WorldWideScience

Sample records for fuzzy rule generation

  1. Optical Generation of Fuzzy-Based Rules

    Science.gov (United States)

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-01

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  2. Generation of facial expressions from emotion using a fuzzy rule based system

    NARCIS (Netherlands)

    Bui, T.D.; Heylen, Dirk K.J.; Poel, Mannes; Nijholt, Antinus; Stumptner, Markus; Corbett, Dan; Brooks, Mike

    2001-01-01

    We propose a fuzzy rule-based system to map representations of the emotional state of an animated agent onto muscle contraction values for the appropriate facial expressions. Our implementation pays special attention to the way in which continuous changes in the intensity of emotions can be

  3. FUZZY MODELING BY SUCCESSIVE ESTIMATION OF RULES ...

    African Journals Online (AJOL)

    This paper presents an algorithm for automatically deriving fuzzy rules directly from a set of input-output data of a process for the purpose of modeling. The rules are extracted by a method termed successive estimation. This method is used to generate a model without truncating the number of fired rules, to within user ...

  4. The majority rule in a fuzzy environment.

    OpenAIRE

    Montero, Javier

    1986-01-01

    In this paper, an axiomatic approach to rational decision making in a fuzzy environment is studied. In particular, the majority rule is proposed as a rational way for aggregating fuzzy opinions in a group, when such agroup is defined as a fuzzy set.

  5. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.

    Science.gov (United States)

    Abe, S

    1998-01-01

    In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.

  6. Using fuzzy association rule mining in cancer classification

    International Nuclear Information System (INIS)

    Mahmoodian, Hamid; Marhaban, M.H.; Abdulrahim, Raha; Rosli, Rozita; Saripan, Iqbal

    2011-01-01

    Full text: The classification of the cancer tumors based on gene expression profiles has been extensively studied in numbers of studies. A wide variety of cancer datasets have been implemented by the various methods of gene selec tion and classification to identify the behavior of the genes in tumors and find the relationships between them and outcome of diseases. Interpretability of the model, which is developed by fuzzy rules and linguistic variables in this study, has been rarely considered. In addition, creating a fuzzy classifier with high performance in classification that uses a subset of significant genes which have been selected by different types of gene selection methods is another goal of this study. A new algorithm has been developed to identify the fuzzy rules and significant genes based on fuzzy association rule mining. At first, different subset of genes which have been selected by different methods, were used to generate primary fuzzy classifiers separately and then proposed algorithm was implemented to mix the genes which have been associated in the primary classifiers and generate a new classifier. The results show that fuzzy classifier can classify the tumors with high performance while presenting the relationships between the genes by linguistic variables

  7. A FORMALISM FOR FUZZY BUSINESS RULES

    Directory of Open Access Journals (Sweden)

    Vasile Mazilescu

    2015-05-01

    Full Text Available The aim of this paper is to provide a formalism for fuzzy rule bases, included in our prototype system FUZZY_ENTERPRISE. This framework can be used in Distributed Knowledge Management Systems (DKMSs, real-time interdisciplinary decision making systems, that often require increasing technical support to high quality decisions in a timely manner. The language of the first-degree predicates facilitates the formulation of complex knowledge in a rigorous way, imposing appropriate reasoning techniques.

  8. Fuzzy Rule Suram for Wood Drying

    Science.gov (United States)

    Situmorang, Zakarias

    2017-12-01

    Implemented of fuzzy rule must used a look-up table as defuzzification analysis. Look-up table is the actuator plant to doing the value of fuzzification. Rule suram based of fuzzy logic with variables of weather is temperature ambient and humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical map of triangle and map of trapezium. Result of analysis to reach 4 fuzzy rule in 81 conditions to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. One cycle of schedule drying is a serial of condition of chamber to process as use as a wood species.

  9. Influence of fuzzy norms and other heuristics on "Mixed fuzzy rule formation" - [Corrigendum

    OpenAIRE

    Gabriel, Thomas R.; Berthold, Michael R.

    2008-01-01

    We hereby correct an error in Ref. [2], in which we studied the influence of various parameters that affect the generalization performance of fuzzy models constructed using the mixed fuzzy rule formation method [1].

  10. Genetic Programming for the Generation of Crisp and Fuzzy Rule Bases in Classification and Diagnosis of Medical Data

    DEFF Research Database (Denmark)

    Dounias, George; Tsakonas, Athanasios; Jantzen, Jan

    2002-01-01

    This paper demonstrates two methodologies for the construction of rule-based systems in medical decision making. The first approach consists of a method combining genetic programming and heuristic hierarchical rule-base construction. The second model is composed by a strongly-typed genetic...

  11. Sanitizing sensitive association rules using fuzzy correlation scheme

    International Nuclear Information System (INIS)

    Hameed, S.; Shahzad, F.; Asghar, S.

    2013-01-01

    Data mining is used to extract useful information hidden in the data. Sometimes this extraction of information leads to revealing sensitive information. Privacy preservation in Data Mining is a process of sanitizing sensitive information. This research focuses on sanitizing sensitive rules discovered in quantitative data. The proposed scheme, Privacy Preserving in Fuzzy Association Rules (PPFAR) is based on fuzzy correlation analysis. In this work, fuzzy set concept is integrated with fuzzy correlation analysis and Apriori algorithm to mark interesting fuzzy association rules. The identified rules are called sensitive. For sanitization, we use modification technique where we substitute maximum value of fuzzy items with zero, which occurs most frequently. Experiments demonstrate that PPFAR method hides sensitive rules with minimum modifications. The technique also maintains the modified data's quality. The PPFAR scheme has applications in various domains e.g. temperature control, medical analysis, travel time prediction, genetic behavior prediction etc. We have validated the results on medical dataset. (author)

  12. An Efficient Inductive Genetic Learning Algorithm for Fuzzy Relational Rules

    Directory of Open Access Journals (Sweden)

    Antonio

    2012-04-01

    Full Text Available Fuzzy modelling research has traditionally focused on certain types of fuzzy rules. However, the use of alternative rule models could improve the ability of fuzzy systems to represent a specific problem. In this proposal, an extended fuzzy rule model, that can include relations between variables in the antecedent of rules is presented. Furthermore, a learning algorithm based on the iterative genetic approach which is able to represent the knowledge using this model is proposed as well. On the other hand, potential relations among initial variables imply an exponential growth in the feasible rule search space. Consequently, two filters for detecting relevant potential relations are added to the learning algorithm. These filters allows to decrease the search space complexity and increase the algorithm efficiency. Finally, we also present an experimental study to demonstrate the benefits of using fuzzy relational rules.

  13. A Fuzzy Rule-based Controller For Automotive Vehicle Guidance

    OpenAIRE

    Hessburg, Thomas; Tomizuka, Masayoshi

    1991-01-01

    A fuzzy rule-based controller is applied to lateral guidance of a vehicle for an automated highway system. The fuzzy rules, based on human drivers' experiences, are developed to track the center of a lane in the presence of external disturbances and over a range of vehicle operating conditions.

  14. Fuzzy Rules for Ant Based Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Amira Hamdi

    2016-01-01

    Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.

  15. Influence of fuzzy norms and other heuristics on “Mixed fuzzy rule formation”

    OpenAIRE

    Gabriel, Thomas R.; Berthold, Michael R.

    2004-01-01

    In Mixed Fuzzy Rule Formation [Int. J. Approx. Reason. 32 (2003) 67] a method to extract mixed fuzzy rules from data was introduced. The underlying algorithm s performance is influenced by the choice of fuzzy t-norm and t-conorm, and a heuristic to avoid conflicts between patterns and rules of different classes throughout training. In the following addendum to [Int. J. Approx. Reason. 32 (2003) 67], we discuss in more depth how these parameters affect the generalization performance of the res...

  16. FUZZY FAULT DETECTION FOR PERMANENT MAGNET SYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    N. Selvaganesan

    2011-07-01

    Full Text Available Faults in engineering systems are difficult to avoid and may result in serious consequences. Effective fault detection and diagnosis can improve system reliability and avoid expensive maintenance. In this paper fuzzy system based fault detection scheme for permanent magnet synchronous generator is proposed. The sequence current components like positive and negative sequence currents are used as fault indicators and given as inputs to fuzzy fault detector. Also, the fuzzy inference system is created and rule base is evaluated, relating the sequence current component to the type of faults. These rules are fired for specific changes in sequence current component and the faults are detected. The feasibility of the proposed scheme for permanent magnet synchronous generator is demonstrated for different types of fault under various operating conditions using MATLAB/Simulink.

  17. Fuzzy rule-based model for hydropower reservoirs operation

    Energy Technology Data Exchange (ETDEWEB)

    Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)

  18. Fuzzy Sets-based Control Rules for Terminating Algorithms

    Directory of Open Access Journals (Sweden)

    Jose L. VERDEGAY

    2002-01-01

    Full Text Available In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the questions on the management of the fuzziness in some optimisation models, and then of using fuzzy rules for terminating conventional algorithms are presented, discussed and analyzed. Finally, for the concrete case of the Travelling Salesman Problem, and as an illustration of determination, management and using the fuzzy rules, a new algorithm easy to implement in the Model-Base Management System of any oriented Decision Support System is shown.

  19. Designing Fuzzy Rule Based Expert System for Cyber Security

    OpenAIRE

    Goztepe, Kerim

    2016-01-01

    The state of cyber security has begun to attract more attention and interest outside the community of computer security experts. Cyber security is not a single problem, but rather a group of highly different problems involving different sets of threats. Fuzzy Rule based system for cyber security is a system consists of a rule depository and a mechanism for accessing and running the rules. The depository is usually constructed with a collection of related rule sets. The aim of this study is to...

  20. Quantified moving average strategy of crude oil futures market based on fuzzy logic rules and genetic algorithms

    Science.gov (United States)

    Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing

    2017-09-01

    The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.

  1. Fuzzy-Rule-Based Object Identification Methodology for NAVI System

    Directory of Open Access Journals (Sweden)

    Yaacob Sazali

    2005-01-01

    Full Text Available We present an object identification methodology applied in a navigation assistance for visually impaired (NAVI system. The NAVI has a single board processing system (SBPS, a digital video camera mounted headgear, and a pair of stereo earphones. The captured image from the camera is processed by the SBPS to generate a specially structured stereo sound suitable for vision impaired people in understanding the presence of objects/obstacles in front of them. The image processing stage is designed to identify the objects in the captured image. Edge detection and edge-linking procedures are applied in the processing of image. A concept of object preference is included in the image processing scheme and this concept is realized using a fuzzy-rule base. The blind users are trained with the stereo sound produced by NAVI for achieving a collision-free autonomous navigation.

  2. Fuzzy-Rule-Based Object Identification Methodology for NAVI System

    Science.gov (United States)

    Nagarajan, R.; Sainarayanan, G.; Yaacob, Sazali; Porle, Rosalyn R.

    2005-12-01

    We present an object identification methodology applied in a navigation assistance for visually impaired (NAVI) system. The NAVI has a single board processing system (SBPS), a digital video camera mounted headgear, and a pair of stereo earphones. The captured image from the camera is processed by the SBPS to generate a specially structured stereo sound suitable for vision impaired people in understanding the presence of objects/obstacles in front of them. The image processing stage is designed to identify the objects in the captured image. Edge detection and edge-linking procedures are applied in the processing of image. A concept of object preference is included in the image processing scheme and this concept is realized using a fuzzy-rule base. The blind users are trained with the stereo sound produced by NAVI for achieving a collision-free autonomous navigation.

  3. Uncertain rule-based fuzzy systems introduction and new directions

    CERN Document Server

    Mendel, Jerry M

    2017-01-01

    The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from time-series forecasting to knowledge mining to control. In this new edition, a bottom-up approach is presented that begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty. The author covers fuzzy rule-based systems – from type-1 to interval type-2 to general type-2 – in one volume. For hands-on experience, the book provides information on accessing MatLab and Java software to complement the content. The book features a full suite of classroom material. Presents fully updated material on new breakthroughs in human-inspired rule-based techniques for handling real-world uncertainties; Allows those already familiar with type-1 fuzzy se...

  4. Horizontal and Vertical Rule Bases Method in Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Sadegh Aminifar

    2013-01-01

    Full Text Available Concept of horizontal and vertical rule bases is introduced. Using this method enables the designers to look for main behaviors of system and describes them with greater approximations. The rules which describe the system in first stage are called horizontal rule base. In the second stage, the designer modulates the obtained surface by describing needed changes on first surface for handling real behaviors of system. The rules used in the second stage are called vertical rule base. Horizontal and vertical rule bases method has a great roll in easing of extracting the optimum control surface by using too lesser rules than traditional fuzzy systems. This research involves with control of a system with high nonlinearity and in difficulty to model it with classical methods. As a case study for testing proposed method in real condition, the designed controller is applied to steaming room with uncertain data and variable parameters. A comparison between PID and traditional fuzzy counterpart and our proposed system shows that our proposed system outperforms PID and traditional fuzzy systems in point of view of number of valve switching and better surface following. The evaluations have done both with model simulation and DSP implementation.

  5. Evolving fuzzy rules for relaxed-criteria negotiation.

    Science.gov (United States)

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  6. Combining Fuzzy AHP with GIS and Decision Rules for Industrial Site Selection

    Directory of Open Access Journals (Sweden)

    Aissa Taibi

    2017-12-01

    Full Text Available This study combines Fuzzy Analytic Hierarchy Process (FAHP, Geographic Information System (GIS and Decision rules to provide decision makers with a ranking model for industrial sites in Algeria. A ranking of the suitable industrial areas is a crucial multi-criteria decision problem based on socio-economical and technical criteria as on environmental considerations. Fuzzy AHP is used for assessment of the candidate industrial sites by combining fuzzy set theory and analytic hierarchy process (AHP. The decision rule base serves as a filter that performs criteria pre-treatment involving a reduction of their numbers. GIS is used to overlay, generate criteria maps and for visualizing ranked zones on the map. The rank of a zone so obtained is an index that guides decision-makers to the best utilization of the zone in future.

  7. A hierarchical fuzzy rule-based approach to aphasia diagnosis.

    Science.gov (United States)

    Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid

    2007-10-01

    Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.

  8. Development of fuzzy algorithm with learning function for nuclear steam generator level control

    International Nuclear Information System (INIS)

    Park, Gee Yong; Seong, Poong Hyun

    1993-01-01

    A fuzzy algorithm with learning function is applied to the steam generator level control of nuclear power plant. This algorithm can make its rule base and membership functions suited for steam generator level control by use of the data obtained from the control actions of a skilled operator or of other controllers (i.e., PID controller). The rule base of fuzzy controller with learning function is divided into two parts. One part of the rule base is provided to level control of steam generator at low power level (0 % - 30 % of full power) and the other to level control at high power level (30 % - 100 % of full power). Response time of steam generator level control at low power range with this rule base is shown to be shorter than that of fuzzy controller with direct inference. (Author)

  9. A Fuzzy Rule-Based Expert System for Evaluating Intellectual Capital

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Fazel Zarandi

    2012-01-01

    Full Text Available A fuzzy rule-based expert system is developed for evaluating intellectual capital. A fuzzy linguistic approach assists managers to understand and evaluate the level of each intellectual capital item. The proposed fuzzy rule-based expert system applies fuzzy linguistic variables to express the level of qualitative evaluation and criteria of experts. Feasibility of the proposed model is demonstrated by the result of intellectual capital performance evaluation for a sample company.

  10. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.

    Science.gov (United States)

    Pasquier, M; Quek, C; Toh, M

    2001-10-01

    This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.

  11. A solution to the rule explosion in the fuzzy inverted pendulum

    Directory of Open Access Journals (Sweden)

    Peng Ye

    2017-08-01

    Full Text Available Granulated thought is introduced in this paper,which considers the fuzzy rules as fuzzy grain point and the simulation experiment is carried out.The results show that this method can not only archive the desired control effect,but also reduce the complexity of the system effectively,thereby solve the fuzzy controller rule explosion problem due to rules excessive.

  12. A new type of simplified fuzzy rule-based system

    Science.gov (United States)

    Angelov, Plamen; Yager, Ronald

    2012-02-01

    Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.

  13. Fuzzy rule-based forecast of meteorological drought in western Niger

    Science.gov (United States)

    Abdourahamane, Zakari Seybou; Acar, Reşat

    2018-01-01

    Understanding the causes of rainfall anomalies in the West African Sahel to effectively predict drought events remains a challenge. The physical mechanisms that influence precipitation in this region are complex, uncertain, and imprecise in nature. Fuzzy logic techniques are renowned to be highly efficient in modeling such dynamics. This paper attempts to forecast meteorological drought in Western Niger using fuzzy rule-based modeling techniques. The 3-month scale standardized precipitation index (SPI-3) of four rainfall stations was used as predictand. Monthly data of southern oscillation index (SOI), South Atlantic sea surface temperature (SST), relative humidity (RH), and Atlantic sea level pressure (SLP), sourced from the National Oceanic and Atmosphere Administration (NOAA), were used as predictors. Fuzzy rules and membership functions were generated using fuzzy c-means clustering approach, expert decision, and literature review. For a minimum lead time of 1 month, the model has a coefficient of determination R 2 between 0.80 and 0.88, mean square error (MSE) below 0.17, and Nash-Sutcliffe efficiency (NSE) ranging between 0.79 and 0.87. The empirical frequency distributions of the predicted and the observed drought classes are equal at the 99% of confidence level based on two-sample t test. Results also revealed the discrepancy in the influence of SOI and SLP on drought occurrence at the four stations while the effect of SST and RH are space independent, being both significantly correlated (at α based forecast model shows better forecast skills.

  14. Fuzzy rule-based landslide susceptibility mapping in Yığılca Forest District (Northwest of Turkey

    Directory of Open Access Journals (Sweden)

    Abdurrahim Aydın

    2016-07-01

    Full Text Available Landslide susceptibility map of Yığılca Forest District was formed based on developed fuzzy rules using GIS-based FuzzyCell software. An inventory of 315 landslides was updated through fieldworks after inventory map previously generated by the authors. Based on the landslide susceptibility mapping study previously made in the same area, for the comparison of two maps, same 8 landslide conditioning parameters were selected and then fuzzified for the landslide susceptibility mapping: land use, lithology, elevation, slope, aspect, distance to streams, distance to roads, and plan curvature. Mamdani model was selected as fuzzy inference system. After fuzzy rules definition, Center of Area (COA was selected as defuzzification method in model. The output of developed model was normalized between 0 and 1, and then divided five classes such as very low, low, moderate, high, and very high. According to developed model based 8 conditioning parameters, landslide susceptibility in Yığılca Forest District varies between 32 and 67 (in range of 0-100 with 0.703 Area Under the Curve (AUC value. According to classified landslide susceptibility map, in Yığılca Forest District, 32.89% of the total area has high and very high susceptibility while 29.59% of the area has low and very low susceptibility and the rest located in moderate susceptibility. The result of developed fuzzy rule based model compared with previously generated landslide map with logistic regression (LR. According to comparison of the results of two studies, higher differences exist in terms of AUC value and dispersion of susceptibility classes. This is because fuzzy rule based model completely depends on how parameters are classified and fuzzified and also depends on how truly the expert composed the rules. Even so, GIS-based fuzzy applications provide very valuable facilities for reasoning, which makes it possible to take into account inaccuracies and uncertainties.

  15. Design of a Fuzzy Rule Base Expert System to Predict and Classify ...

    African Journals Online (AJOL)

    The main objective of design of a rule base expert system using fuzzy logic approach is to predict and forecast the risk level of cardiac patients to avoid sudden death. In this proposed system, uncertainty is captured using rule base and classification using fuzzy c-means clustering is discussed to overcome the risk level, ...

  16. Distinguishing the Noise and image structures for detecting the correction term and filtering the noise by using fuzzy rules

    OpenAIRE

    Sridevi.Ravada,; Vani prasanna.Kanakala,; Ramya.Koilada

    2011-01-01

    A fuzzy filter is constructed from a set of fuzzy IF-THEN rules, these fuzzy rules come either from human experts or by matching input-output pairs .in this paper we propose a new fuzzy filter for the noise reduction of images corrupted with additive noise. here in this approach ,initially fuzzy derivatives for all eight directions that is N,E,W,S, NE,NW,SE,SW are calculated using “fuzzy IF-THEN rules “ and membership functions . Further the fuzzy derivative values obtained are used in the fu...

  17. Optimizing Fuzzy Rule Base for Illumination Compensation in Face Recognition using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Bima Sena Bayu Dewantara

    2014-12-01

    Full Text Available Fuzzy rule optimization is a challenging step in the development of a fuzzy model. A simple two inputs fuzzy model may have thousands of combination of fuzzy rules when it deals with large number of input variations. Intuitively and trial‐error determination of fuzzy rule is very difficult. This paper addresses the problem of optimizing Fuzzy rule using Genetic Algorithm to compensate illumination effect in face recognition. Since uneven illumination contributes negative effects to the performance of face recognition, those effects must be compensated. We have developed a novel algorithmbased on a reflectance model to compensate the effect of illumination for human face recognition. We build a pair of model from a single image and reason those modelsusing Fuzzy.Fuzzy rule, then, is optimized using Genetic Algorithm. This approachspendsless computation cost by still keepinga high performance. Based on the experimental result, we can show that our algorithm is feasiblefor recognizing desired person under variable lighting conditions with faster computation time. Keywords: Face recognition, harsh illumination, reflectance model, fuzzy, genetic algorithm

  18. Design of fuzzy learning control systems for steam generator water level control

    International Nuclear Information System (INIS)

    Park, Gee Yong

    1996-02-01

    A fuzzy learning algorithm is developed in order to construct the useful control rules and tune the membership functions in the fuzzy logic controller used for water level control of nuclear steam generator. The fuzzy logic controllers have shown to perform better than conventional controllers for ill-defined or complex processes such as nuclear steam generator. Whereas the fuzzy logic controller does not need a detailed mathematical model of a plant to be controlled, its structure is to be made on the basis of the operator's linguistic information experienced from the plant operations. It is not an easy work and also there is no systematic way to translate the operator's linguistic information into quantitative information. When the linguistic information of operators is incomplete, tuning the parameters of fuzzy controller is to be performed for better control performance. It is the time and effort consuming procedure that controller designer has to tune the structure of fuzzy logic controller for optimal performance. And if the number of control inputs is many and the rule base is constructed in multidimensional space, it is very difficult for a controller designer to tune the fuzzy controller structure. Hence, the difficulty in putting the experimental knowledge into quantitative (or numerical) data and the difficulty in tuning the rules are the major problems in designing fuzzy logic controller. In order to overcome the problems described above, a learning algorithm by gradient descent method is included in the fuzzy control system such that the membership functions are tuned and the necessary rules are created automatically for good control performance. For stable learning in gradient descent method, the optimal range of learning coefficient not to be trapped and not to provide too slow learning speed is investigated. With the optimal range of learning coefficient, the optimal value of learning coefficient is suggested and with this value, the gradient

  19. Design of stability-guaranteed fuzzy logic controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Cho, B.H.; No, H.C.

    1996-01-01

    A fuzzy logic controller (FLC) and a fuzzy logic filter (FLF), which have a special type of fuzzifier, inference engine, and defuzzifier, are applied to the water level control of a nuclear steam generator (S/G). It is shown that arbitrary two-input, single-output linear controllers can be adequately expressed by this FLC. A procedure to construct stability-guaranteed FLC rules is proposed. It contains the following steps: (1) the stable sector of linear feedback gains is obtained from the suboptimal concept based on LQR theory and the Lyapunov's stability criteria; (2) the stable sector of linear gains is mapped into two linear rule tables that are used as limits for the FLC rules; and (3) the construction of an FLC rule table is done by choosing certain rules that lie between these limits. This type of FLC guarantees asymptotic stability of the control system. The FLF generates a feedforward signal of S/G feedwater from the steam flow measurement using a fuzzy concept. Through computer simulation, it is found that the FLC with the FLF works better than a well-tuned PID controller with variable gains to reduce swell/shrink phenomena, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plants

  20. Application of a fuzzy control algorithm with improved learning speed to nuclear steam generator level control

    International Nuclear Information System (INIS)

    Park, Gee Yong; Seong, Poong Hyun

    1994-01-01

    In order to reduce the load of tuning works by trial-and-error for obtaining the best control performance of conventional fuzzy control algorithm, a fuzzy control algorithm with learning function is investigated in this work. This fuzzy control algorithm can make its rule base and tune the membership functions automatically by use of learning function which needs the data from the control actions of the plant operator or other controllers. Learning process in fuzzy control algorithm is to find the optimal values of parameters, which consist of the membership functions and the rule base, by gradient descent method. Learning speed of gradient descent is significantly improved in this work with the addition of modified momentum. This control algorithm is applied to the steam generator level control by computer simulations. The simulation results confirm the good performance of this control algorithm for level control and show that the fuzzy learning algorithm has the generalization capability for the relation of inputs and outputs and it also has the excellent capability of disturbance rejection

  1. A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor

    International Nuclear Information System (INIS)

    Zio, Enrico; Baraldi, Piero; Popescu, Irina Crenguta

    2009-01-01

    This paper extends a method previously introduced by the authors for building a transparent fault classification algorithm by combining the fuzzy clustering, fuzzy logic and decision trees techniques. The baseline method transforms an opaque, fuzzy clustering-based classification model into a fuzzy logic inference model based on linguistic rules which can be represented by a decision tree formalism. The classification model thereby obtained is transparent in that it allows direct interpretation and inspection of the model. An extension in the procedure for the development of the fuzzy logic inference model is introduced to allow the treatment of more complicated cases, e.g. splitted and overlapping clusters. The corresponding computational tool developed relies on a number of parameters which can be tuned by the user to optimally compromise the level of transparency of the classification process and its efficiency. A numerical application is presented with regards to the fault classification in the Steam Generator of a Pressurized Water Reactor.

  2. PENERAPAN FUZZY IF-THEN RULES UNTUK PENINGKATAN KONTRAS PADA CITRA HASIL MAMMOGRAFI

    Directory of Open Access Journals (Sweden)

    Helmy Thendean

    2008-01-01

    Full Text Available In medical area, the quality of an image which is acquired from mammography often has a poor contrast. The poor quality image leads a difficulty for a radiologist to analyze the image. The problem becomes bigger when the image contains a cancer or tumor. There are some methods in image processing technique to increase the contrast quality of an image. This paper presents Fuzzy IF-THEN Rules method which has four knowledge base approaches to increase the contrast quality of the image, especially breast images from mammography. To determine the success rate, this experiment tries to compare this method with a standard contrast improvement such as histogram equalization. The quantity parameters to compare these methods are linier index of fuzziness and fuzzy entropy. The result shows that Fuzzy IF-THEN Rules offers better result to improve the contrast quality than standard method. The result of this experiment is validated by an expert from radiology department from Husada Hospital, Jakarta. Abstract in Bahasa Indonesia : Citra hasil dari mammografi dalam dunia kedokteran sering memiliki kualitas yang buruk dari sisi kontras. Hal ini mengakibatkan kesulitan bagi seorang radiolog untuk menganalisis citra tersebut. Tingkat kesulitan bertambah apabila citra yang harus dianalisis tersebut mengandung kanker atau tumor. Terdapat beberapa metode untuk peningkatan kualitas kontras sebuah citra. Penelitian ini menggunakan metode Fuzzy IF-THEN Rules dengan empat pendekatan basis pengetahuan untuk meningkatkan kualitas kontras citra, khususnya citra payudara yang diperoleh dari hasil mammografi. Untuk menentukan tingkat keberha-silannya, metode tersebut akan dibandingkan dengan metode standar untuk peningkatan kontras seperti Histogram Equalization. Parameter yang digunakan untuk membandingkan setiap metode tersebut adalah linier index of fuzziness dan fuzzy entropy. Hasil percobaan menunjukkan bahwa Fuzzy IF-THEN Rules mampu menghasilkan hasil peningkatan

  3. Fuzzy logic based variable speed wind generation system

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.

    1996-12-31

    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  4. Fuzzy logic control of steam generator water level in pressurized water reactors

    International Nuclear Information System (INIS)

    Kuan, C.C.; Lin, C.; Hsu, C.C.

    1992-01-01

    In this paper a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical mode of the object to be controlled. The design is based on a set of linguistic rules that were adopted from the human operator's experience. After off-line fuzzy computation, the controller is a lookup table, and thus, real-time control is achieved. Shrink-and-swell phenomena are considered in the linguistic rules, and the simulation results show that their effect is dramatically reduced. The performance of the control system can also be improved by changing the input and output scaling factors, which is convenient for on-line tuning

  5. Assessment of the Degree of Consistency of the System of Fuzzy Rules

    Directory of Open Access Journals (Sweden)

    Pospelova Lyudmila Yakovlevna

    2013-12-01

    Full Text Available The article analyses recent achievements and publications and shows that difficulties of explaining the nature of fuzziness and equivocation arise in socio-economic models that use the traditional paradigm of classical rationalism (computational, agent and econometric models. The accumulated collective experience of development of optimal models confirms prospectiveness of application of the fuzzy set approach in modelling the society. The article justifies the necessity of study of the nature of inconsistency in fuzzy knowledge bases both on the generalised ontology level and on pragmatic functional level of the logical inference. The article offers the method of search for logical and conceptual contradictions in the form of a combination of the abduction and modus ponens. It discusses the key issue of the proposed method: what properties should have the membership function of the secondary fuzzy set, which describes in fuzzy inference models such a resulting state of the object of management, which combines empirically incompatible properties with high probability. The degree of membership of the object of management in several incompatible classes with respect to the fuzzy output variable is the degree of fuzziness of the “Intersection of all results of the fuzzy inference of the set, applied at some input of rules, is an empty set” statement. The article describes an algorithm of assessment of the degree of consistency. It provides an example of the step-by-step detection of contradictions in statistical fuzzy knowledge bases at the pragmatic functional level of the logical output. The obtained results of testing in the form of sets of incompatible facts, output chains, sets of non-crossing intervals and computed degrees of inconsistency allow experts timely elimination of inadmissible contradictions and, at the same time, increase of quality of recommendations and assessment of fuzzy expert systems.

  6. Decision support system for triage management: A hybrid approach using rule-based reasoning and fuzzy logic.

    Science.gov (United States)

    Dehghani Soufi, Mahsa; Samad-Soltani, Taha; Shams Vahdati, Samad; Rezaei-Hachesu, Peyman

    2018-06-01

    Fast and accurate patient triage for the response process is a critical first step in emergency situations. This process is often performed using a paper-based mode, which intensifies workload and difficulty, wastes time, and is at risk of human errors. This study aims to design and evaluate a decision support system (DSS) to determine the triage level. A combination of the Rule-Based Reasoning (RBR) and Fuzzy Logic Classifier (FLC) approaches were used to predict the triage level of patients according to the triage specialist's opinions and Emergency Severity Index (ESI) guidelines. RBR was applied for modeling the first to fourth decision points of the ESI algorithm. The data relating to vital signs were used as input variables and modeled using fuzzy logic. Narrative knowledge was converted to If-Then rules using XML. The extracted rules were then used to create the rule-based engine and predict the triage levels. Fourteen RBR and 27 fuzzy rules were extracted and used in the rule-based engine. The performance of the system was evaluated using three methods with real triage data. The accuracy of the clinical decision support systems (CDSSs; in the test data) was 99.44%. The evaluation of the error rate revealed that, when using the traditional method, 13.4% of the patients were miss-triaged, which is statically significant. The completeness of the documentation also improved from 76.72% to 98.5%. Designed system was effective in determining the triage level of patients and it proved helpful for nurses as they made decisions, generated nursing diagnoses based on triage guidelines. The hybrid approach can reduce triage misdiagnosis in a highly accurate manner and improve the triage outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Online Rule Generation Software Process Model

    OpenAIRE

    Sudeep Marwaha; Alka Aroa; Satma M C; Rajni Jain; R C Goyal

    2013-01-01

    For production systems like expert systems, a rule generation software can facilitate the faster deployment. The software process model for rule generation using decision tree classifier refers to the various steps required to be executed for the development of a web based software model for decision rule generation. The Royce’s final waterfall model has been used in this paper to explain the software development process. The paper presents the specific output of various steps of modified wat...

  8. A study on the optimal fuel loading pattern design in pressurized water reactor using the artificial neural network and the fuzzy rule based system

    International Nuclear Information System (INIS)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung

    2004-01-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. In this paper, an optimal loading pattern is defined that the local power peaking factor is lower than predetermined value during one cycle and the effective multiplication factor is maximized in order to extract maximum energy. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (author)

  9. A study on the optimal fuel loading pattern design in pressurized water reactor using the artificial neural network and the fuzzy rule based system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung [Department of Nuclear Engineering, Korea Advanced Institute of Science and Technology, Yusong-gu, Taejon (Korea, Republic of)

    2004-07-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. In this paper, an optimal loading pattern is defined that the local power peaking factor is lower than predetermined value during one cycle and the effective multiplication factor is maximized in order to extract maximum energy. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (author)

  10. Multicriteria analysis of the hybrid systems with biogas: fuzzy set and rules; Analise multicriterio de sistemas hibridos com biogas: conjuntos e regras fuzzy

    Energy Technology Data Exchange (ETDEWEB)

    Barin, A.; Canha, L.; Abaide, A.; Magnago, K. [Federal University of Santa Maria (UFSM), RS (Brazil)], E-mail: chbarin@gmail.com; Machado, R. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], E-mail: rquadros@sel.eesc.usp.br

    2009-07-01

    A multicriteria analysis to manage de renewable sources of energy is presented, identifying the most appropriate hybrid system to be used as distributed generation of electric energy using biogas. In this methodology, fuzzy sets and rules are defined simulated in the software MATLAB, where the main characteristics of the operation and application of hybrid systems of electric power generation are considered. The main generation system, that can use the biogas, as micro turbines and fuel cells, are evaluated. Afterwards, the systems of energy storage are analyzed: flywheel, H{sub 2} storage and conventional and redox batteries. For the development of the proposed methodology, it was considered the following criteria: efficiency, costs, technological maturity, environmental impacts, the amplitude of the system action (power range), useful life, co-generation possibility and operation temperature. A classification, by priority order, for the use of the sources and storages associated to the environment and cost scenarios is also presented.

  11. Horizontal and Vertical Rule Bases Method in Fuzzy Controllers

    OpenAIRE

    Aminifar, Sadegh; bin Marzuki, Arjuna

    2013-01-01

    Concept of horizontal and vertical rule bases is introduced. Using this method enables the designers to look for main behaviors of system and describes them with greater approximations. The rules which describe the system in first stage are called horizontal rule base. In the second stage, the designer modulates the obtained surface by describing needed changes on first surface for handling real behaviors of system. The rules used in the second stage are called vertical rule base. Horizontal...

  12. Determining rules for closing customer service centers: A public utility company's fuzzy decision

    Science.gov (United States)

    Dekorvin, Andre; Shipley, Margaret F.; Lea, Robert N.

    1992-01-01

    In the present work, we consider the general problem of knowledge acquisition under uncertainty. Simply stated, the problem reduces to the following: how can we capture the knowledge of an expert when the expert is unable to clearly formulate how he or she arrives at a decision? A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision may have been made. Unique to our work is the fuzzy set representation of the conditions or attributes upon which the expert may possibly base his fuzzy decision. From our examples, we infer certain and possible fuzzy rules for closing a customer service center and illustrate the importance of having the decision closely relate to the conditions under consideration.

  13. Capacities and overlap indexes with an application in fuzzy rule-based classification systems

    Czech Academy of Sciences Publication Activity Database

    Paternain, D.; Bustince, H.; Pagola, M.; Sussner, P.; Kolesárová, A.; Mesiar, Radko

    2016-01-01

    Roč. 305, č. 1 (2016), s. 70-94 ISSN 0165-0114 Institutional support: RVO:67985556 Keywords : Capacity * Overlap index * Overlap function * Choquet integral * Fuzzy rule-based classification systems Subject RIV: BA - General Mathematics Impact factor: 2.718, year: 2016 http://library.utia.cas.cz/separaty/2016/E/mesiar-0465739.pdf

  14. Gain ratio based fuzzy weighted association rule mining classifier for ...

    Indian Academy of Sciences (India)

    association rule mining algorithm for extracting both association rules and member- .... The disadvantage of this work is in considering the generalization at each ... If the new attribute is entered, the generalization process does not consider the ...

  15. Prediction on carbon dioxide emissions based on fuzzy rules

    Science.gov (United States)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  16. Detection of Stator Winding Fault in Induction Motor Using Fuzzy Logic with Optimal Rules

    Directory of Open Access Journals (Sweden)

    Hamid Fekri Azgomi

    2013-04-01

    Full Text Available Induction motors are critical components in many industrial processes. Therefore, swift, precise and reliable monitoring and fault detection systems are required to prevent any further damages. The online monitoring of induction motors has been becoming increasingly important. The main difficulty in this task is the lack of an accurate analytical model to describe a faulty motor. A fuzzy logic approach may help to diagnose traction motor faults. This paper presents a simple method for the detection of stator winding faults (which make up 38% of induction motor failures based on monitoring the line/terminal current amplitudes. In this method, fuzzy logic is used to make decisions about the stator motor condition. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The motor condition is described using linguistic variables. Fuzzy subsets and the corresponding membership functions describe stator current amplitudes. A knowledge base, comprising rule and data bases, is built to support the fuzzy inference. Simulation results are presented to verify the accuracy of motor’s fault detection and knowledge extraction feasibility. The preliminary results show that the proposed fuzzy approach can be used for accurate stator fault diagnosis.

