WorldWideScience

Sample records for fuzzy decision tree

  1. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets.

    Science.gov (United States)

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.

  2. Fuzzy decision trees as a decision-making framework in the public sector

    Directory of Open Access Journals (Sweden)

    Benčina Jože

    2011-01-01

    Full Text Available Systematic approaches to making decisions in the public sector are becoming very common. Most often, these approaches concern expert decision models. The expansion of the idea of the development of e-participation and e-democracy was influenced by the development of technology. All stakeholders are supposed to participate in decision making, so this brings a new feature to the decision-making process, in which amateurs and non-specialists are participating decision making instead of experts. To be able to understand the needs and wishes of stakeholders, it is not enough to vote for alternatives - it is important to participate in solution-finding and to express opinions about the important elements of these matters. The solution presented in this paper concerns fuzzy decision-making framework. This framework combines the advantages of the introduction of the decision-making problem in a tree structure and the possibilities offered by the flexibility of the fuzzy approach. The possibilities of implementation of the framework in practice are introduced by case studies of investment projects appraisal in a community and assessment of efficiency and effectiveness of public institutions.

  3. Data-Mining-Based Coronary Heart Disease Risk Prediction Model Using Fuzzy Logic and Decision Tree.

    Science.gov (United States)

    Kim, Jaekwon; Lee, Jongsik; Lee, Youngho

    2015-07-01

    The importance of the prediction of coronary heart disease (CHD) has been recognized in Korea; however, few studies have been conducted in this area. Therefore, it is necessary to develop a method for the prediction and classification of CHD in Koreans. A model for CHD prediction must be designed according to rule-based guidelines. In this study, a fuzzy logic and decision tree (classification and regression tree [CART])-driven CHD prediction model was developed for Koreans. Datasets derived from the Korean National Health and Nutrition Examination Survey VI (KNHANES-VI) were utilized to generate the proposed model. The rules were generated using a decision tree technique, and fuzzy logic was applied to overcome problems associated with uncertainty in CHD prediction. The accuracy and receiver operating characteristic (ROC) curve values of the propose systems were 69.51% and 0.594, proving that the proposed methods were more efficient than other models.

  4. Cardiovascular Dysautonomias Diagnosis Using Crisp and Fuzzy Decision Tree: A Comparative Study.

    Science.gov (United States)

    Kadi, Ilham; Idri, Ali

    2016-01-01

    Decision trees (DTs) are one of the most popular techniques for learning classification systems, especially when it comes to learning from discrete examples. In real world, many data occurred in a fuzzy form. Hence a DT must be able to deal with such fuzzy data. In fact, integrating fuzzy logic when dealing with imprecise and uncertain data allows reducing uncertainty and providing the ability to model fine knowledge details. In this paper, a fuzzy decision tree (FDT) algorithm was applied on a dataset extracted from the ANS (Autonomic Nervous System) unit of the Moroccan university hospital Avicenne. This unit is specialized on performing several dynamic tests to diagnose patients with autonomic disorder and suggest them the appropriate treatment. A set of fuzzy classifiers were generated using FID 3.4. The error rates of the generated FDTs were calculated to measure their performances. Moreover, a comparison between the error rates obtained using crisp and FDTs was carried out and has proved that the results of FDTs were better than those obtained using crisp DTs.

  5. VR-BFDT: A variance reduction based binary fuzzy decision tree induction method for protein function prediction.

    Science.gov (United States)

