WorldWideScience

Sample records for fuzzy-stochastic mixed-integer programming

  1. Network interdiction and stochastic integer programming

    CERN Document Server

    2003-01-01

    On March 15, 2002 we held a workshop on network interdiction and the more general problem of stochastic mixed integer programming at the University of California, Davis. Jesús De Loera and I co-chaired the event, which included presentations of on-going research and discussion. At the workshop, we decided to produce a volume of timely work on the topics. This volume is the result. Each chapter represents state-of-the-art research and all of them were refereed by leading investigators in the respective fields. Problems - sociated with protecting and attacking computer, transportation, and social networks gain importance as the world becomes more dep- dent on interconnected systems. Optimization models that address the stochastic nature of these problems are an important part of the research agenda. This work relies on recent efforts to provide methods for - dressing stochastic mixed integer programs. The book is organized with interdiction papers first and the stochastic programming papers in the second part....

  2. Stochastic programming with integer recourse

    NARCIS (Netherlands)

    van der Vlerk, Maarten Hendrikus

    1995-01-01

    In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic

  3. A fuzzy mixed integer programming for marketing planning

    Directory of Open Access Journals (Sweden)

    Abolfazl Danaei

    2014-03-01

    Full Text Available One of the primary concerns to market a product is to find appropriate channel to target customers. The recent advances on information technology have created new products with tremendous opportunities. This paper presents a mixed integer programming technique based on McCarthy's 4PS to locate suitable billboards for marketing newly introduced IPHONE product. The paper considers two types of information including age and income and tries to find the best places such that potential consumers aged 25-35 with high income visit the billboards and the cost of advertisement is minimized. The model is formulated in terms of mixed integer programming and it has been applied for potential customers who live in city of Tabriz, Iran. Using a typical software package, the model detects appropriate places in various parts of the city.

  4. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development.

    Science.gov (United States)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei

    2017-03-01

    Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.

  5. Stochastic integer programming by dynamic programming

    NARCIS (Netherlands)

    Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Stougie, L.; Ermoliev, Yu.; Wets, R.J.B.

    1988-01-01

    Stochastic integer programming is a suitable tool for modeling hierarchical decision situations with combinatorial features. In continuation of our work on the design and analysis of heuristics for such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to

  6. Design of problem-specific evolutionary algorithm/mixed-integer programming hybrids: two-stage stochastic integer programming applied to chemical batch scheduling

    Science.gov (United States)

    Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian

    2007-07-01

    Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the

  7. Multiparametric programming based algorithms for pure integer and mixed-integer bilevel programming problems

    KAUST Repository

    Domínguez, Luis F.

    2010-12-01

    This work introduces two algorithms for the solution of pure integer and mixed-integer bilevel programming problems by multiparametric programming techniques. The first algorithm addresses the integer case of the bilevel programming problem where integer variables of the outer optimization problem appear in linear or polynomial form in the inner problem. The algorithm employs global optimization techniques to convexify nonlinear terms generated by a reformulation linearization technique (RLT). A continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem appear in linear or polynomial forms in the inner problem. The algorithm relies on the use of global multiparametric mixed-integer programming techniques at the inner optimization level. In both algorithms, the multiparametric solutions obtained are embedded in the outer problem to form a set of single-level (M)(I)(N)LP problems - which are then solved to global optimality using standard fixed-point (global) optimization methods. Numerical examples drawn from the open literature are presented to illustrate the proposed algorithms. © 2010 Elsevier Ltd.

  8. A new methodological development for solving linear bilevel integer programming problems in hybrid fuzzy environment

    Directory of Open Access Journals (Sweden)

    Animesh Biswas

    2016-04-01

    Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided.

  9. A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Huang, G.H.; Zhu, H.; Li, Y.P.

    2017-01-01

    In this study, a fuzzy stochastic dynamic fractional programming (FSDFP) method is proposed for supporting sustainable management of electric power system (EPS) under dual uncertainties. As an improvement upon the mixed-integer linear fractional programming, FSDFP can not only tackle multi-objective issues effectively without setting weights, but also can deal with uncertain parameters which have both stochastic and fuzzy characteristics. Thus, the developed method can help provide valuable information for supporting capacity-expansion planning and in-depth policy analysis of EPS management problems. For demonstrating these advantages, FSDFP has been applied to a case study of a typical regional EPS planning, where the decision makers have to deal with conflicts between economic development that maximizes the system profit and environmental protection that minimizes the carbon dioxide emissions. The obtained results can be analyzed to generate several decision alternatives, and can then help decision makers make suitable decisions under different input scenarios. Furthermore, comparisons of the solution from FSDFP method with that from fuzzy stochastic dynamic linear programming, linear fractional programming and dynamic stochastic fractional programming methods are undertaken. The contrastive analysis reveals that FSDFP is a more effective approach that can better characterize the complexities and uncertainties of real EPS management problems. - Highlights: • A fuzzy stochastic dynamic fractional programming (FSDFP) method is proposed. • FSDFP can address multiple conflicting objectives without setting weights. • FSDFP can reflect dual uncertainties with both stochastic and fuzzy characteristics. • Some reasonable solutions for a case of power system sustainable planning are generated. • Comparisons of the solutions from FSDFP with other optimization methods are undertaken.

  10. Multiparametric programming based algorithms for pure integer and mixed-integer bilevel programming problems

    KAUST Repository

    Domí nguez, Luis F.; Pistikopoulos, Efstratios N.

    2010-01-01

    continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem

  11. Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging through Chance Constrained Mixed-Integer Programming

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Oren, Shmuel S.

    2017-01-01

    This paper presents a distribution locational marginal pricing (DLMP) method through chance constrained mixed-integer programming designed to alleviate the possible congestion in the future distribution network with high penetration of electric vehicles (EVs). In order to represent the stochastic...

  12. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    Science.gov (United States)

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    Science.gov (United States)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  14. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)

    2014-06-19

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

  15. Solving stochastic programs with integer recourse by enumeration : a framework using Gröbner basis reductions

    NARCIS (Netherlands)

    Schultz, R.; Stougie, L.; Vlerk, van der M.H.

    1998-01-01

    In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the

  16. An Improvement for Fuzzy Stochastic Goal Programming Problems

    Directory of Open Access Journals (Sweden)

    Shu-Cheng Lin

    2017-01-01

    Full Text Available We examined the solution process for linear programming problems under a fuzzy and random environment to transform fuzzy stochastic goal programming problems into standard linear programming problems. A previous paper that revised the solution process with the lower-side attainment index motivated our work. In this paper, we worked on a revision for both-side attainment index to amend its definition and theorems. Two previous examples were used to examine and demonstrate our improvement over previous results. Our findings not only improve the previous paper with both-side attainment index, but also provide a theoretical extension from lower-side attainment index to the both-side attainment index.

  17. Bivium as a Mixed Integer Programming Problem

    DEFF Research Database (Denmark)

    Borghoff, Julia; Knudsen, Lars Ramkilde; Stolpe, Mathias

    2009-01-01

    over $GF(2)$ into a combinatorial optimization problem. We convert the Boolean equation system into an equation system over $\\mathbb{R}$ and formulate the problem of finding a $0$-$1$-valued solution for the system as a mixed-integer programming problem. This enables us to make use of several...

  18. An overview of solution methods for multi-objective mixed integer linear programming programs

    DEFF Research Database (Denmark)

    Andersen, Kim Allan; Stidsen, Thomas Riis

    Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...

  19. An SDP Approach for Multiperiod Mixed 0–1 Linear Programming Models with Stochastic Dominance Constraints for Risk Management

    DEFF Research Database (Denmark)

    Escudero, Laureano F.; Monge, Juan Francisco; Morales, Dolores Romero

    2015-01-01

    In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multist...

  20. A Mixed-Integer Linear Programming approach to wind farm layout and inter-array cable routing

    DEFF Research Database (Denmark)

    Fischetti, Martina; Leth, John-Josef; Borchersen, Anders Bech

    2015-01-01

    A Mixed-Integer Linear Programming (MILP) approach is proposed to optimize the turbine allocation and inter-array offshore cable routing. The two problems are considered with a two steps strategy, solving the layout problem first and then the cable problem. We give an introduction to both problems...... and present the MILP models we developed to solve them. To deal with interference in the onshore cases, we propose an adaptation of the standard Jensen’s model, suitable for 3D cases. A simple Stochastic Programming variant of our model allows us to consider different wind scenarios in the optimization...

  1. STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP

    Directory of Open Access Journals (Sweden)

    Tessa Vanina Soetanto

    2004-01-01

    Full Text Available This paper presents a study about new heuristic algorithm performance compared to Mixed Integer Programming (MIP method in solving flowshop scheduling problem to reach minimum makespan. Performance appraisal is based on Efficiency Index (EI, Relative Error (RE and Elapsed Runtime. Abstract in Bahasa Indonesia : Makalah ini menyajikan penelitian tentang performance algoritma heuristik Pour terhadap metode Mixed Integer Programming (MIP dalam menyelesaikan masalah penjadwalan flowshop dengan tujuan meminimalkan makespan. Penilaian performance dilakukan berdasarkan nilai Efficiency Index (EI, Relative Error (RE dan Elapsed Runtime. Kata kunci: flowshop, makespan, algoritma heuristik Pour, Mixed Integer Programming.

  2. Mixed integer (0-1) fractional programming for decision support in paper production industry

    NARCIS (Netherlands)

    Claassen, G.D.H.

    2014-01-01

    This paper presents an effective and efficient method for solving a special class of mixed integer fractional programming (FP) problems. We take a classical reformulation approach for continuous FP as a starting point and extend it for solving a more general class of mixed integer (0–1) fractional

  3. FATCOP: A Fault Tolerant Condor-PVM Mixed Integer Program Solver

    National Research Council Canada - National Science Library

    Chen, Qun

    1999-01-01

    We describe FATCOP, a new parallel mixed integer program solver written in PVM. The implementation uses the Condor resource management system to provide a virtual machine composed of otherwise idle computers...

  4. Fuzzy stochastic damage mechanics (FSDM based on fuzzy auto-adaptive control theory

    Directory of Open Access Journals (Sweden)

    Ya-jun Wang

    2012-06-01

    Full Text Available In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through β probability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show β probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.

  5. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domínguez, Luis F.

    2012-06-25

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).

  6. A property of assignment type mixed integer linear programming problems

    NARCIS (Netherlands)

    Benders, J.F.; van Nunen, J.A.E.E.

    1982-01-01

    In this paper we will proof that rather tight upper bounds can be given for the number of non-unique assignments that are achieved after solving the linear programming relaxation of some types of mixed integer linear assignment problems. Since in these cases the number of splitted assignments is

  7. A mixed integer linear program for an integrated fishery | Hasan ...

    African Journals Online (AJOL)

    ... and labour allocation of quota based integrated fisheries. We demonstrate the workability of our model with a numerical example and sensitivity analysis based on data obtained from one of the major fisheries in New Zealand. Keywords: mixed integer linear program, fishing, trawler scheduling, processing, quotas ORiON: ...

  8. Water pollution control in river basin by interactive fuzzy interval multiobjective programming

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.B.; Chen, H.W. [National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Environmental Engineering; Shaw, D.G.; Yang, C.H. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Economics

    1997-12-01

    The potential conflict between protection of water quality and economic development by different uses of land within river basins is a common problem in regional planning. Many studies have applied multiobjective decision analysis under uncertainty to problems of this kind. This paper presents the interactive fuzzy interval multiobjective mixed integer programming (IFIMOMIP) model to evaluate optimal strategies of wastewater treatment levels within a river system by considering the uncertainties in decision analysis. The interactive fuzzy interval multiobjective mixed integer programming approach is illustrated in a case study for the evaluation of optimal wastewater treatment strategies for water pollution control in a river basin. In particular, it demonstrates how different types of uncertainty in a water pollution control system can be quantified and combined through the use of interval numbers and membership functions. The results indicate that such an approach is useful for handling system complexity and generating more flexible policies for water quality management in river basins.

  9. An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty

    International Nuclear Information System (INIS)

    Xie, Y.L.; Li, Y.P.; Huang, G.H.; Li, Y.F.

    2010-01-01

    In this study, an interval fixed-mix stochastic programming (IFSP) model is developed for greenhouse gas (GHG) emissions reduction management under uncertainties. In the IFSP model, methods of interval-parameter programming (IPP) and fixed-mix stochastic programming (FSP) are introduced into an integer programming framework, such that the developed model can tackle uncertainties described in terms of interval values and probability distributions over a multi-stage context. Moreover, it can reflect dynamic decisions for facility-capacity expansion during the planning horizon. The developed model is applied to a case of planning GHG-emission mitigation, demonstrating that IFSP is applicable to reflecting complexities of multi-uncertainty, dynamic and interactive energy management systems, and capable of addressing the problem of GHG-emission reduction. A number of scenarios corresponding to different GHG-emission mitigation levels are examined; the results suggest that reasonable solutions have been generated. They can be used for generating plans for energy resource/electricity allocation and capacity expansion and help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.

  10. Applied Integer Programming Modeling and Solution

    CERN Document Server

    Chen, Der-San; Dang, Yu

    2011-01-01

    An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and

  11. A hybrid Constraint Programming/Mixed Integer Programming framework for the preventive signaling maintenance crew scheduling problem

    DEFF Research Database (Denmark)

    Pour, Shahrzad M.; Drake, John H.; Ejlertsen, Lena Secher

    2017-01-01

    A railway signaling system is a complex and interdependent system which should ensure the safe operation of trains. We introduce and address a mixed integer optimisation model for the preventive signal maintenance crew scheduling problem in the Danish railway system. The problem contains many...... to feed as ‘warm start’ solutions to a Mixed Integer Programming (MIP) solver for further optimisation. We apply the CP/MIP framework to a section of the Danish rail network and benchmark our results against both direct application of a MIP solver and modelling the problem as a Constraint Optimisation...

  12. An Interval-Parameter Fuzzy Linear Programming with Stochastic Vertices Model for Water Resources Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Yan Han

    2013-01-01

    Full Text Available An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV method is developed for water resources management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP with stochastic programming (SP. As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue. The results indicate that reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.

  13. Chemotherapy appointment scheduling under uncertainty using mean-risk stochastic integer programming.

    Science.gov (United States)

    Alvarado, Michelle; Ntaimo, Lewis

    2018-03-01

    Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy treatments under limited resources such as the number of nurses and chairs. These cancer patients require a series of appointments over several weeks or months and the timing of these appointments is critical to the treatment's effectiveness. Additionally, the appointment duration, the acuity levels of each appointment, and the availability of clinic nurses are uncertain. The timing constraints, stochastic parameters, rising treatment costs, and increased demand of outpatient oncology clinic services motivate the need for efficient appointment schedules and clinic operations. In this paper, we develop three mean-risk stochastic integer programming (SIP) models, referred to as SIP-CHEMO, for the problem of scheduling individual chemotherapy patient appointments and resources. These mean-risk models are presented and an algorithm is devised to improve computational speed. Computational results were conducted using a simulation model and results indicate that the risk-averse SIP-CHEMO model with the expected excess mean-risk measure can decrease patient waiting times and nurse overtime when compared to deterministic scheduling algorithms by 42 % and 27 %, respectively.

  14. A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China

    International Nuclear Information System (INIS)

    Yu, L.; Li, Y.P.; Huang, G.H.

    2016-01-01

    In this study, a FSSOM (fuzzy-stochastic simulation-optimization model) is developed for planning EPS (electric power systems) with considering peak demand under uncertainty. FSSOM integrates techniques of SVR (support vector regression), Monte Carlo simulation, and FICMP (fractile interval chance-constrained mixed-integer programming). In FSSOM, uncertainties expressed as fuzzy boundary intervals and random variables can be effectively tackled. In addition, SVR coupled Monte Carlo technique is used for predicting the peak-electricity demand. The FSSOM is applied to planning EPS for the City of Qingdao, China. Solutions of electricity generation pattern to satisfy the city's peak demand under different probability levels and p-necessity levels have been generated. Results reveal that the city's electricity supply from renewable energies would be low (only occupying 8.3% of the total electricity generation). Compared with the energy model without considering peak demand, the FSSOM can better guarantee the city's power supply and thus reduce the system failure risk. The findings can help decision makers not only adjust the existing electricity generation/supply pattern but also coordinate the conflict interaction among system cost, energy supply security, pollutant mitigation, as well as constraint-violation risk. - Highlights: • FSSOM (Fuzzy-stochastic simulation-optimization model) is developed for planning EPS. • It can address uncertainties as fuzzy-boundary intervals and random variables. • FSSOM can satisfy peak-electricity demand and optimize power allocation. • Solutions under different probability levels and p-necessity levels are analyzed. • Results create tradeoff among system cost and peak-electricity demand violation risk.

  15. Relaxation and decomposition methods for mixed integer nonlinear programming

    CERN Document Server

    Nowak, Ivo; Bank, RE

    2005-01-01

    This book presents a comprehensive description of efficient methods for solving nonconvex mixed integer nonlinear programs, including several numerical and theoretical results, which are presented here for the first time. It contains many illustrations and an up-to-date bibliography. Because on the emphasis on practical methods, as well as the introduction into the basic theory, the book is accessible to a wide audience. It can be used both as a research and as a graduate text.

  16. Mixed integer linear programming model for dynamic supplier selection problem considering discounts

    Directory of Open Access Journals (Sweden)

    Adi Wicaksono Purnawan

    2018-01-01

    Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.

  17. Raw material utilization in slaughterhouses – optimizing expected profit using mixed-integer programming

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Kjærsgaard, Niels Christian

    Slaughterhouses are major players in the pork supply chain, and supply and demand must be matched in order to generate the highest profit. In particular, carcasses must be sorted in order to produce the “right” final products from the “right” carcasses. We develop a mixed-integer programming (MIP) ...... at slaughterhouses. Finally, we comment on the expected effect of variations in the raw material supply and the demand as well as future research concerning joint modelling of supply chain aspects.......Slaughterhouses are major players in the pork supply chain, and supply and demand must be matched in order to generate the highest profit. In particular, carcasses must be sorted in order to produce the “right” final products from the “right” carcasses. We develop a mixed-integer programming (MIP...

  18. A Mixed Integer Programming for Port Anzali Development Plan

    OpenAIRE

    Mahdieh Allahviranloo

    2009-01-01

    This paper introduces a mixed integer programming model to find the optimum development plan for port Anzali. The model minimizes total system costs taking into account both port infrastructure costs and shipping costs. Due to the multipurpose function of the port, the model consists of 1020 decision variables and 2490 constraints. Results of the model determine the optimum number of berths that should be constructed in each period and for each type of cargo. In addition to, the results of se...

  19. A mixed integer program to model spatial wildfire behavior and suppression placement decisions

    Science.gov (United States)

    Erin J. Belval; Yu Wei; Michael. Bevers

    2015-01-01

    Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...

  20. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part II: scheme analysis and mechanism revelation.

    Science.gov (United States)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong

    2017-03-01

    As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management

  1. An inexact multistage fuzzy-stochastic programming for regional electric power system management constrained by environmental quality.

    Science.gov (United States)

    Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei

    2017-12-01

    Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.

  2. A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty

    Science.gov (United States)

    Yin, Sisi; Nishi, Tatsushi

    2014-11-01

    Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.

  3. Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xiaodong.zhang@beg.utexas.edu [Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713 (United States); Huang, Gordon [Institute of Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada)

    2013-02-15

    Highlights: ► A dynamic stochastic possibilistic multiobjective programming model is developed. ► Greenhouse gas emission control is considered. ► Three planning scenarios are analyzed and compared. ► Optimal decision schemes under three scenarios and different p{sub i} levels are obtained. ► Tradeoffs between economics and environment are reflected. -- Abstract: Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management facilities have become a serious environmental issue. In MSW management, not only economic objectives but also environmental objectives should be considered simultaneously. In this study, a dynamic stochastic possibilistic multiobjective programming (DSPMP) model is developed for supporting MSW management and associated GHG emission control. The DSPMP model improves upon the existing waste management optimization methods through incorporation of fuzzy possibilistic programming and chance-constrained programming into a general mixed-integer multiobjective linear programming (MOP) framework where various uncertainties expressed as fuzzy possibility distributions and probability distributions can be effectively reflected. Two conflicting objectives are integrally considered, including minimization of total system cost and minimization of total GHG emissions from waste management facilities. Three planning scenarios are analyzed and compared, representing different preferences of the decision makers for economic development and environmental-impact (i.e. GHG-emission) issues in integrated MSW management. Optimal decision schemes under three scenarios and different p{sub i} levels (representing the probability that the constraints would be violated) are generated for planning waste flow allocation and facility capacity expansions as well as GHG emission control. The results indicate that economic and environmental tradeoffs can be effectively reflected through the proposed DSPMP model. The generated decision variables can help

  4. Applications and algorithms for mixed integer nonlinear programming

    International Nuclear Information System (INIS)

    Leyffer, Sven; Munson, Todd; Linderoth, Jeff; Luedtke, James; Miller, Andrew

    2009-01-01

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Discrete decision variables model dichotomies, discontinuities, and general logical relationships. Nonlinear functions are required to accurately represent physical properties such as pressure, stress, temperature, and equilibrium. Problems involving both discrete variables and nonlinear constraint functions are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems faced by researchers and practitioners. In this paper, we describe relevant scientific applications that are naturally modeled as MINLPs, we provide an overview of available algorithms and software, and we describe ongoing methodological advances for solving MINLPs. These algorithmic advances are making increasingly larger instances of this important family of problems tractable.

  5. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  6. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domí nguez, Luis F.; Pistikopoulos, Efstratios N.

    2012-01-01

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear

  7. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.; Claudel, Christian G.

    2012-01-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  8. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.

    2012-09-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  9. Mixed H-Infinity and Passive Filtering for Discrete Fuzzy Neural Networks With Stochastic Jumps and Time Delays.

    Science.gov (United States)

    Shi, Peng; Zhang, Yingqi; Chadli, Mohammed; Agarwal, Ramesh K

    2016-04-01

    In this brief, the problems of the mixed H-infinity and passivity performance analysis and design are investigated for discrete time-delay neural networks with Markovian jump parameters represented by Takagi-Sugeno fuzzy model. The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique. Applying the matrix decomposition techniques, sufficient conditions are provided for the solvability of the problems, which can be formulated in terms of linear matrix inequalities. A numerical example is also presented to illustrate the effectiveness of the proposed techniques.

  10. Mixed integer evolution strategies for parameter optimization.

    Science.gov (United States)

    Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C

    2013-01-01

    Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.

  11. Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program.

    Science.gov (United States)

    Zhang, Xiaodong; Huang, Gordon

    2013-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management facilities have become a serious environmental issue. In MSW management, not only economic objectives but also environmental objectives should be considered simultaneously. In this study, a dynamic stochastic possibilistic multiobjective programming (DSPMP) model is developed for supporting MSW management and associated GHG emission control. The DSPMP model improves upon the existing waste management optimization methods through incorporation of fuzzy possibilistic programming and chance-constrained programming into a general mixed-integer multiobjective linear programming (MOP) framework where various uncertainties expressed as fuzzy possibility distributions and probability distributions can be effectively reflected. Two conflicting objectives are integrally considered, including minimization of total system cost and minimization of total GHG emissions from waste management facilities. Three planning scenarios are analyzed and compared, representing different preferences of the decision makers for economic development and environmental-impact (i.e. GHG-emission) issues in integrated MSW management. Optimal decision schemes under three scenarios and different p(i) levels (representing the probability that the constraints would be violated) are generated for planning waste flow allocation and facility capacity expansions as well as GHG emission control. The results indicate that economic and environmental tradeoffs can be effectively reflected through the proposed DSPMP model. The generated decision variables can help the decision makers justify and/or adjust their waste management strategies based on their implicit knowledge and preferences. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2017-01-01

    -side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data...

  13. Optimal placement of capacitors in a radial network using conic and mixed integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box: 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

    2008-06-15

    This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming solver. The proposed method is validated via extensive comparisons with previously published results. (author)

  14. A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs

    DEFF Research Database (Denmark)

    Stidsen, Thomas Riis; Andersen, Kim Allan; Dammann, Bernd

    2014-01-01

    there is the complicating factor that some of the variables are required to be integral. The resulting class of problems is named multiobjective mixed integer programming (MOMIP) problems. Solving these kinds of optimization problems exactly requires a method that can generate the whole set of nondominated points (the...... Pareto-optimal front). In this paper, we first give a survey of the newly developed branch and bound methods for solving MOMIP problems. After that, we propose a new branch and bound method for solving a subclass of MOMIP problems, where only two objectives are allowed, the integer variables are binary......, and one of the two objectives has only integer variables. The proposed method is able to find the full set of nondominated points. It is tested on a large number of problem instances, from six different classes of MOMIP problems. The results reveal that the developed biobjective branch and bound method...

  15. Optimal Allocation of Static Var Compensator via Mixed Integer Conic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaohu [ORNL; Shi, Di [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Zhiwei [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Huang, Junhui [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Xu [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2017-01-01

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus system demonstrate the effectiveness of the proposed planning model.

  16. Generation Expansion Planning with Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DEFF Research Database (Denmark)

    Zhan, Yiduo; Zheng, Qipeng; Wang, Jianhui

    2016-01-01

    , the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming......Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined...

  17. Mixed-integer programming methods for transportation and power generation problems

    Science.gov (United States)

    Damci Kurt, Pelin

    This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.

  18. How Uncertain Information on Service Capacity Influences the Intermodal Routing Decision: A Fuzzy Programming Perspective

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2018-01-01

    Full Text Available Capacity uncertainty is a common issue in the transportation planning field. However, few studies discuss the intermodal routing problem with service capacity uncertainty. Based on our previous study on the intermodal routing under deterministic capacity consideration, we systematically explore how service capacity uncertainty influences the intermodal routing decision. First of all, we adopt trapezoidal fuzzy numbers to describe the uncertain information of the service capacity, and further transform the deterministic capacity constraint into a fuzzy chance constraint based on fuzzy credibility measure. We then integrate such fuzzy chance constraint into the mixed-integer linear programming (MILP model proposed in our previous study to develop a fuzzy chance-constrained programming model. To enable the improved model to be effectively programmed in the standard mathematical programming software and solved by exact solution algorithms, a crisp equivalent linear reformulation of the fuzzy chance constraint is generated. Finally, we modify the empirical case presented in our previous study by replacing the deterministic service capacities with trapezoidal fuzzy ones. Using the modified empirical case, we utilize sensitivity analysis and fuzzy simulation to analyze the influence of service capacity uncertainty on the intermodal routing decision, and summarize some interesting insights that are helpful for decision makers.

  19. A Mixed Integer Linear Programming Model for the North Atlantic Aircraft Trajectory Planning

    OpenAIRE

    Sbihi , Mohammed; Rodionova , Olga; Delahaye , Daniel; Mongeau , Marcel

    2015-01-01

    International audience; This paper discusses the trajectory planning problem for ights in the North Atlantic oceanic airspace (NAT). We develop a mathematical optimization framework in view of better utilizing available capacity by re-routing aircraft. The model is constructed by discretizing the problem parameters. A Mixed integer linear program (MILP) is proposed. Based on the MILP a heuristic to solve real-size instances is also introduced

  20. Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index

    International Nuclear Information System (INIS)

    Nikzad, Mehdi; Mozafari, Babak; Bashirvand, Mahdi; Solaymani, Soodabeh; Ranjbar, Ali Mohamad

    2012-01-01

    Recently in electricity markets, a massive focus has been made on setting up opportunities for participating demand side. Such opportunities, also known as demand response (DR) options, are triggered by either a grid reliability problem or high electricity prices. Two important challenges that market operators are facing are appropriate designing and reasonable pricing of DR options. In this paper, time-of-use program (TOU) as a prevalent time-varying program is modeled linearly based on own and cross elasticity definition. In order to decide on TOU rates, a stochastic model is proposed in which the optimum TOU rates are determined based on grid reliability index set by the operator. Expected Load Not Supplied (ELNS) is used to evaluate reliability of the power system in each hour. The proposed stochastic model is formulated as a two-stage stochastic mixed-integer linear programming (SMILP) problem and solved using CPLEX solver. The validity of the method is tested over the IEEE 24-bus test system. In this regard, the impact of the proposed pricing method on system load profile; operational costs and required capacity of up- and down-spinning reserve as well as improvement of load factor is demonstrated. Also the sensitivity of the results to elasticity coefficients is investigated. -- Highlights: ► Time-of-use demand response program is linearly modeled. ► A stochastic model is proposed to determine the optimum TOU rates based on ELNS index set by the operator. ► The model is formulated as a short-term two-stage stochastic mixed-integer linear programming problem.

  1. Scheduling of head-dependent cascaded hydro systems: Mixed-integer quadratic programming approach

    International Nuclear Information System (INIS)

    Catalao, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F.

    2010-01-01

    This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach.

  2. Fuzzy Stochastic Optimization Theory, Models and Applications

    CERN Document Server

    Wang, Shuming

    2012-01-01

    Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies.   The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...

  3. Scheduling of head-dependent cascaded hydro systems: Mixed-integer quadratic programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Catalao, J.P.S.; Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-03-15

    This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach. (author)

  4. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  5. Stochastic reservoir operation under drought with fuzzy objectives

    International Nuclear Information System (INIS)

    Parent, E.; Duckstein, L.

    1993-01-01

    Biojective reservoir operation under drought conditions is investigated using stochastic dynamic programming. As both objectives (irrigation water supply, water quality) can only be defined imprecisely, a fuzzy set approach is used to encode the decision maker (DM)'s preferences. The nature driven components are modeled by means of classical stage-state system analysis. The state is three dimensional (inflow memory, drought irrigation index, reservoir level); the decision vector elements are release and irrigation allocation. Stochasticity stems from the random nature of inflows and irrigation demands. The transition function includes a lag one inflow Markov model and mass balance equations. The human driven component is designed as a confluence of fuzzy objectives and constraints after Bellman and Zadeh. Fuzzy numbers are assessed to represent the DM's objectives by two different techniques, the direct one and indirect pairwise comparison. The real case study of the Neste river system in southwestern France is used to illustrate the approach; the result are compared to a classical sequential decision theoretical model derived earlier from the viewpoints of ease of modeling, computational efforts, plausibility and robustness of results

  6. Approximation in two-stage stochastic integer programming

    NARCIS (Netherlands)

    W. Romeijnders; L. Stougie (Leen); M. van der Vlerk

    2014-01-01

    htmlabstractApproximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value.

  7. Approximation in two-stage stochastic integer programming

    NARCIS (Netherlands)

    Romeijnders, W.; Stougie, L.; van der Vlerk, M.H.

    2014-01-01

    Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value. However,

  8. Integrative improvement method and mixed-integer programming in system planning

    International Nuclear Information System (INIS)

    Sadegheih, A.

    2002-01-01

    In this paper, system planning network is formulated for mixed-integer programming and a Ga. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The Dc load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions. and also provides information regarding the optimal generation at each generation point. This method of solutions is demonstrated on the expansion of a 5 bus -bar system to 6 bus-bars

  9. Short-term hydropower production planning by stochastic programming

    DEFF Research Database (Denmark)

    Fleten, Stein-Erik; Kristoffersen, Trine

    2008-01-01

    -term production planning a matter of spatial distribution among the reservoirs of the plant. Day-ahead market prices and reservoir inflows are, however, uncertain beyond the current operation day and water must be allocated among the reservoirs in order to strike a balance between current profits and expected......Within the framework of multi-stage mixed-integer linear stochastic programming we develop a short-term production plan for a price-taking hydropower plant operating under uncertainty. Current production must comply with the day-ahead commitments of the previous day which makes short...

  10. Integer programming

    CERN Document Server

    Conforti, Michele; Zambelli, Giacomo

    2014-01-01

    This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.

  11. Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design

    OpenAIRE

    Chenlu Miao; Gang Du; Yi Xia; Danping Wang

    2016-01-01

    Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP) to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP), which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard pr...

  12. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

    Science.gov (United States)

    Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana

    2018-01-01

    The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

  13. A Stochastic Integer Programming Model for Minimizing Cost in the Use of Rain Water Collectors for Firefighting

    Directory of Open Access Journals (Sweden)

    Luis A. Rivera-Morales

    2014-01-01

    Full Text Available In this paper we propose a stochastic integer programming optimization model to determine the optimal location and number of rain water collectors (RWCs for forest firefighting. The objective is to minimize expected total cost to control forest fires. The model is tested using a real case and several additional realistic scenarios. The impact on the solution of varying the limit on the number of RWCs, the RWC water capacity, the aircraft capacity, the water demands, and the aircraft operating cost is explored. Some observations are that the objective value improves with larger RWCs and with the use of aircraft with greater capacity.

  14. The use of mixed-integer programming for inverse treatment planning with pre-defined field segments

    International Nuclear Information System (INIS)

    Bednarz, Greg; Michalski, Darek; Houser, Chris; Huq, M. Saiful; Xiao Ying; Rani, Pramila Anne; Galvin, James M.

    2002-01-01

    Complex intensity patterns generated by traditional beamlet-based inverse treatment plans are often very difficult to deliver. In the approach presented in this work the intensity maps are controlled by pre-defining field segments to be used for dose optimization. A set of simple rules was used to define a pool of allowable delivery segments and the mixed-integer programming (MIP) method was used to optimize segment weights. The optimization problem was formulated by combining real variables describing segment weights with a set of binary variables, used to enumerate voxels in targets and critical structures. The MIP method was compared to the previously used Cimmino projection algorithm. The field segmentation approach was compared to an inverse planning system with a traditional beamlet-based beam intensity optimization. In four complex cases of oropharyngeal cancer the segmental inverse planning produced treatment plans, which competed with traditional beamlet-based IMRT plans. The mixed-integer programming provided mechanism for imposition of dose-volume constraints and allowed for identification of the optimal solution for feasible problems. Additional advantages of the segmental technique presented here are: simplified dosimetry, quality assurance and treatment delivery. (author)

  15. On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.

  16. Advances in mixed-integer programming methods for chemical production scheduling.

    Science.gov (United States)

    Velez, Sara; Maravelias, Christos T

    2014-01-01

    The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.