  17. Incorporation of negative rules and evolution of a fuzzy controller for yeast fermentation process.

    Science.gov (United States)

    Birle, Stephan; Hussein, Mohamed Ahmed; Becker, Thomas

    2016-08-01

    The control of bioprocesses can be very challenging due to the fact that these kinds of processes are highly affected by various sources of uncertainty like the intrinsic behavior of the used microorganisms. Due to the reason that these kinds of process uncertainties are not directly measureable in most cases, the overall control is either done manually because of the experience of the operator or intelligent expert systems are applied, e.g., on the basis of fuzzy logic theory. In the latter case, however, the control concept is mainly represented by using merely positive rules, e.g., "If A then do B". As this is not straightforward with respect to the semantics of the human decision-making process that also includes negative experience in form of constraints or prohibitions, the incorporation of negative rules for process control based on fuzzy logic is emphasized. In this work, an approach of fuzzy logic control of the yeast propagation process based on a combination of positive and negative rules is presented. The process is guided along a reference trajectory for yeast cell concentration by alternating the process temperature. The incorporation of negative rules leads to a much more stable and accurate control of the process as the root mean squared error of reference trajectory and system response could be reduced by an average of 62.8 % compared to the controller using only positive rules.

  18. A new methodology for the study of FAC phenomenon based on a fuzzy rule system

    International Nuclear Information System (INIS)

    Ferreira Guimaraes, Antonio Cesar

    2003-01-01

    This work consists of the representation of the corrosion problem, FAC - 'Flow-Accelerated Corrosion' in components, structures and passive systems in a nuclear power plant with aging, through a fuzzy rules system, in substitution to the conventional modeling and experimental analyses. Using data characteristic of the nature of the problem to be analyzed, a reduced number of rules can be establish to represent the actual problem. The results can be visualized in a very satisfactory way thus providing the engineer with the knowledge to work in the space of solution of rules to do the necessary inferences

  19. The Compositional Rule of Inference and Zadeh’s Extension Principle for Non-normal Fuzzy Sets

    NARCIS (Netherlands)

    van den Broek, P.M.; Noppen, J.A.R.; Castillo, Oscar

    2007-01-01

    Defining the standard Boolean operations on fuzzy Booleans with the compositional rule of inference (CRI) or Zadeh's extension principle gives counter-intuitive results. We introduce and motivate a slight adaptation of the CRI, which only effects the results for non-normal fuzzy sets. It is shown

  20. Fuzzy logic controller architecture for water level control in nuclear power plant steam generator using ANFIS training method

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Ekrami, AmirHasan; Naseri, Zahra

    2003-01-01

    Since suitable control of water level can greatly enhance the operation of a power station, a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical model of the object to be controlled. It is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial membership functions will be trained and appropriate functions are generated to control water level inside the steam generator while using the stated rules. The proposed architecture can construct an input-output mapping based on both human knowledge (in the from of fuzzy if - then rules) and stipulated input-output data. This fuzzy logic controller is applied to the steam generator level control by computer simulations. The simulation results confirm the excellent performance of this control architecture in compare with a well-turned PID controller. (author)

  1. Control of Angra 1' PZR by a fuzzy rule base build through genetic programming

    International Nuclear Information System (INIS)

    Caldas, Gustavo Henrique Flores; Schirru, Roberto

    2002-01-01

    There is an optimum pressure for the normal operation of nuclear power plant reactors and thresholds that must be respected during transients, what make the pressurizer an important control mechanism. Inside a pressurizer there are heaters and a shower. From their actuation levels, they control the vapor pressure inside the pressurizer and, consequently, inside the primary circuit. Therefore, the control of the pressurizer consists in controlling the actuation levels of the heaters and of the shower. In the present work this function is implemented through a fuzzy controller. Besides the efficient way of exerting control, this approach presents the possibility of extracting knowledge of how this control is been made. A fuzzy controller consists basically in an inference machine and a rule base, the later been constructed with specialized knowledge. In some circumstances, however, this knowledge is not accurate, and may lead to non-efficient results. With the development of artificial intelligence techniques, there wore found methods to substitute specialists, simulating its knowledge. Genetic programming is an evolutionary algorithm particularly efficient in manipulating rule base structures. In this work genetic programming was used as a substitute for the specialist. The goal is to test if an irrational object, a computer, is capable, by it self, to find out a rule base reproducing a pre-established actuation levels profile. The result is positive, with the discovery of a fuzzy rule base presenting an insignificant error. A remarkable result that proves the efficiency of the approach. (author)

  2. Fuzzy OLAP association rules mining-based modular reinforcement learning approach for multiagent systems.

    Science.gov (United States)

    Kaya, Mehmet; Alhajj, Reda

    2005-04-01

    Multiagent systems and data mining have recently attracted considerable attention in the field of computing. Reinforcement learning is the most commonly used learning process for multiagent systems. However, it still has some drawbacks, including modeling other learning agents present in the domain as part of the state of the environment, and some states are experienced much less than others, or some state-action pairs are never visited during the learning phase. Further, before completing the learning process, an agent cannot exhibit a certain behavior in some states that may be experienced sufficiently. In this study, we propose a novel multiagent learning approach to handle these problems. Our approach is based on utilizing the mining process for modular cooperative learning systems. It incorporates fuzziness and online analytical processing (OLAP) based mining to effectively process the information reported by agents. First, we describe a fuzzy data cube OLAP architecture which facilitates effective storage and processing of the state information reported by agents. This way, the action of the other agent, not even in the visual environment. of the agent under consideration, can simply be predicted by extracting online association rules, a well-known data mining technique, from the constructed data cube. Second, we present a new action selection model, which is also based on association rules mining. Finally, we generalize not sufficiently experienced states, by mining multilevel association rules from the proposed fuzzy data cube. Experimental results obtained on two different versions of a well-known pursuit domain show the robustness and effectiveness of the proposed fuzzy OLAP mining based modular learning approach. Finally, we tested the scalability of the approach presented in this paper and compared it with our previous work on modular-fuzzy Q-learning and ordinary Q-learning.

  3. Fuzzy generation scheduling for a generation company (GenCo) with large scale wind farms

    International Nuclear Information System (INIS)

    Siahkali, H.; Vakilian, M.

    2010-01-01

    Wind power is a promising alternative in power generation because of its tremendous environmental and social benefits. Generation scheduling (GS) is more important in a power system integrating wind farms. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. This paper presents a fuzzy approach to the generation scheduling problem of a GenCo considering uncertainties in parameters or constraints such as load, reserve and available wind power generation. The modeling of constraints is an important issue in power system scheduling. A fuzzy optimization approach is an approach that can be used to obtain the generation scheduling under an uncertain environment. In this paper, a fuzzy optimization-based method is developed to solve power system GS problem with fuzzy objective and constraints. The crisp formulation of this GS problem is firstly defined and is rearranged by introduction of a membership function of some constraints and objective function. Then, this fuzzy optimization problem is converted to a crisp optimization and solved using GAMS software by mixed integer nonlinear programming. Employing the fuzzy optimization GS, it is expected that in practice a higher profit would be achieved in the operation and cost management of a real power system with large scale wind farms in different level of constraints' satisfaction. The proposed approach is applied to a sample system (including six conventional units and two wind farms) and the results are compared with the results of crisp solution. This approach is also applied to a larger test case to demonstrate the robustness of this fuzzy optimization method.

  4. Fuzzy Rule-based Analysis of Promotional Efficiency in Vietnam’s Tourism Industry

    OpenAIRE

    Nguyen Quang VINH; Dam Van KHANH; Nguyen Viet ANH

    2015-01-01

    This study aims to determine an effective method of measuring the efficiency of promotional strategies for tourist destinations. Complicating factors that influence promotional efficiency (PE), such as promotional activities (PA), destination attribute (DA), and destination image (DI), make it difficult to evaluate the effectiveness of PE. This study develops a rule-based decision support mechanism using fuzzy set theory and the Analytic Hierarchy Process (AHP) to evaluate the effectiveness o...

  5. Comparative Analysis of Reduced-Rule Compressed Fuzzy Logic Control and Incremental Conductance MPPT Methods

    Science.gov (United States)

    Kandemir, Ekrem; Borekci, Selim; Cetin, Numan S.

    2018-04-01

    Photovoltaic (PV) power generation has been widely used in recent years, with techniques for increasing the power efficiency representing one of the most important issues. The available maximum power of a PV panel is dependent on environmental conditions such as solar irradiance and temperature. To extract the maximum available power from a PV panel, various maximum-power-point tracking (MPPT) methods are used. In this work, two different MPPT methods were implemented for a 150-W PV panel. The first method, known as incremental conductance (Inc. Cond.) MPPT, determines the maximum power by measuring the derivative of the PV voltage and current. The other method is based on reduced-rule compressed fuzzy logic control (RR-FLC), using which it is relatively easier to determine the maximum power because a single input variable is used to reduce computing loads. In this study, a 150-W PV panel system model was realized using these MPPT methods in MATLAB and the results compared. According to the simulation results, the proposed RR-FLC-based MPPT could increase the response rate and tracking accuracy by 4.66% under standard test conditions.

  6. Improving the anesthetic process by a fuzzy rule based medical decision system.

    Science.gov (United States)

    Mendez, Juan Albino; Leon, Ana; Marrero, Ayoze; Gonzalez-Cava, Jose M; Reboso, Jose Antonio; Estevez, Jose Ignacio; Gomez-Gonzalez, José F

    2018-01-01

    The main objective of this research is the design and implementation of a new fuzzy logic tool for automatic drug delivery in patients undergoing general anesthesia. The aim is to adjust the drug dose to the real patient needs using heuristic knowledge provided by clinicians. A two-level computer decision system is proposed. The idea is to release the clinician from routine tasks so that he can focus on other variables of the patient. The controller uses the Bispectral Index (BIS) to assess the hypnotic state of the patient. Fuzzy controller was included in a closed-loop system to reach the BIS target and reject disturbances. BIS was measured using a BIS VISTA monitor, a device capable of calculating the hypnosis level of the patient through EEG information. An infusion pump with propofol 1% is used to supply the drug to the patient. The inputs to the fuzzy inference system are BIS error and BIS rate. The output is infusion rate increment. The mapping of the input information and the appropriate output is given by a rule-base based on knowledge of clinicians. To evaluate the performance of the fuzzy closed-loop system proposed, an observational study was carried out. Eighty one patients scheduled for ambulatory surgery were randomly distributed in 2 groups: one group using a fuzzy logic based closed-loop system (FCL) to automate the administration of propofol (42 cases); the second group using manual delivering of the drug (39 cases). In both groups, the BIS target was 50. The FCL, designed with intuitive logic rules based on the clinician experience, performed satisfactorily and outperformed the manual administration in patients in terms of accuracy through the maintenance stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Implementation of the fuzzy theory in control of alternative energy generation system; Aplicacao da teoria fuzzy no controle de sistemas de geracao de energias alternativas

    Energy Technology Data Exchange (ETDEWEB)

    Caneppele, Fernando de Lima [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Curso de Pos-Graduacao em Energia na Agricultura], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], E-mail: seraphim@fca.unesp.br

    2010-07-01

    This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment. (author)

  8. Development of Real Time Implementation of 5/5 Rule based Fuzzy Logic Controller Shunt Active Power Filter for Power Quality Improvement

    Science.gov (United States)

    Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar

    2016-12-01

    This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.

  9. Rule-bases construction through self-learning for a table-based Sugeno-Takagi fuzzy logic control system

    Directory of Open Access Journals (Sweden)

    C. Boldisor

    2009-12-01

    Full Text Available A self-learning based methodology for building the rule-base of a fuzzy logic controller (FLC is presented and verified, aiming to engage intelligent characteristics to a fuzzy logic control systems. The methodology is a simplified version of those presented in today literature. Some aspects are intentionally ignored since it rarely appears in control system engineering and a SISO process is considered here. The fuzzy inference system obtained is a table-based Sugeno-Takagi type. System’s desired performance is defined by a reference model and rules are extracted from recorded data, after the correct control actions are learned. The presented algorithm is tested in constructing the rule-base of a fuzzy controller for a DC drive application. System’s performances and method’s viability are analyzed.

  10. Fuzzy Rule-based Analysis of Promotional Efficiency in Vietnam’s Tourism Industry

    Directory of Open Access Journals (Sweden)

    Nguyen Quang VINH

    2015-06-01

    Full Text Available This study aims to determine an effective method of measuring the efficiency of promotional strategies for tourist destinations. Complicating factors that influence promotional efficiency (PE, such as promotional activities (PA, destination attribute (DA, and destination image (DI, make it difficult to evaluate the effectiveness of PE. This study develops a rule-based decision support mechanism using fuzzy set theory and the Analytic Hierarchy Process (AHP to evaluate the effectiveness of promotional strategies. Additionally, a statistical analysis is conducted using SPSS (Statistics Package for Social Science to confirm the results of the fuzzy AHP analysis. This study finds that government policy is the most important factor for PE and that service staff (internal beauty is more important than tourism infrastructure (external beauty in terms of customer satisfaction and long-term strategy in PE. With respect to DI, experts are concerned first with tourist perceived value, second with tourist satisfaction and finally with tourist loyalty.

  11. Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks

    Science.gov (United States)

    Wu, Zhengping; Wu, Hao

    With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.

  12. A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler.

    Science.gov (United States)

    Butt, Muhammad Arif; Akram, Muhammad

    2016-01-01

    We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.

  13. Automated generation of lattice QCD Feynman rules

    Energy Technology Data Exchange (ETDEWEB)

    Hart, A.; Mueller, E.H. [Edinburgh Univ. (United Kingdom). SUPA School of Physics and Astronomy; von Hippel, G.M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Horgan, R.R. [Cambridge Univ. (United Kingdom). DAMTP, CMS

    2009-04-15

    The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)

  14. Automated generation of lattice QCD Feynman rules

    International Nuclear Information System (INIS)

    Hart, A.; Mueller, E.H.; Horgan, R.R.

    2009-04-01

    The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)

  15. Design of stability-guaranteed fuzzy logic controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Cho, Byung Hak

    1996-02-01

    A fuzzy logic controller(FLC) and a fuzzy logic filter(FLF), which have a special type of fuzzifier, inference engine, and defuzzifier, are applied to the water level control of a nuclear steam generator (S/G). It is shown that arbitrary two-input, single-output linear state feedback controllers can be adequately expressed by this FLC. A procedure to construct stability-guaranteed FLC rules is proposed. It contains the following steps: (1) The stable sector of linear feedback gains is obtained from the suboptimal concept based on LQR theory and the Lyapunov's stability criteria: (2) The stable sector of linear gains is mapped into two linear rule tables that are used as limits for the FLC rules: (3) The construction of an FLC rule table is done by choosing certain rules that lie between these limits. This type of FLC guarantees asymptotic stability of the control system. The FLF generates a feedforward signal of S/G feedwater from the steam flow measurement using a fuzzy concept. Through computer simulation, it is found that the FLC with the FLF works better than well-tuned PID controller with variable gains to reduce swell/shrink phenomena especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plants. A neurofuzzy logic controller (NFLC), that is implemented by using multi-layered neural network to have the same function as the FLC discussed above, is designed. The automatic generation of NFLC rule table is accomplished by using back-error-propagation (BEP) algorithm. There are two separated paths at the error back-propagation in the S/G. One is to consider the level dynamics depending on the tank capacity, and the other is to take into account the reverse dynamics of S/G. The amounts of error back-propagated through these paths show opposite effects to the BEP algorithm each other at the swell/shrink phenomena. Through the computer simulation, it is found that the BEP algorithm adequately generates NFLC

  16. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Directory of Open Access Journals (Sweden)

    Y.-M. Chiang

    2011-01-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  17. Adaptive neuro-fuzzy inference system based automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S.H.; Etemadi, A.H. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2008-07-15

    Fixed gain controllers for automatic generation control are designed at nominal operating conditions and fail to provide best control performance over a wide range of operating conditions. So, to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to compute control gains. A control scheme based on artificial neuro-fuzzy inference system (ANFIS), which is trained by the results of off-line studies obtained using particle swarm optimization, is proposed in this paper to optimize and update control gains in real-time according to load variations. Also, frequency relaxation is implemented using ANFIS. The efficiency of the proposed method is demonstrated via simulations. Compliance of the proposed method with NERC control performance standard is verified. (author)

  18. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection

    Directory of Open Access Journals (Sweden)

    Bloch Isabelle

    2007-01-01

    Full Text Available This paper describes a system for optical music recognition (OMR in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.

  19. AN QUALITY BASED ENHANCEMENT OF USER DATA PROTECTION VIA FUZZY RULE BASED SYSTEMS IN CLOUD ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    R Poorva Devi

    2016-04-01

    Full Text Available So far, in cloud computing distinct customer is accessed and consumed enormous amount of services through web, offered by cloud service provider (CSP. However cloud is providing one of the services is, security-as-a-service to its clients, still people are terrified to use the service from cloud vendor. Number of solutions, security components and measurements are coming with the new scope for the cloud security issue, but 79.2% security outcome only obtained from the different scientists, researchers and other cloud based academy community. To overcome the problem of cloud security the proposed model that is, “Quality based Enhancing the user data protection via fuzzy rule based systems in cloud environment”, will helps to the cloud clients by the way of accessing the cloud resources through remote monitoring management (RMMM and what are all the services are currently requesting and consuming by the cloud users that can be well analyzed with Managed service provider (MSP rather than a traditional CSP. Normally, people are trying to secure their own private data by applying some key management and cryptographic based computations again it will direct to the security problem. In order to provide good quality of security target result by making use of fuzzy rule based systems (Constraint & Conclusion segments in cloud environment. By using this technique, users may obtain an efficient security outcome through the cloud simulation tool of Apache cloud stack simulator.

  20. A GA-fuzzy automatic generation controller for interconnected power system

    CSIR Research Space (South Africa)

    Boesack, CD

    2011-10-01

    Full Text Available This paper presents a GA-Fuzzy Automatic Generation Controller for large interconnected power systems. The design of Fuzzy Logic Controllers by means of expert knowledge have typically been the traditional design norm, however, this may not yield...

  1. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    Science.gov (United States)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  2. Hierarchical type-2 fuzzy aggregation of fuzzy controllers

    CERN Document Server

    Cervantes, Leticia

    2016-01-01

    This book focuses on the fields of fuzzy logic, granular computing and also considering the control area. These areas can work together to solve various control problems, the idea is that this combination of areas would enable even more complex problem solving and better results. In this book we test the proposed method using two benchmark problems: the total flight control and the problem of water level control for a 3 tank system. When fuzzy logic is used it make it easy to performed the simulations, these fuzzy systems help to model the behavior of a real systems, using the fuzzy systems fuzzy rules are generated and with this can generate the behavior of any variable depending on the inputs and linguistic value. For this reason this work considers the proposed architecture using fuzzy systems and with this improve the behavior of the complex control problems.

  3. An Expert System for Diagnosis of Sleep Disorder Using Fuzzy Rule-Based Classification Systems

    Science.gov (United States)

    Septem Riza, Lala; Pradini, Mila; Fitrajaya Rahman, Eka; Rasim

    2017-03-01

    Sleep disorder is an anomaly that could cause problems for someone’ sleeping pattern. Nowadays, it becomes an issue since people are getting busy with their own business and have no time to visit the doctors. Therefore, this research aims to develop a system used for diagnosis of sleep disorder using Fuzzy Rule-Based Classification System (FRBCS). FRBCS is a method based on the fuzzy set concepts. It consists of two steps: (i) constructing a model/knowledge involving rulebase and database, and (ii) prediction over new data. In this case, the knowledge is obtained from experts whereas in the prediction stage, we perform fuzzification, inference, and classification. Then, a platform implementing the method is built with a combination between PHP and the R programming language using the “Shiny” package. To validate the system that has been made, some experiments have been done using data from a psychiatric hospital in West Java, Indonesia. Accuracy of the result and computation time are 84.85% and 0.0133 seconds, respectively.

  4. A fuzzy approach to the generation expansion planning problem in a multi-objective environment

    International Nuclear Information System (INIS)

    Abass, S. A.; Massoud, E. M. A.; Abass, S. A.)

    2007-01-01

    In many power system problems, the use of optimization techniques has proved inductive to reducing the costs and losses of the system. A fuzzy multi-objective decision is used for solving power system problems. One of the most important issues in the field of power system engineering is the generation expansion planning problem. In this paper, we use the concepts of membership functions to define a fuzzy decision model for generating an optimal solution for this problem. Solutions obtained by the fuzzy decision theory are always efficient and constitute the best compromise. (author)

  5. Using fuzzy rule-based knowledge model for optimum plating conditions search

    Science.gov (United States)

    Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.

    2018-03-01

    The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.

  6. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to

  7. A rule-based software test data generator

    Science.gov (United States)

    Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II

    1991-01-01

    Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.

  8. Neuro-fuzzy system modeling based on automatic fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    Yuangang TANG; Fuchun SUN; Zengqi SUN

    2005-01-01

    A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.

  9. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model

    Science.gov (United States)

    Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza

    2017-08-01

    Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

  10. Sliding mode fuzzy control for a once-through stream generator

    International Nuclear Information System (INIS)

    Zhang Guifeng; Shi Xiaocheng; Sun Tieli; Xiong Jinkui; Zhang Hongguo

    2007-01-01

    A once-through steam generator is important equipment in nuclear power plant, so its control level is high. A Sliding Mode Fuzzy Controller inherits the robustness property of Sliding Mode Control and the interpolation property of Fuzzy Logic Control. The robustness property of variable structure system makes the control system insensitive for different burthen variety and different outside disturbance. Fuzzy control predigests the device of control system and alleviates the chattering which variable structure system causes. So the control system can be made more ideal. The paper describes the design method of Sliding Mode Fuzzy Controller without its system model for a once-through steam generator. And the simulation results show that satisfying control results can be got. (authors)

  11. Fuzzy rule-based modelling for human health risk from naturally occurring radioactive materials in produced water

    International Nuclear Information System (INIS)

    Shakhawat, Chowdhury; Tahir, Husain; Neil, Bose

    2006-01-01

    Produced water, discharged from offshore oil and gas operations, contains chemicals from formation water, condensed water, and any chemical added down hole or during the oil/water separation process. Although, most of the contaminants fall below the detection limits within a short distance from the discharge port, a few of the remaining contaminants including naturally occurring radioactive materials (NORM) are of concern due to their bioavailability in the media and bioaccumulation characteristics in finfish and shellfish species used for human consumption. In the past, several initiatives have been taken to model human health risk from NORM in produced water. The parameters of the available risk assessment models are imprecise and sparse in nature. In this study, a fuzzy possibilistic evaluation using fuzzy rule based modeling has been presented. Being conservative in nature, the possibilistic approach considers possible input parameter values; thus provides better environmental prediction than the Monte Carlo (MC) calculation. The uncertainties of the input parameters were captured with fuzzy triangular membership functions (TFNs). Fuzzy if-then rules were applied for input concentrations of two isotopes of radium, namely 226 Ra, and 228 Ra, available in produced water and bulk dilution to evaluate the radium concentration in fish tissue used for human consumption. The bulk dilution was predicted using four input parameters: produced water discharge rate, ambient seawater velocity, depth of discharge port and density gradient. The evaluated cancer risk shows compliance with the regulatory guidelines; thus minimum risk to human health is expected from NORM components in produced water

  12. Diagnostics of D.C. Starter Generators While Using Fuzzy Logic Theory

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2011-01-01

    Full Text Available Methodology for sparking control in generator brush contact has been developed on the basis of the proposed fuzzy diagnostic model for ad.c.starter-generator and complex processing of diagnostic data. The paper provides investigation results, namely: dependence of voltage parameters  in an external generator circuit on collector sparking intensity.

  13. Generating Concise Rules for Human Motion Retrieval

    Science.gov (United States)

    Mukai, Tomohiko; Wakisaka, Ken-Ichi; Kuriyama, Shigeru

    This paper proposes a method for retrieving human motion data with concise retrieval rules based on the spatio-temporal features of motion appearance. Our method first converts motion clip into a form of clausal language that represents geometrical relations between body parts and their temporal relationship. A retrieval rule is then learned from the set of manually classified examples using inductive logic programming (ILP). ILP automatically discovers the essential rule in the same clausal form with a user-defined hypothesis-testing procedure. All motions are indexed using this clausal language, and the desired clips are retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable performance and the rule can be intuitively edited in the same language form. Consequently, our method enables efficient and flexible search from a large dataset with simple query language.

  14. An improved fuzzy synthetic condition assessment of a wind turbine generator system

    DEFF Research Database (Denmark)

    Li, H.; Hu, Y. G.; Yang, Chao

    2013-01-01

    This paper presents an improved fuzzy synthetic model that is based on a real-time condition assessment method of a grid-connected wind turbine generator system (WTGS) to improve the operational reliability and optimize the maintenance strategy. First, a condition assessment framework is proposed...... by analyzing the monitoring data of the WTGS. An improved fuzzy synthetic condition assessment method is then proposed that utilizes the concepts of deterioration degree, dynamic limited values and variable weight calculations of the assessment indices. Finally, by using on-line monitoring data of an actual...... 850 kW WTGS, real-time condition assessments are performed that utilize the proposed fuzzy synthetic method; the model’s effectiveness is also compared to a traditional fuzzy assessment method in which constant limited values and constant weights are adopted. The results show that the condition...

  15. Evolution of Collective Behaviour in an Artificial World Using Linguistic Fuzzy Rule-Based Systems.

    Directory of Open Access Journals (Sweden)

    Jure Demšar

    Full Text Available Collective behaviour is a fascinating and easily observable phenomenon, attractive to a wide range of researchers. In biology, computational models have been extensively used to investigate various properties of collective behaviour, such as: transfer of information across the group, benefits of grouping (defence against predation, foraging, group decision-making process, and group behaviour types. The question 'why,' however remains largely unanswered. Here the interest goes into which pressures led to the evolution of such behaviour, and evolutionary computational models have already been used to test various biological hypotheses. Most of these models use genetic algorithms to tune the parameters of previously presented non-evolutionary models, but very few attempt to evolve collective behaviour from scratch. Of these last, the successful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three classes of behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of behaviour.

  16. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    Science.gov (United States)

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  17. Simulation of operating rules and discretional decisions using a fuzzy rule-based system integrated into a water resources management model

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2013-04-01

    Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total

  18. Multi-stage fuzzy PID power system automatic generation controller in deregulated environments

    International Nuclear Information System (INIS)

    Shayeghi, H.; Shayanfar, H.A.; Jalili, A.

    2006-01-01

    In this paper, a multi-stage fuzzy proportional integral derivative (PID) type controller is proposed to solve the automatic generation control (AGC) problem in a deregulated power system that operates under deregulation based on the bilateral policy scheme. In each control area, the effects of the possible contracts are treated as a set of new input signals in a modified traditional dynamical model. The multi-stage controller uses the fuzzy switch to blend a proportional derivative (PD) fuzzy logic controller with an integral fuzzy logic input. The proposed controller operates on fuzzy values passing the consequence of a prior stage on to the next stage as fact. The salient advantage of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities. This newly developed strategy leads to a flexible controller with simple structure that is easy to implement, and therefore, it can be useful for the real world power systems. The proposed method is tested on a three area power system with different contracted scenarios under various operating conditions. The results of the proposed controller are compared with those of the classical fuzzy PID type controller and classical PID controller through some performance indices to illustrate its robust performance

  19. Automatic generation control of TCPS based hydrothermal system under open market scenario: A fuzzy logic approach

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C. Srinivasa [EEE Department, G. Pulla Reddy Engineering College, Kurnool, Andhra Pradesh (India); Nagaraju, S. Siva [EEE Department, J.N.T.U College of Engg., Kakinada, Andhra Pradesh (India); Raju, P. Sangameswara [EEE Department, S.V. University, Tirupati, Andhra Pradesh (India)

    2009-09-15

    This paper presents the analysis of automatic generation control of a two-area interconnected thyristor controlled phase shifter based hydrothermal system in the continuous mode using fuzzy logic controller under open market scenario. Open transmission access and the evolving of more socialized companies for generation, transmission and distribution affects the formulation of AGC problem. So the traditional AGC two-area system is modified to take into account the effect of bilateral contracts on the dynamics. It is possible to stabilize the system frequency and tie-power oscillations by controlling the phase angle of TCPS which is expected to provide a new ancillary service for the future power systems. A control strategy using TCPS is proposed to provide active control of system frequency. Further dynamic responses for small perturbation considering fuzzy logic controller and PI controller (dual mode controller) have been observed and the superior performance of fuzzy logic controller has been reported analytically and also through simulation. (author)

  20. Rule-based Test Generation with Mind Maps

    Directory of Open Access Journals (Sweden)

    Dimitry Polivaev

    2012-02-01

    Full Text Available This paper introduces basic concepts of rule based test generation with mind maps, and reports experiences learned from industrial application of this technique in the domain of smart card testing by Giesecke & Devrient GmbH over the last years. It describes the formalization of test selection criteria used by our test generator, our test generation architecture and test generation framework.

  1. Incremental Learning of Context Free Grammars by Parsing-Based Rule Generation and Rule Set Search

    Science.gov (United States)

    Nakamura, Katsuhiko; Hoshina, Akemi

    This paper discusses recent improvements and extensions in Synapse system for inductive inference of context free grammars (CFGs) from sample strings. Synapse uses incremental learning, rule generation based on bottom-up parsing, and the search for rule sets. The form of production rules in the previous system is extended from Revised Chomsky Normal Form A→βγ to Extended Chomsky Normal Form, which also includes A→B, where each of β and γ is either a terminal or nonterminal symbol. From the result of bottom-up parsing, a rule generation mechanism synthesizes minimum production rules required for parsing positive samples. Instead of inductive CYK algorithm in the previous version of Synapse, the improved version uses a novel rule generation method, called ``bridging,'' which bridges the lacked part of the derivation tree for the positive string. The improved version also employs a novel search strategy, called serial search in addition to minimum rule set search. The synthesis of grammars by the serial search is faster than the minimum set search in most cases. On the other hand, the size of the generated CFGs is generally larger than that by the minimum set search, and the system can find no appropriate grammar for some CFL by the serial search. The paper shows experimental results of incremental learning of several fundamental CFGs and compares the methods of rule generation and search strategies.

  2. Residual Generator Fuzzy Identification for Wind TurbineBenchmark Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Silvio Simani

    2014-11-01

    Full Text Available In order to improve the availability of wind turbines, thus improving theirefficiency, it is important to detect and isolate faults in their earlier occurrence. The mainproblem of model-based fault diagnosis applied to wind turbines is represented by thesystem complexity, as well as the reliability of the available measurements. In this work, adata-driven strategy relying on fuzzy models is presented, in order to build a fault diagnosissystem. Fuzzy theory jointly with the Frisch identification scheme for errors-in-variablemodels is exploited here, since it allows one to approximate unknown models and manageuncertain data. Moreover, the use of fuzzy models, which are directly identified from thewind turbine measurements, allows the design of the fault detection and isolation module.It is worth noting that, sometimes, the nonlinearity of a wind turbine system could lead toquite complex analytic solutions. However, IF-THEN fuzzy rules provide a simpler solution,important when on-line implementations have to be considered. The wind turbine benchmarkis used to validate the achieved performances of the suggested fault detection and isolationscheme. Finally, comparisons of the proposed methodology with respect to different faultdiagnosis methods serve to highlight the features of the suggested solution.

  3. Optimization of multi-reservoir operation with a new hedging rule: application of fuzzy set theory and NSGA-II

    Science.gov (United States)

    Ahmadianfar, Iman; Adib, Arash; Taghian, Mehrdad

    2017-10-01

    The reservoir hedging rule curves are used to avoid severe water shortage during drought periods. In this method reservoir storage is divided into several zones, wherein the rationing factors are changed immediately when water storage level moves from one zone to another. In the present study, a hedging rule with fuzzy rationing factors was applied for creating a transition zone in up and down each rule curve, and then the rationing factor will be changed in this zone gradually. For this propose, a monthly simulation model was developed and linked to the non-dominated sorting genetic algorithm for calculation of the modified shortage index of two objective functions involving water supply of minimum flow and agriculture demands in a long-term simulation period. Zohre multi-reservoir system in south Iran has been considered as a case study. The results of the proposed hedging rule have improved the long-term system performance from 10 till 27 percent in comparison with the simple hedging rule, where these results demonstrate that the fuzzification of hedging factors increase the applicability and the efficiency of the new hedging rule in comparison to the conventional rule curve for mitigating the water shortage problem.

  4. A new method for generating an invariant iris private key based on the fuzzy vault system.

    Science.gov (United States)

    Lee, Youn Joo; Park, Kang Ryoung; Lee, Sung Joo; Bae, Kwanghyuk; Kim, Jaihie

    2008-10-01

    Cryptographic systems have been widely used in many information security applications. One main challenge that these systems have faced has been how to protect private keys from attackers. Recently, biometric cryptosystems have been introduced as a reliable way of concealing private keys by using biometric data. A fuzzy vault refers to a biometric cryptosystem that can be used to effectively protect private keys and to release them only when legitimate users enter their biometric data. In biometric systems, a critical problem is storing biometric templates in a database. However, fuzzy vault systems do not need to directly store these templates since they are combined with private keys by using cryptography. Previous fuzzy vault systems were designed by using fingerprint, face, and so on. However, there has been no attempt to implement a fuzzy vault system that used an iris. In biometric applications, it is widely known that an iris can discriminate between persons better than other biometric modalities. In this paper, we propose a reliable fuzzy vault system based on local iris features. We extracted multiple iris features from multiple local regions in a given iris image, and the exact values of the unordered set were then produced using the clustering method. To align the iris templates with the new input iris data, a shift-matching technique was applied. Experimental results showed that 128-bit private keys were securely and robustly generated by using any given iris data without requiring prealignment.

  5. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Fuzzy possibilistic model for medium-term power generation planning with environmental criteria

    International Nuclear Information System (INIS)

    Muela, E.; Schweickardt, G.; Garces, F.

    2007-01-01

    The aim of this paper is to apply a fuzzy possibilistic model to the power generation planning that includes environmental criteria. Since it is not always meaningful to relate uncertainty to frequency, the proposed approach analyzes the imprecision and ambiguity into the decision making, especially when the system involves human subjectivity. This paper highlights the subjacent differences between fuzzy and possibilistic entities. Additionally, it illustrates the use of fuzzy sets theory and possibility theory for modeling flexibility, and nonprobablistic uncertainty, respectively. The necessity of a new direction for the environmental problem in a power system is outlined, an approach that attempts a greater integral quality of planning instead of searching for a simple optimal solution. This process must be consistent with a wider and more suitable interpretation about both the problem as such and the concept of solution in uncertain situations

  7. Conditioning of high voltage radio frequency cavities by using fuzzy logic in connection with rule based programming

    CERN Document Server

    Perréard, S

    1993-01-01

    Many processes are controlled by experts using some kind of mental model to decide actions and make conclusions. This model, based on heuristic knowledge, can often be conveniently represented in rules and has not to be particularly accurate. This is the case for the problem of conditioning high voltage radio-frequency cavities: the expert has to decide, by observing some criteria, if he can increase or if he has to decrease the voltage and by how much. A program has been implemented which can be applied to a class of similar problems. The kernel of the program is a small rule base, which is independent of the kind of cavity. To model a specific cavity, we use fuzzy logic which is implemented as a separate routine called by the rule base. We use fuzzy logic to translate from numeric to symbolic information. The example we chose for applying this kind of technique can be implemented by sequential programming. The two versions exist for comparison. However, we believe that this kind of programming can be powerf...

  8. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules.

    Science.gov (United States)

    Topuz, Emel; van Gestel, Cornelis A M

    2016-01-01

    The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Towards generating arcade game rules with VGDL

    DEFF Research Database (Denmark)

    Nielsen, Thorbjørn; A B Barros, Gabriella; Togelius, Julian

    2015-01-01

    to play better than bad players. For the purpose of such evaluations, we introduce two new game tree search algorithms, DeepSearch and Explorer; these perform very well on benchmark games and constitute a substantial subsidiary contribution of the paper. In the end, the attempt to generate arcade games...