    Golzari, Fahimeh; Jalili, Saeed

    2015-07-21

    In protein function prediction (PFP) problem, the goal is to predict function of numerous well-sequenced known proteins whose function is not still known precisely. PFP is one of the special and complex problems in machine learning domain in which a protein (regarded as instance) may have more than one function simultaneously. Furthermore, the functions (regarded as classes) are dependent and also are organized in a hierarchical structure in the form of a tree or directed acyclic graph. One of the common learning methods proposed for solving this problem is decision trees in which, by partitioning data into sharp boundaries sets, small changes in the attribute values of a new instance may cause incorrect change in predicted label of the instance and finally misclassification. In this paper, a Variance Reduction based Binary Fuzzy Decision Tree (VR-BFDT) algorithm is proposed to predict functions of the proteins. This algorithm just fuzzifies the decision boundaries instead of converting the numeric attributes into fuzzy linguistic terms. It has the ability of assigning multiple functions to each protein simultaneously and preserves the hierarchy consistency between functional classes. It uses the label variance reduction as splitting criterion to select the best "attribute-value" at each node of the decision tree. The experimental results show that the overall performance of the proposed algorithm is promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Intuitionistic Fuzzy Cycles and Intuitionistic Fuzzy Trees

    Science.gov (United States)

    Alshehri, N. O.

    2014-01-01

    Connectivity has an important role in neural networks, computer network, and clustering. In the design of a network, it is important to analyze connections by the levels. The structural properties of intuitionistic fuzzy graphs provide a tool that allows for the solution of operations research problems. In this paper, we introduce various types of intuitionistic fuzzy bridges, intuitionistic fuzzy cut vertices, intuitionistic fuzzy cycles, and intuitionistic fuzzy trees in intuitionistic fuzzy graphs and investigate some of their interesting properties. Most of these various types are defined in terms of levels. We also describe comparison of these types. PMID:24701155

  7. Genetic program based data mining of fuzzy decision trees and methods of improving convergence and reducing bloat

    Science.gov (United States)

    Smith, James F., III; Nguyen, ThanhVu H.

    2007-04-01

    A data mining procedure for automatic determination of fuzzy decision tree structure using a genetic program (GP) is discussed. A GP is an algorithm that evolves other algorithms or mathematical expressions. Innovative methods for accelerating convergence of the data mining procedure and reducing bloat are given. In genetic programming, bloat refers to excessive tree growth. It has been observed that the trees in the evolving GP population will grow by a factor of three every 50 generations. When evolving mathematical expressions much of the bloat is due to the expressions not being in algebraically simplest form. So a bloat reduction method based on automated computer algebra has been introduced. The effectiveness of this procedure is discussed. Also, rules based on fuzzy logic have been introduced into the GP to accelerate convergence, reduce bloat and produce a solution more readily understood by the human user. These rules are discussed as well as other techniques for convergence improvement and bloat control. Comparisons between trees created using a genetic program and those constructed solely by interviewing experts are made. A new co-evolutionary method that improves the control logic evolved by the GP by having a genetic algorithm evolve pathological scenarios is discussed. The effect on the control logic is considered. Finally, additional methods that have been used to validate the data mining algorithm are referenced.

  8. A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree.

    Science.gov (United States)

    Exarchos, Themis P; Tsipouras, Markos G; Exarchos, Costas P; Papaloukas, Costas; Fotiadis, Dimitrios I; Michalis, Lampros K

    2007-07-01

    In the current work we propose a methodology for the automated creation of fuzzy expert systems, applied in ischaemic and arrhythmic beat classification. The proposed methodology automatically creates a fuzzy expert system from an initial training dataset. The approach consists of three stages: (a) extraction of a crisp set of rules from a decision tree induced from the training dataset, (b) transformation of the crisp set of rules into a fuzzy model and (c) optimization of the fuzzy model's parameters using global optimization. The above methodology is employed in order to create fuzzy expert systems for ischaemic and arrhythmic beat classification in ECG recordings. The fuzzy expert system for ischaemic beat detection is evaluated in a cardiac beat dataset that was constructed using recordings from the European Society of Cardiology ST-T database. The arrhythmic beat classification fuzzy expert system is evaluated using the MIT-BIH arrhythmia database. The fuzzy expert system for ischaemic beat classification reported 91% sensitivity and 92% specificity. The arrhythmic beat classification fuzzy expert system reported 96% average sensitivity and 99% average specificity for all categories. The proposed methodology provides high accuracy and the ability to interpret the decisions made. The fuzzy expert systems for ischaemic and arrhythmic beat classification compare well with previously reported results, indicating that they could be part of an overall clinical system for ECG analysis and diagnosis.

