Model predictive control using fuzzy decision functions
Kaymak, U.; Costa Sousa, da J.M.
2001-01-01
Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
Fuzzy model predictive control algorithm applied in nuclear power plant
International Nuclear Information System (INIS)
Zuheir, Ahmad
2006-01-01
The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)
Fuzzy modeling to predict chicken egg hatchability in commercial hatchery.
Peruzzi, N J; Scala, N L; Macari, M; Furlan, R L; Meyer, A D; Fernandez-Alarcon, M F; Kroetz Neto, F L; Souza, F A
2012-10-01
Experimental studies have shown that hatching rate depends, among other factors, on the main physical characteristics of the eggs. The physical parameters used in our work were egg weight, eggshell thickness, egg sphericity, and yolk per albumen ratio. The relationships of these parameters in the incubation process were modeled by Fuzzy logic. The rules of the Fuzzy modeling were based on the analysis of the physical characteristics of the hatching eggs and the respective hatching rate using a commercial hatchery by applying a trapezoidal membership function into the modeling process. The implementations were performed in software. Aiming to compare the Fuzzy with a statistical modeling, the same data obtained in the commercial hatchery were analyzed using multiple linear regression. The estimated parameters of multiple linear regressions were based on a backward selection procedure. The results showed that the determination coefficient and the mean square error were higher using the Fuzzy method when compared with the statistical modeling. Furthermore, the predicted hatchability rates by Fuzzy Logic agreed with hatching rates obtained in the commercial hatchery.
Directory of Open Access Journals (Sweden)
Jing Lu
2014-11-01
Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Directory of Open Access Journals (Sweden)
Minh Vu Trieu
2017-03-01
Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Local Model Predictive Control for T-S Fuzzy Systems.
Lee, Donghwan; Hu, Jianghai
2017-09-01
In this paper, a new linear matrix inequality-based model predictive control (MPC) problem is studied for discrete-time nonlinear systems described as Takagi-Sugeno fuzzy systems. A recent local stability approach is applied to improve the performance of the proposed MPC scheme. At each time k , an optimal state-feedback gain that minimizes an objective function is obtained by solving a semidefinite programming problem. The local stability analysis, the estimation of the domain of attraction, and feasibility of the proposed MPC are proved. Examples are given to demonstrate the advantages of the suggested MPC over existing approaches.
A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Nan Jia
2016-01-01
Full Text Available Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented.
Fuzzy model for predicting the number of deformed wheels
Directory of Open Access Journals (Sweden)
Ž. Đorđević
2015-10-01
Full Text Available Deformation of the wheels damage cars and rails and affect on vehicle stability and safety. Repair and replacement cause high costs and lack of wagons. Planning of maintenance of wagons can not be done without estimates of the number of wheels that will be replaced due to wear and deformation in a given period of time. There are many influencing factors, the most important are: weather conditions, quality of materials, operating conditions, and distance between the two replacements. The fuzzy logic model uses the collected data as input variables to predict the output variable - number of deformed wheels for a certain type of vehicle in the defined period at a particular section of the railway.
Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir
2014-01-01
Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.
Analytic Model Predictive Control of Uncertain Nonlinear Systems: A Fuzzy Adaptive Approach
Directory of Open Access Journals (Sweden)
Xiuyan Peng
2015-01-01
Full Text Available A fuzzy adaptive analytic model predictive control method is proposed in this paper for a class of uncertain nonlinear systems. Specifically, invoking the standard results from the Moore-Penrose inverse of matrix, the unmatched problem which exists commonly in input and output dimensions of systems is firstly solved. Then, recurring to analytic model predictive control law, combined with fuzzy adaptive approach, the fuzzy adaptive predictive controller synthesis for the underlying systems is developed. To further reduce the impact of fuzzy approximation error on the system and improve the robustness of the system, the robust compensation term is introduced. It is shown that by applying the fuzzy adaptive analytic model predictive controller the rudder roll stabilization system is ultimately uniformly bounded stabilized in the H-infinity sense. Finally, simulation results demonstrate the effectiveness of the proposed method.
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Stream Flow Prediction Model Using Fuzzy Inference System and Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Mahmoud Mohammad RezapourTabari
2013-03-01
Full Text Available The aim of this study is the spatial prediction runoff using hydrometric and meteorological stations data. The research shows that usually there is a certain communication between the meteorological and hydrometric data of upstream basin and runoff rates in output basin. So, if can be extracted the rules related to historical data that recorded at stations, can be easily predicted runoff amount based on data measured. Accordingly, among the tools available, the fuzzy theory (with flexibility in developing fuzzy rules can be provide the knowledge lies in the observed data to parameters prediction in real time. So, in this research the fuzzy inference system has been used for estimating runoff rates at stations located in the Taleghan river downstream using rain gage stations and hydrometric stations upstream. Because the inappropriate values associated with membership functions, the fuzzy system model can not provide correct value for the prediction. In this study, a combination of intelligence-based optimization algorithm and fuzzy theory developed to accelerate and improve modeling. The result of proposed model, optimum values to each membership function that related to dependent and independent variable extracted and based on it’s the runoff rates in rivers downstream predicted. The results of this study were shown that the high accuracy of proposed model compared with fuzzy inference system. Also based on proposed model can be more accurately the rate of runoff estimated for future conditions.
Fuzzy predictive filtering in nonlinear economic model predictive control for demand response
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.
2016-01-01
problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...
Efficient predictive model-based and fuzzy control for green urban mobility
Jamshidnejad, A.
2017-01-01
In this thesis, we develop efficient predictive model-based control approaches, including model-predictive control (MPC) andmodel-based fuzzy control, for application in urban traffic networks with the aim of reducing a combination of the total time spent by the vehicles within the network and the
Ramli, Nazirah; Mutalib, Siti Musleha Ab; Mohamad, Daud
2017-08-01
Fuzzy time series forecasting model has been proposed since 1993 to cater for data in linguistic values. Many improvement and modification have been made to the model such as enhancement on the length of interval and types of fuzzy logical relation. However, most of the improvement models represent the linguistic term in the form of discrete fuzzy sets. In this paper, fuzzy time series model with data in the form of trapezoidal fuzzy numbers and natural partitioning length approach is introduced for predicting the unemployment rate. Two types of fuzzy relations are used in this study which are first order and second order fuzzy relation. This proposed model can produce the forecasted values under different degree of confidence.
Improved Fuzzy Modelling to Predict the Academic Performance of Distance Education Students
Directory of Open Access Journals (Sweden)
Osman Yildiz
2013-12-01
Full Text Available It is essential to predict distance education students’ year-end academic performance early during the course of the semester and to take precautions using such prediction-based information. This will, in particular, help enhance their academic performance and, therefore, improve the overall educational quality. The present study was on the development of a mathematical model intended to predict distance education students’ year-end academic performance using the first eight-week data on the learning management system. First, two fuzzy models were constructed, namely the classical fuzzy model and the expert fuzzy model, the latter being based on expert opinion. Afterwards, a gene-fuzzy model was developed optimizing membership functions through genetic algorithm. The data on distance education were collected through Moodle, an open source learning management system. The data were on a total of 218 students who enrolled in Basic Computer Sciences in 2012. The input data consisted of the following variables: When a student logged on to the system for the last time after the content of a lesson was uploaded, how often he/she logged on to the system, how long he/she stayed online in the last login, what score he/she got in the quiz taken in Week 4, and what score he/she got in the midterm exam taken in Week 8. A comparison was made among the predictions of the three models concerning the students’ year-end academic performance.
Simulation research on multivariable fuzzy model predictive control of nuclear power plant
International Nuclear Information System (INIS)
Su Jie
2012-01-01
To improve the dynamic control capabilities of the nuclear power plant, the algorithm of the multivariable nonlinear predictive control based on the fuzzy model was applied in the main parameters control of the nuclear power plant, including control structure and the design of controller in the base of expounding the math model of the turbine and the once-through steam generator. The simulation results show that the respond of the change of the gas turbine speed and the steam pressure under the algorithm of multivariable fuzzy model predictive control is faster than that under the PID control algorithm, and the output value of the gas turbine speed and the steam pressure under the PID control algorithm is 3%-5% more than that under the algorithm of multi-variable fuzzy model predictive control. So it shows that the algorithm of multi-variable fuzzy model predictive control can control the output of the main parameters of the nuclear power plant well and get better control effect. (author)
Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant
Directory of Open Access Journals (Sweden)
Xiangjie Liu
2014-01-01
Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.
Genetic Learning of Fuzzy Parameters in Predictive and Decision Support Modelling
Directory of Open Access Journals (Sweden)
Nebot
2012-04-01
Full Text Available In this research a genetic fuzzy system (GFS is proposed that performs discretization parameter learning in the context of the Fuzzy Inductive Reasoning (FIR methodology and the Linguistic Rule FIR (LR-FIR algorithm. The main goal of the GFS is to take advantage of the potentialities of GAs to learn the fuzzification parameters of the FIR and LR-FIR approaches in order to obtain reliable and useful predictive (FIR models and decision support (LR-FIR models. The GFS is evaluated in an e-learning context.
Directory of Open Access Journals (Sweden)
ZHANG Yongzhi
2016-10-01
Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.
Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model
DEFF Research Database (Denmark)
Khooban, Mohammad-Hassan; Vafamand, Navid; Niknam, Taher
2017-01-01
Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non......-quadratic Lyapunov function for the speed control of EVs including time-delay states and parameter uncertainty. Experimental data, using the Federal Test Procedure (FTP-75), is applied to test the performance and robustness of the suggested controller in the presence of time-varying parameters. Besides, a comparison...... is made between the results of the suggested robust strategy and those obtained from some of the most recent studies on the same topic, to assess the efficiency of the suggested controller. Finally, the experimental results based on a TMS320F28335 DSP are performed on a direct current motor. Simulation...
International Nuclear Information System (INIS)
Zhang, Fan; Wu, Xiao; Shen, Jiong
2017-01-01
Highlights: • A novel ESOFMPC is proposed based on the combination of ESO and stable MPC. • The improved ESO can overcome unknown disturbances on any channel of MIMO system. • Nonlinearity and disturbance of boiler-turbine unit can be handled simultaneously. - Abstract: The regulation of ultra-supercritical (USC) boiler-turbine unit in large-scale power plants is vulnerable to various unknown disturbances, meanwhile, the internal nonlinearity makes it a challenging task for wide range load tracking. To overcome these two issues simultaneously, an extended state observer based fuzzy model predictive control is proposed for the USC boiler-turbine unit. Firstly, the fuzzy model of a 1000-MW coal-fired USC boiler-turbine unit is established through the nonlinearity analysis. Then a fuzzy stable model predictive controller is devised on the fuzzy model using output cost function for the purpose of wide range load tracking. An improved linear extended state observer, which can estimate plant behavior variations and unknown disturbances regardless of the direct feedthrough characteristic of the system, is synthesized with the predictive controller to enhance its disturbance rejection property. Closed-loop stability of the overall control system is guaranteed. Simulation results on a 1000-MW USC boiler-turbine unit model demonstrate the effectiveness of the proposed approach.
Sugeno-Fuzzy Expert System Modeling for Quality Prediction of Non-Contact Machining Process
Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.
2018-03-01
Modeling can be categorised into four main domains: prediction, optimisation, estimation and calibration. In this paper, the Takagi-Sugeno-Kang (TSK) fuzzy logic method is examined as a prediction modelling method to investigate the taper quality of laser lathing, which seeks to replace traditional lathe machines with 3D laser lathing in order to achieve the desired cylindrical shape of stock materials. Three design parameters were selected: feed rate, cutting speed and depth of cut. A total of twenty-four experiments were conducted with eight sequential runs and replicated three times. The results were found to be 99% of accuracy rate of the TSK fuzzy predictive model, which suggests that the model is a suitable and practical method for non-linear laser lathing process.
Wasserman, Richard Marc
The radiation therapy treatment planning (RTTP) process may be subdivided into three planning stages: gross tumor delineation, clinical target delineation, and modality dependent target definition. The research presented will focus on the first two planning tasks. A gross tumor target delineation methodology is proposed which focuses on the integration of MRI, CT, and PET imaging data towards the generation of a mathematically optimal tumor boundary. The solution to this problem is formulated within a framework integrating concepts from the fields of deformable modelling, region growing, fuzzy logic, and data fusion. The resulting fuzzy fusion algorithm can integrate both edge and region information from multiple medical modalities to delineate optimal regions of pathological tissue content. The subclinical boundaries of an infiltrating neoplasm cannot be determined explicitly via traditional imaging methods and are often defined to extend a fixed distance from the gross tumor boundary. In order to improve the clinical target definition process an estimation technique is proposed via which tumor growth may be modelled and subclinical growth predicted. An in vivo, macroscopic primary brain tumor growth model is presented, which may be fit to each patient undergoing treatment, allowing for the prediction of future growth and consequently the ability to estimate subclinical local invasion. Additionally, the patient specific in vivo tumor model will be of significant utility in multiple diagnostic clinical applications.
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling
S. Bouharati; F. Allag; M. Belmahdi; M. Bounechada
2014-01-01
In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it ...
Febrian Umbara, Rian; Tarwidi, Dede; Budi Setiawan, Erwin
2018-03-01
The paper discusses the prediction of Jakarta Composite Index (JCI) in Indonesia Stock Exchange. The study is based on JCI historical data for 1286 days to predict the value of JCI one day ahead. This paper proposes predictions done in two stages., The first stage using Fuzzy Time Series (FTS) to predict values of ten technical indicators, and the second stage using Support Vector Regression (SVR) to predict the value of JCI one day ahead, resulting in a hybrid prediction model FTS-SVR. The performance of this combined prediction model is compared with the performance of the single stage prediction model using SVR only. Ten technical indicators are used as input for each model.
FUZZY REGRESSION MODEL TO PREDICT THE BEAD GEOMETRY IN THE ROBOTIC WELDING PROCESS
Institute of Scientific and Technical Information of China (English)
B.S. Sung; I.S. Kim; Y. Xue; H.H. Kim; Y.H. Cha
2007-01-01
Recently, there has been a rapid development in computer technology, which has in turn led todevelop the fully robotic welding system using artificial intelligence (AI) technology. However, therobotic welding system has not been achieved due to difficulties of the mathematical model andsensor technologies. The possibilities of the fuzzy regression method to predict the bead geometry,such as bead width, bead height, bead penetration and bead area in the robotic GMA (gas metalarc) welding process is presented. The approach, a well-known method to deal with the problemswith a high degree of fuzziness, is used to build the relationship between four process variablesand the four quality characteristics, respectively. Using these models, the proper prediction of theprocess variables for obtaining the optimal bead geometry can be determined.
Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model
Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna
2017-06-01
Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.
Panoiu, M.; Panoiu, C.; Lihaciu, I. L.
2018-01-01
This research presents an adaptive neuro-fuzzy system which is used in the prediction of the distance between the pantograph and contact line of the electrical locomotives used in railway transportation. In railway transportation any incident that occurs in the electrical system can have major negative effects: traffic interrupts, equipment destroying. Therefore, a prediction as good as possible of such situations is very useful. In the paper was analyzing the possibility of modeling and prediction the variation of the distance between the pantograph and the contact line using intelligent techniques
Energy Technology Data Exchange (ETDEWEB)
Alasha' ary, Haitham; Moghtaderi, Behdad; Page, Adrian; Sugo, Heber [Priority Research Centre for Energy, Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, the University of Newcastle, Callaghan, Newcastle, NSW 2308 (Australia)
2009-07-15
The Masonry Research Group at The University of Newcastle, Australia has embarked on an extensive research program to study the thermal performance of common walling systems in Australian residential buildings by studying the thermal behaviour of four representative purpose-built thermal test buildings (referred to as 'test modules' or simply 'modules' hereafter). The modules are situated on the university campus and are constructed from brick veneer (BV), cavity brick (CB) and lightweight (LW) constructions. The program of study has both experimental and analytical strands, including the use of a neuro-fuzzy approach to predict the thermal behaviour. The latter approach employs an experimental adaptive neuro-fuzzy inference system (ANFIS) which is used in this study to predict the room (indoor) temperatures of the modules under a range of climatic conditions pertinent to Newcastle (NSW, Australia). The study shows that this neuro-fuzzy model is capable of accurately predicting the room temperature of such buildings; thus providing a potential computationally efficient and inexpensive predictive tool for the more effective thermal design of housing. (author)
Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim
2018-05-01
The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).
Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO
Directory of Open Access Journals (Sweden)
Adel Taieb
2017-01-01
Full Text Available This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO Fuzzy Optimal Model Predictive Control (FOMPC using the Adaptive Particle Swarm Optimization (APSO algorithm. The aim of this proposed control, called FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS fuzzy system whose parameters are identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, Continuous Stirred Tank Reactor (CSTR and Tank system, where the proposed approach provides better performances compared with other methods.
Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model.
Directory of Open Access Journals (Sweden)
Georgina Cosma
Full Text Available The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA level, the biopsy most common tumor pattern (Primary Gleason pattern and the second most common tumor pattern (Secondary Gleason pattern in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD or Extra-Prostatic Disease (ED using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC, with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812. The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR
Fuzzy Clustering Methods and their Application to Fuzzy Modeling
DEFF Research Database (Denmark)
Kroszynski, Uri; Zhou, Jianjun
1999-01-01
Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...
Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems
Energy Technology Data Exchange (ETDEWEB)
Becker, Steffen [University of Tasmania, Hobart 7001, Tasmania (Australia); Karri, Vishy [Australian College of Kuwait (Kuwait)
2010-09-15
Predictive models were built using neural network based Adaptive Neuro-Fuzzy Inference Systems for hydrogen flow rate, electrolyzer system-efficiency and stack-efficiency respectively. A comprehensive experimental database forms the foundation for the predictive models. It is argued that, due to the high costs associated with the hydrogen measuring equipment; these reliable predictive models can be implemented as virtual sensors. These models can also be used on-line for monitoring and safety of hydrogen equipment. The quantitative accuracy of the predictive models is appraised using statistical techniques. These mathematical models are found to be reliable predictive tools with an excellent accuracy of {+-}3% compared with experimental values. The predictive nature of these models did not show any significant bias to either over prediction or under prediction. These predictive models, built on a sound mathematical and quantitative basis, can be seen as a step towards establishing hydrogen performance prediction models as generic virtual sensors for wider safety and monitoring applications. (author)
DEFF Research Database (Denmark)
Achiche, S.; Shlechtingen, M.; Raison, M.
2016-01-01
This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped...... obtained from applying a random excitation force on the flexible structure. The performance of the developed models is evaluated by analyzing the prediction capabilities based on a normalized prediction error. The frequency domain is considered to analyze the similarity of the frequencies in the predicted...... of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that ANFIS models can be used to set up reliable force predictors for dynamical loaded flexible structures, when a certain degree of inaccuracy is accepted. Furthermore, the comparison...
International Nuclear Information System (INIS)
Na, Man Gyun; Kim, Jin Weon; Lim, Dong Hyuk
2007-01-01
A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones
Assessment and prediction of air quality using fuzzy logic and autoregressive models
Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.
2012-12-01
In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-10-01
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.
Mamdani-Fuzzy Modeling Approach for Quality Prediction of Non-Linear Laser Lathing Process
Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.
2018-03-01
Lathing is a process to fashioning stock materials into desired cylindrical shapes which usually performed by traditional lathe machine. But, the recent rapid advancements in engineering materials and precision demand gives a great challenge to the traditional method. The main drawback of conventional lathe is its mechanical contact which brings to the undesirable tool wear, heat affected zone, finishing, and dimensional accuracy especially taper quality in machining of stock with high length to diameter ratio. Therefore, a novel approach has been devised to investigate in transforming a 2D flatbed CO2 laser cutting machine into 3D laser lathing capability as an alternative solution. Three significant design parameters were selected for this experiment, namely cutting speed, spinning speed, and depth of cut. Total of 24 experiments were performed with eight (8) sequential runs where they were then replicated three (3) times. The experimental results were then used to establish Mamdani - Fuzzy predictive model where it yields the accuracy of more than 95%. Thus, the proposed Mamdani - Fuzzy modelling approach is found very much suitable and practical for quality prediction of non-linear laser lathing process for cylindrical stocks of 10mm diameter.
AlAlaween, Wafa' H; Khorsheed, Bilal; Mahfouf, Mahdi; Gabbott, Ian; Reynolds, Gavin K; Salman, Agba D
2018-03-01
In this research, a new systematic modelling framework which uses machine learning for describing the granulation process is presented. First, an interval type-2 fuzzy model is elicited in order to predict the properties of the granules produced by twin screw granulation (TSG) in the pharmaceutical industry. Second, a Gaussian mixture model (GMM) is integrated in the framework in order to characterize the error residuals emanating from the fuzzy model. This is done to refine the model by taking into account uncertainties and/or any other unmodelled behaviour, stochastic or otherwise. All proposed modelling algorithms were validated via a series of Laboratory-scale experiments. The size of the granules produced by TSG was successfully predicted, where most of the predictions fit within a 95% confidence interval. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Dieu Tien Bui
2015-04-01
Full Text Available The main objective of this study is to investigate potential application of an integrated evidential belief function (EBF-based fuzzy logic model for spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam. First, a landslide inventory map was constructed from various sources. Then the landslide inventory map was randomly partitioned as a ratio of 70/30 for training and validation of the models, respectively. Second, six landslide conditioning factors (slope angle, slope aspect, lithology, distance to faults, soil type, land use were prepared and fuzzy membership values for these factors classes were estimated using the EBF. Subsequently, fuzzy operators were used to generate landslide susceptibility maps. Finally, the susceptibility maps were validated and compared using the validation dataset. The results show that the lowest prediction capability is the fuzzy SUM (76.6%. The prediction capability is almost the same for the fuzzy PRODUCT and fuzzy GAMMA models (79.6%. Compared to the frequency-ratio based fuzzy logic models, the EBF-based fuzzy logic models showed better result in both the success rate and prediction rate. The results from this study may be useful for local planner in areas prone to landslides. The modelling approach can be applied for other areas.
Microgrid planning based on fuzzy interval prediction models of renewable resources
Morales, R.; Sáez, D.; Marín, L.G.; Nunez Vicencio, Alfredo; Cordon, O.
2016-01-01
Microgrids are sustainable solutions for electrification of rural zones that can make use of their local renewable resources. In this paper, we propose a new method for microgrid planning which includes the effect of the uncertainties of the renewable resources explicitly. Fuzzy interval models are
Directory of Open Access Journals (Sweden)
Klaus-Dietrich Kramer
2016-05-01
Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.
Luo, Yi; Zhang, Tao; Li, Xiao-song
2016-05-01
To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.
Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann
2018-03-01
Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.
Directory of Open Access Journals (Sweden)
Ramanpreet Kaur
2017-02-01
Full Text Available Intelligent prediction of neighboring node (k well defined neighbors as specified by the dht protocol dynamism is helpful to improve the resilience and can reduce the overhead associated with topology maintenance of structured overlay networks. The dynamic behavior of overlay nodes depends on many factors such as underlying user’s online behavior, geographical position, time of the day, day of the week etc. as reported in many applications. We can exploit these characteristics for efficient maintenance of structured overlay networks by implementing an intelligent predictive framework for setting stabilization parameters appropriately. Considering the fact that human driven behavior usually goes beyond intermittent availability patterns, we use a hybrid Neuro-fuzzy based predictor to enhance the accuracy of the predictions. In this paper, we discuss our predictive stabilization approach, implement Neuro-fuzzy based prediction in MATLAB simulation and apply this predictive stabilization model in a chord based overlay network using OverSim as a simulation tool. The MATLAB simulation results present that the behavior of neighboring nodes is predictable to a large extent as indicated by the very small RMSE. The OverSim based simulation results also observe significant improvements in the performance of chord based overlay network in terms of lookup success ratio, lookup hop count and maintenance overhead as compared to periodic stabilization approach.
Energy Technology Data Exchange (ETDEWEB)
Mimbela, Renzo R.F.; Silva, Jadir C. [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao do Petroleo (LENEP)
2004-07-01
The well logs have a great applicability in the search and evaluation of hydrocarbon. In this work we calculate porosities of the Namorado field with help of the 'Fuzzy Rule'. This is done segmenting jointly both the neutron ({phi}{sub N}) and density ({phi}{sub d}) porosities logs in groups with better relation of internal linearity. The grouping is processed keeping the best number of groups, which is efficiently chosen by a criterion related to the minimum value of 'Fuzzy Validity' measurement. As a first step, we choose the {phi}{sub N} and {phi}{sub d} values only at that depths where cores exist. To prevent picking measurements errors a previous data filtering is performed by selecting only the and their correspondent values that exhibit a maximum discrepancy with core porosity ({phi}{sub C}) around 5pu (porosity unit). A conventional average porosity {phi}{sub MED}, mixing {phi}{sub N} and {phi}{sub d} is calculated at each point, concerning its own lithological and fluids characteristics. Finally, an inversion algorithm is applied to indicate the best curve curve that fit linearly {phi}{sub C} vs. {phi}{sub MED}, {phi}{sub C} vs. {phi}{sub D} and {phi}{sub C} vs. {phi}{sub N}, and at the same time determines the values of the constants to be extrapolated in order to calculate the porosity of the whole field. (author)
Directory of Open Access Journals (Sweden)
G Khalili-Zadeh-Mahani
2016-07-01
Full Text Available Introduction: Reducing unnecessary laboratory tests is an essential issue in the Intensive Care Unit. One solution for this issue is to predict the value of a laboratory test to specify the necessity of ordering the tests. The aim of this paper was to propose a clinical decision support system for predicting laboratory tests values. Calcium laboratory tests of three categories of patients, including upper and lower gastrointestinal bleeding, and unspecified hemorrhage of gastrointestinal tract, have been selected as the case studies for this research. Method: In this research, the data have been collected from MIMIC-II database. For predicting calcium laboratory values, a Fuzzy Takagi-Sugeno model is used and the input variables of the model are heart rate and previous value of calcium laboratory test. Results: The results showed that the values of calcium laboratory test for the understudy patients were predictable with an acceptable accuracy. In average, the mean absolute errors of the system for the three categories of the patients are 0.27, 0.29, and 0.28, respectively. Conclusion: In this research, using fuzzy modeling and two variables of heart rate and previous calcium laboratory values, a clinical decision support system was proposed for predicting laboratory values of three categories of patients with gastrointestinal bleeding. Using these two clinical values as input variables, the obtained results were acceptable and showed the capability of the proposed system in predicting calcium laboratory values. For achieving better results, the impact of more input variables should be studied. Since, the proposed system predicts the laboratory values instead of just predicting the necessity of the laboratory tests; it was more generalized than previous studies. So, the proposed method let the specialists make the decision depending on the condition of each patient.
Lan, T H; Loh, E W; Wu, M S; Hu, T M; Chou, P; Lan, T Y; Chiu, H-J
2008-12-01
Artificial intelligence has become a possible solution to resolve the problem of loss of information when complexity of a disease increases. Obesity phenotypes are observable clinical features of drug-naive schizophrenic patients. In addition, atypical antipsychotic medications may cause these unwanted effects. Here we examined the performance of neuro-fuzzy modeling (NFM) in predicting weight changes in chronic schizophrenic patients exposed to antipsychotics. Two hundred and twenty inpatients meeting DSMIV diagnosis of schizophrenia, treated with antipsychotics, either typical or atypical, for more than 2 years, were recruited. All subjects were assessed in the same study period between mid-November 2003 and mid-April 2004. The baseline and first visit's physical data including weight, height and circumference were used in this study. Clinical information (Clinical Global Impression and Life Style Survey) and genotype data of five single nucleotide polymorphisms were also included as predictors. The subjects were randomly assigned into the first group (105 subjects) and second group (115 subjects), and NFM was performed by using the FuzzyTECH 5.54 software package, with a network-type structure constructed in the rule block. A complete learned model trained from merged data of the first and second groups demonstrates that, at a prediction error of 5, 93% subjects with weight gain were identified. Our study suggests that NFM is a feasible prediction tool for obesity in schizophrenic patients exposed to antipsychotics, with further improvements required.
International Nuclear Information System (INIS)
Zare, Mansour; Vahdati Khaki, Jalil
2012-01-01
Highlights: ► ANNs and ANFIS fairly predicted UTS and YS of warm compacted molybdenum prealloy. ► Effects of composition, temperature, compaction pressure on output were studied. ► ANFIS model was in better agreement with experimental data from published article. ► Sintering temperature had the most significant effect on UTS and YS. -- Abstract: Predictive models using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were successfully developed to predict yield strength and ultimate tensile strength of warm compacted 0.85 wt.% molybdenum prealloy samples. To construct these models, 48 different experimental data were gathered from the literature. A portion of the data set was randomly chosen to train both ANN with back propagation (BP) learning algorithm and ANFIS model with Gaussian membership function and the rest was implemented to verify the performance of the trained network against the unseen data. The generalization capability of the networks was also evaluated by applying new input data within the domain covered by the training pattern. To compare the obtained results, coefficient of determination (R 2 ), root mean squared error (RMSE) and average absolute error (AAE) indexes were chosen and calculated for both of the models. The results showed that artificial neural network and adaptive neuro-fuzzy system were both potentially strong for prediction of the mechanical properties of warm compacted 0.85 wt.% molybdenum prealloy; however, the proposed ANFIS showed better performance than the ANN model. Also, the ANFIS model was subjected to a sensitivity analysis to find the significant inputs affecting mechanical properties of the samples.
International Nuclear Information System (INIS)
Turkdogan-Aydinol, F. Ilter; Yetilmezsoy, Kaan
2010-01-01
A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R V ), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (±3)% and an average volumetric TCOD removal rate of 6.87 (±3.93) kg TCOD removed /m 3 -day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.
Abrasive slurry jet cutting model based on fuzzy relations
Qiang, C. H.; Guo, C. W.
2017-12-01
The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.
Directory of Open Access Journals (Sweden)
Jianzhong Zhou
2017-12-01
Full Text Available Model simulation and control of pumped storage unit (PSU are essential to improve the dynamic quality of power station. Only under the premise of the PSU models reflecting the actual transient process, the novel control method can be properly applied in the engineering. The contributions of this paper are that (1 a real-time accurate equivalent circuit model (RAECM of PSU via error compensation is proposed to reconcile the conflict between real-time online simulation and accuracy under various operating conditions, and (2 an adaptive predicted fuzzy PID controller (APFPID based on RAECM is put forward to overcome the instability of conventional control under no-load conditions with low water head. Respectively, all hydraulic factors in pipeline system are fully considered based on equivalent lumped-circuits theorem. The pretreatment, which consists of improved Suter-transformation and BP neural network, and online simulation method featured by two iterative loops are synthetically proposed to improve the solving accuracy of the pump-turbine. Moreover, the modified formulas for compensating error are derived with variable-spatial discretization to improve the accuracy of the real-time simulation further. The implicit RadauIIA method is verified to be more suitable for PSUGS owing to wider stable domain. Then, APFPID controller is constructed based on the integration of fuzzy PID and the model predictive control. Rolling prediction by RAECM is proposed to replace rolling optimization with its computational speed guaranteed. Finally, the simulation and on-site measurements are compared to prove trustworthy of RAECM under various running conditions. Comparative experiments also indicate that APFPID controller outperforms other controllers in most cases, especially low water head conditions. Satisfying results of RAECM have been achieved in engineering and it provides a novel model reference for PSUGS.
Improved fuzzy PID controller design using predictive functional control structure.
Wang, Yuzhong; Jin, Qibing; Zhang, Ridong
2017-11-01
In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
An improved advertising CTR prediction approach based on the fuzzy deep neural network.
Jiang, Zilong; Gao, Shu; Li, Mingjiang
2018-01-01
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.
Directory of Open Access Journals (Sweden)
Banjanovic-Mehmedovic Lejla
2016-01-01
Full Text Available Accurate prediction of traffic information is important in many applications in relation to Intelligent Transport systems (ITS, since it reduces the uncertainty of future traffic states and improves traffic mobility. There is a lot of research done in the field of traffic information predictions such as speed, flow and travel time. The most important research was done in the domain of cooperative intelligent transport system (C-ITS. The goal of this paper is to introduce the novel cooperation behaviour profile prediction through the example of flexible Road Trains useful road cooperation parameter, which contributes to the improvement of traffic mobility in Intelligent Transportation Systems. This paper presents an approach towards the control and cooperation behaviour modelling of vehicles in the flexible Road Train based on hybrid automaton and neuro-fuzzy (ANFIS prediction of cooperation profile of the flexible Road Train. Hybrid automaton takes into account complex dynamics of each vehicle as well as discrete cooperation approach. The ANFIS is a particular class of the ANN family with attractive estimation and learning potentials. In order to provide statistical analysis, RMSE (root mean square error, coefficient of determination (R2 and Pearson coefficient (r, were utilized. The study results suggest that ANFIS would be an efficient soft computing methodology, which could offer precise predictions of cooperative interactions between vehicles in Road Train, which is useful for prediction mobility in Intelligent Transport systems.
Fuzzy linguistic model for interpolation
International Nuclear Information System (INIS)
Abbasbandy, S.; Adabitabar Firozja, M.
2007-01-01
In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method
Neuro-fuzzy system modeling based on automatic fuzzy clustering
Institute of Scientific and Technical Information of China (English)
Yuangang TANG; Fuchun SUN; Zengqi SUN
2005-01-01
A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.
Handling Uncertainty in Social Lending Credit Risk Prediction with a Choquet Fuzzy Integral Model
Namvar, Anahita; Naderpour, Mohsen
2018-01-01
As one of the main business models in the financial technology field, peer-to-peer (P2P) lending has disrupted traditional financial services by providing an online platform for lending money that has remarkably reduced financial costs. However, the inherent uncertainty in P2P loans can result in huge financial losses for P2P platforms. Therefore, accurate risk prediction is critical to the success of P2P lending platforms. Indeed, even a small improvement in credit risk prediction would be o...
Energy Technology Data Exchange (ETDEWEB)
Turkdogan-Aydinol, F. Ilter, E-mail: aydin@yildiz.edu.tr [Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220 Davutpasa, Esenler, Istanbul (Turkey); Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr [Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220 Davutpasa, Esenler, Istanbul (Turkey)
2010-10-15
A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R{sub V}), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 ({+-}3)% and an average volumetric TCOD removal rate of 6.87 ({+-}3.93) kg TCOD{sub removed}/m{sup 3}-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.
Fuzzy set theory for cumulative trauma prediction
Fonseca, Daniel J.; Merritt, Thomas W.; Moynihan, Gary P.