  10. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    Directory of Open Access Journals (Sweden)

    J. S. Sathiyanarayanan

    2014-01-01

    Full Text Available Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG due to their advantages over other wind turbine generators (WTGs. Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  11. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    Science.gov (United States)

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  12. Fuzzy algorithms to generate level controllers for nuclear power plant steam generators

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Park, Jae Chang; Kim, Dong Hwa; Kim, Byung Koo

    1993-01-01

    In this paper, we present two sets of fuzzy algorithms for the steam generater level control; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used. (Author)

  13. Systematic generation of rules for nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Reifman, J.; Lee, J.C.

    1988-01-01

    The knowledge base of an expert system is generally represented by a set of heuristic rules derived from the expert's own experience and judgmental knowledge. These heuristic or production rules are cast as if (condition), then (consequence) statements, and represent, for nuclear power plant diagnostic systems, information connecting symptoms to failures. In this paper, the authors apply an entropy minimax pattern recognition algorithm to automate the process of extracting and encoding knowledge into a set of rules. Knowledge is extracted by recognizing patterns in plant parameters or symptoms associated with failures or transient events, and is encoded by casting the discovered patterns as production rules. The paper discusses how the proposed method can systematically generate rules that characterize failure of pressurizer components based on transient events analyzed with a pressurizer components based on transient events analyzed with a pressurizer water reactor simulator program

  14. Design of operating rules in complex water resources systems using historical records, expert criteria and fuzzy logic

    Science.gov (United States)

    Pulido-Velazquez, Manuel; Macian-Sorribes, Hector; María Benlliure-Moreno, Jose; Fullana-Montoro, Juan

    2015-04-01

    Water resources systems in areas with a strong tradition in water use are complex to manage by the high amount of constraints that overlap in time and space, creating a complicated framework in which past, present and future collide between them. In addition, it is usual to find "hidden constraints" in system operations, which condition operation decisions being unnoticed by anyone but the river managers and users. Being aware of those hidden constraints requires usually years of experience and a degree of involvement in that system's management operations normally beyond the possibilities of technicians. However, their impact in the management decisions is strongly imprinted in the historical data records available. The purpose of this contribution is to present a methodology capable of assessing operating rules in complex water resources systems combining historical records and expert criteria. Both sources are coupled using fuzzy logic. The procedure stages are: 1) organize expert-technicians preliminary meetings to let the first explain how they manage the system; 2) set up a fuzzy rule-based system (FRB) structure according to the way the system is managed; 3) use the historical records available to estimate the inputs' fuzzy numbers, to assign preliminary output values to the FRB rules and to train and validate these rules; 4) organize expert-technician meetings to discuss the rule structure and the input's quantification, returning if required to the second stage; 5) once the FRB structure is accepted, its output values must be refined and completed with the aid of the experts by using meetings, workshops or surveys; 6) combine the FRB with a Decision Support System (DSS) to simulate the effect of those management decisions; 7) compare its results with the ones offered by the historical records and/or simulation or optimization models; and 8) discuss with the stakeholders the model performance returning, if it's required, to the fifth or the second stage

  15. An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications.

    Science.gov (United States)

    d'Acierno, Antonio; Esposito, Massimo; De Pietro, Giuseppe

    2013-01-01

    The diagnosis of many diseases can be often formulated as a decision problem; uncertainty affects these problems so that many computerized Diagnostic Decision Support Systems (in the following, DDSSs) have been developed to aid the physician in interpreting clinical data and thus to improve the quality of the whole process. Fuzzy logic, a well established attempt at the formalization and mechanization of human capabilities in reasoning and deciding with noisy information, can be profitably used. Recently, we informally proposed a general methodology to automatically build DDSSs on the top of fuzzy knowledge extracted from data. We carefully refine and formalize our methodology that includes six stages, where the first three stages work with crisp rules, whereas the last three ones are employed on fuzzy models. Its strength relies on its generality and modularity since it supports the integration of alternative techniques in each of its stages. The methodology is designed and implemented in the form of a modular and portable software architecture according to a component-based approach. The architecture is deeply described and a summary inspection of the main components in terms of UML diagrams is outlined as well. A first implementation of the architecture has been then realized in Java following the object-oriented paradigm and used to instantiate a DDSS example aimed at accurately diagnosing breast masses as a proof of concept. The results prove the feasibility of the whole methodology implemented in terms of the architecture proposed.

  16. Automatic two- and three-dimensional mesh generation based on fuzzy knowledge processing

    Science.gov (United States)

    Yagawa, G.; Yoshimura, S.; Soneda, N.; Nakao, K.

    1992-09-01

    This paper describes the development of a novel automatic FEM mesh generation algorithm based on the fuzzy knowledge processing technique. A number of local nodal patterns are stored in a nodal pattern database of the mesh generation system. These nodal patterns are determined a priori based on certain theories or past experience of experts of FEM analyses. For example, such human experts can determine certain nodal patterns suitable for stress concentration analyses of cracks, corners, holes and so on. Each nodal pattern possesses a membership function and a procedure of node placement according to this function. In the cases of the nodal patterns for stress concentration regions, the membership function which is utilized in the fuzzy knowledge processing has two meanings, i.e. the “closeness” of nodal location to each stress concentration field as well as “nodal density”. This is attributed to the fact that a denser nodal pattern is required near a stress concentration field. What a user has to do in a practical mesh generation process are to choose several local nodal patterns properly and to designate the maximum nodal density of each pattern. After those simple operations by the user, the system places the chosen nodal patterns automatically in an analysis domain and on its boundary, and connects them smoothly by the fuzzy knowledge processing technique. Then triangular or tetrahedral elements are generated by means of the advancing front method. The key issue of the present algorithm is an easy control of complex two- or three-dimensional nodal density distribution by means of the fuzzy knowledge processing technique. To demonstrate fundamental performances of the present algorithm, a prototype system was constructed with one of object-oriented languages, Smalltalk-80 on a 32-bit microcomputer, Macintosh II. The mesh generation of several two- and three-dimensional domains with cracks, holes and junctions was presented as examples.

  17. Automatically generating Feynman rules for improved lattice field theories

    International Nuclear Information System (INIS)

    Hart, A.; Hippel, G.M. von; Horgan, R.R.; Storoni, L.C.

    2005-01-01

    Deriving the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially when improvement terms are present. This physically important task is, however, suitable for automation. We describe a flexible algorithm for generating Feynman rules for a wide range of lattice field theories including gluons, relativistic fermions and heavy quarks. We also present an efficient implementation of this in a freely available, multi-platform programming language (PYTHON), optimised to deal with a wide class of lattice field theories

  18. On the application of bezier surfaces for GA-Fuzzy controller design for use in automatic generation control

    CSIR Research Space (South Africa)

    Boesack, CD

    2012-03-01

    Full Text Available Automatic Generation Control (AGC) of large interconnected power systems are typically controlled by a PI or PID type control law. Recently intelligent control techniques such as GA-Fuzzy controllers have been widely applied within the power...

  19. D-FLER - A Distributed Fuzzy Logic Engine for Rule-Based Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Mihai; Havinga, Paul J.M.

    2007-01-01

    We propose D-FLER, a distributed, general-purpose reasoning engine for WSN. D-FLER uses fuzzy logic for fusing individual and neighborhood observations, in order to produce a more accurate and reliable result. Thorough simulation, we evaluate D-FLER in a fire-detection scenario, using both fire and

  20. D-FLER: A Distributed Fuzzy Logic Engine for Rule-based Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Mihai; Havinga, Paul J.M.

    2007-01-01

    We propose D-FLER, a distributed, general-purpose reasoning engine for WSN. D-FLER uses fuzzy logic for fusing individual and neighborhood observations, in order to produce a more accurate and reliable result. Thorough simulation, we evaluate D-FLER in a fire-detection scenario, using both fire and

  1. Development of a controller based on Fuzzy theory to better use the energy of a hybrid system power generation solar-photovoltaic and wind; Desenvolvimento de um controlador baseado na teoria Fuzzy para melhor aproveitamento da energia de um sistema hibrido de geracao de energia solar-fotovoltaico e eolico

    Energy Technology Data Exchange (ETDEWEB)

    Caneppele, Fernando de Lima [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Gabriel Filho, Luis Roberto de Almeida [Universidade Estadual Paulista (UNESP), Tupa, SP (Brazil). Campus Experimental

    2010-07-01

    The work developed a methodology fuzzy and simulated its use in control of a hybrid system of electric power generation, using solar-photovoltaic and wind energy. Using this control system, we get the point of maximum energy generation and transfer all the energy generated from alternative sources, solar-photovoltaic and wind energy to charge and / or batteries. The model uses three input variables, which are: wind (wind speed), sun (solar radiation) and batteries (charge the battery bank). With these variables, the fuzzy system will play, according to the rules to be described, what is the source of power supply system, which will have priority and how the batteries are loaded. For the simulations regarding the use of fuzzy theory to control, we used the scientific computing environment MATLAB. In this environment have been analyzed and simulated all mathematical modeling, rules and other variables described in the fuzzy system. This model can be applied to implement a control system of hybrid power generation, providing the best use of renewable energy, solar and wind, so that we can extract the maximum possible energy of these alternative sources without compromising the environment. (author)

  2. Using neuro-fuzzy based approach for the evaluation of turbine-generator outputs

    International Nuclear Information System (INIS)

    Chan, Y. K.; Lu, C. C.; Chang, C. J.; Kao, L.; Hong, L. C.

    2010-01-01

    The objective of this study is to develop a hybrid soft-computing modeling technique used to develop the steam turbine cycle model for Chinshan Nuclear Power Station (CNPS). The technique uses neuro-fuzzy model to predict the turbine-generator output. Firstly, the station past three fuel cycles operating data above 95% load were collected and validated as the baseline performance data set. Then, the signal errors for new operating data were detected by comparison with the baseline data set and their allowable range of variations. Finally, the most important parameters were selected as an input of the neuro-fuzzy based steam turbine cycle model. After training and testing with key parameters including throttle pressure, condenser back pressure, feedwater mass flow, and final feedwater temperature, the proposed model can be applied to predict the turbine-generator output. The analysis results show this neuro-fuzzy based turbine cycle model can be used to predict the generator output with a good agreement. Moreover, the achievement of this study provides an alternative approach in thermal performance evaluation for nuclear power stations. (authors)

  3. Analysis of Solar Energy Generation Capacity Using Hesitant Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Veysel Coban

    2017-01-01

    Full Text Available Solar energy is an important and reliable source of energy. Better understanding the concepts and relationships of the factors that affect solar energy generation capacity can enhance the usage of solar energy. This understanding can lead investors and governors in their solar power investments. However, solar power generation process is complicated, and the relations among the factors are vague and hesitant. In this paper, a hesitant fuzzy cognitive map for solar energy generation is developed and used for modeling and analyzing the ambiguous relations. The concepts and the relationships among them are defined by using expertsr opinions. Different scenarios are formed and evaluated with the proposed model.

  4. A neural model of rule generation in inductive reasoning.

    Science.gov (United States)

    Rasmussen, Daniel; Eliasmith, Chris

    2011-01-01

    Inductive reasoning is a fundamental and complex aspect of human intelligence. In particular, how do subjects, given a set of particular examples, generate general descriptions of the rules governing that set? We present a biologically plausible method for accomplishing this task and implement it in a spiking neuron model. We demonstrate the success of this model by applying it to the problem domain of Raven's Progressive Matrices, a widely used tool in the field of intelligence testing. The model is able to generate the rules necessary to correctly solve Raven's items, as well as recreate many of the experimental effects observed in human subjects. Copyright © 2011 Cognitive Science Society, Inc.

  5. A study on the development of the on-line operator aid system using rule based expert system and fuzzy logic for nuclear power plants

    International Nuclear Information System (INIS)

    Kang, Ki Sig

    1995-02-01

    The on - line Operator Aid SYStem (OASYS) has been developed to support operator's decision making process and to ensure the safety of nuclear power plants (NPPs) by timely providing operators with proper guidelines according to the plant operation mode. The OASYS consists of four systems such as the signal validation and management system (SVMS), the plant monitoring system (PMS), the alarm filtering and diagnostic system (AFDS), and the dynamic emergency procedure tracking system (DEPTS). The SVMS and the PMS help operators to maintain a plant as a normal operation condition. The AFDS covers the abnormal events until they result in exceeding the limit range of reactor trip signals, while after a reactor trip, the DEPTS aids operators with proper guidelines so as to shutdown safely. The OASYS uses a rule based expert system and a fuzzy logic. The rule based expert system is used to classify the pre-defined events and track the emergency operating procedures (EOPs) through data processing. The fuzzy logic is used to generate the conceptual high level alarms for the prognostic diagnosis and to evaluate the qualitative fuzzy criteria used in EOPs. Performance assessment of the OASYS demonstrates that it is capable of diagnosing plant abnormal conditions and providing operators appropriate guidelines with fast response time and consistency. The developed technology for OASYS will be used to design the Integrated Advanced Control Room in which a plant can be operated by one operator during normal operation. The advanced EOP for emergency operation has been developed by focusing attention on the importance of the operators' role in emergency conditions. To overcome the complexity of current EOPs and maintain the consistency of operators' action according to plant emergency conditions, operator's tasks were allocated according to their duties in the advanced EOP and the computerized operator aid system (COAS) has been developed as an alternative to reduce operator

  6. A fuzzy rule base for the control of a nuclear reactor

    International Nuclear Information System (INIS)

    Si-Fodil, M.; Guely, F.; Siarry, P.; Tyran, J.L.

    1998-01-01

    This paper presents the development of a real time fuzzy controller for the power axial-offset and the R control rods insertion in a pressurized water reactor (PWR). Fundamentally two parameters are concerned by this task : the power axial-offset and rods position. The focus of this study is the automation of the control of the power axial-offset by adding soluble boron, and by minimizing the flows through the water pump. Water or boron is injected into the reactor. It is also important to take into consideration the liquid waste volume. Our aim is to run the fuzzy controller at least as efficient as an expert operator. The system has been implemented in simulation using the Matlab-Simulink on a Sun workstation. (authors)

  7. Extraction of Fuzzy Logic Rules from Data by Means of Artificial Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin

    2005-01-01

    Roč. 41, č. 3 (2005), s. 297-314 ISSN 0023-5954 R&D Projects: GA AV ČR IAA1030004 Institutional research plan: CEZ:AV0Z10300504 Keywords : knowledge extraction from data * artificial neural networks * fuzzy logic * Lukasiewicz logic * disjunctive normal form Subject RIV: BA - General Mathematics Impact factor: 0.343, year: 2005 http://dml.cz/handle/10338.dmlcz/135657

  8. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    Science.gov (United States)

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  9. Rule-based Mamdani-type fuzzy modelling of thermal performance of fintube evaporator under frost conditions

    Directory of Open Access Journals (Sweden)

    Ozen Dilek Nur

    2016-01-01

    Full Text Available Frost formation brings about insulating effects over the surface of a heat exchanger and thereby deteriorating total heat transfer of the heat exchanger. In this study, a fin-tube evaporator is modeled by making use of Rule-based Mamdani-Type Fuzzy (RBMTF logic where total heat transfer, air inlet temperature of 2 °C to 7 °C and four different fluid speed groups (ua1=1; 1.44; 1.88 m s-1, ua2=2.32; 2.76 m s-1, ua3=3.2; 3.64 m s-1, ua4=4.08; 4.52; 4.96 m s-1 for the evaporator were taken into consideration. In the developed RBMTF system, outlet parameter UA was determined using inlet parameters Ta and ua. The RBMTF was trained and tested by using MATLAB® fuzzy logic toolbox. R2 (% for the training data and test data were found to be 99.91%. With this study, it has been shown that RBMTF model can be reliably used in determination of a total heat transfer of a fin-tube evaporator.

  10. A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system

    Directory of Open Access Journals (Sweden)

    Hamid Reza Marateb

    2015-01-01

    Full Text Available Background: Coronary heart diseases/coronary artery diseases (CHDs/CAD, the most common form of cardiovascular disease (CVD, are a major cause for death and disability in developing/developed countries. CAD risk factors could be detected by physicians to prevent the CAD occurrence in the near future. Invasive coronary angiography, a current diagnosis method, is costly and associated with morbidity and mortality in CAD patients. The aim of this study was to design a computer-based noninvasive CAD diagnosis system with clinically interpretable rules. Materials and Methods: In this study, the Cleveland CAD dataset from the University of California UCI (Irvine was used. The interval-scale variables were discretized, with cut points taken from the literature. A fuzzy rule-based system was then formulated based on a neuro-fuzzy classifier (NFC whose learning procedure was speeded up by the scaled conjugate gradient algorithm. Two feature selection (FS methods, multiple logistic regression (MLR and sequential FS, were used to reduce the required attributes. The performance of the NFC (without/with FS was then assessed in a hold-out validation framework. Further cross-validation was performed on the best classifier. Results: In this dataset, 16 complete attributes along with the binary CHD diagnosis (gold standard for 272 subjects (68% male were analyzed. MLR + NFC showed the best performance. Its overall sensitivity, specificity, accuracy, type I error (α and statistical power were 79%, 89%, 84%, 0.1 and 79%, respectively. The selected features were "age and ST/heart rate slope categories," "exercise-induced angina status," fluoroscopy, and thallium-201 stress scintigraphy results. Conclusion: The proposed method showed "substantial agreement" with the gold standard. This algorithm is thus, a promising tool for screening CAD patients.

  11. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  12. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  13. Developing a fuzzy rule based cognitive map for total system safety assessment

    International Nuclear Information System (INIS)

    Lemos, Francisco Luiz de; Sullivan, Terry

    2007-01-01

    Total System Performance Assessment, TSPA, for radioactive waste disposal is a multi and interdisciplinary task that is characterized by complex interactions between parameters and processes; lack of data; and ignorance regarding natural processes and conditions. The vagueness in the determination of ranges of values of parameters and identification of interacting processes pose further difficulties to the analysts with regard to the establishment of the relations between processes and parameters. More specifically the vagueness makes uncertainty propagation and sensitivity analysis challenging to analyze. To cope with these difficulties experts often use simplifications and linguistic terms to express their state of knowledge about a certain situation. For example, experts use terms such as 'low pH', 'very unlikely', etc to describe their perception about natural processes or conditions. In this work we propose the use of Fuzzy Cognitive Maps, FCM, for representation of interrelation between processes and parameters as well as to promote a better understanding of the system performance. Fuzzy cognitive maps are suited for the case where the causal relations are not clearly defined and, therefore, can not be represented by crisp values. In other words, instead of representing the quality of the interactions by crisp values, they are assigned degrees of truth. For example, we can assign values to the effect of one process on another such that (+) 1 corresponds to positive, (-) 1 to negative and 0 to neutral effects respectively. In this case the effect of a process A, on a process, B, can be depicted as function of the membership to the fuzzy set 'causal effect' of the cause process to the target one. One of the main advantages of this methodology would be that it allows one to aggregate the linguistic expressions as descriptions of processes. For example, a process can be known to have a 'very strong' positive effect on another one, or using fuzzy sets terminology

  14. Fuzzy rule-based model for optimum orientation of solar panels using satellite image processing

    International Nuclear Information System (INIS)

    Zaher, A; Thiery, F; Grieu, S; Traoré, A; N’goran, Y

    2017-01-01

    In solar energy converting systems, a particular attention is paid to the orientation of solar collectors in order to optimize the overall system efficiency. In this context, the collectors can be fixed or oriented by a continuous solar tracking system. The proposed approach is based on METEOSAT images processing in order to detect the cloud coverage and its duration. These two parameters are treated by a fuzzy inference system deciding the optimal position of the solar panel. In fact, three weather cases can be considered: clear, partly covered or overcast sky. In the first case, the direct sunlight is more important than the diffuse radiation, thus the panel is always pointed towards the sun. In the overcast case, the solar beam is close to zero and the panel is placed horizontally to receive the diffuse radiation. Under partly covered conditions, the fuzzy inference system decides which of the previous positions is more efficient. The proposed approach is implemented using experimental prototype located in Perpignan (France). On a period of 17 months, the results are very satisfactory, with power gains of up to 23 % compared to the collectors oriented by a continuous solar tracking. (paper)

  15. Fuzzy controller of speed-power of a synchronous micro generator; Controlador difuso de velocidad-potencia de un microgenerador sincrono

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Alvarado, Raziel

    2002-11-01

    This thesis shows the design and implementation of a speed-power fuzzy-logic controller. The controller implementation was carried out on the Schrage motor-synchronous generator set. The synchronous alternator is rated 7 kVA, 220 V, 1800 rpm, 60 Hz. Two PI like fuzzy-logic controllers were developed with 9 and 25 rules. The controllers use the speed or power error and its integral as input variables and as an output the control signal from the brush-positioner of the Schrage motor. At the controller design stage, the anfis (adaptive-network-based fuzzy inference system) learning and structure procedure was used for tuning up parameters of the membership functions used on the designed fuzzy controllers. These controllers are first-order Sugeno-type. The designed controllers were tested on the motor-generator set under loaded and no-loaded conditions. It was found that PI-9 rules fuzzy-logic controller had better performance on both operating conditions. [Spanish] En este trabajo de tesis se presenta el diseno e implementacion de un controlador difuso de velocidad-potencia, para un grupo motor Schrage-generador sincrono de 7 kVA, 220 V, 1800 rpm, 60 Hz. Se implementaron controladores difusos del tipo PI de 9 y 25 reglas. Estos controladores utilizan como variables de entrada el error y la integral del error, de velocidad o potencia segun corresponda, y como variable de salida la senal de control del posicionador de las escobillas del motor Schrage. En la etapa de diseno de los controladores, se utilizo la estructura y el procedimiento de aprendizaje anfis (Sistema de Inferencia Difuso Basado en Redes Adaptables, por sus siglas en ingles) para sintonizar los parametros de las funciones de membresia de los controladores difusos, los cuales son del tipo Sugeno de primer orden. Con la finalidad de validar los controladores disenados, se realizaron pruebas experimentales al grupo motor-generador en condiciones de vacio y carga. Se encontro que el controlador difuso tipo

  16. Hybrid neuro-fuzzy system for power generation control with environmental constraints

    International Nuclear Information System (INIS)

    Chaturvedi, Krishna Teerth; Pandit, Manjaree; Srivastava, Laxmi

    2008-01-01

    The real time controls at the central energy management centre in a power system, continuously track the load changes and endeavor to match the total power demand with total generation in such a manner that the operating cost is least. However due to the strict government regulations on environmental protection, operation at minimum cost is no longer the only criterion for dispatching electrical power. The idea behind the environmentally constrained combined economic dispatch formulation is to estimate the optimal generation allocation to generating units in such a manner that fuel cost and harmful emission levels are both simultaneously minimized for a given load demand. Conventional optimization techniques are cumbersome for such complex optimization tasks and are not suitable for on-line use due to increased computational burden. This paper proposes a neuro-fuzzy power dispatch method where the uncertainty involved with power demand is modeled as a fuzzy variable. Then Levenberg-Marquardt neural network (LMNN) is used to evaluate the optimal generation schedules. This model trains almost hundred times faster that the popular BP neural network. The proposed method has been tested on two test systems and found to be suitable for on-line combined environmental economic dispatch

  17. Forecasting the Stock Market with Linguistic Rules Generated from the Minimize Entropy Principle and the Cumulative Probability Distribution Approaches

    Directory of Open Access Journals (Sweden)

    Chung-Ho Su

    2010-12-01

    Full Text Available To forecast a complex and non-linear system, such as a stock market, advanced artificial intelligence algorithms, like neural networks (NNs and genetic algorithms (GAs have been proposed as new approaches. However, for the average stock investor, two major disadvantages are argued against these advanced algorithms: (1 the rules generated by NNs and GAs are difficult to apply in investment decisions; and (2 the time complexity of the algorithms to produce forecasting outcomes is very high. Therefore, to provide understandable rules for investors and to reduce the time complexity of forecasting algorithms, this paper proposes a novel model for the forecasting process, which combines two granulating methods (the minimize entropy principle approach and the cumulative probability distribution approach and a rough set algorithm. The model verification demonstrates that the proposed model surpasses the three listed conventional fuzzy time-series models and a multiple regression model (MLR in forecast accuracy.

  18. Fuzzy Logic based Coordinated Control of Battery Energy Storage System and Dispatchable Distributed Generation for Microgrid

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Chengshan

    2015-01-01

    Microgrid is an efficient solution to integraterenewable energy sources (RES) into power systems. Inorder to deal with the intermittent characteristics of therenewable energy based distributed generation (DG) units,a fuzzy-logic based coordinated control strategy of thebattery energy storage system...... (BESS) and dispatchableDG units is proposed in this paper for the microgridmanagement system (MMS). In the proposed coordinatedcontrol strategy, the BESS is used to mitigate the activepower exchange at the point of common coupling of themicrogrid for the grid-connected operation, and is used forthe...... frequency control for the island operation. Theeffectiveness of the proposed control strategy was verifiedby case studies using DIgSILENT/PowerFactroy....

  19. Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2012-01-01

    determination, self-tuning FLC for speed control, and a current controller. The turn-on and turn-off angle determination, as its name implies, controls the turn-on and turn-off angles of power switches to improve the efficiency and torque regulation of the SRG. The self-tuning FLC is the speed controller which......This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition...

  20. Formulation of the verbal thought process based on generative rules

    Energy Technology Data Exchange (ETDEWEB)

    Suehiro, N; Fujisaki, H

    1984-01-01

    As assumption is made on the generative nature of the verbal thought process, based on an analogy between language use and verbal thought. A procedure is then presented for acquiring the set of generative rules from a given set of concept strings, leading to an efficient representation of verbal knowledge. The non-terminal symbols derived in the acquisition process are found to correspond to concepts and superordinate concepts in the human process of verbal thought. The validity of the formulation and the efficiency of knowledge representation is demonstrated by an example in which knowledge of biological properties of animals is reorganized into a set of generative rules. The process of inductive inference is then defined as a generalization of the acquired knowledge, and the principle of maximum simplicity of rules is proposed as a possible criterion for such generalization. The proposal is also tested by an example in which only a small part of a systematic body of knowledge is utilized to make interferences on the unknown parts of the system. 6 references.

  1. The first order fuzzy predicate logic (I)

    International Nuclear Information System (INIS)

    Sheng, Y.M.

    1986-01-01

    Some analysis tools of fuzzy measures, Sugeno's integrals, etc. are introduced into the semantic of the first order predicate logic to explain the concept of fuzzy quantifiers. The truth value of a fuzzy quantification proposition is represented by Sugeno's integral. With this framework, several important notions of formation rules, fuzzy valutions and fuzzy validity are discussed

  2. Fuzzy Models to Deal with Sensory Data in Food Industry

    Institute of Scientific and Technical Information of China (English)

    Serge Guillaume; Brigitte Charnomordic

    2004-01-01

    Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fuzzy reasoning rules from data including numerical and symbolic or sensory variables. We briefly present an induction method that was developed to extract qualitative knowledge from data samples. The induction process is run under interpretability constraints to ensure the fuzzy rules have a meaning for the human expert. We then study two applied problems in the food industry: sensory evaluation and process modeling.

  3. Fuzzy Rough Ring and Its Prop erties

    Institute of Scientific and Technical Information of China (English)

    REN Bi-jun; FU Yan-ling

    2013-01-01

    This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binary operation of ring was discussed.

  4. Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nuclear power plant

    Directory of Open Access Journals (Sweden)

    Puchalski Bartosz

    2015-12-01

    Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.

  5. Habitat modeling for brown trout population in alpine region of Slovenia with focus on determination of preference functions, fuzzy rules and fuzzy sets

    Science.gov (United States)

    Santl, Saso; Carf, Masa; Preseren, Tanja; Jenic, Aljaz

    2013-04-01

    and hydro morphological types of streams. Therefore, if habitat modeling for brown trout in Slovenia should be applied, it is necessary to determine preference requirements for the locally present brown trout populations. For efficient determination of applied preference functions and linked fuzzy sets/rules, beside expert determination, calibration according to field sampling must also be performed. After this final step a model is prepared for the analysis to support decision making in the field of environmental flow and other mitigation measures determination.

  6. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model

    International Nuclear Information System (INIS)

    Galdi, V.; Piccolo, A.; Siano, P.

    2009-01-01

    Nowadays, incentives and financing options for developing renewable energy facilities and the new development in variable speed wind technology make wind energy a competitive source if compared with conventional generation ones. In order to improve the effectiveness of variable speed wind systems, adaptive control systems able to cope with time variances of the system under control are necessary. On these basis, a data driven designing methodology for TSK fuzzy models design is presented in this paper. The methodology, on the basis of given input-output numerical data, generates the 'best' TSK fuzzy model able to estimate with high accuracy the maximum extractable power from a variable speed wind turbine. The design methodology is based on fuzzy clustering methods for partitioning the input-output space combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation

  7. Implementasi Rule Base System dan Fuzzy Logic Artifical Intelligence pada Game Kartu Capsa

    OpenAIRE

    Pangkatodi, Edo; Liliana, Liliana; Budhi, Gregorius Satia

    2016-01-01

    In the era of globalization today, science and technology is developing very fast, particularly in entertainment media, specifically in the gaming world. Today, games are not only used as an entertainment, but also can be used as an alternative in the world of work, education, and even sports. In the world of gaming, artificial intelligence, or AI is a factor that cannot be separated. With the right methods and the specific rules of the AI can walk like a human being doing a job. So it is not...

  8. Fuzzy inference system for evaluating and improving nuclear power plant operating performance

    International Nuclear Information System (INIS)

    Guimaraes, Antonio Cesar F.; Lapa, Celso Marcelo Franklin

    2003-01-01

    This paper presents a fuzzy inference system (FIS) as an approach to estimate Nuclear Power Plant (NPP) performance indicators. The performance indicators for this study are the energy availability factor (EAF) and the planned (PUF) and unplanned unavailability factor (UUF). These indicators are obtained from a non analytical combination among the same operational parameters. Such parameters are, for example, environment impacts, industrial safety, radiological protection, safety indicators, scram rate, thermal efficiency, and fuel reliability. This approach uses the concept of a pure fuzzy logic system where the fuzzy rule base consists of a collection of fuzzy IF-THEN rules. The fuzzy inference engine uses these fuzzy IF-THEN rules to determine a mapping from fuzzy sets in the input universe of discourse to fuzzy sets in the output universe of discourse based on fuzzy logic principles. The results demonstrated the potential of the fuzzy inference to generate a knowledge basis that correlate operations occurrences and NPP performance. The inference system became possible the development of the sensitivity studies, future operational condition previsions and may support the eventual corrections on operation of the plant

  9. Automatic Laser Pointer Detection Algorithm for Environment Control Device Systems Based on Template Matching and Genetic Tuning of Fuzzy Rule-Based Systems

    Directory of Open Access Journals (Sweden)

    F.

    2012-04-01

    Full Text Available In this paper we propose a new approach for laser-based environment device control systems based on the automatic design of a Fuzzy Rule-Based System for laser pointer detection. The idea is to improve the success rate of the previous approaches decreasing as much as possible the false offs and increasing the success rate in images with laser spot, i.e., the detection of a false laser spot (since this could lead to dangerous situations. To this end, we propose to analyze both, the morphology and color of a laser spot image together, thus developing a new robust algorithm. Genetic Fuzzy Systems have also been employed to improve the laser spot system detection by means of a fine tuning of the involved membership functions thus reducing the system false offs, which is the main objective in this problem. The system presented in this paper, makes use of a Fuzzy Rule-Based System adjusted by a Genetic Algorithm, which, based on laser morphology and color analysis, shows a better success rate than previous approaches.

  10. The fundamentals of fuzzy neural network and application in nuclear monitoring

    International Nuclear Information System (INIS)

    Feng Diqing; Lei Ming

    1995-01-01

    The authors presents a fuzzy modeling method using fuzzy neural network with the back-propagation algorithm. The new method can identify the fuzzy model of a nonlinear system automatically. Fuzzy neural network is used to generate fuzzy rules and membership functions. The feasibility and inferential statistic of the method is examined by using numerical data and XOR problem. The FNN improves accuracy and reliability, reduces design time and minimizes system cost of fuzzy design. The FNN can be used for estimation of human injury in nuclear explosions and can be simplified to a rule neural network (RNN), which is used for pole extraction of signal. Preliminary simulation show that FNN has vest vistas in nuclear monitoring

  11. The fundamental of fuzzy neutral network and application in nuclear monitoring

    International Nuclear Information System (INIS)

    Feng Diqing; Lei Ming

    1996-01-01

    The authors present a fuzzy modeling method using fuzzy neural network with the back-propagation algorithm. The new method can identify the fuzzy model of a nonlinear system automatically. Fuzzy neural network is used to generate fuzzy rules and membership functions. The feasibility and inferential statistics of the method is examined by using numerical data and XOR problem. As an experimental result, the FNN improves accuracy and reliability, saves design time and minimizes system cost of fuzzy design. The FNN can be used for estimation of human injury in nuclear explosions and can be simplified to a rule neural network (RNN), which is used for pole extraction of signal. Preliminary simulation shows that FNN has vast vistas in nuclear monitoring

  12. A fuzzy behaviorist approach to sensor-based robot control

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  13. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  14. A study on the optimal fuel loading pattern design in pressurized water reactors using the artificial neural network and the fuzzy rule based system

    International Nuclear Information System (INIS)

    Kim, Han Gon

    1993-02-01

    In pressurized water reactors, the fuel reloading problem has significant meaning in terms of both safety and economic aspects. Therefore the general problem of incore fuel management for a PWR consists of determining the fuel reloading policy for each cycle that minimize unit energy cost under the constraints imposed on various core parameters, e.g., a local power peaking factor and an assembly burnup. This is equivalent that a cycle length is maximized for a given energy cost under the various constraints. Existing optimization methods do not ensure the global optimum solution because of the essential limitation of their searching algorithms. They only find near optimal solutions. To solve this limitation, a hybrid artificial neural network system is developed for the optimal fuel loading pattern design using a fuzzy rule based system and an artificial neural networks. This system finds the patterns that P max is lower than the predetermined value and K eff is larger than the reference value. The back-propagation networks are developed to predict PWR core parameters. Reference PWR is an 121-assembly typical PWR. The local power peaking factor and the effective multiplication factor at BOC condition are predicted. To obtain target values of these two parameters, the QCC code are used. Using this code, 1000 training patterns are obtained, randomly. Two networks are constructed, one for P max and another for K eff Both of two networks have 21 input layer neurons, 18 output layer neurons, and 120 and 393 hidden layer neurons, respectively. A new learning algorithm is proposed. This is called the advanced adaptive learning algorithm. The weight change step size of this algorithm is optimally varied inversely proportional to the average difference between an actual output value and an ideal target value. This algorithm greatly enhances the convergence speed of a BPN. In case of P max prediction, 98% of the untrained patterns are predicted within 6% error, and in case

  15. Fuzzy social choice theory

    CERN Document Server

    B Gibilisco, Michael; E Albert, Karen; N Mordeson, John; J Wierman, Mark; D Clark, Terry

    2014-01-01

    This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem;  the Gibbard-Satterthwaite theorem; and the median voter theorem.  After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a so...

  16. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  17. Fuzzy Control Tutorial

    DEFF Research Database (Denmark)

    Dotoli, M.; Jantzen, Jan

    1999-01-01

    The tutorial concerns automatic control of an inverted pendulum, especially rule based control by means of fuzzy logic. A ball balancer, implemented in a software simulator in Matlab, is used as a practical case study. The objectives of the tutorial are to teach the basics of fuzzy control......, and to show how to apply fuzzy logic in automatic control. The tutorial is distance learning, where students interact one-to-one with the teacher using e-mail....

  18. FUZZY INFERENCE SYSTEM MODELING FOR BED ACTIVE CARBON RE-GENERATION PROCESS (CO2 GAS FACTORY CASE

    Directory of Open Access Journals (Sweden)

    S. Febriana

    2005-01-01

    Full Text Available Bed active carbon is one of the most important materials that had great impact in determining level of impurities in production of CO2 gas. In this particular factory case, there is unavailability of standard duration time of heating and cooling and steam flow rate for the re-generation process of bed active carbon. The paper discusses the fuzzy inference system for modeling of re-generation process of bed active carbon to find the optimum setting parameter. The fuzzy inference system was build using real historical daily processing data. After validation process, surface plot analysis was performed to find the optimum setting. The result of re-generation parameter setting is 9-10 hours of heating process, 4.66-5.32 hours of cooling process, and 1500-2500 kg/hr of steam flow rate.

  19. An Adaptive Neuro-Fuzzy Inference System for Sea Level Prediction Considering Tide-Generating Forces and Oceanic Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Li-Ching Lin Hsien-Kuo Chang

    2008-01-01

    Full Text Available The paper presents an adaptive neuro fuzzy inference system for predicting sea level considering tide-generating forces and oceanic thermal expansion assuming a model of sea level dependence on sea surface temperature. The proposed model named TGFT-FN (Tide-Generating Forces considering sea surface Temperature and Fuzzy Neuro-network system is applied to predict tides at five tide gauge sites located in Taiwan and has the root mean square of error of about 7.3 - 15.0 cm. The capability of TGFT-FN model is superior in sea level prediction than the previous TGF-NN model developed by Chang and Lin (2006 that considers the tide-generating forces only. The TGFT-FN model is employed to train and predict the sea level of Hua-Lien station, and is also appropriate for the same prediction at the tide gauge sites next to Hua-Lien station.

  20. An optimized Fuzzy Logic Controller by Water Cycle Algorithm for power management of Stand-alone Hybrid Green Power generation

    International Nuclear Information System (INIS)

    Sarvi, Mohammad; Avanaki, Isa Nasiri

    2015-01-01

    Highlights: • A new method to improve the performance of renewable power management is proposed. • The proposed method is based on Fuzzy Logic optimized by the Water Cycle Algorithm. • The proposed method characteristics are compared with two other methods. • The comparisons confirm that the proposed method is robust and effectiveness one. - Abstract: This paper aims to improve the power management system of a Stand-alone Hybrid Green Power generation based on the Fuzzy Logic Controller optimized by the Water Cycle Algorithm. The proposed Stand-alone Hybrid Green Power consists of wind energy conversion and photovoltaic systems as primary power sources and a battery, fuel cell, and Electrolyzer as energy storage systems. Hydrogen is produced from surplus power generated by the wind energy conversion and photovoltaic systems of Stand-alone Hybrid Green Power and stored in the hydrogen storage tank for fuel cell later using when the power generated by primary sources is lower than load demand. The proposed optimized Fuzzy Logic Controller based power management system determines the power that is generated by fuel cell or use by Electrolyzer. In a hybrid system, operation and maintenance cost and reliability of the system are the important issues that should be considered in studies. In this regard, Water Cycle Algorithm is used to optimize membership functions in order to simultaneously minimize the Loss of Power Supply Probability and operation and maintenance. The results are compared with the particle swarm optimization and the un-optimized Fuzzy Logic Controller power management system to prove that the proposed method is robust and effective. Reduction in Loss of Power Supply Probability and operation and maintenance, are the most advantages of the proposed method. Moreover the level of the State of Charge of the battery in the proposed method is higher than other mentioned methods which leads to increase battery lifetime.