  17. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    Science.gov (United States)

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  18. Optimising multi-product multi-chance-constraint inventory control system with stochastic period lengths and total discount under fuzzy purchasing price and holding costs

    Science.gov (United States)

    Allah Taleizadeh, Ata; Niaki, Seyed Taghi Akhavan; Aryanezhad, Mir-Bahador

    2010-10-01

    While the usual assumptions in multi-periodic inventory control problems are that the orders are placed at the beginning of each period (periodic review) or depending on the inventory level they can happen at any time (continuous review), in this article, we relax these assumptions and assume that the periods between two replenishments of the products are independent and identically distributed random variables. Furthermore, assuming that the purchasing price are triangular fuzzy variables, the quantities of the orders are of integer-type and that there are space and service level constraints, total discount are considered to purchase products and a combination of back-order and lost-sales are taken into account for the shortages. We show that the model of this problem is a fuzzy mixed-integer nonlinear programming type and in order to solve it, a hybrid meta-heuristic intelligent algorithm is proposed. At the end, a numerical example is given to demonstrate the applicability of the proposed methodology and to compare its performance with one of the existing algorithms in real world inventory control problems.

  19. Integer programming theory, applications, and computations

    CERN Document Server

    Taha, Hamdy A

    1975-01-01

    Integer Programming: Theory, Applications, and Computations provides information pertinent to the theory, applications, and computations of integer programming. This book presents the computational advantages of the various techniques of integer programming.Organized into eight chapters, this book begins with an overview of the general categorization of integer applications and explains the three fundamental techniques of integer programming. This text then explores the concept of implicit enumeration, which is general in a sense that it is applicable to any well-defined binary program. Other

  20. Bipartite Fuzzy Stochastic Differential Equations with Global Lipschitz Condition

    Directory of Open Access Journals (Sweden)

    Marek T. Malinowski

    2016-01-01

    Full Text Available We introduce and analyze a new type of fuzzy stochastic differential equations. We consider equations with drift and diffusion terms occurring at both sides of equations. Therefore we call them the bipartite fuzzy stochastic differential equations. Under the Lipschitz and boundedness conditions imposed on drifts and diffusions coefficients we prove existence of a unique solution. Then, insensitivity of the solution under small changes of data of equation is examined. Finally, we mention that all results can be repeated for solutions to bipartite set-valued stochastic differential equations.

  1. Fuzzy Stochastic Unit Commitment Model with Wind Power and Demand Response under Conditional Value-At-Risk Assessment

    Directory of Open Access Journals (Sweden)

    Jiafu Yin

    2018-02-01

    Full Text Available With the increasing penetration of wind power and demand response integrated into the grid, the combined uncertainties from wind power and demand response have been a challenging concern for system operators. It is necessary to develop an approach to accommodate the combined uncertainties in the source side and load side. In this paper, the fuzzy stochastic conditional value-at-risk criterions are proposed as the risk measure of the combination of both wind power uncertainty and demand response uncertainty. To improve the computational tractability without sacrificing the accuracy, the fuzzy stochastic chance-constrained goal programming is proposed to transfer the fuzzy stochastic conditional value-at-risk to a deterministic equivalent. The operational risk of forecast error under fuzzy stochastic conditional value-at-risk assessment is represented by the shortage of reserve resource, which can be further divided into the load-shedding risk and the wind curtailment risk. To identify different priority levels for the different objective functions, the three-stage day-ahead unit commitment model is proposed through preemptive goal programming, in which the reliability requirement has the priority over the economic operation. Finally, a case simulation is performed on the IEEE 39-bus system to verify the effectiveness and efficiency of the proposed model.

  2. Design of supply chain in fuzzy environment

    Science.gov (United States)

    Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap

    2013-05-01

    Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.

  3. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to

  4. Assembly of customized food pantries in a food bank by fuzzy optimization

    International Nuclear Information System (INIS)

    Ortuño, Jonathan Cuevas; Padilla, Alejandra Gómez

    2017-01-01

    The contribution of this research is to propose a new problem of linear-mixed programming model (LMPM) for the allocation-packing of multiple pantries personalized for Food Banks (FB) considering the opinion of the Decision Maker (DM) in the selection of the best solution. Design/methodology/approach: A food allocation-packing system is modeled as a mixed integer problem (MIP) and a fuzzy mixed integer linear problem (FMILP). 250 families and 100 products were considered. The solutions were found using Lingo 13® (for both deterministic and fuzzy model). To select a good solution in the fuzzy model, this research adapted an interactive method proposed in the literature. The relevance of this modification is that the opinion of a decision maker (DM) is included and considered. Findings: The results for the deterministic and fuzzy model are compared in terms of their accomplishment of the restrictions (mainly nutritional and logistic) and the time needed to achieve a solution. Research limitations/implications: This paper was done considering quantity, weight and volume restrictions so that the pantry will contain a variety of products; it is not considered how the products will be stored into the pantry. Practical implications: This research proposes an alternative food management system at a food bank. The proposed system organizes the content of customized food pantries by the bias of a food allocation model. Social implications: Our paper analyzes a Food Bank (FB) in México. With this proposal, food will be distributed to families in poverty considering their particular nutritional needs. Originality/value: The main contribution of this article lies in the proposal of a new model of mixed integer linear problem (MILP) for the allocation-packing of food, solved with fuzzy possibilistic programming that simultaneously considers nutritional and logistic restrictions applied to a type of organization that has been little studied in the literature and where the

  5. Assembly of customized food pantries in a food bank by fuzzy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ortuño, Jonathan Cuevas; Padilla, Alejandra Gómez

    2017-07-01

    The contribution of this research is to propose a new problem of linear-mixed programming model (LMPM) for the allocation-packing of multiple pantries personalized for Food Banks (FB) considering the opinion of the Decision Maker (DM) in the selection of the best solution. Design/methodology/approach: A food allocation-packing system is modeled as a mixed integer problem (MIP) and a fuzzy mixed integer linear problem (FMILP). 250 families and 100 products were considered. The solutions were found using Lingo 13® (for both deterministic and fuzzy model). To select a good solution in the fuzzy model, this research adapted an interactive method proposed in the literature. The relevance of this modification is that the opinion of a decision maker (DM) is included and considered. Findings: The results for the deterministic and fuzzy model are compared in terms of their accomplishment of the restrictions (mainly nutritional and logistic) and the time needed to achieve a solution. Research limitations/implications: This paper was done considering quantity, weight and volume restrictions so that the pantry will contain a variety of products; it is not considered how the products will be stored into the pantry. Practical implications: This research proposes an alternative food management system at a food bank. The proposed system organizes the content of customized food pantries by the bias of a food allocation model. Social implications: Our paper analyzes a Food Bank (FB) in México. With this proposal, food will be distributed to families in poverty considering their particular nutritional needs. Originality/value: The main contribution of this article lies in the proposal of a new model of mixed integer linear problem (MILP) for the allocation-packing of food, solved with fuzzy possibilistic programming that simultaneously considers nutritional and logistic restrictions applied to a type of organization that has been little studied in the literature and where the

  6. Assembly of customized food pantries in a food bank by fuzzy optimization

    Directory of Open Access Journals (Sweden)

    Jonathan Cuevas Ortuño

    2017-10-01

    Full Text Available Purpose: The contribution of this research is to propose a new problem of linear-mixed programming model (LMPM for the allocation-packing of multiple pantries personalized for Food Banks (FB considering the opinion of the Decision Maker (DM in the selection of the best solution. Design/methodology/approach: A food allocation-packing system is modeled as a mixed integer problem (MIP and a fuzzy mixed integer linear problem (FMILP.  250 families and 100 products were considered. The solutions were found using Lingo 13® (for both deterministic and fuzzy model. To select a good solution in the fuzzy model, this research adapted an interactive method proposed in the literature. The relevance of this modification is that the opinion of a decision maker (DM is included and considered. Findings: The results for the deterministic and fuzzy model are compared in terms of their accomplishment of the restrictions (mainly nutritional and logistic and the time needed to achieve a solution.   Research limitations/implications: This paper was done considering quantity, weight and volume restrictions so that in theory, the pantry will be able to contain different products; it is not considered how the products will be stored into the pantry. Practical implications: This research proposes an alternative food management system at a food bank. The proposed system organizes the content of customized food pantries by the bias of a food allocation model. Social implications: Our paper analyzes a Food Bank (FB in México. With this proposal, food will be distributed to families in poverty considering their particular nutritional needs. Originality/value: The main contribution of this article lies in the proposal of a new model of mixed integer linear problem (MILP  for the allocationpacking of food, solved with fuzzy posibilistic programming that simultaneously considers nutritional and logistic restrictions applied to a type of organization that has been little

  7. Presolving and regularization in mixed-integer second-order cone optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    Mixed-integer second-order cone optimization is a powerful mathematical framework capable of representing both logical conditions and nonlinear relationships in mathematical models of industrial optimization problems. What is more, solution methods are already part of many major commercial solvers...... both continuous and mixed-integer conic optimization in general, is discovered and treated. This part of the thesis continues the studies of facial reduction preceding the work of Borwein and Wolkowicz [17] in 1981, when the first algorithmic cure for these kinds of reliability issues were formulated....... An important distinction to make between continuous and mixed-integer optimization, however, is that the reliability issues occurring in mixed-integer optimization cannot be blamed on the practitioner’s formulation of the problem. Specifically, as shown, the causes for these issues may well lie within...

  8. A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system

    International Nuclear Information System (INIS)

    Zhang, Jianyun; Liu, Pei; Zhou, Zhe; Ma, Linwei; Li, Zheng; Ni, Weidou

    2014-01-01

    Highlights: • Integration of heat streams with HRSG in a polygeneration system is studied. • A mixed-integer nonlinear programming model is proposed to optimize heat network. • Operating parameters and heat network configuration are optimized simultaneously. • The optimized heat network highly depends on the HRSG type and model specification. - Abstract: A large number of heat flows at various temperature and pressure levels exist in a polygeneration plant which co-produces electricity and chemical products. Integration of these external heat flows in a heat recovery steam generator (HRSG) has great potential to further enhance energy efficiency of such a plant; however, it is a challenging problem arising from the large design space of heat exchanger network. In this paper, a mixed-integer nonlinear programming model is developed for the design optimization of a HRSG with consideration of all alternative matches between the HRSG and external heat flows. This model is applied to four polygeneration cases with different HRSG types, and results indicate that the optimized heat network mainly depends on the HRSG type and the model specification

  9. Bilevel programming problems theory, algorithms and applications to energy networks

    CERN Document Server

    Dempe, Stephan; Pérez-Valdés, Gerardo A; Kalashnykova, Nataliya; Kalashnikova, Nataliya

    2015-01-01

    This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.

  10. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2017-10-01

    Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.

  11. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    Science.gov (United States)

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  12. PERIODIC REVIEW SYSTEM FOR INVENTORY REPLENISHMENT CONTROL FOR A TWO-ECHELON LOGISTICS NETWORK UNDER DEMAND UNCERTAINTY: A TWO-STAGE STOCHASTIC PROGRAMING APPROACH

    OpenAIRE

    Cunha, P.S.A.; Oliveira, F.; Raupp, Fernanda M.P.

    2017-01-01

    ABSTRACT Here, we propose a novel methodology for replenishment and control systems for inventories of two-echelon logistics networks using a two-stage stochastic programming, considering periodic review and uncertain demands. In addition, to achieve better customer services, we introduce a variable rationing rule to address quantities of the item in short. The devised models are reformulated into their deterministic equivalent, resulting in nonlinear mixed-integer programming models, which a...

  13. Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective mathematical programming approach

    International Nuclear Information System (INIS)

    Zakariazadeh, Alireza; Jadid, Shahram; Siano, Pierluigi

    2014-01-01

    Highlights: • Environmental/economical scheduling of energy and reserve. • Simultaneous participation of loads in both energy and reserve scheduling. • Aggregate wind generation and demand uncertainties in a stochastic model. • Stochastic scheduling of energy and reserve in a distribution system. • Demand response providers’ participation in energy and reserve scheduling. - Abstract: In this paper a stochastic multi-objective economical/environmental operational scheduling method is proposed to schedule energy and reserve in a smart distribution system with high penetration of wind generation. The proposed multi-objective framework, based on augmented ε-constraint method, is used to minimize the total operational costs and emissions and to generate Pareto-optimal solutions for the energy and reserve scheduling problem. Moreover, fuzzy decision making process is employed to extract one of the Pareto-optimal solutions as the best compromise non-dominated solution. The wind power and demand forecast errors are considered in this approach and the reserve can be furnished by the main grid as well as distributed generators and responsive loads. The consumers participate in both energy and reserve markets using various demand response programs. In order to facilitate small and medium loads participation in demand response programs, a Demand Response Provider (DRP) aggregates offers for load reduction. In order to solve the proposed optimization model, the Benders decomposition technique is used to convert the large scale mixed integer non-linear problem into mixed-integer linear programming and non-linear programming problems. The effectiveness of the proposed scheduling approach is verified on a 41-bus distribution test system over a 24-h period

  14. Planning of fuel coal imports using a mixed integer programming method

    Energy Technology Data Exchange (ETDEWEB)

    Shih, L.H. [National Cheng Kung University, Tainan (Taiwan). Dept. of Mineral and Petroleum Engineering

    1997-12-31

    In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model.

  15. Planning of fuel coal imports using a mixed integer programming method

    International Nuclear Information System (INIS)

    Shih, L.H.

    1997-01-01

    In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model

  16. Fuzzy stochastic multiobjective programming

    CERN Document Server

    Sakawa, Masatoshi; Katagiri, Hideki

    2011-01-01

    With a stress on interactive decision-making, this work breaks new ground by covering both the random nature of events related to environments, and the fuzziness of human judgements. The text runs from mathematical preliminaries to future research directions.

  17. Application of mixed-integer linear programming in a car seats assembling process

    Directory of Open Access Journals (Sweden)

    Jorge Iván Perez Rave

    2011-12-01

    Full Text Available In this paper, a decision problem involving a car parts manufacturing company is modeled in order to prepare the company for an increase in demand. Mixed-integer linear programming was used with the following decision variables: creating a second shift, purchasing additional equipment, determining the required work force, and other alternatives involving new manners of work distribution that make it possible to separate certain operations from some workplaces and integrate them into others to minimize production costs. The model was solved using GAMS. The solution consisted of programming 19 workers under a configuration that merges two workplaces and separates some operations from some workplaces. The solution did not involve purchasing additional machinery or creating a second shift. As a result, the manufacturing paradigms that had been valid in the company for over 14 years were broken. This study allowed the company to increase its productivity and obtain significant savings. It also shows the benefits of joint work between academia and companies, and provides useful information for professors, students and engineers regarding production and continuous improvement.

  18. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    Science.gov (United States)

    Syed Ali, M.; Balasubramaniam, P.

    2008-07-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.

  19. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Syed Ali, M.; Balasubramaniam, P.

    2008-01-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB

  20. Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming

    Directory of Open Access Journals (Sweden)

    P. C. Roling

    2008-01-01

    Full Text Available We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool that aims to optimize the routing and scheduling of airport surface traffic in such a way as to deconflict the taxi plans while optimizing delay, total taxi-time, or some other airport efficiency metric. Certain input parameters related to resource demand, such as the expected landing times and the expected pushback times, are rather difficult to predict accurately. Due to uncertainty in the input data driving the taxi-planning process, the taxi-planning tool is designed such that it produces solutions that are robust to uncertainty. The taxi-planning concept presented herein, which is based on mixed-integer linear programming, is designed such that it is able to adapt to perturbations in these input conditions, as well as to account for failure in the actual execution of surface trajectories. The capabilities of the tool are illustrated in a simple hypothetical airport.

  1. Learning oncogenetic networks by reducing to mixed integer linear programming.

    Science.gov (United States)

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  2. Optimizing Water Allocation under Uncertain System Conditions for Water and Agriculture Future Scenarios in Alfeios River Basin (Greece—Part B: Fuzzy-Boundary Intervals Combined with Multi-Stage Stochastic Programming Model

    Directory of Open Access Journals (Sweden)

    Eleni Bekri

    2015-11-01

    Full Text Available Optimal water allocation within a river basin still remains a great modeling challenge for engineers due to various hydrosystem complexities, parameter uncertainties and their interactions. Conventional deterministic optimization approaches have given their place to stochastic, fuzzy and interval-parameter programming approaches and their hybrid combinations for overcoming these difficulties. In many countries, including Mediterranean countries, water resources management is characterized by uncertain, imprecise and limited data because of the absence of permanent measuring systems, inefficient river monitoring and fragmentation of authority responsibilities. A fuzzy-boundary-interval linear programming methodology developed by Li et al. (2010 is selected and applied in the Alfeios river basin (Greece for optimal water allocation under uncertain system conditions. This methodology combines an ordinary multi-stage stochastic programming with uncertainties expressed as fuzzy-boundary intervals. Upper- and lower-bound solution intervals for optimized water allocation targets and probabilistic water allocations and shortages are estimated under a baseline scenario and four water and agricultural policy future scenarios for an optimistic and a pessimistic attitude of the decision makers. In this work, the uncertainty of the random water inflows is incorporated through the simultaneous generation of stochastic equal-probability hydrologic scenarios at various inflow positions instead of using a scenario-tree approach in the original methodology.

  3. Integer programming for the generalized high school timetabling problem

    DEFF Research Database (Denmark)

    Kristiansen, Simon; Sørensen, Matias; Stidsen, Thomas Riis

    2015-01-01

    , the XHSTT format serves as a common ground for researchers within this area. This paper describes the first exact method capable of handling an arbitrary instance of the XHSTT format. The method is based on a mixed-integer linear programming (MIP) model, which is solved in two steps with a commercial...

  4. COMPARISON BETWEEN MIXED INTEGER PROGRAMMING WITH HEURISTIC METHOD FOR JOB SHOP SCHEDULING WITH SEPARABLE SEQUENCE-DEPENDENT SETUPS

    Directory of Open Access Journals (Sweden)

    I Gede Agus Widyadana

    2001-01-01

    Full Text Available The decisions to choose appropriate tools for solving industrial problems are not just tools that achieve optimal solution only but it should consider computation time too. One of industrial problems that still difficult to achieve both criteria is scheduling problem. This paper discuss comparison between mixed integer programming which result optimal solution and heuristic method to solve job shop scheduling problem with separable sequence-dependent setup. The problems are generated and the result shows that the heuristic methods still cannot satisfy optimal solution.

  5. Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming

    DEFF Research Database (Denmark)

    Rasmussen, Kourosh Marjani; Clausen, Jens

    2007-01-01

    We consider the dynamics of the Danish mortgage loan system and propose several models to reflect the choices of a mortgagor as well as his attitude towards risk. The models are formulated as multi stage stochastic integer programs, which are difficult to solve for more than 10 stages. Scenario...

  6. Comparing Mixed & Integer Programming vs. Constraint Programming by solving Job-Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Renata Melo e Silva de Oliveira

    2015-03-01

    Full Text Available Scheduling is a key factor for operations management as well as for business success. From industrial Job-shop Scheduling problems (JSSP, many optimization challenges have emerged since de 1960s when improvements have been continuously required such as bottlenecks allocation, lead-time reductions and reducing response time to requests.  With this in perspective, this work aims to discuss 3 different optimization models for minimizing Makespan. Those 3 models were applied on 17 classical problems of examples JSSP and produced different outputs.  The first model resorts on Mixed and Integer Programming (MIP and it resulted on optimizing 60% of the studied problems. The other models were based on Constraint Programming (CP and approached the problem in two different ways: a model CP1 is a standard IBM algorithm whereof restrictions have an interval structure that fail to solve 53% of the proposed instances, b Model CP-2 approaches the problem with disjunctive constraints and optimized 88% of the instances. In this work, each model is individually analyzed and then compared considering: i Optimization success performance, ii Computational processing time, iii Greatest Resource Utilization and, iv Minimum Work-in-process Inventory. Results demonstrated that CP-2 presented best results on criteria i and ii, but MIP was superior on criteria iii and iv and those findings are discussed at the final section of this work.

  7. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  8. Robust stochastic fuzzy possibilistic programming for environmental decision making under uncertainty

    International Nuclear Information System (INIS)

    Zhang, Xiaodong; Huang, Guo H.; Nie, Xianghui

    2009-01-01

    Nonpoint source (NPS) water pollution is one of serious environmental issues, especially within an agricultural system. This study aims to propose a robust chance-constrained fuzzy possibilistic programming (RCFPP) model for water quality management within an agricultural system, where solutions for farming area, manure/fertilizer application amount, and livestock husbandry size under different scenarios are obtained and interpreted. Through improving upon the existing fuzzy possibilistic programming, fuzzy robust programming and chance-constrained programming approaches, the RCFPP can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original fuzzy constraints, the RCFPP enhances the robustness of the optimization processes and resulting solutions. The results of the case study indicate that useful information can be obtained through the proposed RCFPP model for providing feasible decision schemes for different agricultural activities under different scenarios (combinations of different p-necessity and p i levels). A p-necessity level represents the certainty or necessity degree of the imprecise objective function, while a p i level means the probabilities at which the constraints will be violated. A desire to acquire high agricultural income would decrease the certainty degree of the event that maximization of the objective be satisfied, and potentially violate water management standards; willingness to accept low agricultural income will run into the risk of potential system failure. The decision variables under combined p-necessity and p i levels were useful for the decision makers to justify and/or adjust the decision schemes for the agricultural activities through incorporation of their implicit knowledge. The results also suggest that

  9. Fuzzy production planning models for an unreliable production system with fuzzy production rate and stochastic/fuzzy demand rate

    Directory of Open Access Journals (Sweden)

    K. A. Halim

    2011-01-01

    Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.

  10. A Mixed Integer Programming Poultry Feed Ration Optimisation Problem Using the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Godfrey Chagwiza

    2016-01-01

    Full Text Available In this paper, a feed ration problem is presented as a mixed integer programming problem. An attempt to find the optimal quantities of Moringa oleifera inclusion into the poultry feed ration was done and the problem was solved using the Bat algorithm and the Cplex solver. The study used findings of previous research to investigate the effects of Moringa oleifera inclusion in poultry feed ration. The results show that the farmer is likely to gain US$0.89 more if Moringa oleifera is included in the feed ration. Results also show superiority of the Bat algorithm in terms of execution time and number of iterations required to find the optimum solution as compared with the results obtained by the Cplex solver. Results revealed that there is a significant economic benefit of Moringa oleifera inclusion into the poultry feed ration.

  11. A planning model with a solution algorithm for ready mixed concrete production and truck dispatching under stochastic travel times

    Science.gov (United States)

    Yan, S.; Lin, H. C.; Jiang, X. Y.

    2012-04-01

    In this study the authors employ network flow techniques to construct a systematic model that helps ready mixed concrete carriers effectively plan production and truck dispatching schedules under stochastic travel times. The model is formulated as a mixed integer network flow problem with side constraints. Problem decomposition and relaxation techniques, coupled with the CPLEX mathematical programming solver, are employed to develop an algorithm that is capable of efficiently solving the problems. A simulation-based evaluation method is also proposed to evaluate the model, coupled with a deterministic model, and the method currently used in actual operations. Finally, a case study is performed using real operating data from a Taiwan RMC firm. The test results show that the system operating cost obtained using the stochastic model is a significant improvement over that obtained using the deterministic model or the manual approach. Consequently, the model and the solution algorithm could be useful for actual operations.

  12. An efficient computational method for a stochastic dynamic lot-sizing problem under service-level constraints

    NARCIS (Netherlands)

    Tarim, S.A.; Ozen, U.; Dogru, M.K.; Rossi, R.

    2011-01-01

    We provide an efficient computational approach to solve the mixed integer programming (MIP) model developed by Tarim and Kingsman [8] for solving a stochastic lot-sizing problem with service level constraints under the static–dynamic uncertainty strategy. The effectiveness of the proposed method

  13. Identifying optimal regional solid waste management strategies through an inexact integer programming model containing infinite objectives and constraints.

    Science.gov (United States)

    He, Li; Huang, Guo-He; Zeng, Guang-Ming; Lu, Hong-Wei

    2009-01-01

    The previous inexact mixed-integer linear programming (IMILP) method can only tackle problems with coefficients of the objective function and constraints being crisp intervals, while the existing inexact mixed-integer semi-infinite programming (IMISIP) method can only deal with single-objective programming problems as it merely allows the number of constraints to be infinite. This study proposes, an inexact mixed-integer bi-infinite programming (IMIBIP) method by incorporating the concept of functional intervals into the programming framework. Different from the existing methods, the IMIBIP can tackle the inexact programming problems that contain both infinite objectives and constraints. The developed method is applied to capacity planning of waste management systems under a variety of uncertainties. Four scenarios are considered for comparing the solutions of IMIBIP with those of IMILP. The results indicate that reasonable solutions can be generated by the IMIBIP method. Compared with IMILP, the system cost from IMIBIP would be relatively high since the fluctuating market factors are considered; however, the IMILP solutions are associated with a raised system reliability level and a reduced constraint violation risk level.

  14. Linear and integer programming made easy

    CERN Document Server

    Hu, T C

    2016-01-01

    Linear and integer programming are fundamental toolkits for data and information science and technology, particularly in the context of today’s megatrends toward statistical optimization, machine learning, and big data analytics. Drawn from over 30 years of classroom teaching and applied research experience, this textbook provides a crisp and practical introduction to the basics of linear and integer programming. The authors’ approach is accessible to students from all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification, and computer vision. Readers will learn to cast hard combinatorial problems as mathematical programming optimizations, understand how to achieve formulations where the objective and constraints are linear, choose appropriate solution methods, and interpret results appropriately. •Provides a concise introduction to linear and integer programming, appropriate for undergraduates, graduates, a short cours...

  15. A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing

    International Nuclear Information System (INIS)

    Wang, Xingwei; Cai, Yanpeng; Chen, Jiajun; Dai, Chao

    2013-01-01

    In this study, a GFIPMIP (grey-forecasting interval-parameter mixed-integer programming) approach was developed for supporting IEEM (integrated electric-environmental management) in Beijing. It was an attempt to incorporate an energy-forecasting model within a general modeling framework at the municipal level. The developed GFIPMIP model can not only forecast electric demands, but also reflect dynamic, interactive, and uncertain characteristics of the IEEM system in Beijing. Moreover, it can address issues regarding power supply, and emission reduction of atmospheric pollutants and GHG (greenhouse gas). Optimal solutions were obtained related to power generation patterns and facility capacity expansion schemes under a series of system constraints. Two scenarios were analyzed based on multiple environmental policies. The results were useful for helping decision makers identify desired management strategies to guarantee the city's power supply and mitigate emissions of GHG and atmospheric pollutants. The results also suggested that the developed GFIPMIP model be applicable to similar engineering problems. - Highlights: • A grey-forecasting interval-parameter mixed integer programming (GFIPMIP) approach was developed. • It could reflect dynamic, interactive, and uncertain characteristics of an IEEM system. • The developed GFIPMIP approach was used for supporting IEEM system planning in Beijing. • Two scenarios were established based on different environmental policies and management targets. • Optimal schemes for power generation, energy supply, and environmental protection were identified

  16. Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion

    Directory of Open Access Journals (Sweden)

    Didier Kumwimba Seya

    2015-11-01

    Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.

  17. Stochastic multiobjective self-scheduling of a power producer in joint energy and reserves markets

    International Nuclear Information System (INIS)

    Vahidinasab, V.; Jadid, S.

    2010-01-01

    This paper presents a stochastic multiobjective model for self-scheduling of a power producer which participates in the day-ahead joint energy and reserves markets. The objective of a power producer is to compromise the conflicting objectives of payoff maximization and gaseous emissions minimization when committing its generation of thermal units. The proposed schedule will be used by the power producers to decide on emission quota arbitrage opportunities and for strategic bidding to the energy and reserves market. The paper analyzes a scenario-based multiobjective model in which random distributions, such as price forecasting inaccuracies as well as forced outage of generating units are modeled as scenarios tree using a combined fuzzy c-mean/Monte-Carlo simulation (FCM/MCS) method. With the above procedure the stochastic multiobjective self-scheduling problem is converted into corresponding deterministic problems. Then a multiobjective mathematical programming (MMP) approach based on ε-constraint method is implemented for each deterministic scenario. Piecewise linearized fuel and emission cost functions are applied for computational efficiency and the model is formulated as a mixed-integer programming (MIP) problem. Numerical simulations for a power producer with 21 thermal units are discussed to demonstrate the performance of the proposed approach in increasing expected payoffs by adjusting the emission quota arbitrage opportunities. (author)

  18. A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints

    Science.gov (United States)

    Li, Jinquan; Feng, Shuang; Mi, Honghai

    In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.

  19. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    Science.gov (United States)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  20. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    Science.gov (United States)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  1. A fixed recourse integer programming approach towards a ...

    African Journals Online (AJOL)

    Regardless of the success that linear programming and integer linear programming has had in applications in engineering, business and economics, one has to challenge the assumed reality that these optimization models represent. In this paper the certainty assumptions of an integer linear program application is ...

  2. Fuzzy multiobjective models for optimal operation of a hydropower system

    Science.gov (United States)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  3. Optimising the selection of food items for food frequency questionnaires using Mixed Integer Linear Programming

    NARCIS (Netherlands)

    Lemmen-Gerdessen, van J.C.; Souverein, O.W.; Veer, van 't P.; Vries, de J.H.M.

    2015-01-01

    Objective To support the selection of food items for FFQs in such a way that the amount of information on all relevant nutrients is maximised while the food list is as short as possible. Design Selection of the most informative food items to be included in FFQs was modelled as a Mixed Integer Linear

  4. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

    Directory of Open Access Journals (Sweden)

    Xue-Gang Zhou

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

  5. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    Directory of Open Access Journals (Sweden)

    S. Molla-Alizadeh-Zavardehi

    2014-01-01

    Full Text Available This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA, variable neighborhood search (VNS, and simulated annealing (SA frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms.

  6. Neutrosophic Integer Programming Problem

    Directory of Open Access Journals (Sweden)

    Mai Mohamed

    2017-02-01

    Full Text Available In this paper, we introduce the integer programming in neutrosophic environment, by considering coffecients of problem as a triangulare neutrosophic numbers. The degrees of acceptance, indeterminacy and rejection of objectives are simultaneously considered.

  7. An inexact fuzzy two-stage stochastic model for quantifying the efficiency of nonpoint source effluent trading under uncertainty

    International Nuclear Information System (INIS)

    Luo, B.; Maqsood, I.; Huang, G.H.; Yin, Y.Y.; Han, D.J.

    2005-01-01

    Reduction of nonpoint source (NPS) pollution from agricultural lands is a major concern in most countries. One method to reduce NPS pollution is through land retirement programs. This method, however, may result in enormous economic costs especially when large sums of croplands need to be retired. To reduce the cost, effluent trading can be employed to couple with land retirement programs. However, the trading efforts can also become inefficient due to various uncertainties existing in stochastic, interval, and fuzzy formats in agricultural systems. Thus, it is desired to develop improved methods to effectively quantify the efficiency of potential trading efforts by considering those uncertainties. In this respect, this paper presents an inexact fuzzy two-stage stochastic programming model to tackle such problems. The proposed model can facilitate decision-making to implement trading efforts for agricultural NPS pollution reduction through land retirement programs. The applicability of the model is demonstrated through a hypothetical effluent trading program within a subcatchment of the Lake Tai Basin in China. The study results indicate that the efficiency of the trading program is significantly influenced by precipitation amount, agricultural activities, and level of discharge limits of pollutants. The results also show that the trading program will be more effective for low precipitation years and with stricter discharge limits

  8. Influence of fuzzy norms and other heuristics on “Mixed fuzzy rule formation”

    OpenAIRE

    Gabriel, Thomas R.; Berthold, Michael R.

    2004-01-01

    In Mixed Fuzzy Rule Formation [Int. J. Approx. Reason. 32 (2003) 67] a method to extract mixed fuzzy rules from data was introduced. The underlying algorithm s performance is influenced by the choice of fuzzy t-norm and t-conorm, and a heuristic to avoid conflicts between patterns and rules of different classes throughout training. In the following addendum to [Int. J. Approx. Reason. 32 (2003) 67], we discuss in more depth how these parameters affect the generalization performance of the res...

  9. Mixed-integer nonlinear approach for the optimal scheduling of a head-dependent hydro chain

    Energy Technology Data Exchange (ETDEWEB)

    Catalao, J.P.S.; Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-08-15

    This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain. We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to earlier studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas. Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper. Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement. (author)

  10. Integer programming techniques for educational timetabling

    DEFF Research Database (Denmark)

    Fonseca, George H.G.; Santos, Haroldo G.; Carrano, Eduardo G.

    2017-01-01

    in recent studies in the field. This work presents new cuts and reformulations for the existing integer programming model for XHSTT. The proposed cuts improved hugely the linear relaxation of the formulation, leading to an average gap reduction of 32%. Applied to XHSTT-2014 instance set, the alternative...... formulation provided four new best known lower bounds and, used in a matheuristic framework, improved eleven best known solutions. The computational experiments also show that the resulting integer programming models from the proposed formulation are more effectively solved for most of the instances....

  11. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    KAUST Repository

    Canepa, Edward S.

    2013-01-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for some decision variable. We use this fact to pose the problem of detecting spoofing cyber-attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offline. A numerical implementation is performed on a cyber-attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © 2013 IEEE.

  12. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    KAUST Repository

    Canepa, Edward S.

    2013-09-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill- Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offliine. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © American Institute of Mathematical Sciences.

  13. Fuzzy stochastic generalized reliability studies on embankment systems based on first-order approximation theorem

    Directory of Open Access Journals (Sweden)

    Wang Yajun

    2008-12-01

    Full Text Available In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM based on the harmonious finite element (HFE technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.