2001-01-01
A widely used fuzzy reasoning algorithm was modified and implemented via an expert system to assess the potential risk of employee repetitive strain injury in the workplace. This fuzzy relational model, known as the Priority First Cover Algorithm (PFC), was adapted to describe the relationship between 12 cumulative trauma disorders (CTDs) of the upper extremity, and 29 identified risk factors. The algorithm, which finds a suboptimal subset from a group of variables based on the criterion of...
Probabilistic fuzzy prediction of mortality in intensive care units
Fialho, A.T.S.; Kaymak, U.; Almeida, R.J.; Cismondi, F.; Vieira, S.M.; Reti, S.R.; Costa Sousa, da J.M.; Finkelstein, S.N.; Bouchon-Meunier, B.
2012-01-01
In the present work, we propose the application of probabilistic fuzzy systems (PFS) to model the prediction of mortality in septic shock patients. This technique is characterized by the combination of the linguistic description of the system with the statistical properties of data. Preliminary
Performance Modelling of Steam Turbine Performance using Fuzzy ...
African Journals Online (AJOL)
Performance Modelling of Steam Turbine Performance using Fuzzy Logic ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES. Journal of Applied Sciences and Environmental Management ... A Fuzzy Inference System for predicting the performance of steam turbine
International Nuclear Information System (INIS)
Pilotto, F.; Vasconcellos, C.A.Z.; Coelho, H.T.
2001-01-01
In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)
Energy Technology Data Exchange (ETDEWEB)
Pilotto, F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Coelho, H.T. [Pernambuco Univ., Recife, PE (Brazil). Inst. de Fisica
2001-07-01
In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)
Consumer preference models: fuzzy theory approach
Turksen, I. B.; Wilson, I. A.
1993-12-01
Consumer preference models are widely used in new product design, marketing management, pricing and market segmentation. The purpose of this article is to develop and test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation) and how much to make (market share prediction).
Prediction on carbon dioxide emissions based on fuzzy rules
Pauzi, Herrini; Abdullah, Lazim
2014-06-01
There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.
Type-2 fuzzy logic uncertain systems’ modeling and control
Antão, Rómulo
2017-01-01
This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.
Fuzzy audit risk modeling algorithm
Directory of Open Access Journals (Sweden)
Zohreh Hajihaa
2011-07-01
Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.
Energy Technology Data Exchange (ETDEWEB)
Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Department of Statistics, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Tilton, Susan C.; Waters, Katrina M. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States)
2013-03-01
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions
Directory of Open Access Journals (Sweden)
Li Zhang
2017-12-01
Full Text Available Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN is proposed in this paper. The raw data are firstly processed by FIG to extract useful information from each time window. The extracted information is then used to construct a wavelet neural network (WNN prediction model. Furthermore, the structural parameters of WNN are optimized by chaotic particle swarm optimization (CPSO before it is used to predict the fluctuation range of the hotspot temperature. By analyzing the experimental data with four different prediction models, we find that the proposed method is more effective and is of guiding significance for the operation and maintenance of transformers.
Digital Repository Service at National Institute of Oceanography (India)
Harish, N.; Mandal, S.; Rao, S.; Lokesha
coefficient (CC) and scatter index (SI) for test data are 8.072, 2.841, 0.92, and 0.218 respectively. Comparing with the artificial neural network model, ANFIS yields higher CC and lower SI. From the results it can be concluded that ANFIS can be an efficient...
Directory of Open Access Journals (Sweden)
Yea-Kuang Chan
2012-01-01
Full Text Available Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs. This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were verified using a linear regression model with a 95% confidence interval. The key parameters of turbine cycle, including turbine throttle pressure, condenser backpressure, feedwater flow rate and final feedwater temperature are selected as inputs for the ANFIS based turbine cycle model. In addition, a thermodynamic turbine cycle model was developed using the commercial software PEPSE® to compare the performance of the ANFIS based turbine cycle model. The results show that the proposed ANFIS based turbine cycle model is capable of accurately estimating turbine-generator output and providing more reliable results than the PEPSE® based turbine cycle models. Moreover, test results show that the ANFIS performed better than the artificial neural network (ANN, which has also being tried to model the turbine cycle. The effectiveness of the proposed neuro-fuzzy based turbine cycle model was demonstrated using the actual operating data of Kuosheng NPP. Furthermore, the results also provide an alternative approach to evaluate the thermal performance of nuclear power plants.
Fuzzy Stochastic Optimization Theory, Models and Applications
Wang, Shuming
2012-01-01
Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
Miranian, A; Abdollahzade, M
2013-02-01
Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.
van den Dool, G.
2017-11-01
This study (van den Dool, 2017) is a proof of concept for a global predictive wildfire model, in which the temporal-spatial characteristics of wildfires are placed in a Geographical Information System (GIS), and the risk analysis is based on data-driven fuzzy logic functions. The data sources used in this model are available as global datasets, but subdivided into three pilot areas: North America (California/Nevada), Europe (Spain), and Asia (Mongolia), and are downscaled to the highest resolution (3-arc second). The GIS is constructed around three themes: topography, fuel availability and climate. From the topographical data, six derived sub-themes are created and converted to a fuzzy membership based on the catchment area statistics. The fuel availability score is a composite of four data layers: land cover, wood loads, biomass, biovolumes. As input for the climatological sub-model reanalysed daily averaged, weather-related data is used, which is accumulated to a global weekly time-window (to account for the uncertainty within the climatological model) and forms the temporal component of the model. The final product is a wildfire risk score (from 0 to 1) by week, representing the average wildfire risk in an area. To compute the potential wildfire risk the sub-models are combined usinga Multi-Criteria Approach, and the model results are validated against the area under the Receiver Operating Characteristic curve.
Type-2 fuzzy elliptic membership functions for modeling uncertainty
DEFF Research Database (Denmark)
Kayacan, Erdal; Sarabakha, Andriy; Coupland, Simon
2018-01-01
Whereas type-1 and type-2 membership functions (MFs) are the core of any fuzzy logic system, there are no performance criteria available to evaluate the goodness or correctness of the fuzzy MFs. In this paper, we make extensive analysis in terms of the capability of type-2 elliptic fuzzy MFs...... in modeling uncertainty. Having decoupled parameters for its support and width, elliptic MFs are unique amongst existing type-2 fuzzy MFs. In this investigation, the uncertainty distribution along the elliptic MF support is studied, and a detailed analysis is given to compare and contrast its performance...... advantages mentioned above, elliptic MFs have comparable prediction results when compared to Gaussian and triangular MFs. Finally, in order to test the performance of fuzzy logic controller with elliptic interval type-2 MFs, extensive real-time experiments are conducted for the 3D trajectory tracking problem...
Directory of Open Access Journals (Sweden)
L.F. Termite
2013-09-01
Full Text Available Intelligent computing tools based on fuzzy logic and artificial neural networks have been successfully applied in various problems with superior performances. A new approach of combining these two powerful tools, known as neuro-fuzzy systems, has increasingly attracted scientists in different fields. Few studies have been undertaken to evaluate their performances in hydrologic modeling. Specifically are available rainfall-runoff modeling typically at very short time scales (hourly, daily or event for the real-time forecasting of floods with in input precipitation and past runoff (i.e. inflow rate and in few cases models for the prediction of the monthly inflows to a dam using the past inflows as input. This study presents an application of an Adaptive Network-based Fuzzy Inference System (ANFIS, as a neuro-fuzzy-computational technique, in the forecasting of the inflow to the Guardialfiera multipurpose dam (CB, Italy at the weekly and monthly time scale. The latter has been performed both directly at monthly scale (monthly input data and iterating the weekly model. Twenty-nine years of rainfall, temperature, water level in the reservoir and releases to the different uses were available. In all simulations meteorological input data were used and in some cases also the past inflows. The performance of the defined ANFIS models were established by different efficiency and correlation indices. The results at the weekly time scale can be considered good, with a Nash- Sutcliffe efficiency index E = 0.724 in the testing phase. At the monthly time scale, satisfactory results were obtained with the iteration of the weekly model for the prediction of the incoming volume up to 3 weeks ahead (E = 0.574, while the direct simulation of monthly inflows gave barely satisfactory results (E = 0.502. The greatest difficulties encountered in the analysis were related to the reliability of the available data. The results of this study demonstrate the promising
Directory of Open Access Journals (Sweden)
Yann Blanco
2001-01-01
Full Text Available This paper outlines a methodology to study the stability of Takagi-Sugeno's (TS fuzzy models. The stability analysis of the TS model is performed using a quadratic Liapunov candidate function. This paper proposes a relaxation of Tanaka's stability condition: unlike related works, the equations to be solved are not Liapunov equations for each rule matrix, but a convex combination of them. The coefficients of this sums depend on the membership functions. This method is applied to the design of continuous controllers for the TS model. Three different control structures are investigated, among which the Parallel Distributed Compensation (PDC. An application to the inverted pendulum is proposed here.
Modeling Research Project Risks with Fuzzy Maps
Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana
2009-01-01
The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…
Markowitz portfolio optimization model employing fuzzy measure
Ramli, Suhailywati; Jaaman, Saiful Hafizah
2017-04-01
Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.
Energy Technology Data Exchange (ETDEWEB)
Xie, Qiuju, E-mail: xqj197610@163.com [Institute of Information Technology, Heilongjiang Bayi Agricultural University, Daqing 163319 (China); Ni, Ji-qin [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 (United States); Su, Zhongbin [Institute of Electric and Information, Northeast Agricultural University, Harbin 150030 (China)
2017-03-05
Highlights: • A prediction model of ammonia emission was built based on the indoor ammonia concentration prediction model using ANFIS. • Five kinds of membership functions were compared to get a well fitted prediction model. • Compared with the BP and MLRM model, the ANFIS prediction model with “gbell” membership function has the best performances. - Abstract: Ammonia (NH{sub 3}) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human’s vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with “Gbell” membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R{sup 2}) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship.
International Nuclear Information System (INIS)
Xie, Qiuju; Ni, Ji-qin; Su, Zhongbin
2017-01-01
Highlights: • A prediction model of ammonia emission was built based on the indoor ammonia concentration prediction model using ANFIS. • Five kinds of membership functions were compared to get a well fitted prediction model. • Compared with the BP and MLRM model, the ANFIS prediction model with “gbell” membership function has the best performances. - Abstract: Ammonia (NH_3) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human’s vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with “Gbell” membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R"2) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship.
Fuzzy Entropy： Axiomatic Definition and Neural Networks Model
Institute of Scientific and Technical Information of China (English)
QINGMing; CAOYue; HUANGTian-min
2004-01-01
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.
Chen, Wei; Pourghasemi, Hamid Reza; Panahi, Mahdi; Kornejady, Aiding; Wang, Jiale; Xie, Xiaoshen; Cao, Shubo
2017-11-01
The spatial prediction of landslide susceptibility is an important prerequisite for the analysis of landslide hazards and risks in any area. This research uses three data mining techniques, such as an adaptive neuro-fuzzy inference system combined with frequency ratio (ANFIS-FR), a generalized additive model (GAM), and a support vector machine (SVM), for landslide susceptibility mapping in Hanyuan County, China. In the first step, in accordance with a review of the previous literature, twelve conditioning factors, including slope aspect, altitude, slope angle, topographic wetness index (TWI), plan curvature, profile curvature, distance to rivers, distance to faults, distance to roads, land use, normalized difference vegetation index (NDVI), and lithology, were selected. In the second step, a collinearity test and correlation analysis between the conditioning factors and landslides were applied. In the third step, we used three advanced methods, namely, ANFIS-FR, GAM, and SVM, for landslide susceptibility modeling. Subsequently, the results of their accuracy were validated using a receiver operating characteristic curve. The results showed that all three models have good prediction capabilities, while the SVM model has the highest prediction rate of 0.875, followed by the ANFIS-FR and GAM models with prediction rates of 0.851 and 0.846, respectively. Thus, the landslide susceptibility maps produced in the study area can be applied for management of hazards and risks in landslide-prone Hanyuan County.
Fuzzy logic system for BBT based fertility prediction | Yazed | Journal ...
African Journals Online (AJOL)
... been obtained with the accuracy of 95 % and 80 respectively. Besides, this prediction system using fuzzy logic could improve the current practice in the FAM technique by integrating it with an Internet of Things (IoT) technology for automatic BBT charting and monitoring. Keywords: family planning; fertility; BBT; fuzzy logic.
Fuzzy model for Laser Assisted Bending Process
Directory of Open Access Journals (Sweden)
Giannini Oliviero
2016-01-01
Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.
Driver's Behavior Modeling Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Sehraneh Ghaemi
2010-01-01
Full Text Available In this study, we propose a hierarchical fuzzy system for human in a driver-vehicle-environment system to model takeover by different drivers. The driver's behavior is affected by the environment. The climate, road and car conditions are included in fuzzy modeling. For obtaining fuzzy rules, experts' opinions are benefited by means of questionnaires on effects of parameters such as climate, road and car conditions on driving capabilities. Also the precision, age and driving individuality are used to model the driver's behavior. Three different positions are considered for driving and decision making. A fuzzy model called Model I is presented for modeling the change of steering angle and speed control by considering time distances with existing cars in these three positions, the information about the speed and direction of car, and the steering angle of car. Also we obtained two other models based on fuzzy rules called Model II and Model III by using Sugeno fuzzy inference. Model II and Model III have less linguistic terms than Model I for the steering angle and direction of car. The results of three models are compared for a driver who drives based on driving laws.
Genetic fuzzy system predicting contractile reactivity patterns of small arteries
DEFF Research Database (Denmark)
Tang, J; Sheykhzade, Majid; Clausen, B F
2014-01-01
strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used...
Development of a new fuzzy exposure model
International Nuclear Information System (INIS)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Texeira, Marcello Goulart
2007-01-01
The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)
Development of a new fuzzy exposure model
Energy Technology Data Exchange (ETDEWEB)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Engenharia de Reatores], E-mail: wagner@ufpe.br, E-mail: cabol@ufpe.br; Texeira, Marcello Goulart [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Terrestrial Modelling Group], E-mail: marcellogt@ime.eb.br
2007-07-01
The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)
Real coded genetic algorithm for fuzzy time series prediction
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Jamshidi, A.; Nunez Vicencio, Alfredo; Dollevoet, R.P.B.J.; Li, Z.
2017-01-01
This paper presents a condition-based treatment methodology for a type of rail surface defect called squat. The proposed methodology is based on a set of robust and predictive fuzzy key performance indicators. A fuzzy Takagi-Sugeno interval model is used to predict squat evolution for different
Fuzzy model investic do High-tech projektů
Directory of Open Access Journals (Sweden)
Alžběta Kubíčková
2013-10-01
Full Text Available Purpose of the article: Relations among parameters of High-tech projects are very complex, vague, partially inconsistent and multidimensional. Optimal decisions to invest into High-tech companies require top field experts and knowledgeable investors. Therefore the conventional methods of investments analysis are not relevant. Therefore fuzzy logic is introduced. Methodology/methods: A fuzzy knowledge base is a flexible framework for acquisition of vague inconsistent knowledge items which are typical for knowledge economics and consequently for High-tech projects. The pooling of the records and / or observations represents a trade-off between minimal modification of the original data and elimination of inconsistencies among available sets of data. Scientific aim: The paper presents a detailed description of fuzzy model of investment decision making into High-tech firm’s projects. A set of conditional statements was used to formalize the effects of selected variables on investment feasibility of High-tech projects. The main aim is to quantify feasibilities of High-tech projects risk investors make good /not bad decisions. Findings: A set of 50 observations of High-tech companies was transformed into a set of 50 conditional statements using 14 variables. The result is the fuzzy model, which can be used to answer investors’ queries. Two queries are answered and presented in details as an example and as a nucleus of a fuzzy dialogue investor – computer. Conclusions: The main problem is the sparseness of the fuzzy model. Many fuzzy similarities are relatively low and the decision process is therefore often problematic. A much more complex set of variables must be applied to specify the fuzzy model to increase reliability of predictions and decisions.
Predicting the Mechanical Properties of Viscose/Lycra Knitted Fabrics Using Fuzzy Technique
Directory of Open Access Journals (Sweden)
Ismail Hossain
2016-01-01
Full Text Available The main objective of this research is to predict the mechanical properties of viscose/lycra plain knitted fabrics by using fuzzy expert system. In this study, a fuzzy prediction model has been built based on knitting stitch length, yarn count, and yarn tenacity as input variables and fabric mechanical properties specially bursting strength as an output variable. The factors affecting the bursting strength of viscose knitted fabrics are very nonlinear. Hence, it is very challenging for scientists and engineers to create an exact model efficiently by mathematical or statistical model. Alternatively, developing a prediction model via ANN and ANFIS techniques is also difficult and time consuming process due to a large volume of trial data. In this context, fuzzy expert system (FES is the promising modeling tool in a quality modeling as FES can map effectively in nonlinear domain with minimum experimental data. The model derived in the present study has been validated by experimental data. The mean absolute error and coefficient of determination between the actual bursting strength and that predicted by the fuzzy model were found to be 2.60% and 0.961, respectively. The results showed that the developed fuzzy model can be applied effectively for the prediction of fabric mechanical properties.
A fuzzy approach for modelling radionuclide in lake system
International Nuclear Information System (INIS)
Desai, H.K.; Christian, R.A.; Banerjee, J.; Patra, A.K.
2013-01-01
Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of 3 H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict 3 H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and 3 H concentration at discharge point. The Output was 3 H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. -- Highlights: • Uncommon approach (Fuzzy Rule Base) of modelling radionuclide dispersion in Lake. • Predicts 3 H released from Kakrapar Atomic Power Station at a point of human exposure. • RMSE of fuzzy model is 1.95, which means, it has well imitated natural ecosystem
Fuzzy GML Modeling Based on Vague Soft Sets
Directory of Open Access Journals (Sweden)
Bo Wei
2017-01-01
Full Text Available The Open Geospatial Consortium (OGC Geography Markup Language (GML explicitly represents geographical spatial knowledge in text mode. All kinds of fuzzy problems will inevitably be encountered in spatial knowledge expression. Especially for those expressions in text mode, this fuzziness will be broader. Describing and representing fuzziness in GML seems necessary. Three kinds of fuzziness in GML can be found: element fuzziness, chain fuzziness, and attribute fuzziness. Both element fuzziness and chain fuzziness belong to the reflection of the fuzziness between GML elements and, then, the representation of chain fuzziness can be replaced by the representation of element fuzziness in GML. On the basis of vague soft set theory, two kinds of modeling, vague soft set GML Document Type Definition (DTD modeling and vague soft set GML schema modeling, are proposed for fuzzy modeling in GML DTD and GML schema, respectively. Five elements or pairs, associated with vague soft sets, are introduced. Then, the DTDs and the schemas of the five elements are correspondingly designed and presented according to their different chains and different fuzzy data types. While the introduction of the five elements or pairs is the basis of vague soft set GML modeling, the corresponding DTD and schema modifications are key for implementation of modeling. The establishment of vague soft set GML enables GML to represent fuzziness and solves the problem of lack of fuzzy information expression in GML.
Sanchez, Mauricio A; Castro, Juan R
2017-01-01
In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.
Pradhan, Biswajeet
2013-02-01
The purpose of the present study is to compare the prediction performances of three different approaches such as decision tree (DT), support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) for landslide susceptibility mapping at Penang Hill area, Malaysia. The necessary input parameters for the landslide susceptibility assessments were obtained from various sources. At first, landslide locations were identified by aerial photographs and field surveys and a total of 113 landslide locations were constructed. The study area contains 340,608 pixels while total 8403 pixels include landslides. The landslide inventory was randomly partitioned into two subsets: (1) part 1 that contains 50% (4000 landslide grid cells) was used in the training phase of the models; (2) part 2 is a validation dataset 50% (4000 landslide grid cells) for validation of three models and to confirm its accuracy. The digitally processed images of input parameters were combined in GIS. Finally, landslide susceptibility maps were produced, and the performances were assessed and discussed. Total fifteen landslide susceptibility maps were produced using DT, SVM and ANFIS based models, and the resultant maps were validated using the landslide locations. Prediction performances of these maps were checked by receiver operating characteristics (ROC) by using both success rate curve and prediction rate curve. The validation results showed that, area under the ROC curve for the fifteen models produced using DT, SVM and ANFIS varied from 0.8204 to 0.9421 for success rate curve and 0.7580 to 0.8307 for prediction rate curves, respectively. Moreover, the prediction curves revealed that model 5 of DT has slightly higher prediction performance (83.07), whereas the success rate showed that model 5 of ANFIS has better prediction (94.21) capability among all models. The results of this study showed that landslide susceptibility mapping in the Penang Hill area using the three approaches (e
Energy Technology Data Exchange (ETDEWEB)
Karuthapandi, Sripriyan; Thyla, P. R. [PSG College of Technology, Coimbatore (India); Ramu, Murugan [Amrita University, Ettimadai (India)
2017-05-15
This paper describes the relationships between the macrostructural characteristics of weld beads and the welding parameters in Gas metal arc welding (GMAW) using a flat wire electrode. Bead-on-plate welds were produced with a flat wire electrode and different combinations of input parameters (i.e., welding current, welding speed, and flat wire electrode orientation). The macrostructural characteristics of the weld beads, namely, deposition, bead width, total bead width, reinforcement height, penetration depth, and depth of HAZ were investigated. A mapping technique was employed to measure these characteristics in various segments of the weldment zones. Results show that the use of a flat wire electrode improves the depth-to-width (D/W) ratio by 16.5 % on average compared with the D/W ratio when a regular electrode is used in GMAW. Furthermore, a fuzzy logic model was established to predict the effects of the use of a flat electrode on the weldment shape profile with varying input parameters. The predictions of the model were compared with the experimental results.
1 RESEARCH ARTICLE Neuro-Fuzzy Model of Homocysteine ...
Indian Academy of Sciences (India)
2017-03-10
Mar 10, 2017 ... metabolism and investigated the influence of life style modulations in controlling ... fuzzy model showed higher accuracy in predicting homocysteine with a ... The dietary source of folate is in the form of folyl polyglutamate and is .... protein and the ligands were optimized by Drug Discovery studio version 3.0.
Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie
2011-01-01
In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...
Ameur, Mourad; Derras, Boumédiène; Zendagui, Djawed
2018-03-01
Adaptive neuro-fuzzy inference systems (ANFIS) are used here to obtain the robust ground motion prediction model (GMPM). Avoiding a priori functional form, ANFIS provides fully data-driven predictive models. A large subset of the NGA-West2 database is used, including 2335 records from 580 sites and 137 earthquakes. Only shallow earthquakes and recordings corresponding to stations with measured V s30 properties are selected. Three basics input parameters are chosen: the moment magnitude ( Mw), the Joyner-Boore distance ( R JB) and V s30. ANFIS model output is the peak ground acceleration (PGA), peak ground velocity (PGV) and 5% damped pseudo-spectral acceleration (PSA) at periods from 0.01 to 4 s. A procedure similar to the random-effects approach is developed to provide between- and within-event standard deviations. The total standard deviation (SD) varies between [0.303 and 0.360] (log10 units) depending on the period. The ground motion predictions resulting from such simple three explanatory variables ANFIS models are shown to be comparable to the most recent NGA results (e.g., Boore et al., in Earthquake Spectra 30:1057-1085, 2014; Derras et al., in Earthquake Spectra 32:2027-2056, 2016). The main advantage of ANFIS compared to artificial neuronal network (ANN) is its simple and one-off topology: five layers. Our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude and amplification on soft soils. The ability to implement ANFIS model using an analytic equation and Excel is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Ono, K [Mie Univ., Mie (Japan). Faculty of Biological and Resources
1991-12-01
In case a landslide occurs on a slope, grasping the area of influence (location and shape of the slip surface) is required to take a countermeasure against landslides. This paper describes a method developed by the author for predicting a slip surface by utilizing fuzzy theory. The method predicts a slip surface from observations on ground surface displacement vectors, and the validity of the method has been verified through slip experiments conducted on slopes with a centrifugal model experiment device. The developed method for predicting the location of a slip surface well matches the experiment results, indicating the validity of the method. It has been found that the difference between the predicted and observed locations of a slip surface mainly is due to the error of the prediction in the starting and ending locations of the slip surface. It is also pointed out that, in order to improve the prediction of the shape of a slip surface, the observation density must be increased at the location where the shape of the slip surface strongly varies, since the direction of the slip surface is determined by the direction of the ground surface displacement vectors. 4 refs., 7 figs.
Predicting product life cycle using fuzzy neural network
Directory of Open Access Journals (Sweden)
Ali Mohammadi
2014-09-01
Full Text Available One of the most important tasks of science in different fields is to find the relationships among various phenomena in order to predict future. Production and service organizations are not exceptions and they should predict future to survive. Predicting the life cycle of the organization's products is one of the most important prediction cases in an organization. Predicting the product life cycle provides an opportunity to identify the product position and help to get a better insight about competitors. This paper deals with the predictability of the product life cycle with Adaptive Network-Based Fuzzy Inference System (ANFIS. The Population of this study was Pegah Fars products and the sample was this company's cheese products. In this regard, this paper attempts to model and predict the product life cycle of cheese products in Pegah Fars Company. In this due, a designed questionnaire was distributed among some experts, distributors and retailers and seven independent variables were selected. In this survey, ANFIS sales forecasting technique was employed and MATLAB software was used for data analysis. The results confirmed ANFIS as a good method to predict the product life cycle.
A fuzzy approach for modelling radionuclide in lake system.
Desai, H K; Christian, R A; Banerjee, J; Patra, A K
2013-10-01
Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of (3)H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict (3)H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and (3)H concentration at discharge point. The Output was (3)H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Pereira J.C.R.
2004-01-01
Full Text Available The present study compares the performance of stochastic and fuzzy models for the analysis of the relationship between clinical signs and diagnosis. Data obtained for 153 children concerning diagnosis (pneumonia, other non-pneumonia diseases, absence of disease and seven clinical signs were divided into two samples, one for analysis and other for validation. The former was used to derive relations by multi-discriminant analysis (MDA and by fuzzy max-min compositions (fuzzy, and the latter was used to assess the predictions drawn from each type of relation. MDA and fuzzy were closely similar in terms of prediction, with correct allocation of 75.7 to 78.3% of patients in the validation sample, and displaying only a single instance of disagreement: a patient with low level of toxemia was mistaken as not diseased by MDA and correctly taken as somehow ill by fuzzy. Concerning relations, each method provided different information, each revealing different aspects of the relations between clinical signs and diagnoses. Both methods agreed on pointing X-ray, dyspnea, and auscultation as better related with pneumonia, but only fuzzy was able to detect relations of heart rate, body temperature, toxemia and respiratory rate with pneumonia. Moreover, only fuzzy was able to detect a relationship between heart rate and absence of disease, which allowed the detection of six malnourished children whose diagnoses as healthy are, indeed, disputable. The conclusion is that even though fuzzy sets theory might not improve prediction, it certainly does enhance clinical knowledge since it detects relationships not visible to stochastic models.
Intuitionistic fuzzy (IF) evaluations of multidimensional model
International Nuclear Information System (INIS)
Valova, I.
2012-01-01
There are different logical methods for data structuring, but no one is perfect enough. Multidimensional model-MD of data is presentation of data in a form of cube (referred also as info-cube or hypercube) with data or in form of 'star' type scheme (referred as multidimensional scheme), by use of F-structures (Facts) and set of D-structures (Dimensions), based on the notion of hierarchy of D-structures. The data, being subject of analysis in a specific multidimensional model is located in a Cartesian space, being restricted by D-structures. In fact, the data is either dispersed or 'concentrated', therefore the data cells are not distributed evenly within the respective space. The moment of occurrence of any event is difficult to be predicted and the data is concentrated as per time periods, location of performed business event, etc. To process such dispersed or concentrated data, various technical strategies are needed. The basic methods for presentation of such data should be selected. The approaches of data processing and respective calculations are connected with different options for data representation. The use of intuitionistic fuzzy evaluations (IFE) provide us new possibilities for alternative presentation and processing of data, subject of analysis in any OLAP application. The use of IFE at the evaluation of multidimensional models will result in the following advantages: analysts will dispose with more complete information for processing and analysis of respective data; benefit for the managers is that the final decisions will be more effective ones; enabling design of more functional multidimensional schemes. The purpose of this work is to apply intuitionistic fuzzy evaluations of multidimensional model of data. (authors)
Anomaa Senaviratne, G. M. M. M.; Udawatta, Ranjith P.; Anderson, Stephen H.; Baffaut, Claire; Thompson, Allen
2014-09-01
Fuzzy rainfall-runoff models are often used to forecast flood or water supply in large catchments and applications at small/field scale agricultural watersheds are limited. The study objectives were to develop, calibrate, and validate a fuzzy rainfall-runoff model using long-term data of three adjacent field scale row crop watersheds (1.65-4.44 ha) with intermittent discharge in the claypan soils of Northeast Missouri. The watersheds were monitored for a six-year calibration period starting 1991 (pre-buffer period). Thereafter, two of them were treated with upland contour grass and agroforestry (tree + grass) buffers (4.5 m wide, 36.5 m apart) to study water quality benefits. The fuzzy system was based on Mamdani method using MATLAB 7.10.0. The model predicted event-based runoff with model performance coefficients of r2 and Nash-Sutcliffe Coefficient (NSC) values greater than 0.65 for calibration and validation. The pre-buffer fuzzy system predicted event-based runoff for 30-50 times larger corn/soybean watersheds with r2 values of 0.82 and 0.68 and NSC values of 0.77 and 0.53, respectively. The runoff predicted by the fuzzy system closely agreed with values predicted by physically-based Agricultural Policy Environmental eXtender model (APEX) for the pre-buffer watersheds. The fuzzy rainfall-runoff model has the potential for runoff predictions at field-scale watersheds with minimum input. It also could up-scale the predictions for large-scale watersheds to evaluate the benefits of conservation practices.
Fuzzy Modelling for Human Dynamics Based on Online Social Networks.
Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F
2017-08-24
Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.
Fuzzy One-Class Classification Model Using Contamination Neighborhoods
Directory of Open Access Journals (Sweden)
Lev V. Utkin
2012-01-01
Full Text Available A fuzzy classification model is studied in the paper. It is based on the contaminated (robust model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.
NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach
Energy Technology Data Exchange (ETDEWEB)
Goudarzi, Sobhan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Moradi, Mohammad Hassan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Sprott, J.C. [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States)
2016-02-15
The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.
NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach
International Nuclear Information System (INIS)
Goudarzi, Sobhan; Jafari, Sajad; Moradi, Mohammad Hassan; Sprott, J.C.
2016-01-01
The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.
Esophageal cancer prediction based on qualitative features using adaptive fuzzy reasoning method
Directory of Open Access Journals (Sweden)
Raed I. Hamed
2015-04-01
Full Text Available Esophageal cancer is one of the most common cancers world-wide and also the most common cause of cancer death. In this paper, we present an adaptive fuzzy reasoning algorithm for rule-based systems using fuzzy Petri nets (FPNs, where the fuzzy production rules are represented by FPN. We developed an adaptive fuzzy Petri net (AFPN reasoning algorithm as a prognostic system to predict the outcome for esophageal cancer based on the serum concentrations of C-reactive protein and albumin as a set of input variables. The system can perform fuzzy reasoning automatically to evaluate the degree of truth of the proposition representing the risk degree value with a weight value to be optimally tuned based on the observed data. In addition, the implementation process for esophageal cancer prediction is fuzzily deducted by the AFPN algorithm. Performance of the composite model is evaluated through a set of experiments. Simulations and experimental results demonstrate the effectiveness and performance of the proposed algorithms. A comparison of the predictive performance of AFPN models with other methods and the analysis of the curve showed the same results with an intuitive behavior of AFPN models.
Fuzzy model-based control of a nuclear reactor
International Nuclear Information System (INIS)
Van Den Durpel, L.; Ruan, D.
1994-01-01
The fuzzy model-based control of a nuclear power reactor is an emerging research topic world-wide. SCK-CEN is dealing with this research in a preliminary stage, including two aspects, namely fuzzy control and fuzzy modelling. The aim is to combine both methodologies in contrast to conventional model-based PID control techniques, and to state advantages of including fuzzy parameters as safety and operator feedback. This paper summarizes the general scheme of this new research project
FUZZY MODELING BY SUCCESSIVE ESTIMATION OF RULES ...
African Journals Online (AJOL)
This paper presents an algorithm for automatically deriving fuzzy rules directly from a set of input-output data of a process for the purpose of modeling. The rules are extracted by a method termed successive estimation. This method is used to generate a model without truncating the number of fired rules, to within user ...
Conditional density estimation using fuzzy GARCH models
Almeida, R.J.; Bastürk, N.; Kaymak, U.; Costa Sousa, da J.M.; Kruse, R.; Berthold, M.R.; Moewes, C.; Gil, M.A.; Grzegorzewski, P.; Hryniewicz, O.
2013-01-01
Abstract. Time series data exhibits complex behavior including non-linearity and path-dependency. This paper proposes a flexible fuzzy GARCH model that can capture different properties of data, such as skewness, fat tails and multimodality in one single model. Furthermore, additional information and
Fuzzy classification of phantom parent groups in an animal model
Directory of Open Access Journals (Sweden)
Fikse Freddy
2009-09-01
Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy
Bonissone CIDU Presentation: Design of Local Fuzzy Models
National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...
Directory of Open Access Journals (Sweden)
K. A. Halim
2011-01-01
Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.
An experimental methodology for a fuzzy set preference model
Turksen, I. B.; Willson, Ian A.
1992-01-01
models and vague linguistic preferences has greatly limited the usefulness and predictive validity of existing preference models. A fuzzy set preference model that uses linguistic variables and a fully interactive implementation should be able to simultaneously address these issues and substantially improve the accuracy of demand estimates. The parallel implementation of crisp and fuzzy conjoint models using identical data not only validates the fuzzy set model but also provides an opportunity to assess the impact of fuzzy set definitions and individual attribute choices implemented in the interactive methodology developed in this research. The generalized experimental tools needed for conjoint models can also be applied to many other types of intelligent systems.