  1. Incorporation of expert variability into breast cancer treatment recommendation in designing clinical protocol guided fuzzy rule system models.

    Science.gov (United States)

    Garibaldi, Jonathan M; Zhou, Shang-Ming; Wang, Xiao-Ying; John, Robert I; Ellis, Ian O

    2012-06-01

    It has been often demonstrated that clinicians exhibit both inter-expert and intra-expert variability when making difficult decisions. In contrast, the vast majority of computerized models that aim to provide automated support for such decisions do not explicitly recognize or replicate this variability. Furthermore, the perfect consistency of computerized models is often presented as a de facto benefit. In this paper, we describe a novel approach to incorporate variability within a fuzzy inference system using non-stationary fuzzy sets in order to replicate human variability. We apply our approach to a decision problem concerning the recommendation of post-operative breast cancer treatment; specifically, whether or not to administer chemotherapy based on assessment of five clinical variables: NPI (the Nottingham Prognostic Index), estrogen receptor status, vascular invasion, age and lymph node status. In doing so, we explore whether such explicit modeling of variability provides any performance advantage over a more conventional fuzzy approach, when tested on a set of 1310 unselected cases collected over a fourteen year period at the Nottingham University Hospitals NHS Trust, UK. The experimental results show that the standard fuzzy inference system (that does not model variability) achieves overall agreement to clinical practice around 84.6% (95% CI: 84.1-84.9%), while the non-stationary fuzzy model can significantly increase performance to around 88.1% (95% CI: 88.0-88.2%), psystems in any application domain. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. SISTEM PENGEMBANGAN KENDALI FUZZY LOGIC BERBASIS MIKROKONTROLER KELUARGA MCS51 (PetraFuz

    Directory of Open Access Journals (Sweden)

    Thiang Thiang

    1999-01-01

    Full Text Available This paper presents a Fuzzy Logic Development Tool called PetraFuz which has been developed at Control System Laboratory, Electrical Engineering Department, Petra Christian University. The system consists of a hardware target based on MCS51 microcontroller and a software support running under PC Windows. The system is targeted for developing fuzzy logic based systems. It supports fuzzy logic design, evaluation, assembly language generator and downloading process to the target hardware to perform on-line fuzzy process. Process action and fuzzy parameters could be transferred to PC monitor via RS-232 serial communication, this on-line process parameters is used for fuzzy tuning, i.e. fuzzy if-then rules and fuzzy membership functions. The PetraFuz tool helps very much for Fuzzy system developments, it could reduce development time significantly. The tool could spur the development of fuzzy systems based on microcontroller systems such as fuzzy control systems, fuzzy information processing, etc. Abstract in Bahasa Indonesia : Makalah ini menyajikan sebuah sistem pengembangan kendali fuzzy logic (PetraFuz, Petra Fuzzy Development System yang dikembangkan oleh laboratorium Sistem Kontrol, Jurusan Teknik Elektro, Universitas Kristen Petra Surabaya. Sistem ini terdiri dari perangkat keras sistem mikrokontroler MCS51 dan perangkat lunak pendukung yang berjalan pada PC. Sistem PetraFuz digunakan untuk mengembangkan sistem berbasis fuzzy logic utamanya pada bidang kendali. Kemampuan sistem meliputi pengembangan pada fase perancangan kendali, evaluasi kendali, pembentukan program bahasa assembly MCS51 dan proses downloading program menuju target sistem mikrokontroler MCS51 untuk dieksekusi melakukan kendali pada plant yang nyata. Aksi kendali dapat diakuisi oleh program PC melalui komunikasi serial RS232 sehingga respon kendali dapat digambarkan pada layar monitor untuk dilakukan analisis lebih lanjut yang diperlukan pada proses tuning if-then fuzzy rules

  3. Automatic generation of optimal business processes from business rules

    NARCIS (Netherlands)

    Steen, B.; Ferreira Pires, Luis; Iacob, Maria Eugenia

    2010-01-01

    In recent years, business process models are increasingly being used as a means for business process improvement. Business rules can be seen as requirements for business processes, in that they describe the constraints that must hold for business processes that implement these business rules.

  4. Fuzzy Clustering Methods and their Application to Fuzzy Modeling

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Zhou, Jianjun

    1999-01-01

    Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...

  5. Fuzzy risk matrix

    International Nuclear Information System (INIS)

    Markowski, Adam S.; Mannan, M. Sam

    2008-01-01

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated

  6. An improved efficiency of fuzzy sliding mode control of permanent magnet synchronous motor for wind turbine generator pumping system

    International Nuclear Information System (INIS)

    Benchabane, F.; Titaouine, A.; Guettaf, A.; Yahia, K.; Taibi, D.; Bennis, O.

    2012-01-01

    This paper presents an analysis by which the dynamic performances of a permanent magnet synchronous motor (PMSM) motor is controlled through a hysteresis current loop and an outer speed loop with different controllers. The dynamics of the wind turbine pumping drive system with (PI) and a fuzzy sliding mode (FSM) speed controllers are presented. In order to optimize the overall system efficiency, a maximum power point tracker is also used. Simulation is carried out by formatting the mathematical model for wind turbine generator, motor and pump load. The results for such complicated and nonlinear system, with fuzzy sliding mode speed controller show improvement in transient response of the PMSM drive over conventional PI. The effectiveness of the FSM controller is also demonstrated. (author)

  7. Using the interestingness measure lift to generate association rules

    OpenAIRE

    Nada Hussein; Abdallah Alashqur; Bilal Sowan

    2015-01-01

    In this digital age, organizations have to deal with huge amounts of data, sometimes called Big Data. In recent years, the volume of data has increased substantially. Consequently, finding efficient and automated techniques for discovering useful patterns and relationships in the data becomes very important. In data mining, patterns and relationships can be represented in the form of association rules. Current techniques for discovering association rules rely on measures such as support for f...

  8. A neural fuzzy controller learning by fuzzy error propagation

    Science.gov (United States)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  9. Improvement of adaptive fuzzy control for a photovoltaic/wind/diesel generating system; Taiyoko/furyoku/diesel hatsuden system no saitekigata fuzzy seigyo no kairyo

    Energy Technology Data Exchange (ETDEWEB)

    Nagaike, H; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan).Faculty of Engineering

    1996-10-27

    The photovoltaic/wind/diesel generating system that uses a storage battery as auxiliary power has been proposed to supply power from the system to the independent area. In this system, it is important to generate no insufficient power from the viewpoint of effective energy utilization and minimize the fuel consumption of a diesel generator. Authors have proposed the adaptive fuzzy control that changes the shape of the membership function of input variables according to the parameter indicating the system state. However, a parameter was rapidly changed in the conventional method. This badly influences the control. Therefore, the way to determine the parameter that indicates the state of this system was improved. Assume that an input value is set to the average value between a certain point of time and the {Delta}t time as the method for determining a parameter. If the {Delta}t value is lower, the change in a membership function is more effective. As a result, a greater fuel reduction effect was obtained. 4 refs., 8 figs., 1 tab.

  10. Hybrid Type II fuzzy system & data mining approach for surface finish

    Directory of Open Access Journals (Sweden)

    Tzu-Liang (Bill Tseng

    2015-07-01

    Full Text Available In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.

  11. Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers.

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad

    Full Text Available Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said problem, we propose a fuzziness-based active learning framework (FALF, in which we implement the idea of selecting optimal training samples to enhance generalization performance for two different kinds of classifiers, discriminative and generative (e.g. SVM and KNN. The optimal samples are selected by first estimating the boundary of each class and then calculating the fuzziness-based distance between each sample and the estimated class boundaries. Those samples that are at smaller distances from the boundaries and have higher fuzziness are chosen as target candidates for the training set. Through detailed experimentation on three publically available datasets, we showed that when trained with the proposed sample selection framework, both classifiers achieved higher classification accuracy and lower processing time with the small amount of training data as opposed to the case where the training samples were selected randomly. Our experiments demonstrate the effectiveness of our proposed method, which equates favorably with the state-of-the-art methods.

  12. Performance assessment of electric power generations using an adaptive neural network algorithm and fuzzy DEA

    Energy Technology Data Exchange (ETDEWEB)

    Javaheri, Zahra

    2010-09-15

    Modeling, evaluating and analyzing performance of Iranian thermal power plants is the main goal of this study which is based on multi variant methods analysis. These methods include fuzzy DEA and adaptive neural network algorithm. At first, we determine indicators, then data is collected, next we obtained values of ranking and efficiency by Fuzzy DEA, Case study is thermal power plants In view of the fact that investment to establish on power plant is very high, and maintenance of power plant causes an expensive expenditure, moreover using fossil fuel effected environment hence optimum produce of current power plants is important.

  13. Safety critical application of fuzzy control

    International Nuclear Information System (INIS)

    Schildt, G.H.

    1995-01-01

    After an introduction into safety terms a short description of fuzzy logic will be given. Especially, for safety critical applications of fuzzy controllers a possible controller structure will be described. The following items will be discussed: Configuration of fuzzy controllers, design aspects like fuzzfiication, inference strategies, defuzzification and types of membership functions. As an example a typical fuzzy rule set will be presented. Especially, real-time behaviour a fuzzy controllers is mentioned. An example of fuzzy controlling for temperature control purpose within a nuclear reactor together with membership functions and inference strategy of such a fuzzy controller will be presented. (author). 4 refs, 17 figs

  14. Ellipsoidal fuzzy learning for smart car platoons

    Science.gov (United States)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  15. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network.

    Science.gov (United States)

    Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng

    2013-02-01

    This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.

  16. A fuzzy approach for modelling radionuclide in lake system

    International Nuclear Information System (INIS)

    Desai, H.K.; Christian, R.A.; Banerjee, J.; Patra, A.K.

    2013-01-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of 3 H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict 3 H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and 3 H concentration at discharge point. The Output was 3 H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. -- Highlights: • Uncommon approach (Fuzzy Rule Base) of modelling radionuclide dispersion in Lake. • Predicts 3 H released from Kakrapar Atomic Power Station at a point of human exposure. • RMSE of fuzzy model is 1.95, which means, it has well imitated natural ecosystem

  17. Recognition of Handwritten Arabic words using a neuro-fuzzy network

    International Nuclear Information System (INIS)

    Boukharouba, Abdelhak; Bennia, Abdelhak

    2008-01-01

    We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descent learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database

  18. Fuzzy interpolation of hydro power sales data in Simulink

    DEFF Research Database (Denmark)

    Jantzen, Jan; Eliasson, B.

    1994-01-01

    The problem in this case study can be described as a multi-dimensional surface fit to a given set of data. The data are sales figures in MWH/H for a hydro-thermal power generation system. The data are incomplete and not totally reliable. A model with ten fuzzy rules fits the data with a total error...

  19. Analog Filter Design Rules for Multilevel Polybinary Signaling Generation

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Cavallero, Francisco javier Vaquero; Tafur Monroy, Idelfonso

    2014-01-01

    Polybinary signaling has gained attention lately due to its generation simplicity and reduced spectral usage. This paper presents a study on the requirements for analog filters for the generation of multilevel polybinary signals with three to nine levels.......Polybinary signaling has gained attention lately due to its generation simplicity and reduced spectral usage. This paper presents a study on the requirements for analog filters for the generation of multilevel polybinary signals with three to nine levels....

  20. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    Science.gov (United States)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  1. Developing a multipurpose sun tracking system using fuzzy control

    Energy Technology Data Exchange (ETDEWEB)

    Alata, Mohanad [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)]. E-mail: alata@just.edu.jo; Al-Nimr, M.A. [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan); Qaroush, Yousef [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)

    2005-05-01

    The present work demonstrates the design and simulation of time controlled step sun tracking systems that include: one axis sun tracking with the tilted aperture equal to the latitude angle, equatorial two axis sun tracking and azimuth/elevation sun tracking. The first order Sugeno fuzzy inference system is utilized for modeling and controller design. In addition, an estimation of the insolation incident on a two axis sun tracking system is determined by fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm, along with least square estimation (LSE), generates the fuzzy rules that describe the relationship between the input/output data of solar angles that change with time. The fuzzy rules are tuned by an adaptive neuro-fuzzy inference system (ANFIS). Finally, an open loop control system is designed for each of the previous types of sun tracking systems. The results are shown using simulation and virtual reality. The site of application is chosen at Amman, Jordan (32 deg. North, 36 deg. East), and the period of controlling and simulating each type of tracking system is the year 2003.

  2. Fuzzy logic controller using different inference methods

    International Nuclear Information System (INIS)

    Liu, Z.; De Keyser, R.

    1994-01-01

    In this paper the design of fuzzy controllers by using different inference methods is introduced. Configuration of the fuzzy controllers includes a general rule-base which is a collection of fuzzy PI or PD rules, the triangular fuzzy data model and a centre of gravity defuzzification algorithm. The generalized modus ponens (GMP) is used with the minimum operator of the triangular norm. Under the sup-min inference rule, six fuzzy implication operators are employed to calculate the fuzzy look-up tables for each rule base. The performance is tested in simulated systems with MATLAB/SIMULINK. Results show the effects of using the fuzzy controllers with different inference methods and applied to different test processes

  3. A Heuristic T-S Fuzzy Model for the Pumped-Storage Generator-Motor Using Variable-Length Tree-Seed Algorithm-Based Competitive Agglomeration

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2018-04-01

    Full Text Available With the fast development of artificial intelligence techniques, data-driven modeling approaches are becoming hotspots in both academic research and engineering practice. This paper proposes a novel data-driven T-S fuzzy model to precisely describe the complicated dynamic behaviors of pumped storage generator motor (PSGM. In premise fuzzy partition of the proposed T-S fuzzy model, a novel variable-length tree-seed algorithm based competitive agglomeration (VTSA-CA algorithm is presented to determine the optimal number of clusters automatically and improve the fuzzy clustering performances. Besides, in order to promote modeling accuracy of PSGM, the input and output formats in the T-S fuzzy model are selected by an economical parameter controlled auto-regressive (CAR model derived from a high-order transfer function of PSGM considering the distributed components in the water diversion system of the power plant. The effectiveness and superiority of the T-S fuzzy model for PSGM under different working conditions are validated by performing comparative studies with both practical data and the conventional mechanistic model.

  4. Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Su, Chi

    2015-01-01

    A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... that the proposed method can search a more promising control schedule of all transformers, all capacitors and all distributed generators with less time consumption, compared with other listed artificial intelligent methods....... algorithm is implemented in VC++ 6.0 program language and the corresponding numerical experiments are finished on the modified version of the IEEE 33-node distribution system with two newly installed distributed generators and eight newly installed capacitors banks. The numerical results prove...

  5. A fuzzy approach for modelling radionuclide in lake system.

    Science.gov (United States)

    Desai, H K; Christian, R A; Banerjee, J; Patra, A K

    2013-10-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of (3)H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict (3)H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and (3)H concentration at discharge point. The Output was (3)H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Determination of interrill soil erodibility coefficient based on Fuzzy and Fuzzy-Genetic Systems

    Directory of Open Access Journals (Sweden)

    Habib Palizvan Zand

    2017-02-01

    independent variables for development fuzzy and fuzzy- genetic models. For this reason their linguistic variables were defined and fuzzy models rules were written by Mamdani's fuzzy inference method. Then, the outputs of model defuzzified by centroid method. Once again, generation of membership functions and fuzzy rules base as well as optimization of fuzzy rule bases was performed by genetic algorithm, and the fuzzy functions were determined by optimized weight of membership functions and fuzzy rules. Results Discussion: Interrill erodibility parameters (Ki of the examined soils calculated at 3 rainfall rates using are listed in Table 2. The values ranged from 1.03 to 71.79 × 105 kg s m-4, depending on the soil and rainfall intensity. Results showed that the effect of rainfall intensity on Ki turned to be insignificant. This implies that Ki was independent of rainfall intensities. Results showed that the Triangular and Trapezoidal membership functions are better than the other membership functions for linguistic variables which used in this study. The values of R2, RMSE (Root mean square error and GMER (Geometric mean error ratio and GSDER (Geometric standard deviation of error ratio were 0.63, 592755, 1.31 and 1.38 for the fuzzy model, and, 0.70, 441942, 1.10 and 1.044 for the fuzzy- genetic model, respectively. Higher R2 and lower RMSE of the fuzzy – genetic model shows higher accuracy and efficiency of the fuzzy-genetic model. The GSDER criteria shows better matching of the fuzzy- genetic model estimated values with measured values. The GMER criteria shows lower over-estimation of the fuzzy- genetic model than fuzzy model. Conclusion: Fuzzy and fuzzy-genetic models which were designed with two input variables namely aggregates fractal dimensions and soil sand content, capable to predict of interrill erodibility coefficient of soils with reasonable accuracy. So using of these models for predicting of interrill erodibility is recommended.Optimization of fuzzy rule bases

  7. Design of interpretable fuzzy systems

    CERN Document Server

    Cpałka, Krzysztof

    2017-01-01

    This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.

  8. Reducing the Complexity of Genetic Fuzzy Classifiers in Highly-Dimensional Classification Problems

    Directory of Open Access Journals (Sweden)

    DimitrisG. Stavrakoudis

    2012-04-01

    Full Text Available This paper introduces the Fast Iterative Rule-based Linguistic Classifier (FaIRLiC, a Genetic Fuzzy Rule-Based Classification System (GFRBCS which targets at reducing the structural complexity of the resulting rule base, as well as its learning algorithm's computational requirements, especially when dealing with high-dimensional feature spaces. The proposed methodology follows the principles of the iterative rule learning (IRL approach, whereby a rule extraction algorithm (REA is invoked in an iterative fashion, producing one fuzzy rule at a time. The REA is performed in two successive steps: the first one selects the relevant features of the currently extracted rule, whereas the second one decides the antecedent part of the fuzzy rule, using the previously selected subset of features. The performance of the classifier is finally optimized through a genetic tuning post-processing stage. Comparative results in a hyperspectral remote sensing classification as well as in 12 real-world classification datasets indicate the effectiveness of the proposed methodology in generating high-performing and compact fuzzy rule-based classifiers, even for very high-dimensional feature spaces.

  9. A SELF-ORGANISING FUZZY LOGIC CONTROLLER

    African Journals Online (AJOL)

    ES Obe

    One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a rule- base ... The greatest limitation of fuzzy logic control is the lack ..... c(kT)= e(kT)-e((k-1)T). (16) .... with the aid of fuzzy models”, It in Industrial.

  10. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    Science.gov (United States)

    Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad

    2013-06-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  11. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    International Nuclear Information System (INIS)

    Aziz, Nur Liyana Afiqah Abdul; Yap, Keem Siah; Bunyamin, Muhammad Afif

    2013-01-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of c omputing the word . The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  12. Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications

    Directory of Open Access Journals (Sweden)

    A.A. Fahmy

    2013-12-01

    Full Text Available This paper presents a new neuro-fuzzy controller for robot manipulators. First, an inductive learning technique is applied to generate the required inverse modeling rules from input/output data recorded in the off-line structure learning phase. Second, a fully differentiable fuzzy neural network is developed to construct the inverse dynamics part of the controller for the online parameter learning phase. Finally, a fuzzy-PID-like incremental controller was employed as Feedback servo controller. The proposed control system was tested using dynamic model of a six-axis industrial robot. The control system showed good results compared to the conventional PID individual joint controller.

  13. A fuzzy expert system for predicting the performance of switched reluctance motor

    International Nuclear Information System (INIS)

    Mirzaeian, B.; Moallem, M.; Lucas, Caro

    2001-01-01

    In this paper a fuzzy expert system for predicting the performance of a switched reluctance motor has been developed. The design vector consists of design parameters, and output performance variables are efficiency and torque ripple. An accurate analysis program based on Improved Magnetic Equivalent Circuit method has been used to generate the input-output data. These input-output data is used to produce the initial fuzzy rules for predicting the performance of Switched Reluctance Motor. The initial set of fuzzy rules with triangular membership functions has been devised using a table look-up scheme. The initial fuzzy rules have been optimized to a set of fuzzy rules with Gaussian membership functions using gradient descent training scheme. The performance prediction results for a 6/8, 4 kw, Switched Reluctance Motor shows good agreement with the results obtained from Improved Magnetic Equivalent Circuit method or Finite Element analysis. The developed fuzzy expert system can be used for fast prediction of motor performance in the optimal design process or on-line control schemes of Switched Reluctance motor

  14. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    Science.gov (United States)

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  15. Pemodelan Sistem Fuzzy Dengan Menggunakan Matlab

    Directory of Open Access Journals (Sweden)

    Afan Galih Salman

    2010-12-01

    Full Text Available Fuzzy logic is a method in soft computing category, a method that could process uncertain, inaccurate, and less cost implemented data. Some methods in soft computing category besides fuzzy logic are artificial network nerve, probabilistic reasoning, and evolutionary computing. Fuzzy logic has the ability to develop fuzzy system that is intelligent system in uncertain environment. Some stages in fuzzy system formation process is input and output analysis, determining input and output variable, defining each fuzzy set member function, determining rules based on experience or knowledge of an expert in his field, and implementing fuzzy system. Overall, fuzzy logic uses simple mathematical concept, understandable, detectable uncertain and accurate data. Fuzzy system could create and apply expert experiences directly without exercise process and effort to decode the knowledge into a computer until becoming a modeling system that could be relied on decision making.

  16. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Dong Yun Kim; Poong Hyun Seong; .

    1997-01-01

    In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate gains, which minimize the error of system. The proposed algorithm can reduce the time and effort required for obtaining the fuzzy rules through the intelligent learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller. (author)

  17. Random Fuzzy Extension of the Universal Generating Function Approach for the Reliability Assessment of Multi-State Systems Under Aleatory and Epistemic Uncertainties

    DEFF Research Database (Denmark)

    Li, Yan-Fu; Ding, Yi; Zio, Enrico

    2014-01-01

    . In this work, we extend the traditional universal generating function (UGF) approach for multi-state system (MSS) availability and reliability assessment to account for both aleatory and epistemic uncertainties. First, a theoretical extension, named hybrid UGF (HUGF), is made to introduce the use of random...... fuzzy variables (RFVs) in the approach. Second, the composition operator of HUGF is defined by considering simultaneously the probabilistic convolution and the fuzzy extension principle. Finally, an efficient algorithm is designed to extract probability boxes ($p$ -boxes) from the system HUGF, which...

  18. A study on water level control of PWR steam generator at low power and the self-tuning of its fuzzy controller

    International Nuclear Information System (INIS)

    Na, N.; Kwon, K.; Ham, C.; Bien, Z.

    1994-01-01

    The water level control system of a steam generator in a pressurized water reactor and its control problems during the operation at low power is analysed. In particular, a strategy for a water level control system, which is based on the use of a fuzzy logic controller, is proposed. The control strategy includes dynamic tuning for the large transient. The fuzzy variable of the flow rate during the power operation is obtained from the bypass valve opening and not from the incorrect measured signal at the low flow rate. The practical self-tuning algorithm is based on the optimal control performance

  19. Decision support for choice optimal power generation projects: Fuzzy comprehensive evaluation model based on the electricity market

    International Nuclear Information System (INIS)

    Liang Zhihong; Yang Kun; Sun Yaowei; Yuan Jiahai; Zhang Hongwei; Zhang Zhizheng

    2006-01-01

    In 2002, China began to inspire restructuring of the electric power sector to improve its performance. Especially, with the rapid increase of electricity demand in China, there is a need for non-utility generation investment that cannot be met by government finance alone. However, a first prerequisite is that regulators and decision-makers (DMs) should carefully consider how to balance the need to attract private investment against the policy objectives of minimizing monopoly power and fostering competitive markets. So in the interim term of electricity market, a decentralized decision-making process should eventually replace the centralized generation capacity expansion planning. In this paper, firstly, on the basis of the current situation, a model for evaluating generation projects by comprehensive utilization of fuzzy appraisal and analytic hierarchy process (AHP) is developed. Secondly, a case study of generation project evaluation in China is presented to illustrate the effectiveness of the model in selecting optimal generation projects and attracting private investors. In the case study, with considerations of attracting adequate private investment and promoting energy conservation in China, five most promising policy instruments selected as evaluation factors include project duration, project costs, predicted on-grid price level, environmental protection, enterprise credit grading and performance. Finally, a comprehensive framework that enables the DM to have better concentration and to make more sound decisions by combining the model proposed with modern computer science is designed

  20. a novel two – factor high order fuzzy time series with applications to ...

    African Journals Online (AJOL)

    HOD

    objectively with multiple – factor fuzzy time series, recurrent number of fuzzy relationships, and assigning weights to elements of fuzzy forecasting rules. In this paper, a novel two – factor high – order fuzzy time series forecasting method based on fuzzy C-means clustering and particle swarm optimization is proposed to ...

  1. Damping Torsional Torques in Turbine-Generator Shaft by Novel PSS Based on Genetic Algorithm and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Abbas Shoulaie

    2010-07-01

    Full Text Available Torsional torques on turbine-generator shaft which are yields of disturbances in power systems, can reduce the useful lifetime of shaft. In this paper, these oscillations will be damped and controlled by novel Power System Stabilizers (PSSs. Complex PSS which is used in this paper will act on the excitation system in generator set and also on the controller of in High Voltage Direct Current (HVDC system. This PSS uses three terms (generator angle deviation, frequency oscillation and capacitor voltage deviation in HVDC system of the study system which includes two ties AC and DC. This is the reason that this PSS is named novel one against the conventional PSSs. In order to adjust the PSS parameters to damp the oscillations, genetic algorithm is used. To improve the application of this PSS, fuzzy logic control methods are also used which has notable effect on controlling the oscillations in study system. The simulation results show the effectiveness of designed PSS in controlling the torsional torques in turbine-generator shaft.

  2. Intelligent control-II: review of fuzzy systems and theory of approximate reasoning

    International Nuclear Information System (INIS)

    Nagrial, M.H.

    2004-01-01

    Fuzzy systems are knowledge-based or rule-based systems. The heart of a fuzzy systems knowledge base consisting of the so-called fuzzy IF -THEN rules. This paper reviews various aspects of fuzzy IF-THEN rules. The theory of approximate reasoning, which provides a powerful framework for reasoning the imprecise and uncertain information, , is also reviewed. Additional properties of fuzzy systems are also discussed. (author)

  3. Wavelets transforms and fuzzy logic in the eddy-current inspection of nuclear power plants steam generator tubes

    International Nuclear Information System (INIS)

    Lopez, Luiz Antonio Negro Martin

    2002-01-01

    Nuclear power plants steam generators around the world have presented early damage history in their tubes, caused either by design errors or by inappropriate operation, which besides reducing the availability and the safety of the nuclear power plants it also generates heavy economical burden. To monitor the steam generators operational condition, the Eddy Current testing of their tubes is the non destructive method used to detect, localize, classify and to size the defects. The inspection is performed by inserting probes with coils in the tubes generating a signal correlated to the defect. These signals produced by the probe electric circuit are composed by the resistance and the inductive components which can be combined to produce a Lissajous figure in the complex plane. However, Eddy-Current signals contain noise which induce subjectivity inducing to errors in the inspector diagnosis. It is not uncommon to have different diagnosis from two inspectors about the same signal. The present work has the objective of supplying a methodology to analyze the signals which could help the inspector in the difficult task of interpreting the Eddy Current signals. It is proposed a method to remove the noise based on Wavelets Transforms. It is also proposed a normalization in the signal phase angle measurements. Furthermore, two additional characteristics are also studied, namely: the signal amplitudes and the widths of the Lissajous petals. The use of a Fuzzy Logic based inference engine is also developed and its use is demonstrated to be viable. The defects studied in this work are those which produces volumetric changes in the material. In order to test the proposed methodology, several artificial defects were produced in tubes using different types of materials like: brass, 316L stainless steel and Inconel 600 to produce a experimental data base. An Eddy-Current inspection equipment, the MIZ-17ET was used. Around 1000 time series signals of defects were acquired through

  4. Fuzzy logic based control system for fresh water aquaculture: A MATLAB based simulation approach

    Directory of Open Access Journals (Sweden)

    Rana Dinesh Singh

    2015-01-01

    Full Text Available Fuzzy control is regarded as the most widely used application of fuzzy logic. Fuzzy logic is an innovative technology to design solutions for multiparameter and non-linear control problems. One of the greatest advantages of fuzzy control is that it uses human experience and process information obtained from operator rather than a mathematical model for the definition of a control strategy. As a result, it often delivers solutions faster than conventional control design techniques. The proposed system is an attempt to apply fuzzy logic techniques to predict the stress factor on the fish, based on line data and rule base generated using domain expert. The proposed work includes a use of Data acquisition system, an interfacing device for on line parameter acquisition and analysis, fuzzy logic controller (FLC for inferring the stress factor. The system takes stress parameters on the fish as inputs, fuzzified by using FLC with knowledge base rules and finally provides single output. All the parameters are controlled and calibrated by the fuzzy logic toolbox and MATLAB programming.

  5. A study of fuzzy control in nuclear scale system

    International Nuclear Information System (INIS)

    Wang Yu; Zhang Yongming; Wu Ruisheng; Du Xianbin; Liu Shixing

    2001-01-01

    The new development of the nuclear scale system which uses fuzzy control strategy is presented. Good results have been obtained in using fuzzy control to solve the problems, such as un-linearities, instabilities, time delays, which are difficultly described by formula, etc. The fuzzy variance, membership function and fuzzy rules are given, and the noise disturbances of fuzzy control and PID control are also given

  6. Image-based Fuzzy Parking Control of a Car-like Mobile Robot

    Directory of Open Access Journals (Sweden)

    Yin Yin Aye

    2017-03-01

    Full Text Available This paper develops a novel automatic parking system using an image-based fuzzy controller, where in the reasoning the slope and intercept of the desired target line are used for the inputs, and the steering angle of the robot is generated for the output. The objective of this study is that a robot equipped with a camera detects a rectangular parking frame, which is drawn on the floor, based on image processing. The desired target line to be followed by the robot is generated by using Hough transform from a captured image. The fuzzy controller is designed according to experiments of skilled driver, and the fuzzy rules are tuned and the fuzzy membership functions are optimized by experimentally for output. The effectiveness of the proposed method is demonstrated through some experimental results with an actual mobile robot

  7. Analysis of additive generators of fuzzy operations represented by rational functions

    Science.gov (United States)

    Ledeneva, T. M.

    2018-03-01

    This article presents an approach for determining additive generators of commutative and associative operations. Its applicability for finding generators of triangular norms and conorms is shown. Conditions for the parameters of increasing generators that generate triangular conorms in the class of rational functions are determined.

  8. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  9. Game-theoretic modeling of curtailment rules and network investments with distributed generation

    International Nuclear Information System (INIS)

    Andoni, Merlinda; Robu, Valentin; Früh, Wolf-Gerrit; Flynn, David

    2017-01-01

    Highlights: •Comparative study on curtailment rules and their effects on RES profitability. •Proposal of novel fair curtailment rule which minimises generators’ disruption. •Modeling of private network upgrade as leader-follower (Stackelberg) game. •New model incorporating stochastic generation and variable demand. •New methodology for setting transmission charges in private network upgrade. -- Abstract: Renewable energy has achieved high penetration rates in many areas, leading to curtailment, especially if existing network infrastructure is insufficient and energy generated cannot be exported. In this context, Distribution Network Operators (DNOs) face a significant knowledge gap about how to implement curtailment rules that achieve desired operational objectives, but at the same time minimise disruption and economic losses for renewable generators. In this work, we study the properties of several curtailment rules widely used in UK renewable energy projects, and their effect on the viability of renewable generation investment. Moreover, we propose a new curtailment rule which guarantees fair allocation of curtailment amongst all generators with minimal disruption. Another key knowledge gap faced by DNOs is how to incentivise private network upgrades, especially in settings where several generators can use the same line against the payment of a transmission fee. In this work, we provide a solution to this problem by using tools from algorithmic game theory. Specifically, this setting can be modelled as a Stackelberg game between the private transmission line investor and local renewable generators, who are required to pay a transmission fee to access the line. We provide a method for computing the equilibrium of this game, using a model that captures the stochastic nature of renewable energy generation and demand. Finally, we use the practical setting of a grid reinforcement project from the UK and a large dataset of wind speed measurements and demand

  10. System diagnostic builder: a rule-generation tool for expert systems that do intelligent data evaluation

    Science.gov (United States)

    Nieten, Joseph L.; Burke, Roger

    1993-03-01

    The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.

  11. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    International Nuclear Information System (INIS)

    Ozekes, Serhat; Osman, Onur; Ucan, N.

    2008-01-01

    The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer aided detection of lung nodules

  12. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    Science.gov (United States)

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  13. Fuzzy classification of phantom parent groups in an animal model

    Directory of Open Access Journals (Sweden)

    Fikse Freddy

    2009-09-01

    Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy

  14. Application of genetic algorithms to tuning fuzzy control systems

    Science.gov (United States)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  15. Prediksi Kelulusan Mata Kuliah Menggunakan Hybrid Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Abidatul Izzah

    2016-07-01

    Full Text Available AbstrakPerguruan Tinggi merupakan salah satu institusi yang menyimpan data yang sangat informatif jika diolah secara baik. Prediksi kelulusan mahasiswa merupakan kasus di Perguruan Tinggi yang cukup banyak diteliti. Dengan mengetahui prediksi status kelulusan mahasiswa di tengah semester, dosen dapat mengantisipasi atau memberi perhatian khusus pada siswa yang diprediksi tidak lulus. Metode yang digunakan sangat bervariatif termasuk metode Fuzzy Inference System (FIS. Namun dalam implementasinya, proses pembangkitan rule fuzzy sering dilakukan secara random atau berdasarkan pemahaman pakar sehingga tidak merepresentasikan sebaran data. Oleh karena itu, dalam penelitian ini digunakan teknik Decision Tree (DT untuk membangkitkan rule. Dari uraian tersebut, penelitian bertujuan untuk memprediksi kelulusan mata kuliah menggunakan hybrid FIS dan DT. Data yang digunakan dalam penelitian ini adalah data nilai Posttest, Tugas, Kuis, dan UTS dari 106 mahasiswa Politeknik Kediri pengikut mata kuliah Algoritma dan Struktur Data. Penelitian ini diawali dari membangkitkan 5 rule yang selanjutnya digunakan dalam inferensi. Tahap selanjutnya adalah implementasi FIS dengan tahapan fuzzifikasi, inferensi, dan defuzzifikasi. Hasil yang diperoleh adalah akurasi, sensitivitas, dan spesifisitas  masing-masing adalah 94.33%, 96.55%, dan 84.21%.Kata kunci: Decision Tree, Educational Data Mining, Fuzzy Inference System, Prediksi. AbstractCollege is an institution that holds very informative data if it mined properly. Prediction about student’s graduation is a common case that many discussed. Having the predictions of student’s graduation in the middle semester, lecturer will anticipate or give some special attention to students who would be not passed. The method used to prediction is very varied including Fuzzy Inference System (FIS. However, fuzzy rule process is often generated randomly or based on knowledge experts that not represent the data distribution

  16. Fuzzy Evidence in Identification, Forecasting and Diagnosis

    CERN Document Server

    Rotshtein, Alexander P

    2012-01-01

    The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...

  17. Fuzzy logic

    CERN Document Server

    Smets, P

    1995-01-01

    We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.

  18. Fuzzy Languages

    Science.gov (United States)

    Rahonis, George

    The theory of fuzzy recognizable languages over bounded distributive lattices is presented as a paradigm of recognizable formal power series. Due to the idempotency properties of bounded distributive lattices, the equality of fuzzy recognizable languages is decidable, the determinization of multi-valued automata is effective, and a pumping lemma exists. Fuzzy recognizable languages over finite and infinite words are expressively equivalent to sentences of the multi-valued monadic second-order logic. Fuzzy recognizability over bounded ℓ-monoids and residuated lattices is briefly reported. The chapter concludes with two applications of fuzzy recognizable languages to real world problems in medicine.

  19. Probabilistic Rule Generator: A new methodology of variable-valued logic synthesis

    International Nuclear Information System (INIS)

    Lee, W.D.; Ray, S.R.

    1986-01-01

    A new methodology to synthesize variable-valued logic formulas from training data events is presented. Probablistic Rule Generator (PRG) employs not only information-theoretic entropy as a heuristic to capture a path expression but also multiple-valued logic to expand a captured complex. PRG is efficient for capturing major clusters in the event space, and is more general than previous methodologies in providing probabilistic features

  20. Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure

    Directory of Open Access Journals (Sweden)

    Ashraf Ahmed Fahmy

    2014-03-01

    Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation.  Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.

  1. Fuzzy logic utilization for the diagnosis of metallic loose part impact in nuclear power plant

    International Nuclear Information System (INIS)

    Oh, Y.-G.; Hong, H.-P.; Han, S.-J.; Chun, C.S.; Kim, B.-K.