  14. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  15. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    International Nuclear Information System (INIS)

    Sun Wei; Huang, Guo H.; Lv Ying; Li Gongchen

    2012-01-01

    Highlights: ► Inexact piecewise-linearization-based fuzzy flexible programming is proposed. ► It’s the first application to waste management under multiple complexities. ► It tackles nonlinear economies-of-scale effects in interval-parameter constraints. ► It estimates costs more accurately than the linear-regression-based model. ► Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP’s advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP’s solutions demonstrate

  16. Interactive Fuzzy Goal Programming approach in multi-response stratified sample surveys

    Directory of Open Access Journals (Sweden)

    Gupta Neha

    2016-01-01

    Full Text Available In this paper, we applied an Interactive Fuzzy Goal Programming (IFGP approach with linear, exponential and hyperbolic membership functions, which focuses on maximizing the minimum membership values to determine the preferred compromise solution for the multi-response stratified surveys problem, formulated as a Multi- Objective Non Linear Programming Problem (MONLPP, and by linearizing the nonlinear objective functions at their individual optimum solution, the problem is approximated to an Integer Linear Programming Problem (ILPP. A numerical example based on real data is given, and comparison with some existing allocations viz. Cochran’s compromise allocation, Chatterjee’s compromise allocation and Khowaja’s compromise allocation is made to demonstrate the utility of the approach.

  17. A Mixed Integer Linear Programming Model for the Design of Remanufacturing Closed–loop Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Mbarek Elbounjimi

    2015-11-01

    Full Text Available Closed-loop supply chain network design is a critical issue due to its impact on both economic and environmental performances of the supply chain. In this paper, we address the problem of designing a multi-echelon, multi-product and capacitated closed-loop supply chain network. First, a mixed-integer linear programming formulation is developed to maximize the total profit. The main contribution of the proposed model is addressing two economic viability issues of closed-loop supply chain. The first issue is the collection of sufficient quantity of end-of-life products are assured by retailers against an acquisition price. The second issue is exploiting the benefits of colocation of forward facilities and reverse facilities. The presented model is solved by LINGO for some test problems. Computational results and sensitivity analysis are conducted to show the performance of the proposed model.

  18. Optimising the selection of food items for FFQs using Mixed Integer Linear Programming.

    Science.gov (United States)

    Gerdessen, Johanna C; Souverein, Olga W; van 't Veer, Pieter; de Vries, Jeanne Hm

    2015-01-01

    To support the selection of food items for FFQs in such a way that the amount of information on all relevant nutrients is maximised while the food list is as short as possible. Selection of the most informative food items to be included in FFQs was modelled as a Mixed Integer Linear Programming (MILP) model. The methodology was demonstrated for an FFQ with interest in energy, total protein, total fat, saturated fat, monounsaturated fat, polyunsaturated fat, total carbohydrates, mono- and disaccharides, dietary fibre and potassium. The food lists generated by the MILP model have good performance in terms of length, coverage and R 2 (explained variance) of all nutrients. MILP-generated food lists were 32-40 % shorter than a benchmark food list, whereas their quality in terms of R 2 was similar to that of the benchmark. The results suggest that the MILP model makes the selection process faster, more standardised and transparent, and is especially helpful in coping with multiple nutrients. The complexity of the method does not increase with increasing number of nutrients. The generated food lists appear either shorter or provide more information than a food list generated without the MILP model.

  19. Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design

    Directory of Open Access Journals (Sweden)

    Chenlu Miao

    2016-01-01

    Full Text Available Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP, which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard problem. Consequently, using traditional methods to solve such problems is difficult. Genetic algorithms (GAs have great value in solving BLP problems, and many studies have designed GAs to solve BLP problems; however, such GAs are typically designed for special cases that do not involve MINLBLP with one or multiple followers. Therefore, we propose a bilevel GA to solve these particular MINLBLP problems, which are widely used in product family problems. We give numerical examples to demonstrate the effectiveness of the proposed algorithm. In addition, a reducer family case study is examined to demonstrate practical applications of the proposed BLGA.

  20. Risk averse optimal operation of a virtual power plant using two stage stochastic programming

    International Nuclear Information System (INIS)

    Tajeddini, Mohammad Amin; Rahimi-Kian, Ashkan; Soroudi, Alireza

    2014-01-01

    VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. - Highlights: • Virtual power plant modelling considering a set of energy generating and conversion units. • Uncertainty modelling using two stage stochastic programming technique. • Risk modelling using conditional value at risk. • Flexible operation of renewable energy resources. • Electricity price uncertainty in day ahead energy markets

  1. A Maximin Approach for the Bi-criteria 0-1 Random Fuzzy Programming Problem Based on the Necessity Measure

    International Nuclear Information System (INIS)

    Hasuike, Takashi; Ishii, Hiroaki; Katagiri, Hideki

    2009-01-01

    This paper considers a bi-criteria general 0-1 random fuzzy programming problem based on the degree of necessity which include some previous 0-1 stochastic and fuzzy programming problems. The proposal problem is not well-defined due to including randomness and fuzziness. Therefore, by introducing chance constraint and fuzzy goals for objectives, and considering the maximization of the aspiration level for total profit and the degree of necessity that the objective function's value satisfies the fuzzy goal, the main problem is transformed into a deterministic equivalent problem. Furthermore, by using the assumption that each random variable is distributed according to a normal distribution, the problem is equivalently transformed into a basic 0-1 programming problem, and the efficient strict solution method to find an optimal solution is constructed.

  2. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    Science.gov (United States)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  3. Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)

    International Nuclear Information System (INIS)

    Sadeghi, Mehdi; Mirshojaeian Hosseini, Hossein

    2006-01-01

    For many years, energy models have been used in developed or developing countries to satisfy different needs in energy planning. One of major problems against energy planning and consequently energy models is uncertainty, spread in different economic, political and legal dimensions of energy planning. Confronting uncertainty, energy planners have often used two well-known strategies. The first strategy is stochastic programming, in which energy system planners define different scenarios and apply an explicit probability of occurrence to each scenario. The second strategy is Minimax Regret strategy that minimizes regrets of different decisions made in energy planning. Although these strategies have been used extensively, they could not flexibly and effectively deal with the uncertainties caused by fuzziness. 'Fuzzy Linear Programming (FLP)' is a strategy that can take fuzziness into account. This paper tries to demonstrate the method of application of FLP for optimization of supply energy system in Iran, as a case study. The used FLP model comprises fuzzy coefficients for investment costs. Following the mentioned purpose, it is realized that FLP is an easy and flexible approach that can be a serious competitor for other confronting uncertainties approaches, i.e. stochastic and Minimax Regret strategies. (author)

  4. Influence of fuzzy norms and other heuristics on "Mixed fuzzy rule formation" - [Corrigendum

    OpenAIRE

    Gabriel, Thomas R.; Berthold, Michael R.

    2008-01-01

    We hereby correct an error in Ref. [2], in which we studied the influence of various parameters that affect the generalization performance of fuzzy models constructed using the mixed fuzzy rule formation method [1].

  5. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui; Pinson, Pierre

    2017-07-01

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of wind power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.

  6. Robust stability analysis of Takagi—Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays

    International Nuclear Information System (INIS)

    Ali, M. Syed

    2011-01-01

    In this paper, the global stability of Takagi—Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature. (general)

  7. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.

    Science.gov (United States)

    Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi

    2016-01-01

    The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Integrated Fuzzy ANP, Fuzzy VIKOR and goal programming for sourcing in a supply chain: A case study from cable industry

    Directory of Open Access Journals (Sweden)

    Masoud Rezaei

    2013-10-01

    Full Text Available In today’s competitive business environment, companies strive to increase their market shares. All companies clearly understand that they have to reach this goal by implementing cost effective methods and increase profits as much as possible. The cost of purchasing raw materials and component parts are significant portion of products in most manufacturing firms. Supplier selection and evaluation have been widely recognized to be one of the most substantial issues on material purchasing. In order to choose reliable suppliers it is necessary to have a trade-off between some tangible and intangible factors where some of them are in serious conflict. In this paper, an integrated technique of analytical network process improved by VIKOR and fuzzy sets theory and multi-objective mixed integer nonlinear programming is proposed to determine the appropriate suppliers. The proposed model of this paper also determines the order quantity allocated to each supplier in the case of multiple sourcing, multiple products and multi-period time horizon for an Iranian cable company.

  9. A chance-constrained stochastic approach to intermodal container routing problems.

    Science.gov (United States)

    Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.

  10. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    Science.gov (United States)

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  11. Exponential stability result for discrete-time stochastic fuzzy uncertain neural networks

    International Nuclear Information System (INIS)

    Mathiyalagan, K.; Sakthivel, R.; Marshal Anthoni, S.

    2012-01-01

    This Letter addresses the stability analysis problem for a class of uncertain discrete-time stochastic fuzzy neural networks (DSFNNs) with time-varying delays. By constructing a new Lyapunov–Krasovskii functional combined with the free weighting matrix technique, a new set of delay-dependent sufficient conditions for the robust exponential stability of the considered DSFNNs is established in terms of Linear Matrix Inequalities (LMIs). Finally, numerical examples with simulation results are provided to illustrate the applicability and usefulness of the obtained theory. -- Highlights: ► Applications of neural networks require the knowledge of dynamic behaviors. ► Exponential stability of discrete-time stochastic fuzzy neural networks is studied. ► Linear matrix inequality optimization approach is used to obtain the result. ► Delay-dependent stability criterion is established in terms of LMIs. ► Examples with simulation are provided to show the effectiveness of the result.

  12. Stochastic Dynamic Mixed-Integer Programming (SD-MIP)

    Science.gov (United States)

    2015-05-05

    et al (2009), there is continuing interest in using SA methods for SP problems. This genre of methods creates a sequence of sampled subgradients...Sampling and Convergence) In current sampling-based methods motivated by Benders’ decomposition the essential role of sampling is to reduce the number of...Kleywegt, A, Shapiro, A, and Homem- de -Mello, T, (2002) SIAM Journal on Optimization archive, vol. 12Journal SIAM Journal on Optimization archive

  13. A multiple objective mixed integer linear programming model for power generation expansion planning

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, C. Henggeler; Martins, A. Gomes [INESC-Coimbra, Coimbra (Portugal); Universidade de Coimbra, Dept. de Engenharia Electrotecnica, Coimbra (Portugal); Brito, Isabel Sofia [Instituto Politecnico de Beja, Escola Superior de Tecnologia e Gestao, Beja (Portugal)

    2004-03-01

    Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process (Author)

  14. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  15. Mixed-Integer Conic Linear Programming: Challenges and Perspectives

    Science.gov (United States)

    2013-10-01

    The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky

  16. A Recourse-Based Type-2 Fuzzy Programming Method for Water Pollution Control under Uncertainty

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-11-01

    Full Text Available In this study, a recourse-based type-2 fuzzy programming (RTFP method is developed for supporting water pollution control of basin systems under uncertainty. The RTFP method incorporates type-2 fuzzy programming (TFP within a two-stage stochastic programming with recourse (TSP framework to handle uncertainties expressed as type-2 fuzzy sets (i.e., a fuzzy set in which the membership function is also fuzzy and probability distributions, as well as to reflect the trade-offs between conflicting economic benefits and penalties due to violated policies. The RTFP method is then applied to a real case of water pollution control in the Heshui River Basin (a rural area of China, where chemical oxygen demand (COD, total nitrogen (TN, total phosphorus (TP, and soil loss are selected as major indicators to identify the water pollution control strategies. Solutions of optimal production plans of economic activities under each probabilistic pollutant discharge allowance level and membership grades are obtained. The results are helpful for the authorities in exploring the trade-off between economic objective and pollutant discharge decision-making based on river water pollution control.

  17. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos

    2009-01-01

    The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature

  18. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br

    2009-04-15

    The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature.

  19. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    Science.gov (United States)

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-02

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2).

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Lucas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muldoon, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Stephen Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Matthew John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backlund, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawton, Craig R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice, Roy Eugene [Teledyne Brown Engineering, Huntsville, AL (United States)

    2017-09-01

    In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor- ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.

  1. Optimal Diet Planning for Eczema Patient Using Integer Programming

    Science.gov (United States)

    Zhen Sheng, Low; Sufahani, Suliadi

    2018-04-01

    Human diet planning is conducted by choosing appropriate food items that fulfill the nutritional requirements into the diet formulation. This paper discusses the application of integer programming to build the mathematical model of diet planning for eczema patients. The model developed is used to solve the diet problem of eczema patients from young age group. The integer programming is a scientific approach to select suitable food items, which seeks to minimize the costs, under conditions of meeting desired nutrient quantities, avoiding food allergens and getting certain foods into the diet that brings relief to the eczema conditions. This paper illustrates that the integer programming approach able to produce the optimal and feasible solution to deal with the diet problem of eczema patient.

  2. Partnership Selection Involving Mixed Types of Uncertain Preferences

    Directory of Open Access Journals (Sweden)

    Li-Ching Ma

    2013-01-01

    Full Text Available Partnership selection is an important issue in management science. This study proposes a general model based on mixed integer programming and goal-programming analytic hierarchy process (GP-AHP to solve partnership selection problems involving mixed types of uncertain or inconsistent preferences. The proposed approach is designed to deal with crisp, interval, step, fuzzy, or mixed comparison preferences, derive crisp priorities, and improve multiple solution problems. The degree of fulfillment of a decision maker’s preferences is also taken into account. The results show that the proposed approach keeps more solution ratios within the given preferred intervals and yields less deviation. In addition, the proposed approach can treat incomplete preference matrices with flexibility in reducing the number of pairwise comparisons required and can also be conveniently developed into a decision support system.

  3. Solving a mixed-integer linear programming model for a multi-skilled project scheduling problem by simulated annealing

    Directory of Open Access Journals (Sweden)

    H Kazemipoor

    2012-04-01

    Full Text Available A multi-skilled project scheduling problem (MSPSP has been generally presented to schedule a project with staff members as resources. Each activity in project network requires different skills and also staff members have different skills, too. This causes the MSPSP becomes a special type of a multi-mode resource-constrained project scheduling problem (MM-RCPSP with a huge number of modes. Given the importance of this issue, in this paper, a mixed integer linear programming for the MSPSP is presented. Due to the complexity of the problem, a meta-heuristic algorithm is proposed in order to find near optimal solutions. To validate performance of the algorithm, results are compared against exact solutions solved by the LINGO solver. The results are promising and show that optimal or near-optimal solutions are derived for small instances and good solutions for larger instances in reasonable time.

  4. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    Science.gov (United States)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  5. Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    Zhongwen Li

    2016-06-01

    Full Text Available Microgrids (MGs are presented as a cornerstone of smart grids. With the potential to integrate intermittent renewable energy sources (RES in a flexible and environmental way, the MG concept has gained even more attention. Due to the randomness of RES, load, and electricity price in MG, the forecast errors of MGs will affect the performance of the power scheduling and the operating cost of an MG. In this paper, a combined stochastic programming and receding horizon control (SPRHC strategy is proposed for microgrid energy management under uncertainty, which combines the advantages of two-stage stochastic programming (SP and receding horizon control (RHC strategy. With an SP strategy, a scheduling plan can be derived that minimizes the risk of uncertainty by involving the uncertainty of MG in the optimization model. With an RHC strategy, the uncertainty within the MG can be further compensated through a feedback mechanism with the lately updated forecast information. In our approach, a proper strategy is also proposed to maintain the SP model as a mixed integer linear constrained quadratic programming (MILCQP problem, which is solvable without resorting to any heuristics algorithms. The results of numerical experiments explicitly demonstrate the superiority of the proposed strategy for both island and grid-connected operating modes of an MG.

  6. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    Science.gov (United States)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  7. Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition

    Directory of Open Access Journals (Sweden)

    Malinowski Marek T.

    2015-01-01

    Full Text Available We analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors. The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect to data of the equation is also presented. We consider equations driven by semimartingale Z and equations driven by processes A;M from decomposition of Z, where A is a process of finite variation and M is a local martingale. These equations are not equivalent. Finally, we show that the analysis of the set-valued stochastic integral equations can be extended to a case of fuzzy stochastic integral equations driven by semimartingales under Osgood type condition. To obtain our results we use the set-valued and fuzzy Maruyama type approximations and Bihari’s inequality.

  8. A review on fuzzy and stochastic extensions of the multi index transportation problem

    Directory of Open Access Journals (Sweden)

    Singh Sungeeta

    2017-01-01

    Full Text Available The classical transportation problem (having source and destination as indices deals with the objective of minimizing a single criterion, i.e. cost of transporting a commodity. Additional indices such as commodities and modes of transport led to the Multi Index transportation problem. An additional fixed cost, independent of the units transported, led to the Multi Index Fixed Charge transportation problem. Criteria other than cost (such as time, profit etc. led to the Multi Index Bi-criteria transportation problem. The application of fuzzy and stochastic concept in the above transportation problems would enable researchers to not only introduce real life uncertainties but also obtain solutions of these transportation problems. The review article presents an organized study of the Multi Index transportation problem and its fuzzy and stochastic extensions till today, and aims to help researchers working with complex transportation problems.

  9. Soft ideal topological space and mixed fuzzy soft ideal topological space

    Directory of Open Access Journals (Sweden)

    Manash Borah

    2019-01-01

    Full Text Available In this paper we introduce fuzzy soft ideal and mixed fuzzy soft ideal topological spaces and some properties of this space. Also we introduce fuzzy soft $I$-open set, fuzzy soft $\\alpha$-$I$-open set, fuzzy soft pre-$I$-open set, fuzzy soft semi-$I$-open set and fuzzy soft $\\beta$-$I$-open set and discuss some of their properties.

  10. Multi-criteria multi-stakeholder decision analysis using a fuzzy-stochastic approach for hydrosystem management

    Science.gov (United States)

    Subagadis, Y. H.; Schütze, N.; Grundmann, J.

    2014-09-01

    The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water-society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA) using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.

  11. Genetic algorithms and fuzzy multiobjective optimization

    CERN Document Server

    Sakawa, Masatoshi

    2002-01-01

    Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...

  12. A mixed integer linear programming model applied in barge planning for Omya

    Directory of Open Access Journals (Sweden)

    David Bredström

    2015-12-01

    Full Text Available This article presents a mathematical model for barge transport planning on the river Rhine, which is part of a decision support system (DSS recently taken into use by the Swiss company Omya. The system is operated by Omya’s regional office in Cologne, Germany, responsible for distribution planning at the regional distribution center (RDC in Moerdijk, the Netherlands. The distribution planning is a vital part of supply chain management of Omya’s production of Norwegian high quality calcium carbonate slurry, supplied to European paper manufacturers. The DSS operates within a vendor managed inventory (VMI setting, where the customer inventories are monitored by Omya, who decides upon the refilling days and quantities delivered by barges. The barge planning problem falls into the category of inventory routing problems (IRP and is further characterized with multiple products, heterogeneous fleet with availability restrictions (the fleet is owned by third party, vehicle compartments, dependency of barge capacity on water-level, multiple customer visits, bounded customer inventories and rolling planning horizon. There are additional modelling details which had to be considered to make it possible to employ the model in practice at a sufficient level of detail. To the best of our knowledge, we have not been able to find similar models covering all these aspects in barge planning. This article presents the developed mixed-integer programming model and discusses practical experience with its solution. Briefly, it also puts the model into the context of the entire business case of value chain optimization in Omya.

  13. Determining on-fault earthquake magnitude distributions from integer programming

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  14. Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market

    International Nuclear Information System (INIS)

    Fotouhi Ghazvini, Mohammad Ali; Canizes, Bruno; Vale, Zita; Morais, Hugo

    2013-01-01

    Highlights: ► Decision making under uncertainty. ► Stochastic Mixed Integer Quadratic Programming applied to short-term maintenance scheduling. ► Outage scheduling in Oligopolistic electricity markets. ► Generation companies maintenance scheduling. -- Abstract: In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.

  15. Minimising negative externalities cost using 0-1 mixed integer linear programming model in e-commerce environment

    Directory of Open Access Journals (Sweden)

    Akyene Tetteh

    2017-04-01

    Full Text Available Background: Although the Internet boosts business profitability, without certain activities like efficient transportation, scheduling, products ordered via the Internet may reach their destination very late. The environmental problems (vehicle part disposal, carbon monoxide [CO], nitrogen oxide [NOx] and hydrocarbons [HC] associated with transportation are mostly not accounted for by industries. Objectives: The main objective of this article is to minimising negative externalities cost in e-commerce environments. Method: The 0-1 mixed integer linear programming (0-1 MILP model was used to model the problem statement. The result was further analysed using the externality percentage impact factor (EPIF. Results: The simulation results suggest that (1 The mode of ordering refined petroleum products does not impact on the cost of distribution, (2 an increase in private cost is directly proportional to the externality cost, (3 externality cost is largely controlled by the government and number of vehicles used in the distribution and this is in no way influenced by the mode of request (i.e. Internet or otherwise and (4 externality cost may be reduce by using more ecofriendly fuel system.

  16. An Intuitionistic Fuzzy Stochastic Decision-Making Method Based on Case-Based Reasoning and Prospect Theory

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available According to the case-based reasoning method and prospect theory, this paper mainly focuses on finding a way to obtain decision-makers’ preferences and the criterion weights for stochastic multicriteria decision-making problems and classify alternatives. Firstly, we construct a new score function for an intuitionistic fuzzy number (IFN considering the decision-making environment. Then, we aggregate the decision-making information in different natural states according to the prospect theory and test decision-making matrices. A mathematical programming model based on a case-based reasoning method is presented to obtain the criterion weights. Moreover, in the original decision-making problem, we integrate all the intuitionistic fuzzy decision-making matrices into an expectation matrix using the expected utility theory and classify or rank the alternatives by the case-based reasoning method. Finally, two illustrative examples are provided to illustrate the implementation process and applicability of the developed method.

  17. Load Frequency Control in Microgrids Based on a Stochastic Non-Integer Controller

    DEFF Research Database (Denmark)

    Khooban, Mohammad-Hassan; Niknam, Taher; Shasadeghi, Mokhtar

    2018-01-01

    of battery energy storage systems (BESS) can solve the unbalance effects between the load and supply of an isolated MG, their high cost and tendency toward degradation are restrictive factors, which call for the use of alternative power balancing options. In recent years, the concept of utilizing the BESSs...... of EVs, also known as vehicle-to-grid (V2G) concept, for frequency support of MGs has attracted a lot of attention. In order to allow the V2G controller operate optimally under a wide range of operation conditions caused by the intermittent behavior of renewable energy resources (RESs), a new multi...... hole optimization algorithm (MBHA) is utilized for the adaptive tuning of the non-integer fuzzy PID controller coefficients. The performance of the proposed LFC is evaluated by using real world wind and solar radiation data. Finally, the extensive studies and hardware-in-the-loop (HIL) simulations...

  18. Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration

    Directory of Open Access Journals (Sweden)

    Alberto Policriti

    2009-10-01

    Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The specific contribution in this work consists in an increase of the flexibility of the translation scheme, obtained by allowing a dynamic reconfiguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.

  19. Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays

    International Nuclear Information System (INIS)

    Zhao Hongyong; Ding Nan; Chen Ling

    2009-01-01

    This paper is concerned with the problem of exponential stability analysis for fuzzy cellular neural network with delays. By constructing suitable Lyapunov functional and using stochastic analysis we present some sufficient conditions ensuring almost sure exponential stability for the network. Moreover, an example is given to demonstrate the advantages of our method.

  20. Mixed integer linear programming for maximum-parsimony phylogeny inference.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2008-01-01

    Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

  1. Stochastic massless fields I: Integer spin

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-04-01

    Nelson's stochastic quantization scheme is applied to classical massless tensor potential in ''Coulomb'' gauge. The relationship between stochastic potential field in various gauges is discussed using the case of vector potential as an illustration. It is possible to identify the Euclidean tensor potential with the corresponding stochastic field in physical Minkowski space-time. Stochastic quantization of massless fields can also be carried out in terms of field strength tensors. An example of linearized stochastic gravitational field in vacuum is given. (author)

  2. Fuzzy interval Finite Element/Statistical Energy Analysis for mid-frequency analysis of built-up systems with mixed fuzzy and interval parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2016-10-01

    This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.

  3. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  4. A novel two-stage stochastic programming model for uncertainty characterization in short-term optimal strategy for a distribution company

    International Nuclear Information System (INIS)

    Ahmadi, Abdollah; Charwand, Mansour; Siano, Pierluigi; Nezhad, Ali Esmaeel; Sarno, Debora; Gitizadeh, Mohsen; Raeisi, Fatima

    2016-01-01

    In order to supply the demands of the end users in a competitive market, a distribution company purchases energy from the wholesale market while other options would be in access in the case of possessing distributed generation units and interruptible loads. In this regard, this study presents a two-stage stochastic programming model for a distribution company energy acquisition market model to manage the involvement of different electric energy resources characterized by uncertainties with the minimum cost. In particular, the distribution company operations planning over a day-ahead horizon is modeled as a stochastic mathematical optimization, with the objective of minimizing costs. By this, distribution company decisions on grid purchase, owned distributed generation units and interruptible load scheduling are determined. Then, these decisions are considered as boundary constraints to a second step, which deals with distribution company's operations in the hour-ahead market with the objective of minimizing the short-term cost. The uncertainties in spot market prices and wind speed are modeled by means of probability distribution functions of their forecast errors and the roulette wheel mechanism and lattice Monte Carlo simulation are used to generate scenarios. Numerical results show the capability of the proposed method. - Highlights: • Proposing a new a stochastic-based two-stage operations framework in retail competitive markets. • Proposing a Mixed Integer Non-Linear stochastic programming. • Employing roulette wheel mechanism and Lattice Monte Carlo Simulation.

  5. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    Science.gov (United States)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  6. Multi-criteria multi-stakeholder decision analysis using a fuzzy-stochastic approach for hydrosystem management

    Directory of Open Access Journals (Sweden)

    Y. H. Subagadis

    2014-09-01

    Full Text Available The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water–society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.

  7. Logic integer programming models for signaling networks.

    Science.gov (United States)

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  8. CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    2016-01-01

    The Conic Benchmark Library is an ongoing community-driven project aiming to challenge commercial and open source solvers on mainstream cone support. In this paper, 121 mixed-integer and continuous second-order cone problem instances have been selected from 11 categories as representative...

  9. Mixed-integer representations in control design mathematical foundations and applications

    CERN Document Server

    Prodan, Ionela; Olaru, Sorin; Niculescu, Silviu-Iulian

    2016-01-01

    In this book, the authors propose efficient characterizations of the non-convex regions that appear in many control problems, such as those involving collision/obstacle avoidance and, in a broader sense, in the description of feasible sets for optimization-based control design involving contradictory objectives. The text deals with a large class of systems that require the solution of appropriate optimization problems over a feasible region, which is neither convex nor compact. The proposed approach uses the combinatorial notion of hyperplane arrangement, partitioning the space by a finite collection of hyperplanes, to describe non-convex regions efficiently. Mixed-integer programming techniques are then applied to propose acceptable formulations of the overall problem. Multiple constructions may arise from the same initial problem, and their complexity under various parameters - space dimension, number of binary variables, etc. - is also discussed. This book is a useful tool for academic researchers and grad...

  10. Fuzzy Multi-objective Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    Amna Rehmat

    2007-07-01

    Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.

  11. Spillways Scheduling for Flood Control of Three Gorges Reservoir Using Mixed Integer Linear Programming Model

    Directory of Open Access Journals (Sweden)

    Maoyuan Feng

    2014-01-01

    Full Text Available This study proposes a mixed integer linear programming (MILP model to optimize the spillways scheduling for reservoir flood control. Unlike the conventional reservoir operation model, the proposed MILP model specifies the spillways status (including the number of spillways to be open and the degree of the spillway opened instead of reservoir release, since the release is actually controlled by using the spillway. The piecewise linear approximation is used to formulate the relationship between the reservoir storage and water release for a spillway, which should be open/closed with a status depicted by a binary variable. The control order and symmetry rules of spillways are described and incorporated into the constraints for meeting the practical demand. Thus, a MILP model is set up to minimize the maximum reservoir storage. The General Algebraic Modeling System (GAMS and IBM ILOG CPLEX Optimization Studio (CPLEX software are used to find the optimal solution for the proposed MILP model. The China’s Three Gorges Reservoir, whose spillways are of five types with the total number of 80, is selected as the case study. It is shown that the proposed model decreases the flood risk compared with the conventional operation and makes the operation more practical by specifying the spillways status directly.

  12. A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism

    International Nuclear Information System (INIS)

    Ghalelou, Afshin Najafi; Fakhri, Alireza Pashaei; Nojavan, Sayyad; Majidi, Majid; Hatami, Hojat

    2016-01-01

    Highlights: • Optimal stochastic energy management of renewable energy sources (RESs) is proposed. • The compressed air energy storage (CAES) besides RESs is used in the presence of DRP. • Determination charge and discharge of CAES in order to reduce the expected operation cost. • Moreover, demand response program (DRP) is proposed to minimize the operation cost. • The uncertainty modeling of input data are considered in the proposed stochastic framework. - Abstract: In this paper, a stochastic self-scheduling of renewable energy sources (RESs) considering compressed air energy storage (CAES) in the presence of a demand response program (DRP) is proposed. RESs include wind turbine (WT) and photovoltaic (PV) system. Other energy sources are thermal units and CAES. The time-of-use (TOU) rate of DRP is considered in this paper. This DRP shifts the percentage of load from the expensive period to the cheap one in order to flatten the load curve and minimize the operation cost, consequently. The proposed objective function includes minimizing the operation costs of thermal unit and CAES, considering technical and physical constraints. The proposed model is formulated as mixed integer linear programming (MILP) and it is been solved using General Algebraic Modeling System (GAMS) optimization package. Furthermore, CAES and DRP are incorporated in the stochastic self-scheduling problem by a decision maker to reduce the expected operation cost. Meanwhile, the uncertainty models of market price, load, wind speed, temperature and irradiance are considered in the formulation. Finally, to assess the effects of DRP and CAES on self-scheduling problem, four case studies are utilized, and significant results were obtained, which indicate the validity of the proposed stochastic program.

  13. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: • Stochastic model is proposed for coordinated scheduling of renewable energy sources. • The effect of combined heat and power is considered. • Uncertainties of wind speed, solar radiation and electricity market price are considered. • Profit maximization, emission and AENS minimization are considered as objective functions. • Modified firefly algorithm is employed to solve the problem. - Abstract: Nowadays the operation of renewable energy sources and combined heat and power (CHP) units is increased in micro grids; therefore, to reach optimal performance, optimal scheduling of these units is required. In this regard, in this paper a micro grid consisting of proton exchange membrane fuel cell-combined heat and power (PEMFC-CHP), wind turbines (WT) and photovoltaic (PV) units, is modeled to determine the optimal scheduling state of these units by considering uncertain behavior of renewable energy resources. For this purpose, a scenario-based method is used for modeling the uncertainties of electrical market price, the wind speed, and solar irradiance. It should be noted that the hydrogen storage strategy is also applied in this study for PEMFC-CHP units. Market profit, total emission production, and average energy not supplied (AENS) are the objective functions considered in this paper simultaneously. Consideration of the above-mentioned objective functions converts the proposed problem to a mixed integer nonlinear programming. To solve this problem, a multi-objective firefly algorithm is used. The uncertainties of parameters convert the mixed integer nonlinear programming problem to a stochastic mixed integer nonlinear programming problem. Moreover, optimal coordinated scheduling of renewable energy resources and thermal units in micro-grids improve the value of the objective functions. Simulation results obtained from a modified 33-bus distributed network as a micro grid illustrates the effectiveness of the proposed method.

  14. A revisit to quadratic programming with fuzzy parameters

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.

  15. A stochastic security approach to energy and spinning reserve scheduling considering demand response program

    International Nuclear Information System (INIS)

    Partovi, Farzad; Nikzad, Mehdi; Mozafari, Babak; Ranjbar, Ali Mohamad

    2011-01-01

    In this paper a new algorithm for allocating energy and determining the optimum amount of network active power reserve capacity and the share of generating units and demand side contribution in providing reserve capacity requirements for day-ahead market is presented. In the proposed method, the optimum amount of reserve requirement is determined based on network security set by operator. In this regard, Expected Load Not Supplied (ELNS) is used to evaluate system security in each hour. The proposed method has been implemented over the IEEE 24-bus test system and the results are compared with a deterministic security approach, which considers certain and fixed amount of reserve capacity in each hour. This comparison is done from economic and technical points of view. The promising results show the effectiveness of the proposed model which is formulated as mixed integer linear programming (MILP) and solved by GAMS software. -- Highlights: → Determination of optimal spinning reserve capacity requirement in order to satisfy desired security level set by system operator based on stochastic approach. → Scheduling energy and spinning reserve markets simultaneously. → Comparing the stochastic approach with deterministic approach to determine the advantages and disadvantages of each. → Examine the effect of demand response participation in reserve market to provide spinning reserve.

  16. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    Science.gov (United States)

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  17. Robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming.

    Science.gov (United States)

    Baran, Richard; Northen, Trent R

    2013-10-15

    Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.

  18. An economic lot and delivery scheduling problem with the fuzzy shelf life in a flexible job shop with unrelated parallel machines

    Directory of Open Access Journals (Sweden)

    S. Dousthaghi

    2012-08-01

    Full Text Available This paper considers an economic lot and delivery scheduling problem (ELDSP in a fuzzy environment with the fuzzy shelf life for each product. This problem is formulated in a flexible job shop with unrelated parallel machines, when the planning horizon is finite and it determines lot sizing, scheduling and sequencing, simultaneously. The proposed model of this paper is based on the basic period (BP approach. In this paper, a mixed-integer nonlinear programming (MINLP model is presented and then it is changed into two models in the fuzzy shelf life. The main model is dependent to the multiple basic periods and it is difficult to solve the resulted proposed model for large-scale problems in reasonable amount of time; thus, an efficient heuristic method is proposed to solve the problem. The performance of the proposed model is demonstrated using some numerical examples.

  19. Development of a fuzzy-stochastic programming with Green Z-score criterion method for planning water resources systems with a trading mechanism.