Chance-constrained programming models for capital budgeting with NPV as fuzzy parameters
Huang, Xiaoxia
2007-01-01
In an uncertain economic environment, experts' knowledge about outlays and cash inflows of available projects consists of much vagueness instead of randomness. Investment outlays and annual net cash flows of a project are usually predicted by using experts' knowledge. Fuzzy variables can overcome the difficulties in predicting these parameters. In this paper, capital budgeting problem with fuzzy investment outlays and fuzzy annual net cash flows is studied based on credibility measure. Net present value (NPV) method is employed, and two fuzzy chance-constrained programming models for capital budgeting problem are provided. A fuzzy simulation-based genetic algorithm is provided for solving the proposed model problems. Two numerical examples are also presented to illustrate the modelling idea and the effectiveness of the proposed algorithm.
Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning
Directory of Open Access Journals (Sweden)
Ya’nan Wang
2016-01-01
Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.
Jiménez-Losada, Andrés
2017-01-01
This book offers a comprehensive introduction to cooperative game theory and a practice-oriented reference guide to new models and tools for studying bilateral fuzzy relations among several agents or players. It introduces the reader to several fuzzy models, each of which is first analyzed in the context of classical games (crisp games) and subsequently in the context of fuzzy games. Special emphasis is given to the value of Shapley, which is presented for the first time in the context of fuzzy games. Students and researchers will find here a self-contained reference guide to cooperative fuzzy games, characterized by a wealth of examples, descriptions of a wide range of possible situations, step-by-step explanations of the basic mathematical concepts involved, and easy-to-follow information on axioms and properties.
Fuzzy modelling of Atlantic salmon physical habitat
St-Hilaire, André; Mocq, Julien; Cunjak, Richard
2015-04-01
Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.
Fuzzy cellular automata models in immunology
International Nuclear Information System (INIS)
Ahmed, E.
1996-01-01
The self-nonself character of antigens is considered to be fuzzy. The Chowdhury et al. cellular automata model is generalized accordingly. New steady states are found. The first corresponds to a below-normal help and suppression and is proposed to be related to autoimmune diseases. The second corresponds to a below-normal B-cell level
Financial Markets Analysis by Probabilistic Fuzzy Modelling
J.H. van den Berg (Jan); W.-M. van den Bergh (Willem-Max); U. Kaymak (Uzay)
2003-01-01
textabstractFor successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno
Modeling investor optimism with fuzzy connectives
Lovric, M.; Almeida, R.J.; Kaymak, U.; Spronk, J.; Carvalho, J.P.; Dubois, D.; Kaymak, U.; Sousa, J.M.C.
2009-01-01
Optimism or pessimism of investors is one of the important characteristics that determine the investment behavior in financial markets. In this paper, we propose a model of investor optimism based on a fuzzy connective. The advantage of the proposed approach is that the influence of different levels
Financial markets analysis by probabilistic fuzzy modelling
Berg, van den J.; Kaymak, U.; Bergh, van den W.M.
2003-01-01
For successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno (TS)
Fuzzy model-based observers for fault detection in CSTR.
Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan
2015-11-01
Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Orbifold matrix models and fuzzy extra dimensions
Chatzistavrakidis, Athanasios; Zoupanos, George
2011-01-01
We revisit an orbifold matrix model obtained as a restriction of the type IIB matrix model on a Z_3-invariant sector. An investigation of its moduli space of vacua is performed and issues related to chiral gauge theory and gravity are discussed. Modifications of the orbifolded model triggered by Chern-Simons or mass deformations are also analyzed. Certain vacua of the modified models exhibit higher-dimensional behaviour with internal geometries related to fuzzy spheres.
A comparative study of ANN and neuro-fuzzy for the prediction of ...
Indian Academy of Sciences (India)
Istanbul Technical University, Faculty of Civil Engineering, Hydraulics and Water. Resources Division, Maslak 34469, Istanbul, Turkey. Singh et al (2005) examined the potential of the ANN and neuro-fuzzy systems application for the prediction of dynamic constant of rockmass. However, the model proposed by them has ...
Mathematical Modelling for EOQ Inventory System with Advance Payment and Fuzzy Parameters
Directory of Open Access Journals (Sweden)
S Priyan
2014-11-01
Full Text Available This study considers an EOQ inventory model with advance payment policy in a fuzzy situation by employing two types of fuzzy numbers that are trapezoidal and triangular. Two fuzzy models are developed here. In the first model the cost parameters are fuzzified, but the demand rate is treated as crisp constant. In the second model, the demand rate is fuzzified but the cost parameters are treated as crisp constants. For each fuzzy model, we use signed distance method to defuzzify the fuzzy total cost and obtain an estimate of the total cost in the fuzzy sense. Numerical example is provided to ascertain the sensitiveness in the decision variables about fuzziness in the components. In practical situations, costs may be dependent on some foreign monetary unit. In such a case, due to a change in the exchange rates, the costs are often not known precisely. The first model can be used in this situation. In actual applications, demand is uncertain and must be predicted. Accordingly, the decision maker faces a fuzzy environment rather than a stochastic one in these cases. The second model can be used in this situation. Moreover, the proposed models can be expended for imperfect production process.
A fuzzy set preference model for market share analysis
Turksen, I. B.; Willson, Ian A.
1992-01-01
Consumer preference models are widely used in new product design, marketing management, pricing, and market segmentation. The success of new products depends on accurate market share prediction and design decisions based on consumer preferences. The vague linguistic nature of consumer preferences and product attributes, combined with the substantial differences between individuals, creates a formidable challenge to marketing models. The most widely used methodology is conjoint analysis. Conjoint models, as currently implemented, represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes, and require aggregation of individuals for estimation purposes. It is not surprising that these models are costly to implement, are inflexible, and have a predictive validity that is not substantially better than chance. This affects the accuracy of market share estimates. A fuzzy set preference model can easily represent linguistic variables either in consumer preferences or product attributes with minimal measurement requirements (ordinal scales), while still estimating overall preferences suitable for market share prediction. This approach results in flexible individual-level conjoint models which can provide more accurate market share estimates from a smaller number of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model structures, such as a linear combination, using the techniques developed for conjoint analysis and market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation), and how much to make (market share
Fuzziness and fuzzy modelling in Bulgaria's energy policy decision-making dilemma
International Nuclear Information System (INIS)
Wang Xingquan
2006-01-01
The decision complexity resulting from imprecision in decision variables and parameters, a major difficulty for conventional decision analysis methods, can be relevantly analysed and modelled by fuzzy logic. Bulgaria's nuclear policy decision-making process implicates such complexity of imprecise nature: stakeholders, criteria, measurement, etc. Given the suitable applicability of fuzzy logic in this case, this article tries to offer a concrete fuzzy paradigm including delimitation of decision space, quantification of imprecise variables, and, of course, parameterisation. (author)
Fuzzy-logic based learning style prediction in e-learning using web ...
Indian Academy of Sciences (India)
tion, especially in web environments and proposes to use Fuzzy rules to handle the uncertainty in .... learning in safe and supportive environment ... working of the proposed Fuzzy-logic based learning style prediction in e-learning. Section 4.
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network
Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.
2017-05-01
The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.
A Fuzzy Knowledge Representation Model for Student Performance Assessment
DEFF Research Database (Denmark)
Badie, Farshad
Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth/completene......Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth....../completeness about vague or imprecise information. This paper tackles the issue of representing fuzzy classes using OWL2 in a dataset describing Performance Assessment Results of Students (PARS)....
A fuzzy mathematical model of West Java population with logistic growth model
Nurkholipah, N. S.; Amarti, Z.; Anggriani, N.; Supriatna, A. K.
2018-03-01
In this paper we develop a mathematics model of population growth in the West Java Province Indonesia. The model takes the form as a logistic differential equation. We parameterize the model using several triples of data, and choose the best triple which has the smallest Mean Absolute Percentage Error (MAPE). The resulting model is able to predict the historical data with a high accuracy and it also able to predict the future of population number. Predicting the future population is among the important factors that affect the consideration is preparing a good management for the population. Several experiment are done to look at the effect of impreciseness in the data. This is done by considering a fuzzy initial value to the crisp model assuming that the model propagates the fuzziness of the independent variable to the dependent variable. We assume here a triangle fuzzy number representing the impreciseness in the data. We found that the fuzziness may disappear in the long-term. Other scenarios also investigated, such as the effect of fuzzy parameters to the crisp initial value of the population. The solution of the model is obtained numerically using the fourth-order Runge-Kutta scheme.
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2015-03-01
Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2017-03-01
Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.
Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng
2013-02-01
This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.
Fuzzy logic model to quantify risk perception
International Nuclear Information System (INIS)
Bukh, Julia; Dickstein, Phineas
2008-01-01
The aim of this study is a quantification of public risk perception towards the nuclear field so as to be considered in decision making whenever the public involvement is sought. The proposed model includes both qualitative factors such as familiarity and voluntariness and numerical factors influencing risk perception, such as probability of occurrence and severity of consequence. Since part of these factors can be characterized only by qualitative expressions and the determination of them are linked with vagueness, imprecision and uncertainty, the most suitable method for the risk level assessment is Fuzzy Logic, which models qualitative aspects of knowledge and reasoning processes without employing precise quantitative analyses. This work, then, offers a Fuzzy-Logic based mean of representing the risk perception by a single numerical feature, which can be weighted and accounted for in decision making procedures. (author)
STUDENT PREDICTION SYSTEM FOR PLACEMENT TRAINING USING FUZZY INFERENCE SYSTEM
Directory of Open Access Journals (Sweden)
Ravi Kumar Rathore
2017-04-01
Full Text Available Proposed student prediction system is most vital approach which may be used to differentiate the student data/information on the basis of the student performance. Managing placement and training records in any larger organization is quite difficult as the student number are high; in such condition differentiation and classification on different categories becomes tedious. Proposed fuzzy inference system will classify the student data with ease and will be helpful to many educational organizations. There are lots of classification algorithms and statistical base technique which may be taken as good assets for classify the student data set in the education field. In this paper, Fuzzy Inference system has been applied to predict student performance which will help to identify performance of the students and also provides an opportunity to improve to performance. For instance, here we will classify the student’s data set for placement and non-placement classes.
Fuzzy optimization model for land use change
L. Jahanshahloo; E. Haghi
2014-01-01
There are some important questions in Land use change literature, for instance How much land to allocate to each of a number of land use type in order to maximization of (household or individual) rent -paying ability, minimization of environmental impacts or maximization of population income. In this paper, we want to investigate them and propose mathematical models to find an answer for these questions. Since Most of the parameters in this process are linguistics and fuzzy logic is a powerfu...
Constrained Fuzzy Predictive Control Using Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Oussama Ait Sahed
2015-01-01
Full Text Available A fuzzy predictive controller using particle swarm optimization (PSO approach is proposed. The aim is to develop an efficient algorithm that is able to handle the relatively complex optimization problem with minimal computational time. This can be achieved using reduced population size and small number of iterations. In this algorithm, instead of using the uniform distribution as in the conventional PSO algorithm, the initial particles positions are distributed according to the normal distribution law, within the area around the best position. The radius limiting this area is adaptively changed according to the tracking error values. Moreover, the choice of the initial best position is based on prior knowledge about the search space landscape and the fact that in most practical applications the dynamic optimization problem changes are gradual. The efficiency of the proposed control algorithm is evaluated by considering the control of the model of a 4 × 4 Multi-Input Multi-Output industrial boiler. This model is characterized by being nonlinear with high interactions between its inputs and outputs, having a nonminimum phase behaviour, and containing instabilities and time delays. The obtained results are compared to those of the control algorithms based on the conventional PSO and the linear approach.
COMPARISON of FUZZY-BASED MODELS in LANDSLIDE HAZARD MAPPING
Directory of Open Access Journals (Sweden)
N. Mijani
2017-09-01
Full Text Available Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR and Quality Sum (QS. The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.
Pawlik, Marzena; Lu, Yiling
2018-05-01
Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.
Fuzzy Predictions for Strategic Decision Making
DEFF Research Database (Denmark)
Hallin, Carina Antonia; Andersen, Torben Juul; Tveterås, Sigbjørn
This article theorizes a new way to predict firm performance based on aggregation of sensing among frontline employees about changes in operational capabilities to update strategic action plans. We frame the approach in the context of first- and second-generation prediction markets and outline it...
Neuro-fuzzy modelling of hydro unit efficiency
International Nuclear Information System (INIS)
Iliev, Atanas; Fushtikj, Vangel
2003-01-01
This paper presents neuro-fuzzy method for modeling of the hydro unit efficiency. The proposed method uses the characteristics of the fuzzy systems as universal function approximates, as well the abilities of the neural networks to adopt the parameters of the membership's functions and rules in the consequent part of the developed fuzzy system. Developed method is practically applied for modeling of the efficiency of unit which will be installed in the hydro power plant Kozjak. Comparison of the performance of the derived neuro-fuzzy method with several classical polynomials models is also performed. (Author)
a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation
Nadi, S.; Houshyaripour, A. H.
2017-09-01
This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.
Consumer Behavior Modeling: Fuzzy Logic Model for Air Purifiers Choosing
Directory of Open Access Journals (Sweden)
Oleksandr Dorokhov
2017-12-01
Full Text Available At the beginning, the article briefly describes the features of the marketing complex household goods. Also provides an overview of some aspects of the market for indoor air purifiers. The specific subject of the study was the process of consumer choice of household appliances for cleaning air in living quarters. The aim of the study was to substantiate and develop a computer model for evaluating by the potential buyers devices for air purification in conditions of vagueness and ambiguity of their consumer preferences. Accordingly, the main consumer criteria are identified, substantiated and described when buyers choose air purifiers. As methods of research, approaches based on fuzzy logic, fuzzy sets theory and fuzzy modeling were chosen. It was hypothesized that the fuzzy-multiple model allows rather accurately reflect consumer preferences and potential consumer choice in conditions of insufficient and undetermined information. Further, a computer model for estimating the consumer qualities of air cleaners by customers is developed. A proposed approach based on the application of fuzzy logic theory and practical modeling in the specialized computer software MATLAB. In this model, the necessary membership functions and their terms are constructed, as well as a set of rules for fuzzy inference to make decisions on the estimation of a specific air purifier. A numerical example of a comparative evaluation of air cleaners presented on the Ukrainian market is made and is given. Numerical simulation results confirmed the applicability of the proposed approach and the correctness of the hypothesis advanced about the possibility of modeling consumer behavior using fuzzy logic. The analysis of the obtained results is carried out and the prospects of application, development, and improvement of the developed model and the proposed approach are determined.
Modeling of Activated Sludge Process Using Sequential Adaptive Neuro-fuzzy Inference System
Directory of Open Access Journals (Sweden)
Mahsa Vajedi
2014-10-01
Full Text Available In this study, an adaptive neuro-fuzzy inference system (ANFIS has been applied to model activated sludge wastewater treatment process of Mobin petrochemical company. The correlation coefficients between the input variables and the output variable were calculated to determine the input with the highest influence on the output (the quality of the outlet flow in order to compare three neuro-fuzzy structures with different number of parameters. The predictions of the neuro-fuzzy models were compared with those of multilayer artificial neural network models with similar structure. The comparison indicated that both methods resulted in flexible, robust and effective models for the activated sludge system. Moreover, the root mean square of the error for neuro-fuzzy and neural network models were 5.14 and 6.59, respectively, which means the former is the superior method.
Construction of fuzzy spaces and their applications to matrix models
Abe, Yasuhiro
Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.
A generic methodology for developing fuzzy decision models
Bosma, R.; Berg, van den J.; Kaymak, U.; Udo, H.; Verreth, J.
2012-01-01
An important paradigm in decision-making models is utility-maximization where most models do not include actors’ motives. Fuzzy set theory on the other hand offers a method to simulate human decisionmaking. However, the literature describing expert-driven fuzzy logic models, rarely gives precise
A generic methodology for developing fuzzy decision models
Bosma, R.H.; Berg, van den J.; Kaymak, Uzay; Udo, H.M.J.; Verreth, J.A.J.
2012-01-01
An important paradigm in decision-making models is utility-maximization where most models do not include actors’ motives. Fuzzy set theory on the other hand offers a method to simulate human decision-making. However, the literature describing expert-driven fuzzy logic models, rarely gives precise
Fuzzy Modeled K-Cluster Quality Mining of Hidden Knowledge for Decision Support
S. Parkash Kumar; K. S. Ramaswami
2011-01-01
Problem statement: The work presented Fuzzy Modeled K-means Cluster Quality Mining of hidden knowledge for Decision Support. Based on the number of clusters, number of objects in each cluster and its cohesiveness, precision and recall values, the cluster quality metrics is measured. The fuzzy k-means is adapted approach by using heuristic method which iterates the cluster to form an efficient valid cluster. With the obtained data clusters, quality assessment is made by predictive mining using...
Value of Seasonal Fuzzy-based Inflow Prediction in the Jucar River Basin
Pulido-Velazquez, M.; Macian-Sorribes, H.
2016-12-01
The development and application of climate services in Integrated Water Resources Management (IWRM) is said to add important benefits in terms of water use efficiency due to an increase ability to foresee future water availability. A method to evaluate the economic impact of these services is presented, based on the use of hydroeconomic modelling techniques (hydroeconomic simulation) to compare the net benefits from water use in the system with and without the inflow forecasting. The Jucar River Basin (Spain) has been used as case study. Operating rules currently applied in the basin were assessed using fuzzy rule-based (FRB) systems via a co-development process involving the system operators. These operating rules use as input variable the hydrological inflows in several sub-basins, which need to be foreseen by the system operators. The inflow forecasting mechanism to preview water availability in the irrigation season (May-September) relied on fuzzy regression in which future inflows were foreseen based on past inflows and rainfall in the basin. This approach was compared with the current use of the two past year inflows for projecting the future inflow. For each irrigation season, the previewed inflows were determined using both methods and their impact on the system operation assessed through a hydroeconomic DSS. Results show that the implementation of the fuzzy inflow forecasting system offers higher economic returns. Another advantage of the fuzzy approach regards to the uncertainty treatment using fuzzy numbers, which allow us to estimate the uncertainty range of the expected benefits. Consequently, we can use the fuzzy approach to estimate the uncertainty associated with both the prediction and the associated benefits.
Directory of Open Access Journals (Sweden)
Hamid reza Pourghasemi
2016-03-01
Full Text Available The main purpose of this study is to assess forest fire susceptibility maps (FFSMs and their performances comparison using modified analytical hierarchy process (M-AHP and Mamdani fuzzy logic (MFL models in a geographic information system (GIS environment. This study was carried out in the Minudasht Forests, Golestan Province, Iran, and was conducted in three main stages such as spatial data construction, forest fire modelling using M-AHP and MFL, and validation of constructed models using receiver operating characteristic (ROC curve. At first, seven conditioning factors, such as altitude, slope aspect, slope angle, annual temperature, wind effect, land use, and normalized different vegetation index, were extracted from the spatial database. In the next step, FFSMs were prepared using M-AHP and MFL modules in a Netcad-GIS Architect environment. Finally, the ROC curves and area under the curves (AUCs were estimated for validation purposes. The results showed that the AUCs for MFL and M-AHP are 88.20% and 77.72%, respectively. The results obtained in this study also showed that the MFL model performed better than the M-AHP model. These FFSMs can be applied for land use planning, management, and prevention of future fire hazards.
Directory of Open Access Journals (Sweden)
Maryam Sabetzadeh
2012-12-01
Full Text Available The changes in the behaviour of mechanical properties of low densitypolyethylene-thermoplastic corn starch (LDPE-TPCS nanocompositeswere studied by an adaptive neuro-fuzzy interference system. LDPE-TPCScomposites containing different quantities of nanoclay (Cloisite®15A, 0.5-3wt. % were prepared by extrusion process. In practice, it is difficult to carry out several experiments to identify the relationship between the extrusion process parameters and mechanical properties of the nanocomposites. In this paper, an adaptive neuro-fuzzy inference system (ANFIS was used for non-linear mapping between the processingparameters and the mechanical properties of LDPE-TPCS nanocomposites. ANFIS model due to possessing inference ability of fuzzy systems and also the learning feature of neural networks, could be used as a multiple inputs-multiple outputs to predict mechanical properties (such as ultimate tensile strength, elongation-at-break, Young’s modulus and relative impact strength of the nanocomposites. The proposed ANFIS model utilizes temperature, torque and Cloisite®15A contents as input parameters to predict the desired mechanical properties. The results obtained in this work indicatedthat ANFIS is an effective and intelligent method for prediction of the mechanical properties of the LDPE-TPCS nanocomposites with a good accuracy. The statistical quality of the ANFIS model was significant due to its acceptable mean square error criterion and good correlation coefficient (values > 0.8 between the experimental and simulated outputs.
Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems.
Almaraashi, Majid
2017-01-01
Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data.
Prediction on sunspot activity based on fuzzy information granulation and support vector machine
Peng, Lingling; Yan, Haisheng; Yang, Zhigang
2018-04-01
In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.
Determining factors influencing survival of breast cancer by fuzzy logistic regression model.
Nikbakht, Roya; Bahrampour, Abbas
2017-01-01
Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.
Fuzzy Logic Approach for the Prediction of Dross Formation in CO2 Laser Cutting of Mild Steel
Directory of Open Access Journals (Sweden)
Miloš Madić
2015-11-01
Full Text Available Dross free laser cutting is very important in the application of laser cutting technology. This paper focuses on the development of a fuzzy logic model to predict dross formation in CO2 laser oxygen cutting of mild steel. Laser cutting experiment, conducted according to Taguchi’s experimental design using L25 orthogonal array, provided a set of data for the development of a fuzzy rule base. The predicting fuzzy logic model is based on using Mamdani-type inference system. Developed fuzzy logic model considered the cutting speed, laser power and assist gas pressure as inputs. Using this model the effects of the selected laser cutting parameters on the dross formation were investigated. Additionally, 3-D surface plots were generated to study the interaction effects of the laser cutting parameters. The analysis revealed that the cutting speed has the most significant effect, followed by laser power and assist gas pressure. The results indicated that the fuzzy logic modeling approach can be effectively used for the dross formation prediction in CO2 laser cutting of mild steel.
Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume
Xiao, Mengting; Li, Cheng
2018-01-01
Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.
NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT
Directory of Open Access Journals (Sweden)
Dauda Olarotimi Araromi
2015-11-01
Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.
Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.
Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal
2015-01-01
Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.
Directory of Open Access Journals (Sweden)
Zefang Zhao
2017-07-01
Full Text Available Specific spatial information about medicinal plants is becoming an increasingly important part of their conservation. Gynostemma pentaphyllum (Thunb. Makino is a traditional Chinese medical plant, and gypenosides is one of the main active components of G. pentaphyllum. In our research, many samples of G. pentaphyllum and the data of gypenosides content in these samples were collected from 43 sampling sites, and based on the Fuzzy Matter Element model (FME, the relationships between gypenosides content and 19 environmental variables were established. Then, the maximum entropy model was used to determine the relative importance of each environmental variable, and thus determine the most limiting habitat criteria. Finally, the weighted average method was applied to determine the potential distribution of G. pentaphyllum in China, which was based on the content of gypenosides. The results showed that the areas of marginally suitable and suitable habitats for G. pentaphyllum in China were approximately 1.2 × 106 km2 and 0.3 × 106 km2, respectively. The suitable habitats were mainly located in southern China, including Hunan, Hubei, Chongqing, Anhui, Jiangxi, Zhejiang, Shaanxi, and other regions. In conclusion, the FME model could accurately evaluate the habitat suitability of G. pentaphyllum, quantify the area of a suitable habitat, and analyze the spatial distribution.
A Fuzzy Knowledge Representation Model for Student Performance Assessment
DEFF Research Database (Denmark)
Badie, Farshad
Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth/completene...
Designing of fuzzy expert heuristic models with cost management ...
Indian Academy of Sciences (India)
In genuine industrial case, problems are inescapable and pose enormous challenges to incorporate accurate sustainability factors into supplier selection. In this present study, three different primarily based multicriteria decision making fuzzy models have been compared with their deterministic version so as to resolve fuzzy ...
Fuzzy expert systems models for operations research and management science
Turksen, I. B.
1993-12-01
Fuzzy expert systems can be developed for the effective use of management within the domains of concern associated with Operations Research and Management Science. These models are designed with: (1) expressive powers of representation embedded in linguistic variables and their linguistic values in natural language expressions, and (2) improved methods of interference based on fuzzy logic which is a generalization of multi-valued logic with fuzzy quantifiers. The results of these fuzzy expert system models are either (1) approximately good in comparison with their classical counterparts, or (2) much better than their counterparts. Moreover, for fuzzy expert systems models, it is only necessary to obtain ordinal scale data. Whereas for their classical counterparts, it is generally required that data be at least on ratio and absolute scale in order to guarantee the additivity and multiplicativity assumptions.
International Nuclear Information System (INIS)
Mostafaei, Mostafa; Javadikia, Hossein; Naderloo, Leila
2016-01-01
Biodiesel is as an alternative petro-diesel fuel produced from the renewable resources. The use of novel technologies such as ultrasound technology for biodiesel production intensifies the reaction and reduces the process cost. The present study is aimed to evaluate and compare the prediction and simulating efficiency of the response surface methodology (RSM) and adaptive Neuro-fuzzy inference system (ANFIS) approaches for modeling the transesterification yield achieved in ultrasonic reactor. The influence of independent variables (reactor diameter, liquid height and ultrasound intensity) on the conversion of fatty acid methyl esters (FAME) was investigated by Box-Behnken design of RSM and two ANFIS approaches (hybrid and back-propagation optimization methods). All models were compared statistically based on the training and validation data set by the coefficient of determination (R2), root mean squares error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE) and mean relative percent deviation (MRPD). The calculated R2 for RSM and two ANFIS models were 0.9669, 0.9812 and 0.9808, respectively. All models indicated good predictions, however, the ANFIS models were more precise compared to the RSM model, which proves that the ANFIS is a powerful tool for modeling and optimizing FAME production in ultrasound reactor. - Highlights: • The ultrasound assisted FAME conversion was modelled using RSM and ANFIS approaches. • The scatter diagrams indicate the models accurately predicted the reaction yield. • The ANFIS model (hybrid) has higher R"2 (0.9812) compared to the RSM model. • The predicted deviations and residual values are relatively small for ANFIS model. • ANFIS model was more accurate for predicting ultrasound assisted FAME conversion.
A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.
Chang, Chia-Wen; Tao, Chin-Wang
2017-09-01
This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.
Model Reduction of Fuzzy Logic Systems
Directory of Open Access Journals (Sweden)
Zhandong Yu
2014-01-01
Full Text Available This paper deals with the problem of ℒ2-ℒ∞ model reduction for continuous-time nonlinear uncertain systems. The approach of the construction of a reduced-order model is presented for high-order nonlinear uncertain systems described by the T-S fuzzy systems, which not only approximates the original high-order system well with an ℒ2-ℒ∞ error performance level γ but also translates it into a linear lower-dimensional system. Then, the model approximation is converted into a convex optimization problem by using a linearization procedure. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Kim, Chan Moon; Parnichkun, Manukid
2017-11-01
Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.
Efficient modeling of vector hysteresis using fuzzy inference systems
International Nuclear Information System (INIS)
Adly, A.A.; Abd-El-Hafiz, S.K.
2008-01-01
Vector hysteresis models have always been regarded as important tools to determine which multi-dimensional magnetic field-media interactions may be predicted. In the past, considerable efforts have been focused on mathematical modeling methodologies of vector hysteresis. This paper presents an efficient approach based upon fuzzy inference systems for modeling vector hysteresis. Computational efficiency of the proposed approach stems from the fact that the basic non-local memory Preisach-type hysteresis model is approximated by a local memory model. The proposed computational low-cost methodology can be easily integrated in field calculation packages involving massive multi-dimensional discretizations. Details of the modeling methodology and its experimental testing are presented
Recent advances in fuzzy preference modelling
International Nuclear Information System (INIS)
Van de Walle, B.; De Baets, B.; Kerre, E.
1996-01-01
Preference structures are well-known mathematical concepts having numerous applications in a variety of disciplines, such as economics, sociology and psychology. The generalization of preference structures to the fuzzy case has received considerable attention over the past years. Fuzzy preference structures allow a decision maker to express degrees of preference instead of the rigid classical yes-or-no preference assignment. This paper reports on the recent insights gained into the existence, construction and characterization of these fuzzy preference structures
Directory of Open Access Journals (Sweden)
Li-Ching Lin Hsien-Kuo Chang
2008-01-01
Full Text Available The paper presents an adaptive neuro fuzzy inference system for predicting sea level considering tide-generating forces and oceanic thermal expansion assuming a model of sea level dependence on sea surface temperature. The proposed model named TGFT-FN (Tide-Generating Forces considering sea surface Temperature and Fuzzy Neuro-network system is applied to predict tides at five tide gauge sites located in Taiwan and has the root mean square of error of about 7.3 - 15.0 cm. The capability of TGFT-FN model is superior in sea level prediction than the previous TGF-NN model developed by Chang and Lin (2006 that considers the tide-generating forces only. The TGFT-FN model is employed to train and predict the sea level of Hua-Lien station, and is also appropriate for the same prediction at the tide gauge sites next to Hua-Lien station.
Fuzzy Constrained Predictive Optimal Control of High Speed Train with Actuator Dynamics
Directory of Open Access Journals (Sweden)
Xi Wang
2016-01-01
Full Text Available We investigate the problem of fuzzy constrained predictive optimal control of high speed train considering the effect of actuator dynamics. The dynamics feature of the high speed train is modeled as a cascade of cars connected by flexible couplers, and the formulation is mathematically transformed into a Takagi-Sugeno (T-S fuzzy model. The goal of this study is to design a state feedback control law at each decision step to enhance safety, comfort, and energy efficiency of high speed train subject to safety constraints on the control input. Based on Lyapunov stability theory, the problem of optimizing an upper bound on the cruise control cost function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities (LMIs. Furthermore, we analyze the influences of second-order actuator dynamics on the fuzzy constrained predictive controller, which shows risk of potentially deteriorating the overall system. Employing backstepping method, an actuator compensator is proposed to accommodate for the influence of the actuator dynamics. The experimental results show that with the proposed approach high speed train can track the desired speed, the relative coupler displacement between the neighbouring cars is stable at the equilibrium state, and the influence of actuator dynamics is reduced, which demonstrate the validity and effectiveness of the proposed approaches.
Fuzzy modeling and control theory and applications
Matía, Fernando; Jiménez, Emilio
2014-01-01
Much work on fuzzy control, covering research, development and applications, has been developed in Europe since the 90's. Nevertheless, the existing books in the field are compilations of articles without interconnection or logical structure or they express the personal point of view of the author. This book compiles the developments of researchers with demonstrated experience in the field of fuzzy control following a logic structure and a unified the style. The first chapters of the book are dedicated to the introduction of the main fuzzy logic techniques, where the following chapters focus on concrete applications. This book is supported by the EUSFLAT and CEA-IFAC societies, which include a large number of researchers in the field of fuzzy logic and control. The central topic of the book, Fuzzy Control, is one of the main research and development lines covered by these associations.
Multi-Model Adaptive Fuzzy Controller for a CSTR Process
Directory of Open Access Journals (Sweden)
Shubham Gogoria
2015-09-01
Full Text Available Continuous Stirred Tank Reactors are intensively used to control exothermic reactions in chemical industries. It is a very complex multi-variable system with non-linear characteristics. This paper deals with linearization of the mathematical model of a CSTR Process. Multi model adaptive fuzzy controller has been designed to control the reactor concentration and temperature of CSTR process. This method combines the output of multiple Fuzzy controllers, which are operated at various operating points. The proposed solution is a straightforward implementation of Fuzzy controller with gain scheduler to control the linearly inseparable parameters of a highly non-linear process.
AUTOMOTIVE APPLICATIONS OF EVOLVING TAKAGI-SUGENO-KANG FUZZY MODELS
Directory of Open Access Journals (Sweden)
Radu-Emil Precup
2017-08-01
Full Text Available This paper presents theoretical and application results concerning the development of evolving Takagi-Sugeno-Kang fuzzy models for two dynamic systems, which will be viewed as controlled processes, in the field of automotive applications. The two dynamic systems models are nonlinear dynamics of the longitudinal slip in the Anti-lock Braking Systems (ABS and the vehicle speed in vehicles with the Continuously Variable Transmission (CVT systems. The evolving Takagi-Sugeno-Kang fuzzy models are obtained as discrete-time fuzzy models by incremental online identification algorithms. The fuzzy models are validated against experimental results in the case of the ABS and the first principles simulation results in the case of the vehicle with the CVT.
Polynomial fuzzy model-based approach for underactuated surface vessels
DEFF Research Database (Denmark)
Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav
2018-01-01
The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Design of a Fuzzy Rule Base Expert System to Predict and Classify ...
African Journals Online (AJOL)
The main objective of design of a rule base expert system using fuzzy logic approach is to predict and forecast the risk level of cardiac patients to avoid sudden death. In this proposed system, uncertainty is captured using rule base and classification using fuzzy c-means clustering is discussed to overcome the risk level, ...
Application of an advanced fuzzy logic model for landslide susceptibility analysis
Directory of Open Access Journals (Sweden)
Biswajeet Pradhan
2010-09-01
Full Text Available The aim of this study is to evaluate the susceptibility of landslides at Klang valley area, Malaysia, using a Geographic Information System (GIS and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. A data derived model (frequency ratio and a knowledge-derived model (fuzzy operator were combined for landslide susceptibility analysis. The nine factors that influence landslide occurrence were extracted from the database and the frequency ratio coefficient for each factor was computed. Using the factors and the identified landslide, the fuzzy membership values were calculated. Then fuzzy algebraic operators were applied to the fuzzy membership values for landslide susceptibility mapping. Finally, the produced map was verified by comparing with existing landslide locations for calculating prediction accuracy. Among the fuzzy operators, in the case in which the gamma operator (l = 0.8 showed the best accuracy (91% while the case in which the fuzzy algebraic product was applied showed the worst accuracy (79%.
Directory of Open Access Journals (Sweden)
Özlem TÜRKŞEN
2018-03-01
Full Text Available Some of the experimental designs can be composed of replicated response measures in which the replications cannot be identified exactly and may have uncertainty different than randomness. Then, the classical regression analysis may not be proper to model the designed data because of the violation of probabilistic modeling assumptions. In this case, fuzzy regression analysis can be used as a modeling tool. In this study, the replicated response values are newly formed to fuzzy numbers by using descriptive statistics of replications and golden ratio. The main aim of the study is obtaining the most suitable fuzzy model for replicated response measures through fuzzification of the replicated values by taking into account the data structure of the replications in statistical framework. Here, the response and unknown model coefficients are considered as triangular type-1 fuzzy numbers (TT1FNs whereas the inputs are crisp. Predicted fuzzy models are obtained according to the proposed fuzzification rules by using Fuzzy Least Squares (FLS approach. The performances of the predicted fuzzy models are compared by using Root Mean Squared Error (RMSE criteria. A data set from the literature, called wheel cover component data set, is used to illustrate the performance of the proposed approach and the obtained results are discussed. The calculation results show that the combined formulation of the descriptive statistics and the golden ratio is the most preferable fuzzification rule according to the well-known decision making method, called TOPSIS, for the data set.
