Modeling and control of an unstable system using probabilistic fuzzy inference system
Directory of Open Access Journals (Sweden)
Sozhamadevi N.
2015-09-01
Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.
Efficient modeling of vector hysteresis using fuzzy inference systems
Energy Technology Data Exchange (ETDEWEB)
Adly, A.A. [Electrical Power and Machines Department, Faculty of Engineering, Cairo University, Giza 12211 (Egypt)], E-mail: adlyamr@gmail.com; Abd-El-Hafiz, S.K. [Engineering Mathematics Department, Faculty of Engineering, Cairo University, Giza 12211 (Egypt)], E-mail: sabdelhafiz@gmail.com
2008-10-01
Vector hysteresis models have always been regarded as important tools to determine which multi-dimensional magnetic field-media interactions may be predicted. In the past, considerable efforts have been focused on mathematical modeling methodologies of vector hysteresis. This paper presents an efficient approach based upon fuzzy inference systems for modeling vector hysteresis. Computational efficiency of the proposed approach stems from the fact that the basic non-local memory Preisach-type hysteresis model is approximated by a local memory model. The proposed computational low-cost methodology can be easily integrated in field calculation packages involving massive multi-dimensional discretizations. Details of the modeling methodology and its experimental testing are presented.
Modeling urban air pollution with optimized hierarchical fuzzy inference system.
Tashayo, Behnam; Alimohammadi, Abbas
2016-10-01
Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.
Directory of Open Access Journals (Sweden)
Jing Lu
2014-11-01
Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.
Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart
2015-01-01
In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans...
DEFF Research Database (Denmark)
Achiche, S.; Shlechtingen, M.; Raison, M.
2016-01-01
This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped with ...
Artificial Hydrocarbon Networks Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Hiram Ponce
2013-01-01
Full Text Available This paper presents a novel fuzzy inference model based on artificial hydrocarbon networks, a computational algorithm for modeling problems based on chemical hydrocarbon compounds. In particular, the proposed fuzzy-molecular inference model (FIM-model uses molecular units of information to partition the output space in the defuzzification step. Moreover, these molecules are linguistic units that can be partially understandable due to the organized structure of the topology and metadata parameters involved in artificial hydrocarbon networks. In addition, a position controller for a direct current (DC motor was implemented using the proposed FIM-model in type-1 and type-2 fuzzy inference systems. Experimental results demonstrate that the fuzzy-molecular inference model can be applied as an alternative of type-2 Mamdani’s fuzzy control systems because the set of molecular units can deal with dynamic uncertainties mostly present in real-world control applications.
Terrorism Event Classification Using Fuzzy Inference Systems
Inyaem, Uraiwan; Meesad, Phayung; Tran, Dat
2010-01-01
Terrorism has led to many problems in Thai societies, not only property damage but also civilian casualties. Predicting terrorism activities in advance can help prepare and manage risk from sabotage by these activities. This paper proposes a framework focusing on event classification in terrorism domain using fuzzy inference systems (FISs). Each FIS is a decision-making model combining fuzzy logic and approximate reasoning. It is generated in five main parts: the input interface, the fuzzification interface, knowledge base unit, decision making unit and output defuzzification interface. Adaptive neuro-fuzzy inference system (ANFIS) is a FIS model adapted by combining the fuzzy logic and neural network. The ANFIS utilizes automatic identification of fuzzy logic rules and adjustment of membership function (MF). Moreover, neural network can directly learn from data set to construct fuzzy logic rules and MF implemented in various applications. FIS settings are evaluated based on two comparisons. The first evaluat...
Research on Modeling with Adaptive Neuro-Fuzzy Inference System%自适应神经模糊推理系统建模研究
Institute of Scientific and Technical Information of China (English)
鲁斌; 何华灿
2003-01-01
With rapid development of the fuzzy control application field, the existing system for fuzzy inferring modeling cannot more and more suit the requirements of fuzzy control. About how to apply the theories of fuzzy control to practice rapidly and conveniently, this paper presents a reasonable and practical method, which supports all sorts of fuzzy inferring system of MAMDANI and SUGENO to be modeled not only by tuning references of membership functions, but also by tuning fuzzy inferring structure. The modeling instance shows that it's practical and effective.
Heddam, Salim
2014-01-01
This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling.
Z Number Based Fuzzy Inference System for Dynamic Plant Control
Directory of Open Access Journals (Sweden)
Rahib H. Abiyev
2016-01-01
Full Text Available Frequently the reliabilities of the linguistic values of the variables in the rule base are becoming important in the modeling of fuzzy systems. Taking into consideration the reliability degree of the fuzzy values of variables of the rules the design of inference mechanism acquires importance. For this purpose, Z number based fuzzy rules that include constraint and reliability degrees of information are constructed. Fuzzy rule interpolation is presented for designing of an inference engine of fuzzy rule-based system. The mathematical background of the fuzzy inference system based on interpolative mechanism is developed. Based on interpolative inference process Z number based fuzzy controller for control of dynamic plant has been designed. The transient response characteristic of designed controller is compared with the transient response characteristic of the conventional fuzzy controller. The obtained comparative results demonstrate the suitability of designed system in control of dynamic plants.
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza
2013-01-01
This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza
2013-01-01
This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS...
Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data
Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie
2016-01-01
Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993
Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data
Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie
2016-10-01
Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine.
FUZZY INFERENCE SYSTEM MODELING FOR BED ACTIVE CARBON RE-GENERATION PROCESS (CO2 GAS FACTORY CASE
Directory of Open Access Journals (Sweden)
S. Febriana
2005-01-01
Full Text Available Bed active carbon is one of the most important materials that had great impact in determining level of impurities in production of CO2 gas. In this particular factory case, there is unavailability of standard duration time of heating and cooling and steam flow rate for the re-generation process of bed active carbon. The paper discusses the fuzzy inference system for modeling of re-generation process of bed active carbon to find the optimum setting parameter. The fuzzy inference system was build using real historical daily processing data. After validation process, surface plot analysis was performed to find the optimum setting. The result of re-generation parameter setting is 9-10 hours of heating process, 4.66-5.32 hours of cooling process, and 1500-2500 kg/hr of steam flow rate.
Directory of Open Access Journals (Sweden)
Bozhenyuk Alexander
2015-12-01
Full Text Available The decision-making model with basic fuzzy rule modus ponens is suggested in this paper to control the hand prosthesis. The hand movements are described by angles of finger and wrist flexion. Electromyogram (EMG of hand muscles was used as a source of the input data. Software was developed to implement the decision-making model with fuzzy rule modus ponens. In particular, the software receives EMG data, executes calculations and visualises the output data. The key advantage of the model is smoothness of output data changes; this way a maximum approach to natural hand movements is reached.
Institute of Scientific and Technical Information of China (English)
Karami Alireza; Afiuni-Zadeh Somaieh
2013-01-01
One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks. We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size (K80) of Golgohar iron mine of Sirjan, Iran. Comparing the results of ANFIS and RBF models shows that although the statistical parame-ters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.
Tabari, Hossein; Hosseinzadeh Talaee, P.; Abghari, Hirad
2012-05-01
Estimation of pan evaporation ( E pan) using black-box models has received a great deal of attention in developing countries where measurements of E pan are spatially and temporally limited. Multilayer perceptron (MLP) and coactive neuro-fuzzy inference system (CANFIS) models were used to predict daily E pan for a semi-arid region of Iran. Six MLP and CANFIS models comprising various combinations of daily meteorological parameters were developed. The performances of the models were tested using correlation coefficient ( r), root mean square error (RMSE), mean absolute error (MAE) and percentage error of estimate (PE). It was found that the MLP6 model with the Momentum learning algorithm and the Tanh activation function, which requires all input parameters, presented the most accurate E pan predictions ( r = 0.97, RMSE = 0.81 mm day-1, MAE = 0.63 mm day-1 and PE = 0.58 %). The results also showed that the most accurate E pan predictions with a CANFIS model can be achieved with the Takagi-Sugeno-Kang (TSK) fuzzy model and the Gaussian membership function. Overall performances revealed that the MLP method was better suited than CANFIS method for modeling the E pan process.
Designing a Battlefield Fire Support System Using Adaptive Neuro-Fuzzy Inference System Based Model
Directory of Open Access Journals (Sweden)
Kerim Goztepe
2014-07-01
Full Text Available Fire support of the maneuver operation is a continuous process. It begins with the receiving the task by the maneuver commander and continues until the mission is completed. Yet it is a key issue in combat in the way gain success. Therefore, a real-time mannered solution to fire support problem is a vital component of tactical warfare to the sequence that auxiliary forces or logistic support arrives at the theatre. A new method for deciding on combat fire support is proposed using adaptive neuro-fuzzy inference system (ANFIS in this paper. This study addresses the design of an ANFIS as an efficient tool for real-time decision-making in order to produce the best fire support plan in battlefield. Initially, criteria that are determined for the problem are formed by applying ANFIS method. Then, the ANFIS structure is built up by using the data related to selected criteria. The proposed method is illustrated by a sample fire support planning in combat. Results showed us that ANFIS is valid especially for small unit fire support planning and is useful to decrease the decision time in battlefield.
Directory of Open Access Journals (Sweden)
Behnam Tashayo
2017-01-01
Full Text Available Characterizing the spatial variation of traffic-related air pollution has been and is a long-standing challenge in quantitative environmental health impact assessment of urban transportation planning. Advanced approaches are required for modeling complex relationships among traffic, air pollution, and adverse health outcomes by considering uncertainties in the available data. A new hybrid fuzzy model is developed and implemented through hierarchical fuzzy inference system (HFIS. This model is integrated with a dispersion model in order to model the effect of transportation system on the PM2.5 concentration. An improved health metric is developed as well based on a HFIS to model the impact of traffic-related PM2.5 on health. Two solutions are applied to improve the performance of both the models: the topologies of HFISs are selected according to the problem and used variables, membership functions, and rule set are determined through learning in a simultaneous manner. The capabilities of this proposed approach is examined by assessing the impacts of three traffic scenarios involved in air pollution in the city of Isfahan, Iran, and the model accuracy compared to the results of available models from literature. The advantages here are modeling the spatial variation of PM2.5 with high resolution, appropriate processing requirements, and considering the interaction between emissions and meteorological processes. These models are capable of using the available qualitative and uncertain data. These models are of appropriate accuracy, and can provide better understanding of the phenomena in addition to assess the impact of each parameter for the planners.
Azeez, Dhifaf; Ali, Mohd Alauddin Mohd; Gan, Kok Beng; Saiboon, Ismail
2013-01-01
Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in
Institute of Scientific and Technical Information of China (English)
Karami Alireza; Afiuni-Zadeh Somaieh
2012-01-01
One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation.It directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling and crushing in mines.Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF)show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks.In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80％ passing size (K80) of Golgohar iron ore mine of Sir jan,Iran.Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.
Automatic control of biomass gasifiers using fuzzy inference systems
Energy Technology Data Exchange (ETDEWEB)
Sagues, C. [Universidad de Zaragoza (Spain). Dpto. de Informatica e Ingenieria de Sistemas; Garcia-Bacaicoa, P.; Serrano, S. [Universidad de Zaragoza (Spain). Dpto. de Ingenieria Quimica y Medio Ambiente
2007-03-15
A fuzzy controller for biomass gasifiers is proposed. Although fuzzy inference systems do not need models to be tuned, a plant model is proposed which has turned out very useful to prove different combinations of membership functions and rules in the proposed fuzzy control. The global control scheme is shown, including the elements to generate the set points for the process variables automatically. There, the type of biomass and its moisture content are the only data which need to be introduced to the controller by a human operator at the beginning of operation to make it work autonomously. The advantages and good performance of the fuzzy controller with the automatic generation of set points, compared to controllers utilising fixed parameters, are demonstrated. (author)
Automatic control of biomass gasifiers using fuzzy inference systems.
Sagüés, C; García-Bacaicoa, P; Serrano, S
2007-03-01
A fuzzy controller for biomass gasifiers is proposed. Although fuzzy inference systems do not need models to be tuned, a plant model is proposed which has turned out very useful to prove different combinations of membership functions and rules in the proposed fuzzy control. The global control scheme is shown, including the elements to generate the set points for the process variables automatically. There, the type of biomass and its moisture content are the only data which need to be introduced to the controller by a human operator at the beginning of operation to make it work autonomously. The advantages and good performance of the fuzzy controller with the automatic generation of set points, compared to controllers utilising fixed parameters, are demonstrated.
Amiri, Mohammad J; Abedi-Koupai, Jahangir; Eslamian, Sayed S; Mousavi, Sayed F; Hasheminejad, Hasti
2013-01-01
To evaluate the performance of Adaptive Neural-Based Fuzzy Inference System (ANFIS) model in estimating the efficiency of Pb (II) ions removal from aqueous solution by ostrich bone ash, a batch experiment was conducted. Five operational parameters including adsorbent dosage (C(s)), initial concentration of Pb (II) ions (C(o)), initial pH, temperature (T) and contact time (t) were taken as the input data and the adsorption efficiency (AE) of bone ash as the output. Based on the 31 different structures, 5 ANFIS models were tested against the measured adsorption efficiency to assess the accuracy of each model. The results showed that ANFIS5, which used all input parameters, was the most accurate (RMSE = 2.65 and R(2) = 0.95) and ANFIS1, which used only the contact time input, was the worst (RMSE = 14.56 and R(2) = 0.46). In ranking the models, ANFIS4, ANFIS3 and ANFIS2 ranked second, third and fourth, respectively. The sensitivity analysis revealed that the estimated AE is more sensitive to the contact time, followed by pH, initial concentration of Pb (II) ions, adsorbent dosage, and temperature. The results showed that all ANFIS models overestimated the AE. In general, this study confirmed the capabilities of ANFIS model as an effective tool for estimation of AE.
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
Wang, Kun-Chieh; Tseng, Pai-Chung; Lin, Kuo-Ming
Thermal effect on machine tools is a well-recognized problem in an environment of increasing demand for product quality. The performance of a thermal error compensation system typically depends on the accuracy and robustness of the thermal error model. This work presents a novel thermal error model utilizing two mathematic schemes: the grey system theory and the adaptive network-based fuzzy inference system (ANFIS). First, the measured temperature and deformation results are analyzed via the grey system theory to obtain the influence ranking of temperature ascent on thermal drift of spindle. Then, using the highly ranked temperature ascents as inputs for the ANFIS and training these data by the hybrid learning rule, a thermal compensation model is constructed. The grey system theory effectively reduces the number of temperature sensors needed on a machine structure for prediction, and the ANFIS has the advantages of good accuracy and robustness. For testing the performance of proposed ANFIS model, a real-cutting operation test was conducted. Comparison results demonstrate that the modeling schemes of the ANFIS coupled with the grey system theory has good predictive ability.
Modelling on fuzzy control systems
Institute of Scientific and Technical Information of China (English)
LI; Hongxing(李洪兴); WANG; Jiayin(王加银); MIAO; Zhihong(苗志宏)
2002-01-01
A kind of modelling method for fuzzy control systems is first proposed here, which is calledmodelling method based on fuzzy inference (MMFI). It should be regarded as the third modelling method thatis different from two well-known modelling methods, that is, the first modelling method, mechanism modellingmethod (MMM), and the second modelling method, system identification modelling method (SlMM). Thismethod can, based on the interpolation mechanism on fuzzy logic system, transfer a group of fuzzy inferencerules describing a practice system into a kind of nonlinear differential equation with variable coefficients, calledHX equations, so that the mathematical model of the system can be obtained. This means that we solve thedifficult problem of how to get a model represented as differential equations on a complicated or fuzzy controlsystem.
Athanasiou, Georgia; Anastasopoulos, George C; Tiritidou, Eleni; Lymberopoulos, Dimitrios
2017-07-28
Trust is considered to be a determinant on psychologist selection which can ensure patient satisfaction. Hence, trust concept is essential to be introduced into Ubiquitous Healthcare (UH) environment oriented on patients with anxiety disorders. This is accomplished by Trust Model estimating psychologists' trustworthiness, a priory to service delivery, with the use of patient's and his/her acquaintances testimonies, i.e. Personal Interaction Experience (PIE) and Reputation (R). In this paper, Trust Model is proposed to be materialized via an Adaptable Cloud Inference System (ACIS) that performs Trust Value (TV) estimation. Taking advantage of cloud theory, the introduced ACIS estimates TVs via fuzzy-probabilistic reasoning incorporating a cloud relation operator (soft AND) which is proposed to be tuned by trust information sources consistency and coherency. Theoretical analysis along with comparative study conducted within MATLAB environment and experimental investigation verify the effectiveness of the proposed ACIS materialization under different conditions. Especially, the innovative features of ACIS enable TV to be estimated with 45.5% and 62% on average higher accuracy to that providing state-of-the-art Trust Models, within clean environment and under the influence of large scale collusive malicious attacks, respectively. The enhanced robustness permits the untrustworthy UH Providers to be discriminated with True Positive Rate at the range of 0.9 although 40% of R testimonies are erroneous. Finally, experimental investigation validates that the adoption of the proposed Trust Model for psychologists trustworthiness estimation facilitates patient satisfaction to be achieved into UH environment.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Directory of Open Access Journals (Sweden)
Ja’fari A.
2014-01-01
Full Text Available Image logs provide useful information for fracture study in naturally fractured reservoir. Fracture dip, azimuth, aperture and fracture density can be obtained from image logs and have great importance in naturally fractured reservoir characterization. Imaging all fractured parts of hydrocarbon reservoirs and interpreting the results is expensive and time consuming. In this study, an improved method to make a quantitative correlation between fracture densities obtained from image logs and conventional well log data by integration of different artificial intelligence systems was proposed. The proposed method combines the results of Adaptive Neuro-Fuzzy Inference System (ANFIS and Neural Networks (NN algorithms for overall estimation of fracture density from conventional well log data. A simple averaging method was used to obtain a better result by combining results of ANFIS and NN. The algorithm applied on other wells of the field to obtain fracture density. In order to model the fracture density in the reservoir, we used variography and sequential simulation algorithms like Sequential Indicator Simulation (SIS and Truncated Gaussian Simulation (TGS. The overall algorithm applied to Asmari reservoir one of the SW Iranian oil fields. Histogram analysis applied to control the quality of the obtained models. Results of this study show that for higher number of fracture facies the TGS algorithm works better than SIS but in small number of fracture facies both algorithms provide approximately same results.
Incorporating Fuzzy Inference in Active Database Rules
Institute of Scientific and Technical Information of China (English)
郭海英; 台立钢; 钟廷修
2003-01-01
Active databases react to stimulation, or event from inside or outside the system without user or application interference through Events Conditions Actions(ECA) rules (triggers). ECA rule is defined as: ON event IF condition THEN action, which means when an event happens, if the condition is satisfied then the corresponding action is executed. The nature of ECA rule makes it an appropriate means to model dynamic character of systems, as gained much studies during recent years. Traditional ECA rule is crisp, which means their events, condition (s) and action(s) are accurate. As indicate that ECA rules can only represent precise knowledge. But knowledge is usually fuzzy in engineering. A concept of fuzzy ECA rules characterized with fuzzy event, fuzzy condition and fuzzy action is proposed in this article.The realization avenues of fuzzy triggers are discussed. The work we have done blazes a way in representing approximate syntax in active database application systems. At last a case of "overheating alarm" is given to illustrate the approach.
Fuzzy Control Strategies in Human Operator and Sport Modeling
Ivancevic, Tijana T; Markovic, Sasa
2009-01-01
The motivation behind mathematically modeling the human operator is to help explain the response characteristics of the complex dynamical system including the human manual controller. In this paper, we present two different fuzzy logic strategies for human operator and sport modeling: fixed fuzzy-logic inference control and adaptive fuzzy-logic control, including neuro-fuzzy-fractal control. As an application of the presented fuzzy strategies, we present a fuzzy-control based tennis simulator.
Directory of Open Access Journals (Sweden)
Wei Huang
2013-01-01
Full Text Available We introduce a new category of fuzzy inference systems with the aid of a multiobjective opposition-based space search algorithm (MOSSA. The proposed MOSSA is essentially a multiobjective space search algorithm improved by using an opposition-based learning that employs a so-called opposite numbers mechanism to speed up the convergence of the optimization algorithm. In the identification of fuzzy inference system, the MOSSA is exploited to carry out the parametric identification of the fuzzy model as well as to realize its structural identification. Experimental results demonstrate the effectiveness of the proposed fuzzy models.
Comparative Analysis of Fuzzy Inference Systems for Air Conditioner
Directory of Open Access Journals (Sweden)
Swati R. Chaudhari
2014-12-01
Full Text Available In today’s world there is exponential increase in the use of air conditioning devices. The enhancement in utilization of such devices makes it essential for them to work with their full capability and efficiency. The fuzzy inference systems are best suited for the applications requiring easy interpretation, human reasoning, accurate decision making and control. The fuzzy inference systems resemble human decision making and generate precise solutions from approximate information. A comprehensive review of fuzzy inference systems with weighted average and defuzzification is covered in this paper. The objective of the paper is to provide the comparative analysis of fuzzy inference systems. This paper is a quick reference for the researchers in studying the characteristics of fuzzy inference system in air conditioner.
Modeling Research Project Risks with Fuzzy Maps
Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana
2009-01-01
The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…
Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun
2012-01-01
With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…
Digital Repository Service at National Institute of Oceanography (India)
Harish, N.; Mandal, S.; Rao, S.; Lokesha
coefficient (CC) and scatter index (SI) for test data are 8.072, 2.841, 0.92, and 0.218 respectively. Comparing with the artificial neural network model, ANFIS yields higher CC and lower SI. From the results it can be concluded that ANFIS can be an efficient...
Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun
2012-01-01
With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…
Directory of Open Access Journals (Sweden)
P Isakki
2011-07-01
Full Text Available Data warehouse and mining are able to provide the structure to record whole customer's information, detecting important customers systematically, the change of identifying the individual and valuable customers. "Customer Relationship" is one of the most important factors to construct the core of competitiveness, especial in service industries for running business forever. Therefore, the objective of this paper is to apply the data warehouse and data mining technologies to analyze the customers' behavior in order to form the right of customers' profile. This could provide the best service model owing to the enounced of customer-orientation and making more effective marketing strategy.
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Ehmsen, Mikkel Præstholm; Andersen, John
2012-01-01
This work presents the experimental study and modelling of a methanol reformer system for a high temperature polymer electrolyte membrane (HTPEM) fuel cell stack. The analyzed system is a fully integrated HTPEM fuel cell system with a DC/DC control output able to be used as e.g. a mobile battery...... charger. The advantages of using a HTPEM methanol reformer is that the high quality waste heat can be used as a system heat input to heat and evaporate the input methanol/water mixture which afterwards is catalytically converted into a hydrogen rich gas usable in the high CO tolerant HTPEM fuel cells....... Creating a fuel cell system able to use a well known and easily distributable liquid fuel such as methanol is a good choice in some applications such as range extenders for electric vehicles as an alternative to compressed hydrogen. This work presents a control strategy called Current Correction...
Supplier Selection Using Fuzzy Inference System
Directory of Open Access Journals (Sweden)
hamidreza kadhodazadeh
2014-01-01
Full Text Available Suppliers are one of the most vital parts of supply chain whose operation has significant indirect effect on customer satisfaction. Since customer's expectations from organization are different, organizations should consider different standards, respectively. There are many researches in this field using different standards and methods in recent years. The purpose of this study is to propose an approach for choosing a supplier in a food manufacturing company considering cost, quality, service, type of relationship and structure standards of the supplier organization. To evaluate supplier according to the above standards, the fuzzy inference system has been used. Input data of this system includes supplier's score in any standard that is achieved by AHP approach and the output is final score of each supplier. Finally, a supplier has been selected that although is not the best in price and quality, has achieved good score in all of the standards.
FUZZY INFERENCE SYSTEM FOR THE IDENTIFICATION OF OVER-THE-COUNTER (OTC DRUGS
Directory of Open Access Journals (Sweden)
Eduardo E. Zurek
2013-06-01
Full Text Available This document shows the details of the implementation of a fuzzy inference system, for the identification of four over-the-counter drugs (Naproxen, Calcium Carbonate, Muvett and Winadol, by using a Raman Spectroscopy, which output is the characterization of the substance. Data obtained from Raman Spectroscopy are modeled with Matlab®- Fuzzy Logic Toolbox.
Classification of toddler nutritional status using fuzzy inference system (FIS)
Permatasari, Dian; Azizah, Isnaini Nur; Hadiat, Hanifah Latifah; Abadi, Agus Maman
2017-08-01
Nutrition is a major health problem and concern for parents when it is relating with their toddler. The nutritional status is an expression of the state caused by the status of the balance between the number of intake of nutrients and the amount needed by the body for a variety of biological functions. The indicators that often used to determine the nutritional status is the combination of Weight (W) and Height (H) symbolized by W/H, because it describe a sensitive and specific nutritional status. This study aims to apply the Fuzzy Inference System Mamdani method to classify the nutritional status of toddler. The inputs are weight and height of the toddler. There are nine rules that used and the output is nutritional status classification consisting of four criteria: stunting, wasting, normal, and overweight. Fuzzy Inference System that be used is Mamdani method and the defuzzification use Centroid Method. The result of this study is compared with Assessment Anthropometric Standard of Toddler Nutritional Status by Ministry of Health. The accuracy level of this fuzzy model is about 84%.
Using Fuzzy Inference Systems to Optimize Highway Alignments
Directory of Open Access Journals (Sweden)
Gianluca Dell’Acqua
2012-03-01
Full Text Available The general objective of the research project is to explore innovations in integrating infrastructure and land use planning for transportation corridors. In contexts with environmental impact, the choice of transportation routes must address the sensitivity of current and preexisting conditions. Multi-criteria analyses are used to solve problems of this nature, but they do not define an objective approach on a quantitative basis taking into account some important, but often intrinsically unmeasurable parameters. Fuzzy logic becomes a more effective model as systems become more complex. During the preliminary design phase, fuzzy inference systems offer a contribution to decision-making which is much more complete than a benefits/and costs analysis. In this study, alternative alignment options are considered, combining engineering, social, environmental, and economic factors in the decision-making. The research formalizes a general method useful for analyzing different case studies. The method can be used to justify highway alignment choices in environmental impact study analysis.
A Comparative Analysis of Fuzzy Inference Engines in Context of ...
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
automatic control, data classification, decision analysis, expert engines, time series prediction, robotics ... inference engines, max-product, max-min and root sum in fuzzy controllers using profitability ...... Hall, Upper Saddle River, NJ, 1991. [4].
Employee Likelihood of Purchasing Health Insurance using Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Lazim Abdullah
2012-01-01
Full Text Available Many believe that employees health and economic factors plays an important role in their likelihood to purchase health insurance. However decision to purchase health insurance is not trivial matters as many risk factors that influence decision. This paper presents a decision model using fuzzy inference system to identify the likelihoods of purchasing health insurance based on the selected risk factors. To build the likelihoods, data from one hundred and twenty eight employees at five organizations under the purview of Kota Star Municipality Malaysia were collected to provide input data. Three risk factors were considered as the input of the system including age, salary and risk of having illness. The likelihoods of purchasing health insurance was the output of the system and defined in three linguistic terms of Low, Medium and High. Input and output data were governed by the Mamdani inference rules of the system to decide the best linguistic term. The linguistic terms that describe the likelihoods of purchasing health insurance were identified by the system based on the three risk factors. It is found that twenty seven employees were likely to purchase health insurance at Low level and fifty six employees show their likelihoods at High level. The usage of fuzzy inference system would offer possible justifications to set a new approach in identifying prospective health insurance purchasers.
Fuzzy Clustering Methods and their Application to Fuzzy Modeling
DEFF Research Database (Denmark)
Kroszynski, Uri; Zhou, Jianjun
1999-01-01
Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate...... prediction of outputs. This article presents an overview of some of the most popular clustering methods, namely Fuzzy Cluster-Means (FCM) and its generalizations to Fuzzy C-Lines and Elliptotypes. The algorithms for computing cluster centers and principal directions from a training data-set are described....... A method to obtain an optimized number of clusters is outlined. Based upon the cluster's characteristics, a behavioural model is formulated in terms of a rule-base and an inference engine. The article reviews several variants for the model formulation. Some limitations of the methods are listed...
Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad
2016-05-01
Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert
Fuzzy Model for Trust Evaluation
Institute of Scientific and Technical Information of China (English)
Zhang Shibin; He Dake
2006-01-01
Based on fuzzy set theory, a fuzzy trust model is established by using membership function to describe the fuzziness of trust. The trust vectors of subjective trust are obtained based on a mathematical model of fuzzy synthetic evaluation. Considering the complicated and changeable relationships between various subjects, the multi-level mathematical model of fuzzy synthetic evaluation is introduced. An example of a two-level fuzzy synthetic evaluation model confirms the feasibility of the multi-level fuzzy synthesis evaluation model. The proposed fuzzy model for trust evaluation may provide a promising method for research of trust model in open networks.
Diagnosis of arthritis through fuzzy inference system.
Singh, Sachidanand; Kumar, Atul; Panneerselvam, K; Vennila, J Jannet
2012-06-01
Expert or knowledge-based systems are the most common type of AIM (artificial intelligence in medicine) system in routine clinical use. They contain medical knowledge, usually about a very specifically defined task, and are able to reason with data from individual patients to come up with reasoned conclusion. Although there are many variations, the knowledge within an expert system is typically represented in the form of a set of rules. Arthritis is a chronic disease and about three fourth of the patients are suffering from osteoarthritis and rheumatoid arthritis which are undiagnosed and the delay of detection may cause the severity of the disease at higher risk. Thus, earlier detection of arthritis and treatment of its type of arthritis and related locomotry abnormalities is of vital importance. Thus the work was aimed to design a system for the diagnosis of Arthitis using fuzzy logic controller (FLC) which is, a successful application of Zadeh's fuzzy set theory. It is a potential tool for dealing with uncertainty and imprecision. Thus, the knowledge of a doctor can be modelled using an FLC. The performance of an FLC depends on its knowledge base which consists of a data base and a rule base. It is observed that the performance of an FLC mainly depends on its rule base, and optimizing the membership function distributions stored in the data base is a fine tuning process.
基于DFL的多Agent时序推理模型研究%Research on Multi - agent Temporal Inference Model Based on Dynamic Fuzzy Logic
Institute of Scientific and Technical Information of China (English)
李凡长
2001-01-01
Theory and technology of agent, specialy theory and technology of multi - agent, for analyse and design and implement of distributed open system furnishes fresh evidence. So far, agent is divided into intelligence agent and multi- agent and agent oriented programming, which is depend on each other for existence. This paper＇s focal point is research structure of group organizations of multi- agent, and based on the dynamic fuzzy sets and dynamic fuzzy logic, the multi - agent temporal inference model and theory are proposed. By the research of this model theory, this paper has abundanted the content of multi- agent system theory.%Agent的理论、技术，特别是多Agent的理论、技术，为分布式开放系统的分析、设计和实现提供了一个崭新的途径。目前，对Agent的研究大致分为智能Agent、多Agent系统和面向Agent的程序设计。该文对多Agent系统的群体组织结构进行深入研究，基于DFL，给出多Agent时序推理模型理论，进一步丰富多Agent系统理论的研究内容。
Gender Classification by Fuzzy Inference System
2013-01-01
Gender classification from face images has many applications and is thus an important research topic. This paper presents an approach to gender classification based on shape and texture information gathered to design a fuzzy decision making system. Beside face shape features, Zernik moments are applied as system inputs to improve the system output which is considered as the probability of being male face image. After parameters tuning of the proposed fuzzy decision making system, 85.05% class...
Models of neural networks with fuzzy activation functions
Nguyen, A. T.; Korikov, A. M.
2017-02-01
This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.
Directory of Open Access Journals (Sweden)
Chien-Lin Huang
2015-01-01
Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.
Extending the functional equivalence of radial basis function networks and fuzzy inference systems.
Hunt, K J; Haas, R; Murray-Smith, R
1996-01-01
We establish the functional equivalence of a generalized class of Gaussian radial basis function (RBFs) networks and the full Takagi-Sugeno model (1983) of fuzzy inference. This generalizes an existing result which applies to the standard Gaussian RBF network and a restricted form of the Takagi-Sugeno fuzzy system. The more general framework allows the removal of some of the restrictive conditions of the previous result.
Neural fuzzy inference network approach to maneuvering target tracking
Institute of Scientific and Technical Information of China (English)
韩红; 刘允才; 韩崇昭; 朱洪艳; 文戎
2004-01-01
In target tracking study, the fast target maneuver detecting and highly accurate tracking are very important.And it is difficult to be solved. For the radar/infrared image fused tracking system, a extend Kalman filter combines with a neural fuzzy inference network to be used in maneuvering target tracking. The features related to the target maneuver are extracted from radar, infrared measurements and outputs of tracking filter, and are sent into the neural fuzzy inference network as inputs firstly, and then the target's maneuver inputs are estimated, so that, the accurate tracking is achieved. The simulation results indicate that the new method is valuable for maneuvering target tracking.
The research on high speed underwater target recognition based on fuzzy logic inference
Institute of Scientific and Technical Information of China (English)
JIANG Xiang-Dong; YANG De-Sen; SHI Sheng-guo; LI Si-Chun
2006-01-01
The underwater target recognition is a key technology in acoustic confrontation and underwater defence. In this article, a recognition system based on fuzzy logic inference (FLI) is set up. This system is mainly composed of three parts: the fuzzy input module, the fuzzy logic inference module with a set of inference rules and the de-fuzzy output module. The inference result shows the recognition system is effective in most conditions.
The research on high speed underwater target recognition based on fuzzy logic inference
Jiang, Xiang-Dong; Yang, De-Sen; Shi, Sheng-Guo; Li, Si-Chun
2006-06-01
The underwater target recognition is a key technology in acoustic confrontation and underwater defence. In this article, a recognition system based of fuzzy logic inference (FLI) is set up. This system is mainly composed of three parts: the fuzzy input module, the fuzzy logic inference module with a set of inference rules and the de-fuzzy output module. The inference result shows the recognition system is effective in most conditions.
Fuzzy audit risk modeling algorithm
Directory of Open Access Journals (Sweden)
Zohreh Hajihaa
2011-07-01
Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.
Gender Classification by Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Payman Moallem
2013-02-01
Full Text Available Gender classification from face images has many applications and is thus an important research topic. This paper presents an approach to gender classification based on shape and texture information gathered to design a fuzzy decision making system. Beside face shape features, Zernik moments are applied as system inputs to improve the system output which is considered as the probability of being male face image. After parameters tuning of the proposed fuzzy decision making system, 85.05% classification rate on the FERET face database (including 1199 individuals from different poses and facial expressions shows acceptable results compare to other methods.
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza
2014-01-01
In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...... an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model which is adapted to fit the measured performance of the H3-350 module. All the individual parts of the model are verified...
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza
2013-01-01
In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...... an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model which is adapted to fit the measured performance of the H3-350 module. All the individual parts of the model are verified...
Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.
2014-10-01
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (activated carbon were 0.02 g adsorbent mass, 10 mg L-1 initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30 min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.
Detection of Coal Mine Spontaneous Combustion by Fuzzy Inference System
Institute of Scientific and Technical Information of China (English)
SUN Ji-ping; SONG Shu; MA Feng-ying; ZHANG Ya-li
2006-01-01
The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite difficult because of the complexity of different coal mines. And the traditional threshold discriminance is not suitable for spontaneous combustion detection due to the uncertainty of coalmine combustion. Restrictions of the single detection method will also affect the detection precision in the early time of spontaneous combustion. Although multiple detection methods can be adopted as a complementarity to improve the accuracy of detection, the synthesized method will increase the complicacy of criterion, making it difficult to estimate the combustion. To solve this problem, a fuzzy inference system based on CRI (Compositional Rule of Inference) and fuzzy reasoning method FITA (First Infer Then Aggregate) are presented. And the neural network is also developed to realize the fuzzy inference system. Finally, the effectiveness of the inference system is demonstrated by means of an experiment.
Directory of Open Access Journals (Sweden)
P. N. Raghunath
2012-01-01
Full Text Available Problem statement: This study presents the results of ANFIS based model proposed for predicting the performance characteristics of reinforced HSC beams subjected to different levels of corrosion damage and strengthened with externally bonded glass fibre reinforced polymer laminates. Approach: A total of 21 beams specimens of size 150, 250×3000 mm were cast and tested. Results: Out of the 21 specimens, 7 specimens were tested without any corrosion damage (R-Series, 7 after inducing 10% corrosion damage (ASeries and another 7 after inducing 25% corrosion damage (B-Series. Out of the seven specimens in each series, one was tested without any laminate, three specimens were tested after applying 3 mm thick CSM, UDC and WR laminates and another three specimens after applying 5mm thick CSM, UDC and WR laminates. Conclusion/Recommendations: The test results show that the beams strengthened with externally bonded GFRP laminates exhibit increased strength, stiffness, ductility and composite action until failure. An Adaptive Neuro-Fuzzy Inference System (ANFIS model is developed for predicting the study parameters for input values lying within the range of this experimental study.
Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin
2014-01-01
Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population.
MI-ANFIS: A Multiple Instance Adaptive Neuro-Fuzzy Inference System
2015-08-02
16. SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...Instance AdaptiveNeuro-Fuzzy Inference System We introduce a novel adaptive neuro -fuzzy architecture based on the framework of Multiple Instance Fuzzy...Inference. The new architecture called Multiple Instance-ANFIS (MI-ANFIS), is an extension of the standard Adaptive Neuro Fuzzy Inference System (ANFIS
Adaptive neuro-fuzzy inference system for breath phase detection and breath cycle segmentation.
Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian
2017-07-01
The monitoring of the respiratory rate is vital in several medical conditions, including sleep apnea because patients with sleep apnea exhibit an irregular respiratory rate compared with controls. Therefore, monitoring the respiratory rate by detecting the different breath phases is crucial. This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system. The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset. The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069. The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS. Copyright © 2017 Elsevier B.V. All rights reserved.
Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System
Akhavan, P.; Karimi, M.; Pahlavani, P.
2014-10-01
Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.
Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System
Directory of Open Access Journals (Sweden)
P. Akhavan
2014-10-01
Full Text Available Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.
Quality determination of Mozafati dates using Mamdani fuzzy inference system
Directory of Open Access Journals (Sweden)
N. Alavi
2013-06-01
Full Text Available The date fruit, which is produced mostly in the hot arid regions of Southern Asia and North Africa, in large quantities, is marketed all over the world as an important crop. Date grading is an important process for producers and affects the fruit quality evaluation and export market. In this research Mamdani fuzzy inference system (MFIS was applied as a decision making technique to classify the Mozafati dates based on quality. Two date parameters including the length and freshness were measured for 500 date fruits. These dates were graded by both a human expert and MFIS. Grading results obtained from fuzzy system showed 91% general conformity with the experimental results.
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper,a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm,combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear mu Iti-variable systems is introduced and discussed.
MODELING FUZZY GEOGRAPHIC OBJECTS WITHIN FUZZY FIELDS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
To improve the current GIS functions in describing geographic objects w ith fuzziness,this paper begins with a discussion on the distance measure of sp atial objects based on the theory of sets and an introduction of dilation and er osion operators.Under the assumption that changes of attributes in a geographic region are gradual,the analytic expressions for the fuzzy objects of points,l ines and areas,and the description of their formal structures are presented.Th e analytic model of geographic objects by means of fuzzy fields is developed.We have shown that the 9-intersection model proposed by Egenhofer and Franzosa (19 91) is a special case of the model presented in the paper.
The application of fuzzy Delphi and fuzzy inference system in supplier ranking and selection
Tahriri, Farzad; Mousavi, Maryam; Hozhabri Haghighi, Siamak; Zawiah Md Dawal, Siti
2014-06-01
In today's highly rival market, an effective supplier selection process is vital to the success of any manufacturing system. Selecting the appropriate supplier is always a difficult task because suppliers posses varied strengths and weaknesses that necessitate careful evaluations prior to suppliers' ranking. This is a complex process with many subjective and objective factors to consider before the benefits of supplier selection are achieved. This paper identifies six extremely critical criteria and thirteen sub-criteria based on the literature. A new methodology employing those criteria and sub-criteria is proposed for the assessment and ranking of a given set of suppliers. To handle the subjectivity of the decision maker's assessment, an integration of fuzzy Delphi with fuzzy inference system has been applied and a new ranking method is proposed for supplier selection problem. This supplier selection model enables decision makers to rank the suppliers based on three classifications including "extremely preferred", "moderately preferred", and "weakly preferred". In addition, in each classification, suppliers are put in order from highest final score to the lowest. Finally, the methodology is verified and validated through an example of a numerical test bed.
Designing fuzzy inference system based on improved gradient descent method
Institute of Scientific and Technical Information of China (English)
Zhang Liquan; Shao Cheng
2006-01-01
The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and extrapolating missing rules, by means of confidence measure and the improved gradient descent method. The proposed approach can not only identify fuzzy model, update its parameters and determine optimal output fuzzy sets simultaneously, but also resolve the uncontrollable problem led by the regions that data do not cover. The simulation results show the effectiveness and accuracy of the proposed approach with the classical truck backer-upper control problem verifying.
Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System
Fallah-Ghalhary, G.-A.; Habibi Nokhandan, M.; Mousavi Baygi, M.
2009-04-01
Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly effect". The parameters that are required to predict the rainfall are enormous even for a short period. Soft computing is an innovative approach to construct computationally intelligent systems that are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, 33 years of rainfall data analyzed in khorasan state, the northeastern part of Iran situated at latitude-longitude pairs (31°-38°N, 74°- 80°E). this research attempted to train Fuzzy Inference System (FIS) based prediction models with 33 years of rainfall data. For performance evaluation, the model predicted outputs were compared with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and efficient. The test results using by FIS model showed that the RMSE was obtained 52 millimeter.
Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F
2014-10-15
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (particle size lower than 48.8Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02g adsorbent mass, 10mgL(-1) initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.
Fuzzy Modeling for Uncertainty Nonlinear Systems with Fuzzy Equations
Directory of Open Access Journals (Sweden)
Raheleh Jafari
2017-01-01
Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations by incorporating the fuzzy set theory. In this paper, the fuzzy equations are applied as the models for the uncertain nonlinear systems. The nonlinear modeling process is to find the coefficients of the fuzzy equations. We use the neural networks to approximate the coefficients of the fuzzy equations. The approximation theory for crisp models is extended into the fuzzy equation model. The upper bounds of the modeling errors are estimated. Numerical experiments along with comparisons demonstrate the excellent behavior of the proposed method.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists
Kandasamy, W B Vasantha; Amal, K
2008-01-01
This book introduces the concept of fuzzy super matrices and operations on them. This book will be highly useful to social scientists who wish to work with multi-expert models. Super fuzzy models using Fuzzy Cognitive Maps, Fuzzy Relational Maps, Bidirectional Associative Memories and Fuzzy Associative Memories are defined here. The authors introduce 13 multi-expert models using the notion of fuzzy supermatrices. These models are described with illustrative examples. This book has three chapters. In the first chaper, the basic concepts about super matrices and fuzzy super matrices are recalled. Chapter two introduces the notion of fuzzy super matrices adn their properties. The final chapter introduces many super fuzzy multi expert models.
Sequential Adaptive Fuzzy Inference System Based Intelligent Control of Robot Manipulators
Directory of Open Access Journals (Sweden)
Sahraoui Mustapha
2014-10-01
Full Text Available The present paper is dedicated to the presentation and implementation of an optimized technique allowing an on-line estimation of a robot manipulator parameters to use them in a computed torque control. Indeed the proposed control law needs the exact robot model to give good performances. The complexity of the robot manipulator and its strong non-linearity makes it hard to know its parameters. Therefore, we propose in this paper to use neuro-fuzzy networks Sequential Adaptive Fuzzy Inference System (SAFIS to estimate the parameters of the controlled robot manipulator.
Anderson, H C; Lotfi, A; Westphal, L C; Jang, J R
1998-01-01
The above paper claims that under a set of minor restrictions radial basis function networks and fuzzy inference systems are functionally equivalent. The purpose of this letter is to show that this set of restrictions is incomplete and that, when it is completed, the said functional equivalence applies only to a small range of fuzzy inference systems. In addition, a modified set of restrictions is proposed which is applicable for a much wider range of fuzzy inference systems.
Regional fuzzy chain model for evapotranspiration estimation
Güçlü, Yavuz Selim; Subyani, Ali M.; Şen, Zekai
2017-01-01
Evapotranspiration (ET) is one of the main hydrological cycle components that has extreme importance for water resources management and agriculture especially in arid and semi-arid regions. In this study, regional ET estimation models based on the fuzzy logic (FL) principles are suggested, where the first stage includes the ET calculation via Penman-Monteith equation, which produces reliable results. In the second phase, ET estimations are produced according to the conventional FL inference system model. In this paper, regional fuzzy model (RFM) and regional fuzzy chain model (RFCM) are proposed through the use of adjacent stations' data in order to fill the missing ones. The application of the two models produces reliable and satisfactory results for mountainous and sea region locations in the Kingdom of Saudi Arabia, but comparatively RFCM estimations have more accuracy. In general, the mean absolute percentage error is less than 10%, which is acceptable in practical applications.
Adaptive Neuro-Fuzzy Inference System based control of six DOF robot manipulator
Directory of Open Access Journals (Sweden)
Srinivasan Alavandar
2008-01-01
Full Text Available The dynamics of robot manipulators are highly nonlinear with strong couplings existing between joints and are frequently subjected to structured and unstructured uncertainties. Fuzzy Logic Controller can very well describe the desired system behavior with simple “if-then” relations owing the designer to derive “if-then” rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy. This paper presents the control of six degrees of freedom robot arm (PUMA Robot using Adaptive Neuro Fuzzy Inference System (ANFIS based PD plus I controller. Numerical simulation using the dynamic model of six DOF robot arm shows the effectiveness of the approach in trajectory tracking problems. Comparative evaluation with respect to PID, Fuzzy PD+I controls are presented to validate the controller design. The results presented emphasize that a satisfactory tracking precision could be achieved using ANFIS controller than PID and Fuzzy PD+I controllers
Functional equivalence between radial basis function networks and fuzzy inference systems.
Jang, J R; Sun, C T
1993-01-01
It is shown that, under some minor restrictions, the functional behavior of radial basis function networks (RBFNs) and that of fuzzy inference systems are actually equivalent. This functional equivalence makes it possible to apply what has been discovered (learning rule, representational power, etc.) for one of the models to the other, and vice versa. It is of interest to observe that two models stemming from different origins turn out to be functionally equivalent.
Polynomial Function and Fuzzy Inference for Evaluating the Project Performance under Uncertainty
Directory of Open Access Journals (Sweden)
A.S. Abdel Azeem
2014-12-01
Full Text Available The objectives of this paper are two folds. The first one is to improve the time forecasting produced from the well known Earned Value Management (EVM, using the polynomial function. The time prediction observed from the polynomial model, which is compared against that observed from the most common method for time forecasting (critical path method, is a more accurate (mean absolute percentage of error is less than 2% than that observed from the conventional deterministic forecasting methods (CDFMs. The second is to evaluate and forecast the overall project performance under uncertainty using the fuzzy inference. As the uncertainty is inherent in real life projects, the polynomial function and fuzzy inference model (PFFI can assist the project managers, to estimate the future status of the project in a more robust and reliable way. Two examples are used to illustrate how the new method can be implemented in reality.
Using adaptive network based fuzzy inference system to forecast regional electricity loads
Energy Technology Data Exchange (ETDEWEB)
Ying, Li-Chih [Department of Marketing Management, Central Taiwan University of Science and Technology, 11, Pu-tzu Lane, Peitun, Taichung City 406 (China); Pan, Mei-Chiu [Graduate Institute of Management Sciences, Nanhua University, 32, Chung Keng Li, Dalin, Chiayi 622 (China)
2008-02-15
Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads. (author)
CLASSIFICATION OF MAMMOGRAPHIC MASSES USING FUZZY INFERENCE SYSTEM
Directory of Open Access Journals (Sweden)
K. Divyadarshini
2015-10-01
Full Text Available Computer aided detection (CAD intends to provide assistance to the mammography detection, reducing breast cancer misdiagnosis, thus allowing better diagnosis and more efficient treatments. In this work the task of automatically classifying the mass tissue into Breast Imaging Reporting and Data System (BI-RADS shape categories: round, oval, lobular, irregular and also as benign or malignant is investigated. Geometrical shape and margin features based on maximum and minimum radius of mass are used in this work to classify the masses. These geometric features are found to be good in discriminating regular shapes from irregular shapes. For the purpose of classification, the masses are segmented from the mammogram using gray level thresholding. Finally, the classification is performed using fuzzy inference system. The fuzzy rules are used to construct the generalized fuzzy membership function for classifying the shape and severity of masses. The images were collected from Mammographic Image Analysis Society (MIAS Database and Digital Database for Screening Mammography (DDSM. The experiments were implemented in MATLAB.
Application of fuzzy inference system by Sugeno method on estimating of salt production
Yulianto, Tony; Komariyah, Siti; Ulfaniyah, Nurita
2017-08-01
Salt is one of the most important needs in everyday life. Making traditional salt largely is done by smallholder farmers in addition by manufacturers of industrial salt. factors that affect the production of salt include seawater, soil, water influence and weather conditions including rainfall wind speed and solar radiation or long dry erratic, these conditions obviously affect the salt farmers that will affect the production quantities of salt produced by salt farmers. In this study, the fuzzy logic method is applied to Sugeno fuzzy inference systems to estimate the production of salt by variables - variables that affect it. This study aims to estimate how much production by applying fuzzy inference systems zero-order Sugeno method based on the variable wind speed, solar radiation, rainfall and the amount of production. Retrieval of data obtained from the Air Quality Meteorology and Geophysics. salt farmers in Pamekasan District of Pademawu Village Majungan. Data taken within 2 years per week from June to December of 2014 and 2015. The Sugeno fuzzy logic model in this study using output (consequent) in the form of equation constants (Sugeno models Order zero). Apparently from the research results obtained by the error value most low at 0.0917, so it can be said to be close to zero.
A FUZZY INFERENCE SYSTEM FOR ASSESSMENT OF THE SEVERITY OF THE PEPTIC ULCERS
Directory of Open Access Journals (Sweden)
Kianaz Rezaei
2014-05-01
Full Text Available Peptic ulcer disease is the most common ulcer of an area of the gastro- intestinal tract. The aim of this study is to utilize soft computing techniques to manage uncertainty and imprecision in measurements related to the size, shape of the abnormality. For this, we designed a fuzzy inference system (FIS which emulates the process of human experts in detection and analysis of the peptic ulcer. The proposed approach models the vagueness and uncertainty associated to measurements of small objects in low resolution images In this study, for the first time, we applied soft computing technique based upon fuzzy inference system (FIS for assessment of the severity of the peptic ulcer. Performance results reveal the FIS with maximum accuracy of 98.1%, which reveals superiority of the approach. The intelligent FIS system can help medical experts as a second reader for detection of the peptic ulcer in the decision making process and consequently, improves the treatment process.
Prediction of subsidence risk by FMEA using artificial neural network and fuzzy inference system
Institute of Scientific and Technical Information of China (English)
Rafie Meraj; Samimi Namin Farhad
2015-01-01
Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub-sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal-ysis (FMEA) and fuzzy inference system (FIS). Fuzzy theory will be able to model uncertainties. Fuzzy FMEA provides a tool that can work in a better way with vague concepts and without sufficient informa-tion than conventional FMEA. In this paper, S and D are obtained from fuzzy rules and O is obtained from artificial neural network (ANN). FMEA is performed by developing a fuzzy risk priority number (FRPN). The FRPN for two stations in Tehran No.4 subway line is 3.1 and 5.5, respectively. To investigate the suit-ability of this approach, the predictions by FMEA have been compared with actual data. The results show that this method can be useful in the prediction of subsidence risk in urban tunnels.
Directory of Open Access Journals (Sweden)
Claudia C. Nolasco-Carvalho
2009-02-01
Full Text Available Elaborou-se um mapa digital de solos de uma área na região de Mucugê, BA, com o objetivo de avaliar o uso de geotecnologias na cartografia de solos. A metodologia desenvolvida a partir do modelo de inferência para solos - SoLIM , requer o conhecimento prévio da área por um especialista em mapeamento e está alicerçada na equação dos fatores de formação do solo e no modelo de distribuição dos solos na paisagem. Os dados, advindos do Modelo Digital do Terreno - MDT, da vegetação e da geologia, foram associados ao conhecimento do pedólogo e integrados em ambiente SIG (Sistema de Informações Geográficas sob inferência fuzzy. A modelagem por lógica fuzzy permitiu apontar as incertezas e transições da cobertura pedológica e gerou um mapa digital de solo que, quando comparado com o mapa convencional da área, mostrou menor generalização no domínio de espaços e parâmetros, ou seja, um refinamento da escala, porém a aplicabilidade da metodologia depende da validação de campo e da repetição em outras áreas.A digital soil map was elaborated for an area in the region of Mucugê-BA using data integration derived from a digital elevation model (DEM of the vegetation and geology that was associated with a soil scientist's knowledge and correlated in a GIS environment (Geography Information System under fuzzy inference, as a methodological proposal. The methodology was developed and based on the soil-land inference model - SoLIM, on the soil factor equation and the soil-landscape model. The fuzzy logic is able to simulate the uncertainty and transitions that often appear in pedologic systems. The results show that the methodology allows the generation of digital soil maps with increased scale and to reduce soil classe generalizations in the space and parameter domain. However, this methodology is very dependent upon the soil expert's knowledge and accuracy of the data base. To verify the applicability of the methodology the
Fuzzy linguistic model for interpolation
Energy Technology Data Exchange (ETDEWEB)
Abbasbandy, S. [Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran 14778 (Iran, Islamic Republic of); Department of Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin 34194-288 (Iran, Islamic Republic of); Adabitabar Firozja, M. [Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran 14778 (Iran, Islamic Republic of)
2007-10-15
In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method.
A Fuzzy Neural Model for Face Recognition
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In this paper, a fuzzy neural model is proposed for face recognition. Each rule in the proposed fuzzy neural model is used to estimate one cluster of pattern distribution in a form, which is different from the classical possibilitydensity function. Through self-adaptive learning and fuzzy inference, a confidence value will be assigned to a given pattern to denote the possibility of this pattern's belongingness to some certain class/subject. The architecture of the whole system takes structure of one-class-in-one-network (OCON), which has many advantages such as easy convergence, suitable for distribution application, quickretrieving, and incremental training. Novel methods are used to determine the number of fuzzy rules and initialize fuzzy subsets. The proposed approach has characteristics of quick learning/recognition speed, high recognition accuracy and robustness. The proposed approach can even recognize very low-resolution face images (e.g., 7x6) well that human cannot when the number of subjects is not very large. Experiments on ORL demonstrate the effectiveness of the proposed approachand an average error rate of 3.95% is obtained.
Directory of Open Access Journals (Sweden)
Jinjun Tang
Full Text Available Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN, two learning processes are proposed: (1 a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2 a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE, root mean square error (RMSE, and mean absolute relative error (MARE are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR, instantaneous model (IM, linear model (LM, neural network (NN, and cumulative plots (CP.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)
1997-12-01
This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.
Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.
Ahmadieh, Hajar; Asl, Babak Mohammadzadeh
2017-04-01
We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its
Neuro-fuzzy system modeling based on automatic fuzzy clustering
Institute of Scientific and Technical Information of China (English)
Yuangang TANG; Fuchun SUN; Zengqi SUN
2005-01-01
A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.
Rainfall events prediction using rule-based fuzzy inference system
Asklany, Somia A.; Elhelow, Khaled; Youssef, I. K.; Abd El-wahab, M.
2011-07-01
We are interested in rainfall events prediction by applying rule-based reasoning and fuzzy logic. Five parameters: relative humidity, total cloud cover, wind direction, temperature and surface pressure are the input variables for our model, each has three membership functions. The data used is twenty years METAR data for Cairo airport station (HECA) [1972-1992] 30° 3' 29″ N, 31° 13' 44″ E. and five years METAR data for Mersa Matruh station (HEMM) 31° 20' 0″ N, 27° 13' 0″ E. Different models for each station were constructed depending on the available data sets. Among the overall 243 possibilities we have based our models on one hundred eighteen fuzzy IF-THEN rules and fuzzy reasoning. The output variable which has four membership functions, takes values from zero to one hundred corresponding to the percentage for rainfall events given for every hourly data. We used two skill scores to verify our results, the Brier score and the Friction score. The results are in high agreements with the recorded data for the stations with increasing in output values towards the real time rain events. All implementation are done with MATLAB 7.9.
Landslide Susceptibility Assessment Through Fuzzy Logic Inference System (flis)
Bibi, T.; Gul, Y.; Rahman, A. Abdul; Riaz, M.
2016-09-01
Landslide is among one of the most important natural hazards that lead to modification of the environment. It is a regular feature of a rapidly growing district Mansehra, Pakistan. This caused extensive loss of life and property in the district located at the foothills of Himalaya. Keeping in view the situation it is concluded that besides structural approaches the non-structural approaches such as hazard and risk assessment maps are effective tools to reduce the intensity of damage. A landslide susceptibility map is base for engineering geologists and geomorphologists. However, it is not easy to produce a reliable susceptibility map due to complex nature of landslides. Since 1980s, several mathematical models have been developed to map landslide susceptibility and hazard. Among various models this paper is discussing the effectiveness of fuzzy logic approach for landslide susceptibility mapping in District Mansehra, Pakistan. The factor maps were modified as landslide susceptibility and fuzzy membership functions were assessed for each class. Likelihood ratios are obtained for each class of contributing factors by considering the expert opinion. The fuzzy operators are applied to generate landslide susceptibility maps. According to this map, 17% of the study area is classified as high susceptibility, 32% as moderate susceptibility, 51% as low susceptibility and areas. From the results it is found that the fuzzy model can integrate effectively with various spatial data for landslide hazard mapping, suggestions in this study are hope to be helpful to improve the applications including interpretation, and integration phases in order to obtain an accurate decision supporting layer.
LANDSLIDE SUSCEPTIBILITY ASSESSMENT THROUGH FUZZY LOGIC INFERENCE SYSTEM (FLIS
Directory of Open Access Journals (Sweden)
T. Bibi
2016-09-01
Full Text Available Landslide is among one of the most important natural hazards that lead to modification of the environment. It is a regular feature of a rapidly growing district Mansehra, Pakistan. This caused extensive loss of life and property in the district located at the foothills of Himalaya. Keeping in view the situation it is concluded that besides structural approaches the non-structural approaches such as hazard and risk assessment maps are effective tools to reduce the intensity of damage. A landslide susceptibility map is base for engineering geologists and geomorphologists. However, it is not easy to produce a reliable susceptibility map due to complex nature of landslides. Since 1980s, several mathematical models have been developed to map landslide susceptibility and hazard. Among various models this paper is discussing the effectiveness of fuzzy logic approach for landslide susceptibility mapping in District Mansehra, Pakistan. The factor maps were modified as landslide susceptibility and fuzzy membership functions were assessed for each class. Likelihood ratios are obtained for each class of contributing factors by considering the expert opinion. The fuzzy operators are applied to generate landslide susceptibility maps. According to this map, 17% of the study area is classified as high susceptibility, 32% as moderate susceptibility, 51% as low susceptibility and areas. From the results it is found that the fuzzy model can integrate effectively with various spatial data for landslide hazard mapping, suggestions in this study are hope to be helpful to improve the applications including interpretation, and integration phases in order to obtain an accurate decision supporting layer.
PERFORMANCE COMPARISION OF DIFFERENT ROUTING PROTOCOLS WITH FUZZY INFERENCE SYSTEM IN MANET
Directory of Open Access Journals (Sweden)
Subhrananda Goswami
2015-08-01
Full Text Available An ad hoc wireless network consists of mobile networks which create an underlying architecture for communication without the help of traditional fixed-position routers. There are different protocols for handling the routing in the mobile environment. Routing protocols used in fixed infrastructure networks cannot be efficiently used for mobile ad-hoc networks (MANET, so it requires different protocols. The node moves at different speeds in an independent random form, connected by any number of wireless links, where each node is ready to pass or forward both data and control traffic unrelated to its own use ahead (routing to other nodes in a flexible interdependence of wireless communication in between. In contrast to infrastructure wireless networks, where the communication between network nodes is take place by a special node known as an access point. It is also, in contrast to wired networks in which the routing task is performed by special and specific devices called routers and switches. In this paper, we consider fuzzy inference system, an attempt has been made to present a model using fuzzy logic approach to evaluate and compare three routing protocols i.e. AODV, DSDV and DSR using effective factor of the number of nodes based on 3 outputs of control overhead, delay and PDR (totally fuzzy system with 4 outputs in order to select one of these two routing protocols properly under different conditions and based on need and goal. To show efficiency and truth of fuzzy system, three protocols have been evaluated equally using NS-2 simulator and attempt has been made to prove efficiency of the designed fuzzy system by comparing results of simulation of fuzzy system and NS-2 software.
Hydrograph estimation with fuzzy chain model
Güçlü, Yavuz Selim; Şen, Zekai
2016-07-01
Hydrograph peak discharge estimation is gaining more significance with unprecedented urbanization developments. Most of the existing models do not yield reliable peak discharge estimations for small basins although they provide acceptable results for medium and large ones. In this study, fuzzy chain model (FCM) is suggested by considering the necessary adjustments based on some measurements over a small basin, Ayamama basin, within Istanbul City, Turkey. FCM is based on Mamdani and the Adaptive Neuro Fuzzy Inference Systems (ANFIS) methodologies, which yield peak discharge estimation. The suggested model is compared with two well-known approaches, namely, Soil Conservation Service (SCS)-Snyder and SCS-Clark methodologies. In all the methods, the hydrographs are obtained through the use of dimensionless unit hydrograph concept. After the necessary modeling, computation, verification and adaptation stages comparatively better hydrographs are obtained by FCM. The mean square error for the FCM is many folds smaller than the other methodologies, which proves outperformance of the suggested methodology.
Fuzzy modelling for selecting headgear types.
Akçam, M Okan; Takada, Kenji
2002-02-01
The purpose of this study was to develop a computer-assisted inference model for selecting appropriate types of headgear appliance for orthodontic patients and to investigate its clinical versatility as a decision-making aid for inexperienced clinicians. Fuzzy rule bases were created for degrees of overjet, overbite, and mandibular plane angle variables, respectively, according to subjective criteria based on the clinical experience and knowledge of the authors. The rules were then transformed into membership functions and the geometric mean aggregation was performed to develop the inference model. The resultant fuzzy logic was then tested on 85 cases in which the patients had been diagnosed as requiring headgear appliances. Eight experienced orthodontists judged each of the cases, and decided if they 'agreed', 'accepted', or 'disagreed' with the recommendations of the computer system. Intra-examiner agreements were investigated using repeated judgements of a set of 30 orthodontic cases and the kappa statistic. All of the examiners exceeded a kappa score of 0.7, allowing them to participate in the test run of the validity of the proposed inference model. The examiners' agreement with the system's recommendations was evaluated statistically. The average satisfaction rate of the examiners was 95.6 per cent and, for 83 out of the 85 cases, 97.6 per cent. The majority of the examiners (i.e. six or more out of the eight) were satisfied with the recommendations of the system. Thus, the usefulness of the proposed inference logic was confirmed.
PHONETIC CLASSIFICATION BY ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM AND SUBTRACTIVE CLUSTERING
Directory of Open Access Journals (Sweden)
Samiya Silarbi
2014-09-01
Full Text Available This paper presents the application of Adaptive Network Based Fuzzy Inference System ANFIS on speech recognition. The primary tasks of fuzzy modeling are structure identification and parameter optimization, the former determines the numbers of membership functions and fuzzy if-then rules while the latter identifies a feasible set of parameters under the given structure. However, the increase of input dimension, rule numbers will have an exponential growth and there will cause problem of “rule disaster”. Thus, determination of an appropriate structure becomes an important issue where subtractive clustering is applied to define an optimal initial structure and obtain small number of rules. The appropriate learning algorithm is performed on TIMIT speech database supervised type, a pre-processing of the acoustic signal and extracting the coefficients MFCCs parameters relevant to the recognition system. Finally, hybrid learning combines the gradient decent and least square estimation LSE of parameters network. The results obtained show the effectiveness of the method in terms of recognition rate and number of fuzzy rules generated.
Lo, Benjamin W Y; Macdonald, R Loch; Baker, Andrew; Levine, Mitchell A H
2013-01-01
The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
A nonlinear combination forecasting method based on the fuzzy inference system
Institute of Scientific and Technical Information of China (English)
董景荣; YANG; Jun; 等
2002-01-01
It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones,However,the literature on combining forecasts has almost exclusively focused on linear combining forecasts.In this paper,a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series.Furthermore,the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system.Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.
Institute of Scientific and Technical Information of China (English)
Qi Zhidong; Zhu Xinjian; Cao Guangyi
2006-01-01
Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.
Status Evaluation of Loose of Jig Bed Based on Fuzzy Inference System
Institute of Scientific and Technical Information of China (English)
CHENG Jian; GUO Yi-nan; SUN Wei; MU Jun-ying
2003-01-01
This paper mainly describes that loose of jig bed affects jig's separation effect, and the corresponding fuzzy rules were built. Using the evaluating index of jig's separation effect--imperfection (I) and total misplaced material (Cz), it evaluates status of loose of jig bed by fuzzy inference system. Experimental simulation and applications in practice prove the method's feasibility.
Reduction of Data Sparsity in Collaborative Filtering based on Fuzzy Inference Rules
Directory of Open Access Journals (Sweden)
Atisha Sachan
2013-06-01
Full Text Available Collaborative filtering Recommender system plays a very demanding and significance role in this era of internet information and of course e commerce age. Collaborative filtering predicts user preferences from past user behaviour or user-item relationships. Though it has many advantages it also has some limitations such as sparsity, scalability, accuracy, cold start problem etc. In this paper we proposed a method that helps in reducing sparsity to enhance recommendation accuracy. We developed fuzzy inference rules which is easily to implement and also gives better result. A comparison experiment is also performing with two previous methods, Traditional Collaborative Filtering (TCF and Hybrid User Model Technique (HUMCF.
Fuzzy inference systems with no any base and linearly parameter growth
Institute of Scientific and Technical Information of China (English)
Shitong WANG; Korris F. L. CHUNG; Jieping LU; Bin HAN; Dewen HU
2004-01-01
A class of new fuzzy inference systems New-FISs is presented. Compared with the standard fuzzy system,New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality": there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables, resulting in surprisingly reduced computational complexity and being especially suitable for applications, where the complexity is of the first importance with respect to the approximation accuracy.
Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.
Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir
2015-01-01
Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.
FUZZY EPQ INVENTORY MODELS WITH BACKORDER
Institute of Scientific and Technical Information of China (English)
Xiaobin WANG; Wansheng TANG
2009-01-01
This paper considers the economic production quantity (EPQ) problem with backorder in which the setup cost, the holding cost and the backorder cost are characterized as fuzzy variables, respectively. Following expected value criterion and chance constrained criterion, a fuzzy expected value model (EVM) and a chance constrained programming (CCP) model are constructed. Then fuzzy simulations are employed to estimate the expected value of fuzzy variable and α-level minimal average cost. In order to solve the CCP model, a particle swarm optimization (PSO) algorithm based on the fuzzy simulation is designed. Finally, the effectiveness of PSO algorithm based on the fuzzy simulation is illustrated by a numerical example.
PENERAPAN FUZZY INFERENCE SYSTEM TAKAGI-SUGENO-KANG PADA SISTEM PAKAR DIAGNOSA PENYAKIT GIGI
Directory of Open Access Journals (Sweden)
Lutfi Salisa Setiawati
2016-04-01
Full Text Available Generally, expert system only show types of disease after user choose symptoms. In the study is done the addition of disease severity level. The method applied in the calculation of the severity is a method of Fuzzy Inference System Takagi-Sugeno-Kang (Method of Sugeno. This study attempts to know whether method Fuzzy Inference System Takagi-Sugeno-Kang can work for expert system in giving the diagnosis diseases of the teeth. The result of this research or severity for diseases of pulpitis reversible 38,53%, pulpitis irreversible 59,64%, periodontitis 69,62%, acute periodontitis 51,43%, gingivitis 45.5%, acute pericoronitis 53,93%, sub acute pericoronitis 52,14%, chronic pericoronitis 46,05%, caries dentist an early stage 37,61%, caries dentist toward an advanced stage 43,89%, caries dentist an advanced stage 51,76%, gangrene pulpa 42,5%, polyps pulpa 56,43%, and periostitis 58,55%. A conclusion that was obtained from the study that is a method of Fuzzy Inference System Takagi-Sugeno-Kang could be applied to expert system of the teeth. Key Word: Teeth , Expert System , Expert System Teeth , Fuzzy Logic , Fuzzy Inference System , Takagi-Sugeno-Kang , Fuzzy Sugeno Pada umumnya, istem pakar hanya menampilkan jenis penyakit setelah user memilih gejala-gejala. Pada penelitian ini dilakukan penambahan tingkat keparahan penyakit. Metode yang diterapkan dalam perhitungan tingkat keparahan ini yaitu Metode Fuzzy Inference System Takagi-Sugeno-Kang (Metode Sugeno. Penelitian ini bertujuan untuk mengetahui apakah metode Fuzzy Inference System Takagi-Sugeno-Kang dapat diterapkan pada sistem pakar dalam memberikan diagnosa penyakit gigi. Hasil dari penelitian ini didapatkan tingkat keparahan untuk penyakit Pulpitis Reversibel 38,53%, Pulpitis Irreversibel 59,64%, Periodontitis 69,62%, Periodontitis Akut 51,43%, Gingivitis 45,5%, Perikoronitis Akut 53,93%, Perikoronitis Sub Akut 52,14%, Perikoronitis Kronis 46,05%, Karies Denties Tahap Awal 37,61%, Karies
Automated interpretation of LIBS spectra using a fuzzy logic inference engine.
Hatch, Jeremy J; McJunkin, Timothy R; Hanson, Cynthia; Scott, Jill R
2012-03-01
Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. Fuzzy logic inference rules were developed using methodology that includes data mining methods and operator expertise to differentiate between various copper-containing and stainless steel alloys as well as unknowns. Results using the fuzzy logic inference engine indicate a high degree of confidence in spectral assignment.
Prediction of Earth rotation parameters by fuzzy inference systems
Akyilmaz, O.; Kutterer, H.
2004-09-01
The short-term prediction of Earth rotation parameters (ERP) (length-of-day and polar motion) is studied up to 10 days by means of ANFIS (adaptive network based fuzzy inference system). The prediction is then extended to 40 days into the future by using the formerly predicted values as input data. The ERP C04 time series with daily values from the International Earth Rotation Service (IERS) serve as the data base. Well-known effects in the ERP series, such as the impact of the tides of the solid Earth and the oceans or seasonal variations of the atmosphere, were removed a priori from the C04 series. The residual series were used for both training and validation of the network. Different network architectures are discussed and compared in order to optimize the network solution. The results of the prediction are analyzed and compared with those of other methods. Short-term ERP values predicted by ANFIS show root-mean-square errors which are equal to or even lower than those from the other considered methods. The presented method is easy to use.
FUZZY INFERENCE BASED LEAK ESTIMATION IN WATER PIPELINES SYSTEM
Directory of Open Access Journals (Sweden)
N. Lavanya
2015-01-01
Full Text Available Pipeline networks are the most widely used mode for transporting fluids and gases around the world. Leakage in this pipeline causes harmful effects when the flowing fluid/gas is hazardous. Hence the detection of leak becomes essential to avoid/minimize such undesirable effects. This paper presents the leak detection by spectral analysis methods in a laboratory pipeline system. Transient in the pressure signal in the pipeline is created by opening and closing the exit valve. These pressure variations are captured and power spectrum is obtained by using Fast Fourier Transform (FFT method and Filter Diagonalization Method (FDM. The leaks at various positions are simulated and located using these methods and the results are compared. In order to determine the quantity of leak a 2 × 1 fuzzy inference system is created using the upstream and downstream pressure as input and the leak size as the output. Thus a complete leak detection, localization and quantification are done by using only the pressure variations in the pipeline.
DEFF Research Database (Denmark)
Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt
for decision support and multidimensional interval analysis. First, the original approach is extended using fuzzy set theory which makes it possible to handle both non-interval and interval data. Second, we re-examine the ranking procedure based on semi-equivalence classes and suggest a new complementary...
Kim, Chan Moon; Parnichkun, Manukid
2017-02-01
Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system (k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.
The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...
A CAD MODEL FOR FUZZY CONCURRENT TOLERANCE
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Research situation of concurrent tolerance design has been analyzed. As fuzzy factors are objective and unavoidable in concurrent tolerance design, fuzzy optimization theory is applied in the design. A new mathematical model of concurrent tolerance design is constructed.
Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam
2016-05-01
Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations.
UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID
Directory of Open Access Journals (Sweden)
Ali Moltajaei Farid
2013-01-01
Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV. First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.
Heddam, Salim
2014-01-01
In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.
Constraint-Based Fuzzy Models for an Environment with Heterogeneous Information-Granules
Institute of Scientific and Technical Information of China (English)
K. Robert Lai; Yi-Yuan Chiang
2006-01-01
A novel framework for fuzzy modeling and model-based control design is described. Based on the theory of fuzzy constraint processing, the fuzzy model can be viewed as a generalized Takagi-Sugeno (TS) fuzzy model with fuzzy functional consequences. It uses multivariate antecedent membership functions obtained by granular-prototype fuzzy clustering methods and consequent fuzzy equations obtained by fuzzy regression techniques. Constrained optimization is used to estimate the consequent parameters, where the constraints are based on control-relevant a priori knowledge about the modeled process. The fuzzy-constraint-based approach provides the following features. 1) The knowledge base of a constraint-based fuzzy model can incorporate information with various types of fuzzy predicates. Consequently, it is easy to provide a fusion of different types of knowledge. The knowledge can be from data-driven approaches and/or from controlrelevant physical models. 2) A corresponding inference mechanism for the proposed model can deal with heterogeneous information granules. 3) Both numerical and linguistic inputs can be accepted for predicting new outputs.The proposed techniques are demonstrated by means of two examples: a nonlinear function-fitting problem and the well-known Box-Jenkins gas furnace process. The first example shows that the proposed model uses fewer fuzzy predicates achieving similar results with the traditional rule-based approach, while the second shows the performance can be significantly improved when the control-relevant constraints are considered.
Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed
2016-06-01
In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.