    Science.gov (United States)

    Zeng, X T; Huang, G H; Li, Y P; Zhang, J L; Cai, Y P; Liu, Z P; Liu, L R

    2016-12-01

    This study developed a fuzzy-stochastic programming with Green Z-score criterion (FSGZ) method for water resources allocation and water quality management with a trading-mechanism (WAQT) under uncertainties. FSGZ can handle uncertainties expressed as probability distributions, and it can also quantify objective/subjective fuzziness in the decision-making process. Risk-averse attitudes and robustness coefficient are joined to express the relationship between the expected target and outcome under various risk preferences of decision makers and systemic robustness. The developed method is applied to a real-world case of WAQT in the Kaidu-Kongque River Basin in northwest China, where an effective mechanism (e.g., market trading) to simultaneously confront severely diminished water availability and degraded water quality is required. Results of water transaction amounts, water allocation patterns, pollution mitigation schemes, and system benefits under various scenarios are analyzed, which indicate that a trading-mechanism is a more sustainable method to manage water-environment crisis in the study region. Additionally, consideration of anthropogenic (e.g., a risk-averse attitude) and systemic factors (e.g., the robustness coefficient) can support the generation of a robust plan associated with risk control for WAQT when uncertainty is present. These findings assist local policy and decision makers to gain insights into water-environment capacity planning to balance the basin's social and economic growth with protecting the region's ecosystems.

  20. Optimizing decentralized production-distribution planning problem in a multi-period supply chain network under uncertainty

    Science.gov (United States)

    Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi

    2017-09-01

    Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.

  1. Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures and Input Hysteresis.

    Science.gov (United States)

    Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun

    2017-10-12

    Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.

  2. Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering

    Institute of Scientific and Technical Information of China (English)

    FENG Yu-hu

    2005-01-01

    By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.

  3. Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization

    Science.gov (United States)

    Golari, Mehdi

    Electric energy constitutes one of the most crucial elements to almost every aspect of life of people. The modern electric power systems face several challenges such as efficiency, economics, sustainability, and reliability. Increase in electrical energy demand, distributed generations, integration of uncertain renewable energy resources, and demand side management are among the main underlying reasons of such growing complexity. Additionally, the elements of power systems are often vulnerable to failures because of many reasons, such as system limits, weak conditions, unexpected events, hidden failures, human errors, terrorist attacks, and natural disasters. One common factor complicating the operation of electrical power systems is the underlying uncertainties from the demands, supplies and failures of system components. Stochastic programming provides a mathematical framework for decision making under uncertainty. It enables a decision maker to incorporate some knowledge of the intrinsic uncertainty into the decision making process. In this dissertation, we focus on application of two-stage and multistage stochastic programming approaches to electric energy systems modeling and optimization. Particularly, we develop models and algorithms addressing the sustainability and reliability issues in power systems. First, we consider how to improve the reliability of power systems under severe failures or contingencies prone to cascading blackouts by so called islanding operations. We present a two-stage stochastic mixed-integer model to find optimal islanding operations as a powerful preventive action against cascading failures in case of extreme contingencies. Further, we study the properties of this problem and propose efficient solution methods to solve this problem for large-scale power systems. We present the numerical results showing the effectiveness of the model and investigate the performance of the solution methods. Next, we address the sustainability issue

  4. Optimization of Product Instantiation using Integer Programming

    NARCIS (Netherlands)

    van den Broek, P.M.; Botterweck, Goetz; Jarzabek, Stan; Kishi, Tomoji

    2010-01-01

    We show that Integer Programming (IP) can be used as an optimization technique for the instantiation of products of feature models. This is done by showing that the constraints of feature models can be written in linear form. As particular IP technique, we use Gomory cutting planes. We have applied

  5. Nuclear Power Plant Preventive Maintenance Scheduling Problem with Fuzziness

    International Nuclear Information System (INIS)

    Abass, S.A.; Abdallah, A.S.

    2013-01-01

    Maintenance activity is regarded as the most important key factor for the safety, reliability and economy of a nuclear power plant. Preventive maintenance refers to set of planned activities which include nondestructive testing and periodic inspection as well as maintenance. In this paper, we address the problem of nuclear power plant preventive maintenance scheduling with uncertainty. The uncertainty will be represented by fuzzy parameters. The problem is how to determine the period for which generating units of an electric system should be taken off line for planned preventive maintenance over specific time horizon. Preventive maintenance activity of a nuclear power plant is an important issue as it designed to extend the plant life . It is more required to review the maintenance not only from the view point of safety and reliability but also economy. Preventive maintenance program exists to ensure that nuclear safety significant equipment will function when it is supposed to. Also this problem is extremely important because a failure in a power plant may cause a general breakdown in an electric network. In this paper a mixed integer programming model is used to express this problem. In proposed model power demand is taken as fuzzy parameters. A case study is provided to demonstrate the efficiency of the proposed model.

  6. Quadratic programming with fuzzy parameters: A membership function approach

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real world problems. The conventional quadratic programming model requires the parameters to be known constants. In the real world, however, the parameters are seldom known exactly and have to be estimated. This paper discusses the fuzzy quadratic programming problems where the cost coefficients, constraint coefficients, and right-hand sides are represented by convex fuzzy numbers. Since the parameters in the program are fuzzy numbers, the derived objective value is a fuzzy number as well. Using Zadeh's extension principle, a pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. An example illustrates method proposed in this paper.

  7. Metamorphic Testing Integer Overflow Faults of Mission Critical Program: A Case Study

    Directory of Open Access Journals (Sweden)

    Zhanwei Hui

    2013-01-01

    Full Text Available For mission critical programs, integer overflow is one of the most dangerous faults. Different testing methods provide several effective ways to detect the defect. However, it is hard to validate the testing outputs, because the oracle of testing is not always available or too expensive to get, unless the program throws an exception obviously. In the present study, the authors conduct a case study, where the authors apply a metamorphic testing (MT method to detect the integer overflow defect and alleviate the oracle problem in testing critical program of Traffic Collision Avoidance System (TCAS. Experimental results show that, in revealing typical integer mutations, compared with traditional safety property testing method, MT with a novel symbolic metamorphic relation is more effective than the traditional method in some cases.

  8. New Approaches for Very Large-Scale Integer Programming

    Science.gov (United States)

    2016-06-24

    DISTRIBUTION/ AVAILABILITY STATEMENT Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT The focus of this project is new computational... heuristics for integer programs in order to rapidly improve dual bounds. 2. Choosing good branching variables in branch-and-bound algorithms for MIP. 3...programming, algorithms, parallel processing, machine learning, heuristics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF

  9. Quantum Integers

    International Nuclear Information System (INIS)

    Khrennikov, Andrei; Klein, Moshe; Mor, Tal

    2010-01-01

    In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.

  10. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

  11. PERIODIC REVIEW SYSTEM FOR INVENTORY REPLENISHMENT CONTROL FOR A TWO-ECHELON LOGISTICS NETWORK UNDER DEMAND UNCERTAINTY: A TWO-STAGE STOCHASTIC PROGRAMING APPROACH

    Directory of Open Access Journals (Sweden)

    P.S.A. Cunha

    Full Text Available ABSTRACT Here, we propose a novel methodology for replenishment and control systems for inventories of two-echelon logistics networks using a two-stage stochastic programming, considering periodic review and uncertain demands. In addition, to achieve better customer services, we introduce a variable rationing rule to address quantities of the item in short. The devised models are reformulated into their deterministic equivalent, resulting in nonlinear mixed-integer programming models, which are then approximately linearized. To deal with the uncertain nature of the item demand levels, we apply a Monte Carlo simulation-based method to generate finite and discrete sets of scenarios. Moreover, the proposed approach does not require restricted assumptions to the behavior of the probabilistic phenomena, as does several existing methods in the literature. Numerical experiments with the proposed approach for randomly generated instances of the problem show results with errors around 1%.

  12. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  13. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach.

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  14. Population stochastic modelling (PSM)-An R package for mixed-effects models based on stochastic differential equations

    DEFF Research Database (Denmark)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode

    2009-01-01

    are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation......The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model...... development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8...

  15. ANALYSIS OF FUZZY QUEUES: PARAMETRIC PROGRAMMING APPROACH BASED ON RANDOMNESS - FUZZINESS CONSISTENCY PRINCIPLE

    OpenAIRE

    Dhruba Das; Hemanta K. Baruah

    2015-01-01

    In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM...

  16. Mixed-integer evolution strategies for parameter optimization and their applications to medical image analysis

    NARCIS (Netherlands)

    Li, Rui

    2009-01-01

    The target of this work is to extend the canonical Evolution Strategies (ES) from traditional real-valued parameter optimization domain to mixed-integer parameter optimization domain. This is necessary because there exist numerous practical optimization problems from industry in which the set of

  17. Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming

    International Nuclear Information System (INIS)

    Shaban Boloukat, Mohammad Hadi; Akbari Foroud, Asghar

    2016-01-01

    This paper represents a stochastic approach for long-term optimal resource expansion planning of a grid-connected microgrid (MG) containing different technologies as intermittent renewable energy resources, energy storage systems and thermal resources. Maximizing profit and reliability, along with minimizing investment and operation costs, are major objectives which have been considered in this model. Also, the impacts of intermittency and uncertainty in renewable energy resources were investigated. The interval linear programming (ILP) was applied for modelling inherent stochastic nature of the renewable energy resources. ILP presents some superiority in modelling of uncertainties in MG planning. The problem was formulated as a mixed-integer linear programming. It has been demonstrated previously that the benders decomposition (BD) served as an effective tool for solving such problems. BD divides the original problem into a master (investment) problem and operation and reliability subproblems. In this paper a multiperiod MG planning is presented, considering life time, maximum penetration limit of each technology, interest rate, capital recovery factor and investment fund. Real-time energy exchange with the utility is covered, with a consideration of variable tariffs at different load blocks. The presented approach can help MG planners to adopt best decision under various uncertainty levels based on their budgetary policies. - Highlights: • Considering uncertain nature of the renewable resources with applying ILP. • Considering the effect of intermittency of renewable in MG planning. • Multiobjective MG planning problem which covers cost, profit and reliability. • Multiperiod approach for MG planning considering life time and MPL of technologies. • Presenting real-time energy exchange with the utility considering variable tariffs.

  18. A new method for solving single and multi-objective fuzzy minimum ...

    Indian Academy of Sciences (India)

    in internet transmission (Liu & Kao 2004) petroleum industry (Ghatee ... A number has been proposed for the ranking of fuzzy numbers. ...... Chanas S and Kuchta D 1998 Fuzzy integer transportation problem. Fuzzy ... Model 32: 1289–1297.

  19. Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties

    International Nuclear Information System (INIS)

    Wang, Bo; Wang, Shuming; Zhou, Xianzhong; Watada, Junzo

    2016-01-01

    Recent years have witnessed the ever increasing renewable penetration in power generation systems, which entails modern unit commitment problems with modelling and computation burdens. This study aims to simulate the impacts of manifold uncertainties on system operation with emission concerns. First, probability theory and fuzzy set theory are applied to jointly represent the uncertainties such as wind generation, load fluctuation and unit outage that interleaved in unit commitment problems. Second, a Value-at-Risk-based multi-objective approach is developed as a bridge of existing stochastic and robust unit commitment optimizations, which not only captures the inherent conflict between operation cost and supply reliability, but also provides easy-to-adjust robustness against worst-case scenarios. Third, a multi-objective algorithm that integrates fuzzy simulation and particle swarm optimization is developed to achieve approximate Pareto-optimal solutions. The research effectiveness is exemplified by two case studies: The comparison between test systems with and without generation uncertainty demonstrates that this study is practicable and can suggest operational insights of generation mix systems. The sensitivity analysis on Value-at-Risk proves that our method can achieve adequate tradeoff between performance optimality and robustness, thus help system operators in making informed decisions. Finally, the model and algorithm comparisons also justify the superiority of this research. - Highlights: • Probability theory and fuzzy set theory are used to describe different uncertainties. • A Value-at-Risk-based multi-objective unit commitment model is proposed. • An improved multi-objective particle swarm optimization algorithm is developed. • The model achieves adequate trade-off between performance optimality and robustness. • The algorithm can obtain convergent and diversified Pareto fronts.

  20. A fuzzy stochastic framework for managing hydro-environmental and socio-economic interactions under uncertainty

    Science.gov (United States)

    Subagadis, Yohannes Hagos; Schütze, Niels; Grundmann, Jens

    2014-05-01

    An amplified interconnectedness between a hydro-environmental and socio-economic system brings about profound challenges of water management decision making. In this contribution, we present a fuzzy stochastic approach to solve a set of decision making problems, which involve hydrologically, environmentally, and socio-economically motivated criteria subjected to uncertainty and ambiguity. The proposed methodological framework combines objective and subjective criteria in a decision making procedure for obtaining an acceptable ranking in water resources management alternatives under different type of uncertainty (subjective/objective) and heterogeneous information (quantitative/qualitative) simultaneously. The first step of the proposed approach involves evaluating the performance of alternatives with respect to different types of criteria. The ratings of alternatives with respect to objective and subjective criteria are evaluated by simulation-based optimization and fuzzy linguistic quantifiers, respectively. Subjective and objective uncertainties related to the input information are handled through linking fuzziness and randomness together. Fuzzy decision making helps entail the linguistic uncertainty and a Monte Carlo simulation process is used to map stochastic uncertainty. With this framework, the overall performance of each alternative is calculated using an Order Weighted Averaging (OWA) aggregation operator accounting for decision makers' experience and opinions. Finally, ranking is achieved by conducting pair-wise comparison of management alternatives. This has been done on the basis of the risk defined by the probability of obtaining an acceptable ranking and mean difference in total performance for the pair of management alternatives. The proposed methodology is tested in a real-world hydrosystem, to find effective and robust intervention strategies for the management of a coastal aquifer system affected by saltwater intrusion due to excessive groundwater

  1. 50 Years of Integer Programming 1958-2008 From the Early Years to the State-of-the-Art

    CERN Document Server

    Jünger, Michael; Naddef, Denis

    2010-01-01

    In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the

  2. Fuzzy generation scheduling for a generation company (GenCo) with large scale wind farms

    International Nuclear Information System (INIS)

    Siahkali, H.; Vakilian, M.

    2010-01-01

    Wind power is a promising alternative in power generation because of its tremendous environmental and social benefits. Generation scheduling (GS) is more important in a power system integrating wind farms. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. This paper presents a fuzzy approach to the generation scheduling problem of a GenCo considering uncertainties in parameters or constraints such as load, reserve and available wind power generation. The modeling of constraints is an important issue in power system scheduling. A fuzzy optimization approach is an approach that can be used to obtain the generation scheduling under an uncertain environment. In this paper, a fuzzy optimization-based method is developed to solve power system GS problem with fuzzy objective and constraints. The crisp formulation of this GS problem is firstly defined and is rearranged by introduction of a membership function of some constraints and objective function. Then, this fuzzy optimization problem is converted to a crisp optimization and solved using GAMS software by mixed integer nonlinear programming. Employing the fuzzy optimization GS, it is expected that in practice a higher profit would be achieved in the operation and cost management of a real power system with large scale wind farms in different level of constraints' satisfaction. The proposed approach is applied to a sample system (including six conventional units and two wind farms) and the results are compared with the results of crisp solution. This approach is also applied to a larger test case to demonstrate the robustness of this fuzzy optimization method.

  3. Fuzzy preference based interactive fuzzy physical programming and its application in multi-objective optimization

    International Nuclear Information System (INIS)

    Zhang, Xu; Huang, Hong Zhong; Yu, Lanfeng

    2006-01-01

    Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer

  4. Fuzzy Stochastic Optimal Guaranteed Cost Control of Bio-Economic Singular Markovian Jump Systems.

    Science.gov (United States)

    Li, Li; Zhang, Qingling; Zhu, Baoyan

    2015-11-01

    This paper establishes a bio-economic singular Markovian jump model by considering the price of the commodity as a Markov chain. The controller is designed for this system such that its biomass achieves the specified range with the least cost in a finite-time. Firstly, this system is described by Takagi-Sugeno fuzzy model. Secondly, a new design method of fuzzy state-feedback controllers is presented to ensure not only the regularity, nonimpulse, and stochastic singular finite-time boundedness of this kind of systems, but also an upper bound achieved for the cost function in the form of strict linear matrix inequalities. Finally, two examples including a practical example of eel seedling breeding are given to illustrate the merit and usability of the approach proposed in this paper.

  5. Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: •Stochastic model is proposed for coordinated scheduling of renewable energy sources. •The effect of combined heat and power is considered. •Hydrogen storage is considered for fuel cells. •Maximizing profits of micro grid is considered as objective function. •Considering the uncertainties of problem lead to profit increasing. -- Abstract: Nowadays, renewable energy sources and combined heat and power units are extremely used in micro grids, so it is necessary to schedule these units to improve the performance of the system. In this regard, a stochastic model is proposed in this paper to schedule proton exchange membrane fuel cell-combined heat and power, wind turbines, and photovoltaic units coordinately in a micro grid while considering hydrogen storage. Hydrogen storage strategy is considered for the operation of proton exchange membrane fuel cell-combined heat and power units. To consider stochastic generation of renewable energy source units in this paper, a scenario-based method is used. In this method, the uncertainties of electrical market price, the wind speed, and solar irradiance are considered. This stochastic scheduling problem is a mixed integer- nonlinear programming which considers the proposed objective function and variables of coordinated scheduling of PEMFC-CHP, wind turbines and photovoltaic units. It also considers hydrogen storage strategy and converts it to a mixed integer nonlinear problem. In this study a modified firefly algorithm is used to solve the problem. This method is examined on modified 33-bus distributed network as a MG for its performance.

  6. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option

    International Nuclear Information System (INIS)

    Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza

    2017-01-01

    Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.

  7. An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty.

    Science.gov (United States)

    Li, W; Wang, B; Xie, Y L; Huang, G H; Liu, L

    2015-02-01

    Uncertainties exist in the water resources system, while traditional two-stage stochastic programming is risk-neutral and compares the random variables (e.g., total benefit) to identify the best decisions. To deal with the risk issues, a risk-aversion inexact two-stage stochastic programming model is developed for water resources management under uncertainty. The model was a hybrid methodology of interval-parameter programming, conditional value-at-risk measure, and a general two-stage stochastic programming framework. The method extends on the traditional two-stage stochastic programming method by enabling uncertainties presented as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. It could not only provide information on the benefits of the allocation plan to the decision makers but also measure the extreme expected loss on the second-stage penalty cost. The developed model was applied to a hypothetical case of water resources management. Results showed that that could help managers generate feasible and balanced risk-aversion allocation plans, and analyze the trade-offs between system stability and economy.

  8. Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime

    Directory of Open Access Journals (Sweden)

    Gianluca Calcagni

    2017-10-01

    Full Text Available We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.

  9. Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Ronco, Michele

    2017-01-01

    We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.

  10. Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime

    Science.gov (United States)

    Calcagni, Gianluca; Ronco, Michele

    2017-10-01

    We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.

  11. ANALYSIS OF FUZZY QUEUES: PARAMETRIC PROGRAMMING APPROACH BASED ON RANDOMNESS - FUZZINESS CONSISTENCY PRINCIPLE

    Directory of Open Access Journals (Sweden)

    Dhruba Das

    2015-04-01

    Full Text Available In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM/M/1 and M/FM/1 has been studied and constructed their membership functions of the system characteristics based on the aforesaid principle. The former represents a queue with fuzzy exponential arrivals and exponential service rate while the latter represents a queue with exponential arrival rate and fuzzy exponential service rate.

  12. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    Science.gov (United States)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  13. Make man-machine communication easier: fuzzy programming

    Energy Technology Data Exchange (ETDEWEB)

    Farreny, H; Prade, H

    1982-06-01

    Procedures and data used by the human brain are not always accurately specified; fuzzy programming may help in the realisation of languages for the manipulation of such fuzzy entities. After having considered fuzzy instruction and its requirements, arguments, functions, predicates and designations, the authors present the outlines of a fuzzy filtering system. Two applications are given as examples; these are the accessing of a database and an expert system which may be used to solve problems in robotics.

  14. Designing fractional factorial split-plot experiments using integer programming

    DEFF Research Database (Denmark)

    Capehart, Shay R.; Keha, Ahmet; Kulahci, Murat

    2011-01-01

    factorial (FF) design, with the restricted randomisation structure to account for the whole plots and subplots. We discuss the formulation of FFSP designs using integer programming (IP) to achieve various design criteria. We specifically look at the maximum number of clear two-factor interactions...

  15. The application of the fall-vector method in decomposition schemes for the solution of integer linear programming problems

    International Nuclear Information System (INIS)

    Sergienko, I.V.; Golodnikov, A.N.

    1984-01-01

    This article applies the methods of decompositions, which are used to solve continuous linear problems, to integer and partially integer problems. The fall-vector method is used to solve the obtained coordinate problems. An algorithm of the fall-vector is described. The Kornai-Liptak decomposition principle is used to reduce the integer linear programming problem to integer linear programming problems of a smaller dimension and to a discrete coordinate problem with simple constraints

  16. A Stochastic Programming Approach with Improved Multi-Criteria Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical and Electronic Equipment (WEEE

    Directory of Open Access Journals (Sweden)

    Hao Yu

    2016-12-01

    Full Text Available Today, the increased public concern about sustainable development and more stringent environmental regulations have become important driving forces for value recovery from end-of-life and end-of use products through reverse logistics. Waste electrical and electronic equipment (WEEE contains both valuable components that need to be recycled and hazardous substances that have to be properly treated or disposed of, so the design of a reverse logistics system for sustainable treatment of WEEE is of paramount importance. This paper presents a stochastic mixed integer programming model for designing and planning a generic multi-source, multi-echelon, capacitated, and sustainable reverse logistics network for WEEE management under uncertainty. The model takes into account both economic efficiency and environmental impacts in decision-making, and the environmental impacts are evaluated in terms of carbon emissions. A multi-criteria two-stage scenario-based solution method is employed and further developed in this study for generating the optimal solution for the stochastic optimization problem. The proposed model and solution method are validated through a numerical experiment and sensitivity analyses presented later in this paper, and an analysis of the results is also given to provide a deep managerial insight into the application of the proposed stochastic optimization model.

  17. Train Repathing in Emergencies Based on Fuzzy Linear Programming

    Directory of Open Access Journals (Sweden)

    Xuelei Meng

    2014-01-01

    Full Text Available Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  18. Train repathing in emergencies based on fuzzy linear programming.

    Science.gov (United States)

    Meng, Xuelei; Cui, Bingmou

    2014-01-01

    Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  19. An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-11-01

    Full Text Available In this study, an interval fuzzy-stochastic chance-constrained programming based energy-water nexus (IFSCP-WEN model is developed for planning electric power system (EPS. The IFSCP-WEN model can tackle uncertainties expressed as possibility and probability distributions, as well as interval values. Different credibility (i.e., γ levels and probability (i.e., qi levels are set to reflect relationships among water supply, electricity generation, system cost, and constraint-violation risk. Results reveal that different γ and qi levels can lead to a changed system cost, imported electricity, electricity generation, and water supply. Results also disclose that the study EPS would tend to the transition from coal-dominated into clean energy-dominated. Gas-fired would be the main electric utility to supply electricity at the end of the planning horizon, occupying [28.47, 30.34]% (where 28.47% and 30.34% present the lower bound and the upper bound of interval value, respectively of the total electricity generation. Correspondingly, water allocated to gas-fired would reach the highest, occupying [33.92, 34.72]% of total water supply. Surface water would be the main water source, accounting for more than [40.96, 43.44]% of the total water supply. The ratio of recycled water to total water supply would increase by about [11.37, 14.85]%. Results of the IFSCP-WEN model present its potential for sustainable EPS planning by co-optimizing energy and water resources.

  20. Using heuristic algorithms for capacity leasing and task allocation issues in telecommunication networks under fuzzy quality of service constraints

    Science.gov (United States)

    Huseyin Turan, Hasan; Kasap, Nihat; Savran, Huseyin

    2014-03-01

    Nowadays, every firm uses telecommunication networks in different amounts and ways in order to complete their daily operations. In this article, we investigate an optimisation problem that a firm faces when acquiring network capacity from a market in which there exist several network providers offering different pricing and quality of service (QoS) schemes. The QoS level guaranteed by network providers and the minimum quality level of service, which is needed for accomplishing the operations are denoted as fuzzy numbers in order to handle the non-deterministic nature of the telecommunication network environment. Interestingly, the mathematical formulation of the aforementioned problem leads to the special case of a well-known two-dimensional bin packing problem, which is famous for its computational complexity. We propose two different heuristic solution procedures that have the capability of solving the resulting nonlinear mixed integer programming model with fuzzy constraints. In conclusion, the efficiency of each algorithm is tested in several test instances to demonstrate the applicability of the methodology.

  1. A Fuzzy Linear Programming Approach for Aggregate Production Planning

    DEFF Research Database (Denmark)

    Iris, Cagatay; Cevikcan, Emre

    2014-01-01

    a mathematical programming framework for aggregate production planning problem under imprecise data environment. After providing background information about APP problem, together with fuzzy linear programming, the fuzzy linear programming model of APP is solved on an illustrative example for different a...

  2. Introduction to stochastic dynamic programming

    CERN Document Server

    Ross, Sheldon M; Lukacs, E

    1983-01-01

    Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the

  3. Dependent-Chance Programming Models for Capital Budgeting in Fuzzy Environments

    Institute of Scientific and Technical Information of China (English)

    LIANG Rui; GAO Jinwu

    2008-01-01

    Capital budgeting is concerned with maximizing the total net profit subject to budget constraints by selecting an appropriate combination of projects. This paper presents chance maximizing models for capital budgeting with fuzzy input data and multiple conflicting objectives. When the decision maker sets a prospec-tive profit level and wants to maximize the chances of the total profit achieving the prospective profit level, a fuzzy dependent-chance programming model, a fuzzy multi-objective dependent-chance programming model, and a fuzzy goal dependent-chance programming model are used to formulate the fuzzy capital budgeting problem. A fuzzy simulation based genetic algorithm is used to solve these models. Numerical examples are provided to illustrate the effectiveness of the simulation-based genetic algorithm and the po-tential applications of these models.

  4. Fuzzy stochastic analysis of serviceability and ultimate limit states of two-span pedestrian steel bridge

    Science.gov (United States)

    Kala, Zdeněk; Sandovič, GiedrÄ--

    2012-09-01

    The paper deals with non-linear analysis of ultimate and serviceability limit states of two-span pedestrian steel bridge. The effects of random material and geometrical characteristics on limit states are analyzed. The Monte Carlo method was applied to stochastic analysis. For the serviceability limit state, also influence of fuzzy uncertainty of the limit deflection value on random characteristics of load capacity of variable action was studied. The results prove that, for the type of structure studied, the serviceability limit state is decisive from the point of view of design. The present paper opens a discussion on the use of stochastic analysis to verify the limit deflections given in the standards EUROCODES.

  5. A METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS BASED ON MULTIOBJECTIVE LINEAR PROGRAMMING TECHNIQUE

    OpenAIRE

    M. ZANGIABADI; H. R. MALEKI

    2007-01-01

    In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...

  6. A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: ε-constraint method and fuzzy satisfying approach

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Majidi, Majid; Najafi-Ghalelou, Afshin; Ghahramani, Mehrdad; Zare, Kazem

    2017-01-01

    Highlights: • Cost-emission performance of PV/battery/fuel cell hybrid energy system is studied. • Multi-objective optimization model for cost-emission performance is proposed. • ε-constraint method is proposed to produce Pareto solutions of multi-objective model. • Fuzzy satisfying approach selected the best optimal solution from Pareto solutions. • Demand response program is proposed to reduce both cost and emission. - Abstract: Optimal operation of hybrid energy systems is a big challenge in power systems. Nowadays, in addition to the optimum performance of energy systems, their pollution issue has been a hot topic between researchers. In this paper, a multi-objective model is proposed for economic and environmental operation of a battery/fuel cell/photovoltaic (PV) hybrid energy system in the presence of demand response program (DRP). In the proposed paper, the first objective function is minimization of total cost of hybrid energy system. The second objective function is minimization of total CO_2 emission which is in conflict with the first objective function. So, a multi-objective optimization model is presented to model the hybrid system’s optimal and environmental performance problem with considering DRP. The proposed multi-objective model is solved by ε-constraint method and then fuzzy satisfying technique is employed to select the best possible solution. Also, positive effects of DRP on the economic and environmental performance of hybrid system are analyzed. A mixed-integer linear program is used to simulate the proposed model and the obtained results are compared with weighted sum approach to show the effectiveness of proposed method.

  7. Portfolio optimization using fuzzy linear programming

    Science.gov (United States)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  8. Mixed integer programming model for optimizing the layout of an ICU vehicle

    Directory of Open Access Journals (Sweden)

    García-Sánchez Álvaro

    2009-12-01

    Full Text Available Abstract Background This paper presents a Mixed Integer Programming (MIP model for designing the layout of the Intensive Care Units' (ICUs patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112. Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group", the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final

  9. A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach for contaminated sites management

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yan; Wen, Jing-ya; Li, Xiao-li; Wang, Da-zhou; Li, Yu, E-mail: liyuxx8@hotmail.com

    2013-10-15

    Highlights: • Using interval mathematics to describe spatial and temporal variability and parameter uncertainty. • Using fuzzy theory to quantify variability of environmental guideline values. • Using probabilistic approach to integrate interval concentrations and fuzzy environmental guideline. • Establishment of dynamic multimedia environmental integrated risk assessment framework. -- Abstract: A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach was developed for contaminated sites management. The contaminant concentrations were simulated by a validated interval dynamic multimedia fugacity model, and different guideline values for the same contaminant were represented as a fuzzy environmental guideline. Then, the probability of violating environmental guideline (Pv) can be determined by comparison between the modeled concentrations and the fuzzy environmental guideline, and the constructed relationship between the Pvs and environmental risk levels was used to assess the environmental risk level. The developed approach was applied to assess the integrated environmental risk at a case study site in China, simulated from 1985 to 2020. Four scenarios were analyzed, including “residential land” and “industrial land” environmental guidelines under “strict” and “loose” strictness. It was found that PAH concentrations will increase steadily over time, with soil found to be the dominant sink. Source emission in soil was the leading input and atmospheric sedimentation was the dominant transfer process. The integrated environmental risks primarily resulted from petroleum spills and coke ovens, while the soil environmental risks came from coal combustion. The developed approach offers an effective tool for quantifying variability and uncertainty in the dynamic multimedia integrated environmental risk assessment and the contaminated site management.

  10. A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach for contaminated sites management

    International Nuclear Information System (INIS)

    Hu, Yan; Wen, Jing-ya; Li, Xiao-li; Wang, Da-zhou; Li, Yu

    2013-01-01

    Highlights: • Using interval mathematics to describe spatial and temporal variability and parameter uncertainty. • Using fuzzy theory to quantify variability of environmental guideline values. • Using probabilistic approach to integrate interval concentrations and fuzzy environmental guideline. • Establishment of dynamic multimedia environmental integrated risk assessment framework. -- Abstract: A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach was developed for contaminated sites management. The contaminant concentrations were simulated by a validated interval dynamic multimedia fugacity model, and different guideline values for the same contaminant were represented as a fuzzy environmental guideline. Then, the probability of violating environmental guideline (Pv) can be determined by comparison between the modeled concentrations and the fuzzy environmental guideline, and the constructed relationship between the Pvs and environmental risk levels was used to assess the environmental risk level. The developed approach was applied to assess the integrated environmental risk at a case study site in China, simulated from 1985 to 2020. Four scenarios were analyzed, including “residential land” and “industrial land” environmental guidelines under “strict” and “loose” strictness. It was found that PAH concentrations will increase steadily over time, with soil found to be the dominant sink. Source emission in soil was the leading input and atmospheric sedimentation was the dominant transfer process. The integrated environmental risks primarily resulted from petroleum spills and coke ovens, while the soil environmental risks came from coal combustion. The developed approach offers an effective tool for quantifying variability and uncertainty in the dynamic multimedia integrated environmental risk assessment and the contaminated site management

  11. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-03-27

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.

  12. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  13. An introduction to fuzzy linear programming problems theory, methods and applications

    CERN Document Server

    Kaur, Jagdeep

    2016-01-01

    The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.

  14. Fuzzy Arden Syntax: A fuzzy programming language for medicine.

    Science.gov (United States)

    Vetterlein, Thomas; Mandl, Harald; Adlassnig, Klaus-Peter

    2010-05-01

    The programming language Arden Syntax has been optimised for use in clinical decision support systems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced in S. Tiffe's dissertation on "Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified Arden Syntax" (Vienna University of Technology, 2003). The primary aim is to provide an easy means of processing vague or uncertain data, which frequently appears in medicine. For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth); fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally aggregated subsequently. Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs) based on the principle of a continuously graded applicability of statements. Furthermore, ad hoc decisions about sharp value boundaries can be avoided. As an illustrative example shows, an MLM making use of the features of Fuzzy Arden Syntax is not significantly more complex than its Arden Syntax equivalent; in the ideal case, a programme handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the output data, which can be a set of weighted alternatives, typically depends continuously from the input data. In typical applications an Arden Syntax MLM can produce a different output after only slight changes of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a discrete set of possibilities

  15. General guidelines solution for linear programming with fuzzy coefficients

    Directory of Open Access Journals (Sweden)

    Sergio Gerardo de los Cobos Silva

    2013-08-01

    Full Text Available This work introduce to the Possibilistic Programming and the Fuzzy Programming as paradigms that allow to resolve problems of linear programming when the coefficients of the model or the restrictions on the same are presented as fuzzy numbers, rather than exact numbers (crisp. This work presents some examples based on [1].

  16. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    Science.gov (United States)

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  17. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    Directory of Open Access Journals (Sweden)

    S. Fanati Rashidi

    2010-06-01

    Full Text Available Using the concept of possibility proposed by zadeh, luhandjula ([4,8] and buckley ([1] have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7] used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. In this paper we shall consider the general form of this problem where all of the parameters and variables are fuzzy and also a model for solving is proposed

  18. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    OpenAIRE

    S. Fanati Rashidi; A. A. Noora

    2010-01-01

    Using the concept of possibility proposed by zadeh, luhandjula ([4,8]) and buckley ([1]) have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7]) used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. ...