Directory of Open Access Journals (Sweden)
Saleh Shahinfar
2012-01-01
Full Text Available Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.
Fuzzy rule-based model for hydropower reservoirs operation
Energy Technology Data Exchange (ETDEWEB)
Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)
2011-02-15
Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)
Fuzzy Models to Deal with Sensory Data in Food Industry
Institute of Scientific and Technical Information of China (English)
Serge Guillaume; Brigitte Charnomordic
2004-01-01
Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fuzzy reasoning rules from data including numerical and symbolic or sensory variables. We briefly present an induction method that was developed to extract qualitative knowledge from data samples. The induction process is run under interpretability constraints to ensure the fuzzy rules have a meaning for the human expert. We then study two applied problems in the food industry: sensory evaluation and process modeling.
Now comes the time to defuzzify neuro-fuzzy models
International Nuclear Information System (INIS)
Bersini, H.; Bontempi, G.
1996-01-01
Fuzzy models present a singular Janus-faced : on one hand, they are knowledge-based software environments constructed from a collection of linguistic IF-THEN rules, and on the other hand, they realize nonlinear mappings which have interesting mathematical properties like low-order interpolation and universal function approximation. Neuro-fuzzy basically provides fuzzy models with the capacity, based on the available data, to compensate for the missing human knowledge by an automatic self-tuning of the structure and the parameters. A first consequence of this hybridization between the architectural and representational aspect of fuzzy models and the learning mechanisms of neural networks has been to progressively increase and fuzzify the contrast between the two Janus faces: readability or performance
International Nuclear Information System (INIS)
Zuo Duwen; Wang Hong; Zhu Nankang
2010-01-01
By use of fuzzy subtractive clustering model, the relationship between tensile strength of radiation vulcanization of NBRL (Nitrile-butadiene rubber latex) and irradiation parameters have been investigated. The correlation coefficient was calculated to be 0.8222 in the comparison of experimental data to the predicted data. It was obvious that fuzzy model identification method is not only high precision with small computation, but also easy to be used. It can directly supply the evolution of tensile strength of NBR by fuzzy modeling method in radiation vulcanization process for nitrile-butadiene rubber. (authors)
Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration
Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza
2003-01-01
Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.
Comparison of Four Weighting Methods in Fuzzy-based Land Suitability to Predict Wheat Yield
Directory of Open Access Journals (Sweden)
Fatemeh Rahmati
2017-06-01
climatic conditions like mean, maximum and minimum air temperatures during growing period as well as edaphologic properties like EC, pH, ESP, percent of clay, silt, sand, gravel, gypsum and CaCO3 content. Climatic data collected from the Shahrekord synoptic station were used to assess climatic land suitability for wheat. Qualitative land suitability evaluation was carried out using the fuzzy approach. Potential yield was calculated using the method proposed by FAO. Using MATLAB software, qualitative and quantitative land evaluation were classified based on fuzzy logic approach. In fuzzy method, climatic factors are used to achieve climatic index. Clay and sand percent were applied to calculate soil texture. To determine the membership degrees,bell membership functions were used. Parameters of function shapes were transformed to equations with variable coefficients and the best coefficients were eventually chosen based on the model determination coefficient. In evaluation method based on fuzzy logic, the weights are used for land characteristics. In fuzzy logic method, weights were calculated by four methods. These methods consist of neural network using 1 neuron and 4 neurons, multivariate and Partial Least Squares (PLS regressions. Comparison of the coefficient of determination results of multivariate regression and RMSE is carried out between observed and predicted yield. Weight calculations were conducted by using MINITAB software to PLS and multivariate regression. Also, Neurosolution 5 was used for weight calculation based on neural network. Results and Discussion: The calculated weights were differed by using the four applied methods. In all methods, the maximum weight was related to gravel, and minimum weight was related to clay. The results of land index and predicted yield calculation were different in some points (3, 6, 7, 13, 14, 19, and 21 for four methods. The coefficient of determination of calculated weights were 0.595, 0.56, 0.6 and 0.56 for neural network
Fuzzy object models for newborn brain MR image segmentation
Kobashi, Syoji; Udupa, Jayaram K.
2013-03-01
Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.
Directory of Open Access Journals (Sweden)
Somaye Yeylaghi
2017-06-01
Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.
Predicting diametral creep of the pressure tubes in CANDU reactors using fuzzy neural networks
International Nuclear Information System (INIS)
Lee, Jae Yong; Na, Man Gyun; Park, Jong Ho
2011-01-01
Pressure tube (PT) creep is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of the heat transport system (HTS) in Canada deuterium uranium reactors. PT diametral creep affects the thermal hydraulic characteristics of coolant channels and the critical heat flux (CHF). CHF is a key parameter in determining the critical channel power, which is used in the trip setpoint calculations of regional overpower protection systems. This paper aims to predict PT diametral creep using the measured signals of the HTS by applying fuzzy neural networks (FNNs) according to operating conditions. The FNN model was optimized in terms of its fuzzy rules and parameters by a genetic algorithm combined with the least-squares method. Informative data that demonstrate the system's characteristic behavior were selected to train the FNN model using the subtractive clustering method. The proposed FNN model for predicting PT diametral creep was verified using the operating data of the Wolsong Unit 1 nuclear power plant in Korea. It was known that the FNN could predict the PT diametral creep accurately. Statistical and analytical uncertainty analysis methods were applied to the models and their uncertainties were evaluated using 60 sampled training and optimization data sets, as well as two fixed test data sets. (author)
Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)
International Nuclear Information System (INIS)
Kakar, Manish; Nystroem, Haakan; Aarup, Lasse Rye; Noettrup, Trine Jakobi; Olsen, Dag Rune
2005-01-01
The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude
Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)
Energy Technology Data Exchange (ETDEWEB)
Kakar, Manish [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Nystroem, Haakan [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Aarup, Lasse Rye [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Noettrup, Trine Jakobi [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Olsen, Dag Rune [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Department of Medical Physics and Technology, Norwegian Radium Hospital, Oslo (Norway); Department of Physics, University of Oslo (Norway)
2005-10-07
The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.
Despite increased interest in watershed scale model simulations, literature lacks application of long-term data in fuzzy logic simulations and comparing outputs with physically based models such as APEX (Agricultural Policy Environmental eXtender). The objective of this study was to develop a fuzzy...
Hybridizing fuzzy control and timed automata for modeling variable structure fuzzy systems
Acampora, G.; Loia, V.; Vitiello, A.
2010-01-01
During the past several years, fuzzy control has emerged as one of the most suitable and efficient methods for designing and developing complex systems in environments characterized by high level of uncertainty and imprecision. Nowadays, this methodology is used to model systems in several
Comparing Fuzzy Sets and Random Sets to Model the Uncertainty of Fuzzy Shorelines
Dewi, Ratna Sari; Bijker, Wietske; Stein, Alfred
2017-01-01
This paper addresses uncertainty modelling of shorelines by comparing fuzzy sets and random sets. Both methods quantify extensional uncertainty of shorelines extracted from remote sensing images. Two datasets were tested: pan-sharpened Pleiades with four bands (Pleiades) and pan-sharpened Pleiades
Adaptive inferential sensors based on evolving fuzzy models.
Angelov, Plamen; Kordon, Arthur
2010-04-01
A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the
Modelling of Reservoir Operations using Fuzzy Logic and ANNs
Van De Giesen, N.; Coerver, B.; Rutten, M.
2015-12-01
Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.
Directory of Open Access Journals (Sweden)
Benjamin W. Y. Lo
2013-01-01
Full Text Available Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH. Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients. Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs. Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
Adaptive time-variant models for fuzzy-time-series forecasting.
Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching
2010-12-01
A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.
Fuzzy analytical hierarchy process and GIS for predictive cu -au ...
African Journals Online (AJOL)
Mineral exploration generally starts on small scale (small areas) and, then progresses to large scale (small area). There are many methods for achieving this goal. To achieve this goal one of these methods is Fuzzy analytical hierarchy process (Fuzzy AHP) that is the most popular multi-criteria decision-making techniques.
A train dispatching model based on fuzzy passenger demand forecasting during holidays
Directory of Open Access Journals (Sweden)
Fei Dou Dou
2013-03-01
Full Text Available Abstract: Purpose: The train dispatching is a crucial issue in the train operation adjustment when passenger flow outbursts. During holidays, the train dispatching is to meet passenger demand to the greatest extent, and ensure safety, speediness and punctuality of the train operation. In this paper, a fuzzy passenger demand forecasting model is put up, then a train dispatching optimization model is established based on passenger demand so as to evacuate stranded passengers effectively during holidays. Design/methodology/approach: First, the complex features and regularity of passenger flow during holidays are analyzed, and then a fuzzy passenger demand forecasting model is put forward based on the fuzzy set theory and time series theory. Next, the bi-objective of the train dispatching optimization model is to minimize the total operation cost of the train dispatching and unserved passenger volume during holidays. Finally, the validity of this model is illustrated with a case concerned with the Beijing-Shanghai high-speed railway in China. Findings: The case study shows that the fuzzy passenger demand forecasting model can predict outcomes more precisely than ARIMA model. Thus train dispatching optimization plan proves that a small number of trains are able to serve unserved passengers reasonably and effectively. Originality/value: On the basis of the passenger demand predictive values, the train dispatching optimization model is established, which enables train dispatching to meet passenger demand in condition that passenger flow outbursts, so as to maximize passenger demand by offering the optimal operation plan.
Fuzzy Investment Portfolio Selection Models Based on Interval Analysis Approach
Directory of Open Access Journals (Sweden)
Haifeng Guo
2012-01-01
Full Text Available This paper employs fuzzy set theory to solve the unintuitive problem of the Markowitz mean-variance (MV portfolio model and extend it to a fuzzy investment portfolio selection model. Our model establishes intervals for expected returns and risk preference, which can take into account investors' different investment appetite and thus can find the optimal resolution for each interval. In the empirical part, we test this model in Chinese stocks investment and find that this model can fulfill different kinds of investors’ objectives. Finally, investment risk can be decreased when we add investment limit to each stock in the portfolio, which indicates our model is useful in practice.
Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction
International Nuclear Information System (INIS)
Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine; Minca, Eugenia; Filip, Florin
2009-01-01
In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.
Subashini, L.; Vasudevan, M.
2012-02-01
Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.
Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao
2018-04-01
With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Forecasting Enrollments with Fuzzy Time Series.
Song, Qiang; Chissom, Brad S.
The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…
ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection
Directory of Open Access Journals (Sweden)
SARACOGLU, O. G.
2016-08-01
Full Text Available This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE of 0.0013 which are in clearly good agreement with the measurements.
Putti, Fernando Ferrari; Filho, Luis Roberto Almeida Gabriel; Gabriel, Camila Pires Cremasco; Neto, Alfredo Bonini; Bonini, Carolina Dos Santos Batista; Rodrigues Dos Reis, André
2017-06-01
This study aimed to develop a fuzzy mathematical model to estimate the impacts of global warming on the vitality of Laelia purpurata growing in different Brazilian environmental conditions. In order to develop the mathematical model was considered as intrinsic factors the parameters: temperature, humidity and shade conditions to determine the vitality of plants. Fuzzy model results could accurately predict the optimal conditions for cultivation of Laelia purpurata in several sites of Brazil. Based on fuzzy model results, we found that higher temperatures and lacking of properly shading can reduce the vitality of orchids. Fuzzy mathematical model could precisely detect the effect of higher temperatures causing damages on vitality of plants as a consequence of global warming. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of defuzzification method of fuzzy modeling
Lapohos, Tibor; Buchal, Ralph O.
1994-10-01
Imprecision can arise in fuzzy relational modeling as a result of fuzzification, inference and defuzzification. These three sources of imprecision are difficult to separate. We have determined through numerical studies that an important source of imprecision is the defuzzification stage. This imprecision adversely affects the quality of the model output. The most widely used defuzzification algorithm is known by the name of `center of area' (COA) or `center of gravity' (COG). In this paper, we show that this algorithm not only maps the near limit values of the variables improperly but also introduces errors for middle domain values of the same variables. Furthermore, the behavior of this algorithm is a function of the shape of the reference sets. We compare the COA method to the weighted average of cluster centers (WACC) procedure in which the transformation is carried out based on the values of the cluster centers belonging to each of the reference membership functions instead of using the functions themselves. We show that this procedure is more effective and computationally much faster than the COA. The method is tested for a family of reference sets satisfying certain constraints, that is, for any support value the sum of reference membership function values equals one and the peak values of the two marginal membership functions project to the boundaries of the universe of discourse. For all the member sets of this family of reference sets the defuzzification errors do not get bigger as the linguistic variables tend to their extreme values. In addition, the more reference sets that are defined for a certain linguistic variable, the less the average defuzzification error becomes. In case of triangle shaped reference sets there is no defuzzification error at all. Finally, an alternative solution is provided that improves the performance of the COA method.
Fuzzy multiobjective models for optimal operation of a hydropower system
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Non-linear sigma model on the fuzzy supersphere
International Nuclear Information System (INIS)
Kurkcuoglu, Seckin
2004-01-01
In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)
Ibrahim, Wael Refaat Anis
The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an
A fuzzy inventory model with acceptable shortage using graded mean integration value method
Saranya, R.; Varadarajan, R.
2018-04-01
In many inventory models uncertainty is due to fuzziness and fuzziness is the closed possible approach to reality. In this paper, we proposed a fuzzy inventory model with acceptable shortage which is completely backlogged. We fuzzily the carrying cost, backorder cost and ordering cost using Triangular and Trapezoidal fuzzy numbers to obtain the fuzzy total cost. The purpose of our study is to defuzzify the total profit function by Graded Mean Integration Value Method. Further a numerical example is also given to demonstrate the developed crisp and fuzzy models.
Quantitative modeling of gene networks of biological systems using fuzzy Petri nets and fuzzy sets
Directory of Open Access Journals (Sweden)
Raed I. Hamed
2018-01-01
Full Text Available Quantitative demonstrating of organic frameworks has turned into an essential computational methodology in the configuration of novel and investigation of existing natural frameworks. Be that as it may, active information that portrays the framework's elements should be known keeping in mind the end goal to get pertinent results with the routine displaying strategies. This information is frequently robust or even difficult to get. Here, we exhibit a model of quantitative fuzzy rational demonstrating approach that can adapt to obscure motor information and hence deliver applicable results despite the fact that dynamic information is fragmented or just dubiously characterized. Besides, the methodology can be utilized as a part of the blend with the current cutting edge quantitative demonstrating strategies just in specific parts of the framework, i.e., where the data are absent. The contextual analysis of the methodology suggested in this paper is performed on the model of nine-quality genes. We propose a kind of FPN model in light of fuzzy sets to manage the quantitative modeling of biological systems. The tests of our model appear that the model is practical and entirely powerful for information impersonation and thinking of fuzzy expert frameworks.
Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator
Directory of Open Access Journals (Sweden)
Alexander Hošovský
2012-07-01
Full Text Available Pneumatic artificial muscle-based robotic systems usually necessitate the use of various nonlinear control techniques in order to improve their performance. Their robustness to parameter variation, which is generally difficult to predict, should also be tested. Here a fast hybrid adaptive control is proposed, where a conventional PD controller is placed into the feedforward branch and a fuzzy controller is placed into the adaptation branch. The fuzzy controller compensates for the actions of the PD controller under conditions of inertia moment variation. The fuzzy controller of Takagi-Sugeno type is evolved through a genetic algorithm using the dynamic model of a pneumatic muscle actuator. The results confirm the capability of the designed system to provide robust performance under the conditions of varying inertia.
Energy Technology Data Exchange (ETDEWEB)
Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr
2016-04-15
Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.
A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets
Porwal, A.; Carranza, J.; Hale, M.
2004-12-01
A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.
Directory of Open Access Journals (Sweden)
Murat Luy
2018-05-01
Full Text Available The estimation of hourly electricity load consumption is highly important for planning short-term supply–demand equilibrium in sources and facilities. Studies of short-term load forecasting in the literature are categorized into two groups: classical conventional and artificial intelligence-based methods. Artificial intelligence-based models, especially when using fuzzy logic techniques, have more accurate load estimations when datasets include high uncertainty. However, as the knowledge base—which is defined by expert insights and decisions—gets larger, the load forecasting performance decreases. This study handles the problem that is caused by the growing knowledge base, and improves the load forecasting performance of fuzzy models through nature-inspired methods. The proposed models have been optimized by using ant colony optimization and genetic algorithm (GA techniques. The training and testing processes of the proposed systems were performed on historical hourly load consumption and temperature data collected between 2011 and 2014. The results show that the proposed models can sufficiently improve the performance of hourly short-term load forecasting. The mean absolute percentage error (MAPE of the monthly minimum in the forecasting model, in terms of the forecasting accuracy, is 3.9% (February 2014. The results show that the proposed methods make it possible to work with large-scale rule bases in a more flexible estimation environment.
A fuzzy expert system for predicting the performance of switched reluctance motor
International Nuclear Information System (INIS)
Mirzaeian, B.; Moallem, M.; Lucas, Caro
2001-01-01
In this paper a fuzzy expert system for predicting the performance of a switched reluctance motor has been developed. The design vector consists of design parameters, and output performance variables are efficiency and torque ripple. An accurate analysis program based on Improved Magnetic Equivalent Circuit method has been used to generate the input-output data. These input-output data is used to produce the initial fuzzy rules for predicting the performance of Switched Reluctance Motor. The initial set of fuzzy rules with triangular membership functions has been devised using a table look-up scheme. The initial fuzzy rules have been optimized to a set of fuzzy rules with Gaussian membership functions using gradient descent training scheme. The performance prediction results for a 6/8, 4 kw, Switched Reluctance Motor shows good agreement with the results obtained from Improved Magnetic Equivalent Circuit method or Finite Element analysis. The developed fuzzy expert system can be used for fast prediction of motor performance in the optimal design process or on-line control schemes of Switched Reluctance motor
Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.
Applying fuzzy analytic network process in quality function deployment model
Directory of Open Access Journals (Sweden)
Mohammad Ali Afsharkazemi
2012-08-01
Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.
A fuzzy logic model to forecast stock market momentum in Indonesia's property and real estate sector
Penawar, H. K.; Rustam, Z.
2017-07-01
The Capital market has the important role in Indonesia's economy. The capital market does not only support the economy of Indonesia but also being an indicator Indonesia's economy improvement. Something that has been traded in the capital market is stock (stock market). Nowadays, the stock market is full of uncertainty. That uncertainty values make predicting stock market is all that we have to do before we make a decision in the stock market. One that can be predicted in the stock market is momentum. To forecast stock market momentum, it can use fuzzy logic model. In the process of modeling, it will be used 14 days historical data that consisting the value of open, high, low, and close, to predict the next 5 days momentum categories. There are three momentum categories namely Bullish, Neutral, and Bearish. To illustrate the fuzzy logic model, we will use stocks data from several companies that listed on Indonesia Stock Exchange (IDX) in property and real estate sector.
Type-2 fuzzy graphical models for pattern recognition
Zeng, Jia
2015-01-01
This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.
Fuzzy modeling of electrical impedance tomography images of the lungs
International Nuclear Information System (INIS)
Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione; Borges, Joao Batista; Amato, Marcelo Britto Passos
2008-01-01
Objectives: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Introduction: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Methods: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnoea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Results: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. Discussion: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. Conclusions: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images. (author)
Fuzzy Optimization of Option Pricing Model and Its Application in Land Expropriation
Directory of Open Access Journals (Sweden)
Aimin Heng
2014-01-01
Full Text Available Option pricing is irreversible, fuzzy, and flexible. The fuzzy measure which is used for real option pricing is a useful supplement to the traditional real option pricing method. Based on the review of the concepts of the mean and variance of trapezoidal fuzzy number and the combination with the Carlsson-Fuller model, the trapezoidal fuzzy variable can be used to represent the current price of land expropriation and the sale price of land on the option day. Fuzzy Black-Scholes option pricing model can be constructed under fuzzy environment and problems also can be solved and discussed through numerical examples.
Fuzzy model-based servo and model following control for nonlinear systems.
Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O
2009-12-01
This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.
A fuzzy inference model for short-term load forecasting
International Nuclear Information System (INIS)
Mamlook, Rustum; Badran, Omar; Abdulhadi, Emad
2009-01-01
This paper is concerned with the short-term load forecasting (STLF) in power system operations. It provides load prediction for generation scheduling and unit commitment decisions, and therefore precise load forecasting plays an important role in reducing the generation cost and the spinning reserve capacity. Short-term electricity demand forecasting (i.e., the prediction of hourly loads (demand)) is one of the most important tools by which an electric utility/company plans, dispatches the loading of generating units in order to meet system demand. The accuracy of the dispatching system, which is derived from the accuracy of the forecasting algorithm used, will determine the economics of the operation of the power system. The inaccuracy or large error in the forecast simply means that load matching is not optimized and consequently the generation and transmission systems are not being operated in an efficient manner. In the present study, a proposed methodology has been introduced to decrease the forecasted error and the processing time by using fuzzy logic controller on an hourly base. Therefore, it predicts the effect of different conditional parameters (i.e., weather, time, historical data, and random disturbances) on load forecasting in terms of fuzzy sets during the generation process. These parameters are chosen with respect to their priority and importance. The forecasted values obtained by fuzzy method were compared with the conventionally forecasted ones. The results showed that the STLF of the fuzzy implementation have more accuracy and better outcomes
A modeling of fuzzy logic controller on gamma scanning device
International Nuclear Information System (INIS)
Arjoni Amir
2010-01-01
Modeling and simulation of controller to set the high position and direction of the source of gamma radiation isotope Co-60 and Nal(TL) detector of gamma scanning device by using fuzzy logic controller FLC have been done. The high positions and in the right direction of gamma radiation and Nal (TI) detector obtained the optimal enumeration. The counting data obtained from gamma scanning device counting system is affected by the instability of high position and direction of the gamma radiation source and Nal(TI) detector or the height and direction are not equal between the gamma radiation source and Nal(TI) detector. Assumed a high position and direction of radiation sources can be fixed while the high position detector h (2, 1,0, -1, -2) can be adjusted up and down and the detector can be changed direction to the left or right angle ω (2, 1 , 0, -1, -2) when the position and direction are no longer aligned with the direction of the source of gamma radiation, the counting results obtained will not be optimal. Movement detector direction towards the left or right and the high detector arranged by the DC motor using fuzzy logic control in order to obtain the amount of output fuzzy logic control which forms the optimal output quantity count. The variation of height difference h between the source position of the gamma radiation detector and change direction with the detector angle ω becomes the input variable membership function (member function) whereas the fuzzy logic for the output variable membership function of fuzzy logic control output is selected scale fuzzy logic is directly proportional to the amount of optimal counting. From the simulation results obtained by the relationship between the amount of data output variable of fuzzy logic controller and the amount of data input variable height h and direction detector ω is depicted in graphical form surface. (author)
Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method
Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty
2017-03-01
Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.
Chen, Jing; Tang, Yuan Yan; Chen, C L Philip; Fang, Bin; Lin, Yuewei; Shang, Zhaowei
2014-12-01
Protein subcellular location prediction aims to predict the location where a protein resides within a cell using computational methods. Considering the main limitations of the existing methods, we propose a hierarchical multi-label learning model FHML for both single-location proteins and multi-location proteins. The latent concepts are extracted through feature space decomposition and label space decomposition under the nonnegative data factorization framework. The extracted latent concepts are used as the codebook to indirectly connect the protein features to their annotations. We construct dual fuzzy hypergraphs to capture the intrinsic high-order relations embedded in not only feature space, but also label space. Finally, the subcellular location annotation information is propagated from the labeled proteins to the unlabeled proteins by performing dual fuzzy hypergraph Laplacian regularization. The experimental results on the six protein benchmark datasets demonstrate the superiority of our proposed method by comparing it with the state-of-the-art methods, and illustrate the benefit of exploiting both feature correlations and label correlations.
Directory of Open Access Journals (Sweden)
A.K. Parida
2016-09-01
Full Text Available In this paper Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system is presented for the prediction and analysis of financial and electrical energy market data. The normally used TSK-type feedforward fuzzy neural network is unable to take the full advantage of the use of the linear fuzzy rule base in accurate input–output mapping and hence the consequent part of the rule base is made nonlinear using polynomial or arithmetic basis functions. Further the Chebyshev polynomial functions provide an expanded nonlinear transformation to the input space thereby increasing its dimension for capturing the nonlinearities and chaotic variations in financial or energy market data streams. Also the locally recurrent neuro-fuzzy information system (LRNFIS includes feedback loops both at the firing strength layer and the output layer to allow signal flow both in forward and backward directions, thereby making the LRNFIS mimic a dynamic system that provides fast convergence and accuracy in predicting time series fluctuations. Instead of using forward and backward least mean square (FBLMS learning algorithm, an improved Firefly-Harmony search (IFFHS learning algorithm is used to estimate the parameters of the consequent part and feedback loop parameters for better stability and convergence. Several real world financial and energy market time series databases are used for performance validation of the proposed LRNFIS model.
Vibration modeling of structural fuzzy with continuous boundary
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
a multitude of different sprung masses each strongly resisting any motion of the main structure (master) at their base antiresonance. The “theory of structural fuzzy” is intended for modeling such high damping. In the present article the theory of fuzzy structures is briefly outlined and a method of modeling...
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...
Paired fuzzy sets and other opposite-based models
DEFF Research Database (Denmark)
Montero, Javier; Gómez, Daniel; Tinguaro Rodríguez, J.
2016-01-01
In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts that are ...
Short-term and long-term thermal prediction of a walking beam furnace using neuro-fuzzy techniques
Directory of Open Access Journals (Sweden)
Banadaki Hamed Dehghan
2015-01-01
Full Text Available The walking beam furnace (WBF is one of the most prominent process plants often met in an alloy steel production factory and characterized by high non-linearity, strong coupling, time delay, large time-constant and time variation in its parameter set and structure. From another viewpoint, the WBF is a distributed-parameter process in which the distribution of temperature is not uniform. Hence, this process plant has complicated non-linear dynamic equations that have not worked out yet. In this paper, we propose one-step non-linear predictive model for a real WBF using non-linear black-box sub-system identification based on locally linear neuro-fuzzy (LLNF model. Furthermore, a multi-step predictive model with a precise long prediction horizon (i.e., ninety seconds ahead, developed with application of the sequential one-step predictive models, is also presented for the first time. The locally linear model tree (LOLIMOT which is a progressive tree-based algorithm trains these models. Comparing the performance of the one-step LLNF predictive models with their associated models obtained through least squares error (LSE solution proves that all operating zones of the WBF are of non-linear sub-systems. The recorded data from Iran Alloy Steel factory is utilized for identification and evaluation of the proposed neuro-fuzzy predictive models of the WBF process.
Aqil, M; Kita, I; Yano, A; Nishiyama, S
2006-01-01
It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other
Fuzzy social choice models explaining the government formation process
C Casey, Peter; A Goodman, Carly; Pook, Kelly Nelson; N Mordeson, John; J Wierman, Mark; D Clark, Terry
2014-01-01
This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made. The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems. Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties’ fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the pre...
FUZZY DECISION MAKING MODEL FOR BYZANTINE AGREEMENT
Directory of Open Access Journals (Sweden)
S. MURUGAN
2014-04-01
Full Text Available Byzantine fault tolerance is of high importance in the distributed computing environment where malicious attacks and software errors are common. A Byzantine process sends arbitrary messages to every other process. An effective fuzzy decision making approach is proposed to eliminate the Byzantine behaviour of the services in the distributed environment. It is proposed to derive a fuzzy decision set in which the alternatives are ranked with grade of membership and based on that an appropriate decision can be arrived on the messages sent by the different services. A balanced decision is to be taken from the messages received across the services. To accomplish this, Hurwicz criterion is used to balance the optimistic and pessimistic views of the decision makers on different services. Grades of membership for the services are assessed using the non-functional Quality of Service parameters and have been estimated using fuzzy entropy measure which logically ranks the participant services. This approach for decision making is tested by varying the number of processes, varying the number of faulty services, varying the message values sent to different services and considering the variation in the views of the decision makers about the services. The experimental result shows that the decision reached is an enhanced one and in case of conflict, the proposed approach provides a concrete result, whereas decision taken using the Lamport’s algorithm is an arbitrary one.
Wasim Akram Mandal; Sahidul Islam
2016-01-01
In this paper analyzes fuzzy inventory system for deterioration item with time depended demand. Shortages are allowed under fully backlogged. Fixed cost, deterioration cost, shortages cost, holding cost are the cost considered in this model. Fuzziness is applying by allowing the cost components (holding cost, deterioration, shortage cost, holding cost, etc). In fuzzy environment it considered all required parameter to be triangular fuzzy numbers. One numerical solution of the model is obtaine...
Directory of Open Access Journals (Sweden)
Ozge Cagcag Yolcu
2013-01-01
Full Text Available Particularly in recent years, artificial intelligence optimization techniques have been used to make fuzzy time series approaches more systematic and improve forecasting performance. Besides, some fuzzy clustering methods and artificial neural networks with different structures are used in the fuzzification of observations and determination of fuzzy relationships, respectively. In approaches considering the membership values, the membership values are determined subjectively or fuzzy outputs of the system are obtained by considering that there is a relation between membership values in identification of relation. This necessitates defuzzification step and increases the model error. In this study, membership values were obtained more systematically by using Gustafson-Kessel fuzzy clustering technique. The use of artificial neural network with single multiplicative neuron model in identification of fuzzy relation eliminated the architecture selection problem as well as the necessity for defuzzification step by constituting target values from real observations of time series. The training of artificial neural network with single multiplicative neuron model which is used for identification of fuzzy relation step is carried out with particle swarm optimization. The proposed method is implemented using various time series and the results are compared with those of previous studies to demonstrate the performance of the proposed method.
Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.
Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng
2016-02-01
This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
Fuzzy sets as extension of probabilistic models for evaluating human reliability
International Nuclear Information System (INIS)
Przybylski, F.
1996-11-01
On the base of a survey of established quantification methodologies for evaluating human reliability, a new computerized methodology was developed in which a differential consideration of user uncertainties is made. In this quantification method FURTHER (FUzzy Sets Related To Human Error Rate Prediction), user uncertainties are quantified separately from model and data uncertainties. As tools fuzzy sets are applied which, however, stay hidden to the method's user. The user in the quantification process only chooses an action pattern, performance shaping factors and natural language expressions. The acknowledged method HEART (Human Error Assessment and Reduction Technique) serves as foundation of the fuzzy set approach FURTHER. By means of this method, the selection of a basic task in connection with its basic error probability, the decision how correct the basic task's selection is, the selection of a peformance shaping factor, and the decision how correct the selection and how important the performance shaping factor is, were identified as aspects of fuzzification. This fuzzification is made on the base of data collection and information from literature as well as of the estimation by competent persons. To verify the ammount of additional information to be received by the usage of fuzzy sets, a benchmark session was accomplished. In this benchmark twelve actions were assessed by five test-persons. In case of the same degree of detail in the action modelling process, the bandwidths of the interpersonal evaluations decrease in FURTHER in comparison with HEART. The uncertainties of the single results could not be reduced up to now. The benchmark sessions conducted so far showed plausible results. A further testing of the fuzzy set approach by using better confirmed fuzzy sets can only be achieved in future practical application. Adequate procedures, however, are provided. (orig.) [de
A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System
Directory of Open Access Journals (Sweden)
Metin Demirtas
2011-07-01
Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.
Using neuro-fuzzy based method to develop nuclear turbine cycle model
International Nuclear Information System (INIS)
Chan Yeakuang; Chang Chinjang
2009-01-01
The purpose of this study is to describe a hybrid soft-computing modeling technique used to develop the steam turbine cycle model for nuclear power plants. The technique uses neuro-fuzzy model to predict the generator output. Firstly, the plant past three fuel cycles operating data above 95% load were collected and validated as the baseline performance data set. Then the signal errors for new operating data were detected by comparison with the baseline data set and their allowable range of variations. Finally, the most important parameters were selected as an input of the neuro-fuzzy based steam turbine cycle model. After training and testing with key parameters (i.e. throttle pressure, condenser backpressure, feedwater flow rate, and final feedwater temperature), the proposed model can be used to predict the generator output. The analysis results show this neuro-fuzzy based turbine cycle model can be used to predict the generator output with a good agreement. Moreover, the achievement of this study provides an alternative approach in thermal performance evaluation for nuclear power plants. (author)
Improved Trust Prediction in Business Environments by Adaptive Neuro Fuzzy Inference Systems
Directory of Open Access Journals (Sweden)
Ali Azadeh
2015-06-01
Full Text Available Trust prediction turns out to be an important challenge when cooperation among intelligent agents with an impression of trust in their mind, is investigated. In other words, predicting trust values for future time slots help partners to identify the probability of continuing a relationship. Another important case to be considered is the context of trust, i.e. the services and business commitments for which a relationship is defined. Hence, intelligent agents should focus on improving trust to provide a stable and confident context. Modelling of trust between collaborating parties seems to be an important component of the business intelligence strategy. In this regard, a set of metrics have been considered by which the value of confidence level for predicted trust values has been estimated. These metrics are maturity, distance and density (MD2. Prediction of trust for future mutual relationships among agents is a problem that is addressed in this study. We introduce a simulation-based model which utilizes linguistic variables to create various scenarios. Then, future trust values among agents are predicted by the concept of adaptive neuro-fuzzy inference system (ANFIS. Mean absolute percentage errors (MAPEs resulted from ANFIS are compared with confidence levels which are determined by applying MD2. Results determine the efficiency of MD2 for forecasting trust values. This is the first study that utilizes the concept of MD2 for improvement of business trust prediction.
