalogs, metasearch, and various databases (Teseo, TDR, Dialnet, Compludoc, Rebiun, CSIC along with a personal interview and exclusive to the director of the magazine in Spain, Joseph Cabello. After collecting historical data, to analyze its evolution (content, adversiting, diffusion and subscribers has been taken as a basis for study data provides by the Office of Justification for Dissemination and others prepared by the analyst. The results provide the history of the magazine, and reveal that the Spanish edition of National Geographic becomes its first decade of existence in one of the reference magazine in the field of popular science in Spain.

  20. FY15 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chamberlin, Clyde E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This Technical Letter Report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2015 on the under-sodium viewing (USV) PNNL project 58745, Work Package AT-15PN230102. This TLR satisfies PNNL’s M3AT-15PN2301027 milestone, and is focused on summarizing the design, development, and evaluation of a two-dimensional matrix phased-array probe referred to as serial number 3 (SN3). In addition, this TLR also provides the results from a performance demonstration of in-sodium target detection trials at 260°C using a one-dimensional 22-element linear array developed in FY14 and referred to as serial number 2 (SN2).

  1. Site Annual Environmental Report for 1997 - Executive Summary

    International Nuclear Information System (INIS)

    Biermann, A.H.; Althouse, P.E; Brandstetter, E.R.; Christofferson, E.C.; Fields, B.C.; Gallegos, G.M.; Garcia, L.M.; Harrach, R.J.; Larson, J.M.; Tate, P.J.

    1998-01-01

    The Environmental Report 1997 is prepared for the U.S. Department of Energy (DOE), as required by DOE Order 5400.1 and DOE Order 231.1, by the Environmental Protection Department (EPD) at the Lawrence Livermore National Laboratory (LLNL). The results of LLNL's environmental monitoring and compliance effort and an assessment of the impact of LLNL operations on the environment and the public are presented in this publication

  2. FY16-20 Strategic Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, Amber Suzanne [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-07-01

    Welcome to our FY16–FY20 Strategic Plan, which both refects our continued dedication to the work we do and reinforces the importance of the integrated Laboratories’ strategic framework to our future. This document is the result of the leadership team’s journey over the past few years in response to the needs of our nation. In an external environment that continues to change, sometimes in unexpected ways, it is critical that our mission areas and our foundation become increasingly synergistic, forming a whole whose parts are interdependent.

  3. FY08 VPP Program Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dossett, Sharon D.

    2008-01-01

    The Voluntary Protection Program (VPP) is a recognized third-party certification of worker safety and health program excellence, based on industry best practices that focus on management leadership and employee involvement, as well as other safety and health program elements. This Pacific Northwest National Laboratory (PNNL) VPP Program Evaluation is the FY-2008 report of the PNNL VPP Steering Committee regarding the status of VPP at PNNL. It is an update of the previous annual report dated January, 2007 and was completed in January 2008. An annual evaluation of the status of VPP is required of all sites that participate in the DOE-VPP. This report provides a detailed summary of the PNNL VPP Steering Committee’s evaluation of program performance and documents both strengths and improvement opportunities related to the various aspects of the VPP model.

  4. Life Sciences Program Tasks and Bibliography for FY 1997

    Science.gov (United States)

    Nelson, John C. (Editor)

    1998-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.

  5. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  6. FY 1997 congressional budget request: Budget highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This is an overview of the 1997 budget request for the US DOE. The topics of the overview include a policy overview, the budget by business line, business lines by organization, crosswalk from business line to appropriation, summary by appropriation, energy supply research and development, uranium supply and enrichment activities, uranium enrichment decontamination and decommissioning fund, general science and research, weapons activities, defense environmental restoration and waste management, defense nuclear waste disposal, departmental administration, Office of the Inspector General, power marketing administrations, Federal Energy Regulatory commission, nuclear waste disposal fund, fossil energy research and development, naval petroleum and oil shale reserves, energy conservation, economic regulation, strategic petroleum reserve, energy information administration, clean coal technology and a Department of Energy Field Facilities map.

  7. LBA-ECO TG-07 Ground-based Biometry Data at km 83 Site, Tapajos National Forest: 1997

    Data.gov (United States)

    National Aeronautics and Space Administration — A field inventory of trees was conducted in March of 1997 in a logging concession at the Tapajos National Forest, south of Santarem, Para, Brazil. The inventory was...

  8. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories

    Science.gov (United States)

    Kiehlbauch, Julia A.; Hannett, George E.; Salfinger, Max; Archinal, Wendy; Monserrat, Catherine; Carlyn, Cynthia