  19. Redesign of a supply network by considering stochastic demand

    Directory of Open Access Journals (Sweden)

    Juan Camilo Paz

    2015-09-01

    Full Text Available This paper presents the problem of redesigning a supply network of large scale by considering variability of the demand. The central problematic takes root in determining strategic decisions of closing and adjusting of capacity of some network echelons and the tactical decisions concerning to the distribution channels used for transporting products. We have formulated a deterministic Mixed Integer Linear Programming Model (MILP and a stochastic MILP model (SMILP whose objective functions are the maximization of the EBITDA (Earnings before Interest, Taxes, Depreciation and Amortization. The decisions of Network Design on stochastic model as capacities, number of warehouses in operation, material and product flows between echelons, are determined in a single stage by defining an objective function that penalizes unsatisfied demand and surplus of demand due to demand changes. The solution strategy adopted for the stochastic model is a scheme denominated as Sample Average Approximation (SAA. The model is based on the case of a Colombian company dedicated to production and marketing of foodstuffs and supplies for the bakery industry. The results show that the proposed methodology was a solid reference for decision support regarding to the supply networks redesign by considering the expected economic contribution of products and variability of the demand.

  20. Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland

    DEFF Research Database (Denmark)

    Meibom, Peter; Barth, R.; Hasche, B.

    2011-01-01

    A stochastic mixed integer linear optimization scheduling model minimizing system operation costs and treating load and wind power production as stochastic inputs is presented. The schedules are updated in a rolling manner as more up-to-date information becomes available. This is a fundamental...... change relative to day-ahead unit commitment approaches. The need for reserves dependent on forecast horizon and share of wind power has been estimated with a statistical model combining load and wind power forecast errors with scenarios of forced outages. The model is used to study operational impacts...

  1. Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework

    International Nuclear Information System (INIS)

    Hemmati, Reza; Saboori, Hedayat; Saboori, Saeid

    2016-01-01

    In recent decades, wind power resources have been integrated in the power systems increasingly. Besides confirmed benefits, utilization of large share of this volatile source in power generation portfolio has been faced system operators with new challenges in terms of uncertainty management. It is proved that energy storage systems are capable to handle projected uncertainty concerns. Risk-neutral methods have been proposed in the previous literature to schedule storage units considering wind resources uncertainty. Ignoring risk of the cost distributions with non-desirable properties may result in experiencing high costs in some unfavorable scenarios with high probability. In order to control the risk of the operator decisions, this paper proposes a new risk-constrained two-stage stochastic programming model to make optimal decisions on energy storage and thermal units in a transmission constrained hybrid wind-thermal power system. Risk-aversion procedure is explicitly formulated using the conditional value-at-risk measure, because of possessing distinguished features compared to the other risk measures. The proposed model is a mixed integer linear programming considering transmission network, thermal unit dynamics, and storage devices constraints. The simulations results demonstrate that taking the risk of the problem into account will affect scheduling decisions considerably depend on the level of the risk-aversion. - Highlights: • Risk of the operation decisions is handled by using risk-averse programming. • Conditional value-at-risk is used as risk measure. • Optimal risk level is obtained based on the cost/benefit analysis. • The proposed model is a two-stage stochastic mixed integer linear programming. • The unit commitment is integrated with ESSs and wind power penetration.

  2. A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids

    International Nuclear Information System (INIS)

    Mashayekh, Salman; Stadler, Michael; Cardoso, Gonçalo; Heleno, Miguel

    2017-01-01

    Highlights: • This paper presents a MILP model for optimal design of multi-energy microgrids. • Our microgrid design includes optimal technology portfolio, placement, and operation. • Our model includes microgrid electrical power flow and heat transfer equations. • The case study shows advantages of our model over aggregate single-node approaches. • The case study shows the accuracy of the integrated linearized power flow model. - Abstract: Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this problem, this paper presents an optimization model formulated as a mixed-integer linear program, which determines the optimal technology portfolio, the optimal technology placement, and the associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a multi-node modeling approach (as opposed to an aggregate single-node approach) that includes electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting considering physical and operational constraints of electrical and heating/cooling networks. The new model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool for microgrid planning and design. The results of a case study that compares single-node vs. multi-node optimal design for an example microgrid show the importance of multi-node modeling. It has been shown that single-node approaches are not only incapable of optimal DER placement, but may also result in sub-optimal DER portfolio, as well as underestimation of investment costs.

  3. Self-scheduling and bidding strategies of thermal units with stochastic emission constraints

    International Nuclear Information System (INIS)

    Laia, R.; Pousinho, H.M.I.; Melíco, R.; Mendes, V.M.F.

    2015-01-01

    Highlights: • The management of thermal power plants is considered for different emission allowance levels. • The uncertainty on electricity price is considered by a set of scenarios. • A stochastic MILP approach allows devising the bidding strategies and hedging against price uncertainty and emission allowances. - Abstract: This paper is on the self-scheduling problem for a thermal power producer taking part in a pool-based electricity market as a price-taker, having bilateral contracts and emission-constrained. An approach based on stochastic mixed-integer linear programming approach is proposed for solving the self-scheduling problem. Uncertainty regarding electricity price is considered through a set of scenarios computed by simulation and scenario-reduction. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. A requirement on emission allowances to mitigate carbon footprint is modelled by a stochastic constraint. Supply functions for different emission allowance levels are accessed in order to establish the optimal bidding strategy. A case study is presented to illustrate the usefulness and the proficiency of the proposed approach in supporting biding strategies

  4. Fuzzy randomness uncertainty in civil engineering and computational mechanics

    CERN Document Server

    Möller, Bernd

    2004-01-01

    This book, for the first time, provides a coherent, overall concept for taking account of uncertainty in the analysis, the safety assessment, and the design of structures. The reader is introduced to the problem of uncertainty modeling and familiarized with particular uncertainty models. For simultaneously considering stochastic and non-stochastic uncertainty the superordinated uncertainty model fuzzy randomness, which contains real valued random variables as well as fuzzy variables as special cases, is presented. For this purpose basic mathematical knowledge concerning the fuzzy set theory and the theory of fuzzy random variables is imparted. The body of the book comprises the appropriate quantification of uncertain structural parameters, the fuzzy and fuzzy probabilistic structural analysis, the fuzzy probabilistic safety assessment, and the fuzzy cluster structural design. The completely new algorithms are described in detail and illustrated by way of demonstrative examples.

  5. Operational budgeting using fuzzy goal programming

    Directory of Open Access Journals (Sweden)

    Saeed Mohammadi

    2013-10-01

    Full Text Available Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate operational budget. The proposed model uses fuzzy triangular as well as interval number to estimate budgeting expenses. The proposed study of this paper is implemented for a real-world case study in province of Qom, Iran and the results are analyzed.

  6. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  7. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    International Nuclear Information System (INIS)

    Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang

    2014-01-01

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  8. Mehar Methods for Fuzzy Optimal Solution and Sensitivity Analysis of Fuzzy Linear Programming with Symmetric Trapezoidal Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Sukhpreet Kaur Sidhu

    2014-01-01

    Full Text Available The drawbacks of the existing methods to obtain the fuzzy optimal solution of such linear programming problems, in which coefficients of the constraints are represented by real numbers and all the other parameters as well as variables are represented by symmetric trapezoidal fuzzy numbers, are pointed out, and to resolve these drawbacks, a new method (named as Mehar method is proposed for the same linear programming problems. Also, with the help of proposed Mehar method, a new method, much easy as compared to the existing methods, is proposed to deal with the sensitivity analysis of the same type of linear programming problems.

  9. Penempatan Optimal Phasor Measurement Unit (PMU) Dengan Integer Programming

    OpenAIRE

    Amrulloh, Yunan Helmy

    2013-01-01

    Phasor Measurement Unit (PMU) merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP) yang akan memberikan variabel dengan pilihan nilai (0,1) yang menu...

  10. Stochastic model of Rayleigh-Taylor turbulent mixing

    International Nuclear Information System (INIS)

    Abarzhi, S.I.; Cadjan, M.; Fedotov, S.

    2007-01-01

    We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for

  11. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  12. RSW-MCFP: A Resource-Oriented Solid Waste Management System for a Mixed Rural-Urban Area through Monte Carlo Simulation-Based Fuzzy Programming

    Directory of Open Access Journals (Sweden)

    P. Li

    2013-01-01

    Full Text Available The growth of global population and economy continually increases the waste volumes and consequently creates challenges to handle and dispose solid wastes. It becomes more challenging in mixed rural-urban areas (i.e., areas of mixed land use for rural and urban purposes where both agricultural waste (e.g., manure and municipal solid waste are generated. The efficiency and confidence of decisions in current management practices significantly rely on the accurate information and subjective judgments, which are usually compromised by uncertainties. This study proposed a resource-oriented solid waste management system for mixed rural-urban areas. The system is featured by a novel Monte Carlo simulation-based fuzzy programming approach. The developed system was tested by a real-world case with consideration of various resource-oriented treatment technologies and the associated uncertainties. The modeling results indicated that the community-based bio-coal and household-based CH4 facilities were necessary and would become predominant in the waste management system. The 95% confidence intervals of waste loadings to the CH4 and bio-coal facilities were 387, 450 and 178, 215 tonne/day (mixed flow, respectively. In general, the developed system has high capability in supporting solid waste management for mixed rural-urban areas in a cost-efficient and sustainable manner under uncertainty.

  13. Direct Adaptive Tracking Control for a Class of Pure-Feedback Stochastic Nonlinear Systems Based on Fuzzy-Approximation

    Directory of Open Access Journals (Sweden)

    Huanqing Wang

    2014-01-01

    Full Text Available The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.

  14. A Method of Determination of an Acquisition Program in Order to Maximize the Total Utility Using Linear Programming in Integer Numbers

    Directory of Open Access Journals (Sweden)

    Alin Cristian Ioan

    2010-03-01

    Full Text Available This paper solves in a different way the problem of maximization of the total utility using the linear programming in integer numbers. The author uses the diofantic equations (equations in integers numbers and after a decomposing in different cases, he obtains the maximal utility.

  15. An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem

    Directory of Open Access Journals (Sweden)

    Meriem Ait Mehdi

    2014-01-01

    Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.

  16. Three echelon supply chain design with supplier evaluation

    DEFF Research Database (Denmark)

    Gandhi, Kanika; Jha, P. C.; Govindan, M.E., PhD.,, Kannan

    2014-01-01

    An effective supply chain management (SCM) facilitates companies to react to changing demand by swiftly communicating their needs to the supplier. Optimizing a supply chain (SC) performance is a key factor for success in long term SC relationships. Substantial information such as price, delivery...... in procurement and distribution in a supplier selection problem and a fuzzy model with two objectives is defined. The proposed model is a “fuzzy bi-objective mixed integer nonlinear” problem. To process the solution the fuzzy model is converted into crisp and further fuzzy goal programming approach is employed...

  17. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model

    Energy Technology Data Exchange (ETDEWEB)

    Koa, A.S.; Chang, N.B. [University of Central Florida, Orlando, FL (United States). Dept. for Civil & Environmental Engineering

    2008-07-15

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO{sub 2}) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To case the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  18. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    Science.gov (United States)

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  19. Hierarchical Hidden Markov Models for Multivariate Integer-Valued Time-Series

    DEFF Research Database (Denmark)

    Catania, Leopoldo; Di Mari, Roberto

    2018-01-01

    We propose a new flexible dynamic model for multivariate nonnegative integer-valued time-series. Observations are assumed to depend on the realization of two additional unobserved integer-valued stochastic variables which control for the time-and cross-dependence of the data. An Expectation......-Maximization algorithm for maximum likelihood estimation of the model's parameters is derived. We provide conditional and unconditional (cross)-moments implied by the model, as well as the limiting distribution of the series. A Monte Carlo experiment investigates the finite sample properties of our estimation...

  20. Planning of a supply chain for anti-personal landmine disposal by means of robots

    Directory of Open Access Journals (Sweden)

    Rafael Guillermo García-Cáceres

    2012-09-01

    Full Text Available The current paper presents a Mixed-Integer-Linear Programming Model (MIP which incorporates strategic and tactical management decisions into the supply chain of an anti-personal landmine robotic detection and disposal system. Originally based on a mixed-integer-non-linear programming model (MINLP with stochastic elements, of which it is an approximation, the MIP model is obtained by means of two solution procedures that include redefining variables, treating stochastic and non-linear constraints, and incorporating valid constraints. The model included considerations such as uncertain procurement, stochastic inventories in plants, production scales, supply-production-distribution capacities, particular distribution-production infrastructure, locationallocation considerations, stochastic demand, and BOM. Additionally, the models detail optimal helicopter operation by considering each period’s trip frequency during the planning horizon. Finally, a sensibility analysis of the way in which parameters variations affect overall costs is presented. The suggested solution procedure is considered satisfactory in terms of time for the analyzed example.

  1. Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters

    Directory of Open Access Journals (Sweden)

    Fabian Andres Lara-Molina

    Full Text Available Abstract The components of flexible rotors are subjected to uncertainties. The main sources of uncertainties include the variation of mechanical properties. This contribution aims at analyzing the dynamics of flexible rotors under uncertain parameters modeled as fuzzy and fuzzy random variables. The uncertainty analysis encompasses the modeling of uncertain parameters and the numerical simulation of the corresponding flexible rotor model by using an approach based on fuzzy dynamic analysis. The numerical simulation is accomplished by mapping the fuzzy parameters of the deterministic flexible rotor model. Thereby, the flexible rotor is modeled by using both the Fuzzy Finite Element Method and the Fuzzy Stochastic Finite Element Method. Numerical simulations illustrate the methodology conveyed in terms of orbits and frequency response functions subject to uncertain parameters.

  2. A stochastic HMM-based forecasting model for fuzzy time series.

    Science.gov (United States)

    Li, Sheng-Tun; Cheng, Yi-Chung

    2010-10-01

    Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.

  3. Heuristic Methods of Integer Programming and Its Applications in Economics

    Directory of Open Access Journals (Sweden)

    Dominika Crnjac Milić

    2010-12-01

    Full Text Available A short overview of the results related to integer programming is described in the introductory part of this paper. Furthermore, there is a list of literature related to this field. The main part of the paper analyses the Heuristic method which yields a very fast result without the use of significant mathematical tools.

  4. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.

    Science.gov (United States)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-08-01

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  5. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    Science.gov (United States)

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.

  6. Equitably Distributing Quality of Marine Security Guards Using Integer Programming

    Science.gov (United States)

    2013-03-01

    ARB BALMOD COM DoD DoS E HAF HQ 10 IP IQ LP MOS MCESG MSG MSGAT NLP NMC OSAB PCS PP&O Q RSO SAl SD SE SNCO T-ODP LIST OF...and Eurasia 2 Abu Dhabi, United Arab Emirates India and the Middle East 3 Bangkok, Thailand East Asia and Pacific 4 Fort Lauderdale, Florida South...integer, goal, and quadratic programming. LP models and nonlinear programming ( NLP ) models are very similar in model development for both maximizing

  7. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-12-01

    Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights. 

  8. Towards Merging Binary Integer Programming Techniques with Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Reza Zamani

    2017-01-01

    Full Text Available This paper presents a framework based on merging a binary integer programming technique with a genetic algorithm. The framework uses both lower and upper bounds to make the employed mathematical formulation of a problem as tight as possible. For problems whose optimal solutions cannot be obtained, precision is traded with speed through substituting the integrality constrains in a binary integer program with a penalty. In this way, instead of constraining a variable u with binary restriction, u is considered as real number between 0 and 1, with the penalty of Mu(1-u, in which M is a large number. Values not near to the boundary extremes of 0 and 1 make the component of Mu(1-u large and are expected to be avoided implicitly. The nonbinary values are then converted to priorities, and a genetic algorithm can use these priorities to fill its initial pool for producing feasible solutions. The presented framework can be applied to many combinatorial optimization problems. Here, a procedure based on this framework has been applied to a scheduling problem, and the results of computational experiments have been discussed, emphasizing the knowledge generated and inefficiencies to be circumvented with this framework in future.

  9. Integer programming of cement distribution by train

    Science.gov (United States)

    Indarsih

    2018-01-01

    Cement industry in Central Java distributes cement by train to meet daily demand in Yogyakarta and Central Java area. There are five destination stations. For each destination station, there is a warehouse to load cements. Decision maker of cement industry have a plan to redesign the infrastructure and transportation system. The aim is to determine how many locomotives, train wagons, and containers and how to arrange train schedules with subject to the delivery time. For this purposes, we consider an integer programming to minimize the total of operational cost. Further, we will discuss a case study and the solution the problem can be calculated by LINGO software.

  10. Binary integer programming solution for troubleshooting with dependent actions

    Czech Academy of Sciences Publication Activity Database

    Lín, Václav

    2017-01-01

    Roč. 53, č. 3 (2017), s. 493-512 ISSN 0023-5954 R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : binary integer programming * decision-theoretic troubleshooting Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/lin-0476547.pdf

  11. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    Science.gov (United States)

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  12. Exponential stability of uncertain stochastic neural networks with mixed time-delays

    International Nuclear Information System (INIS)

    Wang Zidong; Lauria, Stanislao; Fang Jian'an; Liu Xiaohui

    2007-01-01

    This paper is concerned with the global exponential stability analysis problem for a class of stochastic neural networks with mixed time-delays and parameter uncertainties. The mixed delays comprise discrete and distributed time-delays, the parameter uncertainties are norm-bounded, and the neural networks are subjected to stochastic disturbances described in terms of a Brownian motion. The purpose of the stability analysis problem is to derive easy-to-test criteria under which the delayed stochastic neural network is globally, robustly, exponentially stable in the mean square for all admissible parameter uncertainties. By resorting to the Lyapunov-Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established by using an efficient linear matrix inequality (LMI) approach. The proposed criteria can be checked readily by using recently developed numerical packages, where no tuning of parameters is required. An example is provided to demonstrate the usefulness of the proposed criteria

  13. Functional Equations in Fuzzy Banach Spaces

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2012-01-01

    generalized Hyers-Ulam stability of the following additive-quadratic functional equation f(x+ky+f(x−ky=f(x+y+f(x−y+(2(k+1/kf(ky−2(k+1f(y for fixed integers k with k≠0,±1 in fuzzy Banach spaces.

  14. Stochastic mechanics of mixed states

    International Nuclear Information System (INIS)

    Jaekel, M.T.; Pignon, D.

    1984-01-01

    Nelson's stochastic interpretation of quantum mechanics is extended from the case of pure states to that of mixed states. It is shown that a pure probabilistic formalism, which applies the Newton-Nelson Law to the initial position and velocity distributions, does not reproduce the time evolution predicted by quantum mechanics. In order to recover the latter, a new notion must be introduced, that of pure quantum states, over which the mixture has to be decomposed, and which then satisfy the Newton-Nelson Law independently. (author)

  15. Split diversity in constrained conservation prioritization using integer linear programming.

    Science.gov (United States)

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

  16. Stochastic Pseudo-Boolean Optimization

    Science.gov (United States)

    2011-07-31

    16 polyominoes. Given this notation, we provide the following nonlinear mixed integer programming (MIP) formulation of the exact tiling problem: PNL ...ri, cj ≥ 0 ∀ i, j, p, q, k. 8.3.3 Linear Set Partitioning Formulation We use value disjunctions to reformulate PNL as a linear MIP that can be

  17. Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal

    International Nuclear Information System (INIS)

    Yong-Feng, Guo; Wei, Xu; Liang, Wang

    2010-01-01

    This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)

  18. A pseudo-optimal inexact stochastic interval T2 fuzzy sets approach for energy and environmental systems planning under uncertainty: A case study for Xiamen City of China

    International Nuclear Information System (INIS)

    Jin, L.; Huang, G.H.; Fan, Y.R.; Wang, L.; Wu, T.

    2015-01-01

    Highlights: • Propose a new energy PIS-IT2FSLP model for Xiamen City under uncertainties. • Analyze the energy supply, demand, and its flow structure of this city. • Use real energy statistics to prove the superiority of PIS-IT2FSLP method. • Obtain optimal solutions that reflect environmental requirements. • Help local authorities devise an optimal energy strategy for this local area. - Abstract: In this study, a new Pseudo-optimal Inexact Stochastic Interval Type-2 Fuzzy Sets Linear Programming (PIS-IT2FSLP) energy model is developed to support energy system planning and environment requirements under uncertainties for Xiamen City. The PIS-IT2FSLP model is based on an integration of interval Type 2 (T2) Fuzzy Sets (FS) boundary programming and stochastic linear programming techniques, enables it to have robust abilities to the tackle uncertainties expressed as T2 FS intervals and probabilistic distributions within a general optimization framework. This new model can sophisticatedly facilitate system analysis of energy supply and energy conversion processes, and environmental requirements as well as provide capacity expansion options with multiple periods. The PIS-IT2FSLP model was applied to a real case study of Xiamen energy systems. Based on a robust two-step solution algorithm, reasonable solutions have been obtained, which reflect tradeoffs between economic and environmental requirements, and among seasonal volatility energy demands of the right hand side constraints of Xiamen energy system. Thus, the lower and upper solutions of PIS-IT2FSLP would then help local energy authorities adjust current energy patterns, and discover an optimal energy strategy for the development of Xiamen City

  19. Asset liability management modeling using multi-stage mixed-integer stochastic programming

    NARCIS (Netherlands)

    Drijver, S.J.; Klein Haneveld, W.K.; van der Vlerk, Maarten H.

    2000-01-01

    A pension fund has to match the portfolio of long-term liabilities with the portfolio of assets. Key instruments in strategic Asset Liability Management (ALM) are the adjustments of the contribution rate of the sponsor and the reallocation of the investments in several asset classes at various

  20. Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1996-05-01

    In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.

  1. Optimal installation program for reprocessing plants

    International Nuclear Information System (INIS)

    Kubokawa, Toshihiko; Kiyose, Ryohei

    1976-01-01

    Optimization of the program of installation of reprocessing plants is mathematically formulated as problem of mixed integer programming, which is numerically solved by the branch-and-bound method. A new concept of quasi-penalty is used to obviate the difficulties associated with dual degeneracy. The finiteness of the useful life of the plant is also taken into consideration. It is shown that an analogous formulation is possible for the cases in which the demand forecasts and expected plant lives cannot be predicted with certainty. The scale of the problem is found to have kN binary variables, (k+2)N continuous variables, and (k+3)N constraint conditions, where k is the number of intervals used in the piece-wise linear approximation of a nonlinear objective function, and N the overall duration of the period covered by the installation program. Calculations are made for N=24 yr and k=3, with the assumption that the plant life is 15 yr, the plant scale factor 0.5, and the maximum plant capacity 900 (t/yr). The results are calculated and discussed for four different demand forecasts. The difference of net profit between optimal and non-optimal installation programs is found to be in the range of 50 -- 100 M$. The pay-off matrix is calculated, and the optimal choice of action when the demand cannot be forecast with certainty is determined by applying Bayes' theory. The optimal installation program under such conditions of uncertainty is obtained also with a stochastic mixed integer programming model. (auth.)

  2. On the mathematics of fuzziness

    Energy Technology Data Exchange (ETDEWEB)

    Chulichkov, A.I.; Chulichkova, N.M.; Pyt`ev, Y. P.; Smolnik, L.

    1994-12-31

    The problem of the minimax linear interpretation of stochastic measurements with fuzzy conditions on values of the object`s parameters is considered. The result of a measurement interpretation is the fuzzy element (u, h, alpha, mu(.,.,.)), where u is the object`s parameter estimation, h is the estimation accuracy and alpha is the reliability of interpretation, mu is the characteristic function of a fuzzy element. Reliability is the characteristic of the agreement between fuzzy a priori information and measuring data. The information on the values of the parameters of an object under investigation is interactively submitted to the computer.

  3. A fuzzy chance-constrained programming model with type 1 and type 2 fuzzy sets for solid waste management under uncertainty

    Science.gov (United States)

    Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei

    2017-06-01

    Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.

  4. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    Science.gov (United States)

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  5. Expected value based fuzzy programming approach to solve integrated supplier selection and inventory control problem with fuzzy demand

    Science.gov (United States)

    Sutrisno; Widowati; Sunarsih; Kartono

    2018-01-01

    In this paper, a mathematical model in quadratic programming with fuzzy parameter is proposed to determine the optimal strategy for integrated inventory control and supplier selection problem with fuzzy demand. To solve the corresponding optimization problem, we use the expected value based fuzzy programming. Numerical examples are performed to evaluate the model. From the results, the optimal amount of each product that have to be purchased from each supplier for each time period and the optimal amount of each product that have to be stored in the inventory for each time period were determined with minimum total cost and the inventory level was sufficiently closed to the reference level.

  6. A hybrid multi-objective evolutionary algorithm approach for ...

    Indian Academy of Sciences (India)

    This paper addresses a fuzzy mixed-integer non-linear programming (FMINLP) model by considering machine-dependent and job-sequence-dependent set-up times that minimize the total completion time,the number of tardy jobs, the total flow time and the machine load variation in the context of unrelated parallel machine ...

  7. Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.

  8. A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.

    Science.gov (United States)

    Hajri, S; Liouane, N; Hammadi, S; Borne, P

    2000-01-01

    Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.

  9. Regulatory Impacts on Distributed Generation and Upstream Transmission Substation Expansion Planning: A Novel Stochastic Bi-level Model

    Directory of Open Access Journals (Sweden)

    F. Misaghi

    2017-06-01

    Full Text Available In this paper, a novel framework is proposed to study impacts of regulatory incentive on distributed generation (DG investment in sub-transmission substations, as well as upgrading of upstream transmission substations. Both conventional and wind power technologies are considered here. Investment incentives are fuel cost, firm contracts, capacity payment and investment subsidy relating to wind power. The problem is modelled as a bi-level stochastic optimization problem, where the upper level consists of investor's decisions maximizing its own profit. Both market clearing and decision on upgrading of transmission substation aiming at minimizing the total cost are considered in the lower level. Due to non-convexity of the lower level and impossibility of converting to single level problem (i.e. mathematical programming with equilibrium constraints (MPEC, an algorithm combing enumeration and mathematical optimization is used to tackle with the non-convexity. For each upgrading strategy of substations, a stochastic MPEC, converted to a mixed integer linear programming (MILP is solved. The proposed model is examined on a six-bus and an actual network. Numerical studies confirm that the proposed model can be used for analysing investment behaviour of DGs and substation expansion.

  10. Operational budgeting using fuzzy goal programming

    OpenAIRE

    Saeed Mohammadi; Kamran Feizi; Ali Khatami Firouz Abadi

    2013-01-01

    Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate oper...

  11. use of fuzzy logic to investigate weather parameter impact

    African Journals Online (AJOL)

    user

    2016-07-03

    Jul 3, 2016 ... developed in the Simulink environment of a MATLAB software. The model ... smoothing, stochastic process, ARMA (autoregressive integrated moving .... 2.3 Building of Fuzzy Logic Simulation Model. The fuzzy model is ...

  12. Method for solving fully fuzzy linear programming problems using deviation degree measure

    Institute of Scientific and Technical Information of China (English)

    Haifang Cheng; Weilai Huang; Jianhu Cai

    2013-01-01

    A new ful y fuzzy linear programming (FFLP) prob-lem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crispδ-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the δ-fuzzy optimal so-lution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the va-lues of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to il ustrate the proposed method.

  13. Performance Evaluation for Sustainability of Strong Smart Grid by Using Stochastic AHP and Fuzzy TOPSIS Methods

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2016-01-01

    Full Text Available As an efficient way to deal with the global climate change and energy shortage problems, a strong, self-healing, compatible, economic and integrative smart gird is under construction in China, which is supported by large amounts of investments and advanced technologies. To promote the construction, operation and sustainable development of Strong Smart Grid (SSG, a novel hybrid framework for evaluating the performance of SSG is proposed from the perspective of sustainability. Based on a literature review, experts’ opinions and the technical characteristics of SSG, the evaluation model involves four sustainability criteria defined as economy, society, environment and technology aspects associated with 12 sub-criteria. Considering the ambiguity and vagueness of the subjective judgments on sub-criteria, fuzzy TOPSIS method is employed to evaluate the performance of SSG. In addition, different from previous research, this paper adopts the stochastic Analytical Hierarchy Process (AHP method to upgrade the traditional Technique for Order Preference by Similarity to Ideal Solution (TOPSIS by addressing the fuzzy and stochastic factors within weights calculation. Finally, four regional smart grids in China are ranked by employing the proposed framework. The results show that the sub-criteria affiliated with environment obtain much more attention than that of economy from experts group. Moreover, the sensitivity analysis indicates the ranking list remains stable no matter how sub-criteria weights are changed, which verifies the robustness and effectiveness of the proposed model and evaluation results. This study provides a comprehensive and effective method for performance evaluation of SSG and also innovates the weights calculation for traditional TOPSIS.

  14. Should We Stop Developing Heuristics and Only Rely on Mixed Integer Programming Solvers in Automated Test Assembly? A Rejoinder to van der Linden and Li (2016).

    Science.gov (United States)

    Chen, Pei-Hua

    2017-05-01

    This rejoinder responds to the commentary by van der Linden and Li entiled "Comment on Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" on the article "Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" by Chen. Van der Linden and Li made a strong statement calling for the cessation of test assembly heuristics development, and instead encouraged embracing mixed integer programming (MIP). This article points out the nondeterministic polynomial (NP)-hard nature of MIP problems and how solutions found using heuristics could be useful in an MIP context. Although van der Linden and Li provided several practical examples of test assembly supporting their view, the examples ignore the cases in which a slight change of constraints or item pool data might mean it would not be possible to obtain solutions as quickly as before. The article illustrates the use of heuristic solutions to improve both the performance of MIP solvers and the quality of solutions. Additional responses to the commentary by van der Linden and Li are included.

  15. Using Integer Programming for Airport Service Planning in Staff Scheduling

    Directory of Open Access Journals (Sweden)

    W.H. Ip

    2010-09-01

    Full Text Available Reliability and safety in flight is extremely necessary and that depend on the adoption of proper maintenance system. Therefore, it is essential for aircraft maintenance companies to perform the manpower scheduling efficiently. One of the objectives of this paper is to provide an Integer Programming approach to determine the optimal solutions to aircraft maintenance planning and scheduling and hence the planning and scheduling processes can become more efficient and effective. Another objective is to develop a set of computational schedules for maintenance manpower to cover all scheduled flights. In this paper, a sequential methodology consisting of 3 stages is proposed. They are initial maintenance demand schedule, the maintenance pairing and the maintenance group(s assignment. Since scheduling would split up into different stages, different mathematical techniques have been adopted to cater for their own problem characteristics. Microsoft Excel would be used. Results from the first stage and second stage would be inputted into integer programming model using Microsoft Excel Solver to find the optimal solution. Also, Microsoft Excel VBA is used for devising a scheduling system in order to reduce the manual process and provide a user friendly interface. For the results, all can be obtained optimal solution and the computation time is reasonable and acceptable. Besides, the comparison of the peak time and non-peak time is discussed.

  16. Integer and combinatorial optimization

    CERN Document Server

    Nemhauser, George L

    1999-01-01

    Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION ""This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list.""-Optima ""A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such f

  17. An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation

    International Nuclear Information System (INIS)

    Niknam, Taher; Azizipanah-Abarghooee, Rasoul; Narimani, Mohammad Rasoul

    2012-01-01

    Highlights: ► Proposes a stochastic model for optimal energy management. ► Consider uncertainties related to the forecasted values for load demand. ► Consider uncertainties of forecasted values of output power of wind and photovoltaic units. ► Consider uncertainties of forecasted values of market price. ► Present an improved multi-objective teaching–learning-based optimization. -- Abstract: This paper proposes a stochastic model for optimal energy management with the goal of cost and emission minimization. In this model, the uncertainties related to the forecasted values for load demand, available output power of wind and photovoltaic units and market price are modeled by a scenario-based stochastic programming. In the presented method, scenarios are generated by a roulette wheel mechanism based on probability distribution functions of the input random variables. Through this method, the inherent stochastic nature of the proposed problem is released and the problem is decomposed into a deterministic problem. An improved multi-objective teaching–learning-based optimization is implemented to yield the best expected Pareto optimal front. In the proposed stochastic optimization method, a novel self adaptive probabilistic modification strategy is offered to improve the performance of the presented algorithm. Also, a set of non-dominated solutions are stored in a repository during the simulation process. Meanwhile, the size of the repository is controlled by usage of a fuzzy-based clustering technique. The best expected compromise solution stored in the repository is selected via the niching mechanism in a way that solutions are encouraged to seek the lesser explored regions. The proposed framework is applied in a typical grid-connected micro grid in order to verify its efficiency and feasibility.

  18. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    Science.gov (United States)

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these

  19. Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

    International Nuclear Information System (INIS)

    Balasubramaniam, P.; Kalpana, M.; Rakkiyappan, R.

    2012-01-01

    Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov—Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method. (interdisciplinary physics and related areas of science and technology)

  20. A Mixed Integer Efficient Global Optimization Framework: Applied to the Simultaneous Aircraft Design, Airline Allocation and Revenue Management Problem

    Science.gov (United States)

    Roy, Satadru

    Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network

  1. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong

    2013-01-01

    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  2. Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model

    International Nuclear Information System (INIS)

    Xu Long; Wang Junping; Chen Quanshi

    2012-01-01

    Highlights: ► A novel extended Kalman Filtering SOC estimation method based on a stochastic fuzzy neural network (SFNN) battery model is proposed. ► The SFNN which has filtering effect on noisy input can model the battery nonlinear dynamic with high accuracy. ► A robust parameter learning algorithm for SFNN is studied so that the parameters can converge to its true value with noisy data. ► The maximum SOC estimation error based on the proposed method is 0.6%. - Abstract: Extended Kalman filtering is an intelligent and optimal means for estimating the state of a dynamic system. In order to use extended Kalman filtering to estimate the state of charge (SOC), we require a mathematical model that can accurately capture the dynamics of battery pack. In this paper, we propose a stochastic fuzzy neural network (SFNN) instead of the traditional neural network that has filtering effect on noisy input to model the battery nonlinear dynamic. Then, the paper studies the extended Kalman filtering SOC estimation method based on a SFNN model. The modeling test is realized on an 80 Ah Ni/MH battery pack and the Federal Urban Driving Schedule (FUDS) cycle is used to verify the SOC estimation method. The maximum SOC estimation error is 0.6% compared with the real SOC obtained from the discharging test.