International Nuclear Information System (INIS)
Kheirandish, Azadeh; Motlagh, Farid; Shafiabady, Niusha; Dahari, Mahidzal; Khairi Abdul Wahab, Ahmad
2017-01-01
Highlights: •Fuzzy cognitive map was proposed for the first time to describe the behaviour of fuel cell electric bicycle system. •Fuzzy rules were applied to explain the cause and effect between concepts. •To predict and analyse the cognitive map involved in the negotiation process. -- Abstract: Modelling Proton Exchange Membrane Fuel Cell (PEMFC) is the fundamental step in designing efficient systems for achieving higher performance. Among the development of new energy technologies, modelling and optimization of energy processes with pollution reduction, sufficient efficiency and low emission are considered one of the most promising areas of study. Despite affecting factors in PEMFC functionality, providing a reliable model for PEMFC is the key of performance optimization challenge. In this paper, fuzzy cognitive map has been used for modelling PEMFC system that is directed to provide a dynamic cognitive map from the affecting factors of the system. Controlling and modification of the system performance in various conditions is more practical by correlations among the performance factors of the PEMFC derived from fuzzy cognitive maps. On the other hand, the information of fuzzy cognitive map modelling is applicable for modification of neural networks structure for providing more accurate results based on the extracted knowledge from the cognitive map and visualization of the system’s performance. Finally, a rule based fuzzy cognitive map has been used that can be implemented for decision-making to control the system. This rule-based approach provides interpretability while enhancing the performance of the overall system.
Neuro-fuzzy model for evaluating the performance of processes ...
Indian Academy of Sciences (India)
CHIDOZIE CHUKWUEMEKA NWOBI-OKOYE
2017-11-16
Nov 16, 2017 ... In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to model the periodic performance of ... Since the .... The investigation hubs are a local brewing company ..... Industrial Engineers, Systems Engineers, Operations ... responsibility the overall management of the new system lies.
A NEURO FUZZY MODEL FOR THE INVESTIGATION OF ...
African Journals Online (AJOL)
Several factors may contribute directly or indirectly to the structural failure of metallic pipes. The most important of which is corrosion. Corrosivity of pipes is not a directly measurable parameter as pipe corrosion is a very random phenomenon. The main aim of the present study is to develop a neuro-fuzzy model capable of ...
Modeling and control of an unstable system using probabilistic fuzzy inference system
Directory of Open Access Journals (Sweden)
Sozhamadevi N.
2015-09-01
Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.
Fuzzy C-Means Clustering Model Data Mining For Recognizing Stock Data Sampling Pattern
Directory of Open Access Journals (Sweden)
Sylvia Jane Annatje Sumarauw
2007-06-01
Full Text Available Abstract Capital market has been beneficial to companies and investor. For investors, the capital market provides two economical advantages, namely deviden and capital gain, and a non-economical one that is a voting .} hare in Shareholders General Meeting. But, it can also penalize the share owners. In order to prevent them from the risk, the investors should predict the prospect of their companies. As a consequence of having an abstract commodity, the share quality will be determined by the validity of their company profile information. Any information of stock value fluctuation from Jakarta Stock Exchange can be a useful consideration and a good measurement for data analysis. In the context of preventing the shareholders from the risk, this research focuses on stock data sample category or stock data sample pattern by using Fuzzy c-Me, MS Clustering Model which providing any useful information jar the investors. lite research analyses stock data such as Individual Index, Volume and Amount on Property and Real Estate Emitter Group at Jakarta Stock Exchange from January 1 till December 31 of 204. 'he mining process follows Cross Industry Standard Process model for Data Mining (CRISP,. DM in the form of circle with these steps: Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation and Deployment. At this modelling process, the Fuzzy c-Means Clustering Model will be applied. Data Mining Fuzzy c-Means Clustering Model can analyze stock data in a big database with many complex variables especially for finding the data sample pattern, and then building Fuzzy Inference System for stimulating inputs to be outputs that based on Fuzzy Logic by recognising the pattern. Keywords: Data Mining, AUz..:y c-Means Clustering Model, Pattern Recognition
Fuzzy systems modeling of in situ bioremediation of chlorinatedsolve n ts
Energy Technology Data Exchange (ETDEWEB)
Faybishenko, Boris; Hazen, Terry C.
2001-09-05
A large-scale vadose zone-groundwater bioremediationdemonstration was conducted at the Savannah River Site (SRS) by injectingseveral types of gases (ambient air, methane, and nitrous oxide andtriethyl phosphate mixtures) through a horizontal well in the groundwaterat a 175 ft depth. Simultaneously, soil gas was extracted through aparallel horizontal well in the vadose zone at a 80 ft depth Monitoringrevealed a wide range of spatial and temporal variations ofconcentrations of VOCs, enzymes, and biomass in groundwater and vadosezone monitoring boreholes over the field site. One of the powerful modernapproaches to analyze uncertain and imprecise data chemical data is basedon the use of methods of fuzzy systems modeling. Using fuzzy modeling weanalyzed the spatio-temporal TCE and PCE concentrations and methanotrophdensities in groundwater to assess the effectiveness of differentcampaigns of air stripping and bioremediation, and to determine the fuzzyrelationship between these compounds. Our analysis revealed some detailsabout the processes involved in remediation, which were not identified inthe previous studies of the SRS demonstration. We also identified somefuture directions for using fuzzy systems modeling, such as theevaluation of the mass balance of the vadose zone - groundwater system,and the development of fuzzy-ruled methods for optimization of managingremediation activities, predictions, and risk assessment.
Introduction to n-adaptive fuzzy models to analyze public opinion on AIDS
Kandasamy, D W B V; Kandasamy, Dr.W.B.Vasantha; Smarandache, Dr.Florentin
2006-01-01
There are many fuzzy models like Fuzzy matrices, Fuzzy Cognitive Maps, Fuzzy relational Maps, Fuzzy Associative Memories, Bidirectional Associative memories and so on. But almost all these models can give only one sided solution like hidden pattern or a resultant output vector dependent on the input vector depending in the problem at hand. So for the first time we have defined a n-adaptive fuzzy model which can view or analyze the problem in n ways (n >=2) Though we have defined these n- adaptive fuzzy models theorectically we are not in a position to get a n-adaptive fuzzy model for n > 2 for practical real world problems. The highlight of this model is its capacity to analyze the same problem in different ways thereby arriving at various solutions that mirror multiple perspectives. We have used the 2-adaptive fuzzy model having the two fuzzy models, fuzzy matrices model and BAMs viz. model to analyze the views of public about HIV/ AIDS disease, patient and the awareness program. This book has five chapters ...
Directory of Open Access Journals (Sweden)
Singh Chaman
2011-01-01
Full Text Available In the changing market scenario, supply chain management is getting phenomenal importance amongst researchers. Studies on supply chain management have emphasized the importance of a long-term strategic relationship between the manufacturer, distributor and retailer. In the present paper, a model has been developed by assuming that the demand rate and production rate as triangular fuzzy numbers and items deteriorate at a constant rate. The expressions for the average inventory cost are obtained both in crisp and fuzzy sense. The fuzzy model is defuzzified using the fuzzy extension principle, and its optimization with respect to the decision variable is also carried out. Finally, an example is given to illustrate the model and sensitivity analysis is performed to study the effect of parameters.
Directory of Open Access Journals (Sweden)
Danladi Ali
2018-03-01
Full Text Available Long-term load forecasting provides vital information about future load and it helps the power industries to make decision regarding electrical energy generation and delivery. In this work, fuzzy – neuro model is developed to forecast a year ahead load in relation to weather parameter (temperature and humidity in Mubi, Adamawa State. It is observed that: electrical load increased with increase in temperature and relative humidity does not show notable effect on electrical load. The accuracy of the prediction is obtained at 98.78% with the corresponding mean absolute percentage error (MAPE of 1.22%. This confirms that fuzzy – neuro is a good tool for load forecasting. Keywords: Electrical load, Load forecasting, Fuzzy logic, Back propagation, Neuro-fuzzy, Weather parameter
Fuzzy delay model based fault simulator for crosstalk delay fault test ...
Indian Academy of Sciences (India)
In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design .... To find the quality of non-robust tests, a fuzzy delay ..... Dubois D and Prade H 1989 Processing Fuzzy temporal knowledge. IEEE Transactions ...
How Fuzzy-Trace Theory Predicts True and False Memories for Words, Sentences, and Narratives
Reyna, Valerie F.; Corbin, Jonathan C.; Weldon, Rebecca B.; Brainerd, Charles J.
2016-01-01
Fuzzy-trace theory posits independent verbatim and gist memory processes, a distinction that has implications for such applied topics as eyewitness testimony. This distinction between precise, literal verbatim memory and meaning-based, intuitive gist accounts for memory paradoxes including dissociations between true and false memory, false memories outlasting true memories, and developmental increases in false memory. We provide an overview of fuzzy-trace theory, and, using mathematical model...
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case
Transport Routes Optimization Model Through Application of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Ivan Bortas
2018-03-01
Full Text Available The transport policy of the European Union is based on the mission of restructuring road traffic into other and energy-favourable transport modes which have not been sufficiently represented yet. Therefore, the development of the inland waterway and rail transport, and connectivity in the intermodal transport network are development planning priorities of the European transport strategy. The aim of this research study was to apply the scientific methodology and thus analyse the factors that affect the distribution of the goods flows and by using the fuzzy logic to make an optimization model, according to the criteria of minimizing the costs and negative impact on the environment, for the selection of the optimal transport route. Testing of the model by simulation, was performed on the basis of evaluating the criteria of the influential parameters with unprecise and indefinite input parameters. The testing results show that by the distribution of the goods flow from road transport network to inland waterways or rail transport, can be predicted in advance and determine the transport route with optimal characteristics. The results of the performed research study will be used to improve the process of planning the transport service, with the aim of reducing the transport costs and environmental pollution.
Fuzzy Adaptation Algorithms’ Control for Robot Manipulators with Uncertainty Modelling Errors
Directory of Open Access Journals (Sweden)
Yongqing Fan
2018-01-01
Full Text Available A novel fuzzy control scheme with adaptation algorithms is developed for robot manipulators’ system. At the beginning, one adjustable parameter is introduced in the fuzzy logic system, the robot manipulators system with uncertain nonlinear terms as the master device and a reference model dynamic system as the slave robot system. To overcome the limitations such as online learning computation burden and logic structure in conventional fuzzy logic systems, a parameter should be used in fuzzy logic system, which composes fuzzy logic system with updated parameter laws, and can be formed for a new fashioned adaptation algorithms controller. The error closed-loop dynamical system can be stabilized based on Lyapunov analysis, the number of online learning computation burdens can be reduced greatly, and the different kinds of fuzzy logic systems with fuzzy rules or without any fuzzy rules are also suited. Finally, effectiveness of the proposed approach has been shown in simulation example.
A Hybrid Fuzzy Model for Lean Product Development Performance Measurement
Osezua Aikhuele, Daniel; Mohd Turan, Faiz
2016-02-01
In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.
High dimensional model representation method for fuzzy structural dynamics
Adhikari, S.; Chowdhury, R.; Friswell, M. I.
2011-03-01
Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.
Hamdy, M; Hamdan, I
2015-07-01
In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Development of a Fuzzy Model for Iranian Marine Casualties Management
Directory of Open Access Journals (Sweden)
Ali Moradi
2014-09-01
Full Text Available Marine Accident investigation multidimensional and complex, so this study aimed to provide a systematic approach to determining the degree of the most influential parameters (dimensions in accident occurrence in order to improve marine safety in the direction of good governance. In this paper, two-phase procedures are proposed. The first stage utilizes the fuzzy Delphi method (FDM to determine the critical factors of Marine Accident Investigation by interviewing the pertinent authorities. In the second stage, the fuzzy analytic hierarchy process (FAHP is applied to pair fuzzy numbers as measurable indices and finally to rank by degree each influential criterion within accident investigation. This study considers 1 goal, 4 aspects, and 31 criteria (parameters and establishes a ranking model that allows decision-makers to assess the prior ordering of reasons and sort by the most effective parameters involved in marine accident occurrence. The empirical study indicated that People, working and living conditions, effect is considered the highest ranking aspect, and Ability, skills, and knowledge of workers is considered the most important evaluation criterion overall by experts. These results were derived from fuzzy Delphi analytical hierarchy processing (FDAHP. A demonstration of the prior ordering of accident-causing parameters by authorities was addressed as well. Therefore, ranking the priority of every influential criterion (parameter will help marine transportation decision makers emphasize the areas in which to improve in order to prevent future marine accidents.
Intuitionistic fuzzy-based model for failure detection.
Aikhuele, Daniel O; Turan, Faiz B M
2016-01-01
In identifying to-be-improved product component(s), the customer/user requirements which are mainly considered, and achieved through customer surveys using the quality function deployment (QFD) tool, often fail to guarantee or cover aspects of the product reliability. Even when they do, there are always many misunderstandings. To improve the product reliability and quality during product redesigning phase and to create that novel product(s) for the customers, the failure information of the existing product, and its component(s) should ordinarily be analyzed and converted to appropriate design knowledge for the design engineer. In this paper, a new intuitionistic fuzzy multi-criteria decision-making method has been proposed. The new approach which is based on an intuitionistic fuzzy TOPSIS model uses an exponential-related function for the computation of the separation measures from the intuitionistic fuzzy positive ideal solution (IFPIS) and intuitionistic fuzzy negative ideal solution (IFNIS) of alternatives. The proposed method has been applied to two practical case studies, and the result from the different cases has been compared with some similar computational approaches in the literature.
Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.
Kamesh, Reddi; Rani, K Yamuna
2016-09-01
A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)
2008-06-15
Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)
Fuzzy pricing for urban water resources: model construction and application.
Zhao, Ranhang; Chen, Shouyu
2008-08-01
A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An artificial neural network(ANN) and a self-adjusting fuzzy logic controller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented. The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and the intelligent control for weld seam tracking with FLC. The proposed neural network can produce highly complex nonlinear multi-variable model of the GTAW process that offers the accurate prediction of welding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts the control parameters on-line automatically according to the tracking errors so that the torch position can be controlled accurately.
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
FUZZY RIPENING MANGO INDEX USING RGB COLOUR SENSOR MODEL
Ab Razak Mansor; Mahmod Othman; Mohd Nazari Abu Bakar; Khairul Adilah Ahmad; Tajul Rosli Razak
2014-01-01
Currently, the mango ripeness classification is determined manually by human graders according to a particular procedure. This method is inconsistent and subjective in nature because each grader has different techniques. Thus, it affects the quantity and quality of the mango fruit that can be marketed. In this project, a new model for classifying mango fruit is developed using the fuzzy logic RGB sensor colour model build in the MATLAB software. The grading system was programme...
Li, Xiaomiao; Lam, Hak Keung; Song, Ge; Liu, Fucai
2017-01-01
This paper deals with the stability and positivity analysis of polynomial-fuzzy-model-based ({PFMB}) control systems with time delay, which is formed by a polynomial fuzzy model and a polynomial fuzzy controller connected in a closed loop, under imperfect premise matching. To improve the design and realization flexibility, the polynomial fuzzy model and the polynomial fuzzy controller are allowed to have their own set of premise membership functions. A sum-of-squares (SOS)-based stability ana...
Use of fuzzy sets in modeling of GIS objects
Mironova, Yu N.
2018-05-01
The paper discusses modeling and methods of data visualization in geographic information systems. Information processing in Geoinformatics is based on the use of models. Therefore, geoinformation modeling is a key in the chain of GEODATA processing. When solving problems, using geographic information systems often requires submission of the approximate or insufficient reliable information about the map features in the GIS database. Heterogeneous data of different origin and accuracy have some degree of uncertainty. In addition, not all information is accurate: already during the initial measurements, poorly defined terms and attributes (e.g., "soil, well-drained") are used. Therefore, there are necessary methods for working with uncertain requirements, classes, boundaries. The author proposes using spatial information fuzzy sets. In terms of a characteristic function, a fuzzy set is a natural generalization of ordinary sets, when one rejects the binary nature of this feature and assumes that it can take any value in the interval.
Fuzzy Simulation-Optimization Model for Waste Load Allocation
Directory of Open Access Journals (Sweden)
Motahhare Saadatpour
2006-01-01
Full Text Available This paper present simulation-optimization models for waste load allocation from multiple point sources which include uncertainty due to vagueness of the parameters and goals. This model employs fuzzy sets with appropriate membership functions to deal with uncertainties due to vagueness. The fuzzy waste load allocation model (FWLAM incorporate QUAL2E as a water quality simulation model and Genetic Algorithm (GA as an optimization tool to find the optimal combination of the fraction removal level to the dischargers and pollution control agency (PCA. Penalty functions are employed to control the violations in the system. The results demonstrate that the goal of PCA to achieve the best water quality and the goal of the dischargers to use the full assimilative capacity of the river have not been satisfied completely and a compromise solution between these goals is provided. This fuzzy optimization model with genetic algorithm has been used for a hypothetical problem. Results demonstrate a very suitable convergence of proposed optimization algorithm to the global optima.
Bilevel Fuzzy Chance Constrained Hospital Outpatient Appointment Scheduling Model
Directory of Open Access Journals (Sweden)
Xiaoyang Zhou
2016-01-01
Full Text Available Hospital outpatient departments operate by selling fixed period appointments for different treatments. The challenge being faced is to improve profit by determining the mix of full time and part time doctors and allocating appointments (which involves scheduling a combination of doctors, patients, and treatments to a time period in a department optimally. In this paper, a bilevel fuzzy chance constrained model is developed to solve the hospital outpatient appointment scheduling problem based on revenue management. In the model, the hospital, the leader in the hierarchy, decides the mix of the hired full time and part time doctors to maximize the total profit; each department, the follower in the hierarchy, makes the decision of the appointment scheduling to maximize its own profit while simultaneously minimizing surplus capacity. Doctor wage and demand are considered as fuzzy variables to better describe the real-life situation. Then we use chance operator to handle the model with fuzzy parameters and equivalently transform the appointment scheduling model into a crisp model. Moreover, interactive algorithm based on satisfaction is employed to convert the bilevel programming into a single level programming, in order to make it solvable. Finally, the numerical experiments were executed to demonstrate the efficiency and effectiveness of the proposed approaches.
Fuzzy modeling of analytical redundancy for sensor failure detection
International Nuclear Information System (INIS)
Tsai, T.M.; Chou, H.P.
1991-01-01
Failure detection and isolation (FDI) in dynamic systems may be accomplished by testing the consistency of the system via analytically redundant relations. The redundant relation is basically a mathematical model relating system inputs and dissimilar sensor outputs from which information is extracted and subsequently examined for the presence of failure signatures. Performance of the approach is often jeopardized by inherent modeling error and noise interference. To mitigate such effects, techniques such as Kalman filtering, auto-regression-moving-average (ARMA) modeling in conjunction with probability tests are often employed. These conventional techniques treat the stochastic nature of uncertainties in a deterministic manner to generate best-estimated model and sensor outputs by minimizing uncertainties. In this paper, the authors present a different approach by treating the effect of uncertainties with fuzzy numbers. Coefficients in redundant relations derived from first-principle physical models are considered as fuzzy parameters and on-line updated according to system behaviors. Failure detection is accomplished by examining the possibility that a sensor signal occurred in an estimated fuzzy domain. To facilitate failure isolation, individual FDI monitors are designed for each interested sensor
Photovoltaic System Modeling with Fuzzy Logic Based Maximum Power Point Tracking Algorithm
Directory of Open Access Journals (Sweden)
Hasan Mahamudul
2013-01-01
Full Text Available This paper represents a novel modeling technique of PV module with a fuzzy logic based MPPT algorithm and boost converter in Simulink environment. The prime contributions of this work are simplification of PV modeling technique and implementation of fuzzy based MPPT system to track maximum power efficiently. The main highlighted points of this paper are to demonstrate the precise control of the duty cycle with respect to various atmospheric conditions, illustration of PV characteristic curves, and operation analysis of the converter. The proposed system has been applied for three different PV modules SOLKAR 36 W, BP MSX 60 W, and KC85T 87 W. Finally the resultant data has been compared with the theoretical prediction and company specified value to ensure the validity of the system.
Directory of Open Access Journals (Sweden)
Christos Chalkias
2014-04-01
Full Text Available The main aim of this paper is landslide susceptibility assessment using fuzzy expert-based modeling. Factors that influence landslide occurrence, such as elevation, slope, aspect, lithology, land cover, precipitation and seismicity were considered. Expert-based fuzzy weighting (EFW approach was used to combine these factors for landslide susceptibility mapping (Peloponnese, Greece. This method produced a landslide susceptibility map of the investigated area. The landslides under investigation have more or less same characteristics: lateral based and downslope shallow movement of soils or rocks. The validation of the model reveals, that predicted susceptibility levels are found to be in good agreement with the past landslide occurrences. Hence, the obtained landslide susceptibility map could be acceptable, for landslide hazard prevention and mitigation at regional scale.
Directory of Open Access Journals (Sweden)
Xiufang Lin
2016-08-01
Full Text Available Magnetorheological dampers have become prominent semi-active control devices for vibration mitigation of structures which are subjected to severe loads. However, the damping force cannot be controlled directly due to the inherent nonlinear characteristics of the magnetorheological dampers. Therefore, for fully exploiting the capabilities of the magnetorheological dampers, one of the challenging aspects is to develop an accurate inverse model which can appropriately predict the input voltage to control the damping force. In this article, a hybrid modeling strategy combining shuffled frog-leaping algorithm and adaptive-network-based fuzzy inference system is proposed to model the inverse dynamic characteristics of the magnetorheological dampers for improving the modeling accuracy. The shuffled frog-leaping algorithm is employed to optimize the premise parameters of the adaptive-network-based fuzzy inference system while the consequent parameters are tuned by a least square estimation method, here known as shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach. To evaluate the effectiveness of the proposed approach, the inverse modeling results based on the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach are compared with those based on the adaptive-network-based fuzzy inference system and genetic algorithm–based adaptive-network-based fuzzy inference system approaches. Analysis of variance test is carried out to statistically compare the performance of the proposed methods and the results demonstrate that the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system strategy outperforms the other two methods in terms of modeling (training accuracy and checking accuracy.
Using the fuzzy modeling for the retrieval algorithms
International Nuclear Information System (INIS)
Mohamed, A.H
2010-01-01
A rapid growth in number and size of images in databases and world wide web (www) has created a strong need for more efficient search and retrieval systems to exploit the benefits of this large amount of information. However, the collection of this information is now based on the image technology. One of the limitations of the current image analysis techniques necessitates that most image retrieval systems use some form of text description provided by the users as the basis to index and retrieve images. To overcome this problem, the proposed system introduces the using of fuzzy modeling to describe the image by using the linguistic ambiguities. Also, the proposed system can include vague or fuzzy terms in modeling the queries to match the image descriptions in the retrieval process. This can facilitate the indexing and retrieving process, increase their performance and decrease its computational time . Therefore, the proposed system can improve the performance of the traditional image retrieval algorithms.
Evaluation-Function-based Model-free Adaptive Fuzzy Control
Directory of Open Access Journals (Sweden)
Agus Naba
2016-12-01
Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark veriﬁed the proposed scheme’s efficacy.
Smets, P
1995-01-01
We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.
A Model for the Development of Hospital Beds Using Fuzzy Analytical Hierarchy Process (Fuzzy AHP).
Ravangard, Ramin; Bahadori, Mohammadkarim; Raadabadi, Mehdi; Teymourzadeh, Ehsan; Alimomohammadzadeh, Khalil; Mehrabian, Fardin
2017-11-01
This study aimed to identify and prioritize factors affecting the development of military hospital beds and provide a model using fuzzy analytical hierarchy process (Fuzzy AHP). This applied study was conducted in 2016 in Iran using a mixed method. The sample included experts in the field of military health care system. The MAXQDA 10.0 and Expert Choice 10.0 software were used for analyzing the collected data. Geographic situation, demographic status, economic status, health status, health care centers and organizations, financial and human resources, laws and regulations and by-laws, and the military nature of service recipients had effects on the development of military hospital beds. The military nature of service recipients (S=0.249) and economic status (S=0.040) received the highest and lowest priorities, respectively. Providing direct health care services to the military forces in order to maintain their dignity, and according to its effects in the crisis, as well as the necessity for maintaining the security of the armed forces, and the hospital beds per capita based on the existing laws, regulations and bylaws are of utmost importance.
Dependent-Chance Programming Models for Capital Budgeting in Fuzzy Environments
Institute of Scientific and Technical Information of China (English)
LIANG Rui; GAO Jinwu
2008-01-01
Capital budgeting is concerned with maximizing the total net profit subject to budget constraints by selecting an appropriate combination of projects. This paper presents chance maximizing models for capital budgeting with fuzzy input data and multiple conflicting objectives. When the decision maker sets a prospec-tive profit level and wants to maximize the chances of the total profit achieving the prospective profit level, a fuzzy dependent-chance programming model, a fuzzy multi-objective dependent-chance programming model, and a fuzzy goal dependent-chance programming model are used to formulate the fuzzy capital budgeting problem. A fuzzy simulation based genetic algorithm is used to solve these models. Numerical examples are provided to illustrate the effectiveness of the simulation-based genetic algorithm and the po-tential applications of these models.
Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization
International Nuclear Information System (INIS)
Yong, Li; Ying-Gan, Tang
2010-01-01
A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi–Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method
Directory of Open Access Journals (Sweden)
Iman Aghayan
2012-11-01
Full Text Available This paper compares two fuzzy clustering algorithms – fuzzy subtractive clustering and fuzzy C-means clustering – to a multi-layer perceptron neural network for their ability to predict the severity of crash injuries and to estimate the response time on the traffic crash data. Four clustering algorithms – hierarchical, K-means, subtractive clustering, and fuzzy C-means clustering – were used to obtain the optimum number of clusters based on the mean silhouette coefficient and R-value before applying the fuzzy clustering algorithms. The best-fit algorithms were selected according to two criteria: precision (root mean square, R-value, mean absolute errors, and sum of square error and response time (t. The highest R-value was obtained for the multi-layer perceptron (0.89, demonstrating that the multi-layer perceptron had a high precision in traffic crash prediction among the prediction models, and that it was stable even in the presence of outliers and overlapping data. Meanwhile, in comparison with other prediction models, fuzzy subtractive clustering provided the lowest value for response time (0.284 second, 9.28 times faster than the time of multi-layer perceptron, meaning that it could lead to developing an on-line system for processing data from detectors and/or a real-time traffic database. The model can be extended through improvements based on additional data through induction procedure.
Comparative Study of Bancruptcy Prediction Models
Directory of Open Access Journals (Sweden)
Isye Arieshanti
2013-09-01
Full Text Available Early indication of bancruptcy is important for a company. If companies aware of potency of their bancruptcy, they can take a preventive action to anticipate the bancruptcy. In order to detect the potency of a bancruptcy, a company can utilize a a model of bancruptcy prediction. The prediction model can be built using a machine learning methods. However, the choice of machine learning methods should be performed carefully. Because the suitability of a model depends on the problem specifically. Therefore, in this paper we perform a comparative study of several machine leaning methods for bancruptcy prediction. According to the comparative study, the performance of several models that based on machine learning methods (k-NN, fuzzy k-NN, SVM, Bagging Nearest Neighbour SVM, Multilayer Perceptron(MLP, Hybrid of MLP + Multiple Linear Regression, it can be showed that fuzzy k-NN method achieve the best performance with accuracy 77.5%
Hamed Kharrati; Sohrab Khanmohammadi; Witold Pedrycz; Ghasem Alizadeh
2012-01-01
This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB) systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA) is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy m...
International Nuclear Information System (INIS)
Moon, Sang Ki; Chang, Soon Heung
1994-01-01
A new method to predict the critical heat flux (CHF) is proposed, based on the fuzzy clustering and artificial neural network. The fuzzy clustering classifies the experimental CHF data into a few data clusters (data groups) according to the data characteristics. After classification of the experimental data, the characteristics of the resulting clusters are discussed with emphasis on the distribution of the experimental conditions and physical mechanism. The CHF data in each group are trained in an artificial neural network to predict the CHF. The artificial neural network adjusts the weight so as to minimize the prediction error within the corresponding cluster. Application of the proposed method to the KAIST CHF data bank shows good prediction capability of the CHF, better than other existing methods. ((orig.))
Mathematical Modelling with Fuzzy Sets of Sustainable Tourism Development
Directory of Open Access Journals (Sweden)
Nenad Stojanović
2011-10-01
Full Text Available In the first part of the study we introduce fuzzy sets that correspond to comparative indicators for measuring sustainable development of tourism. In the second part of the study it is shown, on the base of model created, how one can determine the value of sustainable tourism development in protected areas based on the following established groups of indicators: to assess the economic status, to assess the impact of tourism on the social component, to assess the impact of tourism on cultural identity, to assess the environmental conditions and indicators as well as to assess tourist satisfaction, all using fuzzy logic.It is also shown how to test the confidence in the rules by which, according to experts, appropriate decisions can be created in order to protect biodiversity of protected areas.
Directory of Open Access Journals (Sweden)
Otilia Elena Dragomir
2015-11-01
Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.
An inexact fuzzy-chance-constrained air quality management model.
Xu, Ye; Huang, Guohe; Qin, Xiaosheng
2010-07-01
Regional air pollution is a major concern for almost every country because it not only directly relates to economic development, but also poses significant threats to environment and public health. In this study, an inexact fuzzy-chance-constrained air quality management model (IFAMM) was developed for regional air quality management under uncertainty. IFAMM was formulated through integrating interval linear programming (ILP) within a fuzzy-chance-constrained programming (FCCP) framework and could deal with uncertainties expressed as not only possibilistic distributions but also discrete intervals in air quality management systems. Moreover, the constraints with fuzzy variables could be satisfied at different confidence levels such that various solutions with different risk and cost considerations could be obtained. The developed model was applied to a hypothetical case of regional air quality management. Six abatement technologies and sulfur dioxide (SO2) emission trading under uncertainty were taken into consideration. The results demonstrated that IFAMM could help decision-makers generate cost-effective air quality management patterns, gain in-depth insights into effects of the uncertainties, and analyze tradeoffs between system economy and reliability. The results also implied that the trading scheme could achieve lower total abatement cost than a nontrading one.
THE FUZZY OVERLAY STUDENT MODEL IN AN INTELLIGENT TUTORING SYSTEM
Directory of Open Access Journals (Sweden)
D. I. Popov
2015-01-01
Full Text Available The article is devoted to the development of the student model for use in an intelligent tutoring system (ITS designed for the evaluation of students’ competencies in different Higher Education Facilities. There are classification and examples of the various student models, the most suitable for the evaluation of competencies is selected and finalized. The dynamic overlay fuzzy student model builded on the domain model based on the concept of didactic units is described in this work. The formulas, chart and diagrams are provided.
Jhin, Changho; Hwang, Keum Taek
2014-08-22
Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.
Directory of Open Access Journals (Sweden)
Changho Jhin
2014-08-01
Full Text Available Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A and electronegativity (χ of flavylium cation, and ionization potential (I of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.
Directory of Open Access Journals (Sweden)
Zhi-Ren Tsai
2013-01-01
Full Text Available A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive control design is based on the input and output of neural plant model (NPM, and a recursive fuzzy predictive tracker has scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust control performance. To improve the further control performance, the proposed random-local-optimization design (RLO for a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based controller for the continuous-time (CT nonlinear system. They are solved by a recommended two-stage control design with the first-stage (offline RLO and second-stage (online adaptive steps. A theorizing method is then put forward to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP method. Finally, the feedforward input of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT systems precisely.
Agent Based Fuzzy T-S Multi-Model System and Its Applications
Directory of Open Access Journals (Sweden)
Xiaopeng Zhao
2015-11-01
Full Text Available Based on the basic concepts of agent and fuzzy T-S model, an agent based fuzzy T-S multi-model (ABFT-SMM system is proposed in this paper. Different from the traditional method, the parameters and the membership value of the agent can be adjusted along with the process. In this system, each agent can be described as a dynamic equation, which can be seen as the local part of the multi-model, and it can execute the task alone or collaborate with other agents to accomplish a fixed goal. It is proved in this paper that the agent based fuzzy T-S multi-model system can approximate any linear or nonlinear system at arbitrary accuracy. The applications to the benchmark problem of chaotic time series prediction, water heater system and waste heat utilizing process illustrate the viability and the efficiency of the mentioned approach. At the same time, the method can be easily used to a number of engineering fields, including identification, nonlinear control, fault diagnostics and performance analysis.
Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Valyrakis, Manousos; Zhang, Hanqing
2014-05-01
Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.
Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport
Ebtehaj, Isa; Bonakdari, Hossein
2017-12-01
Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number ( Fr) parameters includes the volumetric sediment concentration ( C V ), ratio of median particle diameter to hydraulic radius ( d/R), ratio of median particle diameter to pipe diameter ( d/D) and overall friction factor of sediment ( λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy ( R 2 = 0.965) than the ANFIS model and regression-based equations.
Rainfall prediction using fuzzy inference system for preliminary micro-hydro power plant planning
Suprapty, B.; Malani, R.; Minardi, J.
2018-04-01
East Kalimantan is a very rich area with water sources, in the form of river streams that branch to the remote areas. The conditions of natural potency like this become alternative solution for area that has not been reached by the availability of electric energy from State Electricity Company. The river water in selected location (catchment area) which is channelled to the canal, pipeline or penstock can be used to drive the waterwheel or turbine. The amount of power obtained depends on the volume/water discharge and headwater (the effective height between the reservoir and the turbine). The water discharge is strongly influenced by the amount of rainfall. Rainfall is the amount of water falling on the flat surface for a certain period measured, in units of mm3, above the horizontal surface in the absence of evaporation, run-off and infiltration. In this study, the prediction of rainfall is done in the area of East Kalimantan which has 13 watersheds which, in principle, have the potential for the construction of Micro Hydro Power Plant. Rainfall time series data is modelled by using AR (Auto Regressive) Model based on FIS (Fuzzy Inference System). The FIS structure of the training results is then used to predict the next two years rainfall.
Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia
2012-01-01
The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed…
Collaborative filtering recommendation model based on fuzzy clustering algorithm
Yang, Ye; Zhang, Yunhua
2018-05-01
As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.
Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model
Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza
2017-08-01
Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.
Amarti, Z.; Nurkholipah, N. S.; Anggriani, N.; Supriatna, A. K.