Predicting Packet Transmission Data over IP Networks Using Adaptive Neuro-Fuzzy Inference Systems
Directory of Open Access Journals (Sweden)
Samira Chabaa
2009-01-01
Full Text Available Problem statement: The statistical modeling for predicting network traffic has now become a major tool used for network and is of significant interest in many domains: Adaptive application, congestion and admission control, wireless, network management and network anomalies. To comprehend the properties of IP-network traffic and system conditions, many kinds of reports based on measured network traffic data have been reported by several researchers. The goal of the present contribution was to complement these previous researches by predicting network traffic data. Approach: The Adaptive Neuro-Fuzzy Inference System (ANFIS was realized by an appropriate combination of fuzzy systems and neural networks. It was applied in different applications which have been increased in recent years and have multidisciplinary in several domains with a high accuracy. For this reason, we used a set of input and output data of packet transmission over Internet Protocol (IP networks as input and output of ANFIS to develop a model for predicting data. Results: ANFIS was compared with some existing model based on Volterra system with Laguerre functions. The obtained results demonstrate that the sequences of generated values have the same statistical characteristics as those really observed. Furthermore, the relative error using ANFIS model was better than this obtained by Volterra system model. Conclusion: The developed model fits well real data and can be used for predicting purpose with a high accuracy.
APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IN INTEREST RATES EFFECTS ON STOCK RETURNS
Directory of Open Access Journals (Sweden)
ELEFTHERIOS GIOVANIS
2011-02-01
Full Text Available In the current study we examine the effects of interest rate changes on common stock returns of Greek banking sector. We examine theGeneralized Autoregressive Heteroskedasticity (GARCH process and an Adaptive Neuro-Fuzzy Inference System (ANFIS. The conclusions of our findings are that the changes of interest rates, based on GARCH model, are insignificant on common stock returns during the period we examine. On the other hand, with ANFIS we can get the rules and in each case we can have positive or negative effects depending on the conditions and the firing rules of inputs, which information is not possible to be retrieved with the traditional econometric modelling. Furthermore we examine the forecasting performance of both models and we conclude that ANFIS outperforms GARCH model in both in-sample and out-of-sample periods.
Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions
Khoury, Mehdi; Liu, Honghai
This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.
Directory of Open Access Journals (Sweden)
Sivagowry shathesh
2015-11-01
Full Text Available To unravel hidden relationships and diagnose diseases efficiently, Data Mining along with Soft Computing Techniques are used in several researches. Cardio Vascular Disease is a condition which leads to severe disability and death. Since the diagnosis involves vague symptoms and tedious procedures, diagnosis is usually time-consuming and erroneous. For the healthier analysis and treatment of heart disease based on brutality, an Intellectual, accurate and proficient investigative system is needed. For diagnosing heart disease with improved effectiveness, an Intelligent Fuzzy Inference System is needed. This paper illustrates how Fuzzy Inference System is used to envisage the severity of disease by constructing an effective Fuzzy Rule Base. It is also proved that a precision of 95.23% is obtained when Fuzzy System is used in severity prediction
Energy Technology Data Exchange (ETDEWEB)
Choi, W.K.; Akizuki, K. (Waseda Univ., Tokyo (Japan)); Lee, H.H. (Fukuoka Inst. of Tech., Fukuoka (Japan))
1991-05-20
The target of voice recognition is to recognize continuous speech which is effective for speech recognition of unspecified persons. As a new matching method, the variations of feature parameters of speakers are represented as fuzzy variables to express the variation by membership functions. It is a new pattern matching method of fuzzy inference using feature parameters, fuzzy relation and synthesis of each formant, and the fuzzy rule. It is a recognition method for the inference of best formant which matches the fact by providing each characteristic quantity and fuzzy rule for composite calculation. For consonant recognition, pitch, logarithmic energies, zero crossing rates, etc. are used which represent features of each formant. KOSRES 2, recognition system for continuous Korean speech, was structured using this method which was subjected to recognition experiments on continuous Korean speech, and the recognition method by fuzzy inference is found to be effective for speech recognition of unspecified persons. 8 refs., 9 figs., 3 tabs.
A novel prediction method for back pressure based on fuzzy inference theory
Chen, Guanghua; Zhang, Kunting; Qi, Hongyuan; Nan, Bingshen
2017-01-01
In order to solve the problem of back pressure set unreasonable in direct air-cooling unit, a back-pressure-fuzzy-inference machine is established in this paper, of which the environmental temperature and wind speed are the inputs, and the optimal back pressure is the output. The feasibility of the novel method is verified by simulation and experimental results, and the accuracy of back pressure fuzzy prediction can satisfy the operating requirements.
Selected Aircraft Throttle Controller With Support Of Fuzzy Expert Inference System
Directory of Open Access Journals (Sweden)
Żurek Józef
2014-12-01
Full Text Available The paper describes Zlin 143Lsi aircraft engine work parameters control support method – hourly fuel flow as a main factor under consideration. The method concerns project of aircraft throttle control support system with use of fuzzy logic (fuzzy inference. The primary purpose of the system is aircraft performance optimization, reducing flight cost at the same time and support proper aircraft engine maintenance. Matlab Software and Fuzzy Logic Toolbox were used in the project. Work of the system is presented with use of twenty test samples, five of them are presented graphically. In addition, system control surface, included in the paper, supports system all work range analysis.
Exploration of the Adaptive Neuro - Fuzzy Inference System Architecture and its Applications
Directory of Open Access Journals (Sweden)
Okereke Eze Aru
2016-09-01
Full Text Available In this paper we exhibited an architecture and essential learning process basic in fuzzy inference system and adaptive neuro fuzzy inference system which is a hybrid network implemented in framework of adaptive network. In genuine figuring environment, soft computing techniques including neural network, fuzzy logic algorithms have been generally used to infer a real choice utilizing given input or output information traits, ANFIS can build mapping taking into account both human learning and hybrid algorithms. This study includes investigation of ANFIS methodology. ANFIS procedure is utilized to display nonlinear functions, to control a standout amongst the most essential parameters of the impelling machine and anticipate a turbulent time arrangement, all yielding more viable, quicker result.
Chen, Ho-Wen; Chang, Ni-Bin; Yu, Ruey-Fang; Huang, Yi-Wen
2009-10-01
This paper presents a neural-fuzzy inference approach to identify the land use and land cover (LULC) patterns in large urban areas with the 8-meter resolution of multi-spectral images collected by Formosat-2 satellite. Texture and feature analyses support the retrieval of fuzzy rules in the context of data mining to discern the embedded LULC patterns via a neural-fuzzy inference approach. The case study for Taichung City in central Taiwan shows the application potential based on five LULC classes. With the aid of integrated fuzzy rules and a neural network model, the optimal weights associated with these achievable rules can be determined with phenomenological and theoretical implications. Through appropriate model training and validation stages with respect to a groundtruth data set, research findings clearly indicate that the proposed remote sensing technique can structure an improved screening and sequencing procedure when selecting rules for LULC classification. There is no limitation of using broad spectral bands for category separation by this method, such as the ability to reliably separate only a few (4-5) classes. This normalized difference vegetation index (NDVI)-based data mining technique has shown potential for LULC pattern recognition in different regions, and is not restricted to this sensor, location or date.
Directory of Open Access Journals (Sweden)
Mohammad Subhi Al-batah
2014-01-01
Full Text Available To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL and high-grade squamous intraepithelial lesion (HSIL. The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.
Prediction study on the degeneration of lithium-ion battery based on fuzzy inference system
Shi, Jian Ping
2017-07-01
The degradation degree prediction of lithium-ion battery has been studied through experimental data. Characterization parameters on the degradation degree of lithium-ion battery were deduced under consideration of the internal and external factors. The analysis of discrete degree was proposed to depict the degradation degree for lithium-ion battery. Furthermore, based on fuzzy inference system (FIS), the predicted model of the degradation degree for lithium-ion battery was built and its output was defined as the degenerate coefficient β, β ∈ [0, 1]. Finally, by learning, training and simulating, the FIS model has been validated to be reliable and applicable in prediction on the degradation degree of lithium-ion battery. The simulation results show that the degradation degree of lithium-ion battery is more serious when β is closer to 1, and the degradation degree is lighter when β is closer to 0.
Fuzzy Content-Based Retrieval in Image Databases.
Wu, Jian Kang; Narasimhalu, A. Desai
1998-01-01
Proposes a fuzzy-image database model and a concept of fuzzy space; describes fuzzy-query processing in fuzzy space and fuzzy indexing on complete fuzzy vectors; and uses an example image database, the computer-aided facial-image inference and retrieval system (CAFIIR), for explanation throughout. (Author/LRW)
Fuzzy Stochastic Optimization Theory, Models and Applications
Wang, Shuming
2012-01-01
Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...
A FUZZY FILTERING MODEL FOR CONTOUR DETECTION
Directory of Open Access Journals (Sweden)
T.C. Rajakumar
2011-04-01
Full Text Available Contour detection is the basic property of image processing. Fuzzy Filtering technique is proposed to generate thick edges in two dimensional gray images. Fuzzy logic is applied to extract value for an image and is used for object contour detection. Fuzzy based pixel selection can reduce the drawbacks of conventional methods(Prewitt, Robert. In the traditional methods, filter mask is used for all kinds of images. It may succeed in one kind of image but fail in another one. In this frame work the threshold parameter values are obtained from the fuzzy histogram of the input image. The Fuzzy inference method selects the complete information about the border of the object and the resultant image has less impulse noise and the contrast of the edge is increased. The extracted object contour is thicker than the existing methods. The performance of the algorithm is tested with Peak Signal Noise Ratio(PSNR and Complex Wavelet Structural Similarity Metrics(CWSSIM.
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
FUZZY MODELLING OF A NETWORK DENIAL OF SERVICE (DOS ATTACK PHENOMENON.
Directory of Open Access Journals (Sweden)
IHEKWEABA. OGECHI
2013-04-01
Full Text Available This paper presents the fuzzy modeling of a network Denial of Service (DoS attack characteristics. Conventional methods for achieving same purpose were showcased. Also, the need for a fuzzy logic approach as well as an improved mechanism for generating the fuzzy inference rules were outlined. Further, the paper discusses the basic concept of fuzzy logic, fuzzy systems and reasons for their adoption in modern control operations. DoS attack detection, using some basic traffic characteristics: bitrates, entropy and Hurst experiment as it’s inputs, was x-rayed. Here, an attack trace file collected atthe edge router of the Computer Science Department, University of California Los Angeles was used to develop the fuzzy inference model.The data set was partitioned into a training dataset and a testing dataset. The fuzzy concept learning system (FCLS algorithm was used for constructing the fuzzy decision tree, using the trace files.Inference rules were then generated from the constructed decision tree. The simulation and evaluation of the fuzzy model was performed with the testing dataset.
Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.
2016-02-01
All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.
Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.
2016-11-01
All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.
Directory of Open Access Journals (Sweden)
Li-Ching Lin Hsien-Kuo Chang
2008-01-01
Full Text Available The paper presents an adaptive neuro fuzzy inference system for predicting sea level considering tide-generating forces and oceanic thermal expansion assuming a model of sea level dependence on sea surface temperature. The proposed model named TGFT-FN (Tide-Generating Forces considering sea surface Temperature and Fuzzy Neuro-network system is applied to predict tides at five tide gauge sites located in Taiwan and has the root mean square of error of about 7.3 - 15.0 cm. The capability of TGFT-FN model is superior in sea level prediction than the previous TGF-NN model developed by Chang and Lin (2006 that considers the tide-generating forces only. The TGFT-FN model is employed to train and predict the sea level of Hua-Lien station, and is also appropriate for the same prediction at the tide gauge sites next to Hua-Lien station.
Prediksi Penjualan Barang Menggunakan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS
Directory of Open Access Journals (Sweden)
Allyna Virrayyani
2016-12-01
Full Text Available Prediksi penjualan barang merupakan salah satu cara untuk menjaga stabilitas penjualan barang. Hasil prediksi yang diperoleh dapat dijadikan sebagai pertimbangan untuk mengambil keputusan dalam perencanaan manajemen bisnis. Salah satu metode yang dapat digunakan untuk prediksi adalah Adaptive Neuro-Fuzzy Inference System (ANFIS. Di dalam penelitian ini, ANFIS diimplementasikan dalam sebuah aplikasi sistem prediksi penjualan barang. Prosedur prediksi menggunakan analisis runtun waktu. Aturan ANFIS menggunakan model fuzzy Takagi-Sugeno dan fungsi keanggotaan tipe Generalized bell dengan 2 data masukan untuk 1 data target. Dari hasil pelatihan dan pengujian ANFIS untuk penjualan Beras Delanggu Raja, diperoleh nilai Mean Absolute Persentage (MAPE pelatihan sebesar 9.4180332828% dan diperoleh nilai MAPE pengujian sebesar 7.5343642644%. Hasil MAPE pengujian tersebut kurang dari batas toleransi error, yaitu 20 %. Batas toleransi tersebut berdasarkan penafsiran Batey dan Friedrich di mana MAPE < 10% merupakan perkiraan yang sangat baik dan 10% < MAPE < 20% merupakan perkiraan yang baik. ANFIS berhasil memprediksi penjualan Beras Delanggu Raja pada bulan yang akan datang dengan total 4944. Aplikasi sistem telah diuji menggunakan pengujian black-box. Seluruh prosedur pengujian dinyatakan berhasil.
Ling, Steve S H; Nguyen, Hung T
2011-03-01
Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures, and even death. It is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemic monitor is a noninvasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in type 1 diabetes mellitus patients (T1DM). Based on heart rate (HR), corrected QT interval of the ECG signal, change of HR, and the change of corrected QT interval, we develop a genetic algorithm (GA)-based multiple regression with fuzzy inference system (FIS) to classify the presence of hypoglycemic episodes. GA is used to find the optimal fuzzy rules and membership functions of FIS and the model parameters of regression method. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes is associated with HRs and corrected QT intervals. The overall data were organized into a training set (eight patients) and a testing set (another eight patients) randomly selected. The results show that the proposed algorithm performs a good sensitivity with an acceptable specificity.
Fuzzy inference game approach to uncertainty in business decisions and market competitions.
Oderanti, Festus Oluseyi
2013-01-01
The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments.
A novel fuzzy logic inference system for decision support in weaning from mechanical ventilation.
Kilic, Yusuf Alper; Kilic, Ilke
2010-12-01
Weaning from mechanical ventilation represents one of the most challenging issues in management of critically ill patients. Currently used weaning predictors ignore many important dimensions of weaning outcome and have not been uniformly successful. A fuzzy logic inference system that uses nine variables, and five rule blocks within two layers, has been designed and implemented over mathematical simulations and random clinical scenarios, to compare its behavior and performance in predicting expert opinion with those for rapid shallow breathing index (RSBI), pressure time index and Jabour' weaning index. RSBI has failed to predict expert opinion in 52% of scenarios. Fuzzy logic inference system has shown the best discriminative power (ROC: 0.9288), and RSBI the worst (ROC: 0.6556) in predicting expert opinion. Fuzzy logic provides an approach which can handle multi-attribute decision making, and is a very powerful tool to overcome the weaknesses of currently used weaning predictors.
Institute of Scientific and Technical Information of China (English)
NURWAHA Deogratias; WANG Xin-hou
2008-01-01
This paper presents a comparison study of two models for predicting the strength of rotor spun cotton yarns from fiber properties. The adaptive neuro-fuzzy system inference (ANFIS) and Multiple Linear Regression models are used to predict the rotor spun yarn strength. Fiber properties and yarn count are used as inputs to train the two models and the count-strength-product (CSP) was the target. The predictive performances of the two models are estimated and compared. We found that the ANFIS has a better predictive power in comparison with linear multipleregression model. The impact of each fiber property is also illustrated.
Institute of Scientific and Technical Information of China (English)
齐玉东; 丁通; 杨松
2014-01-01
为模拟驾驶员在行驶过程中处理不确定信息的能力，并解决以往微观交通仿真中自由行驶与跟驰状态相互转换时的不平滑问题，对将2种行为综合起来的车速决策行为建立模糊推理（fuzzy inference system，FIS）模型。提出了一种隶属度函数参数化设计方法来解决FIS模型的标定问题。以车头时距、相对速度、期望速度差作为输入，加速度作为输出，结合专家经验构建模糊规则，建立了FIS模型。采用美国公路署NGSIM（next generation simulation）项目免费提供的车辆行驶数据，在对数据筛选、预处理的基础上，通过对驾驶员反应时间标定、期望车速设定，构造了模型的输入输出数据，并对模型参数利用遗传算法进行了标定。标定后的FIS模型对实际行驶数据有良好的拟合精度；通过想定实验，证明在模型较好地解决了状态转换的不平滑问题；最后对模型在跟驰状态下表现与GM模型进行了比较，结果表明标定后的FIS模型略优些，说明本文建立的参数化车速决策FIS 模型具有良好的实用价值和应用前景。%To simulate the driver’s ability to deal with uncertainty and solve the unsmooth problem in the driving state transformation between free-traveling and car-following during microscopic traffic simulation, the fuzzy inference system (FIS )was introduced to model the driver’s speed decision-making behavior which integrated the free-traveling and car-following behavior.A new way to calibrate the FIS model by pa-rameterizing the membership function was proposed.The inputs of the FIS mode are difference between ve-locity and desired speed,headway and relative velocity.The output is acceleration.The NGSIM (next generation simulation)data was used to calibrate and evaluate the model.With the analysis and pretreat-ment of NGSIMdata,drivers’reaction time was calibrated,and the desired speed of different vehicle
Inference of S-wave velocities from well logs using a Neuro-Fuzzy Logic (NFL) approach
Aldana, Milagrosa; Coronado, Ronal; Hurtado, Nuri
2010-05-01
The knowledge of S-wave velocity values is important for a complete characterization and understanding of reservoir rock properties. It could help in determining fracture propagation and also to improve porosity prediction (Cuddy and Glover, 2002). Nevertheless the acquisition of S-wave velocity data is rather expensive; hence, for most reservoirs usually this information is not available. In the present work we applied a hybrid system, that combines Neural Networks and Fuzzy Logic, in order to infer S-wave velocities from porosity (φ), water saturation (Sw) and shale content (Vsh) logs. The Neuro-Fuzzy Logic (NFL) technique was tested in two wells from the Guafita oil field, Apure Basin, Venezuela. We have trained the system using 50% of the data randomly taken from one of the wells, in order to obtain the inference equations (Takani-Sugeno-Kang (TSK) fuzzy model). Equations using just one of the parameters as input (i.e. φ, Sw or Vsh), combined by pairs and all together were obtained. These equations were tested in the whole well. The results indicate that the best inference (correlation between inferred and experimental data close to 80%) is obtained when all the parameters are considered as input data. An increase of the equation number of the TSK model, when one or just two parameters are used, does not improve the performance of the NFL. The best set of equations was tested in a nearby well. The results suggest that the large difference in the petrophysical and lithological characteristics between these two wells, avoid a good inference of S-wave velocities in the tested well and allowed us to analyze the limitations of the method.
Compound fuzzy model for thermal performance of refrigeration compressors
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The fuzzy method is introduced to the calculation of thermal performance of refrigeration compressors. A compound model combining classical thermodynamic theory and fuzzy theory is presented and compared with a simple fuzzy model without classical thermodynamic fundamentals. Case study of refrigeration compressors shows that the compound fuzzy model and the simple fuzzy model are both more efficient than the classical thermodynamic method. However, the compound fuzzy model is of better precision and adaptability.
Indian Academy of Sciences (India)
ANUP KUMAR RAJAK; MALAY NIRAJ; SHALENDRA KUMAR
2016-10-01
In genuine industrial case, problems are inescapable and pose enormous challenges to incorporate accurate sustainability factors into supplier selection. In this present study, three different primarily based multicriteria decision making fuzzy models have been compared with their deterministic version so as to resolve fuzzy prioritization problems. The developed model applies AHP, TOPSIS and fuzzy inference system (FIS)using a MATLAB toolbox to effectively analyze the interdependencies between sustainability criteria and select the best sustainable supplier in the fuzzy environment, while capturing all objective criteria. A typical supplier A4 has been awarded the most suitable supplier with 0.386 composite relative weights of AHP, relative closeness to ideal solution 0.7154 and normalized score index 0.219 FIS model using MATLAB toolbox.
Markowitz portfolio optimization model employing fuzzy measure
Ramli, Suhailywati; Jaaman, Saiful Hafizah
2017-04-01
Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.
Institute of Scientific and Technical Information of China (English)
LIU Fei; JIANG Pingkai; LEI Qingquan; ZHANG Li; SU Wenqun
2013-01-01
Cables that have been in service for over 20 years in Shanghai,a city with abundant surface water,failed more frequently and induced different cable accidents.This necessitates researches on the insulation aging state of cables working in special circumstances.We performed multi-parameter tests with samples from about 300 cable lines in Shanghai.The tests included water tree investigation,tensile test,dielectric spectroscopy test,thermogravimetric analysis (TGA),fourier transform infrared spectroscopy (FTIR),and electrical aging test.Then,we carried out regression analysis between every two test parameters.Moreover,through two-sample t-Test and analysis of variance (ANOVA) of each test parameter,we analyzed the influences of cable-laying method and sampling section on the degradation of cable insulation respectively.Furthermore,the test parameters which have strong correlation in the regression analysis or significant differences in the t-Test or ANOVA analysis were determined to be the ones identifying the XLPE cable insulation aging state.The thresholds for distinguishing insulation aging states had been also obtained with the aid of statistical analysis and fuzzy clustering.Based on the fuzzy inference,we established a cable insulation aging diagnosis model using the intensity transfer method.The results of regression analysis indicate that the degradation of cable insulation accelerates as the degree of in-service aging increases.This validates the rule that the increase of microscopic imperfections in solid material enhances the dielectric breakdown strength.The results of the two-sample t-Test and the ANOVA indicate that the direct-buried cables are more sensitive to insulation degradation than duct cables.This confirms that the tensile strength and breakdown strength are reliable functional parameters in cable insulation evaluations.A case study further indicates that the proposed diagnosis model based on the fuzzy inference can reflect the comprehensive
Fuzzy Entropy： Axiomatic Definition and Neural Networks Model
Institute of Scientific and Technical Information of China (English)
QINGMing; CAOYue; HUANGTian-min
2004-01-01
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.
Multi-factor high-order intuitionistic fuzzy time series forecasting model
Institute of Scientific and Technical Information of China (English)
Yanan Wang; Yingjie Lei; Yang Lei; Xiaoshi Fan
2016-01-01
Fuzzy sets theory cannot describe the neutrality degree of data, which has largely limited the objectivity of fuzzy time series in uncertain data forecasting. With this regard, a multi-factor high-order intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to get unequal intervals, and a more objective technique for ascertaining member-ship and non-membership functions of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on multidimen-sional intuitionistic fuzzy modus ponens inference are established. Final y, contrast experiments on the daily mean temperature of Beijing are carried out, which show that the novel model has a clear advantage of improving the forecast accuracy.
Fuzzy Modeling, Tracking Control and Synchronization of the Rossler's Chaotic System
Institute of Scientific and Technical Information of China (English)
方建安; 范丹丹
2004-01-01
In this paper, a novel method to model, track control and synchronize the Rossler's chaotic system is proposed. The fuzzy logical system is used so that the fuzzy inference rule is transferred into a type of variable coef ficient nonlinear ordinary differential equation. Consequently the model of the chaotic system is obtained. Then a fuzzy tracking control and a fuzzy synchronization for chaotic systems is proposed as well. First, a known tracking control for the Rossler's system is used in this paper. We represent the Rossler's chaotic and control systems into fuzzy inference rules. Then the variable coefficient nonlinear ordinary differential equation is also got. Simulation results show that such an approach is effective and has a high precision.
DEFF Research Database (Denmark)
Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt
This paper extends the Weighted Overlap Dominance (WOD) model (initially presented in J.L. Hougaard, K. Nielsen. Weighted Overlap Dominance - A procedure for interactive selection on multidimensional interval data. Applied Mathematical Modelling 35, 2011, 3958 - 3969), as an outranking approach...
Construction of Fuzzy Map for Autonomous Mobile Robots Based on Fuzzy Confidence Model
Directory of Open Access Journals (Sweden)
Jung-Fu Hou
2014-01-01
Full Text Available This paper presents the use of fuzzy models to explicitly consider sensor uncertainty and finite resolution in solving the SLAM (simultaneous localization and mapping problem for autonomous mobile robots. The approach establishes fuzzy confidence models in describing occupied obstacles and available space. The problem is transformed into an optimization task of minimizing the alignment error between newly scanned local fuzzy maps and selected parts of a developing global fuzzy map. In aligning local fuzzy maps into a global fuzzy map, we developed a prediction strategy to crop the most potential part from the sensed local fuzzy maps to be overlapped with the global fuzzy map. A mobile vehicle equipped with a laser range finder, the Hokuyo URG-04LX, is used to demonstrate the procedure of fuzzy map building. Experimental results show that the proposed architecture is effective in generating a comprehensive global fuzzy map, which is suitable for both human comprehension and path design during real-time navigation.
Takagi Sugeno fuzzy expert model based soft fault diagnosis for two tank interacting system
Directory of Open Access Journals (Sweden)
Manikandan Pandiyan
2014-09-01
Full Text Available The inherent characteristics of fuzzy logic theory make it suitable for fault detection and diagnosis (FDI. Fault detection can benefit from nonlinear fuzzy modeling and fault diagnosis can profit from a transparent reasoning system, which can embed operator experience, but also learn from experimental and/or simulation data. Thus, fuzzy logic-based diagnostic is advantageous since it allows the incorporation of a-priori knowledge and lets the user understand the inference of the system. In this paper, the successful use of a fuzzy FDI based system, based on dynamic fuzzy models for fault detection and diagnosis of an industrial two tank system is presented. The plant data is used for the design and validation of the fuzzy FDI system. The validation results show the effectiveness of this approach.
Topuz, Emel; van Gestel, Cornelis A M
2016-01-01
The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach.
Institute of Scientific and Technical Information of China (English)
丁世飞
2000-01-01
本研究利用了山东省曲阜地区1982-1994年共13年的资料，选用了3月下旬至4月 上旬平均气温($C$)和4月上旬温湿系数作为预报因子，麦蚜蚜量始达500(头/百株)的日期作为预报对象组建Fuzzy推理模式.对历史资料进行回代验证，其历史拟合率达$100%$.将1995年的观测数据作为独立样本进行试报，预测结果与实际一致.为麦蚜复合种群动态预测提供了一种新的研究方法.%Based on the 13 year data from 1982 to 1994 at Qufu Prefecture Shandong Province, a fuzzy inference model was developed, with mean air temperature from the last ten days in March to the first ten days in April and moisture-temperature coefficient in the first ten days in April as its factors and the period of Wheat aphid amount starting 500 head per hundred plants as its target. The fitting rate of the returning forecasting from 1982 to 1994 is $100%$, and the forecasting result for 1995 is satisfactory. A new method was provided for forecasting complex population dynamics of Wheat aphid.
Directory of Open Access Journals (Sweden)
Savić Marija
2014-01-01
Full Text Available This paper presents the results of the tropospheric ozone concentration modeling as the dependence on volatile organic compounds - VOCs (Benzene, Toluene, m,p-Xylene, o-Xylene, Ethylbenzene; nonorganic compounds - NOx (NO, NO2, NOx, CO, H2S, SO2 and PM10 in the ambient air in parallel with the meteorological parameters: temperature, solar radiation, relative humidity, wind speed and direction. Modeling is based on measured results obtained during the year 2009. The measurements were performed at the measuring station located within an agricultural area, in vicinity of city of Zrenjanin (Serbian Banat, Serbia. Statistical analysis of obtained data, based on bivariate correlation analysis indicated that accurate modeling cannot be performed using linear statistics approach. Also, considering that almost all input variables have wide range of relative change (ratio of variance compared to range, nonlinear statistic analysis method based on only one rule describing the behavior of input variable, most certainly wouldn’t present accurate enough results. From that reason, modeling approach was based on Adaptive-Network-Based Fuzzy Inference System (ANFIS. Model obtained using ANFIS methodology resulted with high accuracy, with prediction potential of above 80%, considering that obtained determination coefficient for the final model was R2=0.802.
Directory of Open Access Journals (Sweden)
Otilia Elena Dragomir
2015-11-01
Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.
A Simple Fuzzy Time Series Forecasting Model
DEFF Research Database (Denmark)
Ortiz-Arroyo, Daniel
2016-01-01
In this paper we describe a new ﬁrst order fuzzy time series forecasting model. We show that our automatic fuzzy partitioning method provides an accurate approximation to the time series that when combined with rule forecasting and an OWA operator improves forecasting accuracy. Our model does...... not attempt to provide the best results in comparison with other forecasting methods but to show how to improve ﬁrst order models using simple techniques. However, we show that our ﬁrst order model is still capable of outperforming some more complex higher order fuzzy time series models....
Improving Ranking Persian Subjects in Search Engine Using Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Elaheh Golzardi
2013-09-01
Full Text Available According to the research, the efficiency of the search engines which done the rankings of Farsi content was much lower than the English search engines. After reviewing the literature, we found that, so far there been no ratings Persian system with fuzzy system and however, due to its proven performance in the field of fuzzy systems, also a search engine designed to accomplish this goal. Therefore, we prefer to advance this goal, so we establish a fuzzy inference system. It is created with the best evidence that can be considered to have been largely bringing the intended page to a user. Proposed method, display the relevant pages to the user in order to allow users to reach to their intended pages with less time and less cost. Also, in order to evaluate this method, Comparisons with other search engines was done.
Neuro Fuzzy Systems: Sate-of-the-Art Modeling Techniques
Abraham, Ajith
2004-01-01
Fusion of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) have attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. ANN learns from scratch by adjusting the interconnections between layers. FIS is a popular computing framework based on the concept of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantages of a combination of ANN a...
Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.
Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu
2015-05-01
This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems.
Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold
2017-08-11
This paper presents a hybrid fuzzy wavelet neural network (HFWNN) realized with the aid of polynomial neural networks (PNNs) and fuzzy inference-based wavelet neurons (FIWNs). Two types of FIWNs including fuzzy set inference-based wavelet neurons (FSIWNs) and fuzzy relation inference-based wavelet neurons (FRIWNs) are proposed. In particular, a FIWN without any fuzzy set component (viz., a premise part of fuzzy rule) becomes a wavelet neuron (WN). To alleviate the limitations of the conventional wavelet neural networks or fuzzy wavelet neural networks whose parameters are determined based on a purely random basis, the parameters of wavelet functions standing in FIWNs or WNs are initialized by using the C-Means clustering method. The overall architecture of the HFWNN is similar to the one of the typical PNNs. The main strategies in the design of HFWNN are developed as follows. First, the first layer of the network consists of FIWNs (e.g., FSIWN or FRIWN) that are used to reflect the uncertainty of data, while the second and higher layers consist of WNs, which exhibit a high level of flexibility and realize a linear combination of wavelet functions. Second, the parameters used in the design of the HFWNN are adjusted through genetic optimization. To evaluate the performance of the proposed HFWNN, several publicly available data are considered. Furthermore a thorough comparative analysis is covered.
Fuzzy modeling and synchronization of hyper chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Zhang Hongbin [Center for Nonlinear and Complex Systems, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)] e-mail: zhanghb@uestc.edu.cn; Liao Xiaofeng [Center for Nonlinear and Complex Systems, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China); Institute of Computer Science, Chongqing University, Chongqing 400044 (China); Yu Juebang [Center for Nonlinear and Complex Systems, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2005-11-01
This paper presents fuzzy model-based designs for synchronization of hyper chaotic systems. The T-S fuzzy models for hyper chaotic systems are exactly derived. Based on the T-S fuzzy hyper chaotic models, the fuzzy controllers for hyper chaotic synchronization are designed via the exact linearization techniques. Numerical examples are given to demonstrate the effectiveness of the proposed method.
State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference
Al Qazlan, Tuqyah Abdullah; Kara-Mohamed, Chafia
2015-01-01
To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs) inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework. PMID:25879048
State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference
Directory of Open Access Journals (Sweden)
Tuqyah Abdullah Al Qazlan
2015-01-01
Full Text Available To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework.
Directory of Open Access Journals (Sweden)
KAMPOUROPOULOS, K.
2014-02-01
Full Text Available This document presents an energy forecast methodology using Adaptive Neuro-Fuzzy Inference System (ANFIS and Genetic Algorithms (GA. The GA has been used for the selection of the training inputs of the ANFIS in order to minimize the training result error. The presented algorithm has been installed and it is being operating in an automotive manufacturing plant. It periodically communicates with the plant to obtain new information and update the database in order to improve its training results. Finally the obtained results of the algorithm are used in order to provide a short-term load forecasting for the different modeled consumption processes.
Continuous Implicit Authentication for Mobile Devices based on Adaptive Neuro-Fuzzy Inference System
Yao, Feng; Yerima, Suleiman Y.; Kang, BooJoong; Sezer, Sakir
2017-01-01
As mobile devices have become indispensable in modern life, mobile security is becoming much more important. Traditional password or PIN-like point-of-entry security measures score low on usability and are vulnerable to brute force and other types of attacks. In order to improve mobile security, an adaptive neuro-fuzzy inference system(ANFIS)-based implicit authentication system is proposed in this paper to provide authentication in a continuous and transparent manner.To illustrate the applic...
Ghaedi, M; Ghaedi, A M; Abdi, F; Roosta, M; Vafaei, A; Asghari, A
2013-10-01
In the present study, activated carbon (AC) simply derived from Pistacia khinjuk and characterized using different techniques such as SEM and BET analysis. This new adsorbent was used for methylene blue (MB) adsorption. Fitting the experimental equilibrium data to various isotherm models shows the suitability and applicability of the Langmuir model. The adsorption mechanism and rate of processes was investigated by analyzing time dependency data to conventional kinetic models and it was found that adsorption follow the pseudo-second-order kinetic model. Principle component analysis (PCA) has been used for preprocessing of input data and genetic algorithm optimization have been used for prediction of adsorption of methylene blue using activated carbon derived from P. khinjuk. In our laboratory various activated carbon as sole adsorbent or loaded with various nanoparticles was used for removal of many pollutants (Ghaedi et al., 2012). These results indicate that the small amount of proposed adsorbent (1.0g) is applicable for successful removal of MB (RE>98%) in short time (45min) with high adsorption capacity (48-185mgg(-1)).
Directory of Open Access Journals (Sweden)
A. R Abdollahnejad Barough
2016-04-01
. Finally, a total amount of the second moment (m2 and matrix vectors of image were selected as features. Features and rules produced from decision tree fed into an Adaptable Neuro-fuzzy Inference System (ANFIS. ANFIS provides a neural network based on Fuzzy Inference System (FIS can produce appropriate output corresponding input patterns. Results and Discussion: The proposed model was trained and tested inside ANFIS Editor of the MATLAB software. 300 images, including closed shell, pithy and empty pistachio were selected for training and testing. This network uses 200 data related to these two features and were trained over 200 courses, the accuracy of the result was 95.8%. 100 image have been used to test network over 40 courses with accuracy 97%. The time for the training and testing steps are 0.73 and 0.31 seconds, respectively, and the time to choose the features and rules was 2.1 seconds. Conclusions: In this study, a model was introduced to sort non- split nuts, blank nuts and filled nuts pistachios. Evaluation of training and testing, shows that the model has the ability to classify different types of nuts with high precision. In the previously proposed methods, merely non-split and split pistachio nuts were sorted and being filled or blank nuts is unrecognizable. Nevertheless, accuracy of the mentioned method is 95.56 percent. As well as, other method sorted non-split and split pistachio nuts with an accuracy of 98% and 85% respectively for training and testing steps. The model proposed in this study is better than the other methods and it is encouraging for the improvement and development of the model.
Computation of Magnetic Field Distribution by Using an Adaptive Neuro-Fuzzy Inference System
Directory of Open Access Journals (Sweden)
P. Dhana Lakshmi
2012-04-01
Full Text Available This paper proposes a set of mathematical models presenting magnetic fields caused by operations of an extra high voltage (EHV transmission line under normal loading and short-circuit condi t ions . The mathematical model s are expressed in second-order partial differential equations derived by analyzing magnetic field distribution around a 500- kV power transmission line. The problem of study is intentionally two-dimensional due to the property of long line field distribution. To verify its use, i single-circuit and ii double-circuit, 500-kV power transmission lines have been employed for test. Finite element methods (FEM for solving wave equations have been exploited. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment. This paper presents novel approach based on the use of adaptive network-based fuzzy inference system (ANFIS to estimate magnetic fields around an overhead power transmission lines. The ANFIS approach learns the rules and membership functions from training data. The hybrid system is tested by the use of the validation data. From all test cases, the calculation line of 1.0m above the ground level is set to investigate the magnetic fields acting on a human in c o m p a r a t i v e with ICNIRP standard.
Air Target Fuzzy Pattern Recognition Threat-Judgment Model
Institute of Scientific and Technical Information of China (English)
童幼堂; 王建明
2003-01-01
Threat-judgment is a complicated fuzzy inference problem. Up to now no relevant unified theory and measuring standard have been developed. It is very difficult to establish a threat-judgment model with high reliability in the air defense system for the naval warships. Air target threat level judgment is an important component in naval warship combat command decision-making systems. According to the threat level judgment of air targets during the air defense of single naval warship, a fuzzy pattern recognition model for judging the threat from air targets is established. Then an algorithm for identifying the parameters in the model is presented. The model has an adaptive feature and can dynamically update its parameters according to the state change of the attacking targets and the environment. The method presented here can be used for the air defense system threat judgment in the naval warships.