  3. Automated Flight Routing Using Stochastic Dynamic Programming

    Science.gov (United States)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  4. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    Directory of Open Access Journals (Sweden)

    Aihong Ren

    2016-01-01

    Full Text Available This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solution of the problem, we apply deviation degree measures to deal with the fuzzy constraints and use a ranking function method of fuzzy numbers to rank the upper and lower level fuzzy objective functions. Then the fully fuzzy bilevel linear programming problem can be transformed into a deterministic bilevel programming problem. Considering the overall balance between improving objective function values and decreasing allowed deviation degrees, the computational procedure for finding a fuzzy optimal solution is proposed. Finally, a numerical example is provided to illustrate the proposed approach. The results indicate that the proposed approach gives a better optimal solution in comparison with the existing method.

  5. Network-constrained AC unit commitment under uncertainty: A Benders' decomposition approach

    DEFF Research Database (Denmark)

    Nasri, Amin; Kazempour, Seyyedjalal; Conejo, Antonio J.

    2015-01-01

    . The proposed model is formulated as a two-stage stochastic programming problem, whose first-stage refers to the day-ahead market, and whose second-stage represents real-time operation. The proposed Benders’ approach allows decomposing the original problem, which is mixed-integer nonlinear and generally...... intractable, into a mixed-integer linear master problem and a set of nonlinear, but continuous subproblems, one per scenario. In addition, to temporally decompose the proposed ac unit commitment problem, a heuristic technique is used to relax the inter-temporal ramping constraints of the generating units...

  6. Uses and updating of the Benders method in the integer-mixed programming in the planning of the electric power systems expansion; Usos y actualizacion del metodo de Benders en la programacion entera-mixta y en la planeacion de la expansion de los sistemas electricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre Vega, Eli

    1997-04-01

    In the first chapter the deduction of the Benders cuts are presented, departing from the properties of duality. Also the properties of the Benders cuts are presented, as well as the initial algorithm of Benders to solve any problem of lineal integer-mixed programming are presented. In the second chapter, of the planning of the expansion of means of generation and transmission in an electric power system is presented and the different structures of the mathematical programming it gives rise to and how the method of Benders can be adapted to these. In the third chapter the theoretical contributions of this work are presented: a) How to initialize the master problem to take advantage of the acquired experience after having solved a similar problem, so that it can be solved more efficiently, the succession of integer-mixed problems of linear programming that arise when solving the problem of the planning of the expansion of generation and transmission means in an electric power system. b) How to generate a master problem whose continuous optimal solution corresponds to the optimal continuous one of the integer-mixed problem, so that the search of integer solutions is made in the vicinity of the optimum continuous. c) How to generate an integer solution, close to the optimum continuous of the integer-mixed problem, that has high probability of being feasible, and that is perhaps the optimal integer solution, in a smaller time than that required to solve it in exact form. In addition, other ideas are presented that can be incorporated to the Benders method. In order to show the effectiveness of the proposed ideas, in chapter 4 the results obtained when solving several problems are presented using: 1. The updated Benders method, 2. The branch and bound method, 3. The update of Benders when adding restrictions and 4. The update of Benders when considered as integer each time to more variables. Finally a summary is made of the achievements, of the conclusions obtained and

  7. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling

    Directory of Open Access Journals (Sweden)

    Petras Rupšys

    2015-01-01

    Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.

  8. Investigating Students’ Development of Learning Integer Concept and Integer Addition

    Directory of Open Access Journals (Sweden)

    Nenden Octavarulia Shanty

    2016-09-01

    Full Text Available This research aimed at investigating students’ development of learning integer concept and integer addition. The investigation was based on analyzing students’ works in solving the given mathematical problems in each instructional activity designed based on Realistic Mathematics Education (RME levels. Design research was chosen to achieve and to contribute in developing a local instruction theory for teaching and learning of integer concept and integer addition. In design research, the Hypothetical Learning Trajectory (HLT plays important role as a design and research instrument. It was designed in the phase of preliminary design and tested to three students of grade six OASIS International School, Ankara – Turkey. The result of the experiments showed that temperature in the thermometer context could stimulate students’ informal knowledge of integer concept. Furthermore, strategies and tools used by the students in comparing and relating two temperatures were gradually be developed into a more formal mathematics. The representation of line inside thermometer which then called the number line could bring the students to the last activity levels, namely rules for adding integer, and became the model for more formal reasoning. Based on these findings, it can be concluded that students’ learning integer concept and integer addition developed through RME levels.Keywords: integer concept, integer addition, Realistic Mathematics Education DOI: http://dx.doi.org/10.22342/jme.7.2.3538.57-72

  9. Menu-Driven Solver Of Linear-Programming Problems

    Science.gov (United States)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  10. Yager’s ranking method for solving the trapezoidal fuzzy number linear programming

    Science.gov (United States)

    Karyati; Wutsqa, D. U.; Insani, N.

    2018-03-01

    In the previous research, the authors have studied the fuzzy simplex method for trapezoidal fuzzy number linear programming based on the Maleki’s ranking function. We have found some theories related to the term conditions for the optimum solution of fuzzy simplex method, the fuzzy Big-M method, the fuzzy two-phase method, and the sensitivity analysis. In this research, we study about the fuzzy simplex method based on the other ranking function. It is called Yager's ranking function. In this case, we investigate the optimum term conditions. Based on the result of research, it is found that Yager’s ranking function is not like Maleki’s ranking function. Using the Yager’s function, the simplex method cannot work as well as when using the Maleki’s function. By using the Yager’s function, the value of the subtraction of two equal fuzzy numbers is not equal to zero. This condition makes the optimum table of the fuzzy simplex table is undetected. As a result, the simplified fuzzy simplex table becomes stopped and does not reach the optimum solution.

  11. Developing optimal nurses work schedule using integer programming

    Science.gov (United States)

    Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena

    2017-08-01

    Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.

  12. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    OpenAIRE

    Aihong Ren

    2016-01-01

    This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solut...

  13. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers

    CERN Document Server

    Li, Deng-Feng

    2016-01-01

    This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .

  14. ALPS: A Linear Program Solver

    Science.gov (United States)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  15. Fuzzy rule-based model for hydropower reservoirs operation

    Energy Technology Data Exchange (ETDEWEB)

    Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)

  16. Learning Bayesian network structure: towards the essential graph by integer linear programming tools

    Czech Academy of Sciences Publication Activity Database

    Studený, Milan; Haws, D.

    2014-01-01

    Roč. 55, č. 4 (2014), s. 1043-1071 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * integer linear programming * characteristic imset * essential graph Subject RIV: BA - General Mathematics Impact factor: 2.451, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/studeny-0427002.pdf

  17. Mathematical solution of multilevel fractional programming problem with fuzzy goal programming approach

    Science.gov (United States)

    Lachhwani, Kailash; Poonia, Mahaveer Prasad

    2012-08-01

    In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.

  18. Planning under uncertainty solving large-scale stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  19. Population transfer HMQC for half-integer quadrupolar nuclei

    International Nuclear Information System (INIS)

    Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul

    2015-01-01

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., 27 Al- 17 O). In this case, the build-up is strongly affected by relaxation for small T 2 ′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO 4 -14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the 31 P-( 27 Al) experiments

  20. Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy

    International Nuclear Information System (INIS)

    Nosratabadi, Seyyed Mostafa; Hooshmand, Rahmat-Allah; Gholipour, Eskandar

    2016-01-01

    Highlights: • VPPs and IVPPs are defined for energy management of aggregated generations. • IVPP can manage industrial microgrid containing some relevant load and generation. • A stochastic modeling is proposed to schedule optimal generations in competition market. • Wind generation and day-ahead and spot market prices are considered to be stochastic. • A new DRL program selection scheme is presented in the scheduling procedure. - Abstract: One of the main classified microgrids in a power system is the industrial microgrid. Due to its behaviors and the heavy loads, its energy management is challengeable. Virtual Power Plant (VPP) can be an important concept in managing such problems in this kind of grids. Here, a transmission power system is considered as a Regional Electric Company (REC) and the VPPs comprising Distributed Generation (DG) units and Demand Response Loads (DRLs) are determined in this system. This paper focuses on Industrial VPP (IVPP) and its management. An IVPP can be determined as a management unit comprising generations and loads in an industrial microgrid. Since the scheduling procedure for these units is very important for their participation in a short-term electric market, a stochastic formulation is proposed for power scheduling in VPPs especially in IVPPs in this paper. By introducing the DRL programs and using the proposed modeling, the operator can select the best DRL program for each VPP in a scheduling procedure. In this regard, a suitable approach is presented to determine the proposed formulation and its solution in a Mixed Integer Non-Linear Programming (MINLP). To validate the performance of the proposed method, the IEEE Reliability Test System (IEEE-RTS) is considered to apply the method on it, while some challenging aspects are presented.

  1. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    Science.gov (United States)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  2. Chance-constrained programming models for capital budgeting with NPV as fuzzy parameters

    Science.gov (United States)

    Huang, Xiaoxia

    2007-01-01

    In an uncertain economic environment, experts' knowledge about outlays and cash inflows of available projects consists of much vagueness instead of randomness. Investment outlays and annual net cash flows of a project are usually predicted by using experts' knowledge. Fuzzy variables can overcome the difficulties in predicting these parameters. In this paper, capital budgeting problem with fuzzy investment outlays and fuzzy annual net cash flows is studied based on credibility measure. Net present value (NPV) method is employed, and two fuzzy chance-constrained programming models for capital budgeting problem are provided. A fuzzy simulation-based genetic algorithm is provided for solving the proposed model problems. Two numerical examples are also presented to illustrate the modelling idea and the effectiveness of the proposed algorithm.

  3. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    Science.gov (United States)

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  4. Obstacle avoidance handling and mixed integer predictive control for space robots

    Science.gov (United States)

    Zong, Lijun; Luo, Jianjun; Wang, Mingming; Yuan, Jianping

    2018-04-01

    This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector's desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance

  5. Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response

    International Nuclear Information System (INIS)

    Vahid-Pakdel, M.J.; Nojavan, Sayyad; Mohammadi-ivatloo, B.; Zare, Kazem

    2017-01-01

    Highlights: • Studying heating market impact on energy hub operation considering price uncertainty. • Investigating impact of implementation of heat demand response on hub operation. • Presenting stochastic method to consider wind generation and prices uncertainties. - Abstract: Multi carrier energy systems or energy hubs has provided more flexibility for energy management systems. On the other hand, due to mutual impact of different energy carriers in energy hubs, energy management studies become more challengeable. The initial patterns of energy demands from grids point of view can be modified by optimal scheduling of energy hubs. In this work, optimal operation of multi carrier energy system has been studied in the presence of wind farm, electrical and thermal storage systems, electrical and thermal demand response programs, electricity market and thermal energy market. Stochastic programming is implemented for modeling the system uncertainties such as demands, market prices and wind speed. It is shown that adding new source of heat energy for providing demand of consumers with market mechanism changes the optimal operation point of multi carrier energy system. Presented mixed integer linear formulation for the problem has been solved by executing CPLEX solver of GAMS optimization software. Simulation results shows that hub’s operation cost reduces up to 4.8% by enabling the option of using thermal energy market for meeting heat demand.

  6. Intuitionistic Fuzzy Goal Programming Technique for Solving Non-Linear Multi-objective Structural Problem

    Directory of Open Access Journals (Sweden)

    Samir Dey

    2015-07-01

    Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.

  7. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  8. A goal programming procedure for solving fuzzy multiobjective fractional linear programming problems

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2014-12-01

    Full Text Available This paper presents a modification of Pal, Moitra and Maulik's goal programming procedure for fuzzy multiobjective linear fractional programming problem solving. The proposed modification of the method allows simpler solving of economic multiple objective fractional linear programming (MOFLP problems, enabling the obtained solutions to express the preferences of the decision maker defined by the objective function weights. The proposed method is tested on the production planning example.

  9. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study

    International Nuclear Information System (INIS)

    Wouters, Carmen; Fraga, Eric S.; James, Adrian M.

    2015-01-01

    The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids

  10. Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.

  11. A Mathematical Programming Approach to the Optimal Sustainable Product Mix for the Process Industry

    Directory of Open Access Journals (Sweden)

    Noha M. Galal

    2015-09-01

    Full Text Available The increasing concerns about the environment and the depletion of natural resources are the main drivers for the growing interest in sustainability. Manufacturing operations are frequently considered to have an adverse effect on the environment. Hence, the sustainable operation of manufacturing facilities is a vital practice to ensure sustainability. The aim of this paper is to find the optimum product mix of a manufacturing facility to maximize its sustainability. A mixed integer non-linear programming model is developed to specify the product mix in order to maximize a proposed sustainability index (SI of a manufacturing facility. The sustainability index comprises the economic, environmental and social pillars of sustainability in a weighted form using the analytic hierarchy process (AHP. The model results allow the identification of the prospective improvements of manufacturing sustainability.

  12. An improved exploratory search technique for pure integer linear programming problems

    Science.gov (United States)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  13. Calibration of a stochastic health evolution model using NHIS data

    Science.gov (United States)

    Gupta, Aparna; Li, Zhisheng

    2011-10-01

    This paper presents and calibrates an individual's stochastic health evolution model. In this health evolution model, the uncertainty of health incidents is described by a stochastic process with a finite number of possible outcomes. We construct a comprehensive health status index (HSI) to describe an individual's health status, as well as a health risk factor system (RFS) to classify individuals into different risk groups. Based on the maximum likelihood estimation (MLE) method and the method of nonlinear least squares fitting, model calibration is formulated in terms of two mixed-integer nonlinear optimization problems. Using the National Health Interview Survey (NHIS) data, the model is calibrated for specific risk groups. Longitudinal data from the Health and Retirement Study (HRS) is used to validate the calibrated model, which displays good validation properties. The end goal of this paper is to provide a model and methodology, whose output can serve as a crucial component of decision support for strategic planning of health related financing and risk management.

  14. Monthly Optimal Reservoirs Operation for Multicrop Deficit Irrigation under Fuzzy Stochastic Uncertainties

    Directory of Open Access Journals (Sweden)

    Liudong Zhang

    2014-01-01

    Full Text Available An uncertain monthly reservoirs operation and multicrop deficit irrigation model was proposed under conjunctive use of underground and surface water for water resources optimization management. The objective is to maximize the total crop yield of the entire irrigation districts. Meanwhile, ecological water remained for the downstream demand. Because of the shortage of water resources, the monthly crop water production function was adopted for multiperiod deficit irrigation management. The model reflects the characteristics of water resources repetitive transformation in typical inland rivers irrigation system. The model was used as an example for water resources optimization management in Shiyang River Basin, China. Uncertainties in reservoir management shown as fuzzy probability were treated through chance-constraint parameter for decision makers. Necessity of dominance (ND was used to analyse the advantages of the method. The optimization results including reservoirs real-time operation policy, deficit irrigation management, and the available water resource allocation could be used to provide decision support for local irrigation management. Besides, the strategies obtained could help with the risk analysis of reservoirs operation stochastically.

  15. Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Xiaohu; Xu Daoyi

    2009-01-01

    In this paper, the global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms is considered. By establishing an integro-differential inequality with impulsive initial condition and using the properties of M-cone and eigenspace of the spectral radius of nonnegative matrices, several new sufficient conditions are obtained to ensure the global exponential stability of the equilibrium point for fuzzy cellular neural networks with delays and reaction-diffusion terms. These results extend and improve the earlier publications. Two examples are given to illustrate the efficiency of the obtained results.

  16. A stochastic programming approach to manufacturing flow control

    OpenAIRE

    Haurie, Alain; Moresino, Francesco

    2012-01-01

    This paper proposes and tests an approximation of the solution of a class of piecewise deterministic control problems, typically used in the modeling of manufacturing flow processes. This approximation uses a stochastic programming approach on a suitably discretized and sampled system. The method proceeds through two stages: (i) the Hamilton-Jacobi-Bellman (HJB) dynamic programming equations for the finite horizon continuous time stochastic control problem are discretized over a set of sample...

  17. A mixed integer linear programming model for operational planning of a biodiesel supply chain network from used cooking oil

    Science.gov (United States)

    Jonrinaldi, Hadiguna, Rika Ampuh; Salastino, Rades

    2017-11-01

    Environmental consciousness has paid many attention nowadays. It is not only about how to recycle, remanufacture or reuse used end products but it is also how to optimize the operations of the reverse system. A previous research has proposed a design of reverse supply chain of biodiesel network from used cooking oil. However, the research focused on the design of the supply chain strategy not the operations of the supply chain. It only decided how to design the structure of the supply chain in the next few years, and the process of each stage will be conducted in the supply chain system in general. The supply chain system has not considered operational policies to be conducted by the companies in the supply chain. Companies need a policy for each stage of the supply chain operations to be conducted so as to produce the optimal supply chain system, including how to use all the resources that have been designed in order to achieve the objectives of the supply chain system. Therefore, this paper proposes a model to optimize the operational planning of a biodiesel supply chain network from used cooking oil. A mixed integer linear programming is developed to model the operational planning of biodiesel supply chain in order to minimize the total operational cost of the supply chain. Based on the implementation of the model developed, the total operational cost of the biodiesel supply chain incurred by the system is less than the total operational cost of supply chain based on the previous research during seven days of operational planning about amount of 2,743,470.00 or 0.186%. Production costs contributed to 74.6 % of total operational cost and the cost of purchasing the used cooking oil contributed to 24.1 % of total operational cost. So, the system should pay more attention to these two aspects as changes in the value of these aspects will cause significant effects to the change in the total operational cost of the supply chain.

  18. Monomial geometric programming with an arbitrary fuzzy relational inequality

    Directory of Open Access Journals (Sweden)

    E. Shivanian

    2015-11-01

    Full Text Available In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with an arbitrary function. The feasible solution set is determined and compared with some common results in the literature. A necessary and sufficient condition and three other necessary conditions are presented to conceptualize the feasibility of the problem. In general a lower bound is always attainable for the optimal objective value by removing the components having no effect on the solution process. By separating problem to non-decreasing and non-increasing function to prove the optimal solution, we simplify operations to accelerate the resolution of the problem.

  19. Fuzzy control with random delays using invariant cones and its application to control of energy processes in microelectromechanical motion devices

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.S.C. [Purdue Univ., Indianapolis, IN (United States). Dept. of Electrical Engineering; Lyshevski, S. [Rochester Inst. of Technology, NY (United States)

    2005-05-01

    In this paper, a class of microelectromechanical systems described by nonlinear differential equations with random delays is examined. Robust fuzzy controllers are designed to control the energy conversion processes with the ultimate objective to guarantee optimal achievable performance. The fuzzy rule base used consists of a collection of r fuzzy IF-THEN rules defined as a function of the conditional variable. The method of the theory of cones and Lyapunov functionals is used to design a class of local fuzzy control laws. A verifiably sufficient condition for stochastic stability of fuzzy stochastic microelectromechanical systems is given. As an example, we have considered the design of a fuzzy control law for an electrostatic micromotor. (author)

  20. Fuzzy control with random delays using invariant cones and its application to control of energy processes in microelectromechanical motion devices

    International Nuclear Information System (INIS)

    Sinha, A.S.C.; Lyshevski, S.

    2005-01-01

    In this paper, a class of microelectromechanical systems described by nonlinear differential equations with random delays is examined. Robust fuzzy controllers are designed to control the energy conversion processes with the ultimate objective to guarantee optimal achievable performance. The fuzzy rule base used consists of a collection of r fuzzy IF-THEN rules defined as a function of the conditional variable. The method of the theory of cones and Lyapunov functionals is used to design a class of local fuzzy control laws. A verifiably sufficient condition for stochastic stability of fuzzy stochastic microelectromechanical systems is given. As an example, we have considered the design of a fuzzy control law for an electrostatic micromotor

  1. Stochastic transport models for mixing in variable-density turbulence

    Science.gov (United States)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  2. A fuzzy compromise programming approach for the Black-Litterman portfolio selection model

    Directory of Open Access Journals (Sweden)

    Mohsen Gharakhani

    2013-01-01

    Full Text Available In this paper, we examine advanced optimization approach for portfolio problem introduced by Black and Litterman to consider the shortcomings of Markowitz standard Mean-Variance optimization. Black and Litterman propose a new approach to estimate asset return. They present a way to incorporate the investor’s views into asset pricing process. Since the investor’s view about future asset return is always subjective and imprecise, we can represent it by using fuzzy numbers and the resulting model is multi-objective linear programming. Therefore, the proposed model is analyzed through fuzzy compromise programming approach using appropriate membership function. For this purpose, we introduce the fuzzy ideal solution concept based on investor preference and indifference relationships using canonical representation of proposed fuzzy numbers by means of their correspondingα-cuts. A real world numerical example is presented in which MSCI (Morgan Stanley Capital International Index is chosen as the target index. The results are reported for a portfolio consisting of the six national indices. The performance of the proposed models is compared using several financial criteria.

  3. Comparison of Integer Programming (IP) Solvers for Automated Test Assembly (ATA). Research Report. ETS RR-15-05

    Science.gov (United States)

    Donoghue, John R.

    2015-01-01

    At the heart of van der Linden's approach to automated test assembly (ATA) is a linear programming/integer programming (LP/IP) problem. A variety of IP solvers are available, ranging in cost from free to hundreds of thousands of dollars. In this paper, I compare several approaches to solving the underlying IP problem. These approaches range from…

  4. Penempatan Optimal Phasor Measurement Unit (PMU dengan Integer Programming

    Directory of Open Access Journals (Sweden)

    Yunan Helmy Amrulloh

    2013-09-01

    Full Text Available Phasor Measurement Unit (PMU merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik  dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP yang akan memberikan variabel dengan pilihan nilai (0,1 yang menunjukkan tempat yang harus dipasang PMU. Dalam tugas akhir ini, BIP diterapkan untuk menyelesaikan masalah penempatan PMU secara optimal pada sistem tenaga listrik  Jawa-Bali 500 KV yang selanjutnya diterapkan dengan penambahan konsep incomplete observability. Hasil simulasi menunjukkan bahwa penerapan BIP pada sistem dengan incomplete observability memberikan jumlah PMU yang lebih sedikit dibandingkan dengan sistem tanpa konsep incomplete observability.

  5. An Integer Programming Formulation of the Minimum Common String Partition Problem.

    Directory of Open Access Journals (Sweden)

    S M Ferdous

    Full Text Available We consider the problem of finding a minimum common string partition (MCSP of two strings, which is an NP-hard problem. The MCSP problem is closely related to genome comparison and rearrangement, an important field in Computational Biology. In this paper, we map the MCSP problem into a graph applying a prior technique and using this graph, we develop an Integer Linear Programming (ILP formulation for the problem. We implement the ILP formulation and compare the results with the state-of-the-art algorithms from the literature. The experimental results are found to be promising.

  6. Fuzzy chance constrained linear programming model for scrap charge optimization in steel production

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto

    2008-01-01

    the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product...

  7. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  8. Stochastic mixed-mode oscillations in a three-species predator-prey model

    Science.gov (United States)

    Sadhu, Susmita; Kuehn, Christian

    2018-03-01

    The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.

  9. Stochastic fuzzy environmental risk characterization of uncertainty and variability in risk assessments: A case study of polycyclic aromatic hydrocarbons in soil at a petroleum-contaminated site in China

    International Nuclear Information System (INIS)

    Hu, Yan; Wang, Zesen; Wen, Jingya; Li, Yu

    2016-01-01

    Highlights: • Deal with environmental quality guidelines absence in risk characterization. • Quantitative represention of uncertainty from environmental quality guidelines. • Quantitative represention of variability from contaminant exposure concentrations. • Establishment of stochastic-fuzzy environmental risk characterization approach framework. - Abstract: Better decisions are made using risk assessment models when uncertainty and variability are explicitly acknowledged. Uncertainty caused by a lack of uniform and scientifically supported environmental quality guidelines and variability in the degree of exposure of environmental systems to contaminants are here incorporated in a stochastic fuzzy environmental risk characterization (SFERC) approach. The approach is based on quotient probability distribution and environmental risk level fuzzy membership function methods. The SFERC framework was used to characterize the environmental risks posed by 16 priority polycyclic aromatic hydrocarbons (PAHs) in soil at a typical petroleum-contaminated site in China. This relied on integrating data from the literature and field and laboratory experiments. The environmental risk levels posed by the PAHs under four risk scenarios were determined using the SFERC approach, using “residential land” and “industrial land” environmental quality guidelines under “loose” and “strict” strictness parameters. The results showed that environmental risks posed by PAHs in soil are primarily caused by oil exploitation, traffic emissions, and coal combustion. The SFERC approach is an effective tool for characterizing uncertainty and variability in environmental risk assessments and for managing contaminated sites.

  10. Stochastic fuzzy environmental risk characterization of uncertainty and variability in risk assessments: A case study of polycyclic aromatic hydrocarbons in soil at a petroleum-contaminated site in China

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yan [MOE Key Laboratory of Regional Energy Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Wang, Zesen [MOE Key Laboratory of Regional Energy Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Wen, Jingya [MOE Key Laboratory of Regional Energy Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Institute of Hydropower and Environment Research, Beijing 100012 (China); Li, Yu, E-mail: liyuxx8@hotmail.com [MOE Key Laboratory of Regional Energy Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2016-10-05

    Highlights: • Deal with environmental quality guidelines absence in risk characterization. • Quantitative represention of uncertainty from environmental quality guidelines. • Quantitative represention of variability from contaminant exposure concentrations. • Establishment of stochastic-fuzzy environmental risk characterization approach framework. - Abstract: Better decisions are made using risk assessment models when uncertainty and variability are explicitly acknowledged. Uncertainty caused by a lack of uniform and scientifically supported environmental quality guidelines and variability in the degree of exposure of environmental systems to contaminants are here incorporated in a stochastic fuzzy environmental risk characterization (SFERC) approach. The approach is based on quotient probability distribution and environmental risk level fuzzy membership function methods. The SFERC framework was used to characterize the environmental risks posed by 16 priority polycyclic aromatic hydrocarbons (PAHs) in soil at a typical petroleum-contaminated site in China. This relied on integrating data from the literature and field and laboratory experiments. The environmental risk levels posed by the PAHs under four risk scenarios were determined using the SFERC approach, using “residential land” and “industrial land” environmental quality guidelines under “loose” and “strict” strictness parameters. The results showed that environmental risks posed by PAHs in soil are primarily caused by oil exploitation, traffic emissions, and coal combustion. The SFERC approach is an effective tool for characterizing uncertainty and variability in environmental risk assessments and for managing contaminated sites.

  11. Stability Criterion of Linear Stochastic Systems Subject to Mixed H2/Passivity Performance

    Directory of Open Access Journals (Sweden)

    Cheung-Chieh Ku

    2015-01-01

    Full Text Available The H2 control scheme and passivity theory are applied to investigate the stability criterion of continuous-time linear stochastic system subject to mixed performance. Based on the stochastic differential equation, the stochastic behaviors can be described as multiplicative noise terms. For the considered system, the H2 control scheme is applied to deal with the problem on minimizing output energy. And the asymptotical stability of the system can be guaranteed under desired initial conditions. Besides, the passivity theory is employed to constrain the effect of external disturbance on the system. Moreover, the Itô formula and Lyapunov function are used to derive the sufficient conditions which are converted into linear matrix inequality (LMI form for applying convex optimization algorithm. Via solving the sufficient conditions, the state feedback controller can be established such that the asymptotical stability and mixed performance of the system are achieved in the mean square. Finally, the synchronous generator system is used to verify the effectiveness and applicability of the proposed design method.

  12. A Comparison of Fuzzy and Annotated Logic Programming

    Czech Academy of Sciences Publication Activity Database

    Krajči, S.; Lencses, R.; Vojtáš, Peter

    2004-01-01

    Roč. 144, - (2004), s. 173-192 ISSN 0165-0114 R&D Projects: GA ČR GA201/00/1489 Grant - others:VEGA(SK) 1/7557/20; VEGA(SK) 1/7555/20; VEGA(SK) 1/0385/03 Institutional research plan: CEZ:AV0Z1030915 Keywords : fuzzy logic programming * generalized annotated programs * declarative and procedural semantics * continuous semantics and computable fixpoint * soundness and completeness Subject RIV: BA - General Mathematics Impact factor: 0.734, year: 2004

  13. Bilevel Fuzzy Chance Constrained Hospital Outpatient Appointment Scheduling Model

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhou

    2016-01-01

    Full Text Available Hospital outpatient departments operate by selling fixed period appointments for different treatments. The challenge being faced is to improve profit by determining the mix of full time and part time doctors and allocating appointments (which involves scheduling a combination of doctors, patients, and treatments to a time period in a department optimally. In this paper, a bilevel fuzzy chance constrained model is developed to solve the hospital outpatient appointment scheduling problem based on revenue management. In the model, the hospital, the leader in the hierarchy, decides the mix of the hired full time and part time doctors to maximize the total profit; each department, the follower in the hierarchy, makes the decision of the appointment scheduling to maximize its own profit while simultaneously minimizing surplus capacity. Doctor wage and demand are considered as fuzzy variables to better describe the real-life situation. Then we use chance operator to handle the model with fuzzy parameters and equivalently transform the appointment scheduling model into a crisp model. Moreover, interactive algorithm based on satisfaction is employed to convert the bilevel programming into a single level programming, in order to make it solvable. Finally, the numerical experiments were executed to demonstrate the efficiency and effectiveness of the proposed approaches.

  14. Green supplier development program selection using NGT and VIKOR under fuzzy environment

    DEFF Research Database (Denmark)

    Awasthi, Anjali; Govindan, Kannan

    2016-01-01

    Developing environmental performance of suppliers is critical for green supply chain management. Organizations are nowadays investing in various green supplier development programs to enhance their supplier performances. The decision to select the right program for green supplier development...... is often a challenging decision due to lack of prior experience, limited quantitative information, specific context of the organization, and varying supplier backgrounds. This paper addresses the problem of evaluating green supplier development programs and proposes a fuzzy NGT (Nominal Group Technique......)-VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) based solution approach. NGT is used to identify criteria for evaluating green supplier development programs. Fuzzy theory is used to address qualitative (linguistic) ratings for the alternatives and the selected criteria used under lack...

  15. An Integer Programming Approach to Solving Tantrix on Fixed Boards

    Directory of Open Access Journals (Sweden)

    Yushi Uno

    2012-03-01

    Full Text Available Tantrix (Tantrix R ⃝ is a registered trademark of Colour of Strategy Ltd. in New Zealand, and of TANTRIX JAPAN in Japan, respectively, under the license of M. McManaway, the inventor. is a puzzle to make a loop by connecting lines drawn on hexagonal tiles, and the objective of this research is to solve it by a computer. For this purpose, we first give a problem setting of solving Tantrix as making a loop on a given fixed board. We then formulate it as an integer program by describing the rules of Tantrix as its constraints, and solve it by a mathematical programming solver to have a solution. As a result, we establish a formulation that can solve Tantrix of moderate size, and even when the solutions are invalid only by elementary constraints, we achieved it by introducing additional constraints and re-solve it. By this approach we succeeded to solve Tantrix of size up to 60.

  16. Fuzzy Goal Programming Approach in Selective Maintenance Reliability Model

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2013-12-01

    Full Text Available 800x600 In the present paper, we have considered the allocation problem of repairable components for a parallel-series system as a multi-objective optimization problem and have discussed two different models. In first model the reliability of subsystems are considered as different objectives. In second model the cost and time spent on repairing the components are considered as two different objectives. These two models is formulated as multi-objective Nonlinear Programming Problem (MONLPP and a Fuzzy goal programming method is used to work out the compromise allocation in multi-objective selective maintenance reliability model in which we define the membership functions of each objective function and then transform membership functions into equivalent linear membership functions by first order Taylor series and finally by forming a fuzzy goal programming model obtain a desired compromise allocation of maintenance components. A numerical example is also worked out to illustrate the computational details of the method.  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

  17. Optimal selection for shielding materials by fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, N.; Sugasawa, S.

    1996-01-01

    An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

  18. NEURO-FUZZY MODELING APPLIED IN PROGRAM MANAGEMENT TO INCREASE LOCAL PUBLIC ADMINISTRATION PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Adrian-Mihai Zaharia-Radulescu

    2016-07-01

    Full Text Available One of the challenges in local public administration is dealing with an increasing number of competing requests coming from the communities they serve. The traditional approach would be to handle each request as a standalone project and be prioritized according to benefits and budget available. More and more nowadays program management is becoming a standard approach in managing the initiatives of local public administration. Program management approach is itself an enabler for performance in public sector organizations by allowing an organization to better coordinate its efforts and resources in managing a portfolio of projects. This paper aims to present how neuro-fuzzy modeling applied in program management can help an organization to increase its performance. Neuro-fuzzy modeling would lead organizations one step further by allowing them to simulate different scenarios and manage better the risks accompanying their initiatives. The research done by the authors is theoretical and combines knowledge from different areas and a neuro-fuzzy model is proposed and discussed.

  19. Portfolio management of hydropower producer via stochastic programming

    International Nuclear Information System (INIS)

    Liu, Hongling; Jiang, Chuanwen; Zhang, Yan

    2009-01-01

    This paper presents a stochastic linear programming framework for the hydropower portfolio management problem with uncertainty in market prices and inflows on medium term. The uncertainty is modeled as a scenario tree using the Monte Carlo simulation method, and the objective is to maximize the expected revenue over the entire scenario tree. The portfolio decisions of the stochastic model are formulated as a tradeoff involving different scenarios. Numerical results illustrate the impact of uncertainty on the portfolio management decisions, and indicate the significant value of stochastic solution. (author)

  20. A stochastic MILP energy planning model incorporating power market dynamics

    International Nuclear Information System (INIS)

    Koltsaklis, Nikolaos E.; Nazos, Konstantinos

    2017-01-01

    Highlights: •Stochastic MILP model for the optimal energy planning of a power system. •Power market dynamics (offers/bids) are incorporated in the proposed model. •Monte Carlo method for capturing the uncertainty of some key parameters. •Analytical supply cost composition per power producer and activity. •Clean dark and spark spreads are calculated for each power unit. -- Abstract: This paper presents an optimization-based methodological approach to address the problem of the optimal planning of a power system at an annual level in competitive and uncertain power markets. More specifically, a stochastic mixed integer linear programming model (MILP) has been developed, combining advanced optimization techniques with Monte Carlo method in order to deal with uncertainty issues. The main focus of the proposed framework is the dynamic formulation of the strategy followed by all market participants in volatile market conditions, as well as detailed economic assessment of the power system’s operation. The applicability of the proposed approach has been tested on a real case study of the interconnected Greek power system, quantifying in detail all the relevant technical and economic aspects of the system’s operation. The proposed work identifies in the form of probability distributions the optimal power generation mix, electricity trade at a regional level, carbon footprint, as well as detailed total supply cost composition, according to the assumed market structure. The paper demonstrates that the proposed optimization approach is able to provide important insights into the appropriate energy strategies designed by market participants, as well as on the strategic long-term decisions to be made by investors and/or policy makers at a national and/or regional level, underscoring potential risks and providing appropriate price signals on critical energy projects under real market operating conditions.