2018-03-01
Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The model usually takes form in a differential equation or a system of differential equations, depending on the complexity of the underlying properties of the population. The most widely used growth models currently are those having a sigmoid solution of time series, including the Verhulst logistic equation and the Gompertz equation. In this paper we consider the Allee effect of the Verhulst’s logistic population model. The Allee effect is a phenomenon in biology showing a high correlation between population size or density and the mean individual fitness of the population. The method used to derive the solution is the Runge-Kutta numerical scheme, since it is in general regarded as one among the good numerical scheme which is relatively easy to implement. Further exploration is done via the fuzzy theoretical approach to accommodate the impreciseness of the initial values and parameters in the model.
New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.
Song, Qiang; Chissom, Brad S.
Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…
Fuzzy delay model based fault simulator for crosstalk delay fault test ...
Indian Academy of Sciences (India)
In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design trends move towards nanometer technologies, more number of new parameters affects the delay of the component. Fuzzy delay models are ideal for modelling the uncertainty found in the design and manufacturing steps.
T-S Fuzzy Modelling and H∞ Attitude Control for Hypersonic Gliding Vehicles
Directory of Open Access Journals (Sweden)
Weidong Zhang
2017-01-01
Full Text Available This paper addresses the T-S fuzzy modelling and H∞ attitude control in three channels for hypersonic gliding vehicles (HGVs. First, the control-oriented affine nonlinear model has been established which is transformed from the reentry dynamics. Then, based on Taylor’s expansion approach and the fuzzy linearization approach, the homogeneous T-S local modelling technique for HGVs is proposed. Given the approximation accuracy and controller design complexity, appropriate fuzzy premise variables and operating points of interest are selected to construct the T-S homogeneous submodels. With so-called fuzzy blending, the original plant is transformed into the overall T-S fuzzy model with disturbance. By utilizing Lyapunov functional approach, a state feedback fuzzy controller has been designed based on relaxed linear matrix inequality (LMI conditions to stable the original plants with a prescribed H∞ performance of disturbance. Finally, numerical simulations are performed to demonstrate the effectiveness of the proposed H∞ T-S fuzzy controller for the original attitude dynamics; the superiority of the designed T-S fuzzy controller compared with other local controllers based on the constructed fuzzy model is shown as well.
Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.
Possibilistic Fuzzy Net Present Value Model and Application
Directory of Open Access Journals (Sweden)
S. S. Appadoo
2014-01-01
Full Text Available The cash flow values and the interest rate in the net present value (NPV model are usually specified by either crisp numbers or random variables. In this paper, we first discuss some of the recent developments in possibility theory and find closed form expressions for fuzzy possibilistic net present value (FNPV. Then, following Carlsson and Fullér (2001, we discuss some of the possibilistic moments related to FNPV model along with an illustrative numerical example. We also give a unified approach to find higher order moments of FNPV by using the moment generating function introduced by Paseka et al. (2011.
Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek
2018-01-01
The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.
Fuzzy Modeling and Synchronization of a New Hyperchaotic Complex System with Uncertainties
Directory of Open Access Journals (Sweden)
Hadi Delavari
2015-07-01
Full Text Available In this paper, the synchronization of a new hyperchaotic complex system based on T-S fuzzy model is proposed. First the considered hyperchaotic system is represented by T-S fuzzy model equivalently. Then by using the parallel distributed compensation (PDC method and by applying linear system theory and exact linearization (EL technique, a fuzzy controller is designed to realize the synchronization. Finally, simulation results are carried out to demonstrate the performance of our proposed control scheme, and also the robustness of the designed fuzzy controller to uncertainties.
Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model
International Nuclear Information System (INIS)
Nastase, Horatiu; Papageorgakis, Constantinos
2009-01-01
Our recent construction arXiv:0903.3966 for the fuzzy 2-sphere in terms of bifundamentals, discovered in the context of the ABJM model, is shown to be explicitly equivalent to the usual (adjoint) fuzzy sphere construction. The matrices G-tilde α that define it play the role of fuzzy Killing spinors on the 2-sphere, out of which all spherical harmonics are constructed. Starting from the quadratic fluctuation action around these solutions in the mass-deformed ABJM theory, we recover a supersymmetric D4-brane action wrapping a 2-sphere, including fermions. We obtain both the usual D4 action with an unusual x-dependence on the sphere, as well as a twisted version in terms of the usual x-dependence, and contrast our result with the Maldacena-Nunez case of a D5 wrapping an S 2 . The twisted and unwisted fields are related by the same matrix G-tilde α .
International Nuclear Information System (INIS)
Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen
2015-01-01
We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of −40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C −1 . ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of −40 to 60 °C. (paper)
Fuzzy Goal Programming Approach in Selective Maintenance Reliability Model
Directory of Open Access Journals (Sweden)
Neha Gupta
2013-12-01
Full Text Available 800x600 In the present paper, we have considered the allocation problem of repairable components for a parallel-series system as a multi-objective optimization problem and have discussed two different models. In first model the reliability of subsystems are considered as different objectives. In second model the cost and time spent on repairing the components are considered as two different objectives. These two models is formulated as multi-objective Nonlinear Programming Problem (MONLPP and a Fuzzy goal programming method is used to work out the compromise allocation in multi-objective selective maintenance reliability model in which we define the membership functions of each objective function and then transform membership functions into equivalent linear membership functions by first order Taylor series and finally by forming a fuzzy goal programming model obtain a desired compromise allocation of maintenance components. A numerical example is also worked out to illustrate the computational details of the method. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4
Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei
2017-06-01
Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.
Fuzzy logic prediction of dew point pressure of selected Iranian gas condensate reservoirs
Energy Technology Data Exchange (ETDEWEB)
Nowroozi, Saeed [Shahid Bahonar Univ. of Kerman (Iran); Iranian Offshore Oil Company (I.O.O.C.) (Iran); Ranjbar, Mohammad; Hashemipour, Hassan; Schaffie, Mahin [Shahid Bahonar Univ. of Kerman (Iran)
2009-12-15
The experimental determination of dew point pressure in a window PVT cell is often difficult especially in the case of lean retrograde gas condensate. Besides all statistical, graphical and experimental methods, the fuzzy logic method can be useful and more reliable for estimation of reservoir properties. Fuzzy logic can overcome uncertainty existent in many reservoir properties. Complexity, non-linearity and vagueness are some reservoir parameter characteristics, which can be propagated simply by fuzzy logic. The fuzzy logic dew point pressure modeling system used in this study is a multi input single output (MISO) Mamdani system. The model was developed using experimentally constant volume depletion (CVD) measured samples of some Iranian fields. The performance of the model is compared against the performance of some of the most accurate and general correlations for dew point pressure calculation. Results show that this novel method is more accurate and reliable with an average absolute deviation of 1.33% and 2.68% for developing and checking, respectively. (orig.)
Directory of Open Access Journals (Sweden)
Xianlei Cheng
2015-01-01
Full Text Available We propose a predictive sliding mode control (PSMC scheme for attitude control of hypersonic vehicle (HV with system uncertainties and external disturbances based on an improved fuzzy disturbance observer (IFDO. First, for a class of uncertain affine nonlinear systems with system uncertainties and external disturbances, we propose a predictive sliding mode control based on fuzzy disturbance observer (FDO-PSMC, which is used to estimate the composite disturbances containing system uncertainties and external disturbances. Afterward, to enhance the composite disturbances rejection performance, an improved FDO-PSMC (IFDO-PSMC is proposed by incorporating a hyperbolic tangent function with FDO to compensate for the approximate error of FDO. Finally, considering the actuator dynamics, the proposed IFDO-PSMC is applied to attitude control system design for HV to track the guidance commands with high precision and strong robustness. Simulation results demonstrate the effectiveness and robustness of the proposed attitude control scheme.
Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung
2016-01-01
The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…
Directory of Open Access Journals (Sweden)
Hamed Kharrati
2012-01-01
Full Text Available This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy modeling. To validate the model, a controller based on proposed polynomial fuzzy systems is designed and then applied to both original nonlinear plant and fuzzy model for comparison. Additionally, stability analysis for the proposed polynomial FMB control system is investigated employing Lyapunov theory and a sum of squares (SOS approach. Moreover, the form of the membership functions is considered in stability analysis. The SOS-based stability conditions are attained using SOSTOOLS. Simulation results are also given to demonstrate the effectiveness of the proposed method.
Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification
International Nuclear Information System (INIS)
Na, Man Gyun; Kim, Jin Weon; Hwang, In Joon
2006-01-01
In this work, the collapse moment due to wall-thinned defects is estimated through fuzzy model identification. A subtractive clustering method is used as the basis of a fast and robust algorithm for identifying the fuzzy model. The fuzzy model is optimized by a genetic algorithm combined with a least squares method. The developed fuzzy model has been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy model to reduce the sensitivity to the input change and the fuzzy model are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, three fuzzy models are trained, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.5397% for the training data and 0.8673% for the test data. It is known from this result that the fuzzy models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows
Fuzzy chance constrained linear programming model for scrap charge optimization in steel production
DEFF Research Database (Denmark)
Rong, Aiying; Lahdelma, Risto
2008-01-01
the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product...
Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models
DEFF Research Database (Denmark)
Schlechtingen, Meik; Santos, Ilmar
2012-01-01
System (ANFIS) models are employed to learn the normal behavior in a training phase, where the component condition can be considered healthy. In the application phase the trained models are applied to predict the target signals, e.g. temperatures, pressures, currents, power output, etc. The behavior......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...... of the prediction error is used as an indicator for normal and abnormal behavior, with respect to the learned behavior. The advantage of this approach is that the prediction error is widely decoupled from the typical fluctuations of the SCADA data caused by the different turbine operational modes. To classify...
International Nuclear Information System (INIS)
Ouchen, Sabir; Betka, Achour; Abdeddaim, Sabrina; Menadi, Abdelkrim
2016-01-01
Highlights: • An implementation on dSPACE 1104 of a double stage grid connected photovoltaic system, associated with an active power filter. • A fuzzy logic controller for maximum power point tracking of photovoltaic generator using a boost converter. • Predictive direct power control almost eliminates the effect of harmonics under a unite power factor. • The robustness of control strategies was examined in different irradiance level conditions. - Abstract: The present paper proposes a real time implementation of an optimal operation of a double stage grid connected photovoltaic system, associated with a shunt active power filter. On the photovoltaic side, a fuzzy logic based maximum power point taking control is proposed to track permanently the optimum point through an adequate tuning of a boost converter regardless the solar irradiance variations; whereas, on the grid side, a model predictive direct power control is applied, to ensure both supplying a part of the load demand with the extracted photovoltaic power, and a compensation of undesirable harmonic contents of the grid current, under a unity power factor operation. The implementation of the control strategies is conducted on a small scale photovoltaic system, controlled via a dSPACE 1104 single card. The obtained experimental results show on one hand, that the proposed Fuzzy logic based maximum power taking point technique provides fast and high performances under different irradiance levels while compared with a sliding mode control, and ensures 1.57% more in efficiency. On the other hand, the predictive power control ensures a flexible settlement of active power amounts exchanges with the grid, under a unity power functioning. Furthermore, the grid current presents a sinusoidal shape with a tolerable total harmonic distortion coefficient 4.71%.
Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.
2010-12-01
Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow
Directory of Open Access Journals (Sweden)
JuanM. Medina
2012-08-01
Full Text Available This paper proposes a parameterized definition for fuzzy comparators on complex fuzzy datatypes like fuzzy collections with conjunctive semantics and fuzzy objects. This definition and its implementation on a Fuzzy Object-Relational Database Management System (FORDBMS provides the designer with a powerful tool to adapt the behavior of these operators to the semantics of the considered application.
Directory of Open Access Journals (Sweden)
Pełka Paweł
2017-01-01
Full Text Available Electricity demand forecasting is of important role in power system planning and operation. In this work, fuzzy nearest neighbour regression has been utilised to estimate monthly electricity demands. The forecasting model was based on the pre-processed energy consumption time series, where input and output variables were defined as patterns representing unified fragments of the time series. Relationships between inputs and outputs, which were simplified due to patterns, were modelled using nonparametric regression with weighting function defined as a fuzzy membership of learning points to the neighbourhood of a query point. In an experimental part of the work the model was evaluated using real-world data. The results are encouraging and show high performances of the model and its competitiveness compared to other forecasting models.
International Nuclear Information System (INIS)
Shakhawat, Chowdhury; Tahir, Husain; Neil, Bose
2006-01-01
Produced water, discharged from offshore oil and gas operations, contains chemicals from formation water, condensed water, and any chemical added down hole or during the oil/water separation process. Although, most of the contaminants fall below the detection limits within a short distance from the discharge port, a few of the remaining contaminants including naturally occurring radioactive materials (NORM) are of concern due to their bioavailability in the media and bioaccumulation characteristics in finfish and shellfish species used for human consumption. In the past, several initiatives have been taken to model human health risk from NORM in produced water. The parameters of the available risk assessment models are imprecise and sparse in nature. In this study, a fuzzy possibilistic evaluation using fuzzy rule based modeling has been presented. Being conservative in nature, the possibilistic approach considers possible input parameter values; thus provides better environmental prediction than the Monte Carlo (MC) calculation. The uncertainties of the input parameters were captured with fuzzy triangular membership functions (TFNs). Fuzzy if-then rules were applied for input concentrations of two isotopes of radium, namely 226 Ra, and 228 Ra, available in produced water and bulk dilution to evaluate the radium concentration in fish tissue used for human consumption. The bulk dilution was predicted using four input parameters: produced water discharge rate, ambient seawater velocity, depth of discharge port and density gradient. The evaluated cancer risk shows compliance with the regulatory guidelines; thus minimum risk to human health is expected from NORM components in produced water
Wind farm fuzzy modelling for adequacy evaluation of power system
Energy Technology Data Exchange (ETDEWEB)
Moeini-Aghtaie, M.; Abbaspour, A.; Fotuhi-Firuzabad, M. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering, Center of Excellence in Power System Management and Control
2010-07-01
This paper presented details of a fuzzy logic-based active learning method (ALM) designed to model variations in wind speed. A pattern-based approach was used to model system behaviour. The ALM was algorithmically modelled on the information-handling processes of the human brain. Wind data were gathered and projected on different data planes. The horizontal axis of each data plane was one of the inputs, while the vertical axis was the output. An ink drop spread (IDS) processing engine was used to look for behaviour curves on each data plane. A fuzzy interpolation method was used to derive a smooth curve among the data points. Sequential Monte Carlo simulations (MCS) were used to evaluate power systems based on hourly random simulations. After the hourly wind speed was generated, wind turbine generator outputs were calculated by considering the nonlinear relationship between the estimated wind speed and the wind turbine output. The developed algorithm was validated on a 6-bus reliability test system. Results of the study can be used by power system schedulers to develop power system reliability guidelines. 14 refs., 2 tabs., 11 figs.
Energy Technology Data Exchange (ETDEWEB)
Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)
2008-12-15
The goal of this work is to predict the daily performance (COP) of a ground-source heat pump (GSHP) system with the minimum data set based on an adaptive neuro-fuzzy inference system (ANFIS) with a fuzzy weighted pre-processing (FWP) method. To evaluate the effectiveness of our proposal (FWP-ANFIS), a computer simulation is developed on MATLAB environment. The comparison of the proposed hybridized system's results with the standard ANFIS results is carried out and the results are given in the tables. The efficiency of the proposed method was demonstrated by using the 3-fold cross-validation test. The statistical methods, such as the root-mean squared (RMS), the coefficient of multiple determinations (R{sup 2}) and the coefficient of variation (cov), are given to compare the predicted and actual values for model validation. The average R{sup 2} values is 0.9998, the average RMS value is 0.0272 and the average cov value is 0.7733, which can be considered as very promising. The data set for the COP of GSHP system available included 38 data patterns. The simulation results show that the FWP-based ANFIS can be used in an alternative way in these systems. The prediction results of the proposed structure were much better than the standard ANFIS results. Therefore, instead of limited experimental data found in the literature, faster and simpler solutions are obtained using hybridized structures such as FWP-based ANFIS. (author)
Neuro-fuzzy model of homocysteine metabolism
Indian Academy of Sciences (India)
In view of well-documented association of hyperhomocysteinaemia with a wide spectrum of diseases and higher incidence of vitamin deficiencies in Indians, we proposed a mathematical model to forecast the role of demographic and geneticvariables in influencing homocysteine metabolism and investigated the influence ...
Design and analysis of experiments in ANFIS modeling for stock price prediction
Directory of Open Access Journals (Sweden)
Meysam Alizadeh
2011-04-01
Full Text Available At the computational point of view, a fuzzy system has a layered structure, similar to an artificial neural network (ANN of the radial basis function type. ANN learning algorithms can be employed for optimization of parameters in a fuzzy system. This neuro-fuzzy modeling approach has preference to explain solutions over completely black-box models, such as ANN. In this paper, we implement the design of experiment (DOE technique to identify the significant parameters in the design of adaptive neuro-fuzzy inference systems (ANFIS for stock price prediction.
Directory of Open Access Journals (Sweden)
Hideki Katagiri
2017-10-01
Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.
Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model.
Reyna, Valerie F; Brainerd, Charles J
2011-09-01
From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals-that reasoning biases emerge with development -have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects-that risk preferences shift when the same decisions are phrases in terms of gains versus losses-emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making-prospect theory-can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes.
Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model
Reyna, Valerie F.; Brainerd, Charles J.
2011-01-01
From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals—that reasoning biases emerge with development —have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects—that risk preferences shift when the same decisions are phrases in terms of gains versus losses—emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making—prospect theory—can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes. PMID:22096268
Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace
International Nuclear Information System (INIS)
Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F.; Menendez, J. L.
2000-01-01
This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs
Simulation of neuro-fuzzy model for optimization of combine header setting
Directory of Open Access Journals (Sweden)
S Zareei
2016-09-01
Full Text Available Introduction The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important parts is the header which comprises more than 50% of the entire harvesting losses. Some researchers have presented regression equation to estimate grain loss of combine harvester. The results of their study indicated that grain moisture content, reel index, cutter bar speed, service life of cutter bar, tine spacing, tine clearance over cutter bar, stem length were the major parameters affecting the losses. On the other hand, there are several researchswhich have used the variety of artificial intelligence methods in the different aspects of combine harvester. In neuro-fuzzy control systems, membership functions and if-then rules were defined through neural networks. Sugeno- type fuzzy inference model was applied to generate fuzzy rules from a given input-output data set due to its less time-consuming and mathematically tractable defuzzification operation for sample data-based fuzzy modeling. In this study, neuro-fuzzy model was applied to develop forecasting models which can predict the combine header loss for each set of the header parameter adjustments related to site-specific information and therefore can minimize the header loss. Materials and Methods The field experiment was conducted during the harvesting season of 2011 at the research station of the Faulty of Agriculture, Shiraz University, Shiraz, Iran. The wheat field (CV. Shiraz was harvested with a Claas Lexion-510 combine harvester. The factors which were selected as main factors influenced the header performance were three levels of reel index (RI (forward speed of combine harvester divided by peripheral speed of reel (1, 1.2, 1.5, three levels of cutting height (CH(25, 30, 35 cm, three
Directory of Open Access Journals (Sweden)
Zhe Zhang
2014-06-01
Full Text Available Purpose: The aim of this paper is to deal with the supply chain management (SCM with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM model is presented to solve the proposed problem.Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO is designed as the solution method.Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1.Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy.Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.
A fuzzy ontology modeling for case base knowledge in diabetes mellitus domain
Directory of Open Access Journals (Sweden)
Shaker El-Sappagh
2017-06-01
Full Text Available Knowledge-Intensive Case-Based Reasoning Systems (KI-CBR mainly depend on ontologies. Ontology can play the role of case-base knowledge. The combination of ontology and fuzzy logic reasoning is critical in the medical domain. Case-base representation based on fuzzy ontology is expected to enhance the semantic and storage of CBR knowledge-base. This paper provides an advancement to the research of diabetes diagnosis CBR by proposing a novel case-base fuzzy OWL2 ontology (CBRDiabOnto. This ontology can be considered as the first fuzzy case-base ontology in the medical domain. It is based on a case-base fuzzy Extended Entity Relation (EER data model. It contains 63 (fuzzy classes, 54 (fuzzy object properties, 138 (fuzzy datatype properties, and 105 fuzzy datatypes. We populated the ontology with 60 cases and used SPARQL-DL for its query. The evaluation of CBRDiabOnto shows that it is accurate, consistent, and cover terminologies and logic of diabetes mellitus diagnosis.
Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.
Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad
2013-05-01
In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model.
Application of Fuzzy Clustering in Modeling of a Water Hydraulics System
DEFF Research Database (Denmark)
Zhou, Jianjun; Kroszynski, Uri
2000-01-01
This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...... model is extracted from the obtained partitions. The identified model has been evaluated by comparing measurements with simulation results. The evaluation shows that the identified model is capable of describing the system dynamics over a reasonably wide frequency range....
Farm Planning by Fuzzy Multi Objective Programming Model
Directory of Open Access Journals (Sweden)
m Raei Jadidi
2010-05-01
Full Text Available In current study, Fuzzy Goal Programming (FGP model by considering a set of social and economic goals, was applied to optimal land allocation in Koshksaray district, Marand city, East Azarbaijan province, Iran. Farmer goals including total cultivable area, factor of production, production levels of various crops and total expected profit were considered fuzzily in establishment of the model. The goals were considered by 16 scenarios in the form of single objective, compound and priority structures. Results showed that, cost minimization in single objective and compound scenario is the best as compared with current conditions. In priority structure, scenario 10 with priorities of profit maximization, cost minimization, satisfying of production goals considering cost minimization and production goals, and scenario 13 with priorities of profit maximization, satisfying factor of production goals, cost minimization and fulfilling production goals, had minimum Euclidean Distance and satisfied the fuzzy objectives. Moreover, dry barley, irrigated and dry wheat and irrigated barely had maximum and minimum cultivated area, respectively. According to the findings, by reallocation of resources, farmers can achieve their better goals and objectives.
Directory of Open Access Journals (Sweden)
Jahedul Islam Chowdhury
2018-04-01
Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.
FUZZY CLUSTERING BASED BAYESIAN FRAMEWORK TO PREDICT MENTAL HEALTH PROBLEMS AMONG CHILDREN
Directory of Open Access Journals (Sweden)
M R Sumathi
2017-04-01
Full Text Available According to World Health Organization, 10-20% of children and adolescents all over the world are experiencing mental disorders. Correct diagnosis of mental disorders at an early stage improves the quality of life of children and avoids complicated problems. Various expert systems using artificial intelligence techniques have been developed for diagnosing mental disorders like Schizophrenia, Depression, Dementia, etc. This study focuses on predicting basic mental health problems of children, like Attention problem, Anxiety problem, Developmental delay, Attention Deficit Hyperactivity Disorder (ADHD, Pervasive Developmental Disorder(PDD, etc. using the machine learning techniques, Bayesian Networks and Fuzzy clustering. The focus of the article is on learning the Bayesian network structure using a novel Fuzzy Clustering Based Bayesian network structure learning framework. The performance of the proposed framework was compared with the other existing algorithms and the experimental results have shown that the proposed framework performs better than the earlier algorithms.
Model-based fuzzy control solutions for a laboratory Antilock Braking System
DEFF Research Database (Denmark)
Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan
2010-01-01
This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems...
A TSK neuro-fuzzy approach for modeling highly dynamic systems
Acampora, G.
2011-01-01
This paper introduces a new type of TSK-based neuro-fuzzy approach and its application to modeling highly dynamic systems. In details, our proposal performs an adaptive supervised learning on a collection of time series in order to create a so-called Timed Automata Based Fuzzy Controller, i.e. an
A fuzzy model for exploiting customer requirements
Directory of Open Access Journals (Sweden)
Zahra Javadirad
2016-09-01
Full Text Available Nowadays, Quality function deployment (QFD is one of the total quality management tools, where customers’ views and requirements are perceived and using various techniques improves the production requirements and operations. The QFD department, after identification and analysis of the competitors, takes customers’ feedbacks to meet the customers’ demands for the products compared with the competitors. In this study, a comprehensive model for assessing the importance of the customer requirements in the products or services for an organization is proposed. The proposed study uses linguistic variables, as a more comprehensive approach, to increase the precision of the expression evaluations. The importance of these requirements specifies the strengths and weaknesses of the organization in meeting the requirements relative to competitors. The results of these experiments show that the proposed method performs better than the other methods.
Directory of Open Access Journals (Sweden)
Mohammad Najafzadeh
2015-03-01
Full Text Available In the present study, neuro-fuzzy based-group method of data handling (NF-GMDH as an adaptive learning network was utilized to predict the maximum scour depth at the downstream of grade-control structures. The NF-GMDH network was developed using particle swarm optimization (PSO. Effective parameters on the scour depth include sediment size, geometry of weir, and flow characteristics in the upstream and downstream of structure. Training and testing of performances were carried out using non-dimensional variables. Datasets were divided into three series of dataset (DS. The testing results of performances were compared with the gene-expression programming (GEP, evolutionary polynomial regression (EPR model, and conventional techniques. The NF-GMDH-PSO network produced lower error of the scour depth prediction than those obtained using the other models. Also, the effective input parameter on the maximum scour depth was determined through a sensitivity analysis.
A manufacturing quality assessment model based-on two stages interval type-2 fuzzy logic
Purnomo, Muhammad Ridwan Andi; Helmi Shintya Dewi, Intan
2016-01-01
This paper presents the development of an assessment models for manufacturing quality using Interval Type-2 Fuzzy Logic (IT2-FL). The proposed model is developed based on one of building block in sustainable supply chain management (SSCM), which is benefit of SCM, and focuses more on quality. The proposed model can be used to predict the quality level of production chain in a company. The quality of production will affect to the quality of product. Practically, quality of production is unique for every type of production system. Hence, experts opinion will play major role in developing the assessment model. The model will become more complicated when the data contains ambiguity and uncertainty. In this study, IT2-FL is used to model the ambiguity and uncertainty. A case study taken from a company in Yogyakarta shows that the proposed manufacturing quality assessment model can work well in determining the quality level of production.
Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks
Directory of Open Access Journals (Sweden)
Chien-Ho Ko
2013-01-01
Full Text Available Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs, Fuzzy Logic (FL, and Neural Networks (NNs. FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.
Ko, Chien-Ho
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Genetic fuzzy system modeling and simulation of vascular behaviour
DEFF Research Database (Denmark)
Tang, Jiaowei; Boonen, Harrie C.M.
Background: The purpose of our project is to identify the rule sets and their interaction within the framework of cardiovascular function. By an iterative process of computational simulation and experimental work, we strive to mimic the physiological basis for cardiovascular adaptive changes in c...... the pressure change of different blood vessels. Conclusion: Genetic fuzzy system is one of potential modeling methods in modeling and simulation of vascular behavior.......Background: The purpose of our project is to identify the rule sets and their interaction within the framework of cardiovascular function. By an iterative process of computational simulation and experimental work, we strive to mimic the physiological basis for cardiovascular adaptive changes...... in cardiovascular disease and ultimately improve pharmacotherapy. For this purpose, novel computational approaches incorporating adaptive properties, auto-regulatory control and rule sets will be assessed, properties that are commonly lacking in deterministic models based on differential equations. We hypothesize...
Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models
Lin, Chien-Chuan; Wang, Ming-Shi
2012-01-01
A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650
A Fuzzy Logic Framework for Integrating Multiple Learned Models
Energy Technology Data Exchange (ETDEWEB)
Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)
1999-03-01
The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.
A framework for fuzzy model of thermoradiotherapy efficiency
International Nuclear Information System (INIS)
Kosterev, V.V.; Averkin, A.N.
2005-01-01
Full text: The use of hyperthermia as an adjuvant to radiation in the treatment of local and regional disease currently offers the most significant advantages. For processing of information of thermo radiotherapy efficiency, it is expedient to use the fuzzy logic based decision-support system - fuzzy system (FS). FSs are widely used in various application areas of control and decision making. Their popularity is due to the following reasons. Firstly, FS with triangular membership functions is universal approximator. Secondly, the designing of FS does not need the exact model of the process, but needs only qualitative linguistic dependences between the parameters. Thirdly, there are many program and hardware realizations of FS with very high speed of calculations. Fourthly, accuracy of the decisions received based on FS, usually is not worse and sometimes is better than accuracy of the decisions received by traditional methods. Moreover, dependence between input and output variables can be easily expressed in linguistic scales. The goal of this research is to choose the data fusion RULE's operators suitable to experimental results and taking into consideration uncertainty factor. Methods of aggregation and data fusion might be used which provide a methodology to extract comprehensible rules from data. Several data fusion algorithms have been developed and applied, individually and in combination, providing users with various levels of informational detail. In reviewing these emerging technology three basic categories (levels) of data fusion has been developed. These fusion levels are differentiated according to the amount of information they provide. Refs. 2 (author)
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; P. Rifai, Achmad; Aoyama, Hideki
2016-01-01
The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts’ uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs. PMID:27070543
Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-02-20
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.
Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.
2014-03-01
This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.
Novel Fuzzy-Modeling-Based Adaptive Synchronization of Nonlinear Dynamic Systems
Directory of Open Access Journals (Sweden)
Shih-Yu Li
2017-01-01
Full Text Available In this paper, a novel fuzzy-model-based adaptive synchronization scheme and its fuzzy update laws of parameters are proposed to address the adaptive synchronization problem. The proposed fuzzy controller does not share the same premise of fuzzy system, and the numbers of fuzzy controllers is reduced effectively through the novel modeling strategy. In addition, based on the adaptive synchronization scheme, the error dynamic system can be guaranteed to be asymptotically stable and the true values of unknown parameters can be obtained. Two identical complicated dynamic systems, Mathieu-Van der pol system (M-V system with uncertainties, are illustrated for numerical simulation example to show the effectiveness and feasibility of the proposed novel adaptive control strategy.
Directory of Open Access Journals (Sweden)
Samuel Raja Ayyanan
2014-01-01
Full Text Available The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start. The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.
Chen, Xin; Liu, Li; Zhou, Sida; Yue, Zhenjiang
2016-09-01
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.
Multitask TSK fuzzy system modeling by mining intertask common hidden structure.
Jiang, Yizhang; Chung, Fu-Lai; Ishibuchi, Hisao; Deng, Zhaohong; Wang, Shitong
2015-03-01
The classical fuzzy system modeling methods implicitly assume data generated from a single task, which is essentially not in accordance with many practical scenarios where data can be acquired from the perspective of multiple tasks. Although one can build an individual fuzzy system model for each task, the result indeed tells us that the individual modeling approach will get poor generalization ability due to ignoring the intertask hidden correlation. In order to circumvent this shortcoming, we consider a general framework for preserving the independent information among different tasks and mining hidden correlation information among all tasks in multitask fuzzy modeling. In this framework, a low-dimensional subspace (structure) is assumed to be shared among all tasks and hence be the hidden correlation information among all tasks. Under this framework, a multitask Takagi-Sugeno-Kang (TSK) fuzzy system model called MTCS-TSK-FS (TSK-FS for multiple tasks with common hidden structure), based on the classical L2-norm TSK fuzzy system, is proposed in this paper. The proposed model can not only take advantage of independent sample information from the original space for each task, but also effectively use the intertask common hidden structure among multiple tasks to enhance the generalization performance of the built fuzzy systems. Experiments on synthetic and real-world datasets demonstrate the applicability and distinctive performance of the proposed multitask fuzzy system model in multitask regression learning scenarios.
Directory of Open Access Journals (Sweden)
Hue-Yu Wang
Full Text Available BACKGROUND: An adaptive-network-based fuzzy inference system (ANFIS was compared with an artificial neural network (ANN in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C, pH level (5.5 to 7.5, sodium chloride level (0.25% to 6.25% and sodium nitrite level (0 to 200 ppm on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. METHODS: THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE, root mean square error (RMSE, standard error of prediction percentage (SEP, bias factor (Bf, accuracy factor (Af, and absolute fraction of variance (R (2. Graphical plots were also used for model comparison. CONCLUSIONS: The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.
PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Altab Hossain
2009-01-01
Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.
PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Altab Md. Hossain
2009-12-01
Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.
Real time prediction and correction of ADCS problems in LEO satellites using fuzzy logic
Directory of Open Access Journals (Sweden)
Yassin Mounir Yassin
2017-06-01
Full Text Available This approach is concerned with adapting the operations of attitude determination and control subsystem (ADCS of low earth orbit LEO satellites through analyzing the telemetry readings received by mission control center, and then responding to ADCS off-nominal situations. This can be achieved by sending corrective operational Tele-commands within real time. Our approach is related to the fuzzy membership of off-nominal telemetry readings of corrective actions through a set of fuzzy rules based on understanding the ADCS modes resulted from the satellite telemetry readings. Response in real time gives us a chance to avoid risky situations. The approach is tested on the EgyptSat-1 engineering model, which is our method to simulate the results.
Energy Technology Data Exchange (ETDEWEB)
Nowroozi, Saeed; Hashemipour, Hasan; Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman (Iran); ERC, Shahid Bahonar University of Kerman (Iran); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University of Kerman (Iran); ERC, Shahid Bahonar University of Kerman (Iran)
2009-03-15
Dew point pressure is one of the most critical quantities for characterizing a gas condensate reservoir. So, accurate determination of this property has been the main challenge in reservoir development and management. The experimental determination of dew point pressure in PVT cell is often difficult especially in case of lean retrograde gas condensate. Empirical correlations and some equations of state can be used to calculate reservoir fluid properties. Empirical correlations do not have ability to reliable duplicate the temperature behavior of constant composition fluids. Equations of state have convergence problem and need to be tuned against some experimental data. Complexity, non-linearity and vagueness are some reservoir parameter characteristic which can be propagated simply by intelligent system. With the advantage of fuzzy sets in knowledge representation and the high capacity of neural nets (NNs) in learning knowledge expressed in data, in this paper a neural fuzzy system(NFS) is proposed to predict dew point pressure of gas condensate reservoir. The model was developed using 110 measurements of dew point pressure. The performance of the model is compared against performance of some of the most accurate and general correlations for dew point pressure calculation. From the results of this study, it can be pointed out that this novel method is more accurate and reliable with the mean square error of 0.058%, 0.074% and 0.044% for training, validation and test processes, respectively. (author)
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This
How Fuzzy-Trace Theory Predicts True and False Memories for Words, Sentences, and Narratives
Reyna, Valerie F.; Corbin, Jonathan C.; Weldon, Rebecca B.; Brainerd, Charles J.