  9. Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India.

    Science.gov (United States)

    Senthil Kumar, A R; Goyal, Manish Kumar; Ojha, C S P; Singh, R D; Swamee, P K

    2013-01-01

    The prediction of streamflow is required in many activities associated with the planning and operation of the components of a water resources system. Soft computing techniques have proven to be an efficient alternative to traditional methods for modelling qualitative and quantitative water resource variables such as streamflow, etc. The focus of this paper is to present the development of models using multiple linear regression (MLR), artificial neural network (ANN), fuzzy logic and decision tree algorithms such as M5 and REPTree for predicting the streamflow at Kasol located at the upstream of Bhakra reservoir in Sutlej basin in northern India. The input vector to the various models using different algorithms was derived considering statistical properties such as auto-correlation function, partial auto-correlation and cross-correlation function of the time series. It was found that REPtree model performed well compared to other soft computing techniques such as MLR, ANN, fuzzy logic, and M5P investigated in this study and the results of the REPTree model indicate that the entire range of streamflow values were simulated fairly well. The performance of the naïve persistence model was compared with other models and the requirement of the development of the naïve persistence model was also analysed by persistence index.

  10. A Fuzzy Neural Tree for Possibilistic Reliability

    NARCIS (Netherlands)

    Ciftcioglu, O.

    2008-01-01

    An innovative neural fuzzy system is considered for possibilistic reliability using a neural tree structure with nodes of neuronal type. The total tree structure works effectively as a fuzzy logic system where the possibility theory plays important role with Gaussian possibility distribution at the

  11. Using fuzzy arithmetic in containment event trees

    International Nuclear Information System (INIS)

    Rivera, S.S.; Baron, Jorge H.

    2000-01-01

    The use of fuzzy arithmetic is proposed for the evaluation of containment event trees. Concepts such as improbable, very improbable, and so on, which are subjective by nature, are represented by fuzzy numbers. The quantitative evaluation of containment event trees is based on the extension principle, by which operations on real numbers are extended to operations on fuzzy numbers. Expert knowledge is considered as state of the base variable with a normal distribution, which is considered to represent the membership function. Finally, this paper presents results of an example calculation of a containment event tree for the CAREM-25 nuclear power plant, presently under detailed design stage at Argentina. (author)

  12. Decision Tree Phytoremediation

    Science.gov (United States)

    1999-12-01

    8 2.4 Irrigation, Agronomic Inputs, and...documents will provide the reader in-depth background on the science and engineering mechanisms of phytoremediation. Using the decision tree and the...ITRC – Phytoremediation Decision Tree December 1999 8 • Contaminant levels • Plant selection • Treatability • Irrigation, agronomic

  13. The Performance Analysis of the Map-Aided Fuzzy Decision Tree Based on the Pedestrian Dead Reckoning Algorithm in an Indoor Environment.

    Science.gov (United States)

    Chiang, Kai-Wei; Liao, Jhen-Kai; Tsai, Guang-Je; Chang, Hsiu-Wen

    2015-12-28

    Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions.

  14. The Performance Analysis of the Map-Aided Fuzzy Decision Tree Based on the Pedestrian Dead Reckoning Algorithm in an Indoor Environment

    Directory of Open Access Journals (Sweden)

    Kai-Wei Chiang

    2015-12-01

    Full Text Available Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS in some indoor environments. Pedestrian Dead Reckoning (PDR is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS. Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions.