  1. A combined stochastic programming and optimal control approach to personal finance and pensions

    DEFF Research Database (Denmark)

    Konicz, Agnieszka Karolina; Pisinger, David; Rasmussen, Kourosh Marjani

    2015-01-01

    The paper presents a model that combines a dynamic programming (stochastic optimal control) approach and a multi-stage stochastic linear programming approach (SLP), integrated into one SLP formulation. Stochastic optimal control produces an optimal policy that is easy to understand and implement....

  2. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    Science.gov (United States)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  3. Inexact Multistage Stochastic Chance Constrained Programming Model for Water Resources Management under Uncertainties

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2017-01-01

    Full Text Available In order to formulate water allocation schemes under uncertainties in the water resources management systems, an inexact multistage stochastic chance constrained programming (IMSCCP model is proposed. The model integrates stochastic chance constrained programming, multistage stochastic programming, and inexact stochastic programming within a general optimization framework to handle the uncertainties occurring in both constraints and objective. These uncertainties are expressed as probability distributions, interval with multiply distributed stochastic boundaries, dynamic features of the long-term water allocation plans, and so on. Compared with the existing inexact multistage stochastic programming, the IMSCCP can be used to assess more system risks and handle more complicated uncertainties in water resources management systems. The IMSCCP model is applied to a hypothetical case study of water resources management. In order to construct an approximate solution for the model, a hybrid algorithm, which incorporates stochastic simulation, back propagation neural network, and genetic algorithm, is proposed. The results show that the optimal value represents the maximal net system benefit achieved with a given confidence level under chance constraints, and the solutions provide optimal water allocation schemes to multiple users over a multiperiod planning horizon.

  4. Thin and heavy tails in stochastic programming

    Czech Academy of Sciences Publication Activity Database

    Kaňková, Vlasta; Houda, Michal

    2015-01-01

    Roč. 51, č. 3 (2015), s. 433-456 ISSN 0023-5954 R&D Projects: GA ČR GA13-14445S Institutional support: RVO:67985556 Keywords : stochastic programming problems * stability * Wasserstein metric * L1 norm * Lipschitz property * empirical estimates * convergence rate * linear and nonlinear dependence * probability and risk constraints * stochastic dominance Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.628, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kankova-0447994.pdf

  5. A Fuzzy Max–Min Decision Bi-Level Fuzzy Programming Model for Water Resources Optimization Allocation under Uncertainty

    Directory of Open Access Journals (Sweden)

    Chongfeng Ren

    2018-04-01

    Full Text Available Water competing conflict among water competing sectors from different levels should be taken under consideration during the optimization allocation of water resources. Furthermore, uncertainties are inevitable in the optimization allocation of water resources. In order to deal with the above problems, this study developed a fuzzy max–min decision bi-level fuzzy programming model. The developed model was then applied to a case study in Wuwei, Gansu Province, China. In this study, the net benefit and yield were regarded as the upper-level and lower-level objectives, respectively. Optimal water resource plans were obtained under different possibility levels of fuzzy parameters, which could deal with water competing conflict between the upper level and the lower level effectively. The obtained results are expected to make great contribution in helping local decision-makers to make decisions on dealing with the water competing conflict between the upper and lower level and the optimal use of water resources under uncertainty.

  6. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    Science.gov (United States)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  7. FFLP problem with symmetric trapezoidal fuzzy numbers

    Directory of Open Access Journals (Sweden)

    Reza Daneshrad

    2015-04-01

    Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.

  8. Time-Series INSAR: An Integer Least-Squares Approach For Distributed Scatterers

    Science.gov (United States)

    Samiei-Esfahany, Sami; Hanssen, Ramon F.

    2012-01-01

    The objective of this research is to extend the geode- tic mathematical model which was developed for persistent scatterers to a model which can exploit distributed scatterers (DS). The main focus is on the integer least- squares framework, and the main challenge is to include the decorrelation effect in the mathematical model. In order to adapt the integer least-squares mathematical model for DS we altered the model from a single master to a multi-master configuration and introduced the decorrelation effect stochastically. This effect is described in our model by a full covariance matrix. We propose to de- rive this covariance matrix by numerical integration of the (joint) probability distribution function (PDF) of interferometric phases. This PDF is a function of coherence values and can be directly computed from radar data. We show that the use of this model can improve the performance of temporal phase unwrapping of distributed scatterers.

  9. Stochastic linear programming models, theory, and computation

    CERN Document Server

    Kall, Peter

    2011-01-01

    This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

  10. Integer anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, R. [ONR, Arlington, VA (United States)

    1994-11-15

    The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.

  11. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  12. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  13. Non-Porod scattering and non-integer scaling of resistance in rough films

    Science.gov (United States)

    Bupathy, Arunkumar; Verma, Rupesh; Banerjee, Varsha; Puri, Sanjay

    2017-04-01

    In many physical systems, films are rough due to the stochastic behavior of depositing particles. They are characterized by non-Porod power law decays in the structure factor S (k) . Theoretical studies predict anomalous diffusion in such morphologies, with important implications for diffusivity, conductivity, etc. We use the non-Porod decay to accurately determine the fractal properties of two prototypical nanoparticle films: (i) Palladium (Pd) and (ii) Cu2O. Using scaling arguments, we find that the resistance of rough films of lateral size L obeys a non-integer power law R ∼L-ζ , in contrast to integer power laws for compact structures. The exponent ζ is anisotropic. We confirm our predictions by re-analyzing experimental data from Cu2O nano-particle films. Our results are valuable for understanding recent experiments that report anisotropic electrical properties in (rough) thin films.

  14. The Dynamic Programming Method of Stochastic Differential Game for Functional Forward-Backward Stochastic System

    Directory of Open Access Journals (Sweden)

    Shaolin Ji

    2013-01-01

    Full Text Available This paper is devoted to a stochastic differential game (SDG of decoupled functional forward-backward stochastic differential equation (FBSDE. For our SDG, the associated upper and lower value functions of the SDG are defined through the solution of controlled functional backward stochastic differential equations (BSDEs. Applying the Girsanov transformation method introduced by Buckdahn and Li (2008, the upper and the lower value functions are shown to be deterministic. We also generalize the Hamilton-Jacobi-Bellman-Isaacs (HJBI equations to the path-dependent ones. By establishing the dynamic programming principal (DPP, we derive that the upper and the lower value functions are the viscosity solutions of the corresponding upper and the lower path-dependent HJBI equations, respectively.

  15. A duality approach for solving bounded linear programming problems with fuzzy variables based on ranking functions and its application in bounded transportation problems

    Science.gov (United States)

    Ebrahimnejad, Ali

    2015-08-01

    There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.

  16. Stochastic control theory dynamic programming principle

    CERN Document Server

    Nisio, Makiko

    2015-01-01

    This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...

  17. FGP Approach for Solving Multi-level Multi-objective Quadratic Fractional Programming Problem with Fuzzy parameters

    Directory of Open Access Journals (Sweden)

    m. s. osman

    2017-09-01

    Full Text Available In this paper, we consider fuzzy goal programming (FGP approach for solving multi-level multi-objective quadratic fractional programming (ML-MOQFP problem with fuzzy parameters in the constraints. Firstly, the concept of the ?-cut approach is applied to transform the set of fuzzy constraints into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into quadratic objective functions based on a proposed transformation. Secondly, the FGP approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach.

  18. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    Science.gov (United States)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  19. Optimal timing of joint replacement using mathematical programming and stochastic programming models.

    Science.gov (United States)

    Keren, Baruch; Pliskin, Joseph S

    2011-12-01

    The optimal timing for performing radical medical procedures as joint (e.g., hip) replacement must be seriously considered. In this paper we show that under deterministic assumptions the optimal timing for joint replacement is a solution of a mathematical programming problem, and under stochastic assumptions the optimal timing can be formulated as a stochastic programming problem. We formulate deterministic and stochastic models that can serve as decision support tools. The results show that the benefit from joint replacement surgery is heavily dependent on timing. Moreover, for a special case where the patient's remaining life is normally distributed along with a normally distributed survival of the new joint, the expected benefit function from surgery is completely solved. This enables practitioners to draw the expected benefit graph, to find the optimal timing, to evaluate the benefit for each patient, to set priorities among patients and to decide if joint replacement should be performed and when.

  20. Complementary programs for stochastic analysis of radionuclide transport

    International Nuclear Information System (INIS)

    Gomez Hernandez, J.J.

    1993-01-01

    The present programs will permit to analyze the risks using parametric and non parametric technic. The programs are presented in two groups: 1) variable estimation through indicator krigeaje and variable estimation by Cokrigeaje 2) variable simulation with multi gassiness stochastic model and non gassiness. This report includes new programs for the non parametric geostatistics

  1. Probabilistic Quadratic Programming Problems with Some Fuzzy Parameters

    Directory of Open Access Journals (Sweden)

    S. K. Barik

    2012-01-01

    making problem by using some specified random variables and fuzzy numbers. In the present paper, randomness is characterized by Weibull random variables and fuzziness is characterized by triangular and trapezoidal fuzzy number. A defuzzification method has been introduced for finding the crisp values of the fuzzy numbers using the proportional probability density function associated with the membership functions of these fuzzy numbers. An equivalent deterministic crisp model has been established in order to solve the proposed model. Finally, a numerical example is presented to illustrate the solution procedure.

  2. Fuzzy algorithmic and knowledge-based decision support in nuclear engineering

    International Nuclear Information System (INIS)

    Zimmermann, H. J.

    1996-01-01

    Fuzzy Set Theory was originally conceived as a means to model non- stochastic uncertainty. In the meantime it has matured to Fuzzy Technology and - together with Neural Nets and Genetic Algorithms - to Computational Intelligence. The goals have expanded considerably. In addition to uncertainty modeling, relaxation, compactification and meaning preserving reasoning have become major objectives. Nuclear engineering is one of the areas with a large potential for applications of Fuzzy Technologies, in which, however, the development is still at the beginning. This paper tries to survey applications and point to some potential applications which have not yet been realized

  3. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  4. Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP

    International Nuclear Information System (INIS)

    Heo, Eunnyeong; Kim, Jinsoo; Boo, Kyung-Jin

    2010-01-01

    By 2030, Korean government aims to increase the share of new and renewable energy sources to 11% in the overall primary energy mix, that is, approximately 33 million TOE. However, carefully designed program is needed given the current low level of the share (2.37%, approximately 5.6 million TOE, as of 2007). Therefore, alongside R and D on new and renewable energy technology, establishing an effective dissemination program is also essential. This would require a decision-making base, for which this study established the criteria and factors and assessed the importance of each factor using the fuzzy analytical hierarchy process (AHP) method. Five criteria - technological, market-related, economic, environmental, and policy-related - and a total of seventeen factors were established. From the weights estimation results, we derived four major conclusions regarding the importance of economic feasibility, the advancement of the target technology in the global market, the disagreement between the policy maker and the specialist group, and the application of the results. (author)

  5. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    Science.gov (United States)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  6. Searching for optimal integer solutions to set partitioning problems using column generation

    OpenAIRE

    Bredström, David; Jörnsten, Kurt; Rönnqvist, Mikael

    2007-01-01

    We describe a new approach to produce integer feasible columns to a set partitioning problem directly in solving the linear programming (LP) relaxation using column generation. Traditionally, column generation is aimed to solve the LP relaxation as quick as possible without any concern of the integer properties of the columns formed. In our approach we aim to generate the columns forming the optimal integer solution while simultaneously solving the LP relaxation. By this we can re...

  7. Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming

    Science.gov (United States)

    Vercher, Enriqueta

    2008-08-01

    This paper provides new models for portfolio selection in which the returns on securities are considered fuzzy numbers rather than random variables. The investor's problem is to find the portfolio that minimizes the risk of achieving a return that is not less than the return of a riskless asset. The corresponding optimal portfolio is derived using semi-infinite programming in a soft framework. The return on each asset and their membership functions are described using historical data. The investment risk is approximated by mean intervals which evaluate the downside risk for a given fuzzy portfolio. This approach is illustrated with a numerical example.

  8. Controlador fuzzy de código aberto para uso em controladores programáveis.

    OpenAIRE

    Edinei Peres Legaspe

    2012-01-01

    Sistemas de controle fuzzy são amplamente empregados na indústria de controle de processos. Normalmente controlando variáveis analógicas, tais como pressão, temperatura, vazão, posição e velocidade. Hoje existem diversas soluções de mercado que permitem o uso da lógica fuzzy em CPs (Controladores programáveis). Porém essas soluções são proprietárias e de custo elevado. Adicionalmente existe a norma IEC 61131-7, introduzida no ano de 2000, que especifica sistemas fuzzy em CPs, onde a mesma def...

  9. Edit distance for marked point processes revisited: An implementation by binary integer programming

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yoshito; Aihara, Kazuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-12-15

    We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large.

  10. Pricing for a basket of LCDS under fuzzy environments.

    Science.gov (United States)

    Wu, Liang; Liu, Jie-Fang; Wang, Jun-Tao; Zhuang, Ya-Ming

    2016-01-01

    This paper looks at both the prepayment risks of housing mortgage loan credit default swaps (LCDS) as well as the fuzziness and hesitation of investors as regards prepayments by borrowers. It further discusses the first default pricing of a basket of LCDS in a fuzzy environment by using stochastic analysis and triangular intuition-based fuzzy set theory. Through the 'fuzzification' of the sensitivity coefficient in the prepayment intensity, this paper describes the dynamic features of mortgage housing values using the One-factor copula function and concludes with a formula for 'fuzzy' pricing the first default of a basket of LCDS. Using analog simulation to analyze the sensitivity of hesitation, we derive a model that considers what the LCDS fair premium is in a fuzzy environment, including a pure random environment. In addition, the model also shows that a suitable pricing range will give investors more flexible choices and make the predictions of the model closer to real market values.

  11. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    Science.gov (United States)

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  12. Planning regional energy system in association with greenhouse gas mitigation under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.P.; Huang, G.H. [Research Academy of Energy and Environmental Studies, North China Electric Power University, Beijing 102206 (China); Chen, X. [Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2011-03-15

    Greenhouse gas (GHG) concentrations are expected to continue to rise due to the ever-increasing use of fossil fuels and ever-boosting demand for energy. This leads to inevitable conflict between satisfying increasing energy demand and reducing GHG emissions. In this study, an integrated fuzzy-stochastic optimization model (IFOM) is developed for planning energy systems in association with GHG mitigation. Multiple uncertainties presented as probability distributions, fuzzy-intervals and their combinations are allowed to be incorporated within the framework of IFOM. The developed method is then applied to a case study of long-term planning of a regional energy system, where integer programming (IP) technique is introduced into the IFOM to facilitate dynamic analysis for capacity-expansion planning of energy-production facilities within a multistage context to satisfy increasing energy demand. Solutions related fuzzy and probability information are obtained and can be used for generating decision alternatives. The results can not only provide optimal energy resource/service allocation and capacity-expansion plans, but also help decision-makers identify desired policies for GHG mitigation with a cost-effective manner. (author)

  13. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Stochastic and epistemic uncertainty propagation in LCA

    DEFF Research Database (Denmark)

    Clavreul, Julie; Guyonnet, Dominique; Tonini, Davide

    2013-01-01

    of epistemic uncertainty representation using fuzzy intervals. The propagation methods used are the Monte Carlo analysis for probability distribution and an optimisation on alpha-cuts for fuzzy intervals. The proposed method (noted as Independent Random Set, IRS) generalizes the process of random sampling...... to probability distributions as well as fuzzy intervals, thus making the simultaneous use of both representations possible.The results highlight the fundamental difference between the probabilistic and possibilistic representations: while the Monte Carlo analysis generates a single probability distribution...... or expert judgement (epistemic uncertainty). The possibility theory has been developed over the last decades to address this problem. The objective of this study is to present a methodology that combines probability and possibility theories to represent stochastic and epistemic uncertainties in a consistent...

  15. Fuzzy expert systems using CLIPS

    Science.gov (United States)

    Le, Thach C.

    1994-01-01

    This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.

  16. Gas contract portfolio management: a stochastic programming approach

    International Nuclear Information System (INIS)

    Haurie, A.; Smeers, Y.; Zaccour, G.

    1991-01-01

    This paper deals with a stochastic programming model which complements long range market simulation models generating scenarios concerning the evolution of demand and prices for gas in different market segments. Agas company has to negociate contracts with lengths going from one to twenty years. This stochastic model is designed to assess the risk associated with committing the gas production capacity of the company to these market segments. Different approaches are presented to overcome the difficulties associated with the very large size of the resulting optimization problem

  17. Stochastic programming and market equilibrium analysis of microgrids energy management systems

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Lu, Su-Ying; Chen, Yen-Haw

    2016-01-01

    Microgrids facilitate optimum utilization of distributed renewable energy, provides better local energy supply, and reduces transmission loss and greenhouse gas emission. Because the uncertainty in energy demand affects the energy demand and supply system, the aim of this research is to develop a stochastic optimization and its market equilibrium for microgrids in the electricity market. Therefore, a two-stage stochastic programming model for microgrids and the market competition model are derived in this paper. In the stochastic model, energy demand and supply uncertainties are considered. Furthermore, a case study of the stochastic model is conducted to simulate the uncertainties on the INER microgrids in Taiwanese market. The optimal investment of the generators and batteries installation and operating strategies are determined under energy demand and supply uncertainties for the INER microgrids. The results show optimal investment and operating strategies for the current INER microgrids are also determined by the proposed two-stage stochastic model in the market. In addition, trade-off between the battery capacity and microgrids performance is investigated. Battery usage and power trading between the microgrids and main grid systems are the functions of battery capacity. - Highlights: • A two-stage stochastic programming model is developed for microgrids. • Market equilibrium analysis of microgrids is conducted. • A case study of the stochastic model is conducted for INER microgrids.

  18. Quantifying the resilience of an urban traffic-electric power coupled system

    International Nuclear Information System (INIS)

    Fotouhi, Hossein; Moryadee, Seksun; Miller-Hooks, Elise

    2017-01-01

    Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. Prior works might consider these interactions implicitly, perhaps in the form of hazard impact scenarios wherein services from a second lifeline (e.g. power) are precluded due to a hazard event. In this paper, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternate power perspective. - Highlights: • Model interdependent infrastructure systems. • Provide method for quantifying resilience of coupled traffic and power networks. • Propose bi-level, mixed-integer, stochastic program. • Take a multi-hazard, stochastic futures approach.

  19. Optimizing Multi-Product Multi-Constraint Inventory Control Systems with Stochastic Replenishments

    Science.gov (United States)

    Allah Taleizadeh, Ata; Aryanezhad, Mir-Bahador; Niaki, Seyed Taghi Akhavan

    Multi-periodic inventory control problems are mainly studied employing two assumptions. The first is the continuous review, where depending on the inventory level orders can happen at any time and the other is the periodic review, where orders can only happen at the beginning of each period. In this study, we relax these assumptions and assume that the periodic replenishments are stochastic in nature. Furthermore, we assume that the periods between two replenishments are independent and identically random variables. For the problem at hand, the decision variables are of integer-type and there are two kinds of space and service level constraints for each product. We develop a model of the problem in which a combination of back-order and lost-sales are considered for the shortages. Then, we show that the model is of an integer-nonlinear-programming type and in order to solve it, a search algorithm can be utilized. We employ a simulated annealing approach and provide a numerical example to demonstrate the applicability of the proposed methodology.

  20. Interactive Approach for Multi-Level Multi-Objective Fractional Programming Problems with Fuzzy Parameters

    Directory of Open Access Journals (Sweden)

    M.S. Osman

    2018-03-01

    Full Text Available In this paper, an interactive approach for solving multi-level multi-objective fractional programming (ML-MOFP problems with fuzzy parameters is presented. The proposed interactive approach makes an extended work of Shi and Xia (1997. In the first phase, the numerical crisp model of the ML-MOFP problem has been developed at a confidence level without changing the fuzzy gist of the problem. Then, the linear model for the ML-MOFP problem is formulated. In the second phase, the interactive approach simplifies the linear multi-level multi-objective model by converting it into separate multi-objective programming problems. Also, each separate multi-objective programming problem of the linear model is solved by the ∊-constraint method and the concept of satisfactoriness. Finally, illustrative examples and comparisons with the previous approaches are utilized to evince the feasibility of the proposed approach.

  1. Nonlocal stochastic mixing-length theory and the velocity profile in the turbulent boundary layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing by finite size eddies will be treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic closure hypothesis, which implies a well defined recipe for the calculation of sampling and transition rates. The connection with the general theory

  2. PageRank of integers

    International Nuclear Information System (INIS)

    Frahm, K M; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is approximately inversely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows us to find this vector for matrices of billion size. This network provides a new PageRank order of integers. (paper)

  3. Economic analysis of energy system considering the uncertainties of crude oil, natural gas and nuclear utilization employing stochastic dynamic programming

    International Nuclear Information System (INIS)

    Hasegawa, Keita; Komiyama, Ryoichi; Fujii, Yasumasa

    2016-01-01

    The paper presents an economic rationality analysis of power generation mix by stochastic dynamic programming considering fuel price uncertainties and supply disruption risks such as import disruption and nuclear power plant shutdown risk. The situation revolving around Japan's energy security adopted the past statistics, it cannot be applied to a quantitative analysis of future uncertainties. Further objective and quantitative evaluation methods are required in order to analyze Japan's energy system and make it more resilient in sight of long time scale. In this paper, the authors firstly develop the cost minimization model considering oil and natural gas price respectively by stochastic dynamic programming. Then, the authors show several premises of model and an example of result with related to crude oil stockpile, liquefied natural gas stockpile and nuclear power plant capacity. (author)

  4. RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION

    Science.gov (United States)

    Viterna, L. A.

    1994-01-01

    RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any

  5. Where do we stand with fuzzy project scheduling?

    CERN Document Server

    Bonnal, Pierre; Lacoste, Germain

    2004-01-01

    Fuzzy project scheduling has interested several researchers in the past two decades; about 20 articles have been written on this issue. Contrary to stochastic project-scheduling approaches that are used by many project schedulers, and even if the axiomatic associated to the theory of probabilities is not always compatible with decision-making situations, fuzzy project-scheduling approaches that are most suited to these situations have been kept in the academic sphere. This paper starts by recalling the differences one can observe between uncertainty and imprecision. Then most of the published research works that have been done in this field are summarized. Finally, a framework for addressing the resource-constrained fuzzy project- scheduling problem is proposed. This framework uses temporal linguistic descriptors, which might become very interesting features to the project-scheduling practitioners.

  6. Dynamic electricity pricing for electric vehicles using stochastic programming

    International Nuclear Information System (INIS)

    Soares, João; Ghazvini, Mohammad Ali Fotouhi; Borges, Nuno; Vale, Zita

    2017-01-01

    Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs' demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers' satisfaction in addition to improve the profitability of the energy aggregation business. - Highlights: • A stochastic model for energy scheduling tackling several uncertainty sources. • A two-stage stochastic programming is used to tackle the developed model. • Optimal EV electricity pricing seems to improve the profits. • The propose results suggest to increase the customers' satisfaction.

  7. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  8. Multistage Stochastic Programming via Autoregressive Sequences

    Czech Academy of Sciences Publication Activity Database

    Kaňková, Vlasta

    2007-01-01

    Roč. 15, č. 4 (2007), s. 99-110 ISSN 0572-3043 R&D Projects: GA ČR GA402/07/1113; GA ČR(CZ) GA402/06/0990; GA ČR GD402/03/H057 Institutional research plan: CEZ:AV0Z10750506 Keywords : Economic proceses * Multistage stochastic programming * autoregressive sequences * individual probability constraints Subject RIV: BB - Applied Statistics, Operational Research

  9. Farm Planning by Fuzzy Multi Objective Programming Model

    Directory of Open Access Journals (Sweden)

    m Raei Jadidi

    2010-05-01

    Full Text Available In current study, Fuzzy Goal Programming (FGP model by considering a set of social and economic goals, was applied to optimal land allocation in Koshksaray district, Marand city, East Azarbaijan province, Iran. Farmer goals including total cultivable area, factor of production, production levels of various crops and total expected profit were considered fuzzily in establishment of the model. The goals were considered by 16 scenarios in the form of single objective, compound and priority structures. Results showed that, cost minimization in single objective and compound scenario is the best as compared with current conditions. In priority structure, scenario 10 with priorities of profit maximization, cost minimization, satisfying of production goals considering cost minimization and production goals, and scenario 13 with priorities of profit maximization, satisfying factor of production goals, cost minimization and fulfilling production goals, had minimum Euclidean Distance and satisfied the fuzzy objectives. Moreover, dry barley, irrigated and dry wheat and irrigated barely had maximum and minimum cultivated area, respectively. According to the findings, by reallocation of resources, farmers can achieve their better goals and objectives.

  10. Fuzzy Multi Objective Linear Programming Problem with Imprecise Aspiration Level and Parameters

    Directory of Open Access Journals (Sweden)

    Zahra Shahraki

    2015-07-01

    Full Text Available This paper considers the multi-objective linear programming problems with fuzzygoal for each of the objective functions and constraints. Most existing works deal withlinear membership functions for fuzzy goals. In this paper, exponential membershipfunction is used.

  11. Geometric Programming Approach to an Interactive Fuzzy Inventory Problem

    Directory of Open Access Journals (Sweden)

    Nirmal Kumar Mandal

    2011-01-01

    Full Text Available An interactive multiobjective fuzzy inventory problem with two resource constraints is presented in this paper. The cost parameters and index parameters, the storage space, the budgetary cost, and the objective and constraint goals are imprecise in nature. These parameters and objective goals are quantified by linear/nonlinear membership functions. A compromise solution is obtained by geometric programming method. If the decision maker is not satisfied with this result, he/she may try to update the current solution to his/her satisfactory solution. In this way we implement man-machine interactive procedure to solve the problem through geometric programming method.

  12. Hard equality constrained integer knapsacks

    NARCIS (Netherlands)

    Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.

    2002-01-01

    We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve

  13. Fuzzy Control Teaching Models

    Directory of Open Access Journals (Sweden)

    Klaus-Dietrich Kramer

    2016-05-01

    Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.

  14. Linear programming model for solution of matrix game with payoffs trapezoidal intuitionistic fuzzy number

    Directory of Open Access Journals (Sweden)

    Darunee Hunwisai

    2017-01-01

    Full Text Available In this work, we considered two-person zero-sum games with fuzzy payoffs and matrix games with payoffs of trapezoidal intuitionistic fuzzy numbers (TrIFNs. The concepts of TrIFNs and their arithmetic operations were used. The cut-set based method for matrix game with payoffs of TrIFNs was also considered. Compute the interval-type value of any alfa-constrategies by simplex method for linear programming. The proposed method is illustrated with a numerical example.

  15. Mixed language programming

    International Nuclear Information System (INIS)

    Burow, Burkhard D.

    1996-01-01

    Computing in the next millennium will be using software from this millennium. Programming languages evolve and new ones continue to be created. The use of legacy code demonstrates why some present and future applications may span programming languages. Even a completely new application may mix programming languages, if it allows its components to be more conveniently expressed. Given the need, mixed language programming should be easy and robust. By resolving a variety of difficulties, the well established cfortran.h package provides, the desired convenient interface across the C and Fortran programming languages, as demonstrated using CERN's Book. (author)

  16. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  17. Exponential Synchronization for Stochastic Neural Networks with Mixed Time Delays and Markovian Jump Parameters via Sampled Data

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available The exponential synchronization issue for stochastic neural networks (SNNs with mixed time delays and Markovian jump parameters using sampled-data controller is investigated. Based on a novel Lyapunov-Krasovskii functional, stochastic analysis theory, and linear matrix inequality (LMI approach, we derived some novel sufficient conditions that guarantee that the master systems exponentially synchronize with the slave systems. The design method of the desired sampled-data controller is also proposed. To reflect the most dynamical behaviors of the system, both Markovian jump parameters and stochastic disturbance are considered, where stochastic disturbances are given in the form of a Brownian motion. The results obtained in this paper are a little conservative comparing the previous results in the literature. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.

  18. Clinical signs of pneumonia in children: association with and prediction of diagnosis by fuzzy sets theory

    Directory of Open Access Journals (Sweden)

    Pereira J.C.R.

    2004-01-01

    Full Text Available The present study compares the performance of stochastic and fuzzy models for the analysis of the relationship between clinical signs and diagnosis. Data obtained for 153 children concerning diagnosis (pneumonia, other non-pneumonia diseases, absence of disease and seven clinical signs were divided into two samples, one for analysis and other for validation. The former was used to derive relations by multi-discriminant analysis (MDA and by fuzzy max-min compositions (fuzzy, and the latter was used to assess the predictions drawn from each type of relation. MDA and fuzzy were closely similar in terms of prediction, with correct allocation of 75.7 to 78.3% of patients in the validation sample, and displaying only a single instance of disagreement: a patient with low level of toxemia was mistaken as not diseased by MDA and correctly taken as somehow ill by fuzzy. Concerning relations, each method provided different information, each revealing different aspects of the relations between clinical signs and diagnoses. Both methods agreed on pointing X-ray, dyspnea, and auscultation as better related with pneumonia, but only fuzzy was able to detect relations of heart rate, body temperature, toxemia and respiratory rate with pneumonia. Moreover, only fuzzy was able to detect a relationship between heart rate and absence of disease, which allowed the detection of six malnourished children whose diagnoses as healthy are, indeed, disputable. The conclusion is that even though fuzzy sets theory might not improve prediction, it certainly does enhance clinical knowledge since it detects relationships not visible to stochastic models.

  19. Integer programming and combinatorial optimization : 15th international conference, IPCO 2011, New York NY, USA, June 15-17, 2011 : proceedings

    NARCIS (Netherlands)

    Günlük, O.; Woeginger, G.J.

    2011-01-01

    This volume contains the 33 papers presented at IPCO 2011, the 15th Conference on Integer Programming and Combinatorial Optimization, held during June 15–17, 2011 at the IBM T.J. Watson Research Center in New York, USA. IPCO conferences are sponsored by the Mathematical Optimization Society. The

  20. Mixed Inter Second Order Cone Programming Taking Appropriate Approximation for the Unit Commitment in Hybrid AC-DC Grid

    DEFF Research Database (Denmark)

    Zhou, Bo; Ai, Xiaomeng; Fang, Jiakun

    2017-01-01

    With the rapid development and deployment of voltage source converter (VSC) based HVDC, the traditional power system is evolving to the hybrid AC-DC grid. New optimization methods are urgently needed for these hybrid AC-DC power systems. In this paper, mixed-integer second order cone programming...... (MISOCP) for the hybrid AC-DC power systems is proposed. The second order cone (SOC) relaxation is adopted to transform the AC and DC power flow constraints to MISOCP. Several IEEE test systems are used to validate the proposed MISCOP formulation of the optimal power flow (OPF) and unit commitment (UC...

  1. An integer programming model for gate assignment problem at airline terminals

    Science.gov (United States)

    Chun, Chong Kok; Nordin, Syarifah Zyurina

    2015-05-01

    In this paper, we concentrate on a gate assignment problem (GAP) at the airlines terminal. Our problem is to assign an arrival plane to a suitable gate. There are two considerations needed to take. One of its is passenger walking distance from arrival gate to departure gate while another consideration is the transport baggage distance from one gate to another. Our objective is to minimize the total distance between the gates that related to assign the arrival plane to the suitable gates. An integer linear programming (ILP) model is proposed to solve this gate assignment problem. We also conduct a computational experiment using CPLEX 12.1 solver in AIMMS 3.10 software to analyze the performance of the model. Results of the computational experiments are presented. The efficiency of flights assignment is depends on the ratio of the weight for both total passenger traveling distances and total baggage transport distances.

  2. Empirical estimates in stochastic programs with probability and second order stochastic dominance constraints

    Czech Academy of Sciences Publication Activity Database

    Omelchenko, Vadym; Kaňková, Vlasta

    2015-01-01

    Roč. 84, č. 2 (2015), s. 267-281 ISSN 0862-9544 R&D Projects: GA ČR GA13-14445S Institutional support: RVO:67985556 Keywords : Stochastic programming problems * empirical estimates * light and heavy tailed distributions * quantiles Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2015/E/omelchenko-0454495.pdf

  3. Multicriteria optimization in a fuzzy environment: The fuzzy analytic hierarchy process

    Directory of Open Access Journals (Sweden)

    Gardašević-Filipović Milanka

    2010-01-01

    Full Text Available In the paper the fuzzy extension of the Analytic Hierarchy Process (AHP based on fuzzy numbers, and its application in solving a practical problem, are considered. The paper advocates the use of contradictory test to check the fuzzy user preferences during fuzzy AHP decision-making process. We also propose consistency check and deriving priorities from inconsistent fuzzy judgment matrices to be included in the process, in order to check if the fuzzy approach can be applied in the AHP for the problem considered. An aggregation of local priorities obtained at different levels into composite global priorities for the alternatives based on weighted-sum method is also discussed. The contradictory fuzzy judgment matrix is analyzed. Our theoretical consideration has been verified by an application of commercially available Super Decisions program (developed for solving multi-criteria optimization problems using AHP approach on the problem previously treated in the literature. The obtained results are compared with those from the literature. The conclusions are given and the possibilities for further work in the field are pointed out.

  4. Dissipativity-Based Reliable Control for Fuzzy Markov Jump Systems With Actuator Faults.

    Science.gov (United States)

    Tao, Jie; Lu, Renquan; Shi, Peng; Su, Hongye; Wu, Zheng-Guang

    2017-09-01

    This paper is concerned with the problem of reliable dissipative control for Takagi-Sugeno fuzzy systems with Markov jumping parameters. Considering the influence of actuator faults, a sufficient condition is developed to ensure that the resultant closed-loop system is stochastically stable and strictly ( Q, S,R )-dissipative based on a relaxed approach in which mode-dependent and fuzzy-basis-dependent Lyapunov functions are employed. Then a reliable dissipative control for fuzzy Markov jump systems is designed, with sufficient condition proposed for the existence of guaranteed stability and dissipativity controller. The effectiveness and potential of the obtained design method is verified by two simulation examples.