Fuzzy GML Modeling Based on Vague Soft Sets
Directory of Open Access Journals (Sweden)
Bo Wei
2017-01-01
Full Text Available The Open Geospatial Consortium (OGC Geography Markup Language (GML explicitly represents geographical spatial knowledge in text mode. All kinds of fuzzy problems will inevitably be encountered in spatial knowledge expression. Especially for those expressions in text mode, this fuzziness will be broader. Describing and representing fuzziness in GML seems necessary. Three kinds of fuzziness in GML can be found: element fuzziness, chain fuzziness, and attribute fuzziness. Both element fuzziness and chain fuzziness belong to the reflection of the fuzziness between GML elements and, then, the representation of chain fuzziness can be replaced by the representation of element fuzziness in GML. On the basis of vague soft set theory, two kinds of modeling, vague soft set GML Document Type Definition (DTD modeling and vague soft set GML schema modeling, are proposed for fuzzy modeling in GML DTD and GML schema, respectively. Five elements or pairs, associated with vague soft sets, are introduced. Then, the DTDs and the schemas of the five elements are correspondingly designed and presented according to their different chains and different fuzzy data types. While the introduction of the five elements or pairs is the basis of vague soft set GML modeling, the corresponding DTD and schema modifications are key for implementation of modeling. The establishment of vague soft set GML enables GML to represent fuzziness and solves the problem of lack of fuzzy information expression in GML.
Fuzzy double model control for air supply on a PEM fuel cell system
Energy Technology Data Exchange (ETDEWEB)
Hao, Xiaohong; Zhang, Haochen; An, Aimin; Liu, Xin; Chen, Liwen [Lanzhou Univ. of Technology, Gansu (China). College of Electric and Information Engineering
2013-07-01
Oxygen excess ratio control is closely related to the performance and safety of a Proton Exchange Membrane fuel cell system. Some control strategies should be used to regulate the oxygen excess ratio at the suitable value in order to avoid stack starvation and damage. And in this paper, a simple fuzzy double model control has been proposed to adjust the oxygen excess ratio under variation load currents. The double model controller combines a PID controller and a fuzzy logic controller which can be switched based on the fuzzy inference rules during the regulation process. The simulation results demonstrate that the fuzzy double model control can adjust the oxygen excess ratio at the setting point when the current is changed, and improve the dynamic performance of oxygen excess ratio than fuzzy PID control.
Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations.
Bsma, R.; Kaymak, U.; Van den Berg, J.; Udo, H.
2010-01-01
To reveal farmers’ motives for on-farm diversification and integration of farming components in the Mekong Delta, Vietnam, we developed a fuzzy logic model (FLM) using a 10-step approach. Farmers’ decision-making was mimicked in a three-layer hierarchical architecture of fuzzy inference systems, usi
Bosma, R.H.; Kaymak, U.; Berg, van den J.; Udo, H.M.J.; Verreth, J.A.J.
2011-01-01
To reveal farmers’ motives for on-farm diversification and integration of farming components in the Mekong Delta, Vietnam, we developed a fuzzy logic model (FLM) using a 10-step approach. Farmers’ decision-making was mimicked in a three-layer hierarchical architecture of fuzzy inference systems, usi
Sanchez, Mauricio A; Castro, Juan R
2017-01-01
In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.
Supply chain management under fuzziness recent developments and techniques
Öztayşi, Başar
2014-01-01
Supply Chain Management Under Fuzziness presents recently developed fuzzy models and techniques for supply chain management. These include: fuzzy PROMETHEE, fuzzy AHP, fuzzy ANP, fuzzy VIKOR, fuzzy DEMATEL, fuzzy clustering, fuzzy linear programming, and fuzzy inference systems. The book covers both practical applications and new developments concerning these methods. This book offers an excellent resource for researchers and practitioners in supply chain management and logistics, and will provide them with new suggestions and directions for future research. Moreover, it will support graduate students in their university courses, such as specialized courses on supply chains and logistics, as well as related courses in the fields of industrial engineering, engineering management and business administration.
Directory of Open Access Journals (Sweden)
Mohsen Omidvar
2015-12-01
Full Text Available Background & objective: Due to the features such as intuitive graphical appearance, ease of perception and straightforward applicability, risk matrix has become as one of the most used risk assessment tools. On the other hand, features such as the lack of precision in the classification of risk index, as well as subjective computational process, has limited its use. In order to solve this problem, in the current study we used fuzzy logic inference systems and mathematical operators (interval numbers and mapping operator. Methods: In this study, first 10 risk scenarios in the excavation and piping process were selected, then the outcome of the risk assessment were studied using four types of matrix including traditional (ORM, displaced cells (RCM , extended (ERM and fuzzy (FRM risk matrixes. Results: The results showed that the use of FRM and ERM matrix have prority, due to the high level of " Risk Tie Density" (RTD and "Risk Level Density" (RLD in the ORM and RCM matrix, as well as more accurate results presented in FRM and ERM, in risk assessment. While, FRM matrix provides more reliable results due to the application of fuzzy membership functions. Conclusion: Using new mathematical issues such as fuzzy sets and arithmetic and mapping operators for risk assessment could improve the accuracy of risk matrix and increase the reliability of the risk assessment results, when the accurate data are not available, or its data are avaliable in a limit range.
On retrial queueing model with fuzzy parameters
Ke, Jau-Chuan; Huang, Hsin-I.; Lin, Chuen-Horng
2007-01-01
This work constructs the membership functions of the system characteristics of a retrial queueing model with fuzzy customer arrival, retrial and service rates. The α-cut approach is used to transform a fuzzy retrial-queue into a family of conventional crisp retrial queues in this context. By means of the membership functions of the system characteristics, a set of parametric non-linear programs is developed to describe the family of crisp retrial queues. A numerical example is solved successfully to illustrate the validity of the proposed approach. Because the system characteristics are expressed and governed by the membership functions, more information is provided for use by management. By extending this model to the fuzzy environment, fuzzy retrial-queue is represented more accurately and analytic results are more useful for system designers and practitioners.
The stock-flow model of spatial data infrastructure development refined by fuzzy logic.
Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali
2016-01-01
The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.
Cheap diagnosis using structural modelling and fuzzy-logic based detection
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, Mogens; Katebi, Serajeddin
2003-01-01
relations for linear or non-linear dynamic behaviour, and combine this with fuzzy output observer design to provide an effective diagnostic approach. An adaptive neuro-fuzzy inference method is used. A fuzzy adaptive threshold is employed to cope with practical uncertainty. The methods are demonstrated......Practical fault diagnosis can be based on simple, yet efficient, analysis of redundant information about the state of a plant, and diagnostic algorithms can be made without detailed and expensive modelling efforts. This paper shows how it is possible, using structural analysis, to find redundancy...
Directory of Open Access Journals (Sweden)
Lucirene Vitória Góes França
2014-11-01
Full Text Available This paper aims to show the use of fuzzy logic as inference tool to decision support in analyzes of the landscape. For this, was created a mathematical model in order to express more realistically the environmental condition of the landscape. Through the construction of a environmental quality fuzzy index for the landscape, with emphasis on physical, biotic and social environments, as well as weighting criteria (severity, significance and magnitude, it was possible to articulate a method to evaluation harmful human actions to the environment, which are often subjectively treated, by the presence of uncertainty and personal considerations... Keywords: Landscape; Fuzzy; Jundiai-Mirim River.
Directory of Open Access Journals (Sweden)
P. Bhattacharya
2007-11-01
Full Text Available To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i casual or contextual feature, (ii contact feature, (iii contactless feature, and (iv performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA, is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue. We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.
Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran
Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa
2017-02-01
The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.
van Lith, Pascal; van Lith, P.F.; Betlem, Bernardus H.L.; Roffel, B.
2002-01-01
Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and
Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian
2002-01-01
Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and
Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian
2002-01-01
Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and transfe
Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian
2002-01-01
Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and transfe
Fuzzy Neural Model for Flatness Pattern Recognition
Institute of Scientific and Technical Information of China (English)
JIA Chun-yu; SHAN Xiu-ying; LIU Hong-min; NIU Zhao-ping
2008-01-01
For the problems occurring in a least square method model,a fuzzy model,and a neural network model for flatness pattern recognition,a fuzzy neural network model for flatness pattern recognition with only three-input and three-output signals was proposed with Legendre orthodoxy polynomial as basic pattern,based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm.The model not only had definite physical meanings in its inner nodes,but also had strong self-adaptability,anti-interference ability,high recognition precision,and high velocity,thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient,practical,and novel method for flatness pattern recognition.
Using Adaptive Neuro-Fuzzy Inference System in Alert Management of Intrusion Detection Systems
Directory of Open Access Journals (Sweden)
Zahra Atashbar Orang
2012-10-01
Full Text Available By ever increase in using computer network and internet, using Intrusion Detection Systems (IDS has been more important. Main problems of IDS are the number of generated alerts, alert failure as well as identifying the attack type of alerts. In this paper a system is proposed that uses Adaptive Neuro-Fuzzy Inference System to classify IDS alerts reducing false positive alerts and also identifying attack types of true positive ones. By the experimental results on DARPA KDD cup 98, the system can classify alerts, leading a reduction of false positive alerts considerably and identifying attack types of alerts in low slice of time.
Measure of librarian pressure using fuzzy inference system: A case study in Longyan University
Huang, Jian-Jing
2014-10-01
As the hierarchy of middle managers in college's librarian. They may own much work pressure from their mind. How to adapt psychological problem, control the emotion and keep a good relationship in their work place, it becomes an important issue. Especially, they work in China mainland environment. How estimate the librarians work pressure and improve the quality of service in college libraries. Those are another serious issues. In this article, the authors would like discuss how can we use fuzzy inference to test librarian work pressure.
Intuitionistic Fuzzy Weighted Linear Regression Model with Fuzzy Entropy under Linear Restrictions.
Kumar, Gaurav; Bajaj, Rakesh Kumar
2014-01-01
In fuzzy set theory, it is well known that a triangular fuzzy number can be uniquely determined through its position and entropies. In the present communication, we extend this concept on triangular intuitionistic fuzzy number for its one-to-one correspondence with its position and entropies. Using the concept of fuzzy entropy the estimators of the intuitionistic fuzzy regression coefficients have been estimated in the unrestricted regression model. An intuitionistic fuzzy weighted linear regression (IFWLR) model with some restrictions in the form of prior information has been considered. Further, the estimators of regression coefficients have been obtained with the help of fuzzy entropy for the restricted/unrestricted IFWLR model by assigning some weights in the distance function.
Directory of Open Access Journals (Sweden)
Changho Jhin
2014-08-01
Full Text Available Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A and electronegativity (χ of flavylium cation, and ionization potential (I of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.
A Hybrid Fuzzy GJR-GARCH Modeling Approach for Stock Market Volatility Forecasting
Directory of Open Access Journals (Sweden)
Leandro Maciel
2012-09-01
Full Text Available Forecasting stock market returns volatility is a challenging task that has attracted the attention of market practitioners, regulators and academics in recent years. This paper proposes a Fuzzy GJR-GARCH model to forecast the volatility of S&P 500 and Ibovespa indexes. The model comprises both the concept of fuzzy inference systems and GJR-GARCH modeling approach in order to consider the principles of time-varying volatility, leverage effects and volatility clustering, in which changes are cataloged by similarity. Moreover, a differential evolution (DE algorithm is suggested to solve the problem of Fuzzy GJR-GARCH parameters estimation. The results indicate that the proposed method offers significant improvements in volatility forecasting performance in comparison with GARCH-type models and with a current Fuzzy-GARCH model reported in the literature. Furthermore, the DE-based algorithm aims to achieve an optimal solution with a rapid convergence rate.
Fuzzy One-Class Classification Model Using Contamination Neighborhoods
Directory of Open Access Journals (Sweden)
Lev V. Utkin
2012-01-01
Full Text Available A fuzzy classification model is studied in the paper. It is based on the contaminated (robust model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.
Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan
2015-01-01
Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand. PMID:27069500
Directory of Open Access Journals (Sweden)
Ivana Dragović
2015-01-01
Full Text Available Fuzzy inference systems (FIS enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD. Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated, when medical experts are not close at hand.
Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan
2015-01-01
Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand.
A DNA sequence alignment algorithm using quality information and a fuzzy inference method
Institute of Scientific and Technical Information of China (English)
Kwangbaek Kim; Minhwan Kim; Youngwoon Woo
2008-01-01
DNA sequence alignment algorithms in computational molecular biology have been improved by diverse methods.In this paper.We propose a DNA sequence alignment that Uses quality information and a fuzzy inference method developed based on the characteristics of DNA fragments and a fuzzy logic system in order to improve conventional DNA sequence alignment methods that uses DNA sequence quality information.In conventional algorithms.DNA sequence alignment scores are calculated by the global sequence alignment algorithm proposed by Needleman-Wunsch,which is established by using quality information of each DNA fragment.However,there may be errors in the process of calculating DNA sequence alignment scores when the quality of DNA fragment tips is low.because only the overall DNA sequence quality information are used.In our proposed method.an exact DNA sequence alignment can be achieved in spite of the low quality of DNA fragment tips by improvement of conventional algorithms using quality information.Mapping score parameters used to calculate DNA sequence alignment scores are dynamically adjusted by the fuzzy logic system utilizing lengths of DNA fragments and frequencies of low quality DNA bases in the fragments.From the experiments by applying real genome data of National Center for Bioteclmology Information,we could see that the proposed method is more efficient than conventional algorithms.
Training Hybrid Neuro-Fuzzy System to Infer Permeability in Wells on Maracaibo Lake, Venezuela
Hurtado, Nuri; Torres, Julio
2014-01-01
The high accuracy on inferrring of rocks properties, such as permeability ($k$), is a very useful study in the analysis of wells. This has led to development and use of empirical equations like Tixier, Timur, among others. In order to improve the inference of permeability we used a hybrid Neuro-Fuzzy System (NFS). The NFS allowed us to infer permeability of well, from data of porosity ($\\phi$) and water saturation ($Sw$). The work was performed with data from wells VCL-1021 (P21) and VCL-950 (P50), Block III, Maracaibo Lake, Venezuela. We evaluated the NFS equations ($k_{P50,i}(\\phi_i,Sw_i)$) with neighboring well data ($P21$), in order to verify the validity of the equations in the area. We have used ANFIS in MatLab.
A brief comparison of fuzzy associative memory models for guiding autonomous problems
Directory of Open Access Journals (Sweden)
Guilherme Augusto de Lima Freitas
2011-09-01
Full Text Available Fuzzy associative memories (FAMs are models inspired in the human brain ability to store and recall information. These models can be used for the storage of associations of fuzzy sets and, thus, they can be used as inference engines in fuzzy controllers. Several FAM models have been developed in the last years, but we are not aware of a work comparing the performance of novel FAMs in control. In this paper, we briefly investigate the performance of some FAMs in the automatic guidance problems of backing-up a truck (BT and backing-up a truck and trailer (BTT. In particular, we note that the dual implicative fuzzy associative memories (co-IFAMs constitute an interesting alternative to traditional models such as that of Kosko and Mamdani.
Energy Technology Data Exchange (ETDEWEB)
Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir
2015-01-11
This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.
Bayesian inference for OPC modeling
Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.
2016-03-01
The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.
Directory of Open Access Journals (Sweden)
Chuandong Zhan
2013-11-01
Full Text Available Order release is the key premise for the semiconductor wafer fabrication system to perform well, which is also one of the paramount significant components in the scheduling strategies. Most order release strategies merely have focused on the workloadbut failed in considering the remarkable influence oncycletime of common orders that is brought by unexpectedrushones.In this paper an on-linemechanismbased on Theory of Constraintsfor lot releaseusingself-Adaptive Neural Fuzzy Inference System modelswas presentedwhich is able to adjust the release rhythmdynamicallyaccording to dynamics of fabs.In our approach, an ANFIS model was established to predict the ratiobetweenhotand common lotsin wafer fabto perform adjustments on the order release schedule in advance.Simulated experimentsbased on the HP24 model were carefully performed and experimental results proved a better performance of common lotsthan original TOC on a large scale, especially when it comes to the situation of disturbance.
Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun
2016-12-03
Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.
Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun
2016-01-01
Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC. PMID:27918482
Directory of Open Access Journals (Sweden)
Shu-Yin Chiang
2016-12-01
Full Text Available Ubiquitous health care (UHC is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN. The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.
A Role-Based Fuzzy Assignment Model
Institute of Scientific and Technical Information of China (English)
ZUO Bao-he; FENG Shan
2002-01-01
It's very important to dynamically assign the tasks to corresponding actors in workflow management system, especially in complex applications. This improves the flexibility of workflow systems.In this paper, a role-based workflow model with fuzzy optimized intelligent assignment is proposed and applied in the investment management system. A groupware-based software model is also proposed.
Fuzzy regression modeling for tool performance prediction and degradation detection.
Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L
2010-10-01
In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.
Bonissone CIDU Presentation: Design of Local Fuzzy Models
National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
Yarn Strength Modelling Using Fuzzy Expert System
Directory of Open Access Journals (Sweden)
Abhijit Majumdar, Ph.D.
2008-12-01
Full Text Available Yarn strength modelling and prediction has remained as the cynosure of research for the textile engineers although the investigation in this domain was first reported around one century ago. Several mathematical, statistical and empirical models have been developed in the past only to yield limited success in terms of prediction accuracy and general applicability. In recent years, soft computing tools like artificial neural networks and neural-fuzzy models have been developed, which have shown remarkable prediction accuracy. However, artificial neural network and neural-fuzzy models are trained using enormous amount of noise free input-output data, which are difficult to collect from the spinning industries. In contrast, fuzzy logic based models could be developed by using the experience of the spinner only and it gives good understanding about the roles played by various inputs on the outputs. This paper deals with the modelling of ring spun cotton yarn strength using a simple fuzzy expert system. The prediction accuracy of the model was found to be very encouraging.
Aminfar, Ali; Mojtahedi, Alireza; Ahmadi, Hamid; Aminfar, Mohammad Hossain
2017-06-01
Among numerous offshore structures used in oil extraction, jacket platforms are still the most favorable ones in shallow waters. In such structures, log piles are used to pin the substructure of the platform to the seabed. The pile's geometrical and geotechnical properties are considered as the main parameters in designing these structures. In this study, ANSYS was used as the FE modeling software to study the geometrical and geotechnical properties of the offshore piles and their effects on supporting jacket platforms. For this purpose, the FE analysis has been done to provide the preliminary data for the fuzzy-logic post-process. The resulting data were implemented to create Fuzzy Inference System (FIS) classifications. The resultant data of the sensitivity analysis suggested that the orientation degree is the main factor in the pile's geometrical behavior because piles which had the optimal operational degree of about 5° are more sustained. Finally, the results showed that the related fuzzified data supported the FE model and provided an insight for extended offshore pile designs.
Directory of Open Access Journals (Sweden)
K. A. Halim
2011-01-01
Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.
Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The proton exchange membrane generation technology is highly efficient, and clean and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online.This paper analyzed the characters of the PEMFC; and used the approach and self-study ability of artificial neural networks to build the model of nonlinear system, and adopted the adaptive neural-networks fuzzy infer system to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment.The results of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system.
Institute of Scientific and Technical Information of China (English)
张韧; 周林; 董兆俊; 李训强
2002-01-01
Methods and approaches are discussed that identify and filter off affecting factors (noise) above primary signals, based on the Adaptive-Network-Based Fuzzy Inference System. Influences of the zonal winds in equatorial castern and middle/western Pacific on the SSTA in the equatorial region and their contribution to the latter are diagnosed and verified with observations of a number of significant El Nino and La Nina episodes. New viewpoints are proposed. The method of wavelet decomposition and reconstruction are used to build a predictive model based on independent domains of frequency, which shows some advantages in composite prediction and prediction validity. The methods presented above are of non-linearity, error-allowing and auto-adaptive / learning.in addition to rapid and easy access, illustrative and quantitative presentation, and analyzed results that agree generally with facts. They are useful in diagnosing and predicting the El Nino and La Nina problems that are just roughly described in dynamics.
Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning
Directory of Open Access Journals (Sweden)
Ya’nan Wang
2016-01-01
Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.
Jiménez-Losada, Andrés
2017-01-01
This book offers a comprehensive introduction to cooperative game theory and a practice-oriented reference guide to new models and tools for studying bilateral fuzzy relations among several agents or players. It introduces the reader to several fuzzy models, each of which is first analyzed in the context of classical games (crisp games) and subsequently in the context of fuzzy games. Special emphasis is given to the value of Shapley, which is presented for the first time in the context of fuzzy games. Students and researchers will find here a self-contained reference guide to cooperative fuzzy games, characterized by a wealth of examples, descriptions of a wide range of possible situations, step-by-step explanations of the basic mathematical concepts involved, and easy-to-follow information on axioms and properties.
Fuzzy model-based observers for fault detection in CSTR.
Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan
2015-11-01
Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions.
Fuzzy Economic Order Quantity Inventory Models Without Backordering
Institute of Scientific and Technical Information of China (English)
WANG Xiaobin; TANG Wansheng; ZHAO Ruiqing
2007-01-01
In economic order quantity models without backordering, both the stock cost of each unit quantity and the order cost of each cycle are characterized as independent fuzzy variables rather than fuzzy numbers as in previous studies. Based on an expected value criterion or a credibility criterion, a fuzzy expected value model and a fuzzy dependent hance programming (DCP) model are constructed. The purpose of the fuzzy expected value model is to find the optimal order quantity such that the fuzzy expected value of the total cost is minimal. The fuzzy DCP model is used to find the optimal order quantity for maximizing the credibility of an event such that the total cost in the planning periods does not exceed a certain budget level.Fuzzy simulations are designed to calculate the expected value of the fuzzy objective function and the credibility of each fuzzy event. A particle swarm optimization (PSO) algorithm based on a fuzzy simulation is designed, by integrating the fuzzy simulation and the PSO algorithm. Finally, a numerical example is given to illustrate the feasibility and validity of the proposed algorithm.
SOIL QUALITY ASSESSMENT USING FUZZY MODELING
Maintaining soil productivity is essential if agriculture production systems are to be sustainable, thus soil quality is an essential issue. However, there is a paucity of tools for measurement for the purpose of understanding changes in soil quality. Here the possibility of using fuzzy modeling t...
Financial Markets Analysis by Probabilistic Fuzzy Modelling
J.H. van den Berg (Jan); W.-M. van den Bergh (Willem-Max); U. Kaymak (Uzay)
2003-01-01
textabstractFor successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno (
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Modelling and control PEMFC using fuzzy neural networks
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online. This paper first simply analyzes the characters of the PEMFC; and then uses the approach and self-study ability of artificial neural networks to build the model of the nonlinear system, and uses the adaptive neural-networks fuzzy infer system (ANFIS) to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusts the model parameters to control it online. The model and control are implemented in SIMULINK environment. Simulation results showed that the test data and model agreed well, so it will be very useful for optimal and real-time control of PEMFC system.
Modeling of Kefir Production with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Hüseyin Nail Akgül
2014-06-01
Full Text Available The fermentation is ended with pH 4.6 values in industrial production of kefir. In this study, the incubation temperature, the incubation time and inoculums of culture were chose as variable parameters of kefir. In conventional control systems, the value of pH can be found by trial method. In these systems, if the number of input parameters is greater, the method of trial and error creates a system dependent on the person as well as troublesome. Fuzzy logic can be used in such cases. Modeling studies with this fuzzy logic control are examined in two portions. The first part consists of fuzzy rules and membership functions, while the second part consists of clarify. Kefir incubation temperature between 20 and 25°C, the incubation period between 18 to 22 hours and the inoculum ratio of culture between 1-5% are selected for optimum production conditions. Three separate fuzzy sets (triangular membership function are used to blur the incubation temperature, the incubation time and the inoculum ratio of culture. Because the membership function numbers belonging to the the input parameters are 3 units, 3x3x3=27 line rule is obtained by multiplying these numbers. The table of fuzzy rules was obtained using the method of Mamdani. The membership function values were determined by the method of average weight using three trapezoidal area of membership functions created for clarification. The success of the system will be found, comparing the numerical values obtained with pH values that should be. Eventually, to achieve the desired pH value of 4.6 in the production of kefir, with the using of fuzzy logic, the workload of people will be decreased and the productivity of business can be increased. In this case, it can be provided savings in both cost and time.
Orbifold matrix models and fuzzy extra dimensions
Chatzistavrakidis, Athanasios; Zoupanos, George
2011-01-01
We revisit an orbifold matrix model obtained as a restriction of the type IIB matrix model on a Z_3-invariant sector. An investigation of its moduli space of vacua is performed and issues related to chiral gauge theory and gravity are discussed. Modifications of the orbifolded model triggered by Chern-Simons or mass deformations are also analyzed. Certain vacua of the modified models exhibit higher-dimensional behaviour with internal geometries related to fuzzy spheres.
Institute of Scientific and Technical Information of China (English)
Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou
2011-01-01
Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.
Fault Detection under Fuzzy Model Uncertainty
Institute of Scientific and Technical Information of China (English)
Marek Kowal; Józef Korbicz
2007-01-01
The paper tackles the problem of robust fault detection using Takagi-Sugeno fuzzy models. A model-based strategy is employed to generate residuals in order to make a decision about the state of the process. Unfortunately, such a method is corrupted by model uncertainty due to the fact that in real applications there exists a model-reality mismatch. In order to ensure reliable fault detection the adaptive threshold technique is used to deal with the mentioned problem. The paper focuses also on fuzzy model design procedure. The bounded-error approach is applied to generating the rules for the model using available measurements. The proposed approach is applied to fault detection in the DC laboratory engine.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
A fuzzy-autoregressive model of daily river flows
Greco, Roberto
2012-06-01
A model for the identification of daily river flows has been developed, consisting of the combination of an autoregressive model with a fuzzy inference system. The AR model is devoted to the identification of base flow, supposed to be described by linear laws. The fuzzy model identifies the surface runoff, by applying a small set of linguistic statements, deriving from the knowledge of the physical features of the nonlinear rainfall-runoff transformation, to the inflow entering the river basin. The model has been applied to the identification of the daily flow series of river Volturno at Cancello-Arnone (Southern Italy), with a drainage basin of around 5560 km2, observed between 1970 and 1974. The inflow was estimated on the basis of daily precipitations registered during the same years at six rain gauges located throughout the basin. The first two years were used for model training, the remaining three for the validation. The obtained results show that the proposed model provides good predictions of either low river flows or high floods, although the analysis of residuals, which do not turn out to be a white noise, indicates that the cause and effect relationship between rainfall and runoff is not completely identified by the model.
Adaptive Quantization Index Modulation Audio Watermarking based on Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Sunita V. Dhavale
2014-02-01
Full Text Available Many of the adaptive watermarking schemes reported in the literature consider only local audio signal properties. Many schemes require complex computation along with manual parameter settings. In this paper, we propose a novel, fuzzy, adaptive audio watermarking algorithm based on both global and local audio signal properties. The algorithm performs well for dynamic range of audio signals without requiring manual initial parameter selection. Here, mean value of energy (MVE and variance of spectral flux (VSF of a given audio signal constitutes global components, while the energy of each audio frame acts as local component. The Quantization Index Modulation (QIM step size Δ is made adaptive to both the global and local features. The global component automates the initial selection of Δ using the fuzzy inference system while the local component controls the variation in it based on the energy of individual audio frame. Hence Δ adaptively controls the strength of watermark to meet both the robustness and inaudibility requirements, making the system independent of audio nature. Experimental results reveal that our adaptive scheme outperforms other fixed step sized QIM schemes and adaptive schemes and is highly robust against general attacks.
Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed, Saeema
2009-01-01
the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students to evoke...... a certain perception were analysed. Three different fuzzy logic models, with different input variables, for evaluating massiveness and lightness in a form are proposed. The uthors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map...... the relationships between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (perception). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic models and showed...
Arkeman, Y.; Rizkyanti, R. A.; Hambali, E.
2017-05-01
Development of Indonesian palm-oil-based bioenergy faces an international challenge regarding to sustainability issue, indicated by the establishment of standards on sustainable bioenergy. Currently, Indonesia has sustainability standards limited to palm-oil cultivation, while other standards are lacking appropriateness for Indonesian palm-oil-based bioenergy sustainability regarding to real condition in Indonesia. Thus, Indonesia requires sustainability indicators for Indonesian palm-oil-based bioenergy to gain recognition and easiness in marketing it. Determination of sustainability indicators was accomplished through three stages, which were preliminary analysis, indicator assessment (using fuzzy inference system), and system validation. Global Bioenergy partnership (GBEP) was used as the standard for the assessment because of its general for use, internationally accepted, and it contained balanced proportion between environment, economic, and social aspects. Result showed that the number of sustainability indicators using FIS method are 21 indicators. The system developed has an accuracy of 85%.
PREDIKSI CUACA MENGGUNAKAN METODE CASE BASED REASONING DAN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
Directory of Open Access Journals (Sweden)
Ria Chaniago
2014-01-01
Full Text Available Weather is one of the nature elements that can influence decision making in human's life. Based on that issue, the author wants to make an application that is able to predict weather with good accuracy. The application is a weather forecasting system, using computer technology that implements expert system. The methods used are Adaptive Neuro Fuzzy Inference System (ANFIS and Case Based Reasoning (CBR, and a combination of both methods will applied to the system. The system also has learning methods like Backpropagation Error (BPE and Recursive Least Error (RLSE, to increase its accuracy. Clustering and data cleaning also done inside the system, as it needed by forecasting process to achieve a good result. K-Means is the clustering algorithm, while Box and Whisker Plot is the algorithm for data cleaning. The result from this project is to create a weather forecasting system with high accuracy.
Yarn Strength Modelling Using Genetic Fuzzy Expert System
Banerjee, Debamalya; Ghosh, Anindya; Das, Subhasis
2013-05-01
This paper deals with the modelling of cotton yarn strength using genetic fuzzy expert system. Primarily a fuzzy expert system has been developed to model the cotton yarn strength from the constituent fibre parameters such as fibre strength, upper half mean length, fibre fineness and short fibre content. A binary coded genetic algorithm has been used to improve the prediction performance of the fuzzy expert system. The experimental validation confirms that the genetic fuzzy expert system has significantly better prediction accuracy and consistency than that of the fuzzy expert system.
Harinath, Eranda; Mann, George K I
2008-06-01
This paper describes a design and two-level tuning method for fuzzy proportional-integral derivative (FPID) controllers for a multivariable process where the fuzzy inference uses the inference of standard additive model. The proposed method can be used for any n x n multi-input-multi-output process and guarantees closed-loop stability. In the two-level tuning scheme, the tuning follows two steps: low-level tuning followed by high-level tuning. The low-level tuning adjusts apparent linear gains, whereas the high-level tuning changes the nonlinearity in the normalized fuzzy output. In this paper, two types of FPID configurations are considered, and their performances are evaluated by using a real-time multizone temperature control problem having a 3 x 3 process system.
REPLACEMENT SPARE PART INVENTORY MONITORING USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
Directory of Open Access Journals (Sweden)
Hartono Hartono
2016-01-01
Full Text Available Abstract The amount of inventory is determined on the basis of the demand. So that users can know the demand forecasts need to be done on the request. This study uses the data to implement a replacement parts on the electronic module production equipment in the telecommunications transmission systems, switching, access and power, ie by replacing the electronic module in the system is trouble or damaged parts of a good electronic module spare parts inventory, while the faulty electronic modules shipped to the Repair Center for repaired again, so that the results of these improvements can replenish spare part inventory. Parameters speed on improvement process of electronic module broken (repaired, in the form of an average repair time at the repair centers, in order to get back into the electronic module that is ready for used as spare parts in compliance with the safe supply inventory warehouse. This research using the method of Adaptive Neuro Fuzzy Inference System (ANFIS in developing a decision support system for inventory control of spare parts available in Warehouse Inventory taking into account several parameters supporters, namely demand, improvement and fulfillment of spare parts and repair time. This study uses a recycling input parameter repair faulty electronic module of the customer to immediately replace the module in inventory warehouse, do improvements in the Repair Center. So the acceleration restoration factor is very influential as the input spare parts inventory supply in the warehouse and using the Adaptive Neuro-Fuzzy Inference System (ANFIS method. Keywords: ANFIS, inventory control, replacement
Kiso, Atsushi; Seki, Hirokazu
This paper describes a method for discriminating of the human forearm motions based on the myoelectric signals using an adaptive fuzzy inference system. In conventional studies, the neural network is often used to estimate motion intention by the myoelectric signals and realizes the high discrimination precision. On the other hand, this study uses the fuzzy inference for a human forearm motion discrimination based on the myoelectric signals. This study designs the membership function and the fuzzy rules using the average value and the standard deviation of the root mean square of the myoelectric potential for every channel of each motion. In addition, the characteristics of the myoelectric potential gradually change as a result of the muscle fatigue. Therefore, the motion discrimination should be performed by taking muscle fatigue into consideration. This study proposes a method to redesign the fuzzy inference system such that dynamic change of the myoelectric potential because of the muscle fatigue will be taken into account. Some experiments carried out using a myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Model Based Fuzzy Expert System for Measuring Organization Knowledge Management
Directory of Open Access Journals (Sweden)
Houshang Taghizadeh
2012-02-01
Full Text Available This paper presents a model based on fuzzy set theory for determining the score of knowledge management in organization. The introduced model has five stages. In the first stage, input and output variable of model are characterized by available theories. Inputs are as follows: knowledge acquisition, knowledge storage, knowledge creation, knowledge sharing and knowledge transfer. The output is as follow score of knowledge management in organization. In the second stage, the input and output are converted into fuzzy numbers after classification. Inference rules are explained in the third stage. In the fourth stage, defuzzification is performed, and in the fifth stage, the devised system is tested. The test result shows that the presented model has high validity. Ultimately, by using the designed model, the score of knowledge management for Tabriz Kar machinery industry was calculated. The statistical population consists of 50 members of this organization. All the population has been studied. A questionnaire was devised, and its validity and reliability were confirmed. The result indicated that the score of knowledge management in Tabriz Kar machinery industry with the membership rank of 0.924 was at an average level and with the membership rank of 0.076 was at a high
Directory of Open Access Journals (Sweden)
Hodeiseh Gordan
2012-11-01
Full Text Available This paper proposes a novel inference mechanism for an interval type-2 Takagi-Sugeno-Kang fuzzy logic controlsystem (IT2 TSK FLCS. This paper focuses on control applications for case both plant and controller use A2-C0 TSK models. The defuzzified output of the T2FLS is then obtained by averaging the defuzzified outputs of the resultant four embedded T1FLSs in order to reduce the computational burden of T2 TSK FS. A simplified T2 TSK FS based on a hybrid structure of four type-1 fuzzy systems (T1 TSK FS. A simulation example is presented to show the eectiveness of this method.
DEFF Research Database (Denmark)
Møller, Jesper
.1 with the title ‘Inference'.) This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods using Markov chain Monte Carlo (MCMC) simulations. Due to space limitations the focus...
Institute of Scientific and Technical Information of China (English)
曹政才; 邓积杰; 刘民; 王永吉
2012-01-01
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.
Ocampo-Duque, William; Osorio, Carolina; Piamba, Christian; Schuhmacher, Marta; Domingo, José L
2013-02-01
The integration of water quality monitoring variables is essential in environmental decision making. Nowadays, advanced techniques to manage subjectivity, imprecision, uncertainty, vagueness, and variability are required in such complex evaluation process. We here propose a probabilistic fuzzy hybrid model to assess river water quality. Fuzzy logic reasoning has been used to compute a water quality integrative index. By applying a Monte Carlo technique, based on non-parametric probability distributions, the randomness of model inputs was estimated. Annual histograms of nine water quality variables were built with monitoring data systematically collected in the Colombian Cauca River, and probability density estimations using the kernel smoothing method were applied to fit data. Several years were assessed, and river sectors upstream and downstream the city of Santiago de Cali, a big city with basic wastewater treatment and high industrial activity, were analyzed. The probabilistic fuzzy water quality index was able to explain the reduction in water quality, as the river receives a larger number of agriculture, domestic, and industrial effluents. The results of the hybrid model were compared to traditional water quality indexes. The main advantage of the proposed method is that it considers flexible boundaries between the linguistic qualifiers used to define the water status, being the belongingness of water quality to the diverse output fuzzy sets or classes provided with percentiles and histograms, which allows classify better the real water condition. The results of this study show that fuzzy inference systems integrated to stochastic non-parametric techniques may be used as complementary tools in water quality indexing methodologies.
Consumer preference models: fuzzy theory approach
Turksen, I. B.; Wilson, I. A.
1993-12-01
Consumer preference models are widely used in new product design, marketing management, pricing and market segmentation. The purpose of this article is to develop and test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation) and how much to make (market share prediction).
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
Directory of Open Access Journals (Sweden)
Jing Li
2017-01-01
Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.