    1996-01-01

    In consideration of the fuzzy nature of impact signals detected from the complex mechanical structures in a nuclear power plant under operation. Loose Part Monitoring System with a signal processing technique utilizing fuzzy logic is proposed. In the proposed Fuzzy Loose Part Monitoring System design, comprehensive relations among the impact signal features are taken into account in the fuzzy rule bases for the alarm discrimination and impact event diagnosis. Through the performance test with a mock-up facility, the proposed approach for the loose parts monitoring and diagnosis has been revealed to be effective not only in suppressing the false alarm generation but also in characterizing the metallic loose-part impact event, from the points of Possible Impacted-Area and Degree of Impact Magnitude

  2. Fuzzy reasoning on Horn Set

    International Nuclear Information System (INIS)

    Liu, X.; Fang, K.

    1986-01-01

    A theoretical study in fuzzy reasoning on Horn Set is presented in this paper. The authors first introduce the concepts of λ-Horn Set of clauses and λ-Input Half Lock deduction. They then use the λ-resolution method to discuss fuzzy reasoning on λ-Horn set of clauses. It is proved that the proposed λ-Input Half Lock resolution method is complete with the rules in certain format

  3. Fuzzy expert systems using CLIPS

    Science.gov (United States)

    Le, Thach C.

    1994-01-01

    This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.

  4. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement.

    Science.gov (United States)

    Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun

    2016-12-03

    Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.

  5. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2016-12-01

    Full Text Available Ubiquitous health care (UHC is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN. The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.

  6. Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images.

    Science.gov (United States)

    Badawi, A M; Derbala, A S; Youssef, A M

    1999-08-01

    Computerized ultrasound tissue characterization has become an objective means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases are rather confusing and highly dependent upon the sonographer's experience. This often causes a bias effects in the diagnostic procedure and limits its objectivity and reproducibility. Computerized tissue characterization to assist quantitatively the sonographer for the accurate differentiation and to minimize the degree of risk is thus justified. Fuzzy logic has emerged as one of the most active area in classification. In this paper, we present an approach that employs Fuzzy reasoning techniques to automatically differentiate diffuse liver diseases using numerical quantitative features measured from the ultrasound images. Fuzzy rules were generated from over 140 cases consisting of normal, fatty, and cirrhotic livers. The input to the fuzzy system is an eight dimensional vector of feature values: the mean gray level (MGL), the percentile 10%, the contrast (CON), the angular second moment (ASM), the entropy (ENT), the correlation (COR), the attenuation (ATTEN) and the speckle separation. The output of the fuzzy system is one of the three categories: cirrhosis, fatty or normal. The steps done for differentiating the pathologies are data acquisition and feature extraction, dividing the input spaces of the measured quantitative data into fuzzy sets. Based on the expert knowledge, the fuzzy rules are generated and applied using the fuzzy inference procedures to determine the pathology. Different membership functions are developed for the input spaces. This approach has resulted in very good sensitivities and specificity for classifying diffused liver pathologies. This classification technique can be used in the diagnostic process, together with the history

  7. "Smart inhibition": electrophysiological evidence for the suppression of conflict-generating task rules during task switching.

    Science.gov (United States)

    Meiran, Nachshon; Hsieh, Shulan; Chang, Chi-Chih

    2011-09-01

    A major challenge for task switching is maintaining a balance between high task readiness and effectively ignoring irrelevant task rules. This calls for finely tuned inhibition that targets only the source of interference without adversely influencing other task-related representations. The authors show that irrelevant task rules generating response conflict are inhibited, causing their inefficient execution on the next trial (indicating the presence of competitor rule suppression[CRS];Meiran, Hsieh, & Dimov, Journal of Experimental Psychology: Learning, Memory and Cognition, 36, 992-1002, 2010). To determine whether CRS influences task rules, rather than target stimuli or responses, the authors focused on the processing of the task cue before the target stimulus was presented and before the response could be chosen. As was predicted, CRS was found in the event-related potentials in two time windows during task cue processing. It was also found in three time windows after target presentation. Source localization analyses suggest the involvement of the right dorsal prefrontal cortex in all five time windows.

  8. Sustainability of sources of electric generation: indicators and global qualification using fuzzy logic

    International Nuclear Information System (INIS)

    Martin del Campo M, C.; Francois L, J.L.

    2005-01-01

    A methodology developed to evaluate the sustainability of sources of electric generation but used in Mexico and in the World is presented. For it was applied one matrix of sustainability indicators that considers the principles and criteria of general sustainability as 'not exhaustion of natural resources', 'non production of non degradable waste', and 'not high sensibility to social and environmental factors'. The approaches to evaluate in a wide way these principles are numerous and to each approach associates an indicator, call sustainability indicator. The contribution of this work consists on the development of a methodology to qualify globally the sustainability of each option of electric generation, combining all the sustainability indicators. The methodology applies a system of diffuse control to build the function of global qualification of sustainability dependent of all the indicators. (Author)

  9. Efficient fuzzy logic controller for magnetic levitation systems | Shu ...

    African Journals Online (AJOL)

    In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC) is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input ...

  10. On Intuitionistic Fuzzy Context-Free Languages

    Directory of Open Access Journals (Sweden)

    Jianhua Jin

    2013-01-01

    automata theory. Additionally, we introduce the concepts of Chomsky normal form grammar (IFCNF and Greibach normal form grammar (IFGNF based on intuitionistic fuzzy sets. The results of our study indicate that intuitionistic fuzzy context-free languages generated by IFCFGs are equivalent to those generated by IFGNFs and IFCNFs, respectively, and they are also equivalent to intuitionistic fuzzy recognizable step functions. Then some operations on the family of intuitionistic fuzzy context-free languages are discussed. Finally, pumping lemma for intuitionistic fuzzy context-free languages is investigated.

  11. Control Loop for a Pulse Generator of a Fast Septum Magnet using DSP and Fuzzy Logic

    CERN Document Server

    Aldaz-Carroll, E; Dieperink, J H; Schröder, G; Vossenberg, Eugène B

    1997-01-01

    A prototype of a fast pulsed eddy current septum magnet for one of thebeam extraction's from the SPS towards LHC is under development. The precision of the magnetic field must be better than ±1.0 10-4 during a flat top of 30 µs. The current pulse is generated by discharging the capacitors of a LC circuit that resonates on the 1st and on the 3rd harmonic of a sine wave with a repetition rate of 15 s. The parameters of the circuit and the voltage on the capacitors must be carefully adjusted to meet the specifications. Drifts during operation must be corrected between two pulses by mechanically adjusting the inductance of the coil in the generator as well as the primary capacitor voltage. This adjustment process is automated by acquiring the current pulse waveform with sufficient time and amplitude resolution, calculating the corrections needed and applying these corrections to the hardware for the next pulse. A very cost-effective and practical solution for this adjustment process is the integration of off-th...

  12. S.I. 1987 No. 2182, The Electricity Generating Stations and Overhead Lines (Inquiries Procedure) Rules 1987

    International Nuclear Information System (INIS)

    1987-01-01

    These Rules, which came into force on 14 January 1988, make new provision for the procedure for any public inquiry held pursuant to Section 34 of the Electricity Act 1957 in relation to applications for consent to construct or extend a generating station (including nuclear stations). The Rules were made pursuant to Section 11 of the Tribunals and Inquiries Act 1971. They revoke the previous Electricity Generating Stations and Overhead Line (Inquiries Procedures) Rules 1981. These new Rules cover the same topics as the previous Rules but aim to shorten the potential length and thus cost of inquiries. They will apply to the Inquiry to be held into the application by the Central Electricity Generating Board to build a pressurised water reactor at Hinkley Point in Somerset. (NEA) [fr

  13. Relational Demonic Fuzzy Refinement

    Directory of Open Access Journals (Sweden)

    Fairouz Tchier

    2014-01-01

    Full Text Available We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join (⊔fuz, fuzzy demonic meet (⊓fuz, and fuzzy demonic composition (□fuz. Our definitions and properties are illustrated by some examples using mathematica software (fuzzy logic.

  14. Fuzzy control for optimal operation of complex chilling systems; Betriebsoptimierung von komplexen Kaelteanlagen mit Fuzzy-Control

    Energy Technology Data Exchange (ETDEWEB)

    Talebi-Daryani, R. [Fachhochschule Koeln (Germany). Lehrgebiet und Lab. fuer Regelungs- und Gebaeudeleittechnik; Luther, C. [JCI Regelungstechnik GmbH, Koeln (Germany)

    1998-05-01

    The optimization potentials for the operation of chilling systems within the building supervisory control systems are limited to abilities of PLC functions with their binary logic. The aim of this project is to replace inefficient PLC-solutions for the operation of chilling system by a Fuzzy control system. Optimal operation means: reducing operation time and operation costs of the system, reducing cooling energy generation- and consumption costs. Analysis of the thermal behaviour of the building and the chilling system is necessary, in order to find the current efficient cooling potentials and cooling methods during the operation. Three different Fuzzy controller have been developed with a total rule number of just 70. This realized Fuzzy control system is able to forecast the maximum cooling power of the building, but also to determine the cooling potential of the out door air. This new Fuzzy control system has been successfully commissioned, and remarkable improvement of the system behaviour is reached. Comparison of the system behaviour before and after the implementation of Fuzzy control system proved the benefits of the Fuzzy logic based operation system realized here. The system described here is a joint project between the University of applied sciences Cologne, and Johnson Controls International Cologne. The Fuzzy software tool used here (SUCO soft Fuzzy TECH 4.0), was provided by Kloeckner Moeller Bonn. (orig.) [Deutsch] Die Betriebsoptimierung von Kaelteanlagen innerhalb von Gebaeudeleitsystemen ist auf die Faehigkeiten von logischen Steuerverknuepfungen der Digitaltechnik begrenzt. In diesem Zusammenhang kann nur ein geringer Anteil der Information ueber das thermische Speicherverhalten des jeweiligen Gebaeudes herangezogen werden. Ziel des vorliegenden Projektes war es, die unzureichenden logischen Steuerverknuepfungen durch ein Fuzzy-Control-System zu ersetzen, um die Arbeitsweise der Kaelteanlage zu optimieren. Die Optimierungskriterien dieses

  15. Fuzzy Diagnostic System for Oleo-Pneumatic Drive Mechanism of High-Voltage Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Viorel Nicolau

    2013-01-01

    Full Text Available Many oil-based high-voltage circuit breakers are still in use in national power networks of developing countries, like those in Eastern Europe. Changing these breakers with new more reliable ones is not an easy task, due to their implementing costs. The acting device, called oleo-pneumatic mechanism (MOP, presents the highest fault rate from all components of circuit breaker. Therefore, online predictive diagnosis and early detection of the MOP fault tendencies are very important for their good functioning state. In this paper, fuzzy logic approach is used for the diagnosis of MOP-type drive mechanisms. Expert rules are generated to estimate the MOP functioning state, and a fuzzy system is proposed for predictive diagnosis. The fuzzy inputs give information about the number of starts and time of functioning per hour, in terms of short-term components, and their mean values. Several fuzzy systems were generated, using different sets of membership functions and rule bases, and their output performances are studied. Simulation results are presented based on an input data set, which contains hourly records of operating points for a time horizon of five years. The fuzzy systems work well, making an early detection of the MOP fault tendencies.

  16. On the Fuzzy Convergence

    Directory of Open Access Journals (Sweden)

    Abdul Hameed Q. A. Al-Tai

    2011-01-01

    Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.

  17. Fuzzy Commitment

    Science.gov (United States)

    Juels, Ari

    The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.

  18. Fault Diagnosis in Deaerator Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    S Srinivasan

    2007-01-01

    Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.

  19. What procedure to choose while designing a fuzzy control? Towards mathematical foundations of fuzzy control

    Science.gov (United States)

    Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert

    1991-01-01

    Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.

  20. Fuzzy logic based power management strategy of a multi-MW doubly-fed induction generator wind turbine with battery and ultracapacitor

    International Nuclear Information System (INIS)

    Sarrias-Mena, Raúl; Fernández-Ramírez, Luis M.; García-Vázquez, Carlos Andrés; Jurado, Francisco

    2014-01-01

    Integrating energy storage systems (ESS) with wind turbines results to be an interesting option for improving the grid integration capability of wind energy. This paper presents and evaluates a wind hybrid system consisting of a 1.5 MW doubly-fed induction generator (DFIG) wind turbine and double battery-ultracapacitor ESS. Commercially available components are used in this wind hybrid system. A novel supervisory control system (SCS) is designed and implemented, which is responsible for setting the active and reactive power references for each component of the hybrid system. A fuzzy logic controller, taking into account the grid demand, power generation prediction, actual DFIG power generation and state-of-charge (SOC) of the ESSs, sets the active power references. The reactive power references are proportionally delivered to each element regarding their current limitations in the SCS. The appropriate control of the power converters allows each power source to achieve the operation defined by the SCS. The wind hybrid system and SCS are assessed by simulation under wind fluctuations, grid demand changes, and grid disturbances. Results show an improved performance in the overall response of the system with the implementation of the SCS. - Highlights: • We study a wind hybrid system based on DFIG wind turbine, battery and ultracapacitor. • A novel supervisory control system based on fuzzy logic is designed and implemented. • The control improves the system response under different operating conditions

  1. A computationally efficient fuzzy control s

    Directory of Open Access Journals (Sweden)

    Abdel Badie Sharkawy

    2013-12-01

    Full Text Available This paper develops a decentralized fuzzy control scheme for MIMO nonlinear second order systems with application to robot manipulators via a combination of genetic algorithms (GAs and fuzzy systems. The controller for each degree of freedom (DOF consists of a feedforward fuzzy torque computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line using GAs, whereas not only the parameters but also the structure of the fuzzy system is optimized. The feedback fuzzy PD system, on the other hand, is used to keep the closed-loop stable. The rule base consists of only four rules per each DOF. Furthermore, the fuzzy feedback system is decentralized and simplified leading to a computationally efficient control scheme. The proposed control scheme has the following advantages: (1 it needs no exact dynamics of the system and the computation is time-saving because of the simple structure of the fuzzy systems and (2 the controller is robust against various parameters and payload uncertainties. The computational complexity of the proposed control scheme has been analyzed and compared with previous works. Computer simulations show that this controller is effective in achieving the control goals.

  2. Analysis of inventory difference using fuzzy controllers

    International Nuclear Information System (INIS)

    Zardecki, A.

    1994-01-01

    The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented

  3. Fuzzy associative memories for instrument fault detection

    International Nuclear Information System (INIS)

    Heger, A.S.

    1996-01-01

    A fuzzy logic instrument fault detection scheme is developed for systems having two or three redundant sensors. In the fuzzy logic approach the deviation between each signal pairing is computed and classified into three fuzzy sets. A rule base is created allowing the human perception of the situation to be represented mathematically. Fuzzy associative memories are then applied. Finally, a defuzzification scheme is used to find the centroid location, and hence the signal status. Real-time analyses are carried out to evaluate the instantaneous signal status as well as the long-term results for the sensor set. Instantaneous signal validation results are used to compute a best estimate for the measured state variable. The long-term sensor validation method uses a frequency fuzzy variable to determine the signal condition over a specific period. To corroborate the methodology synthetic data representing various anomalies are analyzed with both the fuzzy logic technique and the parity space approach. (Author)

  4. FUZZY LOGIC IN LEGAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Z. Gonul BALKIR

    2011-04-01

    Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal

  5. A Comparative Analysis of Fuzzy Inference Engines in Context of ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    Fuzzy Inference engine is an important part of reasoning systems capable of extracting correct conclusions from ... is known as the inference, or rule definition portion, of fuzzy .... minimal set of decision rules based on input- ... The study uses Mamdani FIS model and. Sugeno FIS ... control of induction motor drive. [18] study.

  6. A novel prosodic-information synthesizer based on recurrent fuzzy neural network for the Chinese TTS system.

    Science.gov (United States)

    Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu

    2004-02-01

    In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.

  7. A fuzzy controller for NPPs

    International Nuclear Information System (INIS)

    Schildt, G.H.

    1997-01-01

    A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs

  8. A fuzzy controller for NPPs

    International Nuclear Information System (INIS)

    Schildt, G.H.

    1996-01-01

    After an introduction into safety terms a fuzzy controller for safety related process control will be presented, especially for applications in the field of NPPs. One can show that the size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage due to real-time behaviour, because program execution time can be much more planned than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principle, and quiescent current principle

  9. A fuzzy controller for NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Schildt, G H [Technische Univ., Vienna (Austria)

    1997-07-01

    A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs.

  10. Statistical metrology - measurement and modeling of variation for advanced process development and design rule generation

    International Nuclear Information System (INIS)

    Boning, Duane S.; Chung, James E.

    1998-01-01

    Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of 'dummy fill' or 'metal fill' to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal

  11. Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Yea-Kuang Chan

    2012-01-01

    Full Text Available Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs. This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were verified using a linear regression model with a 95% confidence interval. The key parameters of turbine cycle, including turbine throttle pressure, condenser backpressure, feedwater flow rate and final feedwater temperature are selected as inputs for the ANFIS based turbine cycle model. In addition, a thermodynamic turbine cycle model was developed using the commercial software PEPSE® to compare the performance of the ANFIS based turbine cycle model. The results show that the proposed ANFIS based turbine cycle model is capable of accurately estimating turbine-generator output and providing more reliable results than the PEPSE® based turbine cycle models. Moreover, test results show that the ANFIS performed better than the artificial neural network (ANN, which has also being tried to model the turbine cycle. The effectiveness of the proposed neuro-fuzzy based turbine cycle model was demonstrated using the actual operating data of Kuosheng NPP. Furthermore, the results also provide an alternative approach to evaluate the thermal performance of nuclear power plants.

  12. New Grapheme Generation Rules for Two-Stage Modelbased Grapheme-to-Phoneme Conversion

    Directory of Open Access Journals (Sweden)

    Seng Kheang

    2015-01-01

    Full Text Available The precise conversion of arbitrary text into its  corresponding phoneme sequence (grapheme-to-phoneme or G2P conversion is implemented in speech synthesis and recognition, pronunciation learning software, spoken term detection and spoken document retrieval systems. Because the quality of this module plays an important role in the performance of such systems and many problems regarding G2P conversion have been reported, we propose a novel two-stage model-based approach, which is implemented using an existing weighted finite-state transducer-based G2P conversion framework, to improve the performance of the G2P conversion model. The first-stage model is built for automatic conversion of words  to phonemes, while  the second-stage  model utilizes the input graphemes and output phonemes obtained from the first stage to determine the best final output phoneme sequence. Additionally, we designed new grapheme generation rules, which enable extra detail for the vowel and consonant graphemes appearing within a word. When compared with previous approaches, the evaluation results indicate that our approach using rules focusing on the vowel graphemes slightly improved the accuracy of the out-of-vocabulary dataset and consistently increased the accuracy of the in-vocabulary dataset.

  13. dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter

    International Nuclear Information System (INIS)

    Altin, Necmi; Sefa, İbrahim

    2012-01-01

    Highlights: ► We propose a dSPACE based neuro-fuzzy controlled grid interactive inverter. ► The membership functions and rule base of fuzzy logic controller by using ANFIS. ► A LCL output filter is designed. ► A high performance controller is designed. - Abstract: In this study, design, simulation and implementation of a dSPACE based grid interactive voltage source inverter are proposed. This inverter has adaptive neuro-fuzzy controller and capable of importing electrical energy, generated from renewable energy sources such as the wind, the solar and the fuel cells to the grid. A line frequency transformer and a LCL filter are used at the output of the grid interactive inverter which is designed as current controlled to decrease the susceptibility to phase errors. Membership functions and rule base of the fuzzy logic controller, which control the inverter output current, are determined by using artificial neural networks. Both simulation and experimental results show that, the grid interactive inverter operates synchronously with the grid. The inverter output current which is imported to the grid is in sinusoidal waveform and the harmonic level of it meets the international standards (4.3 < 5.0%). In addition, simulation and experimental results of the neuro-fuzzy and the PI controlled inverter are given together and compared in detail. Simulation and experimental results show that the proposed inverter has faster response to the reference variations and lower steady state error than PI controller.

  14. Hierarchical fuzzy control of low-energy building systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhen; Dexter, Arthur [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  15. Fuzzy-logic based learning style prediction in e-learning using web ...

    Indian Academy of Sciences (India)

    tion, especially in web environments and proposes to use Fuzzy rules to handle the uncertainty in .... learning in safe and supportive environment ... working of the proposed Fuzzy-logic based learning style prediction in e-learning. Section 4.

  16. A rule-based expert system for generating control displays at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Coulter, K.J.

    1993-01-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool

  17. A rule-based expert system for generating control displays at the advanced photon source

    International Nuclear Information System (INIS)

    Coulter, K.J.

    1994-01-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool. ((orig.))

  18. Structural Completeness in Fuzzy Logics

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr; Metcalfe, G.

    2009-01-01

    Roč. 50, č. 2 (2009), s. 153-183 ISSN 0029-4527 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : structral logics * fuzzy logics * structural completeness * admissible rules * primitive variety * residuated lattices Subject RIV: BA - General Mathematics

  19. Fuzzy promises

    DEFF Research Database (Denmark)

    Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas

    2012-01-01

    as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....

  20. Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic

    Science.gov (United States)

    Mercan, D. E.; Yagci, O.; Kabdasli, S.

    2003-04-01

    In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.

  1. Enric Trillas a passion for fuzzy sets : a collection of recent works on fuzzy logic

    CERN Document Server

    Verdegay, Jose; Esteva, Francesc

    2015-01-01

    This book presents a comprehensive collection of the latest and most significant research advances and applications in the field of fuzzy logic. It covers fuzzy structures, rules, operations and mathematical formalisms, as well as important applications of fuzzy logic in a number of fields, like decision-making, environmental prediction and prevention, communication, controls and many others. Dedicated to Enric Trillas in recognition of his pioneering research in the field, the book also includes a foreword by Lotfi A. Zadeh and an outlook on the future of fuzzy logic.

  2. Zero NDZ assessment for anti-islanding protection using wavelet analysis and neuro-fuzzy system in inverter based distributed generation

    International Nuclear Information System (INIS)

    Shayeghi, H.; Sobhani, B.

    2014-01-01

    Highlights: • Reduction of NDZ nearly to zero by proposed passive time–frequency islanding detection algorithm. • Avoiding of threshold selection based on neuro-fuzzy learning system. • Unchanged of power quality against active detection techniques. • Separate islanding condition from other switching condition. - Abstract: Due to increase of electrical power demand, several uncommon sources mainly voltage source converter (VSC) based distributed generations (DGs) have been included into the power systems which increased the systems complexity and uncertainty. One of the most problem of DGs is unwanted islanding. This paper addresses a reliable passive time–frequency islanding detection algorithm using the multi signal analysis method. In addition, Adaptive Neuro Fuzzy Learning System (ANFIS) is used for decision making mechanism to avoid of threshold. Reduction of non detection zone (NDZ) is another contribution of this study. At first, all possible linear and nonlinear load switching, motor starting, capacitor bank switching, and islanding conditions are simulated and the required detection parameters measured. Using the discrete wavelet theory, the energy of any decomposition level of all mother wavelet for parameters detection is calculated. From of these signals, the best of them are selected for ANFIS training for islanding detection purpose. Simulation results confirm the performance of the proposed detection algorithm in comparison with existing methods

  3. Novel power flow problem solutions method’s based on genetic algorithm optimization for banks capacitor compensation using an fuzzy logic rule bases for critical nodal detections

    OpenAIRE

    Abdelfatah, Nasri; Brahim, Gasbaoui

    2011-01-01

    The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s  cause’s active power transmission reduction, power losses decreasing, and  the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF) combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC) algorithm for critical nodal de...

  4. Design of fuzzy systems using neurofuzzy networks.

    Science.gov (United States)

    Figueiredo, M; Gomide, F

    1999-01-01

    This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.

  5. Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions

    Science.gov (United States)

    Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi

    2015-01-01

    In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452

  6. Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning

    Directory of Open Access Journals (Sweden)

    Ya’nan Wang

    2016-01-01

    Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.

  7. Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm

    Science.gov (United States)

    Mittal, Ruchi; Kaur, Magandeep

    2010-11-01

    In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.

  8. Widespread neural oscillations in the delta band dissociate rule convergence from rule divergence during creative idea generation

    NARCIS (Netherlands)

    Boot, N.; Baas, M.; Mühlfeld, E.; de Dreu, C.K.W.; van Gaal, S.

    Critical to creative cognition and performance is both the generation of multiple alternative solutions in response to open-ended problems (divergent thinking) and a series of cognitive operations that converges on the correct or best possible answer (convergent thinking). Although the neural

  9. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    Science.gov (United States)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  10. Modeling and control of an unstable system using probabilistic fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Sozhamadevi N.

    2015-09-01

    Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.

  11. Fuzzy Dynamic Discrimination Algorithms for Distributed Knowledge Management Systems

    Directory of Open Access Journals (Sweden)

    Vasile MAZILESCU

    2010-12-01

    Full Text Available A reduction of the algorithmic complexity of the fuzzy inference engine has the following property: the inputs (the fuzzy rules and the fuzzy facts can be divided in two parts, one being relatively constant for a long a time (the fuzzy rule or the knowledge model when it is compared to the second part (the fuzzy facts for every inference cycle. The occurrence of certain transformations over the constant part makes sense, in order to decrease the solution procurement time, in the case that the second part varies, but it is known at certain moments in time. The transformations attained in advance are called pre-processing or knowledge compilation. The use of variables in a Business Rule Management System knowledge representation allows factorising knowledge, like in classical knowledge based systems. The language of the first-degree predicates facilitates the formulation of complex knowledge in a rigorous way, imposing appropriate reasoning techniques. It is, thus, necessary to define the description method of fuzzy knowledge, to justify the knowledge exploiting efficiency when the compiling technique is used, to present the inference engine and highlight the functional features of the pattern matching and the state space processes. This paper presents the main results of our project PR356 for designing a compiler for fuzzy knowledge, like Rete compiler, that comprises two main components: a static fuzzy discrimination structure (Fuzzy Unification Tree and the Fuzzy Variables Linking Network. There are also presented the features of the elementary pattern matching process that is based on the compiled structure of fuzzy knowledge. We developed fuzzy discrimination algorithms for Distributed Knowledge Management Systems (DKMSs. The implementations have been elaborated in a prototype system FRCOM (Fuzzy Rule COMpiler.

  12. Defuzzification Strategies for Fuzzy Classifications of Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Peter Hofmann

    2016-06-01

    Full Text Available The classes in fuzzy classification schemes are defined as fuzzy sets, partitioning the feature space through fuzzy rules, defined by fuzzy membership functions. Applying fuzzy classification schemes in remote sensing allows each pixel or segment to be an incomplete member of more than one class simultaneously, i.e., one that does not fully meet all of the classification criteria for any one of the classes and is member of more than one class simultaneously. This can lead to fuzzy, ambiguous and uncertain class assignation, which is unacceptable for many applications, indicating the need for a reliable defuzzification method. Defuzzification in remote sensing has to date, been performed by “crisp-assigning” each fuzzy-classified pixel or segment to the class for which it best fulfills the fuzzy classification rules, regardless of its classification fuzziness, uncertainty or ambiguity (maximum method. The defuzzification of an uncertain or ambiguous fuzzy classification leads to a more or less reliable crisp classification. In this paper the most common parameters for expressing classification uncertainty, fuzziness and ambiguity are analysed and discussed in terms of their ability to express the reliability of a crisp classification. This is done by means of a typical practical example from Object Based Image Analysis (OBIA.

  13. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  14. System Diagnostic Builder - A rule generation tool for expert systems that do intelligent data evaluation. [applied to Shuttle Mission Simulator

    Science.gov (United States)

    Nieten, Joseph; Burke, Roger

    1993-01-01

    Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.

  15. Integrated development environment for fuzzy logic applications

    Science.gov (United States)

    Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido; Lo Presti, Matteo

    1993-12-01

    During the last five years, Fuzzy Logic has gained enormous popularity, both in the academic and industrial worlds, breaking up the traditional resistance against changes thanks to its innovative approach to problems formalization. The success of this new methodology is pushing the creation of a brand new class of devices, called Fuzzy Machines, to overcome the limitations of traditional computing systems when acting as Fuzzy Systems and adequate Software Tools to efficiently develop new applications. This paper aims to present a complete development environment for the definition of fuzzy logic based applications. The environment is also coupled with a sophisticated software tool for semiautomatic synthesis and optimization of the rules with stability verifications. Later it is presented the architecture of WARP, a dedicate VLSI programmable chip allowing to compute in real time a fuzzy control process. The article is completed with two application examples, which have been carried out exploiting the aforementioned tools and devices.

  16. A study on development of a rule based expert system for steam generator life extension

    International Nuclear Information System (INIS)

    Park, Jin Kyun

    1994-02-01

    The need of predicting the integrity of the steam generator(SG) tubes and environmental conditions that affect their integrity is growing to secure nuclear power plant(NPP) safety and enhance plant availability. To achieve their objectives it is important to diagnose the integrity of the SG tubes. An expert system called FEMODES(failure mode diagnosis expert system) has been developed for diagnosis of such tube degradation phenomena as denting, intergranular attack(IGA) and stress corrosion cracking(SCC) in the secondary side of the SG. It is possible with use of FEMODES to estimate possibilities of SG tube degradation and diagnosis environmental conditions that influence such tube degradation. The method of certainty factor theory(CFT) and the rule based backward reasoning inference strategy are used to develop FEMODES. The information required for diagnosis is acquired from SG tube degradation experiences of two local reference plants, some limited oversea plants and technical reports/research papers about such tube degradation. Overall results estimated with use of FEMODES are in reasonable agreement with actual SG tube degradation. Some discrepancy observed in several estimated values of SG tube degradation appears to be due to insufficient heuristic knowledge for knowledge data base of FEMODES

  17. Evaluation of a Multi-Variable Self-Learning Fuzzy Logic Controller ...

    African Journals Online (AJOL)

    In spite of the usefulness of fuzzy control, its main drawback comes from lack of a systematic control design methodology. The most challenging aspect of the design of a fuzzy logic controller is the elicitation of the control rules for its rule base. In this paper, a scheme capable of elicitation of acceptable rules for multivariable ...

  18. Applicability of Alignment and Combination Rules to Burst Pressure Prediction of Multiple-flawed Steam Generator Tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Woo; Kim, Ji Seok; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Jeon, Jun Young [Doosan Heavy Industries and Consruction, Seoul (Korea, Republic of); Lee, Dong Min [Korea Plant Service and Engineering, Technical Research and Development Institute, Naju (Korea, Republic of)

    2016-05-15

    Alignment and combination rules are provided by various codes and standards. These rules are used to determine whether multiple flaws should be treated as non-aligned or as coplanar, and independent or combined flaws. Experimental results on steam generator (SG) tube specimens containing multiple axial part-through-wall (PTW) flaws at room temperature (RT) are compared with assessment results based on the alignment and combination rules of the codes and standards. In case of axial collinear flaws, ASME, JSME, and BS7910 treated multiple flaws as independent flaws and API 579, A16, and FKM treated multiple flaws as combined single flaw. Assessment results of combined flaws were conservative. In case of axial non-aligned flaws, almost flaws were aligned and assessment results well correlate with experimental data. In case of axial parallel flaws, both effective flaw lengths of aligned flaws and separated flaws was are same because of each flaw length were same. This study investigates the applicability of alignment and combination rules for multiple flaws on the failure behavior of Alloy 690TT steam generator (SG) tubes that widely used in the nuclear power plan. Experimental data of burst tests on Alloy 690TT tubes with single and multiple flaws that conducted at room temperature (RT) by Kim el al. compared with the alignment rules of these codes and standards. Burst pressure of SG tubes with flaws are predicted using limit load solutions that provide by EPRI Handbook.

  19. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  20. "Fuzzy stuff"

    DEFF Research Database (Denmark)

    Christensen, Line Hjorth

    "Fuzzy stuff". Exploring the displacement of the design sketch. What kind of knowledge can historical sketches reveal when they have outplayed their primary instrumental function in the design process and are moved into a museum collection? What are the rational benefits of ‘archival displacement...

  1. Redundant sensor validation by using fuzzy logic

    International Nuclear Information System (INIS)

    Holbert, K.E.; Heger, A.S.; Alang-Rashid, N.K.

    1994-01-01

    This research is motivated by the need to relax the strict boundary of numeric-based signal validation. To this end, the use of fuzzy logic for redundant sensor validation is introduced. Since signal validation employs both numbers and qualitative statements, fuzzy logic provides a pathway for transforming human abstractions into the numerical domain and thus coupling both sources of information. With this transformation, linguistically expressed analysis principles can be coded into a classification rule-base for signal failure detection and identification

  2. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  3. Qualitative assessment of environmental impacts through fuzzy logic

    International Nuclear Information System (INIS)

    Peche G, Roberto

    2008-01-01

    The vagueness of many concepts usually utilized in environmental impact studies, along with frequent lack of quantitative information, suggests that fuzzy logic can be applied to carry out qualitative assessment of such impacts. This paper proposes a method for valuing environmental impacts caused by projects, based on fuzzy sets theory and methods of approximate reasoning. First, impacts must be described by a set of features. A linguistic variable is assigned to each feature, whose values are fuzzy sets. A fuzzy evaluation of environmental impacts is achieved using rule based fuzzy inference and the estimated fuzzy value of each feature. Generalized modus ponens has been the inference method. Finally, a crisp value of impact is attained by aggregation and defuzzification of all fuzzy results

  4. Fuzzy Logic and Its Application in Football Team Ranking

    Directory of Open Access Journals (Sweden)

    Wenyi Zeng

    2014-01-01

    some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T7, T3, T1, T9, T10, T8, T11, T12, T2, T6, T5, T4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range.

  5. Relational Demonic Fuzzy Refinement

    OpenAIRE

    Tchier, Fairouz

    2014-01-01

    We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join $({\\bigsqcup }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , fuzzy demonic meet $({\\sqcap }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , and fuzzy demonic composition $({\\square }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ . Our definitions and properties are illustrated by some examples using ma...

  6. Fuzzy audit risk modeling algorithm

    Directory of Open Access Journals (Sweden)

    Zohreh Hajihaa

    2011-07-01

    Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.

  7. Pengembangan Sistem Proteksi Digital Arus Lebih Berbasis Logika Fuzzy sebagai Pengaman PLTMH

    Directory of Open Access Journals (Sweden)

    Cahayahati

    2013-09-01

    Full Text Available In this paper discussed digital overcurrent protection system fuzzy logic on plant systems or Micro Hydro Power Plants with fuzzy logic approach to the identification of the signal changes due to interference overcurrent short circuit the lifeboat station on the system. A digital overcurrent protection with a fuzzy logic-based method and the rules set if-then, fuzzification and defazzification which has 2 inputs are crisp and delta error and error the actual fault current has a crisp output 1 to input changes in current to drive the relay breaker. This system consists of a hardware system with microcontroller (mc ATMega8535 and other series as well as software that helps in the protection process performance Delpi 7 computer using fuzzy logic and program using C language and dicompel with CodeVisionAVR software and uploaded to the microcontroller using ponyprog2000 ATMega8535. The success of a prototype digital overcurrent protection system was tested on a fuzzy logic system voltage of 220 volts with a simple system technique burdened beyond any current settings and calculated over a given working time protection relay. After testing and calculations, then the inverse Characteristics of digital protection between the current disruption to the working time protection can be envisaged that a larger fault current less time working to secure protection from interference generating systems.

  8. Fast and fuzzy multi-objective radiotherapy treatment plan generation for head and neck cancer patients with the lexicographic reference point method (LRPM)

    Science.gov (United States)

    van Haveren, Rens; Ogryczak, Włodzimierz; Verduijn, Gerda M.; Keijzer, Marleen; Heijmen, Ben J. M.; Breedveld, Sebastiaan

    2017-06-01

    Previously, we have proposed Erasmus-iCycle, an algorithm for fully automated IMRT plan generation based on prioritised (lexicographic) multi-objective optimisation with the 2-phase ɛ-constraint (2pɛc) method. For each patient, the output of Erasmus-iCycle is a clinically favourable, Pareto optimal plan. The 2pɛc method uses a list of objective functions that are consecutively optimised, following a strict, user-defined prioritisation. The novel lexicographic reference point method (LRPM) is capable of solving multi-objective problems in a single optimisation, using a fuzzy prioritisation of the objectives. Trade-offs are made globally, aiming for large favourable gains for lower prioritised objectives at the cost of only slight degradations for higher prioritised objectives, or vice versa. In this study, the LRPM is validated for 15 head and neck cancer patients receiving bilateral neck irradiation. The generated plans using the LRPM are compared with the plans resulting from the 2pɛc method. Both methods were capable of automatically generating clinically relevant treatment plans for all patients. For some patients, the LRPM allowed large favourable gains in some treatment plan objectives at the cost of only small degradations for the others. Moreover, because of the applied single optimisation instead of multiple optimisations, the LRPM reduced the average computation time from 209.2 to 9.5 min, a speed-up factor of 22 relative to the 2pɛc method.

  9. Scalability of a Methodology for Generating Technical Trading Rules with GAPs Based on Risk-Return Adjustment and Incremental Training

    Science.gov (United States)

    de La Cal, E. A.; Fernández, E. M.; Quiroga, R.; Villar, J. R.; Sedano, J.

    In previous works a methodology was defined, based on the design of a genetic algorithm GAP and an incremental training technique adapted to the learning of series of stock market values. The GAP technique consists in a fusion of GP and GA. The GAP algorithm implements the automatic search for crisp trading rules taking as objectives of the training both the optimization of the return obtained and the minimization of the assumed risk. Applying the proposed methodology, rules have been obtained for a period of eight years of the S&P500 index. The achieved adjustment of the relation return-risk has generated rules with returns very superior in the testing period to those obtained applying habitual methodologies and even clearly superior to Buy&Hold. This work probes that the proposed methodology is valid for different assets in a different market than previous work.