  5. Fuzzy methods and design; Fuzzy shuho to sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, H. [Kwansei Gakuin Univ., Hyogo (Japan)

    1996-03-05

    This paper explains the application of the fuzzy theory to a design. A rational decision in design with only an objective logic requires conditions such that a set of selectable alternative plans and the results of executing them are known, and that a rule or a sequential relation exists to decide the order of preference of the alternative plans. In a case where the optimum anti-earthquake design was applied, for example, the seismic motion, subsoil and properties of materials or the like used to be treated stochastically and statistically as being of random nature. However, elements of uncertainty are actually involved other than the randomness, in consideration of cost effectiveness, safety and such. In the problems of anti-earthquake design by the fuzzy theory, the restrictive conditions are stipulated with a membership function respectively, such that the design earthquake motion is in a range larger than the maximum motion, and that the stress or displacement is each in the range smaller than the allowable stress or displacement of members; in addition, the weight is expressed to be the minimum as the objective function. 9 refs., 1 fig.

  6. Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.

    Science.gov (United States)

    Snow, Donald R.

    1989-01-01

    Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)

  7. Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network

    International Nuclear Information System (INIS)

    Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao

    2014-01-01

    Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR

  8. Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment

    Science.gov (United States)

    Karimzadehgan, Maryam; Zhai, ChengXiang

    2011-01-01

    Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970

  9. Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times

    Directory of Open Access Journals (Sweden)

    Songtao Zhang

    2017-01-01

    Full Text Available A new fuzzy robust control strategy for the nonlinear supply chain system in the presence of lead times is proposed. Based on Takagi-Sugeno fuzzy control system, the fuzzy control model of the nonlinear supply chain system with lead times is constructed. Additionally, we design a fuzzy robust H∞ control strategy taking the definition of maximal overlapped-rules group into consideration to restrain the impacts such as those caused by lead times, switching actions among submodels, and customers’ stochastic demands. This control strategy can not only guarantee that the nonlinear supply chain system is robustly asymptotically stable but also realize soft switching among subsystems of the nonlinear supply chain to make the less fluctuation of the system variables by introducing the membership function of fuzzy system. The comparisons between the proposed fuzzy robust H∞ control strategy and the robust H∞ control strategy are finally illustrated through numerical simulations on a two-stage nonlinear supply chain with lead times.

  10. Modelling ventricular fibrillation coarseness during cardiopulmonary resuscitation by mixed effects stochastic differential equations.

    Science.gov (United States)

    Gundersen, Kenneth; Kvaløy, Jan Terje; Eftestøl, Trygve; Kramer-Johansen, Jo

    2015-10-15

    For patients undergoing cardiopulmonary resuscitation (CPR) and being in a shockable rhythm, the coarseness of the electrocardiogram (ECG) signal is an indicator of the state of the patient. In the current work, we show how mixed effects stochastic differential equations (SDE) models, commonly used in pharmacokinetic and pharmacodynamic modelling, can be used to model the relationship between CPR quality measurements and ECG coarseness. This is a novel application of mixed effects SDE models to a setting quite different from previous applications of such models and where using such models nicely solves many of the challenges involved in analysing the available data. Copyright © 2015 John Wiley & Sons, Ltd.

  11. T-S Fuzzy Model-Based Approximation and Filter Design for Stochastic Time-Delay Systems with Hankel Norm Criterion

    Directory of Open Access Journals (Sweden)

    Yanhui Li

    2014-01-01

    Full Text Available This paper investigates the Hankel norm filter design problem for stochastic time-delay systems, which are represented by Takagi-Sugeno (T-S fuzzy model. Motivated by the parallel distributed compensation (PDC technique, a novel filtering error system is established. The objective is to design a suitable filter that guarantees the corresponding filtering error system to be mean-square asymptotically stable and to have a specified Hankel norm performance level γ. Based on the Lyapunov stability theory and the Itô differential rule, the Hankel norm criterion is first established by adopting the integral inequality method, which can make some useful efforts in reducing conservativeness. The Hankel norm filtering problem is casted into a convex optimization problem with a convex linearization approach, which expresses all the conditions for the existence of admissible Hankel norm filter as standard linear matrix inequalities (LMIs. The effectiveness of the proposed method is demonstrated via a numerical example.

  12. A time consistent risk averse three-stage stochastic mixed integer optimization model for power generation capacity expansion

    International Nuclear Information System (INIS)

    Pisciella, P.; Vespucci, M.T.; Bertocchi, M.; Zigrino, S.

    2016-01-01

    We propose a multi-stage stochastic optimization model for the generation capacity expansion problem of a price-taker power producer. Uncertainties regarding the evolution of electricity prices and fuel costs play a major role in long term investment decisions, therefore the objective function represents a trade-off between expected profit and risk. The Conditional Value at Risk is the risk measure used and is defined by a nested formulation that guarantees time consistency in the multi-stage model. The proposed model allows one to determine a long term expansion plan which takes into account uncertainty, while the LCoE approach, currently used by decision makers, only allows one to determine which technology should be chosen for the next power plant to be built. A sensitivity analysis is performed with respect to the risk weighting factor and budget amount. - Highlights: • We propose a time consistent risk averse multi-stage model for capacity expansion. • We introduce a case study with uncertainty on electricity prices and fuel costs. • Increased budget moves the investment from gas towards renewables and then coal. • Increased risk aversion moves the investment from coal towards renewables. • Time inconsistency leads to a profit gap between planned and implemented policies.

  13. Multi-Objective Fuzzy Linear Programming In Agricultural Production Planning

    Directory of Open Access Journals (Sweden)

    H.M.I.U. Herath

    2015-08-01

    Full Text Available Abstract Modern agriculture is characterized by a series of conflicting optimization criteria that obstruct the decision-making process in the planning of agricultural production. Such criteria are usually net profit total cost total production etc. At the same time the decision making process in the agricultural production planning is often conducted with data that accidentally occur in nature or that are fuzzy not deterministic. Such data are the yields of various crops the prices of products and raw materials demand for the product the available quantities of production factors such as water labor etc. In this paper a fuzzy multi-criteria mathematical programming model is presented. This model is applied in a region of 10 districts in Sri Lanka where paddy is cultivated under irrigated and rain fed water in the two main seasons called Yala and Maha and the optimal production plan is achieved. This study was undertaken to find out the optimal allocation of land for paddy to get a better yield while satisfying the two conflicting objectives profit maximizing and cost minimizing subjected to the utilizing of water constraint and the demand constraint. Only the availability of land constraint is considered as a crisp in nature while objectives and other constraints are treated as fuzzy. It is observed that the MOFLP is an effective method to handle more than a single objective occurs in an uncertain vague environment.

  14. Signal Timing Optimization Based on Fuzzy Compromise Programming for Isolated Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Dexin Yu

    2016-01-01

    Full Text Available In order to optimize the signal timing for isolated intersection, a new method based on fuzzy programming approach is proposed in this paper. Considering the whole operation efficiency of the intersection comprehensively, traffic capacity, vehicle cycle delay, cycle stops, and exhaust emission are chosen as optimization goals to establish a multiobjective function first. Then fuzzy compromise programming approach is employed to give different weight coefficients to various optimization objectives for different traffic flow ratios states. And then the multiobjective function is converted to a single objective function. By using genetic algorithm, the optimized signal cycle and effective green time can be obtained. Finally, the performance of the traditional method and new method proposed in this paper is compared and analyzed through VISSIM software. It can be concluded that the signal timing optimized in this paper can effectively reduce vehicle delays and stops, which can improve traffic capacity of the intersection as well.

  15. Convergence of Sample Path Optimal Policies for Stochastic Dynamic Programming

    National Research Council Canada - National Science Library

    Fu, Michael C; Jin, Xing

    2005-01-01

    .... These results have practical implications for Monte Carlo simulation-based solution approaches to stochastic dynamic programming problems where it is impractical to extract the explicit transition...

  16. Using metrics in stability of stochastic programming problems

    Czech Academy of Sciences Publication Activity Database

    Houda, Michal

    2005-01-01

    Roč. 13, č. 1 (2005), s. 128-134 ISSN 0572-3043 R&D Projects: GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : stochastic programming * quantitative stability * Wasserstein metrics * Kolmogorov metrics * simulation study Subject RIV: BB - Applied Statistics, Operational Research

  17. Logical Characterisation of Ontology Construction using Fuzzy Description Logics

    DEFF Research Database (Denmark)

    Badie, Farshad; Götzsche, Hans

    had the extension of ontologies with Fuzzy Logic capabilities which plan to make proper backgrounds for ontology driven reasoning and argumentation on vague and imprecise domains. This presentation conceptualises learning from fuzzy classes using the Inductive Logic Programming framework. Then......, employs Description Logics in characterising and analysing fuzzy statements. And finally, provides a conceptual framework describing fuzzy concept learning in ontologies using the Inductive Logic Programming....

  18. An integer programming model and benchmark suite for liner shipping network design

    DEFF Research Database (Denmark)

    Løfstedt, Berit; Alvarez, Jose Fernando; Plum, Christian Edinger Munk

    effective and energy efficient liner shipping networks using operations research is huge and neglected. The implementation of logistic planning tools based upon operations research has enhanced performance of both airlines, railways and general transportation companies, but within the field of liner......Maritime transportation is accountable for 2.7% of the worlds CO2 emissions and the liner shipping industry is committed to a slow steaming policy to provide low cost and environmentally conscious global transport of goods without compromising the level of service. The potential for making cost...... along with a rich integer programming model based on the services, that constitute the fixed schedule of a liner shipping company. The model may be relaxed as well as decomposed. The design of a benchmark suite of data instances to reflect the business structure of a global liner shipping network...

  19. Stochastic models to study the impact of mixing on a fed-batch culture of Saccharomyces cerevisiae.

    Science.gov (United States)

    Delvigne, F; Lejeune, A; Destain, J; Thonart, P

    2006-01-01

    The mechanisms of interaction between microorganisms and their environment in a stirred bioreactor can be modeled by a stochastic approach. The procedure comprises two submodels: a classical stochastic model for the microbial cell circulation and a Markov chain model for the concentration gradient calculus. The advantage lies in the fact that the core of each submodel, i.e., the transition matrix (which contains the probabilities to shift from a perfectly mixed compartment to another in the bioreactor representation), is identical for the two cases. That means that both the particle circulation and fluid mixing process can be analyzed by use of the same modeling basis. This assumption has been validated by performing inert tracer (NaCl) and stained yeast cells dispersion experiments that have shown good agreement with simulation results. The stochastic model has been used to define a characteristic concentration profile experienced by the microorganisms during a fermentation test performed in a scale-down reactor. The concentration profiles obtained in this way can explain the scale-down effect in the case of a Saccharomyces cerevisiae fed-batch process. The simulation results are analyzed in order to give some explanations about the effect of the substrate fluctuation dynamics on S. cerevisiae.

  20. Comparison of Anti-Virus Programs using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Vaclav Bezdek

    2013-07-01

    Full Text Available This work follows the previous author´s paper: Possible use of Fuzzy Logic in Database. It tries to show application of Fuzzy Logic in selecting the best anti-virus software based on testing made by AV-Comparatives.

  1. Stochastic Modelling and Self Tuning Control of a Continuous Cement Raw Material Mixing System

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1980-01-01

    Full Text Available The control of a continuously operating system for cement raw material mixing is studied. The purpose of the mixing system is to maintain a constant composition of the cement raw meal for the kiln despite variations of the raw material compositions. Experimental knowledge of the process dynamics and the characteristics of the various disturbances is used for deriving a stochastic model of the system. The optimal control strategy is then obtained as a minimum variance strategy. The control problem is finally solved using a self-tuning minimum variance regulator, and results from a successful implementation of the regulator are given.

  2. Fuzzy bilevel programming with multiple non-cooperative followers: model, algorithm and application

    Science.gov (United States)

    Ke, Hua; Huang, Hu; Ralescu, Dan A.; Wang, Lei

    2016-04-01

    In centralized decision problems, it is not complicated for decision-makers to make modelling technique selections under uncertainty. When a decentralized decision problem is considered, however, choosing appropriate models is no longer easy due to the difficulty in estimating the other decision-makers' inconclusive decision criteria. These decision criteria may vary with different decision-makers because of their special risk tolerances and management requirements. Considering the general differences among the decision-makers in decentralized systems, we propose a general framework of fuzzy bilevel programming including hybrid models (integrated with different modelling methods in different levels). Specially, we discuss two of these models which may have wide applications in many fields. Furthermore, we apply the proposed two models to formulate a pricing decision problem in a decentralized supply chain with fuzzy coefficients. In order to solve these models, a hybrid intelligent algorithm integrating fuzzy simulation, neural network and particle swarm optimization based on penalty function approach is designed. Some suggestions on the applications of these models are also presented.

  3. Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR

    Directory of Open Access Journals (Sweden)

    Maria Cristina Floreno

    1996-05-01

    Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.

  4. Hesitant Probabilistic Fuzzy Linguistic Sets with Applications in Multi-Criteria Group Decision Making Problems

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Joshi

    2018-03-01

    Full Text Available Uncertainties due to randomness and fuzziness comprehensively exist in control and decision support systems. In the present study, we introduce notion of occurring probability of possible values into hesitant fuzzy linguistic element (HFLE and define hesitant probabilistic fuzzy linguistic set (HPFLS for ill structured and complex decision making problem. HPFLS provides a single framework where both stochastic and non-stochastic uncertainties can be efficiently handled along with hesitation. We have also proposed expected mean, variance, score and accuracy function and basic operations for HPFLS. Weighted and ordered weighted aggregation operators for HPFLS are also defined in the present study for its applications in multi-criteria group decision making (MCGDM problems. We propose a MCGDM method with HPFL information which is illustrated by an example. A real case study is also taken in the present study to rank State Bank of India, InfoTech Enterprises, I.T.C., H.D.F.C. Bank, Tata Steel, Tata Motors and Bajaj Finance using real data. Proposed HPFLS-based MCGDM method is also compared with two HFL-based decision making methods.

  5. Introduction to fuzzy logic using Matlab

    CERN Document Server

    Sivanandam, SN; Deepa, S N

    2006-01-01

    Fuzzy Logic, at present is a hot topic, among academicians as well various programmers. This book is provided to give a broad, in-depth overview of the field of Fuzzy Logic. The basic principles of Fuzzy Logic are discussed in detail with various solved examples. The different approaches and solutions to the problems given in the book are well balanced and pertinent to the Fuzzy Logic research projects. The applications of Fuzzy Logic are also dealt to make the readers understand the concept of Fuzzy Logic. The solutions to the problems are programmed using MATLAB 6.0 and the simulated results are given. The MATLAB Fuzzy Logic toolbox is provided for easy reference.

  6. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    Science.gov (United States)

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  7. Bonus algorithm for large scale stochastic nonlinear programming problems

    CERN Document Server

    Diwekar, Urmila

    2015-01-01

    This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...

  8. Human factors and fuzzy set theory for safety analysis

    International Nuclear Information System (INIS)

    Nishiwaki, Y.

    1987-01-01

    Human reliability and performance is affected by many factors: medical, physiological and psychological, etc. The uncertainty involved in human factors may not necessarily be probabilistic, but fuzzy. Therefore, it is important to develop a theory by which both the non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. In reality, randomness and fuzziness are sometimes mixed. From the mathematical point of view, probabilistic measures may be considered a special case of fuzzy measures. Therefore, fuzzy set theory seems to be an effective tool for analysing man-machine systems. The concept 'failure possibility' based on fuzzy sets is suggested as an approach to safety analysis and fault diagnosis of a large complex system. Fuzzy measures and fuzzy integrals are introduced and their possible applications are also discussed. (author)

  9. New approach for solving intuitionistic fuzzy multi-objective ...

    Indian Academy of Sciences (India)

    SANKAR KUMAR ROY

    2018-02-07

    Feb 7, 2018 ... Transportation problem; multi-objective decision making; intuitionistic fuzzy programming; interval programming ... MOTP under multi-choice environment using utility func- ... theory is an intuitionistic fuzzy set (IFS), which was.

  10. Stochastic optimal control in infinite dimension dynamic programming and HJB equations

    CERN Document Server

    Fabbri, Giorgio; Święch, Andrzej

    2017-01-01

    Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite ...

  11. Integer programming formulation and variable neighborhood search metaheuristic for the multiproduct pipeline scheduling problem

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, Erito M.; Bahiense, Laura; Ferreira Filho, Virgilio J.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Leonardo [Centro Federal de Educacao Tecnologica Celso Sukow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Pipeline are known as the most reliable and economical mode of transportation for petroleum and its derivatives, especially when large amounts of products have to be pumped for large distances. In this work we address the short-term schedule of a pipeline system comprising the distribution of several petroleum derivatives from a single oil refinery to several depots, connected to local consumer markets, through a single multi-product pipeline. We propose an integer linear programming formulation and a variable neighborhood search meta-heuristic in order to compare the performances of the exact and heuristic approaches to the problem. Computational tests in C language and MOSEL/XPRESS-MP language are performed over a real Brazilian pipeline system. (author)

  12. Mathematical Modelling for EOQ Inventory System with Advance Payment and Fuzzy Parameters

    Directory of Open Access Journals (Sweden)

    S Priyan

    2014-11-01

    Full Text Available This study considers an EOQ inventory model with advance payment policy in a fuzzy situation by employing two types of fuzzy numbers that are trapezoidal and triangular. Two fuzzy models are developed here. In the first model the cost parameters are fuzzified, but the demand rate is treated as crisp constant. In the second model, the demand rate is fuzzified but the cost parameters are treated as crisp constants. For each fuzzy model, we use signed distance method to defuzzify the fuzzy total cost and obtain an estimate of the total cost in the fuzzy sense. Numerical example is provided to ascertain the sensitiveness in the decision variables about fuzziness in the components. In practical situations, costs may be dependent on some foreign monetary unit. In such a case, due to a change in the exchange rates, the costs are often not known precisely. The first model can be used in this situation. In actual applications, demand is uncertain and must be predicted. Accordingly, the decision maker faces a fuzzy environment rather than a stochastic one in these cases. The second model can be used in this situation. Moreover, the proposed models can be expended for imperfect production process.

  13. Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers

    Science.gov (United States)

    Donnell, William A.

    2012-01-01

    In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…

  14. Fuzzy Random Walkers with Second Order Bounds: An Asymmetric Analysis

    Directory of Open Access Journals (Sweden)

    Georgios Drakopoulos

    2017-03-01

    Full Text Available Edge-fuzzy graphs constitute an essential modeling paradigm across a broad spectrum of domains ranging from artificial intelligence to computational neuroscience and social network analysis. Under this model, fundamental graph properties such as edge length and graph diameter become stochastic and as such they are consequently expressed in probabilistic terms. Thus, algorithms for fuzzy graph analysis must rely on non-deterministic design principles. One such principle is Random Walker, which is based on a virtual entity and selects either edges or, like in this case, vertices of a fuzzy graph to visit. This allows the estimation of global graph properties through a long sequence of local decisions, making it a viable strategy candidate for graph processing software relying on native graph databases such as Neo4j. As a concrete example, Chebyshev Walktrap, a heuristic fuzzy community discovery algorithm relying on second order statistics and on the teleportation of the Random Walker, is proposed and its performance, expressed in terms of community coherence and number of vertex visits, is compared to the previously proposed algorithms of Markov Walktrap, Fuzzy Walktrap, and Fuzzy Newman–Girvan. In order to facilitate this comparison, a metric based on the asymmetric metrics of Tversky index and Kullback–Leibler divergence is used.

  15. A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Alvarez, Fernando; Plum, Christian Edinger Munk

    2014-01-01

    . The potential for making cost-effective and energy-efficient liner-shipping networks using operations research (OR) is huge and neglected. The implementation of logistic planning tools based upon OR has enhanced performance of airlines, railways, and general transportation companies, but within the field......The liner-shipping network design problem is to create a set of nonsimple cyclic sailing routes for a designated fleet of container vessels that jointly transports multiple commodities. The objective is to maximize the revenue of cargo transport while minimizing the costs of operation...... sources of liner shipping for OR researchers in general. We describe and analyze the liner-shipping domain applied to network design and present a rich integer programming model based on services that constitute the fixed schedule of a liner shipping company. We prove the liner-shipping network design...

  16. Discovery of Boolean metabolic networks: integer linear programming based approach.

    Science.gov (United States)

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  17. Multi-task feature selection in microarray data by binary integer programming.

    Science.gov (United States)

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  18. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...

  19. Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization

    International Nuclear Information System (INIS)

    Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.

    2009-01-01

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.

  20. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties

    International Nuclear Information System (INIS)

    Bahmani-Firouzi, Bahman; Farjah, Ebrahim; Azizipanah-Abarghooee, Rasoul

    2013-01-01

    Renewable energy resources such as wind power plants are playing an ever-increasing role in power generation. This paper extends the dynamic economic emission dispatch problem by incorporating wind power plant. This problem is a multi-objective optimization approach in which total electrical power generation costs and combustion emissions are simultaneously minimized over a short-term time span. A stochastic approach based on scenarios is suggested to model the uncertainty associated with hourly load and wind power forecasts. A roulette wheel technique on the basis of probability distribution functions of load and wind power is implemented to generate scenarios. As a result, the stochastic nature of the suggested problem is emancipated by decomposing it into a set of equivalent deterministic problem. An improved multi-objective particle swarm optimization algorithm is applied to obtain the best expected solutions for the proposed stochastic programming framework. To enhance the overall performance and effectiveness of the particle swarm optimization, a fuzzy adaptive technique, θ-search and self-adaptive learning strategy for velocity updating are used to tune the inertia weight factor and to escape from local optima, respectively. The suggested algorithm goes through the search space in the polar coordinates instead of the Cartesian one; whereby the feasible space is more compact. In order to evaluate the efficiency and feasibility of the suggested framework, it is applied to two test systems with small and large scale characteristics. - Highlights: ► Formulates multi-objective DEED problem under a stochastic programming framework. ► Considers uncertainties related to forecasted values of load demand and wind power. ► Proposes an interactive fuzzy satisfying method based on the novel FSALPSO. ► Presents a new self-adaptive learning strategy to improve original PSO algorithm

  1. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  2. Stochastic Fractional Programming Approach to a Mean and Variance Model of a Transportation Problem

    Directory of Open Access Journals (Sweden)

    V. Charles

    2011-01-01

    Full Text Available In this paper, we propose a stochastic programming model, which considers a ratio of two nonlinear functions and probabilistic constraints. In the former, only expected model has been proposed without caring variability in the model. On the other hand, in the variance model, the variability played a vital role without concerning its counterpart, namely, the expected model. Further, the expected model optimizes the ratio of two linear cost functions where as variance model optimize the ratio of two non-linear functions, that is, the stochastic nature in the denominator and numerator and considering expectation and variability as well leads to a non-linear fractional program. In this paper, a transportation model with stochastic fractional programming (SFP problem approach is proposed, which strikes the balance between previous models available in the literature.

  3. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-05-23

    This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.

  4. Spatial “Artistic” Networks: From Deconstructing Integer-Functions to Visual Arts

    Directory of Open Access Journals (Sweden)

    Ernesto Estrada

    2018-01-01

    Full Text Available Deconstructivism is an aesthetically appealing architectonic style. Here, we identify some general characteristics of this style, such as decomposition of the whole into parts, superposition of layers, and conservation of the memory of the whole. Using these attributes, we propose a method to deconstruct functions based on integers. Using this integer-function deconstruction we generate spatial networks which display a few artistic attributes such as (i biomorphic shapes, (ii symmetry, and (iii beauty. In building these networks, the deconstructed integer-functions are used as the coordinates of the nodes in a unit square, which are then joined according to a given connection radius like in random geometric graphs (RGGs. Some graph-theoretic invariants of these networks are calculated and compared with the classical RGGs. We then show how these networks inspire an artist to create artistic compositions using mixed techniques on canvas and on paper. Finally, we call for avoiding that the applicability of (network sciences should not go in detriment of curiosity-driven, and aesthetic-driven, researches. We claim that the aesthetic of network research, and not only its applicability, would be an attractor for new minds to this field.

  5. Multicriteria Cost Assessment and Logistics Modeling for Military Humanitarian Assistance and Disaster Relief Aerial Delivery Operations

    Science.gov (United States)

    2015-03-01

    vulnerable people will have access to this airdropped consumable aid (since nobody 1 is necessarily coordinating the distribution on the ground... VBA ) platforms (see Appendix B). In particular, we used GAMS v.23.9.3 with IBM ILOG CPLEX 12.4.0.1 to solve the stochastic, mixed-integer weighted...goal programming model, and we used Excel/ VBA to create an auto- matic, user-friendly interface with the decision maker for model input and analysis of

  6. Synchronization of a Class of Memristive Stochastic Bidirectional Associative Memory Neural Networks with Mixed Time-Varying Delays via Sampled-Data Control

    Directory of Open Access Journals (Sweden)

    Manman Yuan

    2018-01-01

    Full Text Available The paper addresses the issue of synchronization of memristive bidirectional associative memory neural networks (MBAMNNs with mixed time-varying delays and stochastic perturbation via a sampled-data controller. First, we propose a new model of MBAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying distributed delays and discrete delays. Second, we design a new method of sampled-data control for the stochastic MBAMNNs. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the methods are carefully designed to confirm the synchronization processes are suitable for the feather of the memristor. Third, sufficient criteria guaranteeing the synchronization of the systems are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.

  7. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  8. A stochastic-programming approach to integrated asset and liability ...

    African Journals Online (AJOL)

    This increase in complexity has provided an impetus for the investigation into integrated asset- and liability-management frameworks that could realistically address dynamic portfolio allocation in a risk-controlled way. In this paper the authors propose a multi-stage dynamic stochastic-programming model for the integrated ...

  9. STUDI SIMULASI MENGGUNAKAN FUZZY C-MEANS DALAM MENGKLASIFIKASI KONSTRUK TES

    Directory of Open Access Journals (Sweden)

    Rukli Rukli

    2013-01-01

    Full Text Available Tulisan ini memperkenalkan metode fuzzy c-means dalam mengklasifikasi konstruk tes. Untuk memverifikasi sifat unidimensional suatu tes biasanya menggunakan analisis faktor sebagai bagian dari statistik parametrik dengan beberapa persyaratan yang ketat sedangkan metode fuzzy c-means termasuk metode heuristik yang tidak memerlukan persyaratan yang ketat. Studi simulasi penelitian ini menggunakan dua metode yakni analisis faktor menggunakan program SPSS dan fuzzy c-means menggunakan program Matlab. Data simulasi menggunakan tipe data dikotomi dan politomi yang dibangkitkan lewat prog-ram Microsoft Office Excel dengan desain 2 kategori, yakni: tiga butir soal dengan banyak peserta tes 10, dan 30 butir soal dengan banyak peserta tes 100. Hasil simulasi menunjukkan bahwa metode fuzzy c-means lebih memberikan gambaran pengelompokan secara deskriptif dan dinamis pada semua desain yang telah dibuat dalam memverifikasi unidimensional pada suatu tes. Kata kunci: fuzzy c-means, analisis faktor, unidimensional _____________________________________________________________ SIMULATION STUDY USING FUZZY C-MEANS FOR CLASIFYING TEST CONSTRUCTION Abstract This paper introduces the fuzzy c-means method for classifying the test constructs. To verify the unidimensional a test typically uses factor analysis as part of parametric statistics with some strict requirements, while fuzzy c-means methods including method heuristic that do not require strict require-ments. Simulation comparison between the method of factor analysis using SPSS program and fuzzy c-means methods using Matlab. Simulation data using data type dichotomy and politomus generated through Microsoft Office Excel programs each with a number of 3 items using the number of participants 10 tests, while the number of 30 test items using the number as many as 100 participants. The simulation results show that the fuzzy c-means method provides a more descriptive and dyna-mic grouping of all the designs that

  10. Maximum likelihood pedigree reconstruction using integer linear programming.

    Science.gov (United States)

    Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A

    2013-01-01

    Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.

  11. Multiobjective Two-Stage Stochastic Programming Problems with Interval Discrete Random Variables

    Directory of Open Access Journals (Sweden)

    S. K. Barik

    2012-01-01

    Full Text Available Most of the real-life decision-making problems have more than one conflicting and incommensurable objective functions. In this paper, we present a multiobjective two-stage stochastic linear programming problem considering some parameters of the linear constraints as interval type discrete random variables with known probability distribution. Randomness of the discrete intervals are considered for the model parameters. Further, the concepts of best optimum and worst optimum solution are analyzed in two-stage stochastic programming. To solve the stated problem, first we remove the randomness of the problem and formulate an equivalent deterministic linear programming model with multiobjective interval coefficients. Then the deterministic multiobjective model is solved using weighting method, where we apply the solution procedure of interval linear programming technique. We obtain the upper and lower bound of the objective function as the best and the worst value, respectively. It highlights the possible risk involved in the decision-making tool. A numerical example is presented to demonstrate the proposed solution procedure.

  12. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    International Nuclear Information System (INIS)

    Rupšys, P.

    2015-01-01

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE

  13. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    Energy Technology Data Exchange (ETDEWEB)

    Rupšys, P. [Aleksandras Stulginskis University, Studenų g. 11, Akademija, Kaunas district, LT – 53361 Lithuania (Lithuania)

    2015-10-28

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.

  14. Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G.

    1993-11-01

    The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.

  15. Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors

    International Nuclear Information System (INIS)

    Turek, M.; Heiden, W.; Riesen, A.; Chhabda, T.A.; Schubert, J.; Zander, W.; Krueger, P.; Keusgen, M.; Schoening, M.J.

    2009-01-01

    The cross-sensitivity of chemical sensors for several metal ions resembles in a way the overlapping sensitivity of some biological sensors, like the optical colour receptors of human retinal cone cells. While it is difficult to assign crisp classification values to measurands based on complex overlapping sensory signals, fuzzy logic offers a possibility to mathematically model such systems. Current work goes into the direction of mixed heavy metal solutions and the combination of fuzzy logic with heavy metal-sensitive, silicon-based chemical sensors for training scenarios of arbitrary sensor/probe combinations in terms of an electronic tongue. Heavy metals play an important role in environmental analysis. As trace elements as well as water impurities released from industrial processes they occur in the environment. In this work, the development of a new fuzzy logic method based on potentiometric measurements performed with three different miniaturised chalcogenide glass sensors in different heavy metal solutions will be presented. The critical validation of the developed fuzzy logic program will be demonstrated by means of measurements in unknown single- and multi-component heavy metal solutions. Limitations of this program and a comparison between calculated and expected values in terms of analyte composition and heavy metal ion concentration will be shown and discussed.

  16. Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Turek, M. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany); Heiden, W.; Riesen, A. [Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin (Germany); Chhabda, T.A. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Schubert, J.; Zander, W. [Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany); Krueger, P. [Institute of Biochemistry and Molecular Biology, RWTH Aachen, Aachen (Germany); Keusgen, M. [Institute for Pharmaceutical Chemistry, Philipps-University Marburg, Marburg (Germany); Schoening, M.J. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany)], E-mail: m.j.schoening@fz-juelich.de

    2009-10-30

    The cross-sensitivity of chemical sensors for several metal ions resembles in a way the overlapping sensitivity of some biological sensors, like the optical colour receptors of human retinal cone cells. While it is difficult to assign crisp classification values to measurands based on complex overlapping sensory signals, fuzzy logic offers a possibility to mathematically model such systems. Current work goes into the direction of mixed heavy metal solutions and the combination of fuzzy logic with heavy metal-sensitive, silicon-based chemical sensors for training scenarios of arbitrary sensor/probe combinations in terms of an electronic tongue. Heavy metals play an important role in environmental analysis. As trace elements as well as water impurities released from industrial processes they occur in the environment. In this work, the development of a new fuzzy logic method based on potentiometric measurements performed with three different miniaturised chalcogenide glass sensors in different heavy metal solutions will be presented. The critical validation of the developed fuzzy logic program will be demonstrated by means of measurements in unknown single- and multi-component heavy metal solutions. Limitations of this program and a comparison between calculated and expected values in terms of analyte composition and heavy metal ion concentration will be shown and discussed.

  17. A practical introduction to fuzzy logic using LISP

    CERN Document Server

    Argüelles Mendez, Luis

    2016-01-01

    This book makes use of the LISP programming language to provide readers with the necessary background to understand and use fuzzy logic to solve simple to medium-complexity real-world problems. It introduces the basics of LISP required to use a Fuzzy LISP programming toolbox, which was specifically implemented by the author to “teach” the theory behind fuzzy logic and at the same time equip readers to use their newly-acquired knowledge to build fuzzy models of increasing complexity. The book fills an important gap in the literature, providing readers with a practice-oriented reference guide to fuzzy logic that offers more complexity than popular books yet is more accessible than other mathematical treatises on the topic. As such, students in first-year university courses with a basic tertiary mathematical background and no previous experience with programming should be able to easily follow the content. The book is intended for students and professionals in the fields of computer science and engineering, ...

  18. A statistical mechanical approach to restricted integer partition functions

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  19. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    Science.gov (United States)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  20. Efficiency Loss of Mixed Equilibrium Associated with Altruistic Users and Logit-based Stochastic Users in Transportation Network

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Yu

    2014-02-01

    Full Text Available The efficiency loss of mixed equilibrium associated with two categories of users is investigated in this paper. The first category of users are altruistic users (AU who have the same altruism coefficient and try to minimize their own perceived cost that assumed to be a linear combination of selfish com­ponent and altruistic component. The second category of us­ers are Logit-based stochastic users (LSU who choose the route according to the Logit-based stochastic user equilib­rium (SUE principle. The variational inequality (VI model is used to formulate the mixed route choice behaviours associ­ated with AU and LSU. The efficiency loss caused by the two categories of users is analytically derived and the relations to some network parameters are discussed. The numerical tests validate our analytical results. Our result takes the re­sults in the existing literature as its special cases.