2016-01-01
Fuzzy-trace theory posits independent verbatim and gist memory processes, a distinction that has implications for such applied topics as eyewitness testimony. This distinction between precise, literal verbatim memory and meaning-based, intuitive gist accounts for memory paradoxes including dissociations between true and false memory, false memories outlasting true memories, and developmental increases in false memory. We provide an overview of fuzzy-trace theory, and, using mathematical modeling, also present results demonstrating verbatim and gist memory in true and false recognition of narrative sentences and inferences. Results supported fuzzy-trace theory's dual-process view of memory: verbatim memory was relied on to reject meaning-consistent, but unpresented, sentences (via recollection rejection). However, verbatim memory was often not retrieved, and gist memory supported acceptance of these sentences (via similarity judgment and phantom recollection). Thus, mathematical models of words can be extended to explain memory for complex stimuli, such as narratives, the kind of memory interrogated in law. PMID:27042402
Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering
Directory of Open Access Journals (Sweden)
Xianglin ZHU
2014-06-01
Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.
Bruin, de S.; Stein, A.
1998-01-01
This study explores the use of fuzzy c-means clustering of attribute data derived from a digital elevation model to represent transition zones in the soil-landscape. The conventional geographic model used for soil-landscape description is not able to properly deal with these. Fuzzy c-means
Directory of Open Access Journals (Sweden)
Hongjun Guan
Full Text Available In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBPNeural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS. On this basis, the FTTS blur into fuzzy time series (FFTS based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.
Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.
A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system
Energy Technology Data Exchange (ETDEWEB)
Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)
2010-12-15
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)
Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach
International Nuclear Information System (INIS)
Kisi, Ozgur
2014-01-01
The study investigates the ability of FG (fuzzy genetic) approach in modeling solar radiation of seven cities from Mediterranean region of Anatolia, Turkey. Latitude, longitude, altitude and month of the year data from the Adana, K. Maras, Mersin, Antalya, Isparta, Burdur and Antakya cities are used as inputs to the FG model to estimate one month ahead solar radiation. FG model is compared with ANNs (artificial neural networks) and ANFIS (adaptive neruro fuzzzy inference system) models with respect to RMSE (root mean square errors), MAE (mean absolute errors) and determination coefficient (R 2 ) statistics. Comparison results indicate that the FG model performs better than the ANN and ANFIS models. It is found that the FG model can be successfully used for estimating solar radiation by using latitude, longitude, altitude and month of the year information. FG model with RMSE = 6.29 MJ/m 2 , MAE = 4.69 MJ/m 2 and R 2 = 0.905 in the test stage was found to be superior to the optimal ANN model with RMSE = 7.17 MJ/m 2 , MAE = 5.29 MJ/m 2 and R 2 = 0.876 and ANFIS model with RMSE = 6.75 MJ/m 2 , MAE = 5.10 MJ/m 2 and R 2 = 0.892 in estimating solar radiation. - Highlights: • SR (Solar radiation) of seven cities from Mediterranean region of Turkey is predicted. • FG (Fuzzy genetic) models are developed for accurately estimation of SR. • The ability of the FG models used in the study is found to be satisfactory. • FG models are compared with commonly used ANNs (artificial neural networks). • FG models are found to perform better than the ANNs models
ENHANCED PREDICTION OF STUDENT DROPOUTS USING FUZZY INFERENCE SYSTEM AND LOGISTIC REGRESSION
Directory of Open Access Journals (Sweden)
A. Saranya
2016-01-01
Full Text Available Predicting college and school dropouts is a major problem in educational system and has complicated challenge due to data imbalance and multi dimensionality, which can affect the low performance of students. In this paper, we have collected different database from various colleges, among these 500 best real attributes are identified in order to identify the factor that affecting dropout students using neural based classification algorithm and different mining technique are implemented for data processing. We also propose a Dropout Prediction Algorithm (DPA using fuzzy logic and Logistic Regression based inference system because the weighted average will improve the performance of whole system. We are experimented our proposed work with all other classification systems and documented as the best outcomes. The aggregated data is given to the decision trees for better dropout prediction. The accuracy of overall system 98.6% it shows the proposed work depicts efficient prediction.
Fuzzy linear model for production optimization of mining systems with multiple entities
Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar
2011-12-01
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.
A Stone Resource Assignment Model under the Fuzzy Environment
Directory of Open Access Journals (Sweden)
Liming Yao
2012-01-01
to tackle a stone resource assignment problem with the aim of decreasing dust and waste water emissions. On the upper level, the local government wants to assign a reasonable exploitation amount to each stone plant so as to minimize total emissions and maximize employment and economic profit. On the lower level, stone plants must reasonably assign stone resources to produce different stone products under the exploitation constraint. To deal with inherent uncertainties, the object functions and constraints are defuzzified using a possibility measure. A fuzzy simulation-based improved simulated annealing algorithm (FS-ISA is designed to search for the Pareto optimal solutions. Finally, a case study is presented to demonstrate the practicality and efficiency of the model. Results and a comparison analysis are presented to highlight the performance of the optimization method, which proves to be very efficient compared with other algorithms.
Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique
2018-02-01
The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
On enhancing on-line collaboration using fuzzy logic modeling
Directory of Open Access Journals (Sweden)
Leontios J. Hadjileontiadis
2004-04-01
Full Text Available Web-based collaboration calls for professional skills and competences to the benefit of the quality of the collaboration and its output. Within this framework, educational virtual environments may provide a means for training upon these skills and in particular the collaborative ones. On the basis of the existing technological means such training may be enhanced even more. Designing considerations towards this direction include the close follow-up of the collaborative activity and provision of support grounded upon a pedagogical background. To this vein, a fuzzy logic-based expert system, namely Collaboration/Reflection-Fuzzy Inference System (C/R-FIS, is presented in this paper. By means of interconnected FISs, the C/R-FIS expert system automatically evaluates the collaborative activity of two peers, during their asynchronous, written, web-based collaboration. This information is used for the provision of adaptive support to peers during their collaboration, towards equilibrium of their collaborative activity. In particular, this enhanced formative feedback aims at diminishing the possible dissonance between the individual collaborative skills by challenging self-adjustment procedures. The proposed model extents the evaluation system of a web-based collaborative tool namely Lin2k, which has served as a test-bed for the C/R-FIS experimental use. Results from its experimental use have proved the potentiality of the proposed model to significantly contribute to the enhancement of the collaborative activity and its transferability to other collaborative learning contexts, such as medicine, environmental engineering, law, and music education.
Business Planning in the Light of Neuro-fuzzy and Predictive Forecasting
Chakrabarti, Prasun; Basu, Jayanta Kumar; Kim, Tai-Hoon
In this paper we have pointed out gain sensing on forecast based techniques.We have cited an idea of neural based gain forecasting. Testing of sequence of gain pattern is also verifies using statsistical analysis of fuzzy value assignment. The paper also suggests realization of stable gain condition using K-Means clustering of data mining. A new concept of 3D based gain sensing has been pointed out. The paper also reveals what type of trend analysis can be observed for probabilistic gain prediction.
MODEL PERANCANGAN DISTRIBUSI AIR DENGAN PENDEKATAN JARINGAN FUZZY
Directory of Open Access Journals (Sweden)
Mulyono Mulyono
2014-02-01
Full Text Available Pada wilayah tertentu belum ada keseimbangan antara permintaan penggunaan air dan nilai aliran maksimum pada jaringan distribusi air Perusahaan Daerah Air Minum (PDAM. Nilai aliran maksimum pada jaringan pipa distribusi air dalam suatu wilayah minimal harus sama dengan ketersediaan suplai air dari sumber mata air dalam wilayah tersebut, agar kebutuhan air pada wilayah yang dilayani dapat tercukupi.Dengan demikian perlu dirancang sebuah jaringan yang dapat mengatasi masalah tersebut. Dalam penelitian ini digunakan pendekatan jaringan fuzzy, yaitu sebuah jaringan dengan parameter berupa bilangan fuzzy. Dalam hal ini digunakan jaringan fuzzy, karena tidak ada data yang pasti tentang kapasitas pipa dalam sebuah jaringan. Dalam penelitian ini telah dihasilkan program untuk memodelkan jaringan fuzzy dan menentukan nilai aliran maksimum pada jaringan fuzzy tersebut. Selanjutnya nilai aliran maksimum digunakan untuk menganalisis pemenuhan kebutuhan air pelanggan dalam suatu wilayah.
Fuzzy model-based adaptive synchronization of time-delayed chaotic systems
International Nuclear Information System (INIS)
Vasegh, Nastaran; Majd, Vahid Johari
2009-01-01
In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.
Phase Structure Of Fuzzy Field Theories And Multi trace Matrix Models
International Nuclear Information System (INIS)
Tekel, J.
2015-01-01
We review the interplay of fuzzy field theories and matrix models, with an emphasis on the phase structure of fuzzy scalar field theories. We give a self-contained introduction to these topics and give the details concerning the saddle point approach for the usual single trace and multi trace matrix models. We then review the attempts to explain the phase structure of the fuzzy field theory using a corresponding random matrix ensemble, showing the strength and weaknesses of this approach. We conclude with a list of challenges one needs to overcome and the most interesting open problems one can try to solve. (author)
Directory of Open Access Journals (Sweden)
Hossein Sadegh Lafmejani
2015-09-01
Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.
Directory of Open Access Journals (Sweden)
A.A. Fahmy
2013-12-01
Full Text Available This paper presents a new neuro-fuzzy controller for robot manipulators. First, an inductive learning technique is applied to generate the required inverse modeling rules from input/output data recorded in the off-line structure learning phase. Second, a fully differentiable fuzzy neural network is developed to construct the inverse dynamics part of the controller for the online parameter learning phase. Finally, a fuzzy-PID-like incremental controller was employed as Feedback servo controller. The proposed control system was tested using dynamic model of a six-axis industrial robot. The control system showed good results compared to the conventional PID individual joint controller.
A concurrent optimization model for supplier selection with fuzzy quality loss
International Nuclear Information System (INIS)
Rosyidi, C.; Murtisari, R.; Jauhari, W.
2017-01-01
The purpose of this research is to develop a concurrent supplier selection model to minimize the purchasing cost and fuzzy quality loss considering process capability and assembled product specification. Design/methodology/approach: This research integrates fuzzy quality loss in the model to concurrently solve the decision making in detailed design stage and manufacturing stage. Findings: The resulted model can be used to concurrently select the optimal supplier and determine the tolerance of the components. The model balances the purchasing cost and fuzzy quality loss. Originality/value: An assembled product consists of many components which must be purchased from the suppliers. Fuzzy quality loss is integrated in the supplier selection model to allow the vagueness in final assembly by grouping the assembly into several grades according to the resulted assembly tolerance.
A concurrent optimization model for supplier selection with fuzzy quality loss
Energy Technology Data Exchange (ETDEWEB)
Rosyidi, C.; Murtisari, R.; Jauhari, W.
2017-07-01
The purpose of this research is to develop a concurrent supplier selection model to minimize the purchasing cost and fuzzy quality loss considering process capability and assembled product specification. Design/methodology/approach: This research integrates fuzzy quality loss in the model to concurrently solve the decision making in detailed design stage and manufacturing stage. Findings: The resulted model can be used to concurrently select the optimal supplier and determine the tolerance of the components. The model balances the purchasing cost and fuzzy quality loss. Originality/value: An assembled product consists of many components which must be purchased from the suppliers. Fuzzy quality loss is integrated in the supplier selection model to allow the vagueness in final assembly by grouping the assembly into several grades according to the resulted assembly tolerance.
Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique
Directory of Open Access Journals (Sweden)
Jahedul Islam Chowdhury
2015-12-01
Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.
Directory of Open Access Journals (Sweden)
Chongfeng Ren
2018-04-01
Full Text Available Water competing conflict among water competing sectors from different levels should be taken under consideration during the optimization allocation of water resources. Furthermore, uncertainties are inevitable in the optimization allocation of water resources. In order to deal with the above problems, this study developed a fuzzy max–min decision bi-level fuzzy programming model. The developed model was then applied to a case study in Wuwei, Gansu Province, China. In this study, the net benefit and yield were regarded as the upper-level and lower-level objectives, respectively. Optimal water resource plans were obtained under different possibility levels of fuzzy parameters, which could deal with water competing conflict between the upper level and the lower level effectively. The obtained results are expected to make great contribution in helping local decision-makers to make decisions on dealing with the water competing conflict between the upper and lower level and the optimal use of water resources under uncertainty.
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Directory of Open Access Journals (Sweden)
C. K. Kwong
2013-01-01
Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Directory of Open Access Journals (Sweden)
Azadeh Hashemian
2008-06-01
Full Text Available Enhanced surface heat exchangers are commonly used all worldwide. If applicable, due to their complicated geometry, simulating corrugated plate heat exchangers is a time-consuming process. In the present study, first we simulate the heat transfer in a sharp V-shape corrugation cell with constant temperature walls; then, we use a Locally Linear Neuro-Fuzzy method based on a radial basis function (RBFs to model the temperature field in the whole channel. New approach is developed to deal with fast computational and low memory resources that can be used with the largest available data sets. The purpose of the research is to reveal the advantages of proposed Neuro-Fuzzy model as a powerful modeling system designed for predicting and to make a fair comparison between it and the successful FLUENT simulated approaches in its best structures.
Fuzzy Multicriteria Model for Selection of Vibration Technology
Directory of Open Access Journals (Sweden)
María Carmen Carnero
2016-01-01
Full Text Available The benefits of applying the vibration analysis program are well known and have been so for decades. A large number of contributions have been produced discussing new diagnostic, signal treatment, technical parameter analysis, and prognosis techniques. However, to obtain the expected benefits from a vibration analysis program, it is necessary to choose the instrumentation which guarantees the best results. Despite its importance, in the literature, there are no models to assist in taking this decision. This research describes an objective model using Fuzzy Analytic Hierarchy Process (FAHP to make a choice of the most suitable technology among portable vibration analysers. The aim is to create an easy-to-use model for processing, manufacturing, services, and research organizations, to guarantee adequate decision-making in the choice of vibration analysis technology. The model described recognises that judgements are often based on ambiguous, imprecise, or inadequate information that cannot provide precise values. The model incorporates judgements from several decision-makers who are experts in the field of vibration analysis, maintenance, and electronic devices. The model has been applied to a Health Care Organization.
A hybrid fuzzy multi-criteria decision making model for green ...
African Journals Online (AJOL)
A hybrid fuzzy multi-criteria decision making model for green supplier selection. ... Hence,supplier selection is significant factor in supply chain success. ... reduce purchasing cost, lead time and improve quality and environmental issue.
Biological modelling of fuzzy target volumes in 3D radiotherapy
International Nuclear Information System (INIS)
Levegruen, S.; Kampen, M. van; Waschek, T.; Engenhart, R.; Schlegel, W.
1995-01-01
Purpose/Objective: The outcome of each radiotherapy depends critically on the optimal choice of the target volume. The goal of the radiotherapist is to include all tumor spread at the same time as saving as much healthy tissue as possible. Even when the information of all imaging modalities is combined, the diagnostic techniques are not sensitive and specific enough to visualize all microscopic tumor cell spread. Due to this lack of information there is room for different interpretations concerning the extend of the target volume, leading to a fuzzy target volume. The aim of this work is to develop a model to score different target volume boundaries within the region of diagnostic uncertainty in terms of tumor control probability (TCP) and normal tissue complication probabilities (NTCP). Materials and Methods: In order to assess the region of diagnostic uncertainty, the radiotherapist defines interactively a minimal planning target volume that absolutely must be irradiated according to the diagnostic information available and a maximal planning target volume outside which no tumor cell spread is expected. For the NTCP calculation we use the Lyman 4 parameter model to estimate the response of an organ at risk to a uniform partial volume irradiation. The TCP calculation is based on the Poisson model of cell killing. The TCP estimation depends not only on volume, dose, clonogenic cell density and the α parameter of the linear quadratic model but also on the probability to find clonogenic cells in the considered volume. Inside the minimal PTV this probability is 1, outside the maximal PTV it is 0. Therefore all voxels inside the minimal PTV are assigned the value of 1 with respect to the target volume, all voxels outside the maximal PTV the value of 0. For voxels in the region of uncertainty in between, a 3D linear interpolation is performed. Here we assume the probability to follow the interpolated values. Starting with the minimal PTV, the expected gain in TCP and
Model for Adjustment of Aggregate Forecasts using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Taracena–Sanz L. F.
2010-07-01
Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.
Analysis and synthesis for interval type-2 fuzzy-model-based systems
Li, Hongyi; Lam, Hak-Keung; Gao, Yabin
2016-01-01
This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.
Software for occupational health and safety risk analysis based on a fuzzy model.
Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan
2012-01-01
Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.
Monalisha Pattnaik
2014-01-01
Background: This model presents the effect of deteriorating items in fuzzy optimal instantaneous replenishment for finite planning horizon. Accounting for holding cost per unit per unit time and ordering cost per order have traditionally been the case of modeling inventory systems in fuzzy environment. These imprecise parameters defined on a bounded interval on the axis of real numbers and the physical characteristics of stocked items dictate the nature of inventory policies implemented ...
Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine
Directory of Open Access Journals (Sweden)
Klemen Nagode
2014-02-01
Full Text Available This paper presents dynamic modelling of a Francis turbine with a surge tank and the control of a hydro power plant (HPP. Non-linear and linear models include technical parameters and show high similarity to measurement data. Turbine power control with an internal model control (IMC is proposed, based on a turbine fuzzy model. Considering appropriate control responses in the entire area of turbine power, the model parameters of the process are determined from a fuzzy model, which are further included in the internal model controller. The results are compared to a proportional-integral (PI controller tuned with an integral absolute error (IAE objective function, and show an improved response of internal model control.
Chen, Chaochao; Vachtsevanos, George; Orchard, Marcos E.
2012-04-01
Machine prognosis can be considered as the generation of long-term predictions that describe the evolution in time of a fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem so that timely maintenance can be performed to avoid catastrophic failures. This paper proposes an integrated RUL prediction method using adaptive neuro-fuzzy inference systems (ANFIS) and high-order particle filtering, which forecasts the time evolution of the fault indicator and estimates the probability density function (pdf) of RUL. The ANFIS is trained and integrated in a high-order particle filter as a model describing the fault progression. The high-order particle filter is used to estimate the current state and carry out p-step-ahead predictions via a set of particles. These predictions are used to estimate the RUL pdf. The performance of the proposed method is evaluated via the real-world data from a seeded fault test for a UH-60 helicopter planetary gear plate. The results demonstrate that it outperforms both the conventional ANFIS predictor and the particle-filter-based predictor where the fault growth model is a first-order model that is trained via the ANFIS.
Reliability modelling of repairable systems using Petri nets and fuzzy Lambda-Tau methodology
International Nuclear Information System (INIS)
Knezevic, J.; Odoom, E.R.
2001-01-01
A methodology is developed which uses Petri nets instead of the fault tree methodology and solves for reliability indices utilising fuzzy Lambda-Tau method. Fuzzy set theory is used for representing the failure rate and repair time instead of the classical (crisp) set theory because fuzzy numbers allow expert opinions, linguistic variables, operating conditions, uncertainty and imprecision in reliability information to be incorporated into the system model. Petri nets are used because unlike the fault tree methodology, the use of Petri nets allows efficient simultaneous generation of minimal cut and path sets
Fuzzy modeling and control of the calcination process in a kiln
International Nuclear Information System (INIS)
Ramirez, M.; Haber, R.
1999-01-01
Calcination kilns are strongly nonlinear, multivariable processes, that only can be modeled with great uncertainty. In order to get a quality product and ensure the process efficiency, the controller must keep a prescribed temperature profile optimizing the fuel consumption. In this paper, a design methodology of a multivariable fuzzy controller for a nickel calcination kiln is presented. The controller structure is a classical one, and uses the Mamdani fuzzy inference system. In simulation results the fuzzy controller exhibits a great robustness in presence of several types of disturbances, and a better performance than the PID in same conditions is observed. (author)
A fuzzy Bi-linear management model in reverse logistic chains
Directory of Open Access Journals (Sweden)
Tadić Danijela
2016-01-01
Full Text Available The management of the electrical and electronic waste (WEEE problem in the uncertain environment has a critical effect on the economy and environmental protection of each region. The considered problem can be stated as a fuzzy non-convex optimization problem with linear objective function and a set of linear and non-linear constraints. The original problem is reformulated by using linear relaxation into a fuzzy linear programming problem. The fuzzy rating of collecting point capacities and fix costs of recycling centers are modeled by triangular fuzzy numbers. The optimal solution of the reformulation model is found by using optimality concept. The proposed model is verified through an illustrative example with real-life data. The obtained results represent an input for future research which should include a good benchmark base for tested reverse logistic chains and their continuous improvement. [Projekat Ministarstva nauke Republike Srbije, br. 035033: Sustainable development technology and equipment for the recycling of motor vehicles
Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method
Mamonova, T.; Syryamkin, V.; Vasilyeva, T.
2016-04-01
The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.
Fuzzy interaction modelling for participants in innovation development: approaches and examples
Directory of Open Access Journals (Sweden)
CHERNOV Vladimir
2018-01-01
Full Text Available The article considers the interaction problems of the participants in innovative development at the regional level. Mathematical approaches and formulations for mode lling, such as the interaction on the basis of game approaches and the theory of fuzzy sets, have been proposed. In particular, the interaction model of innovative participants in the region, considered as a fuzzy coalition game, is presented. Its theoretical justification and an example of practical calculations are given. Further, the methodology of interaction modelling is considered , taking into account the motives of the participants in innovative development when forming fuzzy coalitions. An example of the corresponding calculations is also given. Also, the interaction model of "state-regions" in the interpretation of the fuzzy hierarchical game is proposed and described. The features of its solution are described and an example of calculations is presented.
A fuzzy logic approach to modeling the underground economy in Taiwan
Yu, Tiffany Hui-Kuang; Wang, David Han-Min; Chen, Su-Jane
2006-04-01
The size of the ‘underground economy’ (UE) is valuable information in the formulation of macroeconomic and fiscal policy. This study applies fuzzy set theory and fuzzy logic to model Taiwan's UE over the period from 1960 to 2003. Two major factors affecting the size of the UE, the effective tax rate and the degree of government regulation, are used. The size of Taiwan's UE is scaled and compared with those of other models. Although our approach yields different estimates, similar patterns and leading are exhibited throughout the period. The advantage of applying fuzzy logic is twofold. First, it can avoid the complex calculations in conventional econometric models. Second, fuzzy rules with linguistic terms are easy for human to understand.
Lam, H K
2012-02-01
This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.
Ali, A F; Taha, M M Reda; Thornton, G M; Shrive, N G; Frank, C B
2005-06-01
In normal daily activities, ligaments are subjected to repeated loads, and respond to this environment with creep and fatigue. While progressive recruitment of the collagen fibers is responsible for the toe region of the ligament stress-strain curve, recruitment also represents an elegant feature to help ligaments resist creep. The use of artificial intelligence techniques in computational modeling allows a large number of parameters and their interactions to be incorporated beyond the capacity of classical mathematical models. The objective of the work described here is to demonstrate a tool for modeling creep of the rabbit medial collateral ligament that can incorporate the different parameters while quantifying the effect of collagen fiber recruitment during creep. An intelligent algorithm was developed to predict ligament creep. The modeling is performed in two steps: first, the ill-defined fiber recruitment is quantified using the fuzzy logic. Second, this fiber recruitment is incorporated along with creep stress and creep time to model creep using an adaptive neurofuzzy inference system. The model was trained and tested using an experimental database including creep tests and crimp image analysis. The model confirms that quantification of fiber recruitment is important for accurate prediction of ligament creep behavior at physiological loads.
Directory of Open Access Journals (Sweden)
Muammar Sadrawi
2018-03-01
Full Text Available Equally partitioned data are essential for prediction. However, in some important cases, the data distribution is severely unbalanced. In this study, several algorithms are utilized to maximize the learning accuracy when dealing with a highly unbalanced dataset. A linguistic algorithm is applied to evaluate the input and output relationship, namely Fuzzy c-Means (FCM, which is applied as a clustering algorithm for the majority class to balance the minority class data from about 3 million cases. Each cluster is used to train several artificial neural network (ANN models. Different techniques are applied to generate an ensemble genetic fuzzy neuro model (EGFNM in order to select the models. The first ensemble technique, the intra-cluster EGFNM, works by evaluating the best combination from all the models generated by each cluster. Another ensemble technique is the inter-cluster model EGFNM, which is based on selecting the best model from each cluster. The accuracy of these techniques is evaluated using the receiver operating characteristic (ROC via its area under the curve (AUC. Results show that the AUC of the unbalanced data is 0.67974. The random cluster and best ANN single model have AUCs of 0.7177 and 0.72806, respectively. For the ensemble evaluations, the intra-cluster and the inter-cluster EGFNMs produce 0.7293 and 0.73038, respectively. In conclusion, this study achieved improved results by performing the EGFNM method compared with the unbalanced training. This study concludes that selecting several best models will produce a better result compared with all models combined.
Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability
Directory of Open Access Journals (Sweden)
Ruichao LI
2018-06-01
Full Text Available This paper is concerned with identifying a Takagi-Sugeno (TS fuzzy model for turbofan aero-engines working under the maximum power status (non-afterburning. To establish the fuzzy system, theoretical contributions are made as follows. First, by fixing antecedent parameters, the estimation of consequent parameters in state-space representations is formulated as minimizing a quadratic cost function. Second, to avoid obtaining unstable identified models, a new theorem is proposed to transform the prior-knowledge of stability into constraints. Then based on the aforementioned work, the identification problem is synthesized as a constrained quadratic optimization. By solving the constrained optimization, a TS fuzzy system is identified with guaranteed stability. Finally, the proposed method is applied to the turbofan aero-engine using simulation data generated from an aerothermodynamics component-level model. Results show the identified fuzzy model achieves a high fitting accuracy while stabilities of the overall fuzzy system and all its local models are also guaranteed. Keywords: Constrained optimization, Fuzzy system, Stability, System identification, Turbofan engine
Mathur, Neha; Glesk, Ivan; Buis, Arjan
2016-10-01
Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers
Li, Deng-Feng
2016-01-01
This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .
International Nuclear Information System (INIS)
Wang Yanwu; Guan Zhihong; Wang, Hua O.
2005-01-01
Recently, chaos synchronization based on T-S fuzzy model has attracted much attention because of the applicability in the case of uncertainty. In the fuzzy control scheme, linear and adaptive control methods have been introduced to solve the control problem. In this Letter, an impulsive synchronization scheme for T-S fuzzy model is developed. The proposed impulsive control scheme seems to have a simple control structure and may need less control energy than the normal continuous ones for the synchronization of T-S fuzzy system. Sufficient conditions for the impulsive synchronization are derived. The method is illustrated by applications to continuous chaotic systems and the simulation results demonstrate the effectiveness of the proposed control method
Ruan, Jinghua; Chen, Yong; Xiao, Xiao; Yong, Gan; Huang, Ranran; Miao, Zuohua
2018-01-01
Aimed at the fuzziness and randomness during the evaluation process, this paper constructed a fuzzy comprehensive evaluation method based on cloud model. The evaluation index system was established based on the inherent risk, present level and control situation, which had been proved to be able to convey the main contradictions of ecological risk in mine on the macro level, and be advantageous for comparison among mines. The comment sets and membership functions improved by cloud model could reflect the uniformity of ambiguity and randomness effectively. In addition, the concept of fuzzy entropy was introduced to further characterize the fuzziness of assessments results and the complexities of ecological problems in target mine. A practical example in Chengchao Iron Mine evidenced that, the assessments results can reflect actual situations appropriately and provide a new theoretic guidance for comprehensive ecological risk evaluation of underground iron mine.
Fuzzy-neural approaches to the prediction of disruptions in ASDEX Upgrade
International Nuclear Information System (INIS)
Morabito, F.C.; Versaci, M.; Pautasso, G.; Tichmann, C.
2001-01-01
Disruption is a sudden loss of magnetic confinement that can cause damage to the machine walls and support structures. For this reason, it is of practical interest to be able to detect the onset of such an event early. A novel technique is presented of early prediction of plasma disruption in tokamak reactors which uses neural networks and 'fuzzy' inference. The studies carried out in the work make use of an experimental database of disruptive shots made available by the ASDEX Upgrade Team. The main result of the work is that, in the limit of the available database, it is possible to predict the onset of the disruptive event sufficiently in advance in order to put the control system into action. The proposed system is a modular scheme that exploits a decomposition of the original database carried out in a proper way. (author)
Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il
2015-08-01
Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
A reduced-form intensity-based model under fuzzy environments
Wu, Liang; Zhuang, Yaming
2015-05-01
The external shocks and internal contagion are the important sources of default events. However, the external shocks and internal contagion effect on the company is not observed, we cannot get the accurate size of the shocks. The information of investors relative to the default process exhibits a certain fuzziness. Therefore, using randomness and fuzziness to study such problems as derivative pricing or default probability has practical needs. But the idea of fuzzifying credit risk models is little exploited, especially in a reduced-form model. This paper proposes a new default intensity model with fuzziness and presents a fuzzy default probability and default loss rate, and puts them into default debt and credit derivative pricing. Finally, the simulation analysis verifies the rationality of the model. Using fuzzy numbers and random analysis one can consider more uncertain sources in the default process of default and investors' subjective judgment on the financial markets in a variety of fuzzy reliability so as to broaden the scope of possible credit spreads.
Directory of Open Access Journals (Sweden)
Monalisha Pattnaik
2014-09-01
Full Text Available Background: This model presents the effect of deteriorating items in fuzzy optimal instantaneous replenishment for finite planning horizon. Accounting for holding cost per unit per unit time and ordering cost per order have traditionally been the case of modeling inventory systems in fuzzy environment. These imprecise parameters defined on a bounded interval on the axis of real numbers and the physical characteristics of stocked items dictate the nature of inventory policies implemented to manage and control in the production system. Methods: The modified fuzzy EOQ (FEOQ model is introduced, it assumes that a percentage of the on-hand inventory is wasted due to deterioration and considered as an enhancement to EOQ model to determine the optimal replenishment quantity so that the net profit is maximized. In theoretical analysis, the necessary and sufficient conditions of the existence and uniqueness of the optimal solutions are proved and further the concavity of the fuzzy net profit function is established. Computational algorithm using the software LINGO 13.0 version is developed to find the optimal solution. Results and conclusions: The results of the numerical analysis enable decision-makers to quantify the effect of units lost due to deterioration on optimizing the fuzzy net profit for the retailer. Finally, sensitivity analyses of the optimal solution with respect the major parameters are also carried out. Furthermore fuzzy decision making is shown to be superior then crisp decision making in terms of profit maximization.
Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun
2016-12-03
Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.
Directory of Open Access Journals (Sweden)
Shu-Yin Chiang
2016-12-01
Full Text Available Ubiquitous health care (UHC is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN. The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.
Inclusive integral evaluation for mammograms using the hierarchical fuzzy integral (HFI) model
International Nuclear Information System (INIS)
Amano, Takashi; Yamashita, Kazuya; Arao, Shinichi; Kitayama, Akira; Hayashi, Akiko; Suemori, Shinji; Ohkura, Yasuhiko
2000-01-01
Physical factors (physically evaluated values) and psychological factors (fuzzy measurements) of breast x-ray images were comprehensively evaluated by applying breast x-ray images to an extended stratum-type fuzzy integrating model. In addition, x-ray images were evaluated collectively by integrating the quality (sharpness, graininess, and contrast) of x-ray images and three representative shadows (fibrosis, calcification, tumor) in the breast x-ray images. We selected the most appropriate system for radiography of the breast from three kinds of intensifying screens and film systems for evaluation by this method and investigated the relationship between the breast x-ray images and noise equivalent quantum number, which is called the overall physical evaluation method, and between the breast x-ray images and psychological evaluation by a visual system with a stratum-type fuzzy integrating model. We obtained a linear relationship between the breast x-ray image and noise-equivalent quantum number, and linearity between the breast x-ray image and psychological evaluation by the visual system. Therefore, the determination of fuzzy measurement, which is a scale for fuzzy evaluation of psychological factors of the observer, and physically evaluated values with a stratum-type fuzzy integrating model enabled us to make a comprehensive evaluation of x-ray images that included both psychological and physical aspects. (author)
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
Fuzzy Rough Ring and Its Prop erties
Institute of Scientific and Technical Information of China (English)
REN Bi-jun; FU Yan-ling
2013-01-01
This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binary operation of ring was discussed.
Directory of Open Access Journals (Sweden)
Nguyen Kim Quoc
2015-08-01
Full Text Available The bottleneck control by active queue management mechanisms at network nodes is essential. In recent years, some researchers have used fuzzy argument to improve the active queue management mechanisms to enhance the network performance. However, the projects using the fuzzy controller depend heavily on professionals and their parameters cannot be updated according to changes in the network, so the effectiveness of this mechanism is not high. Therefore, we propose a model combining the fuzzy controller with neural network (FNN to overcome the limitations above. Results of the training of the neural networks will find the optimal parameters for the adaptive fuzzy controller well to changes of the network. This improves the operational efficiency of the active queue management mechanisms at network nodes.
Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training
Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei
Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.
The stock-flow model of spatial data infrastructure development refined by fuzzy logic.
Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali
2016-01-01
The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.
A novel methodology improves reservoir characterization models using geologic fuzzy variables
Energy Technology Data Exchange (ETDEWEB)
Soto B, Rodolfo [DIGITOIL, Maracaibo (Venezuela); Soto O, David A. [Texas A and M University, College Station, TX (United States)
2004-07-01
One of the research projects carried out in Cusiana field to explain its rapid decline during the last years was to get better permeability models. The reservoir of this field has a complex layered system that it is not easy to model using conventional methods. The new technique included the development of porosity and permeability maps from cored wells following the same trend of the sand depositions for each facie or layer according to the sedimentary facie and the depositional system models. Then, we used fuzzy logic to reproduce those maps in three dimensions as geologic fuzzy variables. After multivariate statistical and factor analyses, we found independence and a good correlation coefficient between the geologic fuzzy variables and core permeability and porosity. This means, the geologic fuzzy variable could explain the fabric, the grain size and the pore geometry of the reservoir rock trough the field. Finally, we developed a neural network permeability model using porosity, gamma ray and the geologic fuzzy variable as input variables. This model has a cross-correlation coefficient of 0.873 and average absolute error of 33% compared with the actual model with a correlation coefficient of 0.511 and absolute error greater than 250%. We tested different methodologies, but this new one showed dramatically be a promiser way to get better permeability models. The use of the models have had a high impact in the explanation of well performance and workovers, and reservoir simulation models. (author)
Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling
Directory of Open Access Journals (Sweden)
Ray C. Chang
2013-01-01
Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.