  10. Novel Power Flow Problem Solutions Method’s Based on Genetic Algorithm Optimization for Banks Capacitor Compensation Using an Fuzzy Logic Rule Bases for Critical Nodal Detections

    Directory of Open Access Journals (Sweden)

    Nasri Abdelfatah

    2011-01-01

    Full Text Available The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s  cause’s active power transmission reduction, power losses decreasing, and  the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC algorithm for critical nodal detection and gentic algorithm  optimization (GAO algorithm for optimal seizing capacitor.GAO method is more efficient in combinatory problem solutions. The proposed approach has been examined and tested on the standard IEEE 57-bus the resulats show the power loss minimization denhancement, voltage profile, and stability improvement. The proposed approach results have been compared to those that reported in the literature recently. The results are promising and show the effectiveness and robustness of the proposed approach.

  11. Generating Li–Yorke chaos in a stable continuous-time T–S fuzzy model via time-delay feedback control

    International Nuclear Information System (INIS)

    Qiu-Ye, Sun; Hua-Guang, Zhang; Yan, Zhao

    2010-01-01

    This paper investigates the chaotification problem of a stable continuous-time T–S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T–S fuzzy system with time-delay and a discrete-time T–S fuzzy system is established. Based on the discrete-time T–S fuzzy system, it proves that the chaos in the discrete-time T–S fuzzy system satisfies the Li–Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example. (general)

  12. Adaptive time-variant models for fuzzy-time-series forecasting.

    Science.gov (United States)

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  13. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Kim, Dong Yun

    1997-02-01

    In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate adequate gains, which minimize the error of system. The proposed algorithm can reduce the time and efforts required for obtaining the fuzzy rules through the intelligent learning function. The evolutionary programming algorithm is modified and adopted as the method in order to find the optimal gains which are used as the initial gains of FGS with learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller

  14. Identifying desertification risk areas using fuzzy membership and ...

    Indian Academy of Sciences (India)

    An integrated model with fuzzy membership analysis, fuzzy rule- ... major sources of desertification in Kota are, namely Gully and Ravine erosion, inappropriate ... plant production, soil health and water quantity ..... fied for implementing preventive methods to check ...... Determination and management in soil physical proper-.

  15. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  16. Control of a mechanical gripper with a fuzzy controller

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-01-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  17. Fuzzy Adaptation Algorithms’ Control for Robot Manipulators with Uncertainty Modelling Errors

    Directory of Open Access Journals (Sweden)

    Yongqing Fan

    2018-01-01

    Full Text Available A novel fuzzy control scheme with adaptation algorithms is developed for robot manipulators’ system. At the beginning, one adjustable parameter is introduced in the fuzzy logic system, the robot manipulators system with uncertain nonlinear terms as the master device and a reference model dynamic system as the slave robot system. To overcome the limitations such as online learning computation burden and logic structure in conventional fuzzy logic systems, a parameter should be used in fuzzy logic system, which composes fuzzy logic system with updated parameter laws, and can be formed for a new fashioned adaptation algorithms controller. The error closed-loop dynamical system can be stabilized based on Lyapunov analysis, the number of online learning computation burdens can be reduced greatly, and the different kinds of fuzzy logic systems with fuzzy rules or without any fuzzy rules are also suited. Finally, effectiveness of the proposed approach has been shown in simulation example.

  18. Proposal for Classifying the Severity of Speech Disorder Using a Fuzzy Model in Accordance with the Implicational Model of Feature Complexity

    Science.gov (United States)

    Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia

    2012-01-01

    The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed…

  19. Fuzzy logic and its possibility using in automation of small-scale hydroelectric power plants regulation

    International Nuclear Information System (INIS)

    Puskajler, J.

    2004-01-01

    The paper explains how can computer understand and process inaccurate (indefinite) information. It is processing of terms like e.g. 'around in the middle of month' or 'not too big'. Fuzzy logic, fuzzy sets, operations with them, fuzzy rules and using of linguistics variables are explained. The possibilities of application of fuzzy systems in automation of regulation of small-scale hydro power plants are discussed. (author)

  20. Fuzzy Control of Robotic Arm

    Science.gov (United States)

    Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.

  1. Study on intelligence fault diagnosis method for nuclear power plant equipment based on rough set and fuzzy neural network

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xia Hong; Xie Chunli; Chen Zhihui; Chen Hongxia

    2007-01-01

    Rough set theory and fuzzy neural network are combined, to take full advantages of the two of them. Based on the reduction technology to knowledge of Rough set method, and by drawing the simple rule from a large number of initial data, the fuzzy neural network was set up, which was with better topological structure, improved study speed, accurate judgment, strong fault-tolerant ability, and more practical. In order to test the validity of the method, the inverted U-tubes break accident of Steam Generator and etc are used as examples, and many simulation experiments are performed. The test result shows that it is feasible to incorporate the fault intelligence diagnosis method based on rough set and fuzzy neural network in the nuclear power plant equipment, and the method is simple and convenience, with small calculation amount and reliable result. (authors)

  2. Membership Functions for Fuzzy Focal Elements

    Directory of Open Access Journals (Sweden)

    Porębski Sebastian

    2016-09-01

    Full Text Available The paper presents a study on data-driven diagnostic rules, which are easy to interpret by human experts. To this end, the Dempster-Shafer theory extended for fuzzy focal elements is used. Premises of the rules (fuzzy focal elements are provided by membership functions which shapes are changing according to input symptoms. The main aim of the present study is to evaluate common membership function shapes and to introduce a rule elimination algorithm. Proposed methods are first illustrated with the popular Iris data set. Next experiments with five medical benchmark databases are performed. Results of the experiments show that various membership function shapes provide different inference efficiency but the extracted rule sets are close to each other. Thus indications for determining rules with possible heuristic interpretation can be formulated.

  3. Neuro-fuzzy modelling of hydro unit efficiency

    International Nuclear Information System (INIS)

    Iliev, Atanas; Fushtikj, Vangel

    2003-01-01

    This paper presents neuro-fuzzy method for modeling of the hydro unit efficiency. The proposed method uses the characteristics of the fuzzy systems as universal function approximates, as well the abilities of the neural networks to adopt the parameters of the membership's functions and rules in the consequent part of the developed fuzzy system. Developed method is practically applied for modeling of the efficiency of unit which will be installed in the hydro power plant Kozjak. Comparison of the performance of the derived neuro-fuzzy method with several classical polynomials models is also performed. (Author)

  4. A Fuzzy Control Course on the TED Server

    DEFF Research Database (Denmark)

    Dotoli, Mariagrazia; Jantzen, Jan

    1999-01-01

    , an educational server that serves as a learning central for students and professionals working with fuzzy logic. Through the server, TED offers an online course on fuzzy control. The course concerns automatic control of an inverted pendulum, with a focus on rule based control by means of fuzzy logic. A ball......The Training and Education Committee (TED) is a committee under ERUDIT, a Network of Excellence for fuzzy technology and uncertainty in Europe. The main objective of TED is to improve the training and educational possibilities for the nodes of ERUDIT. Since early 1999, TED has set up the TED server...

  5. Driver's Behavior Modeling Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Sehraneh Ghaemi

    2010-01-01

    Full Text Available In this study, we propose a hierarchical fuzzy system for human in a driver-vehicle-environment system to model takeover by different drivers. The driver's behavior is affected by the environment. The climate, road and car conditions are included in fuzzy modeling. For obtaining fuzzy rules, experts' opinions are benefited by means of questionnaires on effects of parameters such as climate, road and car conditions on driving capabilities. Also the precision, age and driving individuality are used to model the driver's behavior. Three different positions are considered for driving and decision making. A fuzzy model called Model I is presented for modeling the change of steering angle and speed control by considering time distances with existing cars in these three positions, the information about the speed and direction of car, and the steering angle of car. Also we obtained two other models based on fuzzy rules called Model II and Model III by using Sugeno fuzzy inference. Model II and Model III have less linguistic terms than Model I for the steering angle and direction of car. The results of three models are compared for a driver who drives based on driving laws.

  6. Introduction to fuzzy systems

    CERN Document Server

    Chen, Guanrong

    2005-01-01

    Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on th

  7. Automatic approach to deriving fuzzy slope positions

    Science.gov (United States)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  8. Fuzzy logic for structural system control

    Directory of Open Access Journals (Sweden)

    Herbert Martins Gomes

    Full Text Available This paper provides some information and numerical tests that aims to investigate the use of a Fuzzy Controller applied to control systems. Some advantages are reported regarding the use of this controller, such as the characteristic ease of implementation due to its semantic feature in the statement of the control rules. On the other hand, it is also hypothesized that these systems have a lower performance loss when the system to be controlled is nonlinear or has time varying parameters. Numerical tests are performed using modal LQR optimal control and Fuzzy control of non-collocated systems with full state feedback in a two-dimensional structure. The paper proposes a way of designing a controller that may be a supervisory Fuzzy controller for a traditional controller or even a fuzzy controller independent from the traditional control, consisting on individual mode controllers. Some comments are drawn regarding the performance of these proposals in a number of arrangements.

  9. reactor power control using fuzzy logic

    International Nuclear Information System (INIS)

    Ahmed, A.E.E.

    2001-01-01

    power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller

  10. Fuzzy logic guided inverse treatment planning

    International Nuclear Information System (INIS)

    Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho

    2003-01-01

    A fuzzy logic technique was applied to optimize the weighting factors in the objective function of an inverse treatment planning system for intensity-modulated radiation therapy (IMRT). Based on this technique, the optimization of weighting factors is guided by the fuzzy rules while the intensity spectrum is optimized by a fast-monotonic-descent method. The resultant fuzzy logic guided inverse planning system is capable of finding the optimal combination of weighting factors for different anatomical structures involved in treatment planning. This system was tested using one simulated (but clinically relevant) case and one clinical case. The results indicate that the optimal balance between the target dose and the critical organ dose is achieved by a refined combination of weighting factors. With the help of fuzzy inference, the efficiency and effectiveness of inverse planning for IMRT are substantially improved

  11. FUZZY-GENETIC CONTROL OF QUADROTOR UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    Attila Nemes

    2016-03-01

    Full Text Available This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the equations of motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation results of the proposed new quadrotor dynamic model identification method are promising.

  12. Self tuning fuzzy PID type load and frequency controller

    International Nuclear Information System (INIS)

    Yesil, E.; Guezelkaya, M.; Eksin, I.

    2004-01-01

    In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices

  13. Robust position control of induction motor using fuzzy logic control

    International Nuclear Information System (INIS)

    Kim, Sei Chan; Kim, Duk Hun; Yang, Seung Ho; Won, Chung Yuen

    1993-01-01

    In recent years, fuzzy logic or fuzzy set theory has reveived attention of a number of researchers in the area of power electronics and motion control. The paper describes a vector-controlled induction motor position servo drive where fuzzy control is used to get robustness against parameter variation and load torque disturbance effects. Both coarse and fine control with the help of look-up rule tables are used to improve transient response and system settling time. The performance characteristics are then compared with those of proportional-integral(PI) control. The simulation results clearly indicate the superiority of fuzzy control with larger number of rules. The fuzzy controller was implemented with a 16-bit microprocessor and tested in laboratory on a 3-hp IGBT inverter induction motor drive system. The test results verify the simulation performance. (Author)

  14. Self-learning fuzzy controllers based on temporal back propagation

    Science.gov (United States)

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  15. Gain Scheduling of PID Controller Based on Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2016-01-01

    Full Text Available This paper aims to utilize fuzzy rules and reasoning to determine the controller parameters and the PID controller generates the control signal. The objective of this study is to simulate the proposed scheme on various processes and arrive at results providing better response of the system when compared with best industrial auto-tuning technique: Ziegler-Nichols. The proposed scheme is based upon the Ultimate Gain (Ku and the Period (Tu of the system. The error and rate of change in error gains are tuned manually to get the desired response using LabVIEW. This can also be done with various optimization techniques. A thumb rule for choosing the ranges for Kc, Kd and Ki has been obtained experimentally.

  16. Advances in type-2 fuzzy sets and systems theory and applications

    CERN Document Server

    Mendel, Jerry; Tahayori, Hooman

    2013-01-01

    This book explores recent developments in the theoretical foundations and novel applications of general and interval type-2 fuzzy sets and systems, including: algebraic properties of type-2 fuzzy sets, geometric-based definition of type-2 fuzzy set operators, generalizations of the continuous KM algorithm, adaptiveness and novelty of interval type-2 fuzzy logic controllers, relations between conceptual spaces and type-2 fuzzy sets, type-2 fuzzy logic systems versus perceptual computers; modeling human perception of real world concepts with type-2 fuzzy sets, different methods for generating membership functions of interval and general type-2 fuzzy sets, and applications of interval type-2 fuzzy sets to control, machine tooling, image processing and diet.  The applications demonstrate the appropriateness of using type-2 fuzzy sets and systems in real world problems that are characterized by different degrees of uncertainty.

  17. Fuzzy-based HAZOP study for process industry

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Junkeon; Chang, Daejun, E-mail: djchang@kaist.edu

    2016-11-05

    Highlights: • HAZOP is the important technique to evaluate system safety and its risks while process operations. • Fuzzy theory can handle the inherent uncertainties of process systems for the HAZOP. • Fuzzy-based HAZOP considers the aleatory and epistemic uncertainties and provides the risk level with less uncertainty. • Risk acceptance criteria should be considered regarding the transition region for each risk. - Abstract: This study proposed a fuzzy-based HAZOP for analyzing process hazards. Fuzzy theory was used to express uncertain states. This theory was found to be a useful approach to overcome the inherent uncertainty in HAZOP analyses. Fuzzy logic sharply contrasted with classical logic and provided diverse risk values according to its membership degree. Appropriate process parameters and guidewords were selected to describe the frequency and consequence of an accident. Fuzzy modeling calculated risks based on the relationship between the variables of an accident. The modeling was based on the mean expected value, trapezoidal fuzzy number, IF-THEN rules, and the center of gravity method. A cryogenic LNG (liquefied natural gas) testing facility was the objective process for the fuzzy-based and conventional HAZOPs. The most significant index is the frequency to determine risks. The comparison results showed that the fuzzy-based HAZOP provides better sophisticated risks than the conventional HAZOP. The fuzzy risk matrix presents the significance of risks, negligible risks, and necessity of risk reduction.

  18. Planning projects for generation of electrical energy in the state of Sao Paulo, according to the degree of interference on air quality: an atmospheric qualification index using fuzzy sets; Ordenamento de projetos de geracao de energia eletrica no estado de Sao Paulo, segundo o grau de interferencia na qualidade do ar: um indice de qualificacao atmosferica (IQA) utilizando fuzzy sets

    Energy Technology Data Exchange (ETDEWEB)

    Dzedzej, Maira; Maciel, Jonas Fernandes; Santos, Afonso Henrique Moreira [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil); Duarte, Pamella Santos [MS Consultoria Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2010-07-01

    Environmental issues are of great importance when assessing the feasibility and priority installation of new developments in electric power generation. In this sense, fuzzy logic can help define the regions that have favorable characteristics for receiving certain forms of generation. This study sought to order for the State of Sao Paulo, four kinds of generation projects: those using municipal solid waste gasification, those which make use of landfill gas with a change in firing (to reduce emissions), thermoelectric plants (TEPs) to bagasse (with 15% straw) and Small Hydropower (SHP). Such an ordering considered not only the type of generation but also the allocation of projects in the four regions, defined by regional vocations as defined by the State Water Resources Plan (Annex III of the State Law No. 9.034/94): Agriculture, Conservation, In Industrialization and Industrial. As a result, the use of fuzzy sets allowed the creation of a ranking of the alternatives (which totaled 14 possibilities), based exclusively on the degree of interference in air quality resulting from the installation of every form of generation. Such information may help the decision-making governing bodies to establish priorities in order, thereby accelerating the process of installation and operation of projects for generating electricity. (author)

  19. Intuitionistic supra fuzzy topological spaces

    International Nuclear Information System (INIS)

    Abbas, S.E.

    2004-01-01

    In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space

  20. IMPLEMENTING FUZZY LOGIC IN DETERMINING SELLING PRICE

    Directory of Open Access Journals (Sweden)

    Danny Prabowo Soetanto

    2000-01-01

    Full Text Available The determination of the price should meet certain criteria, both from the society and the company itself. The combination of various criteria will result in another problem. Fuzzy Logic covers all influencing factors and displays the membership function graphic. Furthermore, by implementing fuzzy rules and fuzzy operator, the right price can be determined which covers all the factors above. The determination of the rules is based on the raw material cost, direct labor cost, distribution cost and the customers' opinion regarding the appropriate price. Then, the model is designed with the help of Matlab software. The result is finally obtained in the form of a model performed by Matlab software. The model displays the output concerning the selling price of the product for each change in the dominant factors.

  1. Hesitant fuzzy sets theory

    CERN Document Server

    Xu, Zeshui

    2014-01-01

    This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...

  2. Fuzzy logic in management

    CERN Document Server

    Carlsson, Christer; Fullér, Robert

    2004-01-01

    Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...

  3. The zurich axioms: the rules of risk and reward used by generations of swiss bankers

    OpenAIRE

    Sousa, Ivo Dias de

    2015-01-01

    Recensão crítica à obra de Max Gunther, "The Zurich Axioms”, 2015 The Zurich Axioms” is a slim book that should be on the library of every investor and, perhaps, entrepreneur and manager. It is a book about risk management. The book delivers a collection of principles about how to deal with risk (12 major and 16 minor axioms). The axioms are a sort of rule of thumb for dealing with risk. Curiously, in a way, the axioms are more about dealing with the limitations of the human psyche than wi...

  4. Automating Software Development Process using Fuzzy Logic

    NARCIS (Netherlands)

    Marcelloni, Francesco; Aksit, Mehmet; Damiani, Ernesto; Jain, Lakhmi C.; Madravio, Mauro

    2004-01-01

    In this chapter, we aim to highlight how fuzzy logic can be a valid expressive tool to manage the software development process. We characterize a software development method in terms of two major components: artifact types and methodological rules. Classes, attributes, operations, and inheritance

  5. Fuzzy Logic Approach for the Prediction of Dross Formation in CO2 Laser Cutting of Mild Steel

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2015-11-01

    Full Text Available Dross free laser cutting is very important in the application of laser cutting technology. This paper focuses on the development of a fuzzy logic model to predict dross formation in CO2 laser oxygen cutting of mild steel. Laser cutting experiment, conducted according to Taguchi’s experimental design using L25 orthogonal array, provided a set of data for the development of a fuzzy rule base. The predicting fuzzy logic model is based on using Mamdani-type inference system. Developed fuzzy logic model considered the cutting speed, laser power and assist gas pressure as inputs. Using this model the effects of the selected laser cutting parameters on the dross formation were investigated. Additionally, 3-D surface plots were generated to study the interaction effects of the laser cutting parameters. The analysis revealed that the cutting speed has the most significant effect, followed by laser power and assist gas pressure. The results indicated that the fuzzy logic modeling approach can be effectively used for the dross formation prediction in CO2 laser cutting of mild steel.

  6. α-Cut method based importance measure for criticality analysis in fuzzy probability – Based fault tree analysis

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry; Sony Tjahyani, D.T.; Widodo, Surip; Tjahjono, Hendro

    2017-01-01

    Highlights: •FPFTA deals with epistemic uncertainty using fuzzy probability. •Criticality analysis is important for reliability improvement. •An α-cut method based importance measure is proposed for criticality analysis in FPFTA. •The α-cut method based importance measure utilises α-cut multiplication, α-cut subtraction, and area defuzzification technique. •Benchmarking confirm that the proposed method is feasible for criticality analysis in FPFTA. -- Abstract: Fuzzy probability – based fault tree analysis (FPFTA) has been recently developed and proposed to deal with the limitations of conventional fault tree analysis. In FPFTA, reliabilities of basic events, intermediate events and top event are characterized by fuzzy probabilities. Furthermore, the quantification of the FPFTA is based on fuzzy multiplication rule and fuzzy complementation rule to propagate uncertainties from basic event to the top event. Since the objective of the fault tree analysis is to improve the reliability of the system being evaluated, it is necessary to find the weakest path in the system. For this purpose, criticality analysis can be implemented. Various importance measures, which are based on conventional probabilities, have been developed and proposed for criticality analysis in fault tree analysis. However, not one of those importance measures can be applied for criticality analysis in FPFTA, which is based on fuzzy probability. To be fully applied in nuclear power plant probabilistic safety assessment, FPFTA needs to have its corresponding importance measure. The objective of this study is to develop an α-cut method based importance measure to evaluate and rank the importance of basic events for criticality analysis in FPFTA. To demonstrate the applicability of the proposed measure, a case study is performed and its results are then benchmarked to the results generated by the four well known importance measures in conventional fault tree analysis. The results

  7. Why fuzzy controllers should be fuzzy

    International Nuclear Information System (INIS)

    Nowe, A.

    1996-01-01

    Fuzzy controllers are usually looked at as crisp valued mappings especially when artificial intelligence learning techniques are used to build up the controller. By doing so the semantics of a fuzzy conclusion being a fuzzy restriction on the viable control actions is non-existing. In this paper the authors criticise from an approximation point of view using a fuzzy controller to express a crisp mapping does not seem the right way to go. Secondly it is illustrated that interesting information is contained in a fuzzy conclusion when indeed this conclusion is considered as a fuzzy restriction. This information turns out to be very valuable when viability problems are concerned, i.e. problems where the objective is to keep a system within predefined boundaries

  8. Fuzzy fractals, chaos, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.

  9. Fuzzy Neuroidal Nets and Recurrent Fuzzy Computations

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    2001-01-01

    Roč. 11, č. 6 (2001), s. 675-686 ISSN 1210-0552. [SOFSEM 2001 Workshop on Soft Computing. Piešťany, 29.11.2001-30.11.2001] R&D Projects: GA ČR GA201/00/1489; GA AV ČR KSK1019101 Institutional research plan: AV0Z1030915 Keywords : fuzzy computing * fuzzy neural nets * fuzzy Turing machines * non-uniform computational complexity Subject RIV: BA - General Mathematics

  10. Higgs data does not rule out a sequential fourth generation with an extended scalar sector

    Science.gov (United States)

    Das, Dipankar; Kundu, Anirban; Saha, Ipsita

    2018-01-01

    Contrary to common perception, we show that the current Higgs data does not eliminate the possibility of a sequential fourth generation that get their masses through the same Higgs mechanism as the first three generations. The inability to fix the sign of the bottom-quark Yukawa coupling from the available data plays a crucial role in accommodating a chiral fourth generation which is consistent with the bounds on the Higgs signal strengths. We show that effects of such a fourth generation can remain completely hidden not only in the production of the Higgs boson through gluon fusion but also to its subsequent decay to γ γ and Z γ . This, however, is feasible only if the scalar sector of the standard model is extended. We also provide a practical example illustrating how our general prescription can be embedded in a realistic model.

  11. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller

    Science.gov (United States)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  12. Pendekatan Adaptive Neuro Fuzzy Sebagai Alternatif Bagi Bank Indonesia Dalam Menentukan Tingkat Inflasi Di Indonesia

    Directory of Open Access Journals (Sweden)

    Armaini Akhirson

    2016-10-01

    Full Text Available In uncertain economic like today, research and modeling the inflation rate is considered necessary to provide estimates and predictions of inflation rates in the future. Adaptive Neuro Fuzzy approach is a combination of  Neural Network and Fuzzy Logic. This study aims to describe the movement ofinflation(output variable  so it can beestimated by observing four Indonesia's macroeconomic data, namely the exchange rate, money supply, interbank interest rates, and the output gap (input variable. Observation period started from the data in 20011 to 20113. After the learning process is complete, fuzzy systems generate 45 fuzzy rules that can define the input-output behavior. The results of this study indicate a fairly high degree of accuracy with an average error rate is 0.5315.

  13. Study on pattern recognition of Raman spectrum based on fuzzy neural network

    Science.gov (United States)

    Zheng, Xiangxiang; Lv, Xiaoyi; Mo, Jiaqing

    2017-10-01

    Hydatid disease is a serious parasitic disease in many regions worldwide, especially in Xinjiang, China. Raman spectrum of the serum of patients with echinococcosis was selected as the research object in this paper. The Raman spectrum of blood samples from healthy people and patients with echinococcosis are measured, of which the spectrum characteristics are analyzed. The fuzzy neural network not only has the ability of fuzzy logic to deal with uncertain information, but also has the ability to store knowledge of neural network, so it is combined with the Raman spectrum on the disease diagnosis problem based on Raman spectrum. Firstly, principal component analysis (PCA) is used to extract the principal components of the Raman spectrum, reducing the network input and accelerating the prediction speed and accuracy of Network based on remaining the original data. Then, the information of the extracted principal component is used as the input of the neural network, the hidden layer of the network is the generation of rules and the inference process, and the output layer of the network is fuzzy classification output. Finally, a part of samples are randomly selected for the use of training network, then the trained network is used for predicting the rest of the samples, and the predicted results are compared with general BP neural network to illustrate the feasibility and advantages of fuzzy neural network. Success in this endeavor would be helpful for the research work of spectroscopic diagnosis of disease and it can be applied in practice in many other spectral analysis technique fields.

  14. Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method

    Directory of Open Access Journals (Sweden)

    Seçil YALAZ

    2016-10-01

    Full Text Available Our work on regression and classification provides a new contribution to the analysis of time series used in many areas for years. Owing to the fact that convergence could not obtained with the methods used in autocorrelation fixing process faced with time series regression application, success is not met or fall into obligation of changing the models’ degree. Changing the models’ degree may not be desirable in every situation. In our study, recommended for these situations, time series data was fuzzified by using the simple membership function and fuzzy rule generation technique (SMRGT and to estimate future an equation has created by applying fuzzy least square regression (FLSR method which is a simple linear regression method to this data. Although SMRGT has success in determining the flow discharge in open channels and can be used confidently for flow discharge modeling in open canals, as well as in pipe flow with some modifications, there is no clue about that this technique is successful in fuzzy linear regression modeling. Therefore, in order to address the luck of such a modeling, a new hybrid model has been described within this study. In conclusion, to demonstrate our methods’ efficiency, classical linear regression for time series data and linear regression for fuzzy time series data were applied to two different data sets, and these two approaches performances were compared by using different measures.

  15. Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion

    Directory of Open Access Journals (Sweden)

    Didier Kumwimba Seya

    2015-11-01

    Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.

  16. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  17. Wide-range nuclear reactor temperature control using automatically tuned fuzzy logic controller

    International Nuclear Information System (INIS)

    Ramaswamy, P.; Edwards, R.M.; Lee, K.Y.

    1992-01-01

    In this paper, a fuzzy logic controller design for optimal reactor temperature control is presented. Since fuzzy logic controllers rely on an expert's knowledge of the process, they are hard to optimize. An optimal controller is used in this paper as a reference model, and a Kalman filter is used to automatically determine the rules for the fuzzy logic controller. To demonstrate the robustness of this design, a nonlinear six-delayed-neutron-group plant is controlled using a fuzzy logic controller that utilizes estimated reactor temperatures from a one-delayed-neutron-group observer. The fuzzy logic controller displayed good stability and performance robustness characteristics for a wide range of operation

  18. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  19. Fuzzy measures and integrals

    Czech Academy of Sciences Publication Activity Database

    Mesiar, Radko

    2005-01-01

    Roč. 28, č. 156 (2005), s. 365-370 ISSN 0165-0114 R&D Projects: GA ČR(CZ) GA402/04/1026 Institutional research plan: CEZ:AV0Z10750506 Keywords : fuzzy measures * fuzzy integral * regular fuzzy integral Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2005

  20. Fuzzy Graph Language Recognizability

    OpenAIRE

    Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros

    2012-01-01

    Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.

  1. Intuitionistic Fuzzy Subbialgebras and Duality

    Directory of Open Access Journals (Sweden)

    Wenjuan Chen

    2014-01-01

    Full Text Available We investigate connections between bialgebras and Atanassov’s intuitionistic fuzzy sets. Firstly we define an intuitionistic fuzzy subbialgebra of a bialgebra with an intuitionistic fuzzy subalgebra structure and also with an intuitionistic fuzzy subcoalgebra structure. Secondly we investigate the related properties of intuitionistic fuzzy subbialgebras. Finally we prove that the dual of an intuitionistic fuzzy strong subbialgebra is an intuitionistic fuzzy strong subbialgebra.

  2. Application of fuzzy logic in mapping the environmental impacts of hydroelectric power plants; Aplicacao da logica difusa no mapeamento de impactos ambientais em usinas hidreletricas

    Energy Technology Data Exchange (ETDEWEB)

    Melo, M.N.; Lambert-Torres, G.; Silva, L.E. Borges da [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], Emails: germanoltorres@gmail.com, leborges@unifei.edu.br; Rissino, S.; Silva, M.F. da [Universidade Federal de Rondonia (UFRO), Porto Velho, RO (Brazil)], e-mails: srissino@gmail.com, felipe@unir.br

    2009-07-01

    During the stages prior to installation of a large enterprise, there is an obligation to obtain an environmental license for its effectiveness. However, defining the relevance of an environmental impact generated by changes elapsed in a region, is something subjective, since some variables present qualitative definitions. Aiming to interrelate the variables that influence the environmental impacts in hydroelectric plants, was made the mapping of terms natural resources and degradation of the environment, and its defining variables, based on the theory of fuzzy logic. The construction of fuzzy propositions was based on the manipulation of a rule base, with the 'if' antecedent 'then' consequent structure. It was concluded that the use of fuzzy propositions for the study of environmental impact is an effective method to map the environmental impact caused by construction of a hydroelectric plant, because it defines the degree of influence of impact on the environment.

  3. Fuzzy Constraint-Based Agent Negotiation

    Institute of Scientific and Technical Information of China (English)

    Menq-Wen Lin; K. Robert Lai; Ting-Jung Yu

    2005-01-01

    Conflicts between two or more parties arise for various reasons and perspectives. Thus, resolution of conflicts frequently relies on some form of negotiation. This paper presents a general problem-solving framework for modeling multi-issue multilateral negotiation using fuzzy constraints. Agent negotiation is formulated as a distributed fuzzy constraint satisfaction problem (DFCSP). Fuzzy constrains are thus used to naturally represent each agent's desires involving imprecision and human conceptualization, particularly when lexical imprecision and subjective matters are concerned. On the other hand, based on fuzzy constraint-based problem-solving, our approach enables an agent not only to systematically relax fuzzy constraints to generate a proposal, but also to employ fuzzy similarity to select the alternative that is subject to its acceptability by the opponents. This task of problem-solving is to reach an agreement that benefits all agents with a high satisfaction degree of fuzzy constraints, and move towards the deal more quickly since their search focuses only on the feasible solution space. An application to multilateral negotiation of a travel planning is provided to demonstrate the usefulness and effectiveness of our framework.

  4. Development of a new fuzzy exposure model

    International Nuclear Information System (INIS)

    Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Texeira, Marcello Goulart

    2007-01-01

    The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)

  5. Development of a new fuzzy exposure model

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Engenharia de Reatores], E-mail: wagner@ufpe.br, E-mail: cabol@ufpe.br; Texeira, Marcello Goulart [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Terrestrial Modelling Group], E-mail: marcellogt@ime.eb.br

    2007-07-01

    The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)

  6. A Mamdani Adaptive Neural Fuzzy Inference System for Improvement of Groundwater Vulnerability.

    Science.gov (United States)

    Agoubi, Belgacem; Dabbaghi, Radhia; Kharroubi, Adel

    2018-01-23

    Assessing groundwater vulnerability is an important procedure for sustainable water management. Various methods have been developed for effective assessment of groundwater vulnerability and protection. However, each method has its own conditions of use and, in practice; it is difficult to return the same results for the same site. The research conceptualized and developed an improved DRASTIC method using Mamdani Adaptive Neural Fuzzy Inference System (M-ANFIS-DRASTIC). DRASTIC and M-ANFIS-DRASTIC were applied in the Jorf aquifer, southeastern Tunisia, and results were compared. Results confirm that M-ANFIS-DRASTIC combined with geostatistical tools is more powerful, generated more precise vulnerability classes with very low estimation variance. Fuzzy logic has a power to produce more realistic aquifer vulnerability assessments and introduces new ways of modeling in hydrogeology using natural human language expressed by logic rules. © 2018, National Ground Water Association.

  7. Probabilistic fuzzy systems as additive fuzzy systems

    NARCIS (Netherlands)

    Almeida, R.J.; Verbeek, N.; Kaymak, U.; Costa Sousa, da J.M.; Laurent, A.; Strauss, O.; Bouchon-Meunier, B.; Yager, R.

    2014-01-01

    Probabilistic fuzzy systems combine a linguistic description of the system behaviour with statistical properties of data. It was originally derived based on Zadeh’s concept of probability of a fuzzy event. Two possible and equivalent additive reasoning schemes were proposed, that lead to the

  8. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

    Directory of Open Access Journals (Sweden)

    Xue-Gang Zhou

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

  9. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  10. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Kim, Dong Yun; Seong, Poong Hyun

    1996-01-01

    In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller

  11. Design of a fuzzy logic based controller for neutron power regulation

    International Nuclear Information System (INIS)

    Velez D, D.

    2000-01-01

    This work presents a fuzzy logic controller design for neutron power control, from its source to its full power level, applied to a nuclear reactor model. First, we present the basic definitions on fuzzy sets as generalized definitions of the crisp (non fuzzy) set theory. Likewise, we define the basic operations on fuzzy sets (complement, union, and intersection), and the operations on fuzzy relations such as projection and cylindrical extension operations. Furthermore, some concepts of the fuzzy control theory, such as the main modules of the typical fuzzy controller structure and its internal variables, are defined. After the knowledge base is obtained by simulation of the reactor behavior, where the controlled system is modeled by a simple nonlinear reactor model, this model is used to infer a set of fuzzy rules for the reactor response to different insertions of reactivity. The reduction of the response time, using fuzzy rule based controllers on this reactor, is possible by adjusting the output membership functions, by selecting fuzzy rule sets, or by increasing the number of crisp inputs to the fuzzy controller. System characteristics, such as number of rules, response times, and safety parameter values, were considered in the evaluation of each controller merits. Different fuzzy controllers are designed to attain the desired power level, to maintain a constant level for long periods of time, and to keep the reactor away from a shutdown condition. The basic differences among the controllers are the number of crisp inputs and the novel implementation of a crisp power level-based selection of different sets of output membership functions. Simulation results highlight, mainly: (1) A decrease of the response variations at low power level, and (2) a decrease in the time required to attain the desired neutron power. Finally, we present a comparative study of different fuzzy control algorithms applied to a nuclear model. (Author)

  12. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sun, Xiaobo; Zimmermann, Carolyn M; Jackson, Glen P; Bunker, Christopher E; Harrington, Peter B

    2011-01-30

    A fast method that can be used to classify unknown jet fuel types or detect possible property changes in jet fuel physical properties is of paramount interest to national defense and the airline industries. While fast gas chromatography (GC) has been used with conventional mass spectrometry (MS) to study jet fuels, fast GC was combined with fast scanning MS and used to classify jet fuels into lot numbers or origin for the first time by using fuzzy rule-building expert system (FuRES) classifiers. In the process of building classifiers, the data were pretreated with and without wavelet transformation and evaluated with respect to performance. Principal component transformation was used to compress the two-way data images prior to classification. Jet fuel samples were successfully classified with 99.8 ± 0.5% accuracy for both with and without wavelet compression. Ten bootstrapped Latin partitions were used to validate the generalized prediction accuracy. Optimized partial least squares (o-PLS) regression results were used as positively biased references for comparing the FuRES prediction results. The prediction results for the jet fuel samples obtained with these two methods were compared statistically. The projected difference resolution (PDR) method was also used to evaluate the fast GC and fast MS data. Two batches of aliquots of ten new samples were prepared and run independently 4 days apart to evaluate the robustness of the method. The only change in classification parameters was the use of polynomial retention time alignment to correct for drift that occurred during the 4-day span of the two collections. FuRES achieved perfect classifications for four models of uncompressed three-way data. This fast GC/fast MS method furnishes characteristics of high speed, accuracy, and robustness. This mode of measurement may be useful as a monitoring tool to track changes in the chemical composition of fuels that may also lead to property changes. Copyright © 2010

  13. Recurrent fuzzy ranking methods

    Science.gov (United States)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  14. Takagi-Sugeno's fuzzy models

    Directory of Open Access Journals (Sweden)

    Yann Blanco

    2001-01-01

    Full Text Available This paper outlines a methodology to study the stability of Takagi-Sugeno's (TS fuzzy models. The stability analysis of the TS model is performed using a quadratic Liapunov candidate function. This paper proposes a relaxation of Tanaka's stability condition: unlike related works, the equations to be solved are not Liapunov equations for each rule matrix, but a convex combination of them. The coefficients of this sums depend on the membership functions. This method is applied to the design of continuous controllers for the TS model. Three different control structures are investigated, among which the Parallel Distributed Compensation (PDC. An application to the inverted pendulum is proposed here.

  15. Four simple rules that are sufficient to generate the mammalian blastocyst

    DEFF Research Database (Denmark)

    Nissen, Silas Boye; Perera Pérez, Marta; Martin Gonzalez, Javier

    2017-01-01

    requiring any initial transcriptional variation. It also suggests that a fixed time point for the cells’ competence of fibroblast growth factor (FGF)/extracellular signal—regulated kinase (ERK) sets an embryonic clock that enables certain scaling phenomena, a concept that we evaluate quantitatively......Early mammalian development is both highly regulative and self-organizing. It involves the interplay of cell position, predetermined gene regulatory networks, and environmental interactions to generate the physical arrangement of the blastocyst with precise timing. However, this process occurs...