Statistical Inference in Graphical Models
2008-06-17
Probabilistic Network Library ( PNL ). While not fully mature, PNL does provide the most commonly-used algorithms for inference and learning with the efficiency...of C++, and also offers interfaces for calling the library from MATLAB and R 1361. Notably, both BNT and PNL provide learning and inference algorithms...mature and has been used for research purposes for several years, it is written in MATLAB and thus is not suitable to be used in real-time settings. PNL
High-Order Fuzzy Time Series Model Based on Generalized Fuzzy Logical Relationship
Directory of Open Access Journals (Sweden)
Wangren Qiu
2013-01-01
Full Text Available In view of techniques for constructing high-order fuzzy time series models, there are three methods which are based on advanced algorithms, computational methods, and grouping the fuzzy logical relationships, respectively. The last kind model has been widely applied and researched for the reason that it is easy to be understood by the decision makers. To improve the fuzzy time series forecasting model, this paper presents a novel high-order fuzzy time series models denoted as GTS(M,N on the basis of generalized fuzzy logical relationships. Firstly, the paper introduces some concepts of the generalized fuzzy logical relationship and an operation for combining the generalized relationships. Then, the proposed model is implemented in forecasting enrollments of the University of Alabama. As an example of in-depth research, the proposed approach is also applied to forecast the close price of Shanghai Stock Exchange Composite Index. Finally, the effects of the number of orders and hierarchies of fuzzy logical relationships on the forecasting results are discussed.
Character recognition using a neural network model with fuzzy representation
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps
Directory of Open Access Journals (Sweden)
Y. Tulunay
2008-12-01
Full Text Available Atmospheric processes are highly nonlinear. A small group at the METU in Ankara has been working on a fuzzy data driven generic model of nonlinear processes. The model developed is called the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M. The METU-FNN-M consists of a Fuzzy Inference System (METU-FIS, a data driven Neural Network module (METU-FNN of one hidden layer and several neurons, and a mapping module, which employs the Bezier Surface Mapping technique. In this paper, the percent cloud coverage (%CC and cloud top temperatures (CTT are forecast one month ahead of time at 96 grid locations. The probable influence of cosmic rays and sunspot numbers on cloudiness is considered by using the METU-FNN-M.
On the criticality of inferred models
Mastromatteo, Iacopo
2011-01-01
Advanced inference techniques allow one to reconstruct the pattern of interaction from high dimensional data sets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to a phase transition. On one side, we show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher Information) is directly related to the model's susceptibility. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. On the other, this region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time-scales naturally yield models which are close to criticality.
Fuzzy-logic modeling of Fenton's oxidation of anaerobically pretreated poultry manure wastewater.
Yetilmezsoy, Kaan
2012-07-01
A multiple inputs and multiple outputs (MIMO) fuzzy-logic-based model was proposed to estimate color and chemical oxygen demand (COD) removal efficiencies in the post-treatment of anaerobically pretreated poultry manure wastewater effluent using Fenton's oxidation process. Three main input variables including initial pH, Fe+2, and H2O2 dosages were fuzzified in a new numerical modeling scheme by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 70 rules in the IF-THEN format. The product (prod) and the center of gravity (centroid) methods were applied as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two first-order polynomial regression models derived in the scope of this study. Estimated results were also compared to the multiple regression approach by means of various descriptive statistical indicators, such as root mean-squared error, index of agreement, fractional variance, proportion of systematic error, etc. Results of the statistical analysis clearly revealed that, compared to conventional regression models, the proposed MIMO fuzzy-logic model produced very smaller deviations and demonstrated a superior predictive performance on forecasting of color and COD removal efficiencies with satisfactory determination coefficients over 0.98. Due to high capability of the fuzzy-logic methodology in capturing the non-linear interactions, it was demonstrated that a complex dynamic system, such as Fenton's oxidation, could be easily modeled.
Simplifying Hill-based muscle models through generalized extensible fuzzy heuristic implementation
O'Brien, Amy J.
2006-04-01
Traditional dynamic muscle models based on work initially published by A. V. Hill in 1938 often rely on high-order systems of differential equations. While such models are very accurate and effective, they do not typically lend themselves to modification by clinicians who are unfamiliar with biomedical engineering and advanced mathematics. However, it is possible to develop a fuzzy heuristic implementation of a Hill-based model-the Fuzzy Logic Implemented HIll-based (FLIHI) muscle model-that offers several advantages over conventional state equation approaches. Because a fuzzy system is oriented by design to describe a model in linguistics rather than ordinary differential equation-based mathematics, the resulting fuzzy model can be more readily modified and extended by medical practitioners. It also stands to reason that a well-designed fuzzy inference system can be implemented with a degree of generalizability not often encountered in traditional state space models. Taking electromyogram (EMG) as one input to muscle, FLIHI is tantamount to a fuzzy EMG-to-muscle force estimator that captures dynamic muscle properties while providing robustness to partial or noisy data. One goal behind this approach is to encourage clinicians to rely on the model rather than assuming that muscle force as an output maps directly to smoothed EMG as an input. FLIHI's force estimate is more accurate than assuming force equal to smoothed EMG because FLIHI provides a transfer function that accounts for muscle's inherent nonlinearity. Furthermore, employing fuzzy logic should provide FLIHI with improved robustness over traditional mathematical approaches.
Bisht, K.; Dodamani, S. S.
2016-12-01
Modelling of Land Surface Temperature is essential for short term and long term management of environmental studies and management activities of the Earth's resources. The objective of this research is to estimate and model Land Surface Temperatures (LST). For this purpose, Landsat 7 ETM+ images period from 2007 to 2012 were used for retrieving LST and processed through MATLAB software using Mamdani fuzzy inference systems (MFIS), which includes pre-monsoon and post-monsoon LST in the fuzzy model. The Mangalore City of Karnataka state, India has been taken for this research work. Fuzzy model inputs are considered as the pre-monsoon and post-monsoon retrieved temperatures and LST was chosen as output. In order to develop a fuzzy model for LST, seven fuzzy subsets, nineteen rules and one output are considered for the estimation of weekly mean air temperature. These are very low (VL), low (L), medium low (ML), medium (M), medium high (MH), high (H) and very high (VH). The TVX (Surface Temperature Vegetation Index) and the empirical method have provided estimated LST. The study showed that the Fuzzy model M4/7-19-1 (model 4, 7 fuzzy sets, 19 rules and 1 output) which developed over Mangalore City has provided more accurate outcomes than other models (M1, M2, M3, M5). The result of this research was evaluated according to statistical rules. The best correlation coefficient (R) and root mean squared error (RMSE) between estimated and measured values for pre-monsoon and post-monsoon LST found to be 0.966 - 1.607 K and 0.963- 1.623 respectively.
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2015-10-01
Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.
Energy Technology Data Exchange (ETDEWEB)
Metin Ertunc, H. [Department of Mechatronics Engineering, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey); Hosoz, Murat [Department of Mechanical Education, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey)
2008-12-15
This study deals with predicting the performance of an evaporative condenser using both artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. For this aim, an experimental evaporative condenser consisting of a copper tube condensing coil along with air and water circuit elements was developed and equipped with instruments used for temperature, pressure and flow rate measurements. After the condenser was connected to an R134a vapour-compression refrigeration circuit, it was operated at steady state conditions, while varying both dry and wet bulb temperatures of the air stream entering the condenser, air and water flow rates as well as pressure, temperature and flow rate of the entering refrigerant. Using some of the experimental data for training, ANN and ANFIS models for the evaporative condenser were developed. These models were used for predicting the condenser heat rejection rate, refrigerant temperature leaving the condenser along with dry and wet bulb temperatures of the leaving air stream. Although it was observed that both ANN and ANFIS models yielded a good statistical prediction performance in terms of correlation coefficient, mean relative error, root mean square error and absolute fraction of variance, the accuracies of ANFIS predictions were usually slightly better than those of ANN predictions. This study reveals that, having an extended prediction capability compared to ANN, the ANFIS technique can also be used for predicting the performance of evaporative condensers. (author)
Fuzzy MCDM Model for Risk Factor Selection in Construction Projects
Directory of Open Access Journals (Sweden)
Pejman Rezakhani
2012-11-01
Full Text Available Risk factor selection is an important step in a successful risk management plan. There are many risk factors in a construction project and by an effective and systematic risk selection process the most critical risks can be distinguished to have more attention. In this paper through a comprehensive literature survey, most significant risk factors in a construction project are classified in a hierarchical structure. For an effective risk factor selection, a modified rational multi criteria decision making model (MCDM is developed. This model is a consensus rule based model and has the optimization property of rational models. By applying fuzzy logic to this model, uncertainty factors in group decision making such as experts` influence weights, their preference and judgment for risk selection criteria will be assessed. Also an intelligent checking process to check the logical consistency of experts` preferences will be implemented during the decision making process. The solution inferred from this method is in the highest degree of acceptance of group members. Also consistency of individual preferences is checked by some inference rules. This is an efficient and effective approach to prioritize and select risks based on decisions made by group of experts in construction projects. The applicability of presented method is assessed through a case study.
Operator functional state estimation based on EEG-data-driven fuzzy model.
Zhang, Jianhua; Yin, Zhong; Yang, Shaozeng; Wang, Rubin
2016-10-01
This paper proposed a max-min-entropy-based fuzzy partition method for fuzzy model based estimation of human operator functional state (OFS). The optimal number of fuzzy partitions for each I/O variable of fuzzy model is determined by using the entropy criterion. The fuzzy models were constructed by using Wang-Mendel method. The OFS estimation results showed the practical usefulness of the proposed fuzzy modeling approach.
A Fuzzy Knowledge Representation Model for Student Performance Assessment
DEFF Research Database (Denmark)
Badie, Farshad
Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth/completene....../completeness about vague or imprecise information. This paper tackles the issue of representing fuzzy classes using OWL2 in a dataset describing Performance Assessment Results of Students (PARS)....
Developing a fuzzy model for Tehran's air quality
Directory of Open Access Journals (Sweden)
Nafiseh Tokhmehchi
2015-01-01
Full Text Available This research aims to offer a fuzzy approach for calculating Tehran's air pollution index. The method is based on fuzzy analysis model, and uses the information about air quality index (AQI, included on the website of Tehran’s Air Quality Monitoring And Supervision Bureau. The contrived fuzzy logic is considered a powerful tool for demonstrating the information associated with uncertainty. In the end, several graphs visualize this inferential system in various levels of pollution.
A Context-Aware Interactive Health Care System Based on Ontology and Fuzzy Inference.
Chiang, Tzu-Chiang; Liang, Wen-Hua
2015-09-01
In the present society, most families are double-income families, and as the long-term care is seriously short of manpower, it contributes to the rapid development of tele-homecare equipment, and the smart home care system gradually emerges, which assists the elderly or patients with chronic diseases in daily life. This study aims at interaction between persons under care and the system in various living spaces, as based on motion-sensing interaction, and the context-aware smart home care system is proposed. The system stores the required contexts in knowledge ontology, including the physiological information and environmental information of the person under care, as the database of decision. The motion-sensing device enables the person under care to interact with the system through gestures. By the inference mechanism of fuzzy theory, the system can offer advice and rapidly execute service, thus, implementing the EHA. In addition, the system is integrated with the functions of smart phone, tablet PC, and PC, in order that users can implement remote operation and share information regarding the person under care. The health care system constructed in this study enables the decision making system to probe into the health risk of each person under care; then, from the view of preventive medicine, and through a composing system and simulation experimentation, tracks the physiological trend of the person under care, and provides early warning service, thus, promoting smart home care.
Static security-based available transfer capability using adaptive neuro fuzzy inference system
Energy Technology Data Exchange (ETDEWEB)
Venkaiah, C.; Vinod Kumar, D.M.
2010-07-01
In a deregulated power system, power transactions between a seller and a buyer can only be scheduled when there is sufficient available transfer capability (ATC). Internet-based, open access same-time information systems (OASIS) provide market participants with ATC information that is continuously updated in real time. Static security-based ATC can be computed for the base case system as well as for the critical line outages of the system. Since critical line outages are based on static security analysis, the computation of static security based ATC using conventional methods is both tedious and time consuming. In this study, static security-based ATC was computed for real-time applications using 3 artificial intelligent methods notably the back propagation algorithm (BPA), the radial basis function (RBF) neural network, and the adaptive neuro fuzzy inference system (ANFIS). An IEEE 24-bus reliability test system (RTS) and 75-bus practical system were used to test these 3 different intelligent methods. The results were compared with the conventional full alternating current (AC) load flow method for different transactions.
Teimouri, Reza; Sohrabpoor, Hamed
2013-12-01
Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.
Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim
2016-11-01
In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.
Institute of Scientific and Technical Information of China (English)
柴园园; 贾利民
2011-01-01
In order to solve the defects of consequent part expression in ANFIS (adaptive neural fuzzy inference system) model and several shortcomings in FIS (fuzzy inference system), this paper presents a Choquet integral-OWA (outlook web access) based FIS, known as AggFIS. This model has advantages in consequent part of fuzzy rule, universal expression of fuzzy inference operator and importance factor of each input and each rule, aiming at establish fuzzy inference system that can fully reflect the essence of fuzzy logic and human thinking patterns. If AggFIS is combined with a feed forward-type neural network according to the basic principles of fuzzy neural network, the Choquet integral-OWA based adaptive neural fuzzy inference system (Agg-ANFIS) is obtained, which is applied to the evaluation of traffic level of service. Experimental results show that Agg-ANFIS is a universal approximates because of its nonlinear mapping capability by training and can be used in, analysis and prediction of complex systems modelling.%针对已有的自适应神经模糊推理系统(ANFIS)在模糊规则后件表达上的缺陷和常见的模糊推理系统存在的主要问题,提出基于Choquet积分OWA的模糊推理系统(AggFIS),在模糊规则的后件表达、模糊算子的普适性和输入及规则的权重等方面有很大优势,它试图建立能够充分体现模糊逻辑本质和人类思维模式的模糊推理系统.根据模糊神经网的基本原理将AggFIS与前馈神经网络相结合,得到基于Choquet积分-OWA的自适应神经模糊推理系统(Agg-ANFIS),并将该模型应用于交通服务水平评价问题.实验结果证明,基于Choquet积分OWA的自适应神经模糊推理系统具有很好的非线性映射功能,它的本质是一类通用逼近器,为解决复杂系统的建模、分析及预测问题提供了有效的途径.
Genetic fuzzy system modeling and simulation of vascular behaviour
DEFF Research Database (Denmark)
Tang, Jiaowei; Boonen, Harrie C.M.
and find the optimal parameters in a Fuzzy Control set that can control the fluctuation of physical features in a blood vessel, based on experimental data (training data). Our solution is to create chromosomes or individuals composed of a sequence of parameters in the fuzzy system and find the best...... chromosome or individual to define the fuzzy system. The model is implemented by combining the Matlab Genetic algorithm and Fuzzy system toolboxes, respectively. To test the performance of this method, experimental data sets about calculated pressure change in different blood vessels after several chemical...... treatments are chosen as training and testing data sets. In the simulation, the fuzzy control system is trained by pressure data of one blood vessel and tested with pressure data of other blood vessels. Results: Right now, some rough results show that trained fuzzy control system can be used to predict...
Taste Identification of Tea Through a Fuzzy Neural Network Based on Fuzzy C-means Clustering
Institute of Scientific and Technical Information of China (English)
ZHENG Yan; ZHOU Chun-guang
2003-01-01
In this paper, we present a fuzzy neural network model based on Fuzzy C-Means (FCM) clustering algorithm to realize the taste identification of tea. The proposed method can acquire the fuzzy subset and its membership function in an automatic way with the aid of FCM clustering algorithm. Moreover, we improve the fuzzy weighted inference approach. The proposed model is illustrated with the simulation of taste identification of tea.
Marginal linearization method in modeling on fuzzy control systems
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Marginal linearization method in modeling on fuzzy control systems is proposed, which is to deal with the nonlinear model with variable coefficients. The method can turn a nonlinear model with variable coefficients into a linear model with variable coefficients in the way that the membership functions of the fuzzy sets in fuzzy partitions of the universes are changed from triangle waves into rectangle waves. However, the linearization models are incomplete in their forms because of their lacking some items. For solving this problem, joint approximation by using linear models is introduced. The simulation results show that marginal linearization models are of higher approximation precision than their original nonlinear models.
European option pricing model in a stochastic and fuzzy environment
Institute of Scientific and Technical Information of China (English)
LIU Wen-qiong; LI Sheng-hong
2013-01-01
The primary goal of this paper is to price European options in the Merton’s frame-work with underlying assets following jump-diff usion using fuzzy set theory. Owing to the vague fluctuation of the real financial market, the average jump rate and jump sizes cannot be recorded or collected accurately. So the main idea of this paper is to model the rate as a triangular fuzzy number and jump sizes as fuzzy random variables and use the property of fuzzy set to deduce two diff erent jump-diff usion models underlying principle of rational expectations equilibrium price. Unlike many conventional models, the European option price will now turn into a fuzzy number. One of the major advantages of this model is that it allows investors to choose a reasonable European option price under an acceptable belief degree. The empirical results will serve as useful feedback information for improvements on the proposed model.
Type-2 fuzzy logic uncertain systems’ modeling and control
Antão, Rómulo
2017-01-01
This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.
Li, Shih-Yu; Tam, Lap-Mou; Tsai, Shang-En; Ge, Zheng-Ming
2015-09-11
Ge and Li proposed an alternative strategy to model and synchronize two totally different nonlinear systems in the end of 2011, which provided a new version for fuzzy modeling and has been applied to several fields to simplify their modeling works and solve the mismatch problems [1]-[17]. However, the proposed model limits the number of nonlinear terms in each equation so that this model could not be used in all kinds of nonlinear dynamic systems. As a result, in this paper, a more efficient and comprehensive advanced-Ge-Li fuzzy model is given to further release the limitation and improve the effectiveness of the original one. The novel fuzzy model can be applied to all kinds of complex nonlinear systems--this is the universal strategy and only m x 2 fuzzy rules as well as two linear subsystems are needed to simulate nonlinear behaviors (m is the number of states in a nonlinear dynamic system), whatever the nonlinear terms are copious or complicated. Further, the fuzzy synchronization of two nonlinear dynamic systems with totally distinct structures can be achieved via only two sets of control gains designed through the novel fuzzy model as well as its corresponding fuzzy synchronization scheme. Two complicated dynamic systems are designed to be the illustrations, Mathieu-Van der pol system with uncertainties and Quantum-cellular neural networks nano system with uncertainties, to show the effectiveness and feasibility of the novel fuzzy model.
FUZZY MODEL FOR TWO-DIMENSIONAL RIVER WATER QUALITY SIMULATION UNDER SUDDEN POLLUTANTS DISCHARGED
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on the fuzziness and impreciseness of water environmental system, the fuzzy arithmetic was used to simulate the fuzzy and imprecise relations in modeling river water quality. By defining the parameters of water quality model as symmetrical triangular fuzzy numbers, a two-dimensional fuzzy water quality model for sudden pollutant discharge is established. From the fuzzy model, the pollutant concentrations, corresponding to the specified confidence level of α, can be obtained by means of the α-cut technique and arithmetic operations of triangular fuzzy numbers. Study results reveal that it is feasible in theory and reliable on calculation applying triangular fuzzy numbers to the simulation of river water quality.
Directory of Open Access Journals (Sweden)
Wangren Qiu
2015-01-01
Full Text Available In view of techniques for constructing high-order fuzzy time series models, there are three types which are based on advanced algorithms, computational method, and grouping the fuzzy logical relationships. The last type of models is easy to be understood by the decision maker who does not know anything about fuzzy set theory or advanced algorithms. To deal with forecasting problems, this paper presented novel high-order fuzz time series models denoted as GTS (M, N based on generalized fuzzy logical relationships and automatic clustering. This paper issued the concept of generalized fuzzy logical relationship and an operation for combining the generalized relationships. Then, the procedure of the proposed model was implemented on forecasting enrollment data at the University of Alabama. To show the considerable outperforming results, the proposed approach was also applied to forecasting the Shanghai Stock Exchange Composite Index. Finally, the effects of parameters M and N, the number of order, and concerned principal fuzzy logical relationships, on the forecasting results were also discussed.
Saatchi, R.
2004-03-01
The aim of the study was to automate the identification of a saccade-related visual evoked potential (EP) called the lambda wave. The lambda waves were extracted from single trials of electroencephalogram (EEG) waveforms using independent component analysis (ICA). A trial was a set of EEG waveforms recorded from 64 scalp electrode locations while a saccade was performed. Forty saccade-related EEG trials (recorded from four normal subjects) were used in the study. The number of waveforms per trial was reduced from 64 to 22 by pre-processing. The application of ICA to the resulting waveforms produced 880 components (i.e. 4 subjects × 10 trials per subject × 22 components per trial). The components were divided into 373 lambda and 507 nonlambda waves by visual inspection and then they were represented by one spatial and two temporal features. The classification performance of a Bayesian approach called predictive statistical diagnosis (PSD) was compared with that of a fuzzy logic approach called a fuzzy inference system (FIS). The outputs from the two classification approaches were then combined and the resulting discrimination accuracy was evaluated. For each approach, half the data from the lambda and nonlambda wave categories were used to determine the operating parameters of the classification schemes while the rest (i.e. the validation set) were used to evaluate their classification accuracies. The sensitivity and specificity values when the classification approaches were applied to the lambda wave validation data set were as follows: for the PSD 92.51% and 91.73% respectively, for the FIS 95.72% and 89.76% respectively, and for the combined FIS and PSD approach 97.33% and 97.24% respectively (classification threshold was 0.5). The devised signal processing techniques together with the classification approaches provided for an effective extraction and classification of the single-trial lambda waves. However, as only four subjects were included, it will be
Fuzzy model for Laser Assisted Bending Process
Directory of Open Access Journals (Sweden)
Giannini Oliviero
2016-01-01
Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.
Relativistic Landau Models and Generation of Fuzzy Spheres
Hasebe, Kazuki
2015-01-01
Non-commutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In one-half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish $SU(2)$ "gauge" transformation between the relativistic Landau model and the Pauli-Schr\\"odinger non-relativistic quantum mechanics. In the other half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymm...
Directory of Open Access Journals (Sweden)
Faezehossadat Khademi
2016-12-01
Full Text Available Compressive strength of concrete, recognized as one of the most significant mechanical properties of concrete, is identified as one of the most essential factors for the quality assurance of concrete. In the current study, three different data-driven models, i.e., Artificial Neural Network (ANN, Adaptive Neuro-Fuzzy Inference System (ANFIS, and Multiple Linear Regression (MLR were used to predict the 28 days compressive strength of recycled aggregate concrete (RAC. Recycled aggregate is the current need of the hour owing to its environmental pleasant aspect of re-using the wastes due to construction. 14 different input parameters, including both dimensional and non-dimensional parameters, were used in this study for predicting the 28 days compressive strength of concrete. The present study concluded that estimation of 28 days compressive strength of recycled aggregate concrete was performed better by ANN and ANFIS in comparison to MLR. In other words, comparing the test step of all the three models, it can be concluded that the MLR model is better to be utilized for preliminary mix design of concrete, and ANN and ANFIS models are suggested to be used in the mix design optimization and in the case of higher accuracy necessities. In addition, the performance of data-driven models with and without the non-dimensional parameters is explored. It was observed that the data-driven models show better accuracy when the non-dimensional parameters were used as additional input parameters. Furthermore, the effect of each non-dimensional parameter on the performance of each data-driven model is investigated. Finally, the effect of number of input parameters on 28 days compressive strength of concrete is examined.
Fuzzy Multiple Criteria Decision Making Model with Fuzzy Time Weight Scheme
Directory of Open Access Journals (Sweden)
Chin-Yao Low
2013-11-01
Full Text Available In this study, we purpose a common fuzzy multiple criteria decision making model. A brand new concept - fuzzy time weighted scheme is adopted for considering in the model to establish a fuzzy multiple criteria decision making with time weight (FMCDMTW model. A real case of fuzzy multiple criteria decision making (FMCDM problems to be considering in this study. The performance evaluation of auction websites based on all criteria proposed in related literature. Obviously, the problem under investigated is a FMCDM problem with historic data and recent data. Since the evaluated criteria proposed in the literature cannot be defined precisely and numerically, fuzzy linguistic terms can be used to aggregate them numerically. It not only conforms to human cognition but also benefits interpretation. Furthermore, notice that the literature considered contains certain amount of historic data. Equally weighted historic data is usually considered in FMCDM problems, and this approach would introduce bias owing to the collected data for a certain long time period. As a result, fuzzy time weighted technique is adopted to resolve this issue.
Fuzzy System Model for Management of Driver Distractions in Motor Vehicles
Directory of Open Access Journals (Sweden)
Adnan Shaout
2015-05-01
Full Text Available In this paper a low cost and driver’s environment friendly design of a Fuzzy Logic software system to manage driver distractions in a motor vehicle is presented. The system uses four inputs; vehicle speed, radio volume setting, frequency of left or right hand turns per minute and brightness conditions external to the vehicle. The system provides a single output in the form of a Driver Attention Load rating. This rating is used as a parameter to determine the degree to which the driver’s environment needs to be adjusted in terms of radio volume level, brightness of instrument cluster display and reducing the amount of connected phone interruptions per minute. The Fuzzy Inference Software System is modeled and simulated using MATLAB. After simulation, the final system and associated graphical user interface are designed as a standalone application written in Java. An open source Java library called jFuzzyLogic is used to model the Fuzzy Inference System and the Java Swing toolkit is used for the design of the graphical user interface.
Fuzzy control of power converters based on quasilinear modelling
Li, C. K.; Lee, W. L.; Chou, Y. W.
1995-03-01
Unlike feedback control by the fuzzy PID method, a new fuzzy control algorithm based on quasilinear modelling of the DC-DC converter is proposed. Investigation is carried out using a buck-boost converter. Simulation results demonstrated that the converter can be regulated with improved performance even when subjected to input disturbance and load variation.
Fuzzy Partition Models for Fitting a Set of Partitions.
Gordon, A. D.; Vichi, M.
2001-01-01
Describes methods for fitting a fuzzy consensus partition to a set of partitions of the same set of objects. Describes and illustrates three models defining median partitions and compares these methods to an alternative approach to obtaining a consensus fuzzy partition. Discusses interesting differences in the results. (SLD)
Directory of Open Access Journals (Sweden)
Chen Yu-Fan
2006-01-01
Full Text Available An adaptive minimum mean-square error (MMSE array receiver based on the fuzzy-logic recursive least-squares (RLS algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ( , , into a forgetting factor . For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS algorithm using the fuzzy-inference-controlled step-size . This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS and variable forgetting factor RLS (VFF-RLS algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER for multipath fading channels.
Secondary systems modeled as fuzzy sub-structures
DEFF Research Database (Denmark)
Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager; Lin, Y.K.
1998-01-01
in the simplest case be modeled by attaching random single degree of freedom oscillators, called fuzzies, to the master structure at randomly distributed points of the structure. Each of these fuzzies are characterized by a random triplet of mass, eigenfrequency, and damping ratio. This characterization can...... be combined with a model of the random distribution of the fuzzies over the structure by letting the entire system of fuzzies be characterized as a triplet of random fields over the structure. Two specific examples, a Poisson point pulse field and a Poisson square wave field, of such a triplet field...... the probabilistic properties of the impulse response function, say, or of the nonergodic steady state response to stationary excitation, say. The study prepares for a finite element model of a flexible master structure with a fuzzy subsystem attached to it....
Directory of Open Access Journals (Sweden)
Ulfatun Hani'ah
2016-06-01
Full Text Available Peramalan pemakaian air pada bulan januari 2015 sampai April 2015 dapat dilakukan menggunakan perhitungan matematika dengan bantuan ilmu komputer. Metode yang digunakan adalah Adaptive Neuro Fuzzy Inference System (ANFIS dengan bantuan software MATLAB. Untuk pengujian program, dilakukan percobaan dengan memasukkan variabel klas = 2, maksimum epoh = 100, error = 10-6, rentang nilai learning rate = 0.6 sampai 0.9, dan rentang nilai momentum = 0.6 sampai 0.9. Simpulan yang diperoleh adalah bahwa implementasi metode Adaptive Neuro-Fuzzy Inference System dalam peramalan pemakaian air yang pertama adalah membuat rancangan flowchart, melakukan clustering data menggunakan fuzzy C-Mean, menentukan neuron tiap-tiap lapisan, mencari nilai parameter dengan menggunakan LSE rekursif, lalu penentuan perhitungan error menggunakan sum square error (SSE dan membuat sistem peramalan pemakaian air dengan software MATLAB. Setelah dilakukan percobaan hasil yang menunjukkan SSE paling kecil adalah nilai learning rate 0.9 dan momentum 0.6 dengan SSE 0.0080107. Hasil peramalan pemakaian air pada bulan Januari adalah 3.836.138m3, bulan Februari adalah 3.595.188m3, bulan Maret adalah 3.596.416 m3, dan bulan April adalah 3.776.833 m3.
Institute of Scientific and Technical Information of China (English)
谭冠政; 曾庆冬; 李文斌
2004-01-01
A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.
Yang, Yahong; Zhao, Fuqing; Hong, Yi; Yu, Dongmei
2005-12-01
Integration of process planning with scheduling by considering the manufacturing system's capacity, cost and capacity in its workshop is a critical issue. The concurrency between them can also eliminate the redundant process and optimize the entire production cycle, but most integrated process planning and scheduling methods only consider the time aspects of the alternative machines when constructing schedules. In this paper, a fuzzy inference system (FIS) in choosing alternative machines for integrated process planning and scheduling of a job shop manufacturing system is presented. Instead of choosing alternative machines randomly, machines are being selected based on the machines reliability. The mean time to failure (MTF) values is input in a fuzzy inference mechanism, which outputs the machine reliability. The machine is then being penalized based on the fuzzy output. The most reliable machine will have the higher priority to be chosen. In order to overcome the problem of un-utilization machines, sometimes faced by unreliable machine, the particle swarm optimization (PSO) have been used to balance the load for all the machines. Simulation study shows that the system can be used as an alternative way of choosing machines in integrated process planning and scheduling.
Fabric Wrinkle Grade Assessment Based on Fuzzy Pattern Recognition
Institute of Scientific and Technical Information of China (English)
YANG Xiao-bo
2006-01-01
The basic principle of fuzzy pattern recognition is brief introduced firstly in this paper, which mainly includes fuzzy rules and fuzzy inference system. Then, the algorithm procedure of fuzzy pattern recognition is proposed. Finally,the application of Mamdani fuzzy model is introduced to evaluate fabric wrinkle grade in detail, and used the correlation coefficient between subject and object evaluation to verify the reliability of fuzzy pattern recognition. It shows the method of fuzzy pattern recognition needs not a large number of testing data and the accuracy of evaluation is up to 97.38%.
A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.
Chang, Chia-Wen; Tao, Chin-Wang
2017-09-01
This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.
Model Reduction of Fuzzy Logic Systems
Directory of Open Access Journals (Sweden)
Zhandong Yu
2014-01-01
Full Text Available This paper deals with the problem of ℒ2-ℒ∞ model reduction for continuous-time nonlinear uncertain systems. The approach of the construction of a reduced-order model is presented for high-order nonlinear uncertain systems described by the T-S fuzzy systems, which not only approximates the original high-order system well with an ℒ2-ℒ∞ error performance level γ but also translates it into a linear lower-dimensional system. Then, the model approximation is converted into a convex optimization problem by using a linearization procedure. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Modelling of Reservoir Operations using Fuzzy Logic and ANNs
Van De Giesen, N.; Coerver, B.; Rutten, M.
2015-12-01
Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.
Fuzzy Clustering Using the Convex Hull as Geometrical Model
Directory of Open Access Journals (Sweden)
Luca Liparulo
2015-01-01
Full Text Available A new approach to fuzzy clustering is proposed in this paper. It aims to relax some constraints imposed by known algorithms using a generalized geometrical model for clusters that is based on the convex hull computation. A method is also proposed in order to determine suitable membership functions and hence to represent fuzzy clusters based on the adopted geometrical model. The convex hull is not only used at the end of clustering analysis for the geometric data interpretation but also used during the fuzzy data partitioning within an online sequential procedure in order to calculate the membership function. Consequently, a pure fuzzy clustering algorithm is obtained where clusters are fitted to the data distribution by means of the fuzzy membership of patterns to each cluster. The numerical results reported in the paper show the validity and the efficacy of the proposed approach with respect to other well-known clustering algorithms.
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
user
Modelling with fuzzy logic is an approach to forming ... the way humans think and make judgments [10]. ... artificial intelligence and expert systems [17, 18] to .... from selected cases, human professional computation and the Model predictions.
MODELLING OF AIR CONDITIONING SYSTEM BY FUZZY LOGIC APPROACH
Directory of Open Access Journals (Sweden)
Ahmet ÖZEK
2004-03-01
Full Text Available One of the main problems in control systems is the difficulty to form the mathematical model associated with the control mechanism. Even though this model can be formed, to realize the application with conventional logic may cause very complex problems. The fuzzy logic without using mathematical model of control system can create control mechanism only with the help of linguistic variables. In this article the modeling has been realized by fuzzy logic.
DEFF Research Database (Denmark)
Møller, Jesper
2010-01-01
Chapter 9: This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods based on a maximum likelihood or Bayesian approach combined with markov chain Monte Carlo...
Modelling spatial vagueness based on type-2 fuzzy set
Institute of Scientific and Technical Information of China (English)
DU Guo-ning; ZHU Zhong-ying
2006-01-01
The modelling and formal characterization of spatial vagueness plays an increasingly important role in the implementation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have been investigated and acknowledged as being vague and ambiguous. Models and methods which describe and handle fuzzy or vague (rather than crisp or determinate) spatial objects, will be more necessary in GIS. This paper proposes a new method for modelling spatial vagueness based on type-2 fuzzy set, which is distinguished from the traditional type-1 fuzzy methods and more suitable for describing and implementing the vague concepts and objects in GIS.
Lifted Inference for Relational Continuous Models
Choi, Jaesik; Hill, David J
2012-01-01
Relational Continuous Models (RCMs) represent joint probability densities over attributes of objects, when the attributes have continuous domains. With relational representations, they can model joint probability distributions over large numbers of variables compactly in a natural way. This paper presents a new exact lifted inference algorithm for RCMs, thus it scales up to large models of real world applications. The algorithm applies to Relational Pairwise Models which are (relational) products of potentials of arity 2. Our algorithm is unique in two ways. First, it substantially improves the efficiency of lifted inference with variables of continuous domains. When a relational model has Gaussian potentials, it takes only linear-time compared to cubic time of previous methods. Second, it is the first exact inference algorithm which handles RCMs in a lifted way. The algorithm is illustrated over an example from econometrics. Experimental results show that our algorithm outperforms both a groundlevel inferenc...
Fuzzy logic technology for modeling of greenhouse crop transpiration rate
Deng, Lujuan; Wang, Huaishan
2006-11-01
The objective of this paper was present a reasonable greenhouse crop transpiration rate model for irrigation scheduling thereby to achieve the best effect, for example, water and energy economizing furthermore to make crop growing better. So it was essential to measure crop transpiration rate. Owing to the difficulty of obtaining accurate real time data of crop transpiration, it was commonly estimated from weather parameters. So the fuzzy logic model for estimation of greenhouse crop transpiration rate was developed. The model was made up of five sub-systems and three layers. There were nine input variables and one output variable. The results of comparison between measured and fuzzy model is inspirer. The squared correlation coefficient (r2) by fuzzy model method (r2=0.9302) is slightly higher than by FAO Penman-Monteith formula (r2=0.9213). The fuzzy logic crop transpiration rate model could be easily extended for irrigation decision-making.
Fuzzy Programming Models for Vendor Selection Problem in a Supply Chain
Institute of Scientific and Technical Information of China (English)
WANG Junyan; ZHAO Ruiqing; TANG Wansheng
2008-01-01
This paper characterizes quality, budget, and demand as fuzzy variables in a fuzzy vendor selec-tion expected value model and a fuzzy vendor selection chance-constrained programming model, to maxi-mize the total quality level. The two models have distinct advantages over existing methods for selecting vendors in fuzzy environments. A genetic algorithm based on fuzzy simulations is designed to solve these two models. Numerical examples show the effectiveness of the algorithm.
Mekanik, F.; Imteaz, M. A.; Talei, A.
2016-05-01
Accurate seasonal rainfall forecasting is an important step in the development of reliable runoff forecast models. The large scale climate modes affecting rainfall in Australia have recently been proven useful in rainfall prediction problems. In this study, adaptive network-based fuzzy inference systems (ANFIS) models are developed for the first time for southeast Australia in order to forecast spring rainfall. The models are applied in east, center and west Victoria as case studies. Large scale climate signals comprising El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Inter-decadal Pacific Ocean (IPO) are selected as rainfall predictors. Eight models are developed based on single climate modes (ENSO, IOD, and IPO) and combined climate modes (ENSO-IPO and ENSO-IOD). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (r) and root mean square error in probability (RMSEP) skill score are used to evaluate the performance of the proposed models. The predictions demonstrate that ANFIS models based on individual IOD index perform superior in terms of RMSE, MAE and r to the models based on individual ENSO indices. It is further discovered that IPO is not an effective predictor for the region and the combined ENSO-IOD and ENSO-IPO predictors did not improve the predictions. In order to evaluate the effectiveness of the proposed models a comparison is conducted between ANFIS models and the conventional Artificial Neural Network (ANN), the Predictive Ocean Atmosphere Model for Australia (POAMA) and climatology forecasts. POAMA is the official dynamic model used by the Australian Bureau of Meteorology. The ANFIS predictions certify a superior performance for most of the region compared to ANN and climatology forecasts. POAMA performs better in regards to RMSE and MAE in east and part of central Victoria, however, compared to ANFIS it shows weaker results in west Victoria in terms of prediction errors and RMSEP skill
control of a dc motor using fuzzy logic control algorithm
African Journals Online (AJOL)
user
conditions such as changes in motor load demand, non- linearity ... Figure 1: Structure of a fuzzy logic controller (Source. [6]). A typical fuzzy logic ... mathematical modeling based on first principles; and via ..... applied. On the premise of these findings, it would be tactful in ... and Sugeno Type Fuzzy Inference Systems for Air.