    2000-01-01

    Accurate antimicrobial susceptibility testing is vital for patient care and surveillance of emerging antimicrobial resistance. The National Committee for Clinical Laboratory Standards (NCCLS) outlines generally agreed upon guidelines for reliable and reproducible results. In January 1997 we surveyed 320 laboratories participating in the New York State Clinical Evaluation Program for General Bacteriology proficiency testing. Our survey addressed compliance with NCCLS susceptibility testing guidelines for bacterial species designated a problem (Staphylococcus aureus and Enterococcus species) or fastidious (Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria gonorrhoeae) organism. Specifically, we assessed compliance with guidelines for inoculum preparation, medium choice, number of disks per plate, and incubation conditions for disk diffusion tests. We also included length of incubation for S. aureus and Enterococcus species. We found overall compliance with the five characteristics listed above in 80 of 153 responding laboratories (50.6%) for S. aureus and 72 of 151 (47.7%) laboratories for Enterococcus species. The most common problem was an incubation time shortened to less than 24 h. Overall compliance with the first four characteristics was reported by 92 of 221 (41.6%) laboratories for S. pneumoniae, 49 of 163 (30.1%) laboratories for H. influenzae, and 11 of 77 (14.3%) laboratories for N. gonorrhoeae. Laboratories varied from NCCLS guidelines by placing an excess number of disks per plate. Laboratories also reported using alternative media for Enterococcus species, N. gonorrhoeae, and H. influenzae. This study demonstrates a need for education among clinical laboratories to increase compliance with NCCLS guidelines. PMID:10970381

  9. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  10. Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.

  11. FY2007 NREL Energy Storage R&D Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.

    2007-11-01

    The National Renewable Energy Laboratory is engaged in research and development activities to support achieving targets and objectives set by the Energy Storage Program at the Office of FreedomCAR and Vehicle Technology in the U.S. Department of Energy. These activities include: 1. supporting the Battery Technology Development Program with battery thermal characterization and modeling and with energy storage system simulations and analysis; 2. supporting the Applied Research Program by developing thermal models to address abuse of Li-Ion batteries; and 3. supporting the Focused Long-Term Research Program by investigating improved Li-Ion battery electrode materials. This report summarizes the results of NREL energy storage activities in FY07.

  12. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  13. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R&D) demonstrations, non-INEL R&D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document.

  14. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    International Nuclear Information System (INIS)

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R ampersand D) demonstrations, non-INEL R ampersand D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document

  15. Waste-isolation projects, FY 1978

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1979-01-01

    This report describes Lawrence Livermore Laboratory (LLL) activities during FY 1978 in support of the National Waste Terminal Storage Program. Current projects at LLL fall into three categories: (1) field testing, (2) laboratory rock mechanics measurements, and (3) laboratory studies of sorption and leaching. Field test activities conducted in the Climax granite at the Nevada Test Site included electrical heater tests, preparation for a spent-fuel-storage test, and planning for a series of rock mechanics tests. The heater tests determined the in situ thermal properties of Climax granite and its in situ permeability as a function of rock temperature. The two main laboratory rock mechanics projects involved (1) measurement of the permeability, electrical conductivity, and acoustic velocity of 15-cm-diam cores of granitic rocks over a range of confining pressure, pore (water) pressure, and deviatoric stress, and (2) measurement of rock thermal properties as a function of temperature and confining pressure in the presence of pore fluids to 770 0 K and 200 Mpa. The leaching studies made use of an LLL-designed, single-pass leaching apparatus with three solutions, two leach temperatures, and three flow rates. The material evaluated was Np--Pu-doped simulated waste glass from Battelle Pacific Northwest Laboratories. The sorption studies involved standard static measurements of the equilibrium distribution coefficient (K/sub d/) for various radionuclides on a variety of rocks, and flow-through-core studies of dynamic sorption

  16. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  17. Institutional Plan FY 2003 - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Michael; Hansen, Todd

    2003-01-27

    The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the

  18. Status Report on the High-Temperature Steam Electrolysis Plant Model Developed in the Modelica Framework (FY17)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-29

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year 2015 (FY15), Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY16, INL developed two additional subsystems in the Modelica framework: (1) a high-temperature steam electrolysis (HTSE) plant as a high priority industrial plant to be integrated with a light water reactor (LWR) within an N-R HES and (2) a gas turbine power plant as a secondary energy supply. In FY17, five new components (i.e., a feedwater pump, a multi-stage compression system, a sweep-gas turbine, flow control valves, and pressure control valves) have been incorporated into the HTSE system proposed in FY16, aiming to better realistically characterize all key components of concern. Special attention has been given to the controller settings based on process models (i.e., direct synthesis method), aiming to improve process dynamics and controllability. A dynamic performance analysis of the improved LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. The analysis (evaluated in terms of the step response) clearly shows that the FY17 model resulted in superior output responses with much smaller settling times and less oscillatory behavior in response to disturbances in the electric load than those

  19. Planning integration FY 1996 program plan. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This Multi-Year Program Plan (MAP) Planning Integration Program, Work Breakdown Structure (WBS) Element 1.8.2, is the primary management tool to document the technical, schedule, and cost baseline for work directed by the US Department of Energy (DOE), Richland Operations Office (RL). As an approved document, it establishes an agreement between RL and the performing contractors for the work to be performed. It was prepared by Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The MYPPs for the Hanford Site programs are to provide a picture from fiscal year (FY) 1996 through FY 2002. At RL Planning and Integration Division (PID) direction, only the FY 1996 Planning Integration Program work scope has been planned and presented in this MAP. Only those known significant activities which occur after FY 1996 are portrayed in this MAP. This is due to the uncertainty of who will be accomplishing what work scope when, following the award of the Management and Integration (M ampersand I) contract

  20. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)