  15. Interval type–2 fuzzy decision making

    OpenAIRE

    Runkler, Thomas; Coupland, Simon; John, Robert

    2017-01-01

    Full text on Nottingham eprints - http://eprints.nottingham.ac.uk/36609/ This paper concerns itself with decision making under uncertainty and the consideration of risk. Type-1 fuzzy logic by its (essentially) crisp nature is limited in modelling decision making as there is no uncertainty in the membership function. We are interested in the role that interval type-2 fuzzy sets might play in enhancing decision making. Previous work by Bellman and Zadeh considered decision making to be based...

  16. Decision analysis using decision trees for a simple clinical decision.

    Science.gov (United States)

    Blakley, Brian

    2012-10-01

    To illustrate the use of decision trees with a utility index in clinical decision making. A decision tree was created related to whether or not to perform a tonsillectomy. Data from the literature were applied to a common hypothetical clinical scenario. A decision tree graphically represents the typical decision-making process that many clinicians use. The addition of utility functions permitted consideration of the adverse or beneficial effects of outcomes, altering the treatment decision. Quantitative tools such as decision trees may quantify outcome preferences and aid in clinical decision making, but the proper tool and background data are essential.

  17. FUZZY DECISION MAKING MODEL FOR BYZANTINE AGREEMENT

    Directory of Open Access Journals (Sweden)

    S. MURUGAN

    2014-04-01

    Full Text Available Byzantine fault tolerance is of high importance in the distributed computing environment where malicious attacks and software errors are common. A Byzantine process sends arbitrary messages to every other process. An effective fuzzy decision making approach is proposed to eliminate the Byzantine behaviour of the services in the distributed environment. It is proposed to derive a fuzzy decision set in which the alternatives are ranked with grade of membership and based on that an appropriate decision can be arrived on the messages sent by the different services. A balanced decision is to be taken from the messages received across the services. To accomplish this, Hurwicz criterion is used to balance the optimistic and pessimistic views of the decision makers on different services. Grades of membership for the services are assessed using the non-functional Quality of Service parameters and have been estimated using fuzzy entropy measure which logically ranks the participant services. This approach for decision making is tested by varying the number of processes, varying the number of faulty services, varying the message values sent to different services and considering the variation in the views of the decision makers about the services. The experimental result shows that the decision reached is an enhanced one and in case of conflict, the proposed approach provides a concrete result, whereas decision taken using the Lamport’s algorithm is an arbitrary one.

  18. Human decision error (HUMDEE) trees

    International Nuclear Information System (INIS)

    Ostrom, L.T.

    1993-01-01

    Graphical presentations of human actions in incident and accident sequences have been used for many years. However, for the most part, human decision making has been underrepresented in these trees. This paper presents a method of incorporating the human decision process into graphical presentations of incident/accident sequences. This presentation is in the form of logic trees. These trees are called Human Decision Error Trees or HUMDEE for short. The primary benefit of HUMDEE trees is that they graphically illustrate what else the individuals involved in the event could have done to prevent either the initiation or continuation of the event. HUMDEE trees also present the alternate paths available at the operator decision points in the incident/accident sequence. This is different from the Technique for Human Error Rate Prediction (THERP) event trees. There are many uses of these trees. They can be used for incident/accident investigations to show what other courses of actions were available and for training operators. The trees also have a consequence component so that not only the decision can be explored, also the consequence of that decision

  19. Decision-Tree Program

    Science.gov (United States)

    Buntine, Wray

    1994-01-01

    IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.

  20. Fuzzy Multiple Criteria Decision Making Model with Fuzzy Time Weight Scheme

    OpenAIRE

    Chin-Yao Low; Sung-Nung Lin

    2013-01-01

    In this study, we purpose a common fuzzy multiple criteria decision making model. A brand new concept - fuzzy time weighted scheme is adopted for considering in the model to establish a fuzzy multiple criteria decision making with time weight (FMCDMTW) model. A real case of fuzzy multiple criteria decision making (FMCDM) problems to be considering in this study. The performance evaluation of auction websites based on all criteria proposed in related literature. Obviously, the problem under in...

  1. Fuzzy statistical decision-making theory and applications

    CERN Document Server

    Kabak, Özgür

    2016-01-01

    This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimu...