Fuzzy Evidence in Identification, Forecasting and Diagnosis
Rotshtein, Alexander P
2012-01-01
The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...
Fuzzy reasoning model using fuzzy Petri Nets for the monitoring of robotic assembly
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper presented a fuzzy Petri net model to deal with the monitoring of robotic assembly. Based on the fuzzy Petri net model. All efficient composite reasoning mode was proposed to perform fuzzy reasoning automatically. It can determine whether there exists an antecedent-consequence relationship between two contact states. Furthermore, various types of sensor signals can be converted to the same form of real values between zero and one, and the contradiction among large number, high degree of truth and importance of input conditions can be resolved very well by introducing the weight factors and priorities for sensor signals. Finally, a pegin-the-hole example was given to illustrate the reasonability and feasibility of the proposed model.
Zadeh, Lofti A.
1988-01-01
The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.
Generalized multidirectional fuzzy map model of the logistics system networks
Ji, Chun-Rong; Liu, Ming-Yuan; Li, Yan; He, Yue M.
1997-07-01
By conducting [0, 1] treatment to time consuming of logistics system network key links, and regarding the time consumed by manufacture, inspection, storage, assembling, packing and market as a kind of existent extent of the joint and the time consumed by materials handling, transportation and logistics information as the connection strength between joints in a generalized multi-directional fuzzy map, a generalized multi-directional fuzzy map model of logistics system networks is built. The mutual flow among network joints and the special form of generalized fuzzy matrix is analyzed. Finally, an example of model building is given.
Adaptive neural-based fuzzy modeling for biological systems.
Wu, Shinq-Jen; Wu, Cheng-Tao; Chang, Jyh-Yeong
2013-04-01
The inverse problem of identifying dynamic biological networks from their time-course response data set is a cornerstone of systems biology. Hill and Michaelis-Menten model, which is a forward approach, provides local kinetic information. However, repeated modifications and a large amount of experimental data are necessary for the parameter identification. S-system model, which is composed of highly nonlinear differential equations, provides the direct identification of an interactive network. However, the identification of skeletal-network structure is challenging. Moreover, biological systems are always subject to uncertainty and noise. Are there suitable candidates with the potential to deal with noise-contaminated data sets? Fuzzy set theory is developed for handing uncertainty, imprecision and complexity in the real world; for example, we say "driving speed is high" wherein speed is a fuzzy variable and high is a fuzzy set, which uses the membership function to indicate the degree of a element belonging to the set (words in Italics to denote fuzzy variables or fuzzy sets). Neural network possesses good robustness and learning capability. In this study we hybrid these two together into a neural-fuzzy modeling technique. A biological system is formulated to a multi-input-multi-output (MIMO) Takagi-Sugeno (T-S) fuzzy system, which is composed of rule-based linear subsystems. Two kinds of smooth membership functions (MFs), Gaussian and Bell-shaped MFs, are used. The performance of the proposed method is tested with three biological systems.
Fuzzy modeling and control theory and applications
Matía, Fernando; Jiménez, Emilio
2014-01-01
Much work on fuzzy control, covering research, development and applications, has been developed in Europe since the 90's. Nevertheless, the existing books in the field are compilations of articles without interconnection or logical structure or they express the personal point of view of the author. This book compiles the developments of researchers with demonstrated experience in the field of fuzzy control following a logic structure and a unified the style. The first chapters of the book are dedicated to the introduction of the main fuzzy logic techniques, where the following chapters focus on concrete applications. This book is supported by the EUSFLAT and CEA-IFAC societies, which include a large number of researchers in the field of fuzzy logic and control. The central topic of the book, Fuzzy Control, is one of the main research and development lines covered by these associations.
Directory of Open Access Journals (Sweden)
S. S, Pathak
2012-10-01
Full Text Available Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh properties of theses mixes were tested by using standards recommended by EFNARC (European Federation for Specialist Construction Chemicals and Concrete system. Compressive strength at 28 days was obtained for these mixes. This paper presents development of Adaptive Neuro-fuzzy Inference System (ANFIS model for predicting compressive strength of self compacting concrete using fly ash and rice husk ash. The input parameters used for model are cement, fly ash, rice husk ash and water content. Output parameter is compressive strength at 28 days. The results show that the implemented model is good at predicting compressive strength.
Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling
Energy Technology Data Exchange (ETDEWEB)
Afshar, Mohammad [Islamic Azad University, Kharg (Iran, Islamic Republic of); Gholami, Amin [Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Asoodeh, Mojtaba [Islamic Azad University, Birjand (Iran, Islamic Republic of)
2014-03-15
Bubble point pressure is a critical pressure-volume-temperature (PVT) property of reservoir fluid, which plays an important role in almost all tasks involved in reservoir and production engineering. We developed two sophisticated models to estimate bubble point pressure from gas specific gravity, oil gravity, solution gas oil ratio, and reservoir temperature. Neural network and adaptive neuro-fuzzy inference system are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went further by optimizing fuzzy logic and neural network models using the genetic algorithm in charge of eliminating the risk of being exposed to local minima. This strategy is capable of significantly improving the accuracy of both neural network and fuzzy logic models. The proposed methodology was successfully applied to a dataset of 153 PVT data points. Results showed that the genetic algorithm can serve the neural network and neuro-fuzzy models from local minima trapping, which might occur through back-propagation algorithm.
Indeterminate direction relation model based on fuzzy description framework
Institute of Scientific and Technical Information of China (English)
2008-01-01
The indetermination of direction relation is a hot topic for fuzzy GIS researchers. The existing models only study the effects of indetermination of spatial objects,but ignore the uncertainty of direction reference framework. In this paper,first a for-malized representation model of indeterminate spatial objects is designed based on quadruple (x,y,A,μ),then a fuzzy direction reference framework is constructed by revising the cone method,in which the partitions of direction tiles are smooth and continuous,and two neighboring sections are overlapped in the transitional zones with fuzzy method. Grounded on these,a fuzzy description model for indeterminate direction relation is proposed in which the uncertainty of all three parts (source object,reference object and reference frame) is taken into account simultaneously. In the end,case studies are implemented to test the rationality and validity of the model.
Genetic fuzzy system modeling and simulation of vascular behaviour
DEFF Research Database (Denmark)
Tang, Jiaowei; Boonen, Harrie C.M.
in cardiovascular disease and ultimately improve pharmacotherapy. For this purpose, novel computational approaches incorporating adaptive properties, auto-regulatory control and rule sets will be assessed, properties that are commonly lacking in deterministic models based on differential equations. We hypothesize...... in principle for any physiological system that is characterized by auto-regulatory control and adaptation. Methods: Currently, one modeling approach is being investigated, Genetic Fuzzy System (GFS). In Genetic Fuzzy Systems, the model algorithm mimics the biologic genetic evolutionary process to learn...... chromosome or individual to define the fuzzy system. The model is implemented by combining the Matlab Genetic algorithm and Fuzzy system toolboxes, respectively. To test the performance of this method, experimental data sets about calculated pressure change in different blood vessels after several chemical...
Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer
2013-06-01
Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.
Directory of Open Access Journals (Sweden)
Vipan K Sohpal
2014-06-01
Full Text Available Transesterification of Jatropha curcus for biodiesel production is a kinetic control process, which is complex in nature and controlled by temperature, the molar ratio, mixing intensity and catalyst process parameters. A precise choice of catalyst is required to improve the rate of transesterification and to simulate the kinetic study in a batch reactor. The present paper uses an Adaptive Neuro-Fuzzy Inference System (ANFIS approach to model and simulate the butyl ester production using alkaline catalyst (NaOH. The amounts of catalyst and time for reaction have been used as the model’s input parameters. The model is a combination of fuzzy inference and artificial neural network, including a set of fuzzy rules which have been developed directly from experimental data. The proposed modeling approach has been verified by comparing the expected results with the practical results which were observed and obtained through a batch reactor operation. The application of the ANFIS test shows which amount of catalyst predicted by the proposed model is suitable and in compliance with the experimental values at 0.5% level of significance.
Directory of Open Access Journals (Sweden)
Sun Shi Yan
2016-01-01
Full Text Available Multiple attributes decision making (MADM method is an important measure for system integration. Robustness analysis on MADM is a hotspot in these years which wins academe’s great attention, and is supposed to be an effective way when countering imperfect information. Setting parameters in ELECTRE-III’s is a vital and difficult step. In this paper, a method of inferring ELECTRE-III’s parameters with fuzzy information based on robustness analysis is presented. First, ELECTRE-III is transformed into a continuous smooth function of each parameter vector. Then, robustness analysis structure and a parameters inferring algorithm are provided by maximizing robustness margin based on mathematics programming. Moreover, how to resolve the programming problem is also discussed. At last, a illustrative example of Naval Gun Weapon System Integration is put forward.
Covariant 4-dimensional fuzzy spheres, matrix models and higher spin
Sperling, Marcus; Steinacker, Harold C.
2017-09-01
We study in detail generalized 4-dimensional fuzzy spheres with twisted extra dimensions. These spheres can be viewed as SO(5) -equivariant projections of quantized coadjoint orbits of SO(6) . We show that they arise as solutions in Yang-Mills matrix models, which naturally leads to higher-spin gauge theories on S 4. Several types of embeddings in matrix models are found, including one with self-intersecting fuzzy extra dimensions \
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896
FUZZY PRINCIPAL COMPONENT ANALYSIS AND ITS KERNEL BASED MODEL
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Principal Component Analysis (PCA) is one of the most important feature extraction methods, and Kernel Principal Component Analysis (KPCA) is a nonlinear extension of PCA based on kernel methods. In real world, each input data may not be fully assigned to one class and it may partially belong to other classes. Based on the theory of fuzzy sets, this paper presents Fuzzy Principal Component Analysis (FPCA) and its nonlinear extension model, i.e., Kernel-based Fuzzy Principal Component Analysis (KFPCA). The experimental results indicate that the proposed algorithms have good performances.
Fuzzy Models to Deal with Sensory Data in Food Industry
Institute of Scientific and Technical Information of China (English)
Serge Guillaume; Brigitte Charnomordic
2004-01-01
Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fuzzy reasoning rules from data including numerical and symbolic or sensory variables. We briefly present an induction method that was developed to extract qualitative knowledge from data samples. The induction process is run under interpretability constraints to ensure the fuzzy rules have a meaning for the human expert. We then study two applied problems in the food industry: sensory evaluation and process modeling.
Blind 3D Model Watermarking Based on Multi-Resolution Representation and Fuzzy Logic
Tamane, Sharvari C
2012-01-01
Insertion of a text message, audio data or/and an image into another image or 3D model is called as a watermarking process. Watermarking has variety of applications like: Copyright Protection, Owner Identification, Copy Protection and Data Hiding etc., depending upon the type of watermark insertion algorithm. Watermark remains in the content after applying various attacks without any distortions. The blind watermarking method used in the system is based on a wavelet transform, a fuzzy inference system and a multi-resolution representation (MRR) of the 3d model. The watermark scrambled by Arnold Transform is embedded in the wavelet coefficients at third resolution level of the MRR. Fuzzy logic approach used in the method makes it to approximate the best possible gain with an accurate scaling factor so that the watermark remains invisible. The fuzzy input variables are computed for each wavelet coefficient in the 3D model. The output of the fuzzy system is a single value which is a perceptual value for each cor...
Spatial object model[l]ing in fuzzy topological spaces : with applications to land cover change
Tang, Xinming
2004-01-01
The central topic of this thesis focuses on the accommodation of fuzzy spatial objects in a GIS. Several issues are discussed theoretically and practically, including the definition of fuzzy spatial objects, the topological relations between them, the modeling of fuzzy spatial objects, the generatio
Adaptive Neuro Fuzzy Inference Controller for Full Vehicle Nonlinear Active Suspension Systems
Directory of Open Access Journals (Sweden)
A. Aldair
2010-12-01
Full Text Available The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order PIλ Dμ (FOPID controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function.
Sagir, Abdu Masanawa; Sathasivam, Saratha
2017-08-01
Medical diagnosis is the process of determining which disease or medical condition explains a person's determinable signs and symptoms. Diagnosis of most of the diseases is very expensive as many tests are required for predictions. This paper aims to introduce an improved hybrid approach for training the adaptive network based fuzzy inference system with Modified Levenberg-Marquardt algorithm using analytical derivation scheme for computation of Jacobian matrix. The goal is to investigate how certain diseases are affected by patient's characteristics and measurement such as abnormalities or a decision about presence or absence of a disease. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system to classify and predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. The proposed hybridised intelligent system was tested with Pima Indian Diabetes dataset obtained from the University of California at Irvine's (UCI) machine learning repository. The proposed method's performance was evaluated based on training and test datasets. In addition, an attempt was done to specify the effectiveness of the performance measuring total accuracy, sensitivity and specificity. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.
Chau, K T; Chan, C C; Shen, W X
2003-01-01
This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.
Additive-Multiplicative Fuzzy Neural Network and Its Performance
Institute of Scientific and Technical Information of China (English)
翟东海; 靳蕃
2003-01-01
In view of the main weaknesses of current fuzzy neural networks such as low reasoning precision and long training time, an Additive-Multiplicative Fuzzy Neural Network (AMFNN) model and its architecture are presented. AMFNN combines additive inference and multiplicative inference into an integral whole, reasonably makes use of their advantages of inference and effectively overcomes their weaknesses when they are used for inference separately. Here, an error back propagation algorithm for AMFNN is presented based on the gradient descent method. Comparisons between the AMFNN and six representative fuzzy inference methods shows that the AMFNN is characterized by higher reasoning precision, wider application scope, stronger generalization capability and easier implementation.
Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid
2016-08-01
This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS
Directory of Open Access Journals (Sweden)
Somaye Yeylaghi
2017-06-01
Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.
Fuzzy C-Means Clustering Model Data Mining For Recognizing Stock Data Sampling Pattern
Directory of Open Access Journals (Sweden)
Sylvia Jane Annatje Sumarauw
2007-06-01
Full Text Available Abstract Capital market has been beneficial to companies and investor. For investors, the capital market provides two economical advantages, namely deviden and capital gain, and a non-economical one that is a voting .} hare in Shareholders General Meeting. But, it can also penalize the share owners. In order to prevent them from the risk, the investors should predict the prospect of their companies. As a consequence of having an abstract commodity, the share quality will be determined by the validity of their company profile information. Any information of stock value fluctuation from Jakarta Stock Exchange can be a useful consideration and a good measurement for data analysis. In the context of preventing the shareholders from the risk, this research focuses on stock data sample category or stock data sample pattern by using Fuzzy c-Me, MS Clustering Model which providing any useful information jar the investors. lite research analyses stock data such as Individual Index, Volume and Amount on Property and Real Estate Emitter Group at Jakarta Stock Exchange from January 1 till December 31 of 204. 'he mining process follows Cross Industry Standard Process model for Data Mining (CRISP,. DM in the form of circle with these steps: Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation and Deployment. At this modelling process, the Fuzzy c-Means Clustering Model will be applied. Data Mining Fuzzy c-Means Clustering Model can analyze stock data in a big database with many complex variables especially for finding the data sample pattern, and then building Fuzzy Inference System for stimulating inputs to be outputs that based on Fuzzy Logic by recognising the pattern. Keywords: Data Mining, AUz..:y c-Means Clustering Model, Pattern Recognition
Fuzzy modelling and impulsive control of the hyperchaotic Lü system
Institute of Scientific and Technical Information of China (English)
Zhang Xiao-Hong; Li Dong
2009-01-01
This paper presents a novel approach to hyperchvos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lü system is exactly represented by the T-S fuzzy model and an impulsive control framework is proposed for stabilizing the hyperchaotic Lü system, which is also suitable for classes of T-S fuzzy hyperchaotic systems, such as the hyperchaotic Rossler, Chen, Chua systems and so on. Sufficient conditions for achieving stability in impulsive T-S fuzzy hyperchaotic systems are derived by using Lyapunov stability theory in the form of the linear matrix inequality, and axe less conservative in comparison with existing results. Numerical simulations are given to demonstrate the effectiveness of the proposed method.
Vibration modeling of structural fuzzy with continuous boundary
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
From experiments it is well known that the vibration response of a main structure with many attached substructures often shows more damping than structural losses in the components can account for. In practice, these substructures, which are not attached in an entirely rigid manner, behave like...... a multitude of different sprung masses each strongly resisting any motion of the main structure (master) at their base antiresonance. The “theory of structural fuzzy” is intended for modeling such high damping. In the present article the theory of fuzzy structures is briefly outlined and a method of modeling...... effect of the fuzzy with spatial memory is demonstrated by numerical simulations of a main beam structure with fuzzy attachments. It is shown that the introduction of spatial memory reduces the damping effect of the fuzzy and in certain cases the damping effect may even be eliminated completely....
Relativistic Landau models and generation of fuzzy spheres
Hasebe, Kazuki
2016-07-01
Noncommutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In the first half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish SU(2) “gauge” transformation between the relativistic Landau model and the Pauli-Schrödinger nonrelativistic quantum mechanics. After the SU(2) transformation, the Dirac operator and the angular momentum operators are found to satisfy the SO(3, 1) algebra. In the second half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymmetric quantum mechanics as the square of the Dirac-Landau operator. Finally, we apply the level projection method to real graphene system to generate valley fuzzy spheres.
A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Nan Jia
2016-01-01
Full Text Available Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented.
Fuzzy model investic do High-tech projektů
Directory of Open Access Journals (Sweden)
Alžběta Kubíčková
2013-10-01
Full Text Available Purpose of the article: Relations among parameters of High-tech projects are very complex, vague, partially inconsistent and multidimensional. Optimal decisions to invest into High-tech companies require top field experts and knowledgeable investors. Therefore the conventional methods of investments analysis are not relevant. Therefore fuzzy logic is introduced. Methodology/methods: A fuzzy knowledge base is a flexible framework for acquisition of vague inconsistent knowledge items which are typical for knowledge economics and consequently for High-tech projects. The pooling of the records and / or observations represents a trade-off between minimal modification of the original data and elimination of inconsistencies among available sets of data. Scientific aim: The paper presents a detailed description of fuzzy model of investment decision making into High-tech firm’s projects. A set of conditional statements was used to formalize the effects of selected variables on investment feasibility of High-tech projects. The main aim is to quantify feasibilities of High-tech projects risk investors make good /not bad decisions. Findings: A set of 50 observations of High-tech companies was transformed into a set of 50 conditional statements using 14 variables. The result is the fuzzy model, which can be used to answer investors’ queries. Two queries are answered and presented in details as an example and as a nucleus of a fuzzy dialogue investor – computer. Conclusions: The main problem is the sparseness of the fuzzy model. Many fuzzy similarities are relatively low and the decision process is therefore often problematic. A much more complex set of variables must be applied to specify the fuzzy model to increase reliability of predictions and decisions.
Fuzzy Association Degree with Delayed Time in Temporal Data Model
Institute of Scientific and Technical Information of China (English)
刘惟一; 郭陵芝; 宋宁
2001-01-01
This paper presents an expression of the semantic proximity. Based on the temporal data model, a method of the temporal approximation is given. Using these concepts, this paper provides an evaluated method of fuzzy and dynamic association degree with delayed time and a superposition method of association degrees. Particularly, by means of the fuzzy and dynamic association degree, the connection between the weather data of two regions can be discovered.
Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu
This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.
CASCADED FUNZZY SYSTEM AND ITS ROBUST ANALYSIS BASED ON SYLLOGISTIC FUZZY REASONING
Institute of Scientific and Technical Information of China (English)
Wang Shitong; Korris F. L. Chung
2004-01-01
Syllogistic fuzzy reasoning is introduced into fizzy system, and the new Cascaded Fuzzy System(CFS) is presented. The thoroughly theoretical analysis and experimental results show that syllogistic fuzzy reasoning is more robust than all other implication inferences for noise data and that CFS has better robustness than conventional fuzzy systems, which provide the solid foundation for CFS's potential application in fuzzy control and modeling and so on.
LAN Modeling in Rural Areas Based on Variable Metrics Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Ak. Ashakumar Singh
2013-03-01
Full Text Available The global scenario of the present world highly needs the communication between the urban areas and the rural areas. To motivate a new system for rural broadband access, there needs the integration of LAN and IEEE 802.11 WLAN technologies. The variable metrics such as Access Protocol, User traffic profile, Buffer size and Data collision and retransmission are involved in the modeling of such LAN. In the paper, a fuzzy logic based LAN modeling technique is designed for which the variable metrics are imprecise. The technique involves the fuzzification of the variable metrics to be input, rule evaluation, and aggregation of the rule outputs. The implementation is done using Fuzzy Inference System (FIS based on Mamdani style in MatLab 7.6 for the representation of the reasoning and effective analysis. Four LAN systems are tested to analyze potential variable metrics to bring a smooth communication in the rural societies.
A refined fuzzy time series model for stock market forecasting
Jilani, Tahseen Ahmed; Burney, Syed Muhammad Aqil
2008-05-01
Time series models have been used to make predictions of stock prices, academic enrollments, weather, road accident casualties, etc. In this paper we present a simple time-variant fuzzy time series forecasting method. The proposed method uses heuristic approach to define frequency-density-based partitions of the universe of discourse. We have proposed a fuzzy metric to use the frequency-density-based partitioning. The proposed fuzzy metric also uses a trend predictor to calculate the forecast. The new method is applied for forecasting TAIEX and enrollments’ forecasting of the University of Alabama. It is shown that the proposed method work with higher accuracy as compared to other fuzzy time series methods developed for forecasting TAIEX and enrollments of the University of Alabama.
Nguyen, Hung T
2005-01-01
THE CONCEPT OF FUZZINESS Examples Mathematical modeling Some operations on fuzzy sets Fuzziness as uncertainty Exercises SOME ALGEBRA OF FUZZY SETS Boolean algebras and lattices Equivalence relations and partitions Composing mappings Isomorphisms and homomorphisms Alpha-cuts Images of alpha-level sets Exercises FUZZY QUANTITIES Fuzzy quantities Fuzzy numbers Fuzzy intervals Exercises LOGICAL ASPECTS OF FUZZY SETS Classical two-valued logic A three-valued logic Fuzzy logic Fuzzy and Lukasiewi
An adaptive neuro fuzzy model for estimating the reliability of component-based software systems
Directory of Open Access Journals (Sweden)
Kirti Tyagi
2014-01-01
Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.
Fuzzy stochastic neural network model for structural system identification
Jiang, Xiaomo; Mahadevan, Sankaran; Yuan, Yong
2017-01-01
This paper presents a dynamic fuzzy stochastic neural network model for nonparametric system identification using ambient vibration data. The model is developed to handle two types of imprecision in the sensed data: fuzzy information and measurement uncertainties. The dimension of the input vector is determined by using the false nearest neighbor approach. A Bayesian information criterion is applied to obtain the optimum number of stochastic neurons in the model. A fuzzy C-means clustering algorithm is employed as a data mining tool to divide the sensed data into clusters with common features. The fuzzy stochastic model is created by combining the fuzzy clusters of input vectors with the radial basis activation functions in the stochastic neural network. A natural gradient method is developed based on the Kullback-Leibler distance criterion for quick convergence of the model training. The model is validated using a power density pseudospectrum approach and a Bayesian hypothesis testing-based metric. The proposed methodology is investigated with numerically simulated data from a Markov Chain model and a two-story planar frame, and experimentally sensed data from ambient vibration data of a benchmark structure.
Fuzzy pharmacology: theory and applications.
Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan
2002-09-01
Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.
Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.
Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.
2014-01-01
This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).
DEFF Research Database (Denmark)
Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede
2015-01-01
for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...
Garibaldi, Jonathan M; Zhou, Shang-Ming; Wang, Xiao-Ying; John, Robert I; Ellis, Ian O
2012-06-01
It has been often demonstrated that clinicians exhibit both inter-expert and intra-expert variability when making difficult decisions. In contrast, the vast majority of computerized models that aim to provide automated support for such decisions do not explicitly recognize or replicate this variability. Furthermore, the perfect consistency of computerized models is often presented as a de facto benefit. In this paper, we describe a novel approach to incorporate variability within a fuzzy inference system using non-stationary fuzzy sets in order to replicate human variability. We apply our approach to a decision problem concerning the recommendation of post-operative breast cancer treatment; specifically, whether or not to administer chemotherapy based on assessment of five clinical variables: NPI (the Nottingham Prognostic Index), estrogen receptor status, vascular invasion, age and lymph node status. In doing so, we explore whether such explicit modeling of variability provides any performance advantage over a more conventional fuzzy approach, when tested on a set of 1310 unselected cases collected over a fourteen year period at the Nottingham University Hospitals NHS Trust, UK. The experimental results show that the standard fuzzy inference system (that does not model variability) achieves overall agreement to clinical practice around 84.6% (95% CI: 84.1-84.9%), while the non-stationary fuzzy model can significantly increase performance to around 88.1% (95% CI: 88.0-88.2%), p<0.001. We conclude that non-stationary fuzzy models provide a valuable new approach that may be applied to clinical decision support systems in any application domain.
Khademi, Mahmoud; Manzuri-Shalmani, Mohammad T; Kiaei, Ali A
2010-01-01
In this paper an accurate real-time sequence-based system for representation, recognition, interpretation, and analysis of the facial action units (AUs) and expressions is presented. Our system has the following characteristics: 1) employing adaptive-network-based fuzzy inference systems (ANFIS) and temporal information, we developed a classification scheme based on neuro-fuzzy modeling of the AU intensity, which is robust to intensity variations, 2) using both geometric and appearance-based features, and applying efficient dimension reduction techniques, our system is robust to illumination changes and it can represent the subtle changes as well as temporal information involved in formation of the facial expressions, and 3) by continuous values of intensity and employing top-down hierarchical rule-based classifiers, we can develop accurate human-interpretable AU-to-expression converters. Extensive experiments on Cohn-Kanade database show the superiority of the proposed method, in comparison with support vect...
Teaching-Learning by Means of a Fuzzy-Causal User Model
Peña Ayala, Alejandro
In this research the teaching-learning phenomenon that occurs during an E-learning experience is tackled from a fuzzy-causal perspective. The approach is suitable for dealing with intangible objects of a domain, such as personality, that are stated as linguistic variables. In addition, the bias that teaching content exerts on the user’s mind is sketched through causal relationships. Moreover, by means of fuzzy-causal inference, the user’s apprenticeship is estimated prior to delivering a lecture. This supposition is taken into account to adapt the behavior of a Web-based education system (WBES). As a result of an experimental trial, volunteers that took options of lectures chosen by this user model (UM) achieved higher learning than participants who received lectures’ options that were randomly selected. Such empirical evidence contributes to encourage researchers of the added value that a UM offers to adapt a WBES.
Adaptive neuro-fuzzy modeling of transient heat transfer in circular duct air flow
Energy Technology Data Exchange (ETDEWEB)
Hasiloglu, Abdulsamet [Department of Electronics and Telecommunications Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Yilmaz, Mehmet; Comakli, Omer [Department of Mechanical Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Ekmekci, Ismail [Department of Mechanical Engineering, Engineering Faculty, Sakarya University, Sakarya (Turkey)
2004-11-01
The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of transient heat transfer. An ANFIS has been applied for the transient heat transfer in thermally and simultaneously developing circular duct flow, subjected to a sinusoidally varying inlet temperature. The experiments covered Reynolds numbers in the 2528{<=}Re{<=}4265 range and inlet heat input in the 0.01{<=}{beta}{<=}0.96 Hz frequency range. The accuracy of predictions and the adaptability of the ANFIS were examined, and good predictions were achieved for the temperature amplitudes of the transient heat transfer in thermally and simultaneously developing circular duct flow. The results show that the neuro-fuzzy can be used for modeling transient heat transfer in ducts. The results obtained with the ANFIS are also compared to those of a multiple linear regression and a neural network with a multi-layered feed-forward back-propagation algorithm. (authors)
Directory of Open Access Journals (Sweden)
Jing Zhao
2016-01-01
Full Text Available The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN. To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs and intuitionistic fuzzy cross-entropy (IFCE with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.
Zhao, Jing; Lin, Lo-Yi; Lin, Chih-Min
2016-01-01
The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN). To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs) and intuitionistic fuzzy cross-entropy (IFCE) with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.
Paired fuzzy sets and other opposite-based models
DEFF Research Database (Denmark)
Montero, Javier; Gómez, Daniel; Tinguaro Rodríguez, J.
2016-01-01
In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts that are ......In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts...
Simulations of a supersymmetry inspired model on a fuzzy sphere
Energy Technology Data Exchange (ETDEWEB)
Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-11-15
We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to a finite set of degrees of freedom without explicitly breaking the space symmetries. The corresponding field theory is expressed in terms of a matrix model, which can be simulated. We present first numerical results for the phase structure of a variant of this model on a fuzzy sphere. The prospect to restore exact supersymmetry in certain limits is under investigation. (orig.)
Performance of Geno-Fuzzy Model on rainfall-runoff predictions in claypan watersheds
Fuzzy logic provides a relatively simple approach to simulate complex hydrological systems while accounting for the uncertainty of environmental variables. The objective of this study was to develop a fuzzy inference system (FIS) with genetic algorithm (GA) optimization for membership functions (MF...
Directory of Open Access Journals (Sweden)
Rahmad Hidayat
2015-04-01
Full Text Available Bit-Plane Complexity Segmentation (BPCS is a fairly new steganography technique. The most important process in BPCS is the calculation of complexity value of a bit-plane. The bit-plane complexity is calculated by looking at the amount of bit changes contained in a bit-plane. If a bit-plane has a high complexity, the bi-plane is categorized as a noise bit-plane that does not contain valuable information on the image. Classification of the bit-plane using the set cripst set (noise/not is not fair, where a little difference of the value will significantly change the status of the bit-plane. The purpose of this study is to apply the principles of fuzzy sets to classify the bit-plane into three sets that are informative, partly informative, and the noise region. Classification of the bit-plane into a fuzzy set is expected to classify the bit-plane in a more objective approach and ultimately message capacity of the images can be improved by using the Mamdani fuzzy inference to take decisions which bit-plane will be replaced with a message based on the classification of bit-plane and the size of the message that will be inserted. This research is able to increase the capability of BPCS steganography techniques to insert a message in bit-pane with more precise so that the container image quality would be better. It can be seen that the PSNR value of original image and stego-image is only slightly different.
Improved testing inference in mixed linear models
Melo, Tatiane F N; Cribari-Neto, Francisco; 10.1016/j.csda.2008.12.007
2011-01-01
Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Oftentimes, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test and also to a test obtained from a modified profile likelihood function. Our results generalize those in Zucker et al. (Journal of the Royal Statistical Society B, 2000, 62, 827-838) by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report numerical evidence which shows that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presente...
Coelho, Antonio Augusto Rodrigues
2016-01-01
This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723
FHESMM: Fuzzy Hybrid Expert System for Marketing Mix Model
Directory of Open Access Journals (Sweden)
Mehdi Neshat
2011-11-01
Full Text Available Increasing customers satisfaction in this developed world is the most important factor to have a successful trade and production. New marketing methods and supervising the marketing choices will have a key role to increase the profit of a company. This paper investigates an expert system through four main principles of marketing (price, product, Place and Promotion and their composition with a logic fuzzy system and benefiting from the experiences of marketing specialists. Comparing with the other systems, this one has special properties such as investigating and extracting different fields in which affect the customers satisfaction directly or indirectly as input parameters (26, using knowledge of experts to design inference system rule, composing the results of five fuzzy expert systems and calculating final result(customers satisfaction and finally creating a high function expert system on management and guiding the managers to do a successful marketing in dynamic markets.
Directory of Open Access Journals (Sweden)
Abdul Talib Bon
2015-03-01
Full Text Available Production planning is an area that is very important on the corporate strategy-level decision-making, especially in the manufacturing companies. The problems that often arise in the production planning are the factors that affect the decline of production and uncertainty that often complicate the decision-making in the production process. These factors are derived from the company’s internal and external factors. The purpose of this study is to introduce the Analytical Hierarchy Process as an effective method that can help to determine the priority of the production factors, so as to facilitate and accelerate decision-making. Other than the AHP methods, this paper will introduce the Tsukamoto Fuzzy Inference System as a method that can help to determine how much product to be manufactured by the company using the variables in the form of fuzzy numbers. These methods hopefully can assist in a better decision making process in the production process and manufacturing generally.
Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system
Directory of Open Access Journals (Sweden)
Doaa M. Atia
2017-05-01
Full Text Available The greenhouse is a complicated nonlinear system, which provides the plants with appropriate environmental conditions for growing. This paper presents a design of a control system for a greenhouse using geothermal energy as a power source for heating system. The greenhouse climate control problem is to create a favourable environment for the crop in order to reach predetermined results for high yield, high quality and low costs. Four controller techniques; PI control, fuzzy logic control, artificial neural network control and adaptive neuro-fuzzy control are used to adjust the greenhouse indoor temperature at the required value. MATLAB/SIMULINK is used to simulate the different types of controller techniques. Finally a comparative study between different control strategies is carried out.
Directory of Open Access Journals (Sweden)
Zhixian Yang
2014-01-01
Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.
Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep
2015-09-01
Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.
Assessment and prediction of air quality using fuzzy logic and autoregressive models
Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.
2012-12-01
In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.
Inferring cultural models from corpus data
DEFF Research Database (Denmark)
Jensen, Kim Ebensgaard
2015-01-01
developed methods of inferring cultural models from observed behavior – in particular observed verbal behavior (including both spoken and written language). While there are plenty of studies of the reflection of cultural models in artificially generated verbal behavior, not much research has been made...... of constructional discursive behavior, the present paper offers a covarying collexeme analysis of the [too ADJ to V]-construction in the Corpus of Contemporary American English. The purpose is to discover the extent to which its force-dynamic constructional semantics interacts with cultural models. We focus...
Implementasi DNA Similarity Matching pada Perangkat Mobile dengan Sugeno Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Fahmi Akbar Saputra
2012-09-01
Full Text Available STR analysis merupakan teknik DNA profiling yang populer digunakan untuk mendapatkan profil DNA manusia yang bersifat unik dari sampel biologis yang didapatkan. Profil DNA tersebut terdiri dari beberapa lokus STR yang ditetapkan sebagai standar. Dalam praktiknya, permasalahan timbul ketika dalam proses analisis terjadi kontaminasi terhadap sampel biologis. Akibatnya, profil hasil proses analisis memiliki nilai ketidakpastian (uncertainty atau nilai pergeseran dan noise. Untuk permasalahan seperti ini, perangkat lunak bantu untuk proses pencocokan kemiripan DNA yang dikembangkan oleh National Institute of Standards and Technology (NIST, yaitu STR_MatchSamples, tidak mampu menangani. Hal ini dikarenakan STR_MatchSamples bekerja dengan logika crisp, sedangkan data profil DNA memiliki nilai-nilai ketidakpastian. Maka, untuk mengatasi permasalahan ketidakpastian pada profil DNA, digunakan sebuah metode fuzzy untuk pencocokan kemiripan DNA, yaitu sistem inferensi fuzzy Sugeno. Pada paper ini diberikan penjelasan mengenai metode sistem inferensi fuzzy Sugeno sebagai metode untuk pencocokan kemiripan DNA beserta implementasinya sebagai aplikasi web service yang bekerja pada sebuah server. Aplikasi tersebut dapat diakses oleh perangkat mobile bersistem operasi Android sebagai client aplikasi web service tersebut.
Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.
River Health Assessment Based on Fuzzy Matter-element Model
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
[Objective] The study aimed to assess the health state of rivers by using fuzzy matter-element model.[Method] Based on fuzzy matter-element analysis theory,the assessment model of river health was established,then a modified method to calculate the superior subordinate degree was put forward according to Hamming distance.Afterwards,a multi-level evaluation model,which contained the assessment indicators about hydrological features,ecological characteristics,environmental traits and service function,was set ...
Applying fuzzy analytic network process in quality function deployment model
Directory of Open Access Journals (Sweden)
Mohammad Ali Afsharkazemi
2012-08-01
Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.
Fuzzy Optimization of Option Pricing Model and Its Application in Land Expropriation
Directory of Open Access Journals (Sweden)
Aimin Heng
2014-01-01
Full Text Available Option pricing is irreversible, fuzzy, and flexible. The fuzzy measure which is used for real option pricing is a useful supplement to the traditional real option pricing method. Based on the review of the concepts of the mean and variance of trapezoidal fuzzy number and the combination with the Carlsson-Fuller model, the trapezoidal fuzzy variable can be used to represent the current price of land expropriation and the sale price of land on the option day. Fuzzy Black-Scholes option pricing model can be constructed under fuzzy environment and problems also can be solved and discussed through numerical examples.
Type-2 fuzzy graphical models for pattern recognition
Zeng, Jia
2015-01-01
This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.
AN INTEGRATED FUZZY AHP AND TOPSIS MODEL FOR SUPPLIER EVALUATION
Directory of Open Access Journals (Sweden)
Željko Stević
2016-05-01
Full Text Available In today’s modern supply chains, the adequate suppliers’ choice has strategic meaning for entire companies’ business. The aim of this paper is to evaluate different suppliers using the integrated model that recognizes a combination of fuzzy AHP (Analytical Hierarchy Process and the TOPSIS method. Based on six criteria, the expert team was formed to compare them, so determination of their significance is being done with fuzzy AHP method. Expert team also compares suppliers according to each criteria and on the base of triangular fuzzy numbers. Based on their inputs, TOPSIS method is used to estimate potential solutions. Suggested model accomplishes certain advantages in comparison with previously used traditional models which were used to make decisions about evaluation and choice of supplier.