Liu, Fang; Zhang, Wei-Guo
2014-08-01
Due to the vagueness of real-world environments and the subjective nature of human judgments, it is natural for experts to estimate their judgements by using incomplete interval fuzzy preference relations. In this paper, based on the technique for order preference by similarity to ideal solution method, we present a consensus model for group decision-making (GDM) with incomplete interval fuzzy preference relations. To do this, we first define a new consistency measure for incomplete interval fuzzy preference relations. Second, a goal programming model is proposed to estimate the missing interval preference values and it is guided by the consistency property. Third, an ideal interval fuzzy preference relation is constructed by using the induced ordered weighted averaging operator, where the associated weights of characterizing the operator are based on the defined consistency measure. Fourth, a similarity degree between complete interval fuzzy preference relations and the ideal one is defined. The similarity degree is related to the associated weights, and used to aggregate the experts' preference relations in such a way that more importance is given to ones with the higher similarity degree. Finally, a new algorithm is given to solve the GDM problem with incomplete interval fuzzy preference relations, which is further applied to partnership selection in formation of virtual enterprises.
Jhin, Changho; Hwang, Keum Taek
2015-01-01
One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.
Directory of Open Access Journals (Sweden)
Changho Jhin
Full Text Available One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS applied quantitative structure-activity relationship models (QSAR were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.
Introduction to Fuzzy Set Theory
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times
Directory of Open Access Journals (Sweden)
Songtao Zhang
2017-01-01
Full Text Available A new fuzzy robust control strategy for the nonlinear supply chain system in the presence of lead times is proposed. Based on Takagi-Sugeno fuzzy control system, the fuzzy control model of the nonlinear supply chain system with lead times is constructed. Additionally, we design a fuzzy robust H∞ control strategy taking the definition of maximal overlapped-rules group into consideration to restrain the impacts such as those caused by lead times, switching actions among submodels, and customers’ stochastic demands. This control strategy can not only guarantee that the nonlinear supply chain system is robustly asymptotically stable but also realize soft switching among subsystems of the nonlinear supply chain to make the less fluctuation of the system variables by introducing the membership function of fuzzy system. The comparisons between the proposed fuzzy robust H∞ control strategy and the robust H∞ control strategy are finally illustrated through numerical simulations on a two-stage nonlinear supply chain with lead times.
Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed
International Nuclear Information System (INIS)
Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze
2010-01-01
Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system
Clinical effect of fuzzy numbers based on center of gravity
African Journals Online (AJOL)
Jane
2011-10-05
Oct 5, 2011 ... In this study, a model called “fuzzy reasoning model” was proposed for ... variables were crisp and the value of the binary response variable ... research, to measure the severity of disease or pain in .... Thus, for a new fuzzy case, our model can predict its possibilistic ..... by Comparing Membership Functions.
Modelling and management of subjective information in a fuzzy setting
Bouchon-Meunier, Bernadette; Lesot, Marie-Jeanne; Marsala, Christophe
2013-01-01
Subjective information is very natural for human beings. It is an issue at the crossroad of cognition, semiotics, linguistics, and psycho-physiology. Its management requires dedicated methods, among which we point out the usefulness of fuzzy and possibilistic approaches and related methods, such as evidence theory. We distinguish three aspects of subjectivity: the first deals with perception and sensory information, including the elicitation of quality assessment and the establishment of a link between physical and perceived properties; the second is related to emotions, their fuzzy nature, and their identification; and the last aspect stems from natural language and takes into account information quality and reliability of information.
Boutalis, Yiannis; Kottas, Theodore; Christodoulou, Manolis A
2014-01-01
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering s...
Fat segmentation on chest CT images via fuzzy models
Tong, Yubing; Udupa, Jayaram K.; Wu, Caiyun; Pednekar, Gargi; Subramanian, Janani Rajan; Lederer, David J.; Christie, Jason; Torigian, Drew A.
2016-03-01
Quantification of fat throughout the body is vital for the study of many diseases. In the thorax, it is important for lung transplant candidates since obesity and being underweight are contraindications to lung transplantation given their associations with increased mortality. Common approaches for thoracic fat segmentation are all interactive in nature, requiring significant manual effort to draw the interfaces between fat and muscle with low efficiency and questionable repeatability. The goal of this paper is to explore a practical way for the segmentation of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) components of chest fat based on a recently developed body-wide automatic anatomy recognition (AAR) methodology. The AAR approach involves 3 main steps: building a fuzzy anatomy model of the body region involving all its major representative objects, recognizing objects in any given test image, and delineating the objects. We made several modifications to these steps to develop an effective solution to delineate SAT/VAT components of fat. Two new objects representing interfaces of SAT and VAT regions with other tissues, SatIn and VatIn are defined, rather than using directly the SAT and VAT components as objects for constructing the models. A hierarchical arrangement of these new and other reference objects is built to facilitate their recognition in the hierarchical order. Subsequently, accurate delineations of the SAT/VAT components are derived from these objects. Unenhanced CT images from 40 lung transplant candidates were utilized in experimentally evaluating this new strategy. Mean object location error achieved was about 2 voxels and delineation error in terms of false positive and false negative volume fractions were, respectively, 0.07 and 0.1 for SAT and 0.04 and 0.2 for VAT.
A fuzzy-logic-based approach to qualitative safety modelling for marine systems
International Nuclear Information System (INIS)
Sii, H.S.; Ruxton, Tom; Wang Jin
2001-01-01
Safety assessment based on conventional tools (e.g. probability risk assessment (PRA)) may not be well suited for dealing with systems having a high level of uncertainty, particularly in the feasibility and concept design stages of a maritime or offshore system. By contrast, a safety model using fuzzy logic approach employing fuzzy IF-THEN rules can model the qualitative aspects of human knowledge and reasoning processes without employing precise quantitative analyses. A fuzzy-logic-based approach may be more appropriately used to carry out risk analysis in the initial design stages. This provides a tool for working directly with the linguistic terms commonly used in carrying out safety assessment. This research focuses on the development and representation of linguistic variables to model risk levels subjectively. These variables are then quantified using fuzzy sets. In this paper, the development of a safety model using fuzzy logic approach for modelling various design variables for maritime and offshore safety based decision making in the concept design stage is presented. An example is used to illustrate the proposed approach
River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Saeed Jamali
2007-12-01
Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.
A location-routing problem model with multiple periods and fuzzy demands
Directory of Open Access Journals (Sweden)
Ali Nadizadeh
2014-08-01
Full Text Available This paper puts forward a dynamic capacitated location-routing problem with fuzzy demands (DCLRP-FD. It is given on input a set of identical vehicles (each having a capacity, a fixed cost and availability level, a set of depots with restricted capacities and opening costs, a set of customers with fuzzy demands, and a planning horizon with multiple periods. The problem consists of determining the depots to be opened only in the first period of the planning horizon, the customers and the vehicles to be assigned to each opened depot, and performing the routes that may be changed in each time period due to fuzzy demands. A fuzzy chance-constrained programming (FCCP model has been designed using credibility theory and a hybrid heuristic algorithm with four phases is presented in order to solve the problem. To obtain the best value of the fuzzy parameters of the model and show the influence of the availability level of vehicles on final solution, some computational experiments are carried out. The validity of the model is then evaluated in contrast with CLRP-FD's models in the literature. The results indicate that the model and the proposed algorithm are robust and could be used in real world problems.
Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic
Brandon, Jay M.; Morelli, Eugene A.
2012-01-01
Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.
Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred
Landslides are the most common natural hazards in Malaysia. Preparation of landslide suscep-tibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. In this study, a new attempt is tried to produce landslide susceptibility map of a part of Cameron Valley of Malaysia. This paper develops an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment for landslide susceptibility mapping. To ob-tain the neuro-fuzzy relations for producing the landslide susceptibility map, landslide locations were identified from interpretation of aerial photographs and high resolution satellite images, field surveys and historical inventory reports. Landslide conditioning factors such as slope, plan curvature, distance to drainage lines, soil texture, lithology, and distance to lineament were extracted from topographic, soil, and lineament maps. Landslide susceptible areas were analyzed by the ANFIS model and mapped using the conditioning factors. Furthermore, we applied various membership functions (MFs) and fuzzy relations to produce landslide suscep-tibility maps. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. Results show that, triangular, trapezoidal, and polynomial MFs were the best individual MFs for modelling landslide susceptibility maps (86
Directory of Open Access Journals (Sweden)
V. Rahimi
2015-12-01
Full Text Available The area of Zagros forests is continuously in danger of destruction. Therefore, the remaining forests should be carefully managed based on ecological capability evaluation. In fact, land evaluation includes prediction or assessment of land quality for a special land use with regard to production, vulnerability and management requirements. In this research, we studied the ecological capability of Behbahan city fringe for forestry land use. After the basic studies were completed and the thematic maps such as soil criteria, climate, physiography, vegetation and bedrock were prepared, the fuzzy multi-criteria decision-making methods of Fuzzy AHP Buckley and ANP were used to standardize and determine the weights of criteria. Finally, the ecological model of the region’s capability was generated to prioritize forestry land use and prepare the final map of evaluation using WLC model in seven classes. The results showed that in ANP method, 55.58% of the area is suitable for forestry land use which is more consistent with the reality, while in the Fuzzy AHP method, 95.23% of the area was found suitable. Finally, it was concluded that the ANP method shows more flexibility and ability to determine suitable areas for forestry land use in the study area.
Establishing the existence of a distance-based upper bound for a fuzzy DEA model using duality
International Nuclear Information System (INIS)
Soleimani-damaneh, M.
2009-01-01
In a recent paper [Soleimani-damaneh M. Fuzzy upper bounds and their applications. Chaos, Solitons and Fractals 2008;36:217-25.], I established the existence of a distance-based fuzzy upper bound for the objective function of a fuzzy DEA model, using the properties of a discussed signed distance, and provided an effective approach to solve that model. In this paper a new dual-based proof for the existence of the above-mentioned upper bound is provided which gives a useful insight into the theory of fuzzy DEA.
Neuro-fuzzy models for systems identification applied to the operation of nuclear power plants
International Nuclear Information System (INIS)
Alves, Antonio Carlos Pinto Dias
2000-09-01
A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)
Predictive modeling of complications.
Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P
2016-09-01
Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.
Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model
Reyna, Valerie F.; Brainerd, Charles J.
2011-01-01
From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals--that reasoning biases emerge with development--have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts…
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
Many complicated systems of practical interest consist basically of a well-defined outer shell-like master structure and a complicated internal structure with uncertain dynamic properties. Using the "fuzzy structure theory" for predicting audible frequency vibration, the internal structure......-dimensional continuous boundary. Additionally, a simple method for determining the so-called equivalent coupling factor is presented. The validity of this method is demonstrated by numerical simulations of the vibration response of a master plate structure with fuzzy attachments. It is revealed that the method performs...
Directory of Open Access Journals (Sweden)
Guo-Ming Sung
2017-06-01
Full Text Available This paper proposes a modified predictive direct torque control (PDTC application-specific integrated circuit (ASIC of a motor drive with a fuzzy controller for eliminating sampling and calculating delay times in hysteresis controllers. These delay times degrade the control quality and increase both torque and flux ripples in a motor drive. The proposed fuzzy PDTC ASIC calculates the stator’s magnetic flux and torque by detecting the three-phase current, three-phase voltage, and rotor speed, and eliminates the ripples in the torque and flux by using a fuzzy controller and predictive scheme. The Verilog hardware description language was used to implement the hardware architecture, and the ASIC was fabricated by the Taiwan Semiconductor Manufacturing Company through a 0.18-μm 1P6M CMOS process that involved a cell-based design method. The measurements revealed that the proposed fuzzy PDTC ASIC of the three-phase induction motor yielded a test coverage of 96.03%, fault coverage of 95.06%, chip area of 1.81 × 1.81 mm2, and power consumption of 296 mW, at an operating frequency of 50 MHz and a supply voltage of 1.8 V.
A Gompertz population model with Allee effect and fuzzy initial values
Amarti, Zenia; Nurkholipah, Nenden Siti; Anggriani, Nursanti; Supriatna, Asep K.
2018-03-01
Growth and population dynamics models are important tools used in preparing a good management for society to predict the future of population or species. This has been done by various known methods, one among them is by developing a mathematical model that describes population growth. Models are usually formed into differential equations or systems of differential equations, depending on the complexity of the underlying properties of the population. One example of biological complexity is Allee effect. It is a phenomenon showing a high correlation between very small population size and the mean individual fitness of the population. In this paper the population growth model used is the Gompertz equation model by considering the Allee effect on the population. We explore the properties of the solution to the model numerically using the Runge-Kutta method. Further exploration is done via fuzzy theoretical approach to accommodate uncertainty of the initial values of the model. It is known that an initial value greater than the Allee threshold will cause the solution rises towards carrying capacity asymptotically. However, an initial value smaller than the Allee threshold will cause the solution decreases towards zero asymptotically, which means the population is eventually extinct. Numerical solutions show that modeling uncertain initial value of the critical point A (the Allee threshold) with a crisp initial value could cause the extinction of population of a certain possibilistic degree, depending on the predetermined membership function of the initial value.
Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim
2016-11-01
In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.
Fuzzy Mathematical Models To Remove Poverty Of Gypsies In Tamilnadu
Chandrasekaran, A. D.; Ramkumar, C.; Siva, E. P.; Balaji, N.
2018-04-01
In the society there are several poor people are living. One of the sympathetic poor people is gypsies. They are moving from one place to another place towards survive of life because of not having any permanent place to live. In this paper we have interviewed 895 gypsies in Tamilnadu using a linguistic questionnaire. As the problems faced by them to improve their life at large involve so much of feeling, uncertainties and unpredictabilitys. I felt that it deem fit to use fuzzy theory in general and fuzzy matrix in particular. Fuzzy matrix is the best suitable tool where the data is an unsupervised one. Further the fuzzy matrix is so powerful to identify the main development factor of gypsies.This paper has three sections. In section one the method of application of CEFD matrix. In section two, we describe the development factors of gypsies. In section three, we apply these factors to the CEFD matrix and derive our conclusions. Key words: RD matrix, AFD matrix, CEFD matrix.
International Nuclear Information System (INIS)
Moon, Sang Ki
1995-02-01
This thesis applies new information techniques, artificial neural networks, (ANNs) and fuzzy theory, to the investigation of the critical heat flux (CHF) phenomenon for water flow in vertical round tubes. The work performed are (a) classification and prediction of CHF based on fuzzy clustering and ANN, (b) prediction and parametric trends analysis of CHF using ANN with the introduction of dimensionless parameters, and (c) detection of CHF occurrence using fuzzy rule and spatiotemporal neural network (STN). Fuzzy clustering and ANN are used for classification and prediction of the CHF using primary system parameters. The fuzzy clustering classifies the experimental CHF data into a few data clusters (data groups) according to the data characteristics. After classification of the experimental data, the characteristics of the resulted clusters are discussed with emphasis on the distribution of the experimental conditions and physical mechanisms. The CHF data in each group are trained in an artificial neural network to predict the CHF. The artificial neural network adjusts the weight so as to minimize the prediction error within the corresponding cluster. Application of the proposed method to the KAIST CHF data bank shows good prediction capability of the CHF, better than other existing methods. Parametric trends of the CHF are analyzed by applying artificial neural networks to a CHF data base for water flow in uniformly heated vertical round tubes. The analyses are performed from three viewpoints, i.e., for fixed inlet conditions, for fixed exit conditions, and based on local conditions hypothesis. In order to remove the necessity of data classification, Katto and Groeneveld et al.'s dimensionless parameters are introduced in training the ANNs with the experimental CHF data. The trained ANNs predict the CHF better than any other conventional correlations, showing RMS error of 8.9%, 13.1%, and 19.3% for fixed inlet conditions, for fixed exit conditions, and for local
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Mohammad Taghi Dastorani
2012-01-01
Full Text Available During recent few decades, due to the importance of the availability of water, and therefore the necesity of predicting run off resulted from rain fall there has been an increase in developing and implementation of new suitable method for prediction of run off using precipitation data. One of these approaches that have been developed in several areas of sciences including water related fields, is soft computing techniques such as artificial neural networks and fuzzy logic systems. This research was designed to evaluate the applicability of artificial neural network and adaptive neuro –fuzzy inference system to model rainfall-runoff process in Zayandeh_rood dam basin. It must be mentioned that, data have been analysed using Wingamma software, to select appropriate type and number of training input data before they can be used in the models. Then, it has been tried to evaluated applicability of artificial neural networks and neuro-fuzzy techniques to predict runoff generated from daily rainfall. Finally, the accuracy of the results produced by these methods has been compared using statistical criterion. Results taken from this research show that artificial neural networks and neuro-fuzzy technique presented different outputs in different conditions in terms of type and number of inputs variables, but both method have been able to produce acceptable results when suitable input variables and network structures are used.
Fuzzy-DEA model for measuring the efficiency of transport quality
Directory of Open Access Journals (Sweden)
Dragan S. Pamučar
2011-10-01
Full Text Available Data envelopment analysis (DEA is becoming increasingly important as a tool for evaluating and improving the performance of manufacturing and service operations. It has been extensively applied in performance evaluation and benchmarking of schools, hospitals, bank branches, production plants, etc. DEA enables mathematical programming for implicit evaluation of the ratio between a number of input and output performance parameters. The result is quantification of the efficiency of business opportunities and providing insight into some flaws from the level of top management. Levels of efficiency determined under the same parametres make this analytical process objective and allow for the application of best practices based on the assessment of the overall efficiency. This paper presents a fuzzy-DEA model for evaluating the effectiveness of urban and suburban public transport- USPT. A fuzzy-DEA model provides insight into the current transport quality provided by USPT and proposes for the improvement of inefficient systems up to the level of best standards possible. Such quantification makes long-term stability of USPT possible. Since most of the acquired data is characterized by a high degree of imprecision, subjectivity and uncertainty, fuzzy logic was used for displaying them. Fuzzy linguistic descriptors are given in the output parameters of DEA models. In this way, fuzzy logic enables the exploitation of tolerance that exists in imprecision, uncertainty and partial accuracy of the acquired research results.
A neuro-fuzzy computing technique for modeling hydrological time series
Nayak, P. C.; Sudheer, K. P.; Rangan, D. M.; Ramasastri, K. S.
2004-05-01
Intelligent computing tools such as artificial neural network (ANN) and fuzzy logic approaches are proven to be efficient when applied individually to a variety of problems. Recently there has been a growing interest in combining both these approaches, and as a result, neuro-fuzzy computing techniques have evolved. This approach has been tested and evaluated in the field of signal processing and related areas, but researchers have only begun evaluating the potential of this neuro-fuzzy hybrid approach in hydrologic modeling studies. This paper presents the application of an adaptive neuro fuzzy inference system (ANFIS) to hydrologic time series modeling, and is illustrated by an application to model the river flow of Baitarani River in Orissa state, India. An introduction to the ANFIS modeling approach is also presented. The advantage of the method is that it does not require the model structure to be known a priori, in contrast to most of the time series modeling techniques. The results showed that the ANFIS forecasted flow series preserves the statistical properties of the original flow series. The model showed good performance in terms of various statistical indices. The results are highly promising, and a comparative analysis suggests that the proposed modeling approach outperforms ANNs and other traditional time series models in terms of computational speed, forecast errors, efficiency, peak flow estimation etc. It was observed that the ANFIS model preserves the potential of the ANN approach fully, and eases the model building process.
A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps
Directory of Open Access Journals (Sweden)
Y. Tulunay
2008-12-01
Full Text Available Atmospheric processes are highly nonlinear. A small group at the METU in Ankara has been working on a fuzzy data driven generic model of nonlinear processes. The model developed is called the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M. The METU-FNN-M consists of a Fuzzy Inference System (METU-FIS, a data driven Neural Network module (METU-FNN of one hidden layer and several neurons, and a mapping module, which employs the Bezier Surface Mapping technique. In this paper, the percent cloud coverage (%CC and cloud top temperatures (CTT are forecast one month ahead of time at 96 grid locations. The probable influence of cosmic rays and sunspot numbers on cloudiness is considered by using the METU-FNN-M.
Directory of Open Access Journals (Sweden)
Z. Obeidavi
2017-06-01
Full Text Available Several modelling techniques have been developed for habitat suitability modelling. In the meantime, the Fuzzy Inference System (FIS with ability to model uncertainty of input variables is an effective method to model wildlife species habitat suitability. So, Persian Leopard habitat suitability was predicted in Shimbar Protected Area using FIS. Therefore, the effective environmental variables were determined. We also defined and determined the linguistic variables, linguistic values, and range of them. Then, we designed the membership functions of the fuzzy sets of the input and output variables. Also, the definition of the fuzzy rules in the system was performed. Finally, the defuzzification of output was carried out. The accuracy of the predictive model was tested using AUC. Also, 11 FISs were developed to determine sensitivity of the models and important variables in modelling. The results showed that the predictive model was more efficient than the random model (AUC=0.960. In addition, the ‘distance to capra’ was the most important predictor. According to the success of FIS in Persian Leopard habitat suitability modelling, we suggest this method to improve and complete the existing spatial information of wildlife habitats in Iran, especially about regions and species that have been less studied.
Anisimov, D. N.; Dang, Thai Son; Banerjee, Santo; Mai, The Anh
2017-07-01
In this paper, an intelligent system use fuzzy-PD controller based on relation models is developed for a two-wheeled self-balancing robot. Scaling factors of the fuzzy-PD controller are optimized by a Cross-Entropy optimization method. A linear Quadratic Regulator is designed to bring a comparison with the fuzzy-PD controller by control quality parameters. The controllers are ported and run on STM32F4 Discovery Kit based on the real-time operating system. The experimental results indicate that the proposed fuzzy-PD controller runs exactly on embedded system and has desired performance in term of fast response, good balance and stabilize.
Modelling of Apple Scab Using Adaptive Network -Based Fuzzy ...
African Journals Online (AJOL)
Furkan
2013-08-28
Aug 28, 2013 ... A new prediction model for the early warning of apple scab is proposed in this study. The method is .... Instead of all 12-min measurements, the average values of mea- surements in .... ANFC_LH, MLPN, and Bayes for comparison. The Bayes .... Multi metric evaluation of leaf wetness models for large-area.
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-11-01
Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.
Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.
2013-09-01
This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
FUZZY LOGIC CONTROLLER AS MODELING TOOL FOR THE BURNING PROCESS OF A CEMENT PRODUCTION PLANT
Directory of Open Access Journals (Sweden)
P.B. Osofisan
2012-01-01
Full Text Available
ENGLISH ABSTRACT: A comprehensive optimisation of the cement production process presents a problem since the input variables as well as the output variables are non-linear, interdependent and contain uncertainties. To arrive at a solution, a Fuzzy Logic controller has been designed to achieve a well-defined relationship between the main and vital variables through the instrumentality of a Fuzzy Model. The Fuzzy Logic controller has been simulated on a digital computer using MATLAB 5.0 Fuzzy Logic Tool Box, using data from a local cement production plant.
AFRIKAANSE OPSOMMING: Die omvattende optimisering van 'n proses wat sement vervaardig, word beskryf deur nie-linieêre inset- en uitsetveranderlikes wat onderling afhanklik is, en ook van onsekere aard is. Om 'n optimum oplossing te verkry, word 'n Wasigheidsmodel gebruik. Die model word getoets deur gebruik te maak van die MATLAB 5.0 Fuzzy Logic Tool Box en data vanaf 'n lokale sementvervaardigingsaanleg.
Acampora, G.; Loia, V.; Ippolito, L.; Siano, P.
2004-01-01
From a technologic point of view, the problem of fuzzy control deals with the real implementation of a controller on a specific hardware. Today, the market of micro-controller offers different solutions able to implement a fuzzy controller varying from application domains to programming language
Shiri, Jalal; Nazemi, Amir Hossein; Sadraddini, Ali Ashraf; Landeras, Gorka; Kisi, Ozgur; Fard, Ahmad Fakheri; Marti, Pau
2013-02-01
SummaryAccurate estimation of reference evapotranspiration is important for irrigation scheduling, water resources management and planning and other agricultural water management issues. In the present paper, the capabilities of generalized neuro-fuzzy models were evaluated for estimating reference evapotranspiration using two separate sets of weather data from humid and non-humid regions of Spain and Iran. In this way, the data from some weather stations in the Basque Country and Valencia region (Spain) were used for training the neuro-fuzzy models [in humid and non-humid regions, respectively] and subsequently, the data from these regions were pooled to evaluate the generalization capability of a general neuro-fuzzy model in humid and non-humid regions. The developed models were tested in stations of Iran, located in humid and non-humid regions. The obtained results showed the capabilities of generalized neuro-fuzzy model in estimating reference evapotranspiration in different climatic zones. Global GNF models calibrated using both non-humid and humid data were found to successfully estimate ET0 in both non-humid and humid regions of Iran (the lowest MAE values are about 0.23 mm for non-humid Iranian regions and 0.12 mm for humid regions). non-humid GNF models calibrated using non-humid data performed much better than the humid GNF models calibrated using humid data in non-humid region while the humid GNF model gave better estimates in humid region.
Application of an Intelligent Fuzzy Regression Algorithm in Road Freight Transportation Modeling
Directory of Open Access Journals (Sweden)
Pooya Najaf
2013-07-01
Full Text Available Road freight transportation between provinces of a country has an important effect on the traffic flow of intercity transportation networks. Therefore, an accurate estimation of the road freight transportation for provinces of a country is so crucial to improve the rural traffic operation in a large scale management. Accordingly, the focused case study database in this research is the information related to Iran’s provinces in the year 2008. Correlation between road freight transportation with variables such as transport cost and distance, population, average household income and Gross Domestic Product (GDP of each province is calculated. Results clarify that the population is the most effective factor in the prediction of provinces’ transported freight. Linear Regression Model (LRM is calibrated based on the population variable, and afterwards Fuzzy Regression Algorithm (FRA is generated on the basis of the LRM. The proposed FRA is an intelligent modified algorithm with an accurate prediction and fitting ability. This methodology can be significantly useful in macro-level planning problems where decreasing prediction error values is one of the most important concerns for decision makers. In addition, Back-Propagation Neural Network (BPNN is developed to evaluate the prediction capability of the models and to be compared with FRA. According to the final results, the modified FRA estimates road freight transportation values more accurately than the BPNN and LRM. Finally, in order to predict the road freight transportation values, the reliability of the calibrated models is analyzed using the information of the year 2009. Results show higher reliability for the proposed modified FRA.
DEFF Research Database (Denmark)
Rakhshan, Mohsen; Vafamand, Navid; Khooban, Mohammad Hassan
2018-01-01
This paper introduces a polynomial fuzzy model (PFM)-based maximum power point tracking (MPPT) control approach to increase the performance and efficiency of the solar photovoltaic (PV) electricity generation. The proposed method relies on a polynomial fuzzy modeling, a polynomial parallel......, a direct maximum power (DMP)-based control structure is considered for MPPT. Using the PFM representation, the DMP-based control structure is formulated in terms of SOS conditions. Unlike the conventional approaches, the proposed approach does not require exploring the maximum power operational point...
A Fuzzy Logic Model to Classify Design Efficiency of Nursing Unit Floors
Directory of Open Access Journals (Sweden)
Tuğçe KAZANASMAZ
2010-01-01
Full Text Available This study was conducted to determine classifications for the planimetric design efficiency of certain public hospitals by developing a fuzzy logic algorithm. Utilizing primary areas and circulation areas from nursing unit floor plans, the study employed triangular membership functions for the fuzzy subsets. The input variables of primary areas per bed and circulation areas per bed were fuzzified in this model. The relationship between input variables and output variable of design efficiency were displayed as a result of fuzzy rules. To test existing nursing unit floors, efficiency output values were obtained and efficiency classes were constructed by this model in accordance with general norms, guidelines and previous studies. The classification of efficiency resulted from the comparison of hospitals.
Using fuzzy models in machining control system and assessment of sustainability
Grinek, A. V.; Boychuk, I. P.; Dantsevich, I. M.
2018-03-01
Description of the complex relationship of the optimum velocity with the temperature-strength state in the cutting zone for machining a fuzzy model is proposed. The fuzzy-logical conclusion allows determining the processing speed, which ensures effective, from the point of view of ensuring the quality of the surface layer, the temperature in the cutting zone and the maximum allowable cutting force. A scheme for stabilizing the temperature-strength state in the cutting zone using a nonlinear fuzzy PD–controller is proposed. The stability of the nonlinear system is estimated with the help of grapho–analytical realization of the method of harmonic balance and by modeling in MatLab.
Fuzzy hierarchical model for risk assessment principles, concepts, and practical applications
Chan, Hing Kai
2013-01-01
Risk management is often complicated by situational uncertainties and the subjective preferences of decision makers. Fuzzy Hierarchical Model for Risk Assessment introduces a fuzzy-based hierarchical approach to solve risk management problems considering both qualitative and quantitative criteria to tackle imprecise information. This approach is illustrated through number of case studies using examples from the food, fashion and electronics sectors to cover a range of applications including supply chain management, green product design and green initiatives. These practical examples explore how this method can be adapted and fine tuned to fit other industries as well. Supported by an extensive literature review, Fuzzy Hierarchical Model for Risk Assessment comprehensively introduces a new method for project managers across all industries as well as researchers in risk management.
Analysis of selected structures for model-based measuring methods using fuzzy logic
Energy Technology Data Exchange (ETDEWEB)
Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S. [Hochschule fuer Technik, Wirtschaft und Sozialwesen Zittau/Goerlitz (FH), Zittau (DE). Inst. fuer Prozesstechnik, Prozessautomatisierung und Messtechnik e.V. (IPM)
2000-07-01
Monitoring and diagnosis of safety-related technical processes in nuclear enginering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)
Analysis of selected structures for model-based measuring methods using fuzzy logic
International Nuclear Information System (INIS)
Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S.
2000-01-01
Monitoring and diagnosis of safety-related technical processes in nuclear engineering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)
Inventory Model for Deteriorating Items Involving Fuzzy with Shortages and Exponential Demand
Directory of Open Access Journals (Sweden)
Sharmila Vijai Stanly
2015-11-01
Full Text Available This paper considers the fuzzy inventory model for deteriorating items for power demand under fully backlogged conditions. We define various factors which are affecting the inventory cost by using the shortage costs. An intention of this paper is to study the inventory modelling through fuzzy environment. Inventory parameters, such as holding cost, shortage cost, purchasing cost and deterioration cost are assumed to be the trapezoidal fuzzy numbers. In addition, an efficient algorithm is developed to determine the optimal policy, and the computational effort and time are small for the proposed algorithm. It is simple to implement, and our approach is illustrated through some numerical examples to demonstrate the application and the performance of the proposed methodology.
Fuzzy possibilistic model for medium-term power generation planning with environmental criteria
International Nuclear Information System (INIS)
Muela, E.; Schweickardt, G.; Garces, F.
2007-01-01
The aim of this paper is to apply a fuzzy possibilistic model to the power generation planning that includes environmental criteria. Since it is not always meaningful to relate uncertainty to frequency, the proposed approach analyzes the imprecision and ambiguity into the decision making, especially when the system involves human subjectivity. This paper highlights the subjacent differences between fuzzy and possibilistic entities. Additionally, it illustrates the use of fuzzy sets theory and possibility theory for modeling flexibility, and nonprobablistic uncertainty, respectively. The necessity of a new direction for the environmental problem in a power system is outlined, an approach that attempts a greater integral quality of planning instead of searching for a simple optimal solution. This process must be consistent with a wider and more suitable interpretation about both the problem as such and the concept of solution in uncertain situations
Archaeological predictive model set.
2015-03-01
This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...
Chaotic Dynamics in Smart Grid and Suppression Scheme via Generalized Fuzzy Hyperbolic Model
Sun, Q.; Wang, Y.; Yang, J.; Qiu, Y.; Zhang, H.
2014-01-01
This paper presents a method to control chaotic behavior of a typical Smart Grid based on generalized fuzzy hyperbolic model (GFHM). As more and more distributed generations (DG) are incorporated into the Smart Grid, the chaotic behavior occurs increasingly. To verify the behavior, a dynamic model
An Assessment Model of National Grants of University Based on Fuzzy Analytic Hierarchy Process
Directory of Open Access Journals (Sweden)
Xia Yang
2016-01-01
Full Text Available How to assess kinds of grants scientifically, effectively and regularly is an important topic for the funding workers to study. According to the national grants’ basic conditions, an assessment model is established on the basis of fuzzy analytic hierarchy process. And Finally an example is given to illustrate the scientificalness and operability of this model.
Development of a fuzzy optimization model, supporting global warming decision-making
International Nuclear Information System (INIS)
Leimbach, M.
1996-01-01
An increasing number of models have been developed to support global warming response policies. The model constructors are facing a lot of uncertainties which limit the evidence of these models. The support of climate policy decision-making is only possible in a semi-quantitative way, as presented by a Fuzzy model. The model design is based on an optimization approach, integrated in a bounded risk decision-making framework. Given some regional emission-related and impact-related restrictions, optimal emission paths can be calculated. The focus is not only on carbon dioxide but on other greenhouse gases too. In the paper, the components of the model will be described. Cost coefficients, emission boundaries and impact boundaries are represented as Fuzzy parameters. The Fuzzy model will be transformed into a computational one by using an approach of Rommelfanger. In the second part, some problems of applying the model to computations will be discussed. This includes discussions on the data situation and the presentation, as well as interpretation of results of sensitivity analyses. The advantage of the Fuzzy approach is that the requirements regarding data precision are not so strong. Hence, the effort for data acquisition can be reduced and computations can be started earlier. 9 figs., 3 tabs., 17 refs., 1 appendix
Ďuračiová, Renata; Rášová, Alexandra; Lieskovský, Tibor
2017-12-01
When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.
Directory of Open Access Journals (Sweden)
Ďuračiová Renata
2017-12-01
Full Text Available When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.
Fuzzy ABC: modeling the uncertainty in environmental cost allocation
Borba, José Alonso; Murcia, Fernando Dal Ri; Maior, Cesar Duarte Souto
2007-01-01
In many cases, preventing pollution and environmental destruction is cheaper than remedying these damages. In this sense, environmental cost allocation enables a better visualization and analysis of a product's profitability. However, the environmental allocation process involves estimated information and assumes linearity between activity consumption and product that is not real in many cases. In order to handle this not-linearity, this research presents a methodology based on fuzzy logic co...
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.