  2. Fuzzy set theoretic approach to fault tree analysis

    African Journals Online (AJOL)

    user

    events is replaced by possibilities, thereby leading to fuzzy fault tree analysis. Triangular and trapezoidal fuzzy numbers are used to represent the failure possibility of basic events. Since a system may have to go through different operating conditions during the design or testing phase. Thus the failure possibility of a basic ...

  3. Decision trees in epidemiological research

    Directory of Open Access Journals (Sweden)

    Ashwini Venkatasubramaniam

    2017-09-01

    Full Text Available Abstract Background In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. Main text We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART technique and the newer Conditional Inference tree (CTree technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Conclusions Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  4. Decision trees in epidemiological research.

    Science.gov (United States)

    Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone

    2017-01-01

    In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  5. Fuzziness and fuzzy modelling in Bulgaria's energy policy decision-making dilemma

    International Nuclear Information System (INIS)

    Wang Xingquan

    2006-01-01

    The decision complexity resulting from imprecision in decision variables and parameters, a major difficulty for conventional decision analysis methods, can be relevantly analysed and modelled by fuzzy logic. Bulgaria's nuclear policy decision-making process implicates such complexity of imprecise nature: stakeholders, criteria, measurement, etc. Given the suitable applicability of fuzzy logic in this case, this article tries to offer a concrete fuzzy paradigm including delimitation of decision space, quantification of imprecise variables, and, of course, parameterisation. (author)

  6. Fuzziness and fuzzy modelling in Bulgaria's energy policy decision-making dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xingquan [GREGOR, University Paris I, Pantheon-Sorbonne, Paris (France)]. E-mail: wangxingquan@gmail.com

    2006-07-01

    The decision complexity resulting from imprecision in decision variables and parameters, a major difficulty for conventional decision analysis methods, can be relevantly analysed and modelled by fuzzy logic. Bulgaria's nuclear policy decision-making process implicates such complexity of imprecise nature: stakeholders, criteria, measurement, etc. Given the suitable applicability of fuzzy logic in this case, this article tries to offer a concrete fuzzy paradigm including delimitation of decision space, quantification of imprecise variables, and, of course, parameterisation. (author)

  7. Objective consensus from decision trees.

    Science.gov (United States)

    Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Dal Pra, Alan; Hundsberger, Thomas; Plasswilm, Ludwig

    2014-12-05

    Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties.

  8. INFORMATION SYSTEMS OUTSOURCING DECISIONS UNDER FUZZY GROUP DECISION MAKING APPROACH

    OpenAIRE

    S. NAZARI-SHIRKOUHI; A. ANSARINEJAD; SS. MIRI-NARGESI; V. MAJAZI DALFARD; K. REZAIE

    2011-01-01

    During the last decade, information system (IS) outsourcing has emerged as a major issue for organizations. As outsourcing decisions are often based on multicriteria approaches and group decisions, this paper proposes a structured methodology based on Fuzzy group decision making approach to evaluate and select the appropriate information system project (ISP) in an actual case. To achieve our purpose, we argue that seven criteria consisting of risk, management, economics, technology, resource,...

  9. Hesitant fuzzy methods for multiple criteria decision analysis

    CERN Document Server

    Zhang, Xiaolu

    2017-01-01

    The book offers a comprehensive introduction to methods for solving multiple criteria decision making and group decision making problems with hesitant fuzzy information. It reports on the authors’ latest research, as well as on others’ research, providing readers with a complete set of decision making tools, such as hesitant fuzzy TOPSIS, hesitant fuzzy TODIM, hesitant fuzzy LINMAP, hesitant fuzzy QUALIFEX, and the deviation modeling approach with heterogeneous fuzzy information. The main focus is on decision making problems in which the criteria values and/or the weights of criteria are not expressed in crisp numbers but are more suitable to be denoted as hesitant fuzzy elements. The largest part of the book is devoted to new methods recently developed by the authors to solve decision making problems in situations where the available information is vague or hesitant. These methods are presented in detail, together with their application to different type of decision-making problems. All in all, the book ...