Automatic modeling of the linguistic values for database fuzzy querying
Directory of Open Access Journals (Sweden)
Diana STEFANESCU
2007-12-01
Full Text Available In order to evaluate vague queries, each linguistic term is considered according to its fuzzy model. Usually, the linguistic terms are defined as fuzzy sets, during a classical knowledge acquisition off-line process. But they can also be automatically extracted from the actual content of the database, by an online process. In at least two situations, automatically modeling the linguistic values would be very useful: first, to simplify the knowledge engineer’s task by extracting the definitions from the database content; and second, where mandatory, to dynamically define the linguistic values in complex criteria queries evaluation. Procedures to automatically extract the fuzzy model of the linguistic values from the existing data are presented in this paper.
Application of Fuzzy Clustering in Modeling of a Water Hydraulics System
DEFF Research Database (Denmark)
Zhou, Jianjun; Kroszynski, Uri
2000-01-01
This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy mo...
Neighborhood Supported Model Level Fuzzy Aggregation for Moving Object Segmentation.
Chiranjeevi, Pojala; Sengupta, Somnath
2014-02-01
We propose a new algorithm for moving object detection in the presence of challenging dynamic background conditions. We use a set of fuzzy aggregated multifeature similarity measures applied on multiple models corresponding to multimodal backgrounds. The algorithm is enriched with a neighborhood-supported model initialization strategy for faster convergence. A model level fuzzy aggregation measure driven background model maintenance ensures more robustness. Similarity functions are evaluated between the corresponding elements of the current feature vector and the model feature vectors. Concepts from Sugeno and Choquet integrals are incorporated in our algorithm to compute fuzzy similarities from the ordered similarity function values for each model. Model updating and the foreground/background classification decision is based on the set of fuzzy integrals. Our proposed algorithm is shown to outperform other multi-model background subtraction algorithms. The proposed approach completely avoids explicit offline training to initialize background model and can be initialized with moving objects also. The feature space uses a combination of intensity and statistical texture features for better object localization and robustness. Our qualitative and quantitative studies illustrate the mitigation of varieties of challenging situations by our approach.
A fuzzy goal programming model for biodiesel production
Lutero, D. S.; Pangue, EMU; Tubay, J. M.; Lubag, S. P.
2016-02-01
A fuzzy goal programming (FGP) model for biodiesel production in the Philippines was formulated with Coconut (Cocos nucifera) and Jatropha (Jatropha curcas) as sources of biodiesel. Objectives were maximization of feedstock production and overall revenue and, minimization of energy used in production and working capital for farming subject to biodiesel and non-biodiesel requirements, and availability of land, labor, water and machine time. All these objectives and constraints were assumed to be fuzzy. Model was tested for different sets of weights. Results for all sets of weights showed the same optimal allocation. Coconut alone can satisfy the biodiesel requirement of 2% per volume.
Directory of Open Access Journals (Sweden)
Martín Darío Arango Serna
2012-12-01
Full Text Available En este artículo se desarrolla un modelo de inferencia difusa para la toma de decisiones en condiciones de incertidumbre aplicado al diseño de productos bajo un esquema de ingeniería concurrente. Los requisitos del cliente y los criterios de los diferentes equipos interdisciplinarios para evaluar un diseño en particular son presentados como variables difusas. El modelo aquí desarrollado es aplicado a una empresa de confecciones.In this article a fuzzy inference model is developed for decision making under uncertainty conditions, applied to the design of products under a scheme of concurrent engineering. Customer requirements and criteria of different interdisciplinary teams to evaluate a particular design are presented as fuzzy variables. The model developed is applied to a garment company.
Fuzzy economic production quantity model with time dependent demand rate
Directory of Open Access Journals (Sweden)
Susanta Kumar Indrajitsingha
2016-09-01
Full Text Available Background: In this paper, an economic production quantity model is considered under a fuzzy environment. Both the demand cost and holding cost are considered using fuzzy pentagonal numbers. The Signed Distance Method is used to defuzzify the total cost function. Methods: The results obtained by these methods are compared with the help of a numerical example. Sensitivity analysis is also carried out to explore the effect of changes in the values of some of the system parameters. Results and conclusions: The fuzzy EPQ model with time dependent demand rate was presented together with the possible implementation. The behavior of changes in parameters was analyzed. The possible extension of the implementation of this method was presented.
Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling
Sahiner, Ahmet; Ucun, Fatih; Kapusuz, Gulden; Yilmaz, Nurullah
2016-04-01
In this study we applied the fuzzy logic approach in order to model the energy depending on the two torsion angles for the threonine (C4H9NO3) molecule. The model is set up according to theoretical results obtained by the density functional theory (B3LYP) with a 6-31 G(d) basic set on a Gausian program. We aimed to determine the best torsion angle values providing the energy of the molecule minimum by a fuzzy logic approach and to compare them with the density functional theory results. It was concluded that the fuzzy logic approach gives information about the untested data and its best value which are expensive and time-consuming to obtain by other methods and experimentation.
Fuzzy modeling of friction by bacterial and least square optimization
Jastrzebski, Marcin
2006-03-01
In this paper a new method of tuning parameters of Sugeno fuzzy models is presented. Because modeled phenomenon is discontinuous, new type of consequent function was introduced. Described algorithm (BA+LSQ) combines bacterial algorithm (BA) for tuning parameters of membership functions and least square method (LSQ) for parameters of consequent functions.
Institute of Scientific and Technical Information of China (English)
YOSHIMURA Toshio; TERAMURA Itaru
2005-01-01
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model.
A structured modeling approach for dynamic hybrid fuzzy-first principles models
Lith, van Pascal F.; Betlem, Ben H.L.; Roffel, Brian
2002-01-01
Hybrid fuzzy-first principles models can be attractive if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented with fuzzy submodels describing additional equations, such as mass transformation and transfer rate
Bayesian inference for pulsar timing models
Vigeland, Sarah J
2013-01-01
The extremely regular, periodic radio emission from millisecond pulsars make them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse time of arrivals are fit to complicated timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsar's spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain these timing solutions. These include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of tempo2 with the nested-sampling integ...
An experimental methodology for a fuzzy set preference model
Turksen, I. B.; Willson, Ian A.
1992-01-01
A flexible fuzzy set preference model first requires approximate methodologies for implementation. Fuzzy sets must be defined for each individual consumer using computer software, requiring a minimum of time and expertise on the part of the consumer. The amount of information needed in defining sets must also be established. The model itself must adapt fully to the subject's choice of attributes (vague or precise), attribute levels, and importance weights. The resulting individual-level model should be fully adapted to each consumer. The methodologies needed to develop this model will be equally useful in a new generation of intelligent systems which interact with ordinary consumers, controlling electronic devices through fuzzy expert systems or making recommendations based on a variety of inputs. The power of personal computers and their acceptance by consumers has yet to be fully utilized to create interactive knowledge systems that fully adapt their function to the user. Understanding individual consumer preferences is critical to the design of new products and the estimation of demand (market share) for existing products, which in turn is an input to management systems concerned with production and distribution. The question of what to make, for whom to make it and how much to make requires an understanding of the customer's preferences and the trade-offs that exist between alternatives. Conjoint analysis is a widely used methodology which de-composes an overall preference for an object into a combination of preferences for its constituent parts (attributes such as taste and price), which are combined using an appropriate combination function. Preferences are often expressed using linguistic terms which cannot be represented in conjoint models. Current models are also not implemented an individual level, making it difficult to reach meaningful conclusions about the cause of an individual's behavior from an aggregate model. The combination of complex aggregate
A fuzzy neural network evolved by particle swarm optimization
Institute of Scientific and Technical Information of China (English)
PENG Zhi-ping; PENG Hong
2007-01-01
A cooperative system of a fuzzy logic model and a fuzzy neural network (CSFLMFNN) is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model. Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization (PSO) into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network. The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching. PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment, in which the cooperative system is proved to be effective. It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision.
FUZZY DECISION MAKING MODEL FOR BYZANTINE AGREEMENT
Directory of Open Access Journals (Sweden)
S. MURUGAN
2014-04-01
Full Text Available Byzantine fault tolerance is of high importance in the distributed computing environment where malicious attacks and software errors are common. A Byzantine process sends arbitrary messages to every other process. An effective fuzzy decision making approach is proposed to eliminate the Byzantine behaviour of the services in the distributed environment. It is proposed to derive a fuzzy decision set in which the alternatives are ranked with grade of membership and based on that an appropriate decision can be arrived on the messages sent by the different services. A balanced decision is to be taken from the messages received across the services. To accomplish this, Hurwicz criterion is used to balance the optimistic and pessimistic views of the decision makers on different services. Grades of membership for the services are assessed using the non-functional Quality of Service parameters and have been estimated using fuzzy entropy measure which logically ranks the participant services. This approach for decision making is tested by varying the number of processes, varying the number of faulty services, varying the message values sent to different services and considering the variation in the views of the decision makers about the services. The experimental result shows that the decision reached is an enhanced one and in case of conflict, the proposed approach provides a concrete result, whereas decision taken using the Lamport’s algorithm is an arbitrary one.
Robust Spectroscopic Inference with Imperfect Models
Czekala, Ian; Mandel, Kaisey S; Hogg, David W; Green, Gregory M
2014-01-01
We present a modular, extensible framework for the spectroscopic inference of physical parameters based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. In the limit of high signal-to-noise data with large spectral range that is common for stellar parameter estimation, that covariant structure can bias the parameter determinations. We have designed a likelihood function formalism to account for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. We specifically address the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic or molecular data, or radiative transfer treatment) by developing a novel local covariance kernel framework that identifies and self-consistently downweights pathological spectral line "outliers." By fitting multiple spec...
Logistics Enterprise Evaluation Model Based On Fuzzy Clustering Analysis
Fu, Pei-hua; Yin, Hong-bo
In this thesis, we introduced an evaluation model based on fuzzy cluster algorithm of logistics enterprises. First of all,we present the evaluation index system which contains basic information, management level, technical strength, transport capacity,informatization level, market competition and customer service. We decided the index weight according to the grades, and evaluated integrate ability of the logistics enterprises using fuzzy cluster analysis method. In this thesis, we introduced the system evaluation module and cluster analysis module in detail and described how we achieved these two modules. At last, we gave the result of the system.
Systematic parameter inference in stochastic mesoscopic modeling
Lei, Huan; Yang, Xiu; Li, Zhen; Karniadakis, George Em
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
Approximate Reasoning with Fuzzy Booleans
Broek, van den P.M.; Noppen, J.A.R.
2004-01-01
This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp ante
A fuzzy approach to the Weighted Overlap Dominance model
DEFF Research Database (Denmark)
Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt
2013-01-01
in an interactive way, where input data can take the form of uniquely-graded or interval-valued information. Here we explore the Weighted Overlap Dominance (WOD) model from a fuzzy perspective and its outranking approach to decision support and multidimensional interval analysis. Firstly, imprecision measures...
Professional Learning: A Fuzzy Logic-Based Modelling Approach
Gravani, M. N.; Hadjileontiadou, S. J.; Nikolaidou, G. N.; Hadjileontiadis, L. J.
2007-01-01
Studies have suggested that professional learning is influenced by two key parameters, i.e., climate and planning, and their associated variables (mutual respect, collaboration, mutual trust, supportiveness, openness). In this paper, we applied analysis of the relationships between the proposed quantitative, fuzzy logic-based model and a series of…
Fuzzy modeling of farmers' knowledge for land suitability classification
Sicat, R.S.; Carranza, E.J.M.; Nidumolu, U.B.
2005-01-01
In a case study, we demonstrate fuzzy modeling of farmers' knowledge (FK) for agricultural land suitability classification using GIS. Capture of FK was through rapid rural participatory approach. The farmer respondents consider, in order of decreasing importance, cropping season, soil color, soil te
Application of adaptive neuro-fuzzy inference system in motor soft start%自适应神经模糊推理系统在电动机软启动中的应用
Institute of Scientific and Technical Information of China (English)
李冬辉; 王莹莹; 马禹新
2012-01-01
Aimed at addressing serious grid impact entirely due to the impact of electricity resulting from direct start of induction motor,this paper introduces the application of the adaptive neuro-fuzzy inference system to the control of motor soft start.The method renders it possible to give a fuller play to the ability of adaptive learning of neural networks and fuzzy inference without the need to master the exact model of the object,and finally achieve the intelligent control of motor.The method consists of using the relationship of motor speed,load torque and the firing angle as training samples,and applying the hybrid learning algorithm to adjust the premise parameters and conclusion parameters,generating the fuzzy rules automatically and building the adaptive neuro-fuzzy inference system,and generating the appropriate thyristor trigger angle according to the given motor speed and torque.The simulation analysis shows that,the adaptive neuro-fuzzy inference system after training can afford a better control of motor speed,and thus promises to make possible the soft start of fan or pump load motor.%异步电动机直接启动产生的冲击电流会造成严重的电网冲击,因此提出将自适应神经模糊推理系统应用到电动机软启动控制中,充分发挥神经网络自适应学习和模糊推理不要求掌握被控对象精确模型处理结构化知识的能力,实现电动机软启动的智能控制。利用电机转速、负载转矩、触发角的对应关系作为训练样本,采用混合学习算法调整前提参数和结论参数,自动产生模糊规则,构建自适应神经模糊推理系统,根据给定的电机转速和转矩产生合适的晶闸管触发角。经仿真分析,结果表明：训练构建的自适应神经模糊推理系统能够很好地进行电机的速度控制,可以实现风机或泵类负载电动机的软启动。
Blanes-Vidal, Victoria; Cantuaria, Manuella Lech; Nadimi, Esmaeil S
2017-04-01
Many epidemiological studies have used proximity to sources as air pollution exposure assessment method. However, proximity measures are not generally good surrogates because of their complex non-linear relationship with exposures. Neuro-fuzzy inference systems (NFIS) can be used to map complex non-linear systems, but its usefulness in exposure assessment has not been extensively explored. We present a novel approach for exposure assessment using NFIS, where the inputs of the model were easily-obtainable proximity measures, and the output was residential exposure to an air pollutant. We applied it to a case-study on NH3 pollution, and compared health effects and exposures estimated from NFIS, with those obtained from emission-dispersion models, and linear and non-linear regression proximity models, using 10-fold cross validation. The agreement between emission-dispersion and NFIS exposures was high (Root-mean-square error (RMSE) =0.275, correlation coefficient (r)=0.91) and resulted in similar health effect estimates. Linear models showed poor performance (RMSE=0.527, r=0.59), while non-linear regression models resulted in heterocedasticity, non-normality and clustered data. NFIS could be a useful tool for estimating individual air pollution exposures in epidemiological studies on large populations, when emission-dispersion data are not available. The tradeoff between simplicity and accuracy needs to be considered.
Directory of Open Access Journals (Sweden)
BORBA, José Alonso
2007-05-01
and product that is not real in many cases. In order to handle this not-linearity, this research presents a methodology based on fuzzy logic concepts in order to model both the subjectivity and uncertainty inherent in the environmental allocation process. A case from Hansen and Mowen (2001, p. 584 has been used as a reference for the construction of the fuzzy model. Following, new variables were incorporated, and a proposed solution was developed utilizing fuzzy logic concepts. A total of 126 inference rules were created with the help of the specific software FuzzyTECH®, which resulted in the new cost drivers that were used to allocate the environmental costs to the products. The results founded in the proposed model FuzzyABC (Fuzzy Activity Based Costing show that fuzzy logic can be used as a helpful tool in environmental cost allocation due to the ambiguity and subjectivity inherent in these process.RESUMENEn muchos casos, prevenir la contaminación y la destrucción del medio ambiente es menos gravoso que remediar estos daños. En este contexto, el hecho de asignar costos ambientales a los productos permite una mejor visualización y análisis de la rentabilidad de los productos. Pero, el atribuir costos ambientales a cada producto envuelve informaciones estimadas y asume una linealidad entre el consumo de las actividades y los productos, que muchas veces no existe. Para contemplar esa falta de linealidad, este trabajo presenta una metodología con base en la utilización de la lógica fuzzy para modelar la incertidumbre y la subjetividad, inherentes al proceso de asignación de los costos ambientales. Para eso, además de un estudio de caso desarrollado por Hansen y Mowen (2001, p.584, que fue utilizado como referencia, otras variables fueron incorporadas. Seguidamente una propuesta de solución, que utiliza fundamentos de la teoría de los conjuntos fuzzy, o nebulosos, fue desarrollada con el propósito de atender la subjetividad y la incertidumbre en la
Introduction to n-adaptive fuzzy models to analyze public opinion on AIDS
Kandasamy, D W B V; Kandasamy, Dr.W.B.Vasantha; Smarandache, Dr.Florentin
2006-01-01
There are many fuzzy models like Fuzzy matrices, Fuzzy Cognitive Maps, Fuzzy relational Maps, Fuzzy Associative Memories, Bidirectional Associative memories and so on. But almost all these models can give only one sided solution like hidden pattern or a resultant output vector dependent on the input vector depending in the problem at hand. So for the first time we have defined a n-adaptive fuzzy model which can view or analyze the problem in n ways (n >=2) Though we have defined these n- adaptive fuzzy models theorectically we are not in a position to get a n-adaptive fuzzy model for n > 2 for practical real world problems. The highlight of this model is its capacity to analyze the same problem in different ways thereby arriving at various solutions that mirror multiple perspectives. We have used the 2-adaptive fuzzy model having the two fuzzy models, fuzzy matrices model and BAMs viz. model to analyze the views of public about HIV/ AIDS disease, patient and the awareness program. This book has five chapters ...
Fuzzy classification of phantom parent groups in an animal model
Directory of Open Access Journals (Sweden)
Fikse Freddy
2009-09-01
Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy
A MODEL OF FUZZY CALCULATION OF THE CONSTUCTION COST
Institute of Scientific and Technical Information of China (English)
邵良杉; 叶景楼; 李东
1998-01-01
An overview of the delelopment of approaches to construction cost and price forcasting since the 1950's is given. First, second and third generation models can be identified, but they all have shortcomings. This paper puts forward a new model, fuzzy calculation model, based on lots of data of the finished projects. Through actual application, it is proved that the model is accurate and quick in calcalation of construction.
Bayesian multimodel inference for geostatistical regression models.
Directory of Open Access Journals (Sweden)
Devin S Johnson
Full Text Available The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. A Markov chain Monte Carlo (MCMC method is investigated for the calculation of parameter estimates and posterior model probabilities for spatial regression models. The method can accommodate normal and non-normal response data and a large number of covariates. Thus the method is very flexible and can be used to fit spatial linear models, spatial linear mixed models, and spatial generalized linear mixed models (GLMMs. The Bayesian MCMC method also allows a priori unequal weighting of covariates, which is not possible with many model selection methods such as Akaike's information criterion (AIC. The proposed method is demonstrated on two data sets. The first is the whiptail lizard data set which has been previously analyzed by other researchers investigating model selection methods. Our results confirmed the previous analysis suggesting that sandy soil and ant abundance were strongly associated with lizard abundance. The second data set concerned pollution tolerant fish abundance in relation to several environmental factors. Results indicate that abundance is positively related to Strahler stream order and a habitat quality index. Abundance is negatively related to percent watershed disturbance.
Directory of Open Access Journals (Sweden)
Singh Chaman
2011-01-01
Full Text Available In the changing market scenario, supply chain management is getting phenomenal importance amongst researchers. Studies on supply chain management have emphasized the importance of a long-term strategic relationship between the manufacturer, distributor and retailer. In the present paper, a model has been developed by assuming that the demand rate and production rate as triangular fuzzy numbers and items deteriorate at a constant rate. The expressions for the average inventory cost are obtained both in crisp and fuzzy sense. The fuzzy model is defuzzified using the fuzzy extension principle, and its optimization with respect to the decision variable is also carried out. Finally, an example is given to illustrate the model and sensitivity analysis is performed to study the effect of parameters.
Universal triple I fuzzy reasoning algorithm of function model based on quotient space
Institute of Scientific and Technical Information of China (English)
Lu Qiang; Shen Guanting; and Liu Xiaoping
2012-01-01
Aiming at the deficiencies of analysis capacity from different levels and fuzzy treating method in product function modeling of conceptual design, the theory of quotient space and universal triple I fuzzy reasoning method are introduced, and then the function modeling algorithm based on the universal triple I fuzzy reasoning method is proposed. Firstly, the product function granular model based on the quotient space theory is built, with its function granular representation and computing rules defined at the same time. Secondly, in order to quickly achieve function granular model from function requirement, the function modeling method based on universal triple I fuzzy reasoning is put forward. Within the fuzzy reasoning of universal triple I method, the small-distance-activating method is proposed as the kernel of fuzzy reasoning; how to change function requirements to fuzzy ones, fuzzy computing methods, and strategy of fuzzy reasoning are respectively investigated as well; the function modeling algorithm based on the universal triple I fuzzy reasoning method is achieved. Lastly, the validity of the function granular model and function modeling algorithm is validated. Through our method, the reasonable function granular model can be quickly achieved from function requirements, and the fuzzy character of conceptual design can be well handled, which greatly improves conceptual design.
A multivariate heuristic model for fuzzy time-series forecasting.
Huarng, Kun-Huang; Yu, Tiffany Hui-Kuang; Hsu, Yu Wei
2007-08-01
Fuzzy time-series models have been widely applied due to their ability to handle nonlinear data directly and because no rigid assumptions for the data are needed. In addition, many such models have been shown to provide better forecasting results than their conventional counterparts. However, since most of these models require complicated matrix computations, this paper proposes the adoption of a multivariate heuristic function that can be integrated with univariate fuzzy time-series models into multivariate models. Such a multivariate heuristic function can easily be extended and integrated with various univariate models. Furthermore, the integrated model can handle multiple variables to improve forecasting results and, at the same time, avoid complicated computations due to the inclusion of multiple variables.
Modeling and Stability Analysis for Non-linear Network Control System Based on T-S Fuzzy Model
Institute of Scientific and Technical Information of China (English)
ZHANG Hong; FANG Huajing
2007-01-01
Based on the T-S fuzzy model, this paper presents a new model of non-linear network control system with stochastic transfer delay. Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model. Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model. All these results present a new approach for networked control system analysis and design.
Inferences from Genomic Models in Stratified Populations
DEFF Research Database (Denmark)
Janss, Luc; de los Campos, Gustavo; Sheehan, Nuala
2012-01-01
Unaccounted population stratification can lead to spurious associations in genome-wide association studies (GWAS) and in this context several methods have been proposed to deal with this problem. An alternative line of research uses whole-genome random regression (WGRR) models that fit all markers...... are unsatisfactory. Here we address this problem and describe a reparameterization of a WGRR model, based on an eigenvalue decomposition, for simultaneous inference of parameters and unobserved population structure. This allows estimation of genomic parameters with and without inclusion of marker......-derived eigenvectors that account for stratification. The method is illustrated with grain yield in wheat typed for 1279 genetic markers, and with height, HDL cholesterol and systolic blood pressure from the British 1958 cohort study typed for 1 million SNP genotypes. Both sets of data show signs of population...
Poorbagher, Hadi; Moghaddam, Maryam Nasrollahpour; Eagderi, Soheil; Farahmand, Hamid
2016-07-01
The DNA breakage has been widely used in ecotoxicological studies to investigate effects of pesticides in fishes. The present study used a fuzzy inference system to quantify the breakage of DNA double strand in Aphanius sophiae exposed to the cypermethrin. The specimens were adapted to different temperatures and salinity for 14 days and then exposed to cypermethrin. DNA of each specimens were extracted, electrophoresed and photographed. A fuzzy system with three input variables and 27 rules were defined. The pixel value curve of DNA on each gel lane was obtained using ImageJ. The DNA breakage was quantified using the pixel value curve and fuzzy system. The defuzzified values were analyzed using a three-way analysis of variance. Cypermethrin had significant effects on DNA breakage. Fuzzy inference systems can be used as a tool to quantify the breakage of double strand DNA. DNA double strand of the gill of A. sophiae is sensitive enough to be used to detect cypermethrin in surface waters in concentrations much lower than those reported in previous studies.
A Hybrid Fuzzy Model for Lean Product Development Performance Measurement
Osezua Aikhuele, Daniel; Mohd Turan, Faiz
2016-02-01
In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.
Hybrid TS fuzzy modelling and simulation for chaotic Lorenz system
Institute of Scientific and Technical Information of China (English)
Li De-Quan
2006-01-01
The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.
Hamdy, M; Hamdan, I
2015-07-01
In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study.
An Enhanced Fuzzy Multi Criteria Decision Making Model with A proposed Polygon Fuzzy Number
Directory of Open Access Journals (Sweden)
Samah Bekheet
2014-06-01
Full Text Available Decisions in real world applications are often made under the presence of conflicting, uncertain, incomplete and imprecise information. Fuzzy multi Criteria Decision making (FMCDM approach provides a powerful approach for drawing rational decisions under uncertainty given in the form of linguistic values. Linguistic values are usually represented as fuzzy numbers. Most of researchers adopt either triangle or trapezoidal fuzzy numbers. Since triangle, intervals, and even singleton are special cases of Trapezoidal fuzzy numbers, so, for most researchers Trapezoidal fuzzy numbers are considered Generalized fuzzy numbers (GFN. In this paper, we introduce polygon fuzzy number (PFN as the actual form of GFN. The proposed form of PFN provides higher flexibility to decision makers to express their own linguistic rather than other form of fuzzy numbers. The given illustrative example ensures such ability for better handling of the FMCDM problems.
Supply chain production model with preservation technology under fuzzy environment
Directory of Open Access Journals (Sweden)
S.R. Singh
2014-06-01
Full Text Available In this paper, an attempt is made to characterize the preservation technology for deteriorating items to reduce the deterioration rate. This model assumes a single producer and single supplier and formulates a production model with a time varying rate of deterioration rate. Here production and demand are treated as a fuzzy variables and total cost is minimized for both the crisp and fuzzy model. Shortage is allowed on the supplier’s part, which is partially backlogged. A solution procedure is presented to determine an optimal replenishment cycle and total cost per unit time, which is a convex function of preservation technology cost. Results have been validated with relevant example. In a way, the proposed model provides a unique theory to reduce the deterioration rate for the production model.
FUZZY OPTIMIZATION MODEL OF MAINTENANCE DESIGN FOR PRODUCT LEVEL REUSE
Institute of Scientific and Technical Information of China (English)
Feng Zhen; Xu Guohua
2004-01-01
Most used products must be maintained before they are reused.The modeling method for maintenance design of product level reuse based on quality function deployment is presented.A fuzzy linear optimization model is developed under financial uncertainty.Objective of the model is to maximize improvement rate of customer satisfaction level.Maintenance cost constrain is fuzzy.The algorithm for solution to the model is given.Its optimized results not only give attention to satisfaction degree of cost constraint,but also maximize objective value.An illustrative example involved water bump reuse is studied and the results show that the proposed model can effectively help maintenance planner determine the better design scheme.
A fuzzy-theory-based behavioral model for studying pedestrian evacuation from a single-exit room
Fu, Libi; Song, Weiguo; Lo, Siuming
2016-08-01
Many mass events in recent years have highlighted the importance of research on pedestrian evacuation dynamics. A number of models have been developed to analyze crowd behavior under evacuation situations. However, few focus on pedestrians' decision-making with respect to uncertainty, vagueness and imprecision. In this paper, a discrete evacuation model defined on the cellular space is proposed according to the fuzzy theory which is able to describe imprecise and subjective information. Pedestrians' percept information and various characteristics are regarded as fuzzy input. Then fuzzy inference systems with rule bases, which resemble human reasoning, are established to obtain fuzzy output that decides pedestrians' movement direction. This model is tested in two scenarios, namely in a single-exit room with and without obstacles. Simulation results reproduce some classic dynamics phenomena discovered in real building evacuation situations, and are consistent with those in other models and experiments. It is hoped that this study will enrich movement rules and approaches in traditional cellular automaton models for evacuation dynamics.
Aghajani, Khadijeh; Tayebi, Habib-Allah
2017-01-01
In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).
Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine
Klemen Nagode; Igor Škrjanc
2014-01-01
This paper presents dynamic modelling of a Francis turbine with a surge tank and the control of a hydro power plant (HPP). Non-linear and linear models include technical parameters and show high similarity to measurement data. Turbine power control with an internal model control (IMC) is proposed, based on a turbine fuzzy model. Considering appropriate control responses in the entire area of turbine power, the model parameters of the process are determined from a fuzzy model, which are furthe...
URC Fuzzy Modeling and Simulation of Gene Regulation
Energy Technology Data Exchange (ETDEWEB)
Sokhansanj, B A; Fitch, J P
2001-05-01
Recent technological advances in high-throughput data collection give biologists the ability to study increasingly complex systems. A new methodology is needed to develop and test biological models based on experimental observations and predict the effect of perturbations of the network (e.g. genetic engineering, pharmaceuticals, gene therapy). Diverse modeling approaches have been proposed, in two general categories: modeling a biological pathway as (a) a logical circuit or (b) a chemical reaction network. Boolean logic models can not represent necessary biological details. Chemical kinetics simulations require large numbers of parameters that are very difficult to accurately measure. Based on the way biologists have traditionally thought about systems, we propose that fuzzy logic is a natural language for modeling biology. The Union Rule Configuration (URC) avoids combinatorial explosion in the fuzzy rule base, allowing complex system models. We demonstrate the fuzzy modeling method on the commonly studied lac operon of E. coli. Our goal is to develop a modeling and simulation approach that can be understood and applied by biologists without the need for experts in other fields or ''black-box'' software.
Directory of Open Access Journals (Sweden)
Jung-Shyr Wu
2012-01-01
Full Text Available CAC (Call Admission Control plays a significant role in providing QoS (Quality of Service in mobile wireless networks. In addition to much research that focuses on modified Mobile IP to get better efficient handover performance, CAC should be introduced to Mobile IP-based network to guarantee the QoS for users. In this paper, we propose a CAC scheme which incorporates multiple traffic types and adjusts the admission threshold dynamically using fuzzy control logic to achieve better usage of resources. The method can provide QoS in Mobile IPv6 networks with few modifications on MAP (Mobility Anchor Point functionality and slight change in BU (Binding Update message formats. According to the simulation results, the proposed scheme presents good performance of voice and video traffic at the expenses of poor performance on data traffic. It is evident that these CAC schemes can reduce the probability of the handoff dropping and the cell overload and limit the probability of the new call blocking.
Directory of Open Access Journals (Sweden)
Ying-Yi Hong
2014-04-01
Full Text Available Microgrids are a highly efficient means of embedding distributed generation sources in a power system. However, if a fault occurs inside or outside the microgrid, the microgrid should be immediately disconnected from the main grid using a static switch installed at the secondary side of the main transformer near the point of common coupling (PCC. The static switch should have a reliable module implemented in a chip to detect/locate the fault and activate the breaker to open the circuit immediately. This paper proposes a novel approach to design this module in a static switch using the discrete wavelet transform (DWT and adaptive network-based fuzzy inference system (ANFIS. The wavelet coefficient of the fault voltage and the inference results of ANFIS with the wavelet energy of the fault current at the secondary side of the main transformer determine the control action (open or close of a static switch. The ANFIS identifies the faulty zones inside or outside the microgrid. The proposed method is applied to the first outdoor microgrid test bed in Taiwan, with a generation capacity of 360.5 kW. This microgrid test bed is studied using the real-time simulator eMegaSim developed by Opal-RT Technology Inc. (Montreal, QC, Canada. The proposed method based on DWT and ANFIS is implemented in a field programmable gate array (FPGA by using the Xilinx System Generator. Simulation results reveal that the proposed method is efficient and applicable in the real-time control environment of a power system.
Directory of Open Access Journals (Sweden)
Vipan Kumar Sohpal
2011-05-01
Full Text Available Biodiesel is an alternative source of fuel that can be synthesized from edible, non-edible and waste oils through transesterification. Firstly Transesterification reaction of Jatropha Curcas oil with butanol in the ratio of 1:25 investigated by using of sodium hydroxide catalyst with mixing intensity of 250 rpm in isothermal batch reactor. Secondly the fuzzy model of the temperature is developed. Performance was evaluated by comparing fuzzy model with the batch kinetic data. Fuzzy models were developed using adaptive neurofuzzy inference system (ANFIS. © 2011 BCREC UNDIP. All rights reserved(Received: 27th January 2011, Revised: 13rd February 2011; Accepted: 16th February 2011[How to Cite: V.K. Sohpal, A. Singh, A. Dey. (2011. Fuzzy Modeling to Evaluate the Effect of Temperature on Batch Transesterification of Jatropha Curcas for Biodiesel Production. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 31-38. doi:10.9767/bcrec.6.1.816.31-38][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.816.31-38 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/816 ] | View in
Directory of Open Access Journals (Sweden)
S. Kavitha
2011-01-01
Full Text Available Problem statement: Diabetic retinopathy is one of the most significant factors contributing to blindness and so early diagnosis and timely treatment is particularly important to prevent visual loss. Approach: An integrated approach for extraction of blood vessels and exudates detection was proposed to screen diabetic retinopathy. An automated classifier was developed based on Adaptive Neuro-Fuzzy Inference System (ANFIS to differentiate between normal and nonproliferative eyes from the quantitative assessment of monocular fundus images. Feature extraction was performed on the preprocessed fundus images. Structure of Blood vessels was extracted using Multiscale analysis. Hard Exudates were detected using CIE Color channel transformation, Entropy Thresholding and Improved Connected Component Analysis from the fundus images. Features like Wall to Lumen ratio in blood vessels, Texture, Homogeneity properties and area occupied by Hard Exudates, were given as input to ANFIS.ANFIS was trained with Back propagation in combination with the least squares method. Proposed method was evaluated on 200 real time images comprising 70 normal and 130 retinopathic eyes. Results and Conclusion: All of the results were validated with ground truths obtained from expert ophthalmologists. Quantitative performance of the method, detected exudates with an accuracy of 99.5%. Receiver operating characteristic curve evaluated for real time images produced better results compared to the other state of the art methods. ANFIS provides best classification and can be used as a screening tool in the analysis and diagnosis of retinal images.
Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.
2017-01-01
People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.
Inference-based procedural modeling of solids
Biggers, Keith
2011-11-01
As virtual environments become larger and more complex, there is an increasing need for more automated construction algorithms to support the development process. We present an approach for modeling solids by combining prior examples with a simple sketch. Our algorithm uses an inference-based approach to incrementally fit patches together in a consistent fashion to define the boundary of an object. This algorithm samples and extracts surface patches from input models, and develops a Petri net structure that describes the relationship between patches along an imposed parameterization. Then, given a new parameterized line or curve, we use the Petri net to logically fit patches together in a manner consistent with the input model. This allows us to easily construct objects of varying sizes and configurations using arbitrary articulation, repetition, and interchanging of parts. The result of our process is a solid model representation of the constructed object that can be integrated into a simulation-based environment. © 2011 Elsevier Ltd. All rights reserved.
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan
2010-10-15
A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.
A rule based fuzzy model for the prediction of petrophysical rock parameters
Energy Technology Data Exchange (ETDEWEB)
Finol, J.; Jing, X.D. [T.H. Huxley School of Environment, Earth Sciences and Engineering, Imperial College, Prince Consort Road, SW7 2BP London (United Kingdom); Ke Guo, Y. [Fujitsu Parallel Computing Centre, Department of Computing, Imperial College, SW7 2BZ London (United Kingdom)
2001-04-01
A new approach for the prediction of petrophysical rock parameters based on a rule-based fuzzy model is presented. The rule-based fuzzy model corresponds to the Takagi-Sugeno-Kang method of fuzzy reasoning proposed by Sugeno and his co-authors. This fuzzy model is defined by a set of fuzzy implications with linear consequent parts, each of which establishes a local linear input-output relationship between the variables of the model. In this approach, a fuzzy clustering algorithm is combined with the least-square approximation method to identify the structure and parameters of the fuzzy model from sets of numerical data. To verify the effectiveness of the proposed fuzzy modeling method, two examples are developed using core and electrical log data from three oil wells in Ceuta Field, Lake Maracaibo Basin. The numerical results of the fuzzy modelling method are compared with the results of a conventional linear regression model. It is shown that the fuzzy modeling approach is not only more accurate than the conventional regression approach but also provides some qualitative information about the underlying complexities of the porous system.
Energy Technology Data Exchange (ETDEWEB)
Ghanei, S., E-mail: Sadegh.Ghanei@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Vafaeenezhad, H. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Kashefi, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Eivani, A.R. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Mazinani, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of)
2015-04-01
Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency. - Highlights: • New NDT system for microstructural evaluation based on MBN using ANFIS modeling. • Sensitivity of magnetic Barkhausen noise to microstructure changes of the DP steels. • Accurate prediction of martensite by feeding multiple MBN outputs simultaneously. • Obtaining the modeled output without knowing the amount of the used frequency.