  16. Type-2 fuzzy logic uncertain systems’ modeling and control

    CERN Document Server

    Antão, Rómulo

    2017-01-01

    This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.

  17. Classification of mammographic masses using generalized dynamic fuzzy neural networks

    International Nuclear Information System (INIS)

    Lim, Wei Keat; Er, Meng Joo

    2004-01-01

    In this article, computer-aided classification of mammographic masses using generalized dynamic fuzzy neural networks (GDFNN) is presented. The texture parameters, derived from first-order gradient distribution and gray-level co-occurrence matrices, were computed from the regions of interest. A total of 343 images containing 180 benign masses and 163 malignant masses from the Digital Database for Screening Mammography were analyzed. A fast approach of automatically generating fuzzy rules from training samples was implemented to classify tumors. This work is novel in that it alleviates the problem of requiring a designer to examine all the input-output relationships of a training database in order to obtain the most appropriate structure for the classifier in a conventional computer-aided diagnosis. In this approach, not only the connection weights can be adjusted, but also the structure can be self-adaptive during the learning process. By virtue of the automatic generation of the classifier by the GDFNN learning algorithm, the area under the receiver-operating characteristic curve, A z , attains 0.868±0.020, which corresponds to a true-positive fraction of 95.0% at a false positive fraction of 52.8%. The corresponding accuracy is 70.0%, the positive predictive value is 62.0%, and the negative predictive value is 91.4%

  18. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  19. Fuzzy Logic Based Autonomous Traffic Control System

    Directory of Open Access Journals (Sweden)

    Muhammad ABBAS

    2012-01-01

    Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.

  20. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F [Institute of Technology, Norway (Norway)

    1996-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  1. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    International Nuclear Information System (INIS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method. (paper)

  2. eFSM--a novel online neural-fuzzy semantic memory model.

    Science.gov (United States)

    Tung, Whye Loon; Quek, Chai

    2010-01-01

    Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This

  3. A self-learning rule base for command following in dynamical systems

    Science.gov (United States)

    Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander

    1992-01-01

    In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.

  4. Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty

    CERN Document Server

    Starczewski, Janusz T

    2013-01-01

    This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory.            In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or...

  5. Fuzzy algorithm for an automatic reactor power control in a PWR

    International Nuclear Information System (INIS)

    Hah, Yung Joon; Song, In Ho; Yu, Sung Sik; Choi, Jung In; Lee, Byong Whi

    1994-01-01

    A fuzzy algorithm is presented for automatic reactor power control in a pressurized water reactor. Automatic power shape control is complicated by the use of control rods because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability for the load - follow operation including frequency control. In an attempt to achieve automatic power shape control without any design modification of the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multi - input multi - output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to the Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of the pressurized water reactor during the load - follow operation

  6. Solving fully fuzzy transportation problem using pentagonal fuzzy numbers

    Science.gov (United States)

    Maheswari, P. Uma; Ganesan, K.

    2018-04-01

    In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.

  7. Study on Design of Control Module and Fuzzy Control System

    International Nuclear Information System (INIS)

    Lee, Chang Kyu; Sohn, Chang Ho; Kim, Jung Seon; Kim, Min Kyu

    2005-01-01

    Performance of control unit is improved by introduction of fuzzy control theory and compensation for input of control unit as FLC(Fuzzy Logic Controller). Here, FLC drives thermal control system by linguistic rule-base. Hence, In case of using compensative PID control unit, it doesn't need to revise or compensate for PID control unit. Consequently, this study shows proof that control system which implements H/W module and then uses fuzzy algorism in this system is stable and has reliable performance

  8. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  9. Application of fuzzy logic operation and control to BWRs

    International Nuclear Information System (INIS)

    Junichi Tanji; Mitsuo Kinoshita; Takaharu Fukuzaki; Yasuhiro Kobayashi

    1993-01-01

    Fuzzy logic control schemes employing linguistic decision rules for flexible operator control strategies have undergone application tests in dynamic systems. The advantages claimed for fuzzy logic control are its abilities: (a) to facilitate direct use of skillful operator know-how for automatic operation and control of the systems and (b) to provide robust multivariable control for complex plants. The authors have also studied applications of fuzzy logic control to automatic startup operations and load-following control in boiling water reactors, pursuing these same advantages

  10. Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures

    Directory of Open Access Journals (Sweden)

    Nishchal K. Verma

    2012-01-01

    Full Text Available This paper presents a novel computational approach for estimating fuzzy measures directly from Gaussian mixtures model (GMM. The mixture components of GMM provide the membership functions for the input-output fuzzy sets. By treating consequent part as a function of fuzzy measures, we derived its coefficients from the covariance matrices found directly from GMM and the defuzzified output constructed from both the premise and consequent parts of the nonadditive fuzzy rules that takes the form of Choquet integral. The computational burden involved with the solution of λ-measure is minimized using Q-measure. The fuzzy model whose fuzzy measures were computed using covariance matrices found in GMM has been successfully applied on two benchmark problems and one real-time electric load data of Indian utility. The performance of the resulting model for many experimental studies including the above-mentioned application is found to be better and comparable to recent available fuzzy models. The main contribution of this paper is the estimation of fuzzy measures efficiently and directly from covariance matrices found in GMM, avoiding the computational burden greatly while learning them iteratively and solving polynomial equations of order of the number of input-output variables.

  11. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    Science.gov (United States)

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  12. Decentralized fuzzy control of multiple nonholonomic vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  13. Efficient explicit formulation for practical fuzzy structural analysis

    Indian Academy of Sciences (India)

    This paper presents a practical approach based on High Dimensional Model Representation (HDMR) for analysing the response of structures with fuzzy parameters. The proposed methodology involves integrated finite element modelling, HDMR based response surface generation, and explicit fuzzy analysis procedures.

  14. Fuzzy Failure Probability of Transmission Pipelines in the Niger ...

    African Journals Online (AJOL)

    We undertake the apportioning of failure possibility on twelve identified third party activities contributory to failure of transmission pipelines in the Niger Delta region of Nigeria, using the concept of fuzzy possibility scores. Expert elicitation technique generates linguistic variables that are transformed using fuzzy set theory ...

  15. Introduction to Fuzzy Set Theory

    Science.gov (United States)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  16. Neuro-fuzzy modeling in bankruptcy prediction

    Directory of Open Access Journals (Sweden)

    Vlachos D.

    2003-01-01

    Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.

  17. Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization

    International Nuclear Information System (INIS)

    Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.

    2009-01-01

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.

  18. Foundations Of Fuzzy Control

    DEFF Research Database (Denmark)

    Jantzen, Jan

    The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...

  19. Intuitionistic fuzzy calculus

    CERN Document Server

    Lei, Qian

    2017-01-01

    This book offers a comprehensive and systematic review of the latest research findings in the area of intuitionistic fuzzy calculus. After introducing the intuitionistic fuzzy numbers’ operational laws and their geometrical and algebraic properties, the book defines the concept of intuitionistic fuzzy functions and presents the research on the derivative, differential, indefinite integral and definite integral of intuitionistic fuzzy functions. It also discusses some of the methods that have been successfully used to deal with continuous intuitionistic fuzzy information or data, which are different from the previous aggregation operators focusing on discrete information or data. Mainly intended for engineers and researchers in the fields of fuzzy mathematics, operations research, information science and management science, this book is also a valuable textbook for postgraduate and advanced undergraduate students alike.

  20. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  1. Metamathematics of fuzzy logic

    CERN Document Server

    Hájek, Petr

    1998-01-01

    This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.

  2. Adaptive fuzzy control for a simulation of hydraulic analogy of a nuclear reactor

    International Nuclear Information System (INIS)

    Ruan, D.; Li, X.; Eynde, G. van den

    2000-01-01

    In the framework of the on-going R and D project on fuzzy control applications to the Belgian Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK-CEN), we have constructed a real fuzzy-logic-control demo model. The demo model is suitable for us to test and compare some new algorithms of fuzzy control and intelligent systems, which is advantageous because it is always difficult and time consuming, due to safety aspects, to do all experiments in a real nuclear environment. In this chapter, we first report briefly on the construction of the demo model, and then introduce the results of a fuzzy control, a proportional-integral-derivative (PID) control and an advanced fuzzy control, in which the advanced fuzzy control is a fuzzy control with an adaptive function that can self-regulate the fuzzy control rules. Afterwards, we present a comparative study of those three methods. The results have shown that fuzzy control has more advantages in terms of flexibility, robustness, and easily updated facilities with respect to the PID control of the demo model, but that PID control has much higher regulation resolution due to its integration terms. The adaptive fuzzy control can dynamically adjust the rule base, therefore it is more robust and suitable to those very uncertain occasions. (orig.)

  3. Intuitionistic fuzzy logics

    CERN Document Server

    T Atanassov, Krassimir

    2017-01-01

    The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.

  4. Fuzzy control and identification

    CERN Document Server

    Lilly, John H

    2010-01-01

    This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

  5. A Novel Fuzzy Algorithm to Introduce New Variables in the Drug Supply Decision-Making Process in Medicine

    Directory of Open Access Journals (Sweden)

    Jose M. Gonzalez-Cava

    2018-01-01

    Full Text Available One of the main challenges in medicine is to guarantee an appropriate drug supply according to the real needs of patients. Closed-loop strategies have been widely used to develop automatic solutions based on feedback variables. However, when the variable of interest cannot be directly measured or there is a lack of knowledge behind the process, it turns into a difficult issue to solve. In this research, a novel algorithm to approach this problem is presented. The main objective of this study is to provide a new general algorithm capable of determining the influence of a certain clinical variable in the decision making process for drug supply and then defining an automatic system able to guide the process considering this information. Thus, this new technique will provide a way to validate a given physiological signal as a feedback variable for drug titration. In addition, the result of the algorithm in terms of fuzzy rules and membership functions will define a fuzzy-based decision system for the drug delivery process. The method proposed is based on a Fuzzy Inference System whose structure is obtained through a decision tree algorithm. A four-step methodology is then developed: data collection, preprocessing, Fuzzy Inference System generation, and the validation of results. To test this methodology, the analgesia control scenario was analysed. Specifically, the viability of the Analgesia Nociception Index (ANI as a guiding variable for the analgesic process during surgical interventions was studied. Real data was obtained from fifteen patients undergoing cholecystectomy surgery.

  6. Fuzzy model predictive control algorithm applied in nuclear power plant

    International Nuclear Information System (INIS)

    Zuheir, Ahmad

    2006-01-01

    The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)

  7. Relations Among Some Fuzzy Entropy Formulae

    Institute of Scientific and Technical Information of China (English)

    卿铭

    2004-01-01

    Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.

  8. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    International Nuclear Information System (INIS)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young; Sang, Seok Yoon

    2014-01-01

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  9. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Sang, Seok Yoon [Engineering and Technical Center, Korea Hydro, Daejeon (Korea, Republic of)

    2014-08-15

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  10. On Intuitionistic Fuzzy Filters of Intuitionistic Fuzzy Coframes

    Directory of Open Access Journals (Sweden)

    Rajesh K. Thumbakara

    2013-01-01

    Full Text Available Frame theory is the study of topology based on its open set lattice, and it was studied extensively by various authors. In this paper, we study quotients of intuitionistic fuzzy filters of an intuitionistic fuzzy coframe. The quotients of intuitionistic fuzzy filters are shown to be filters of the given intuitionistic fuzzy coframe. It is shown that the collection of all intuitionistic fuzzy filters of a coframe and the collection of all intutionistic fuzzy quotient filters of an intuitionistic fuzzy filter are coframes.

  11. Resource integrated planning through fuzzy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, J; Torres, G Lambert [Escola Federal de Engenharia de Itajuba, MG (Brazil); Jannuzzi, G de M. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica

    1994-12-31

    A methodology for decision-making in studies involving energy saving by using the Fuzzy Sets Theory is presented. The Fuzzy Sets Theory permits to handle and to operate exact and non-exact propositions, that is, to incorporate both numerical data (exact) and the knowledge of either the expert or the analyst (inexact). The basic concepts of this theory are presented with its main operations and properties. Following, some criteria and technical-economical parameters used in the planning of the generation expansion are shown and, finally, the Theory of the Fuzzy Sets is applied aiming to establish electrical power generation and conservation strategies considering the power demand. (author) 6 refs., 8 tabs.

  12. Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry; Sony Tjahyani, D.T.; Ekariansyah, Andi Sofrany; Tjahjono, Hendro

    2015-01-01

    Highlights: • Fuzzy probability based fault tree analysis is to evaluate epistemic uncertainty in fuzzy fault tree analysis. • Fuzzy probabilities represent likelihood occurrences of all events in a fault tree. • A fuzzy multiplication rule quantifies epistemic uncertainty of minimal cut sets. • A fuzzy complement rule estimate epistemic uncertainty of the top event. • The proposed FPFTA has successfully evaluated the U.S. Combustion Engineering RPS. - Abstract: A number of fuzzy fault tree analysis approaches, which integrate fuzzy concepts into the quantitative phase of conventional fault tree analysis, have been proposed to study reliabilities of engineering systems. Those new approaches apply expert judgments to overcome the limitation of the conventional fault tree analysis when basic events do not have probability distributions. Since expert judgments might come with epistemic uncertainty, it is important to quantify the overall uncertainties of the fuzzy fault tree analysis. Monte Carlo simulation is commonly used to quantify the overall uncertainties of conventional fault tree analysis. However, since Monte Carlo simulation is based on probability distribution, this technique is not appropriate for fuzzy fault tree analysis, which is based on fuzzy probabilities. The objective of this study is to develop a fuzzy probability based fault tree analysis to overcome the limitation of fuzzy fault tree analysis. To demonstrate the applicability of the proposed approach, a case study is performed and its results are then compared to the results analyzed by a conventional fault tree analysis. The results confirm that the proposed fuzzy probability based fault tree analysis is feasible to propagate and quantify epistemic uncertainties in fault tree analysis

  13. Possibility Fuzzy Soft Set

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.

  14. Properties of Bipolar Fuzzy Hypergraphs

    OpenAIRE

    Akram, M.; Dudek, W. A.; Sarwar, S.

    2013-01-01

    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.

  15. A fuzzy controller with a robust learning function

    International Nuclear Information System (INIS)

    Tanji, Jun-ichi; Kinoshita, Mitsuo

    1987-01-01

    A self-organizing fuzzy controller is able to use linguistic decision rules of control strategy and has a strong adaptive property by virture of its rule learning function. While a simple linguistic description of the learning algorithm first introduced by Procyk, et al. has much flexibility for applications to a wide range of different processes, its detailed formulation, in particular with control stability and learning process convergence, is not clear. In this paper, we describe the formulation of an analytical basis for a self-organizing fuzzy controller by using a method of model reference adaptive control systems (MRACS) for which stability in the adaptive loop is theoretically proven. A detailed formulation is described regarding performance evaluation and rule modification in the rule learning process of the controller. Furthermore, an improved learning algorithm using adaptive rule is proposed. An adaptive rule gives a modification coefficient for a rule change estimating the effect of disturbance occurrence in performance evaluation. The effect of introducing an adaptive rule to improve the learning convergency is described by using a simple iterative formulation. Simulation tests are presented for an application of the proposed self-organizing fuzzy controller to the pressure control system in a Boiling Water Reactor (BWR) plant. Results with the tests confirm the improved learning algorithm has strong convergent properties, even in a very disturbed environment. (author)

  16. Fuzzy power control algorithm for a pressurized water reactor

    International Nuclear Information System (INIS)

    Hah, Y.J.; Lee, B.W.

    1994-01-01

    A fuzzy power control algorithm is presented for automatic reactor power control in a pressurized water reactor (PWR). Automatic power shape control is complicated by the use of control rods with a conventional proportional-integral-differential controller because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability needed for load-following operations including frequency control. In an attempt to achieve automatic power shape control without any design modifications to the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multiple-input multiple-output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of PWRs during the load-following operations

  17. Statistical Methods for Fuzzy Data

    CERN Document Server

    Viertl, Reinhard

    2011-01-01

    Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy m

  18. Rule-based programming and strategies for automated generation of detailed kinetic models for gas phase combustion of polycyclic hydrocarbon molecules; Programmation par regles et strategies pour la generation automatique de mecanismes de combustion d'hydrocarbures polycycliques

    Energy Technology Data Exchange (ETDEWEB)

    Ibanescu, L.

    2004-06-15

    The primary objective of this thesis is to explore the approach of using rule-based systems and strategies, for a complex problem of chemical kinetic: the automated generation of reaction mechanisms. The chemical reactions are naturally expressed as conditional rewriting rules. The control of the chemical reactions chaining is easy to describe using a strategies language, such as the one of the ELAN system, developed in the Protheo team. The thesis presents the basic concepts of the chemical kinetics, the chemical and computational problems related to the conception and validation of a reaction mechanism, and gives a general structure for the generator of reaction mechanisms called GasEI. Our research focuses on the primary mechanism generator. We give solutions for encoding the chemical species, the reactions and their chaining, and we present the prototype developed in ELAN. The representation of the chemical species uses the notion of molecular graphs, encoded by a term structure called GasEI terms. The chemical reactions are expressed by rewriting rules on molecular graphs, encoded by a set of conditional rewriting rules on GasEI terms. The strategies language of the ELAN system is used to express the reactions chaining in the primary mechanism generator. This approach is illustrated by coding ten generic reactions of the oxidizing pyrolysis. Qualitative chemical validations of the prototype show that our approach gives, for acyclic molecules, the same results as the existing mechanism generators, and for polycyclic molecules produces original results.

  19. Rule-based programming and strategies for automated generation of detailed kinetic models for gas phase combustion of polycyclic hydrocarbon molecules; Programmation par regles et strategies pour la generation automatique de mecanismes de combustion d'hydrocarbures polycycliques

    Energy Technology Data Exchange (ETDEWEB)

    Ibanescu, L

    2004-06-15

    The primary objective of this thesis is to explore the approach of using rule-based systems and strategies, for a complex problem of chemical kinetic: the automated generation of reaction mechanisms. The chemical reactions are naturally expressed as conditional rewriting rules. The control of the chemical reactions chaining is easy to describe using a strategies language, such as the one of the ELAN system, developed in the Protheo team. The thesis presents the basic concepts of the chemical kinetics, the chemical and computational problems related to the conception and validation of a reaction mechanism, and gives a general structure for the generator of reaction mechanisms called GasEI. Our research focuses on the primary mechanism generator. We give solutions for encoding the chemical species, the reactions and their chaining, and we present the prototype developed in ELAN. The representation of the chemical species uses the notion of molecular graphs, encoded by a term structure called GasEI terms. The chemical reactions are expressed by rewriting rules on molecular graphs, encoded by a set of conditional rewriting rules on GasEI terms. The strategies language of the ELAN system is used to express the reactions chaining in the primary mechanism generator. This approach is illustrated by coding ten generic reactions of the oxidizing pyrolysis. Qualitative chemical validations of the prototype show that our approach gives, for acyclic molecules, the same results as the existing mechanism generators, and for polycyclic molecules produces original results.

  20. Fuzzy methods and design; Fuzzy shuho to sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, H. [Kwansei Gakuin Univ., Hyogo (Japan)

    1996-03-05

    This paper explains the application of the fuzzy theory to a design. A rational decision in design with only an objective logic requires conditions such that a set of selectable alternative plans and the results of executing them are known, and that a rule or a sequential relation exists to decide the order of preference of the alternative plans. In a case where the optimum anti-earthquake design was applied, for example, the seismic motion, subsoil and properties of materials or the like used to be treated stochastically and statistically as being of random nature. However, elements of uncertainty are actually involved other than the randomness, in consideration of cost effectiveness, safety and such. In the problems of anti-earthquake design by the fuzzy theory, the restrictive conditions are stipulated with a membership function respectively, such that the design earthquake motion is in a range larger than the maximum motion, and that the stress or displacement is each in the range smaller than the allowable stress or displacement of members; in addition, the weight is expressed to be the minimum as the objective function. 9 refs., 1 fig.

  1. Fuzzy Logic based Handoff Latency Reduction Mechanism in Layer 2 of Heterogeneous Mobile IPv6 Networks

    Science.gov (United States)

    Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.

    2013-12-01

    Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.

  2. Fuzzy Logic based Handoff Latency Reduction Mechanism in Layer 2 of Heterogeneous Mobile IPv6 Networks

    International Nuclear Information System (INIS)

    Anwar, Farhat; Masud, Mosharrof H; Latif, Suhaimi A

    2013-01-01

    Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6

  3. A proposal for off-grid photovoltaic systems with non-controllable loads using fuzzy logic

    International Nuclear Information System (INIS)

    Yahyaoui, Imene; Sallem, Souhir; Kamoun, M.B.A.; Tadeo, Fernando

    2014-01-01

    Highlights: • An energy management system is proposed for off-grid PV systems, based on fuzzy logic. • The proposal guarantees the energy balance and battery protection. • The approach is demonstrated using data measured at the target location. - Abstract: A fuzzy-logic based methodology is proposed and evaluated for energy management in off-grid installations with photovoltaic panels as the source of energy and a limited storage capacity in batteries. The decision on the connection or disconnection of components is based on fuzzy rules on the basis of the Photovoltaic Panel Generation measurement, the measured power required by the load, and the estimation of the stored energy in the batteries (this last is obtained from the estimation of the Depth-of-Discharge). The algorithm aims to ensure the system’s autonomy by controlling the switches linking the system components with respect to a multi-objective management criterion developed from the requirements (supply of the load, protection of the battery, etc.). Detailed tests of the proposed system are carried out using data (irradiation, temperature, power consumption, etc.) measured in a household at the target area at several days of the year. The results demonstrate that the proposed approach achieves the objectives of system autonomy, battery protection and power supply stability. Compared with a basic algorithm, the proposed algorithm is not sensitive to sudden changes in atmospheric parameters and avoids overcharging the battery

  4. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  5. Now comes the time to defuzzify neuro-fuzzy models

    International Nuclear Information System (INIS)

    Bersini, H.; Bontempi, G.

    1996-01-01

    Fuzzy models present a singular Janus-faced : on one hand, they are knowledge-based software environments constructed from a collection of linguistic IF-THEN rules, and on the other hand, they realize nonlinear mappings which have interesting mathematical properties like low-order interpolation and universal function approximation. Neuro-fuzzy basically provides fuzzy models with the capacity, based on the available data, to compensate for the missing human knowledge by an automatic self-tuning of the structure and the parameters. A first consequence of this hybridization between the architectural and representational aspect of fuzzy models and the learning mechanisms of neural networks has been to progressively increase and fuzzify the contrast between the two Janus faces: readability or performance

  6. Simple Neuron-Fuzzy Tool for Small Control Devices

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2008-01-01

    Small control computers, running a kind of Fuzzy controller, are more and more used in many systems from household machines to large industrial systems. The purpose of this paper is firstly to describe a tool that is easy to use for implementing self learning Fuzzy systems, that can be executed...... can be described by four different kinds of membership functions. The output fuzzyfication is based on singletons. The rule base can be written in a natural language. The result of the learning is a new version of the Fuzzy system described in the FuNNy language. A simple shower control example...... is shown.  This example shows that FuNNy is able to control the shower and that the learning is able to optimize the Fuzzy system....

  7. Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system

    Science.gov (United States)

    Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao

    2008-12-01

    In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.

  8. Construction of fuzzy automata by fuzzy experiments

    International Nuclear Information System (INIS)

    Mironov, A.

    1994-01-01

    The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven

  9. Construction of fuzzy automata by fuzzy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A [Moscow Univ. (Russian Federation). Dept. of Mathematics and Computer Science

    1994-12-31

    The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven.

  10. Adaptive fuzzy controller based MPPT for photovoltaic systems

    International Nuclear Information System (INIS)

    Guenounou, Ouahib; Dahhou, Boutaib; Chabour, Ferhat

    2014-01-01

    Highlights: • We propose a fuzzy controller with adaptive output scaling factor as a maximum power point tracker of photovoltaic system. • The proposed controller integrates two different rule bases defined on error and change of error. • Our controller can track the maximum power point with better performances when compared to its conventional counterpart. - Abstract: This paper presents an intelligent approach to optimize the performances of photovoltaic systems. The system consists of a PV panel, a DC–DC boost converter, a maximum power point tracker controller and a resistive load. The key idea of the proposed approach is the use of a fuzzy controller with an adaptive gain as a maximum power point tracker. The proposed controller integrates two different rule bases. The first is used to adjust the duty cycle of the boost converter as in the case of a conventional fuzzy controller while the second rule base is designed for an online adjusting of the controller’s gain. The performances of the adaptive fuzzy controller are compared with those obtained using a conventional fuzzy controllers with different gains and in each case, the proposed controller outperforms its conventional counterpart

  11. Structure identification in fuzzy inference using reinforcement learning

    Science.gov (United States)

    Berenji, Hamid R.; Khedkar, Pratap

    1993-01-01

    In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.

  12. Fuzzy logic and image processing techniques for the interpretation of seismic data

    International Nuclear Information System (INIS)

    Orozco-del-Castillo, M G; Ortiz-Alemán, C; Rodríguez-Castellanos, A; Urrutia-Fucugauchi, J

    2011-01-01

    Since interpretation of seismic data is usually a tedious and repetitive task, the ability to do so automatically or semi-automatically has become an important objective of recent research. We believe that the vagueness and uncertainty in the interpretation process makes fuzzy logic an appropriate tool to deal with seismic data. In this work we developed a semi-automated fuzzy inference system to detect the internal architecture of a mass transport complex (MTC) in seismic images. We propose that the observed characteristics of a MTC can be expressed as fuzzy if-then rules consisting of linguistic values associated with fuzzy membership functions. The constructions of the fuzzy inference system and various image processing techniques are presented. We conclude that this is a well-suited problem for fuzzy logic since the application of the proposed methodology yields a semi-automatically interpreted MTC which closely resembles the MTC from expert manual interpretation

  13. Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach

    Science.gov (United States)

    Taufik, Afirah; Sakinah Syed Ahmad, Sharifah

    2016-06-01

    The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.

  14. An automatic tuning method of a fuzzy logic controller for nuclear reactors

    International Nuclear Information System (INIS)

    Ramaswamy, P.; Lee, K.Y.; Edwards, R.M.

    1993-01-01

    The design and evaluation by simulation of an automatically tuned fuzzy logic controller is presented. Typically, fuzzy logic controllers are designed based on an expert's knowledge of the process. However, this approach has its limitations in the fact that the controller is hard to optimize or tune to get the desired control action. A method to automate the tuning process using a simplified Kalman filter approach is presented for the fuzzy logic controller to track a suitable reference trajectory. Here, for purposes of illustration an optimal controller's response is used as a reference trajectory to determine automatically the rules for the fuzzy logic controller. To demonstrate the robustness of this design approach, a nonlinear six-delayed neutron group plant is controlled using a fuzzy logic controller that utilizes estimated reactor temperatures from a one-delayed neutron group observer. The fuzzy logic controller displayed good stability and performance robustness characteristics for a wide range of operation

  15. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  16. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  17. Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.

    Science.gov (United States)

    de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2017-01-01

    Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.

  18. Fuzzy view of environment

    Directory of Open Access Journals (Sweden)

    Bajat Branislav

    2007-01-01

    Full Text Available A period of fifty years has been reached since the introduction of the first applications based upon geographical information systems (GIS. GIS has not only influenced the development of methods, collection techniques, processing, manipulation and visualization of spatial data. It influenced also the expansion of scientific research in geosciences, as well as the technical disciplines that are engaged in spatial analysis. Nowadays, GIS is becoming the tool for verification and practical implementation of models and algorithms that have been developed within the frame of basic scientific disciplines. The meaning of the GIS acronym is becoming more and more related to term of Geographical or Geo Information Sciences. Scientific concepts that are increasingly applied in GIS are more emphasized in that way. GIS computational techniques, required also the development of geographical data models that should effectively support GIS operations. These models represent formal equivalents of conceptual models used by people in observing geographic phenomena. Spatial phenomena used to be mapped as clearly defined points with known coordinates, or as lines which connect the very same points, or as polygons with exactly defined borders. They were mapped previously in analog form and nowadays in digital format. This approach of perceiving a space, data analyses and visualization of spatial quires is limited on the application of basic rules of Boolean algebra and binary logic, with final results presented as classical thematic maps. The need for a mathematical model that would describe uncertainty of spatial data, resulted in the introduction of the theory of fuzzy sets in spatial analysis. Moreover, this model will provide a solution for visualization and grouping up of spatial phenomena in classes which do not have clearly defined borders.

  19. Model predictive control using fuzzy decision functions

    NARCIS (Netherlands)

    Kaymak, U.; Costa Sousa, da J.M.

    2001-01-01

    Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the

  20. Fuzzy Control of Yaw and Roll Angles of a Simulated Helicopter Model Includes Articulated Manipulators

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2015-09-01

    Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.

  1. On-line tuning of a fuzzy-logic power system stabilizer

    International Nuclear Information System (INIS)

    Hossein-Zadeh, N.; Kalam, A.

    2002-01-01

    A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them

  2. Robust Takagi-Sugeno Fuzzy Dynamic Regulator for Trajectory Tracking of a Pendulum-Cart System

    Directory of Open Access Journals (Sweden)

    Miguel A. Llama

    2015-01-01

    Full Text Available Starting from a nonlinear model for a pendulum-cart system, on which viscous friction is considered, a Takagi-Sugeno (T-S fuzzy augmented model (TSFAM as well as a TSFAM with uncertainty (TSFAMwU is proposed. Since the design of a T-S fuzzy controller is based on the T-S fuzzy model of the nonlinear system, then, to address the trajectory tracking problem of the pendulum-cart system, three T-S fuzzy controllers are proposed via parallel distributed compensation: (1 a T-S fuzzy servo controller (TSFSC designed from the TSFAM; (2 a robust TSFSC (RTSFSC designed from the TSFAMwU; and (3 a robust T-S fuzzy dynamic regulator (RTSFDR designed from the RTSFSC with the addition of a T-S fuzzy observer, which estimates cart and pendulum velocities. Both TSFAM and TSFAMwU are comprised of two fuzzy rules and designed via local approximation in fuzzy partition spaces technique. Feedback gains for the three fuzzy controllers are obtained via linear matrix inequalities approach. A swing-up controller is developed to swing the pendulum up from its pendant position to its upright position. Real-time experiments validate the effectiveness of the proposed schemes, keeping the pendulum in its upright position while the cart follows a reference signal, standing out the RTSFDR.

  3. Prediction of flood abnormalities for improved public safety using a modified adaptive neuro-fuzzy inference system.

    Science.gov (United States)

    Aqil, M; Kita, I; Yano, A; Nishiyama, S

    2006-01-01

    It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other

  4. Approximations of Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  5. Beyond fuzzy spheres

    International Nuclear Information System (INIS)

    Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T

    2010-01-01

    We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.

  6. Fuzzy control with random delays using invariant cones and its application to control of energy processes in microelectromechanical motion devices

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.S.C. [Purdue Univ., Indianapolis, IN (United States). Dept. of Electrical Engineering; Lyshevski, S. [Rochester Inst. of Technology, NY (United States)

    2005-05-01

    In this paper, a class of microelectromechanical systems described by nonlinear differential equations with random delays is examined. Robust fuzzy controllers are designed to control the energy conversion processes with the ultimate objective to guarantee optimal achievable performance. The fuzzy rule base used consists of a collection of r fuzzy IF-THEN rules defined as a function of the conditional variable. The method of the theory of cones and Lyapunov functionals is used to design a class of local fuzzy control laws. A verifiably sufficient condition for stochastic stability of fuzzy stochastic microelectromechanical systems is given. As an example, we have considered the design of a fuzzy control law for an electrostatic micromotor. (author)

  7. Fuzzy control with random delays using invariant cones and its application to control of energy processes in microelectromechanical motion devices

    International Nuclear Information System (INIS)

    Sinha, A.S.C.; Lyshevski, S.

    2005-01-01

    In this paper, a class of microelectromechanical systems described by nonlinear differential equations with random delays is examined. Robust fuzzy controllers are designed to control the energy conversion processes with the ultimate objective to guarantee optimal achievable performance. The fuzzy rule base used consists of a collection of r fuzzy IF-THEN rules defined as a function of the conditional variable. The method of the theory of cones and Lyapunov functionals is used to design a class of local fuzzy control laws. A verifiably sufficient condition for stochastic stability of fuzzy stochastic microelectromechanical systems is given. As an example, we have considered the design of a fuzzy control law for an electrostatic micromotor

  8. Building of fuzzy decision trees using ID3 algorithm

    Science.gov (United States)

    Begenova, S. B.; Avdeenko, T. V.

    2018-05-01

    Decision trees are widely used in the field of machine learning and artificial intelligence. Such popularity is due to the fact that with the help of decision trees graphic models, text rules can be built and they are easily understood by the final user. Because of the inaccuracy of observations, uncertainties, the data, collected in the environment, often take an unclear form. Therefore, fuzzy decision trees becoming popular in the field of machine learning. This article presents a method that includes the features of the two above-mentioned approaches: a graphical representation of the rules system in the form of a tree and a fuzzy representation of the data. The approach uses such advantages as high comprehensibility of decision trees and the ability to cope with inaccurate and uncertain information in fuzzy representation. The received learning method is suitable for classifying problems with both numerical and symbolic features. In the article, solution illustrations and numerical results are given.

  9. A fuzzy chance-constrained programming model with type 1 and type 2 fuzzy sets for solid waste management under uncertainty

    Science.gov (United States)

    Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei

    2017-06-01

    Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.

  10. Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes

    Science.gov (United States)

    Feizizadeh, Bakhtiar; Blaschke, Thomas; Tiede, Dirk; Moghaddam, Mohammad Hossein Rezaei

    2017-09-01

    This article presents a method of object-based image analysis (OBIA) for landslide delineation and landslide-related change detection from multi-temporal satellite images. It uses both spatial and spectral information on landslides, through spectral analysis, shape analysis, textural measurements using a gray-level co-occurrence matrix (GLCM), and fuzzy logic membership functionality. Following an initial segmentation step, particular combinations of various information layers were investigated to generate objects. This was achieved by applying multi-resolution segmentation to IRS-1D, SPOT-5, and ALOS satellite imagery in sequential steps of feature selection and object classification, and using slope and flow direction derivatives from a digital elevation model together with topographically-oriented gray level co-occurrence matrices. Fuzzy membership values were calculated for 11 different membership functions using 20 landslide objects from a landslide training data. Six fuzzy operators were used for the final classification and the accuracies of the resulting landslide maps were compared. A Fuzzy Synthetic Evaluation (FSE) approach was adapted for validation of the results and for an accuracy assessment using the landslide inventory database. The FSE approach revealed that the AND operator performed best with an accuracy of 93.87% for 2005 and 94.74% for 2011, closely followed by the MEAN Arithmetic operator, while the OR and AND (*) operators yielded relatively low accuracies. An object-based change detection was then applied to monitor landslide-related changes that occurred in northern Iran between 2005 and 2011. Knowledge rules to detect possible landslide-related changes were developed by evaluating all possible landslide-related objects for both time steps.

  11. Fuzzy data analysis

    CERN Document Server

    Bandemer, Hans

    1992-01-01

    Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.

  12. Fuzzy stochastic multiobjective programming

    CERN Document Server

    Sakawa, Masatoshi; Katagiri, Hideki

    2011-01-01

    With a stress on interactive decision-making, this work breaks new ground by covering both the random nature of events related to environments, and the fuzziness of human judgements. The text runs from mathematical preliminaries to future research directions.

  13. Composite Gauss-Legendre Formulas for Solving Fuzzy Integration

    Directory of Open Access Journals (Sweden)

    Xiaobin Guo

    2014-01-01

    Full Text Available Two numerical integration rules based on composition of Gauss-Legendre formulas for solving integration of fuzzy numbers-valued functions are investigated in this paper. The methods' constructions are presented and the corresponding convergence theorems are shown in detail. Two numerical examples are given to illustrate the proposed algorithms finally.

  14. An intelligent temporal pattern classification system using fuzzy ...

    Indian Academy of Sciences (India)

    In this paper, we propose a new pattern classification system by combining Temporal features with Fuzzy Min–Max (TFMM) neural network based classifier for effective decision support in medical diagnosis. Moreover, a Particle Swarm Optimization (PSO) algorithm based rule extractor is also proposed in this work for ...

  15. A fuzzy art neural network based color image processing and ...

    African Journals Online (AJOL)

    To improve the learning process from the input data, a new learning rule was suggested. In this paper, a new method is proposed to deal with the RGB color image pixels, which enables a Fuzzy ART neural network to process the RGB color images. The application of the algorithm was implemented and tested on a set of ...

  16. Self-tuning fuzzy logic nuclear reactor controller

    International Nuclear Information System (INIS)

    Sharif Heger, A.; Alang-Rashid, N.K.