  10. Decision and game theory in management with intuitionistic fuzzy sets

    CERN Document Server

    Li, Deng-Feng

    2014-01-01

    The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to us...

  11. Fuzzy set theoretic approach to fault tree analysis | Tyagi ...

    African Journals Online (AJOL)

    Research in conventional fault tree analysis (FTA) is based mainly on failure probability of basic events, which uses classical probability distributions for the failure probability of basic events. In the present paper the probabilistic consideration of basic events is replaced by possibilities, thereby leading to fuzzy fault tree ...

  12. Algorithms for Decision Tree Construction

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    The study of algorithms for decision tree construction was initiated in 1960s. The first algorithms are based on the separation heuristic [13, 31] that at each step tries dividing the set of objects as evenly as possible. Later Garey and Graham [28] showed that such algorithm may construct decision trees whose average depth is arbitrarily far from the minimum. Hyafil and Rivest in [35] proved NP-hardness of DT problem that is constructing a tree with the minimum average depth for a diagnostic problem over 2-valued information system and uniform probability distribution. Cox et al. in [22] showed that for a two-class problem over information system, even finding the root node attribute for an optimal tree is an NP-hard problem. © Springer-Verlag Berlin Heidelberg 2011.

  13. Interpreting CNNs via Decision Trees

    OpenAIRE

    Zhang, Quanshi; Yang, Yu; Wu, Ying Nian; Zhu, Song-Chun

    2018-01-01

    This paper presents a method to learn a decision tree to quantitatively explain the logic of each prediction of a pre-trained convolutional neural networks (CNNs). Our method boosts the following two aspects of network interpretability. 1) In the CNN, each filter in a high conv-layer must represent a specific object part, instead of describing mixed patterns without clear meanings. 2) People can explain each specific prediction made by the CNN at the semantic level using a decision tree, i.e....

  14. Decision tree modeling using R.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  15. Method of reliability allocation based on fault tree analysis and fuzzy math in nuclear power plants

    International Nuclear Information System (INIS)

    Chen Zhaobing; Deng Jian; Cao Xuewu

    2005-01-01

    Reliability allocation is a kind of a difficult multi-objective optimization problem. It can not only be applied to determine the reliability characteristic of reactor systems, subsystem and main components but also be performed to improve the design, operation and maintenance of nuclear plants. The fuzzy math known as one of the powerful tools for fuzzy optimization and the fault analysis deemed to be one of the effective methods of reliability analysis can be applied to the reliability allocation model so as to work out the problems of fuzzy characteristic of some factors and subsystem's choice respectively in this paper. Thus we develop a failure rate allocation model on the basis of the fault tree analysis and fuzzy math. For the choice of the reliability constraint factors, we choose the six important ones according to practical need for conducting the reliability allocation. The subsystem selected by the top-level fault tree analysis is to avoid allocating reliability for all the equipment and components including the unnecessary parts. During the reliability process, some factors can be calculated or measured quantitatively while others only can be assessed qualitatively by the expert rating method. So we adopt fuzzy decision and dualistic contrast to realize the reliability allocation with the help of fault tree analysis. Finally the example of the emergency diesel generator's reliability allocation is used to illustrate reliability allocation model and improve this model simple and applicable. (authors)

  16. Tree of fuzzy shortest paths with the highest quality

    Directory of Open Access Journals (Sweden)

    Esmaile Keshavarz

    2010-03-01

    Full Text Available In this paper we present a network with a finite set of nodes and a set of imprecise arc lengths (costs instead of real numbers. The imprecise lengths (costs are modeled as fuzzy intervals with increasing membership functions (based on the quality, whereas the total cost of the shortest paths is a fuzzy interval with a decreasing linear membership function. To obtain a tree of fuzzy shortest paths from a source node to all other nodes, an algorithm is developed. By the max-min criterion suggested by Bellman and Zadeh, the fuzzy shortest path (with highest quality problem can be treated as a mixed integer nonlinear programming problem. We show that this problem can be simplified into a bi-level programming problem that is easily solvable. An efficient algorithm, based on the parametricshortest path, is proposed for solving the bi-level programming problem. An illustrative example is also included to demonstrate our proposed algorithm.