Directory of Open Access Journals (Sweden)
AA Sabziparvar
2011-03-01
Full Text Available Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs using artificial neural network (ANN and adaptive neuro-fuzzy inference system (ANFIS. Minimum temperature, maximum temperature, average relative humidity, sunshine hours and daily solar radiation recorded in four synoptic stations (Esfahan, Urmieh, Shiraz and Kerman were used during the period 1992-2006. The results showed that ANN and ANFIS intelligent models are powerful tools in prediction of global solar radiation for the selected stations. Prediction by ANN was found to be more accurate than ANFIS. Also, the accuracy of prediction in Kerman with higher sunny hours was better than other stations (R2> 0.9. Additionally, using linear regression model, the most effective factors affecting Rs in each site was introduced. The results revealed that sunshine hour is the most important determining parameter affecting surface solar radiation. In contrast, in most sites minimum air temperature and mean relative humidity showed the least effect on surface global solar radiation.
Fuzzy Modeling of Electrical Impedance Tomography Image of the Lungs
Tanaka, Harki; Galizia, Mauricio Stanzione; Sobrinho, Joao Batista Borges; Amato, Marcelo Britto Passos
2007-01-01
Electrical Impedance Tomography (EIT) is a functional imaging method that is being developed for bedside use in critical care medicine. Aiming at improving the chest anatomical resolution of EIT images we developed a fuzzy model based on EIT high temporal resolution and the functional information contained in the pulmonary perfusion and ventilation signals. EIT data from an experimental animal model were collected during normal ventilation and apnea while an injection of hypertonic saline was used as a reference . The fuzzy model was elaborated in three parts: a modeling of the heart, a pulmonary map from ventilation images and, a pulmonary map from perfusion images. Image segmentation was performed using a threshold method and a ventilation/perfusion map was generated. EIT images treated by the fuzzy model were compared with the hypertonic saline injection method and CT-scan images, presenting good results in both qualitative (the image obtained by the model was very similar to that of the CT-scan) and quant...
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586
Fuzzy temporal logic based railway passenger flow forecast model.
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models.
Model averaging and muddled multimodel inferences.
Cade, Brian S
2015-09-01
Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the t
Model averaging and muddled multimodel inferences
Cade, Brian S.
2015-01-01
Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the
Bilevel Fuzzy Chance Constrained Hospital Outpatient Appointment Scheduling Model
Directory of Open Access Journals (Sweden)
Xiaoyang Zhou
2016-01-01
Full Text Available Hospital outpatient departments operate by selling fixed period appointments for different treatments. The challenge being faced is to improve profit by determining the mix of full time and part time doctors and allocating appointments (which involves scheduling a combination of doctors, patients, and treatments to a time period in a department optimally. In this paper, a bilevel fuzzy chance constrained model is developed to solve the hospital outpatient appointment scheduling problem based on revenue management. In the model, the hospital, the leader in the hierarchy, decides the mix of the hired full time and part time doctors to maximize the total profit; each department, the follower in the hierarchy, makes the decision of the appointment scheduling to maximize its own profit while simultaneously minimizing surplus capacity. Doctor wage and demand are considered as fuzzy variables to better describe the real-life situation. Then we use chance operator to handle the model with fuzzy parameters and equivalently transform the appointment scheduling model into a crisp model. Moreover, interactive algorithm based on satisfaction is employed to convert the bilevel programming into a single level programming, in order to make it solvable. Finally, the numerical experiments were executed to demonstrate the efficiency and effectiveness of the proposed approaches.
Directory of Open Access Journals (Sweden)
Luiz Fernando C. Nascimento
2009-09-01
Full Text Available The objective of this study was to develop a fuzzy model to estimate the possibility of neonatal mortality. A computing model was built, based on the fuzziness of the following variables: newborn birth weight, gestational age at delivery, Apgar score, and previous report of stillbirth. The inference used was Mamdani's method and the output was the risk of neonatal death given as a percentage. 24 rules were created according to the inputs. The validation model used a real data file with records from a Brazilian city. The receiver operating characteristic (ROC curve was used to estimate the accuracy of the model, while average risks were compared using the Student t test. MATLAB 6.5 software was used to build the model. The average risks were smaller in survivor newborn (p O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001. A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22. O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.
Inferring gene regression networks with model trees
Directory of Open Access Journals (Sweden)
Aguilar-Ruiz Jesus S
2010-10-01
Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear
Theoretical and experimental FUZZY modelling of building thermal dynamic response
Energy Technology Data Exchange (ETDEWEB)
Skrjanc, Igor; Zupancic, Borut [Ljubljana Univ., Faculty of Electrical Engineering, Ljubljana (Slovenia); Furlan, Bostjan; Krainer, Ales [Ljubljana Univ., Faculty of Civil Engineering, Ljubljana (Slovenia)
2001-11-01
In this paper this main advantages and disadvantages of two different types of modelling: theoretical and experimental are presented and discussed. The theoretical modelling is based on energy balances, which gives the overall model described by differential equations. On the basis of developed theoretical model a complex simulator in the MATLAB-Simulink environment was implemented. The second part is devoted to experimental modelling. In this paper a fuzzy model represented by non-linear relations between input and output variables obtained by least-squares optimisation method is investigated. (Author)
Bayesian Inference of a Multivariate Regression Model
Directory of Open Access Journals (Sweden)
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
Fuzzy and Regression Modelling of Hard Milling Process
Directory of Open Access Journals (Sweden)
A. Tamilarasan
2014-04-01
Full Text Available The present study highlights the application of box-behnken design coupled with fuzzy and regression modeling approach for making expert system in hard milling process to improve the process performance with systematic reduction of production cost. The important input fields of work piece hardness, nose radius, feed per tooth, radial depth of cut and axial depth cut were considered. The cutting forces, work surface temperature and sound pressure level were identified as key index of machining outputs. The results indicate that the fuzzy logic and regression modeling technique can be effectively used for the prediction of desired responses with less average error variation. Predicted results were verified by experiments and shown the good potential characteristics of the developed system for automated machining environment.
A Fuzzy Similarity Based Concept Mining Model for Text Classification
Puri, Shalini
2012-01-01
Text Classification is a challenging and a red hot field in the current scenario and has great importance in text categorization applications. A lot of research work has been done in this field but there is a need to categorize a collection of text documents into mutually exclusive categories by extracting the concepts or features using supervised learning paradigm and different classification algorithms. In this paper, a new Fuzzy Similarity Based Concept Mining Model (FSCMM) is proposed to classify a set of text documents into pre - defined Category Groups (CG) by providing them training and preparing on the sentence, document and integrated corpora levels along with feature reduction, ambiguity removal on each level to achieve high system performance. Fuzzy Feature Category Similarity Analyzer (FFCSA) is used to analyze each extracted feature of Integrated Corpora Feature Vector (ICFV) with the corresponding categories or classes. This model uses Support Vector Machine Classifier (SVMC) to classify correct...
Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity
Directory of Open Access Journals (Sweden)
J. Behmanesh
2015-06-01
Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.
Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization
Institute of Scientific and Technical Information of China (English)
LI Yong; TANG Ying-Gan
2010-01-01
@@ A fuzzy Wiener model is proposed to identify chaotic systems.The proposed fuzzy Wiener model consists of two parts,one is a linear dynamic subsystem and the other is a static nonlinear part,which is represented by the Takagi-Sugeno fuzzy model Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model.Particle swarm optimization algorithm,a global optimizer,is used to search the optimal parameter of the fuzzy Wiener model.The proposed method can identify the parameters of the linear part and nonlinear part simultaneously.Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method.
Dependent-Chance Programming Models for Capital Budgeting in Fuzzy Environments
Institute of Scientific and Technical Information of China (English)
LIANG Rui; GAO Jinwu
2008-01-01
Capital budgeting is concerned with maximizing the total net profit subject to budget constraints by selecting an appropriate combination of projects. This paper presents chance maximizing models for capital budgeting with fuzzy input data and multiple conflicting objectives. When the decision maker sets a prospec-tive profit level and wants to maximize the chances of the total profit achieving the prospective profit level, a fuzzy dependent-chance programming model, a fuzzy multi-objective dependent-chance programming model, and a fuzzy goal dependent-chance programming model are used to formulate the fuzzy capital budgeting problem. A fuzzy simulation based genetic algorithm is used to solve these models. Numerical examples are provided to illustrate the effectiveness of the simulation-based genetic algorithm and the po-tential applications of these models.
Mathematical Modelling with Fuzzy Sets of Sustainable Tourism Development
Nenad Stojanović
2011-01-01
In the first part of the study we introduce fuzzy sets that correspond to comparative indicators for measuring sustainable development of tourism. In the second part of the study it is shown, on the base of model created, how one can determine the value of sustainable tourism development in protected areas based on the following established groups of indicators: to assess the economic status, to assess the impact of tourism on the social component, to assess the impact of tourism on cultural ...
Fuzzy Spacetime with SU(3) Isometry in IIB Matrix Model
Kaneko, H; Tomino, D
2005-01-01
A group of fuzzy spacetime with SU(3) isometry is studied at the two loop level in IIB matrix model. It consists of spacetime from 4 to 6 dimensions, namely from CP2 to SU(3)/U(1)x U(1). The effective action scales in a universal manner in the large N limit as N and N^{4/3} on 4 and 6 dimensional manifolds respectively. The 4 dimensional spacetime CP2 possesses the smallest effective action in this class.
Fuzzy model prediction of Co (Ⅲ)/Al2O3 catalytic behavior in Fischer-Tropsch synthesis
Institute of Scientific and Technical Information of China (English)
Mohammad Ali Takassi; Mahdi Koolivand Salooki; Morteza Esfandyari
2011-01-01
The application of Co (Ⅲ)/Al2O3 catalyst in Fischer-Tropsch synthesis (FTS) was studied in a wide range of synthesis gas conversions and compared with Fuzzy Simulation results.Present study applies fuzzy model to predicting the product composition of CH4,CO2 and CO in Fischer-Tropsch process for natural gas synthesis,in which the input vector was 4-dimension including four variables (operating pressure,operating temperature,time and CO/H2 ratio) of 70 different experim.ents and the output product is a composition of CO2,CO and CH4.The Mamdani algorithm has been applied to the training of the fuzzy system and the test set was used to evaluate the performance of the system including R2,ARE,AARE and SD.The results demonstrated that the predicted values from the model were in good consistency with the experimental data.The work indicates how fuzzy inference system (FIS),as a promising predicting technique,would be effectively used in FTS.
Synthesis of nonlinear discrete control systems via time-delay affine Takagi-Sugeno fuzzy models.
Chang, Wen-Jer; Chang, Wei
2005-04-01
The affine Takagi-Sugeno (TS) fuzzy model played a more important role in nonlinear control because it can be used to approximate the nonlinear systems more than the homogeneous TS fuzzy models. Besides, it is known that the time delays exist in physical systems and the previous works did not consider the time delay effects in the analysis of affine TS fuzzy models. Hence a parallel distributed compensation based fuzzy controller design issue for discrete time-delay affine TS fuzzy models is considered in this paper. The time-delay effect is considered in the discrete affine TS fuzzy models and the stabilization issue is developed for the nonlinear time-delay systems. Finally, a numerical simulation for a time-delayed nonlinear truck-trailer system is given to show the applications of the present approach.
Institute of Scientific and Technical Information of China (English)
吴小娟; 朱新坚; 曹广益; 屠恒勇
2008-01-01
固体氧化物燃料电池(solid oxide fuel cell,SOFC)是21世纪最有生命力的发电技术之一.文章从SOFC实际应用的角度出发,应用改进的自适应神经模糊推理系统(adaptive neural fuzzy inference system,ANFIS)对SOFC建立了负载稳定和负载变化2种情况下的电特性模型.由于数据来源不足,首先根据SOFC的工作原理,运用电化学、流体动力学等学科理论,建立SOFC的数学模型,基于该数学模型获取ANFIS辨识模型的训练和预测数据.仿真结果显示了改进的ANFIS技术对SOFC系统的建模和控制具有一定的实用价值.
Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza
2016-10-01
As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2) = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Mathematical Modelling with Fuzzy Sets of Sustainable Tourism Development
Directory of Open Access Journals (Sweden)
Nenad Stojanović
2011-10-01
Full Text Available In the first part of the study we introduce fuzzy sets that correspond to comparative indicators for measuring sustainable development of tourism. In the second part of the study it is shown, on the base of model created, how one can determine the value of sustainable tourism development in protected areas based on the following established groups of indicators: to assess the economic status, to assess the impact of tourism on the social component, to assess the impact of tourism on cultural identity, to assess the environmental conditions and indicators as well as to assess tourist satisfaction, all using fuzzy logic.It is also shown how to test the confidence in the rules by which, according to experts, appropriate decisions can be created in order to protect biodiversity of protected areas.
FUZZY COMPREHENSIVE EVALUATION MODEL OF ECOLOGICAL DEMONSTRATION AREA
Institute of Scientific and Technical Information of China (English)
YU Ya-juan; GUO Huai-cheng; LIU Yong; WANG Shu-tong; WANG Jin-feng
2005-01-01
Ecological demonstration area (EDA) is an authorized nomination, which should be assessed from several aspects, including ecological, social, environmental, economic ones and so on. It is difficult to advance an exact developing level index of EDA due to its indicator system's complexity and disequilibrium. In this paper, a framework of indicators was set to evaluate, monitor and examine the comprehensive level of ecological demonstration area (EDA). Fuzzy logic method was used to develop the fuzzy comprehensive evaluation model (FCEM), which could quantitatively reveal the developing degree of EDA. Huiji District of Zhengzhou, Henan Province, one of the 9th group of national EDAs, was taken as a study case. The framework of FCEM for the integrated system included six subsystems, which were social, economic, ecological, rural, urban and accessorial description ones. The research would be valuable in the comprehensive quantitative evaluation of EDA and would work as a guide in the construction practices of Huiji ecological demonstration area.
THE FUZZY OVERLAY STUDENT MODEL IN AN INTELLIGENT TUTORING SYSTEM
Directory of Open Access Journals (Sweden)
D. I. Popov
2015-01-01
Full Text Available The article is devoted to the development of the student model for use in an intelligent tutoring system (ITS designed for the evaluation of students’ competencies in different Higher Education Facilities. There are classification and examples of the various student models, the most suitable for the evaluation of competencies is selected and finalized. The dynamic overlay fuzzy student model builded on the domain model based on the concept of didactic units is described in this work. The formulas, chart and diagrams are provided.
Modeling Multisource-heterogeneous Information Based on Random Set and Fuzzy Set Theory
Institute of Scientific and Technical Information of China (English)
WEN Cheng-lin; XU Xiao-bin
2006-01-01
This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. Firstly, based on strong random set and weak random set, the unified form to describe both data (unambiguous information) and fuzzy evidence (uncertain information) is introduced. Secondly, according to signatures of fuzzy evidence, two Bayesian-markov nonlinear measurement models are proposed to fuse effectively data and fuzzy evidence. Thirdly, by use of "the models-based signature-matching scheme", the operation of the statistics of fuzzy evidence defined as random set can be translated into that of the membership functions of relative point state variables. These works are the basis to construct qualitative measurement models and to fuse data and fuzzy evidence.
Friendship Dynamics: Modelling Social Relationships through a Fuzzy Agent-Based Simulation
Directory of Open Access Journals (Sweden)
Samer Hassan
2011-01-01
This study shows how to simulate these friendship dynamics in an agent-based model that applies fuzzy sets theory to implement agent attributes, rules, and social relationships, explaining the process in detail. Although in principle it may be thought that the use of fuzzy sets theory makes agent-based modelling more elaborated, in practice it saves the modeller from taking some arbitrary decisions on how to use crisp values for representing properties that are inherently fuzzy. The consequences of applying fuzzy sets and operations to define a fuzzy friendship relationship are compared with a simpler implementation, with crisp values. By integrating agent computational models and fuzzy set theory, this paper provides useful insights into scholars and practitioners to tackle the uncertainty inherent to social relationships in a systematic way.
Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia
2012-01-01
The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed…
A fuzzy set preference model for market share analysis
Turksen, I. B.; Willson, Ian A.
1992-01-01
Consumer preference models are widely used in new product design, marketing management, pricing, and market segmentation. The success of new products depends on accurate market share prediction and design decisions based on consumer preferences. The vague linguistic nature of consumer preferences and product attributes, combined with the substantial differences between individuals, creates a formidable challenge to marketing models. The most widely used methodology is conjoint analysis. Conjoint models, as currently implemented, represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes, and require aggregation of individuals for estimation purposes. It is not surprising that these models are costly to implement, are inflexible, and have a predictive validity that is not substantially better than chance. This affects the accuracy of market share estimates. A fuzzy set preference model can easily represent linguistic variables either in consumer preferences or product attributes with minimal measurement requirements (ordinal scales), while still estimating overall preferences suitable for market share prediction. This approach results in flexible individual-level conjoint models which can provide more accurate market share estimates from a smaller number of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model structures, such as a linear combination, using the techniques developed for conjoint analysis and market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation), and how much to make (market share
The Role of Causal Models in Analogical Inference
Lee, Hee Seung; Holyoak, Keith J.
2008-01-01
Computational models of analogy have assumed that the strength of an inductive inference about the target is based directly on similarity of the analogs and in particular on shared higher order relations. In contrast, work in philosophy of science suggests that analogical inference is also guided by causal models of the source and target. In 3…
The mind in the model: capturing expert knowledge with the help of fuzzy logic
Janssen, J.A.E.B.; Schielen, R.M.J.; Augustijn, D.C.M.; Os, van A.G.
2006-01-01
Fuzzy logic offers a way of capturing qualitative knowledge in models. We tested its application in modelling for long term river management planning. We used fuzzy logic to model landscape impacts of different river measures. Preliminary results show that the method allows for modelling expert know
Directory of Open Access Journals (Sweden)
Erhankana Ardiana Putra
2017-01-01
Full Text Available Pada sistem kelistrikan terutama pada sistem proteksi kelistrikan dewasa ini sangat dibutuhkan sistem yang handal, sehingga perkembangan pada sistem proteksi sudah semakin maju dengan adanya penggunaan rele digital. Rele digital digunakan dengan mempertimbangkan kecepatan, keakuratan dan serta flexible dalam sistem koordinasi. Flexibilitas ini dimaksudkan bahwa rele digital dapat digunakan menjadi rele arus lebih (overcurrent relay sesuai pembahasan tugas akhir ini dan dapat disetting menurut keinginan user sesuai karakteristik kurva OCR konvensional/standart (normal inverse, very inverse, long time inverse, extreme inverse yang akan digunakan dalam koordinasi. Jenis kurva pada rele digital juga dapat disetting diluar rumus kurva konvensional/standart yang seperti sudah disebutkan sebelumnya, kurva diluar rumusan standart disebut kurva rele non-standart. Kurva rele non-standart digunakan untuk memudahkan pengguna untuk menentukan waktu trip berdasarkan arus yang diinginkan dan sebagai solusi jika pada koordinasi proteksi mengalami kendala dalam koordinasi kurva rele. Pada tugas akhir ini akan dibahas bagaimana membuat atau memodelkan kurva karakteristik inverse overcurrent rele non-standart dengan menggunakan metode (Adaptive Neuro Fuzzy Inference System atau biasa disebut metode pembelajaran ANFIS. Kurva non-standart didapatkan dengan pengambilan titik-titik data baru berupa arus dan waktu trip sesuai keinginan user. Data baru tersebut akan digabungkan dengan data lama sehingga menghasilkan data non-standart yang nantinya akan dilakukan pembelajaran dengan metode ANFIS untuk mendapatkan desain kurva non-standart. Setelah didapatkan desain kurva non-standart akan dilakukan pengujian keakuratan dengan mengganti nilai MF (membership function didapatkan hasil rata-rata error terkecil 2,56% (MF=10 dan epoch=100. Pengujian selanjutnya dengan mengubah nilai epoch didapatkan nilai keakuratan dengan error terkecil pada epoch = 500. Simulasi pada
Using memristor crossbar structure to implement a novel adaptive real time fuzzy modeling algorithm
Afrakoti, Iman Esmaili Paeen; Shouraki, Saeed Bagheri; Merrikhbayat, Farnood
2013-01-01
Although fuzzy techniques promise fast meanwhile accurate modeling and control abilities for complicated systems, different difficulties have been re-vealed in real situation implementations. Usually there is no escape of it-erative optimization based on crisp domain algorithms. Recently memristor structures appeared promising to implement neural network structures and fuzzy algorithms. In this paper a novel adaptive real-time fuzzy modeling algorithm is proposed which uses active learning me...
Conditional likelihood inference in generalized linear mixed models.
Sartori, Nicola; Severini , T.A
2002-01-01
Consider a generalized linear model with a canonical link function, containing both fixed and random effects. In this paper, we consider inference about the fixed effects based on a conditional likelihood function. It is shown that this conditional likelihood function is valid for any distribution of the random effects and, hence, the resulting inferences about the fixed effects are insensitive to misspecification of the random effects distribution. Inferences based on the conditional likelih...
Simulations of a supersymmetry inspired model on a fuzzy sphere
2008-01-01
We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to a finite set of degrees of freedom without explicitly breaking the space symmetries. The corresponding field theory is expressed in terms of a matrix model, which can be simulated. We present first numerical results for the phase structure of a v...
FUZZY MULTI-LEVEL WAREHOUSE LAYOUT PROBLEM: NEW MODEL AND ALGORITHM
Institute of Scientific and Technical Information of China (English)
Lixing YANG; Yuan FENG
2006-01-01
This paper deals with a multi-level warehouse layout problem under fuzzy environment, in which different types of items need to be placed in a multi-level warehouse and the monthly demand of each item type and horizontal distance traveled by clamp track are treated as fuzzy variables. In order to minimize the total transportation cost, chance-constrained programming model is designed for the problem based on the credibility measure and then tabu search algorithm based on the fuzzy simulation is designed to solve the model. Some mathematical properties of the model are also discussed when the fuzzy variables are interval fuzzy numbers or trapezoidal fuzzy numbers. Finally, a numerical example is presented to show the efficiency of the algorithm.
Design, modelling, implementation, and intelligent fuzzy control of a hovercraft
El-khatib, M. M.; Hussein, W. M.
2011-05-01
A Hovercraft is an amphibious vehicle that hovers just above the ground or water by air cushion. The concept of air cushion vehicle can be traced back to 1719. However, the practical form of hovercraft nowadays is traced back to 1955. The objective of the paper is to design, simulate and implement an autonomous model of a small hovercraft equipped with a mine detector that can travel over any terrains. A real time layered fuzzy navigator for a hovercraft in a dynamic environment is proposed. The system consists of a Takagi-Sugenotype fuzzy motion planner and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including the right and left views from which he makes his next step towards the goal in the free space. It intelligently combines two behaviours to cope with obstacle avoidance as well as approaching a goal using a proportional navigation path accounting for hovercraft kinematics. MATLAB/Simulink software tool is used to design and verify the proposed algorithm.
New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.
Song, Qiang; Chissom, Brad S.
Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…
NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT
Directory of Open Access Journals (Sweden)
Dauda Olarotimi Araromi
2015-11-01
Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.
Fuzzy Logic in Traffic Engineering: A Review on Signal Control
Directory of Open Access Journals (Sweden)
Milan Koukol
2015-01-01
Full Text Available Since 1965 when the fuzzy logic and fuzzy algebra were introduced by Lotfi Zadeh, the fuzzy theory successfully found its applications in the wide range of subject fields. This is mainly due to its ability to process various data, including vague or uncertain data, and provide results that are suitable for the decision making. This paper aims to provide comprehensive overview of literature on fuzzy control systems used for the management of the road traffic flow at road junctions. Several theoretical approaches from basic fuzzy models from the late 1970s to most recent combinations of real-time data with fuzzy inference system and genetic algorithms are mentioned and discussed throughout the paper. In most cases, fuzzy logic controllers provide considerable improvements in the efficiency of traffic junctions’ management.
Fuzzy Entropy:Axiomatic Definition and Neural Networks Model%模糊熵:公理化定义和神经网络模型
Institute of Scientific and Technical Information of China (English)
卿铭; 曹悦; 黄天民
2004-01-01
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly,the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.
Fuzzy Modeling and Synchronization of a New Hyperchaotic Complex System with Uncertainties
Directory of Open Access Journals (Sweden)
Hadi Delavari
2015-07-01
Full Text Available In this paper, the synchronization of a new hyperchaotic complex system based on T-S fuzzy model is proposed. First the considered hyperchaotic system is represented by T-S fuzzy model equivalently. Then by using the parallel distributed compensation (PDC method and by applying linear system theory and exact linearization (EL technique, a fuzzy controller is designed to realize the synchronization. Finally, simulation results are carried out to demonstrate the performance of our proposed control scheme, and also the robustness of the designed fuzzy controller to uncertainties.
Research on Maintainability Evaluation Model Based on Fuzzy Theory
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Maintainability influencing attributes are analyzed, their weight and value calculating methods are given, and the maintainability fuzzy evaluation method is proposed based on the relative closeness. According to the maintenance task simulation operated in virtual environment, the maintainability virtual evaluation model is built by analyzing the maintenance task for each replaceable unit of product.At last, a case study is given based upon the main landing gear system of a certain type civil aircraft, and the result indicates that the model is suitable for maintainability qualitative evaluation and can support maintainability concurrent design.
Possibilistic Fuzzy Net Present Value Model and Application
Directory of Open Access Journals (Sweden)
S. S. Appadoo
2014-01-01
Full Text Available The cash flow values and the interest rate in the net present value (NPV model are usually specified by either crisp numbers or random variables. In this paper, we first discuss some of the recent developments in possibility theory and find closed form expressions for fuzzy possibilistic net present value (FNPV. Then, following Carlsson and Fullér (2001, we discuss some of the possibilistic moments related to FNPV model along with an illustrative numerical example. We also give a unified approach to find higher order moments of FNPV by using the moment generating function introduced by Paseka et al. (2011.
Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.
Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge.
Cakmakci, Mehmet
2007-09-01
Modelling of anaerobic digestion systems is difficult because their performance is complex and varies significantly with influent characteristics and operational conditions. In this study, Adaptive Neuro-Fuzzy Inference System (ANFIS) were used for modelling of anaerobic digestion system of primary sludge of Kayseri municipal WasteWater Treatment Plant (WWTP). Effluent Volatile Solid (VS) and methane yield were predicted by the ANFIS. Two stage models were performed. In the first stage, effluent VS concentration was predicted using pH, VS concentration, flowrate of pre-thickened sludge and temperature of the influent as input parameters. In the second stage, effluent VS concentration in addition to first stage input parameters were used as input parameters to predict methane yield. The low Root Mean Square Error (RMSE) and high Index of agreement (IA) values were obtained with subtractive clustering method of a first order Sugeno type inference. The model performance was evaluated with statistical parameters. According to statistical evaluations, the models satisfactorily predict effluent VS concentration and methane yield.
Design of Takagi-Sugeno fuzzy model based nonlinear sliding model controller
Institute of Scientific and Technical Information of China (English)
Xu Yong; Chen Zengqiang; Yuan Zhuzhi
2005-01-01
A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robustness and guarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.
MODELING AND OPTIMIZATION OF MULTI-RESPONSE SURFACE PROBLEMS WITH FUZZY APPROACH
Directory of Open Access Journals (Sweden)
Özlem TÜRKŞEN
2012-06-01
Full Text Available The most widely used approach for solving multi response surface problems is response surface methodology. It is thought to be that the response surface methodology is inadequate for evaluation ofunexplained vagueness in real world problems. Therefore in the study, fuzzy approach is proposed as an alternative to solve the multi response surface problems. The main aim of this study is to representthe applicability of the fuzzy approach for solving of the multi-response problems in which the probability distributions of the response variables cannot be determined. At the modeling stage, the fuzzy least squares regression analysis, based on Diamond's distance metric, is used. In the optimization stage, the problem is considered as a fuzzy multi-objective optimization problem. NondominatedSorting Genetic Algorithm-II (NSGA-II, defined in the literature, is adapted by using centroid index fuzzy ranking approach then called Fuzzy NSGA-II (FNSGA-II. Fuzzy Pareto solution set is obtainedby optimizing the problem, which is composed of fuzzy objective functions, with FNSGA-II. The proposed fuzzy solution approaches are applied on a data set defined in the literature. Thus, it is seen thatan obtained fuzzy Pareto solution is a set of acceptable different response values for the performed multi-response experiments at the defined levels of input variables.
Directory of Open Access Journals (Sweden)
Mithaq Nama Raheema
2017-07-01
Full Text Available The design of ANFIS network based inverse control technique is proposed in this paperfor this system. Simulation is implemented in MATLAB after the ANFIS is trained and it is shown that results are applicable in process industry and acceptable for reference control applications. The effectiveness of the proposed ANFIS in inverse controller it has been tested by entering random selected points which represent the values of input voltage from the system under control as a reference input to inverse modelling, after that entering the results of inverse modelling to the modelling of magnet levitation system to form the desired output. The result is acceptable with small errors about 0.0011
A Novel Fuzzy Document Based Information Retrieval Model for Forecasting
Directory of Open Access Journals (Sweden)
Partha Roy
2017-06-01
Full Text Available Information retrieval systems are generally used to find documents that are most appropriate according to some query that comes dynamically from users. In this paper a novel Fuzzy Document based Information Retrieval Model (FDIRM is proposed for the purpose of Stock Market Index forecasting. The novelty of proposed approach is a modified tf-idf scoring scheme to predict the future trend of the stock market index. The contribution of this paper has two dimensions, 1 In the proposed system the simple time series is converted to an enriched fuzzy linguistic time series with a unique approach of incorporating market sentiment related information along with the price and 2 A unique approach is followed while modeling the information retrieval (IR system which converts a simple IR system into a forecasting system. From the performance comparison of FDIRM with standard benchmark models it can be affirmed that the proposed model has a potential of becoming a good forecasting model. The stock market data provided by Standard & Poor’s CRISIL NSE Index 50 (CNX NIFTY-50 index of National Stock Exchange of India (NSE is used to experiment and validate the proposed model. The authentic data for validation and experimentation is obtained from http://www.nseindia.com which is the official website of NSE. A java program is under construction to implement the model in real-time with graphical users’ interface.
Petchinathan,G.; K. Valarmathi; Devaraj,D.; T. K. Radhakrishnan
2014-01-01
This paper describes the modelling and control of a pH neutralization process using a Local Linear Model Tree (LOLIMOT) and an adaptive neuro-fuzzy inference system (ANFIS). The Direct and Inverse model building using LOLIMOT and ANFIS structures is described and compared. The direct and inverse models of the pH system are identified based on experimental data for the LOLIMOT and ANFIS structures. The identified models are implemented in the experimental pH system with IMC structure using a G...
The Importance of Statistical Modeling in Data Analysis and Inference
Rollins, Derrick, Sr.
2017-01-01
Statistical inference simply means to draw a conclusion based on information that comes from data. Error bars are the most commonly used tool for data analysis and inference in chemical engineering data studies. This work demonstrates, using common types of data collection studies, the importance of specifying the statistical model for sound…
Nitrate leaching from a potato field using fuzzy inference system combined with genetic algorithm
DEFF Research Database (Denmark)
Shekofteh, Hosein; Afyuni, Majid M; Hajabbasi, Mohammad-Ali
2012-01-01
in MFIS were tuned by Genetic Algorithm. The correlation coefficient, normalized root mean square error and relative mean absolute error percentage between the data obtained by HYDRUS-2D and the estimated values using MFIS model were 0.986, 0.086 and 2.38 respectively. It appears that MFIS can predict...
Nitrate leaching from a potato field using fuzzy inference system combined with genetic algorithm
DEFF Research Database (Denmark)
Shekofteh, Hosein; Afyuni, Majid M; Hajabbasi, Mohammad-Ali
2012-01-01
in MFIS were tuned by Genetic Algorithm. The correlation coefficient, normalized root mean square error and relative mean absolute error percentage between the data obtained by HYDRUS-2D and the estimated values using MFIS model were 0.986, 0.086 and 2.38 respectively. It appears that MFIS can predict...
Declarative Modeling and Bayesian Inference of Dark Matter Halos
Kronberger, Gabriel
2013-01-01
Probabilistic programming allows specification of probabilistic models in a declarative manner. Recently, several new software systems and languages for probabilistic programming have been developed on the basis of newly developed and improved methods for approximate inference in probabilistic models. In this contribution a probabilistic model for an idealized dark matter localization problem is described. We first derive the probabilistic model for the inference of dark matter locations and masses, and then show how this model can be implemented using BUGS and Infer.NET, two software systems for probabilistic programming. Finally, the different capabilities of both systems are discussed. The presented dark matter model includes mainly non-conjugate factors, thus, it is difficult to implement this model with Infer.NET.
Adaptive Control of MEMS Gyroscope Based on T-S Fuzzy Model
Directory of Open Access Journals (Sweden)
Yunmei Fang
2015-01-01
Full Text Available A multi-input multioutput (MIMO Takagi-Sugeno (T-S fuzzy model is built on the basis of a nonlinear model of MEMS gyroscope. A reference model is adjusted so that a local linear state feedback controller could be designed for each T-S fuzzy submodel based on a parallel distributed compensation (PDC method. A parameter estimation scheme for updating the parameters of the T-S fuzzy models is designed and analyzed based on the Lyapunov theory. A new adaptive law can be selected to be the former adaptive law plus a nonnegative in variable to guarantee that the derivative of the Lyapunov function is smaller than zero. The controller output is implemented on the nonlinear model and T-S fuzzy model, respectively, for the purpose of comparison. Numerical simulations are investigated to verify the effectiveness of the proposed control scheme and the correctness of the T-S fuzzy model.
Nadiri, Ata Allah; Sedghi, Zahra; Khatibi, Rahman; Gharekhani, Maryam
2017-09-01
Driven by contamination risks, mapping Vulnerability Indices (VI) of multiple aquifers (both unconfined and confined) is investigated by integrating the basic DRASTIC framework with multiple models overarched by Artificial Neural Networks (ANN). The DRASTIC framework is a proactive tool to assess VI values using the data from the hydrosphere, lithosphere and anthroposphere. However, a research case arises for the application of multiple models on the ground of poor determination coefficients between the VI values and non-point anthropogenic contaminants. The paper formulates SCFL models, which are derived from the multiple model philosophy of Supervised Committee (SC) machines and Fuzzy Logic (FL) and hence SCFL as their integration. The Fuzzy Logic-based (FL) models include: Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Larsen Fuzzy Logic (LFL) models. The basic DRASTIC framework uses prescribed rating and weighting values based on expert judgment but the four FL-based models (SFL, MFL, LFL and SCFL) derive their values as per internal strategy within these models. The paper reports that FL and multiple models improve considerably on the correlation between the modeled vulnerability indices and observed nitrate-N values and as such it provides evidence that the SCFL multiple models can be an alternative to the basic framework even for multiple aquifers. The study area with multiple aquifers is in Varzeqan plain, East Azerbaijan, northwest Iran. Copyright © 2017 Elsevier B.V. All rights reserved.
WarmAndFuzzy: the halo model beyond CDM
Marsh, David J E
2016-01-01
Cold dark matter (CDM) is a well established paradigm to describe cosmological structure formation, and works extraordinarily well on large, linear, scales. Progressing further in dark matter physics requires being able to understand structure formation in the non-linear regime, both for CDM and its alternatives. This short note describes a calculation, and accompanying code, WarmAndFuzzy, incorporating the popular models of warm and fuzzy dark matter (WDM and FDM) into the standard halo model to compute the non-linear matter power spectrum. The FDM halo model power spectrum has not been computed before. The FDM implementation models ultralight axions and other scalar fields with $m_a\\approx 10^{-22}\\text{ eV}$. The WDM implementation models thermal WDM with mass $m_X\\approx 1\\text{ keV}$. The halo model shows that differences between WDM, FDM, and CDM survive at low redshifts in the quasi-linear and fully non-linear regimes. The code uses analytic transfer functions for the linear power spectrum, modified co...
A fuzzy rule based framework for noise annoyance modeling.
Botteldooren, Dick; Verkeyn, Andy; Lercher, Peter
2003-09-01
Predicting the effect of noise on individual people and small groups is an extremely difficult task due to the influence of a multitude of factors that vary from person to person and from context to context. Moreover, noise annoyance is inherently a vague concept. That is why, in this paper, it is argued that noise annoyance models should identify a fuzzy set of possible effects rather than seek a very accurate crisp prediction. Fuzzy rule based models seem ideal candidates for this task. This paper provides the theoretical background for building these models. Existing empirical knowledge is used to extract a few typical rules that allow making the model more specific for small groups of individuals. The resulting model is tested on two large-scale social surveys augmented with exposure simulations. The testing demonstrates how this new way of thinking about noise effect modeling can be used in practice both in management support as a "noise annoyance adviser" and in social science for testing hypotheses such as the effect of noise sensitivity or the degree of urbanization.
Fuzzy Modelling of Knee Joint with Genetic Optimization
Directory of Open Access Journals (Sweden)
B. S. K. K. Ibrahim
2011-01-01
Full Text Available Modelling of joint properties of lower limbs in people with spinal cord injury is significantly challenging for researchers due to the complexity of the system. The objective of this study is to develop a knee joint model capable of relating electrical parameters to dynamic joint torque as well as knee angle for functional electrical stimulation application. The joint model consists of a segmental dynamic, time-invariant passive properties and uncertain time-variant active properties. The knee joint model structure comprising optimised equations of motion and fuzzy models to represent the passive viscoelasticity and active muscle properties is formulated. The model thus formulated is optimised using genetic optimization, and validated against experimental data. The developed model can be used for simulation of joint movements as well as for control development. The results show that the model developed gives an accurate dynamic characterisation of the knee joint.
Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung
2016-01-01
The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…