    1996-01-01

    We present a method for self-tuning of fuzzy logic controllers based on the estimation of the optimum value of the centroids of its output fuzzy set. The method can be implemented on-line and does not require modification of membership functions and control rules. The main features of this method are: the rules are left intact to retain the operator's expertise in the FLC rule base, and the parameters that require any adjustment are identifiable in advance and their number is kept at a minimum. Therefore, the use of this method preserves the control statements in the original form. Results of simulation and actual tests show that this tuning method improves the performance of fuzzy logic controllers in following the desired reactor power level trajectories. In addition, this method demonstrates a similar improvement for power up and power down experiments, based on both simulation and actual case studies. For these experiments, the control rules for the fuzzy logic controller were derived from control statements that expressed the relationships between error, rate of error change, and duration of direction of control rod movements

  17. DESIGN OF ROBUST COMMAND TO LINE-OF-SIGHT GUIDANCE LAW: A FUZZY ADAPTIVE APPROACH

    Directory of Open Access Journals (Sweden)

    ESMAIL SADEGHINASAB

    2016-11-01

    Full Text Available In this paper, the design of command to line-of-sight (CLOS missile guidance law is addressed. Taking a three dimensional guidance model, the tracking control problem is formulated. To solve the target tracking problem, the feedback linearization controller is first designed. Although such control scheme possesses the simplicity property, but it presents the acceptable performance only in the absence of perturbations. In order to ensure the robustness properties against model uncertainties, a fuzzy adaptive algorithm is proposed with two parts including a fuzzy (Mamdani system, whose rules are constructed based on missile guidance, and a so-called rule modifier to compensate the fuzzy rules, using the negative gradient method. Compared with some previous works, such control strategy provides a faster time response without large control efforts. The performance of feedback linearization controller is also compared with that of fuzzy adaptive strategy via various simulations.

  18. Fuzzy Control Teaching Models

    Directory of Open Access Journals (Sweden)

    Klaus-Dietrich Kramer

    2016-05-01

    Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.

  19. MOTION MODELLINGUSINGCONCEPTS OF FUZZY ARTIFICIAL POTENTIAL FIELDS

    Directory of Open Access Journals (Sweden)

    O. Motlagh

    2010-12-01

    Full Text Available Artificial potential fields (APF are well established for reactive navigation of mobile robots. This paper describes a fast and robust fuzzy-APF on an ActivMedia AmigoBot. Obstacle-related information is fuzzified by using sensory fusion, which results in a shorter runtime. In addition, the membership functions of obstacle direction and range have been merged into one function, obtaining a smaller block of rules. The system is tested in virtual environments with non-concave obstacles. Then, the paper describes a new approach to motion modelling where the motion of intelligent travellers is modelled by consecutive path segments. In previous work, the authors described a reliable motion modelling technique using causal inference of fuzzy cognitive maps (FCM which has been efficiently modified for the purpose of this contribution. Results and analysis are given to demonstrate the efficiency and accuracy of the proposed motion modelling algorithm.

  20. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    Science.gov (United States)

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  1. Macroscopic Rock Texture Image Classification Using a Hierarchical Neuro-Fuzzy Class Method

    Directory of Open Access Journals (Sweden)

    Laercio B. Gonçalves

    2010-01-01

    Full Text Available We used a Hierarchical Neuro-Fuzzy Class Method based on binary space partitioning (NFHB-Class Method for macroscopic rock texture classification. The relevance of this study is in helping Geologists in the diagnosis and planning of oil reservoir exploration. The proposed method is capable of generating its own decision structure, with automatic extraction of fuzzy rules. These rules are linguistically interpretable, thus explaining the obtained data structure. The presented image classification for macroscopic rocks is based on texture descriptors, such as spatial variation coefficient, Hurst coefficient, entropy, and cooccurrence matrix. Four rock classes have been evaluated by the NFHB-Class Method: gneiss (two subclasses, basalt (four subclasses, diabase (five subclasses, and rhyolite (five subclasses. These four rock classes are of great interest in the evaluation of oil boreholes, which is considered a complex task by geologists. We present a computer method to solve this problem. In order to evaluate system performance, we used 50 RGB images for each rock classes and subclasses, thus producing a total of 800 images. For all rock classes, the NFHB-Class Method achieved a percentage of correct hits over 73%. The proposed method converged for all tests presented in the case study.

  2. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    Science.gov (United States)

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Integrating GIS with AHP and Fuzzy Logic to generate hand, foot and mouth disease hazard zonation (HFMD-HZ) model in Thailand

    Science.gov (United States)

    Samphutthanon, R.; Tripathi, N. K.; Ninsawat, S.; Duboz, R.

    2014-12-01

    The main objective of this research was the development of an HFMD hazard zonation (HFMD-HZ) model by applying AHP and Fuzzy Logic AHP methodologies for weighting each spatial factor such as disease incidence, socio-economic and physical factors. The outputs of AHP and FAHP were input into a Geographic Information Systems (GIS) process for spatial analysis. 14 criteria were selected for analysis as important factors: disease incidence over 10 years from 2003 to 2012, population density, road density, land use and physical features. The results showed a consistency ratio (CR) value for these main criteria of 0.075427 for AHP, the CR for FAHP results was 0.092436. As both remained below the threshold of 0.1, the CR value were acceptable. After linking to actual geospatial data (disease incidence 2013) through spatial analysis by GIS for validation, the results of the FAHP approach were found to match more accurately than those of the AHP approach. The zones with the highest hazard of HFMD outbreaks were located in two main areas in central Muang Chiang Mai district including suburbs and Muang Chiang Rai district including the vicinity. The produced hazardous maps may be useful for organizing HFMD protection plans.

  4. Control of a mechanical gripper with a fuzzy controller; Control de una garra robotizada mediante un controlador borroso

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-07-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers.

  5. Control of a mechanical gripper with a fuzzy controller; Control de una garra robotizada mediante un controlador borroso

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-07-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  6. Fuzzy Controllers for a Gantry Crane System with Experimental Verifications

    Directory of Open Access Journals (Sweden)

    Naif B. Almutairi

    2016-01-01

    Full Text Available The control problem of gantry cranes has attracted the attention of many researchers because of the various applications of these cranes in the industry. In this paper we propose two fuzzy controllers to control the position of the cart of a gantry crane while suppressing the swing angle of the payload. Firstly, we propose a dual PD fuzzy controller where the parameters of each PD controller change as the cart moves toward its desired position, while maintaining a small swing angle of the payload. This controller uses two fuzzy subsystems. Then, we propose a fuzzy controller which is based on heuristics. The rules of this controller are obtained taking into account the knowledge of an experienced crane operator. This controller is unique in that it uses only one fuzzy system to achieve the control objective. The validity of the designed controllers is tested through extensive MATLAB simulations as well as experimental results on a laboratory gantry crane apparatus. The simulation results as well as the experimental results indicate that the proposed fuzzy controllers work well. Moreover, the simulation and the experimental results demonstrate the robustness of the proposed control schemes against output disturbances as well as against uncertainty in some of the parameters of the crane.

  7. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Science.gov (United States)

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  8. A fuzzy logic pitch angle controller for power system stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)

    2006-07-12

    In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).

  9. Cylinder Position Servo Control Based on Fuzzy PID

    Directory of Open Access Journals (Sweden)

    Shibo Cai

    2013-01-01

    Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.

  10. Multi-stage fuzzy load frequency control using PSO

    International Nuclear Information System (INIS)

    Shayeghi, H.; Jalili, A.; Shayanfar, H.A.

    2008-01-01

    In this paper, a particle swarm optimization (PSO) based multi-stage fuzzy (PSOMSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operate under deregulation based on the bilateral policy scheme. In this strategy the control is tuned on line from the knowledge base and fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by PSO algorithm, that has a strong ability to find the most optimistic results. The motivation for using the PSO technique is to reduce fuzzy system effort and take large parametric uncertainties into account. This newly developed control strategy combines the advantage of PSO and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed PSO based MSF (PSOMSF) controller is tested on a three-area restructured power system under different operating conditions and contract variations. The results of the proposed PSOMSF controller are compared with genetic algorithm based multi-stage fuzzy (GAMSF) control through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes

  11. Multi-stage fuzzy load frequency control using PSO

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H. [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran); Jalili, A. [Islamic Azad University, Ardabil Branch, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran)

    2008-10-15

    In this paper, a particle swarm optimization (PSO) based multi-stage fuzzy (PSOMSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operate under deregulation based on the bilateral policy scheme. In this strategy the control is tuned on line from the knowledge base and fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by PSO algorithm, that has a strong ability to find the most optimistic results. The motivation for using the PSO technique is to reduce fuzzy system effort and take large parametric uncertainties into account. This newly developed control strategy combines the advantage of PSO and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed PSO based MSF (PSOMSF) controller is tested on a three-area restructured power system under different operating conditions and contract variations. The results of the proposed PSOMSF controller are compared with genetic algorithm based multi-stage fuzzy (GAMSF) control through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes. (author)

  12. Short term load forecasting using neuro-fuzzy networks

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.; Hassan, A. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Martinez, D. [Black Hills Power and Light, Rapid City, SD (United States)

    2005-07-01

    Details of a neuro-fuzzy network-based short term load forecasting system for power utilities were presented. The fuzzy logic controller was used to fuzzify inputs representing historical temperature and load curves. The fuzzified inputs were then used to develop the fuzzy rules matrix. Output membership function values were determined by evaluating the fuzzified inputs with the fuzzy rules. Output membership function values were used as inputs for the neural network portion of the system. The training process used a back propagation gradient descent algorithm to adjust the weight values of the neural network in order to reduce the error between the neural network output and the desired output. The neural network was then used to predict future load values. Sample data were taken from a local power company's daily load curve to validate the system. A 10 per cent forecast error was introduced in the temperature values to determine the effect on load prediction. Results of the study suggest that the combined use of fuzzy logic and neural networks provide greater accuracy than studies where either approach is used alone. 6 refs., 6 figs.

  13. Fuzzy multiobjective models for optimal operation of a hydropower system

    Science.gov (United States)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  14. Stock and option portfolio using fuzzy logic approach

    Science.gov (United States)

    Sumarti, Novriana; Wahyudi, Nanang

    2014-03-01

    Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.

  15. Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Syafaruddin; Hiyama, Takashi [Department of Computer Science and Electrical Engineering of Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Karatepe, Engin [Department of Electrical and Electronics Engineering of Ege University, 35100 Bornova-Izmir (Turkey)

    2009-12-15

    It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. There are two ways to increase the efficiency of PV power generation system. The first is to develop materials offering high conversion efficiency at low cost. The second is to operate PV systems optimally. However, the PV system can be optimally operated only at a specific output voltage and its output power fluctuates under intermittent weather conditions. Moreover, it is very difficult to test the performance of a maximum-power point tracking (MPPT) controller under the same weather condition during the development process and also the field testing is costly and time consuming. This paper presents a novel real-time simulation technique of PV generation system by using dSPACE real-time interface system. The proposed system includes Artificial Neural Network (ANN) and fuzzy logic controller scheme using polar information. This type of fuzzy logic rules is implemented for the first time to operate the PV module at optimum operating point. ANN is utilized to determine the optimum operating voltage for monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies. (author)

  16. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  17. Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms

    CERN Document Server

    Siddique, Nazmul

    2014-01-01

    Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.  The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...

  18. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    Science.gov (United States)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  19. Shapley's value for fuzzy games

    Directory of Open Access Journals (Sweden)

    Raúl Alvarado Sibaja

    2009-02-01

    Full Text Available This is the continuation of a previous article titled "Fuzzy Games", where I defined a new type of games based on the Multilinear extensions f, of characteristic functions and most of standard theorems for cooperative games also hold for this new type of games: The fuzzy games. Now we give some other properties and the extension of the definition of Shapley¨s Value for Fuzzy Games Keywords: game theory, fuzzy sets, multiattribute decisions.

  20. Failure mode and effects analysis A fuzzy group MCDM approach

    Directory of Open Access Journals (Sweden)

    A. Hadi-Vencheh

    2013-08-01

    Full Text Available In this paper, a new fuzzy group decision making (FGDM model based on alpha-level sets, is proposed to generate, more accurate fuzzy using, risk priority numbers (RPNs and ensure to be robust against the uncertainty. This model allows decision makers (DMs to evaluate FMEA risk factors using linguistic terms rather than precise numerical values, allows them to express their opinions independently. A case study is investigated using the proposed model to illustrate its applications in RPN assessment.

  1. An Integrated Risk Index Model Based on Hierarchical Fuzzy Logic for Underground Risk Assessment

    Directory of Open Access Journals (Sweden)

    Muhammad Fayaz

    2017-10-01

    Full Text Available Available space in congested cities is getting scarce due to growing urbanization in the recent past. The utilization of underground space is considered as a solution to the limited space in smart cities. The numbers of underground facilities are growing day by day in the developing world. Typical underground facilities include the transit subway, parking lots, electric lines, water supply and sewer lines. The likelihood of the occurrence of accidents due to underground facilities is a random phenomenon. To avoid any accidental loss, a risk assessment method is required to conduct the continuous risk assessment and report any abnormality before it happens. In this paper, we have proposed a hierarchical fuzzy inference based model for under-ground risk assessment. The proposed hierarchical fuzzy inference architecture reduces the total number of rules from the rule base. Rule reduction is important because the curse of dimensionality damages the transparency and interpretation as it is very tough to understand and justify hundreds or thousands of fuzzy rules. The computation time also increases as rules increase. The proposed model takes 175 rules having eight input parameters to compute the risk index, and the conventional fuzzy logic requires 390,625 rules, having the same number of input parameters to compute risk index. Hence, the proposed model significantly reduces the curse of dimensionality. Rule design for fuzzy logic is also a tedious task. In this paper, we have also introduced new rule schemes, namely maximum rule-based and average rule-based; both schemes can be used interchangeably according to the logic needed for rule design. The experimental results show that the proposed method is a virtuous choice for risk index calculation where the numbers of variables are greater.

  2. CHARACTERIZATIONS OF FUZZY SOFT PRE SEPARATION AXIOMS

    OpenAIRE

    El-Latif, Alaa Mohamed Abd

    2015-01-01

    − The notions of fuzzy pre open soft sets and fuzzy pre closed soft sets were introducedby Abd El-latif et al. [2]. In this paper, we continue the study on fuzzy soft topological spaces andinvestigate the properties of fuzzy pre open soft sets, fuzzy pre closed soft sets and study variousproperties and notions related to these structures. In particular, we study the relationship betweenfuzzy pre soft interior fuzzy pre soft closure. Moreover, we study the properties of fuzzy soft pre regulars...

  3. Computation On dP Type power System Stabilizer Using Fuzzy Logic

    International Nuclear Information System (INIS)

    Iskandar, M.A.; Irwan, R.; Husdi; Riza; Mardhana, E.; Triputranto, A.

    1997-01-01

    Power system stabilizers (PSS) are widely applied in power generators to damp power oscillation caused by certain disturbances in order to increase the power supply capacity. PSS design is often suffered from the difficulty on setting periodically its parameters, which are gain and compensators, in order to have an optimal damping characteristic. This paper proposes a methode to determine parameters of dP type PSS by implementing fuzzy logic rules in a computer program,to obtain the appropriate characteristics of synchronous torque and damping torque. PSS with the calculated parameters is investigated on a simulation using a non-linear electric power system of a thermal generator connected to infinite bus system model. Simulation results show that great improvement in damping characteristic and enhancement of stability margin of electric power system are obtained by using the proposed PSS

  4. Intelligent neural network and fuzzy logic control of industrial and power systems

    Science.gov (United States)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  5. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  6. Fuzzy Logic Applied to an Oven Temperature Control System

    Directory of Open Access Journals (Sweden)

    Nagabhushana KATTE

    2011-10-01

    Full Text Available The paper describes the methodology of design and development of fuzzy logic based oven temperature control system. As simple fuzzy logic controller (FLC structure with an efficient realization and a small rule base that can be easily implemented in existing underwater control systems is proposed. The FLC has been designed using bell-shaped membership function for fuzzification, 49 control rules in its rule base and centre of gravity technique for defuzzification. Analog interface card with 16-bits resolution is designed to achieve higher precision in temperature measurement and control. The experimental results of PID and FLC implemented system are drawn for a step input and presented in a comparative fashion. FLC exhibits fast response and it has got sharp rise time and smooth control over conventional PID controller. The paper scrupulously discusses the hardware and software (developed using ‘C’ language features of the system.

  7. Robust Fuzzy Controllers Using FPGAs

    Science.gov (United States)

    Monroe, Author Gene S., Jr.

    2007-01-01

    Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.

  8. Design of a fuzzy logic based controller for neutron power regulation; Diseno de un controlador basado en logica difusa para la regulacion de flujo neutronico

    Energy Technology Data Exchange (ETDEWEB)

    Velez D, D

    2000-07-01

    This work presents a fuzzy logic controller design for neutron power control, from its source to its full power level, applied to a nuclear reactor model. First, we present the basic definitions on fuzzy sets as generalized definitions of the crisp (non fuzzy) set theory. Likewise, we define the basic operations on fuzzy sets (complement, union, and intersection), and the operations on fuzzy relations such as projection and cylindrical extension operations. Furthermore, some concepts of the fuzzy control theory, such as the main modules of the typical fuzzy controller structure and its internal variables, are defined. After the knowledge base is obtained by simulation of the reactor behavior, where the controlled system is modeled by a simple nonlinear reactor model, this model is used to infer a set of fuzzy rules for the reactor response to different insertions of reactivity. The reduction of the response time, using fuzzy rule based controllers on this reactor, is possible by adjusting the output membership functions, by selecting fuzzy rule sets, or by increasing the number of crisp inputs to the fuzzy controller. System characteristics, such as number of rules, response times, and safety parameter values, were considered in the evaluation of each controller merits. Different fuzzy controllers are designed to attain the desired power level, to maintain a constant level for long periods of time, and to keep the reactor away from a shutdown condition. The basic differences among the controllers are the number of crisp inputs and the novel implementation of a crisp power level-based selection of different sets of output membership functions. Simulation results highlight, mainly: (1) A decrease of the response variations at low power level, and (2) a decrease in the time required to attain the desired neutron power. Finally, we present a comparative study of different fuzzy control algorithms applied to a nuclear model. (Author)

  9. The foundations of fuzzy control

    CERN Document Server

    Lewis, Harold W

    1997-01-01

    Harold Lewis applied a cross-disciplinary approach in his highly accessible discussion of fuzzy control concepts. With the aid of fifty-seven illustrations, he thoroughly presents a unique mathematical formalism to explain the workings of the fuzzy inference engine and a novel test plant used in the research. Additionally, the text posits a new viewpoint on why fuzzy control is more popular in some countries than in others. A direct and original view of Japanese thinking on fuzzy control methods, based on the author's personal knowledge of - and association with - Japanese fuzzy research, is also included.

  10. WHY FUZZY QUALITY?

    Directory of Open Access Journals (Sweden)

    Abbas Parchami

    2016-09-01

    Full Text Available Such as other statistical problems, we may confront with uncertain and fuzzy concepts in quality control. One particular case in process capability analysis is a situation in which specification limits are two fuzzy sets. In such a uncertain and vague environment, the produced product is not qualified with a two-valued Boolean view, but to some degree depending on the decision-maker strictness and the quality level of the produced product. This matter can be cause to a rational decision-making on the quality of the production line. First, a comprehensive approach is presented in this paper for modeling the fuzzy quality concept. Then, motivations and advantages of applying this flexible approach instead of using classical quality are mentioned.

  11. Group Evidential Reasoning Approach for MADA under Fuzziness and Uncertainties

    Directory of Open Access Journals (Sweden)

    Mi Zhou

    2013-05-01

    Full Text Available Multiple attribute decision analysis (MADA problems often include both qualitative and quantitative attributes which may be either precise or inaccurate. The evidential reasoning (ER approach is one of reliable and rational methods for dealing with MADA problems and can generate aggregated assessments from a variety of attributes. In many real world decision situations, accurate assessments are difficult to provide such as in group decision situations. Extensive research in dealing with imprecise or uncertain belief structures has been conducted on the basis of the ER approach, such as interval belief degrees, interval weights and interval uncertainty. In this paper, the weights of attributes and utilities of evaluation grades are considered to be fuzzy numbers for the ER approach. Fuzzy analytic hierarchy process (FAHP is used for generating triangular fuzzy weights for attributes from a triangular fuzzy judgment matrix provided by an expert. The weighted arithmetic mean method is proposed to aggregate the triangular fuzzy weights of attributes from a group of experts. -cut is then used to transform the combined triangular fuzzy weights to interval weights for the purpose of dealing with the fuzzy type of weight and utility in a consistent way. Several pairs of group evidential reasoning based nonlinear programming models are then designed to calculate the global fuzzy belief degrees and the overall expected interval utilities of each alternative with interval weights and interval utilities as constraints. A case study is conducted to show the validity and effectiveness of the proposed approach and sensitivity analysis is also conducted on interval weights generated by different -cuts.

  12. Adaptive inferential sensors based on evolving fuzzy models.

    Science.gov (United States)

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the

  13. Maximum power point tracker based on fuzzy logic

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    The solar energy is used as power source in photovoltaic power systems and the need for an intelligent power management system is important to obtain the maximum power from the limited solar panels. With the changing of the sun illumination due to variation of angle of incidence of sun radiation and of the temperature of the panels, Maximum Power Point Tracker (MPPT) enables optimization of solar power generation. The MPPT is a sub-system designed to extract the maximum power from a power source. In the case of solar panels power source. the maximum power point varies as a result of changes in its electrical characteristics which in turn are functions of radiation dose, temperature, ageing and other effects. The MPPT maximum the power output from panels for a given set of conditions by detecting the best working point of the power characteristic and then controls the current through the panels or the voltage across them. Many MPPT methods have been reported in literature. These techniques of MPPT can be classified into three main categories that include: lookup table methods, hill climbing methods and computational methods. The techniques vary according to the degree of sophistication, processing time and memory requirements. The perturbation and observation algorithm (hill climbing technique) is commonly used due to its ease of implementation, and relative tracking efficiency. However, it has been shown that when the insolation changes rapidly, the perturbation and observation method is slow to track the maximum power point. In recent years, the fuzzy controllers are used for maximum power point tracking. This method only requires the linguistic control rules for maximum power point, the mathematical model is not required and therefore the implementation of this control method is easy to real control system. In this paper, we we present a simple robust MPPT using fuzzy set theory where the hardware consists of the microchip's microcontroller unit control card and

  14. Fuzzy logics acquisition and simulation modules for expert systems to assist operator's decision for nuclear power stations

    International Nuclear Information System (INIS)

    Averkin, A.A.

    1994-01-01

    A new type of fuzzy expert system for assisting the operator's decisions in nuclear power plant system in non-standard situations is proposed. This expert system is based on new approaches to fuzzy logics acquisition and to fuzzy logics testing. Fuzzy logics can be generated by a T-norms axiomatic system to choose the most suitable to operator's way of thinking. Then the chosen fuzzy logic is tested by simulation of inference process in expert system. The designed logic is the input of inference module of expert system

  15. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    Science.gov (United States)

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  16. (L,M-Fuzzy σ-Algebras

    Directory of Open Access Journals (Sweden)

    Fu-Gui Shi

    2010-01-01

    Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.

  17. Estimation of tool wear length in finish milling using a fuzzy inference algorithm

    Science.gov (United States)

    Ko, Tae Jo; Cho, Dong Woo

    1993-10-01

    The geometric accuracy and surface roughness are mainly affected by the flank wear at the minor cutting edge in finish machining. A fuzzy estimator obtained by a fuzzy inference algorithm with a max-min composition rule to evaluate the minor flank wear length in finish milling is introduced. The features sensitive to minor flank wear are extracted from the dispersion analysis of a time series AR model of the feed directional acceleration of the spindle housing. Linguistic rules for fuzzy estimation are constructed using these features, and then fuzzy inferences are carried out with test data sets under various cutting conditions. The proposed system turns out to be effective for estimating minor flank wear length, and its mean error is less than 12%.

  18. Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training

    Science.gov (United States)

    Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei

    Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.

  19. Mapping Shape Geometry And Emotions Using Fuzzy Logic

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed, Saeema

    2008-01-01

    An important aspect of artifact/product design is defining the aesthetic and emotional value. The success of a product is not only dependent on its functionality but also on the emotional value that it creates to its user. However, if several designers are faced with a task to create an object...... that would evoke a certain emotion (aggressive, soft, heavy, friendly, etc.), each would most likely interpret the emotion with a different set of geometric features and shapes. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object...... and the intended emotion using fuzzy logic. To achieve this; 3D objects (shapes) created by design engineering students to match a set of words/emotions were analyzed. The authors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map the relationships...

  20. Fuzzy Modelling for Human Dynamics Based on Online Social Networks.

    Science.gov (United States)

    Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2017-08-24

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.

  1. The Linear Logistic Test Model (LLTM as the methodological foundation of item generating rules for a new verbal reasoning test

    Directory of Open Access Journals (Sweden)

    HERBERT POINSTINGL

    2009-06-01

    Full Text Available Based on the demand for new verbal reasoning tests to enrich psychological test inventory, a pilot version of a new test was analysed: the 'Family Relation Reasoning Test' (FRRT; Poinstingl, Kubinger, Skoda & Schechtner, forthcoming, in which several basic cognitive operations (logical rules have been embedded/implemented. Given family relationships of varying complexity embedded in short stories, testees had to logically conclude the correct relationship between two individuals within a family. Using empirical data, the linear logistic test model (LLTM; Fischer, 1972, a special case of the Rasch model, was used to test the construct validity of the test: The hypothetically assumed basic cognitive operations had to explain the Rasch model's item difficulty parameters. After being shaped in LLTM's matrices of weights ((qij, none of these operations were corroborated by means of the Andersen's Likelihood Ratio Test.

  2. A fuzzy logic controller for feedwater regulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Eryuerek, E.E.; Upadhyaya, B.R.; Alguindigue, I.E.

    1994-01-01

    Fuzzy control refers to the application of fuzzy logic theory to control systems. In this paper fuzzy controllers for steam generator water level control and pump speed control are presented, and their performance in the presence of perturbations is discussed. In order to test the robustness of the controllers, their performance is compared with the performance of model based adaptive controllers and traditional PID controllers. The control actions calculated by the fuzzy controllers is have the characteristic of quick and smooth control compared to the others

  3. Fuzzy batch controller for granular materials

    OpenAIRE

    Zamyatin Nikolaj; Smirnov Gennadij; Fedorchuk Yuri; Rusina Olga

    2018-01-01

    The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy infer...

  4. Fuzzy efficiency without convexity

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Balezentis, Tomas

    2014-01-01

    approach builds directly upon the definition of Farrell's indexes of technical efficiency used in crisp FDH. Therefore we do not require the use of fuzzy programming techniques but only utilize ranking probabilities of intervals as well as a related definition of dominance between pairs of intervals. We...

  5. Multichannel and Multispectral Image Restoration Employing Fuzzy Theory and Directional Techniques

    OpenAIRE

    Rosales, Alberto; Ponomaryov, Volodymyr

    2009-01-01

    It has designed a novel structure of robust framework to remove impulse noise and additive noise in images and multichannel video sequences. Unlike existed techniques, the designed approach employs fuzzy and directional techniques to estimate motion and noise in the past and present frames showing good results. The designed fuzzy rules characterize the presence of motion and noise between the pixels in two frames (past and present frames). It has been demonstrated that the combined use of gra...

  6. Efficiency of particle swarm optimization applied on fuzzy logic DC motor speed control

    Directory of Open Access Journals (Sweden)

    Allaoua Boumediene

    2008-01-01

    Full Text Available This paper presents the application of Fuzzy Logic for DC motor speed control using Particle Swarm Optimization (PSO. Firstly, the controller designed according to Fuzzy Logic rules is such that the systems are fundamentally robust. Secondly, the Fuzzy Logic controller (FLC used earlier was optimized with PSO so as to obtain optimal adjustment of the membership functions only. Finally, the FLC is completely optimized by Swarm Intelligence Algorithms. Digital simulation results demonstrate that in comparison with the FLC the designed FLC-PSO speed controller obtains better dynamic behavior and superior performance of the DC motor, as well as perfect speed tracking with no overshoot.

  7. Portable Rule Extraction Method for Neural Network Decisions Reasoning

    Directory of Open Access Journals (Sweden)

    Darius PLIKYNAS

    2005-08-01

    Full Text Available Neural network (NN methods are sometimes useless in practical applications, because they are not properly tailored to the particular market's needs. We focus thereinafter specifically on financial market applications. NNs have not gained full acceptance here yet. One of the main reasons is the "Black Box" problem (lack of the NN decisions explanatory power. There are though some NN decisions rule extraction methods like decompositional, pedagogical or eclectic, but they suffer from low portability of the rule extraction technique across various neural net architectures, high level of granularity, algorithmic sophistication of the rule extraction technique etc. The authors propose to eliminate some known drawbacks using an innovative extension of the pedagogical approach. The idea is exposed by the use of a widespread MLP neural net (as a common tool in the financial problems' domain and SOM (input data space clusterization. The feedback of both nets' performance is related and targeted through the iteration cycle by achievement of the best matching between the decision space fragments and input data space clusters. Three sets of rules are generated algorithmically or by fuzzy membership functions. Empirical validation of the common financial benchmark problems is conducted with an appropriately prepared software solution.

  8. Consumer Behavior Modeling: Fuzzy Logic Model for Air Purifiers Choosing

    Directory of Open Access Journals (Sweden)

    Oleksandr Dorokhov

    2017-12-01

    Full Text Available At the beginning, the article briefly describes the features of the marketing complex household goods. Also provides an overview of some aspects of the market for indoor air purifiers. The specific subject of the study was the process of consumer choice of household appliances for cleaning air in living quarters. The aim of the study was to substantiate and develop a computer model for evaluating by the potential buyers devices for air purification in conditions of vagueness and ambiguity of their consumer preferences. Accordingly, the main consumer criteria are identified, substantiated and described when buyers choose air purifiers. As methods of research, approaches based on fuzzy logic, fuzzy sets theory and fuzzy modeling were chosen. It was hypothesized that the fuzzy-multiple model allows rather accurately reflect consumer preferences and potential consumer choice in conditions of insufficient and undetermined information. Further, a computer model for estimating the consumer qualities of air cleaners by customers is developed. A proposed approach based on the application of fuzzy logic theory and practical modeling in the specialized computer software MATLAB. In this model, the necessary membership functions and their terms are constructed, as well as a set of rules for fuzzy inference to make decisions on the estimation of a specific air purifier. A numerical example of a comparative evaluation of air cleaners presented on the Ukrainian market is made and is given. Numerical simulation results confirmed the applicability of the proposed approach and the correctness of the hypothesis advanced about the possibility of modeling consumer behavior using fuzzy logic. The analysis of the obtained results is carried out and the prospects of application, development, and improvement of the developed model and the proposed approach are determined.

  9. Action Rules Mining

    CERN Document Server

    Dardzinska, Agnieszka

    2013-01-01

    We are surrounded by data, numerical, categorical and otherwise, which must to be analyzed and processed to convert it into information that instructs, answers or aids understanding and decision making. Data analysts in many disciplines such as business, education or medicine, are frequently asked to analyze new data sets which are often composed of numerous tables possessing different properties. They try to find completely new correlations between attributes and show new possibilities for users.   Action rules mining discusses some of data mining and knowledge discovery principles and then describe representative concepts, methods and algorithms connected with action. The author introduces the formal definition of action rule, notion of a simple association action rule and a representative action rule, the cost of association action rule, and gives a strategy how to construct simple association action rules of a lowest cost. A new approach for generating action rules from datasets with numerical attributes...

  10. Fuzzy automata and pattern matching

    Science.gov (United States)

    Setzer, C. B.; Warsi, N. A.

    1986-01-01

    A wide-ranging search for articles and books concerned with fuzzy automata and syntactic pattern recognition is presented. A number of survey articles on image processing and feature detection were included. Hough's algorithm is presented to illustrate the way in which knowledge about an image can be used to interpret the details of the image. It was found that in hand generated pictures, the algorithm worked well on following the straight lines, but had great difficulty turning corners. An algorithm was developed which produces a minimal finite automaton recognizing a given finite set of strings. One difficulty of the construction is that, in some cases, this minimal automaton is not unique for a given set of strings and a given maximum length. This algorithm compares favorably with other inference algorithms. More importantly, the algorithm produces an automaton with a rigorously described relationship to the original set of strings that does not depend on the algorithm itself.

  11. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    Science.gov (United States)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  12. Rancang Bangun Sistem Kontrol Robot Line Follower Menggunakan Logika Fuzzy

    Directory of Open Access Journals (Sweden)

    Anggoro Mukti

    2015-10-01

    Full Text Available Line follower robot is a robot that can follow a line composed of a series of electronic components are equipped with wheels and driven by a motor. Controlling speed is very dependent on the speed limit and friction between the tire robot with the floor. The robots are designed to navigate and move automatically follow a flow line in order to get a response and speed are ideal.. The system consists of hardware and software. The hardware consists of a sensor such as a photodiode input, ATMEGA32 as microcontroller and DC motors. fuzzy logic is divided into three processes namely fuzzyfikasi, evaluation and defuzzyfikasi rule. Defuzzification a conversion step in fuzzy logic system to keluaran crisp value. The conversion result is an action taken by Fuzzy logic control system. The test results were obtained system is capable of identifying a straight line, turn lanes, and lane gray. The system is able to provide an ideal response and speed. input from the reading of the line will be processed by the control system fuzzy and outputs the result as the calculating of the motor speed. fuzzy control system can be an alternative technology development line follower robot control system.

  13. Fuzzy modeling to predict chicken egg hatchability in commercial hatchery.

    Science.gov (United States)

    Peruzzi, N J; Scala, N L; Macari, M; Furlan, R L; Meyer, A D; Fernandez-Alarcon, M F; Kroetz Neto, F L; Souza, F A

    2012-10-01

    Experimental studies have shown that hatching rate depends, among other factors, on the main physical characteristics of the eggs. The physical parameters used in our work were egg weight, eggshell thickness, egg sphericity, and yolk per albumen ratio. The relationships of these parameters in the incubation process were modeled by Fuzzy logic. The rules of the Fuzzy modeling were based on the analysis of the physical characteristics of the hatching eggs and the respective hatching rate using a commercial hatchery by applying a trapezoidal membership function into the modeling process. The implementations were performed in software. Aiming to compare the Fuzzy with a statistical modeling, the same data obtained in the commercial hatchery were analyzed using multiple linear regression. The estimated parameters of multiple linear regressions were based on a backward selection procedure. The results showed that the determination coefficient and the mean square error were higher using the Fuzzy method when compared with the statistical modeling. Furthermore, the predicted hatchability rates by Fuzzy Logic agreed with hatching rates obtained in the commercial hatchery.

  14. Word Similarity from Dictionaries: Inferring Fuzzy Measures from Fuzzy Graphs

    Directory of Open Access Journals (Sweden)

    Vicenc Torra

    2008-01-01

    Full Text Available WORD SIMILARITY FROM DICTIONARIES: INFERRING FUZZY MEASURES FROM FUZZY GRAPHS The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.

  15. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    Science.gov (United States)

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  17. Simulation of neuro-fuzzy model for optimization of combine header setting

    Directory of Open Access Journals (Sweden)

    S Zareei

    2016-09-01

    Full Text Available Introduction The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important parts is the header which comprises more than 50% of the entire harvesting losses. Some researchers have presented regression equation to estimate grain loss of combine harvester. The results of their study indicated that grain moisture content, reel index, cutter bar speed, service life of cutter bar, tine spacing, tine clearance over cutter bar, stem length were the major parameters affecting the losses. On the other hand, there are several researchswhich have used the variety of artificial intelligence methods in the different aspects of combine harvester. In neuro-fuzzy control systems, membership functions and if-then rules were defined through neural networks. Sugeno- type fuzzy inference model was applied to generate fuzzy rules from a given input-output data set due to its less time-consuming and mathematically tractable defuzzification operation for sample data-based fuzzy modeling. In this study, neuro-fuzzy model was applied to develop forecasting models which can predict the combine header loss for each set of the header parameter adjustments related to site-specific information and therefore can minimize the header loss. Materials and Methods The field experiment was conducted during the harvesting season of 2011 at the research station of the Faulty of Agriculture, Shiraz University, Shiraz, Iran. The wheat field (CV. Shiraz was harvested with a Claas Lexion-510 combine harvester. The factors which were selected as main factors influenced the header performance were three levels of reel index (RI (forward speed of combine harvester divided by peripheral speed of reel (1, 1.2, 1.5, three levels of cutting height (CH(25, 30, 35 cm, three

  18. Fuzzy self-learning control for magnetic servo system

    Science.gov (United States)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  19. Fuzzy control. Fundamentals, stability and design of fuzzy controllers

    Energy Technology Data Exchange (ETDEWEB)

    Michels, K. [Fichtner GmbH und Co. KG, Stuttgart (Germany); Klawonn, F. [Fachhochschule Braunschweig/Wolfenbuettel (Germany). Fachbereich Informatik; Kruse, R. [Magdeburg Univ. (Germany). Fakultaet Informatik, Abt. Wiss.- und Sprachverarbeitung; Nuernberger, A. (eds.) [California Univ., Berkeley, CA (United States). Computer Science Division

    2006-07-01

    The book provides a critical discussion of fuzzy controllers from the perspective of classical control theory. Special emphases are placed on topics that are of importance for industrial applications, like (self-) tuning of fuzzy controllers, optimisation and stability analysis. The book is written as a textbook for graduate students as well as a comprehensive reference book about fuzzy control for researchers and application engineers. Starting with a detailed introduction to fuzzy systems and control theory the reader is guided to up-to-date research results. (orig.)

  20. Fuzzy pharmacology: theory and applications.

    Science.gov (United States)

    Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan

    2002-09-01

    Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.