  17. A multi-criteria decision-making approach that combines fuzzy TOPSIS and DEA methodologies

    Directory of Open Access Journals (Sweden)

    Taylan, Osman

    2014-11-01

    Full Text Available Employee selection is a multi-criteria decision-making (MCDM problem for selecting suitable applicants from a ready pool. The selection aims to make use of their knowledge, relevant skills, and other characteristics to perform a specific job. The aim of this study is to develop a systematic approach for selecting the best candidates among the air traffic controllers (ATCs for aviation in Saudi Arabia. Three integrated methods were employed for decision-making in this study. First, a fuzzy decision tree was applied to determine the criteria weights, then the fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS was employed to rank the attributes. In the last step, the Data Envelopment Analysis (DEA was used to transform the qualitative variables into quantitative equivalences. A survey was conducted by national and international decision- makers to elicit the necessary information on the criteria and sub-criteria of the air traffic control system. The decision problem was formulated by employing five criteria and ten applicants. The relationship between the fuzzy TOPSIS and fuzzy-weighted average was very positive for decision-making. The outcomes of the fuzzy TOPSIS and DEA encouraged the development of a decision support system for the selection of ATCs.

  18. A composition theorem for decision tree complexity

    OpenAIRE

    Montanaro, Ashley

    2013-01-01

    We completely characterise the complexity in the decision tree model of computing composite relations of the form h = g(f^1,...,f^n), where each relation f^i is boolean-valued. Immediate corollaries include a direct sum theorem for decision tree complexity and a tight characterisation of the decision tree complexity of iterated boolean functions.

  19. Rough Set Approach to Approximation Reduction in Ordered Decision Table with Fuzzy Decision

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2011-01-01

    Full Text Available In practice, some of information systems are based on dominance relations, and values of decision attribute are fuzzy. So, it is meaningful to study attribute reductions in ordered decision tables with fuzzy decision. In this paper, upper and lower approximation reductions are proposed in this kind of complicated decision table, respectively. Some important properties are discussed. The judgement theorems and discernibility matrices associated with two reductions are obtained from which the theory of attribute reductions is provided in ordered decision tables with fuzzy decision. Moreover, rough set approach to upper and lower approximation reductions is presented in ordered decision tables with fuzzy decision as well. An example illustrates the validity of the approach, and results show that it is an efficient tool for knowledge discovery in ordered decision tables with fuzzy decision.

  20. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor

    2016-07-28

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.

  1. Meta-learning in decision tree induction

    CERN Document Server

    Grąbczewski, Krzysztof

    2014-01-01

    The book focuses on different variants of decision tree induction but also describes  the meta-learning approach in general which is applicable to other types of machine learning algorithms. The book discusses different variants of decision tree induction and represents a useful source of information to readers wishing to review some of the techniques used in decision tree learning, as well as different ensemble methods that involve decision trees. It is shown that the knowledge of different components used within decision tree learning needs to be systematized to enable the system to generate and evaluate different variants of machine learning algorithms with the aim of identifying the top-most performers or potentially the best one. A unified view of decision tree learning enables to emulate different decision tree algorithms simply by setting certain parameters. As meta-learning requires running many different processes with the aim of obtaining performance results, a detailed description of the experimen...

  2. Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry; Sony Tjahyani, D.T.; Ekariansyah, Andi Sofrany; Tjahjono, Hendro

    2015-01-01

    Highlights: • Fuzzy probability based fault tree analysis is to evaluate epistemic uncertainty in fuzzy fault tree analysis. • Fuzzy probabilities represent likelihood occurrences of all events in a fault tree. • A fuzzy multiplication rule quantifies epistemic uncertainty of minimal cut sets. • A fuzzy complement rule estimate epistemic uncertainty of the top event. • The proposed FPFTA has successfully evaluated the U.S. Combustion Engineering RPS. - Abstract: A number of fuzzy fault tree analysis approaches, which integrate fuzzy concepts into the quantitative phase of conventional fault tree analysis, have been proposed to study reliabilities of engineering systems. Those new approaches apply expert judgments to overcome the limitation of the conventional fault tree analysis when basic events do not have probability distributions. Since expert judgments might come with epistemic uncertainty, it is important to quantify the overall uncertainties of the fuzzy fault tree analysis. Monte Carlo simulation is commonly used to quantify the overall uncertainties of conventional fault tree analysis. However, since Monte Carlo simulation is based on probability distribution, this technique is not appropriate for fuzzy fault tree analysis, which is based on fuzzy probabilities. The objective of this study is to develop a fuzzy probability based fault tree analysis to overcome the limitation of fuzzy fault tree analysis. To demonstrate the applicability of the proposed approach, a case study is performed and its results are then compared to the results analyzed by a conventional fault tree analysis. The results confirm that the proposed fuzzy probability based fault tree analysis is feasible to propagate and quantify epistemic uncertainties in fault tree analysis

  3. Geo-Spatial Tactical Decision Aid Systems: Fuzzy Logic for Supporting Decision Making

    National Research Council Canada - National Science Library

    Grasso, Raffaele; Giannecchini, Simone

    2006-01-01

    .... This paper describes a tactical decision aid system based on fuzzy logic reasoning for data fusion and on current Open Geospatial Consortium specifications for interoperability, data dissemination...

  4. Fuzzy-like multiple objective multistage decision making

    CERN Document Server

    Xu, Jiuping

    2014-01-01

    Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like un...

  5. Representing Boolean Functions by Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms, and in some cases it is more compact than values table or even the formula [44]. Representing a function in the form of decision tree allows applying graph algorithms for various transformations [10]. Decision trees and branching programs are used for effective hardware [15] and software [5] implementation of functions. For the implementation to be effective, the function representation should have minimal time and space complexity. The average depth of decision tree characterizes the expected computing time, and the number of nodes in branching program characterizes the number of functional elements required for implementation. Often these two criteria are incompatible, i.e. there is no solution that is optimal on both time and space complexity. © Springer-Verlag Berlin Heidelberg 2011.

  6. VC-dimension of univariate decision trees.

    Science.gov (United States)

    Yildiz, Olcay Taner

    2015-02-01

    In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.

  7. Fuzzy multiple objective decision making methods and applications

    CERN Document Server

    Lai, Young-Jou

    1994-01-01

    In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory, artificial intelligence/expert system, etc. In this volume, methods and applications of crisp, fuzzy and possibilistic multiple objective decision making are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, it presents solutions for real-world problems including production/manufacturing, location, logistics, environment management, banking/finance, personnel, marketing, accounting, agriculture economics and data analysis. This book is a guided tour through the literature in the rapidly growing fields of operations research and decision making and includes the most up-to-date bibliographical listing of literature on the topi...

  8. Superiority of Classification Tree versus Cluster, Fuzzy and Discriminant Models in a Heartbeat Classification System.

    Directory of Open Access Journals (Sweden)

    Vessela Krasteva

    Full Text Available This study presents a 2-stage heartbeat classifier of supraventricular (SVB and ventricular (VB beats. Stage 1 makes computationally-efficient classification of SVB-beats, using simple correlation threshold criterion for finding close match with a predominant normal (reference beat template. The non-matched beats are next subjected to measurement of 20 basic features, tracking the beat and reference template morphology and RR-variability for subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are compared: cluster, fuzzy, linear discriminant analysis (LDA and classification tree (CT, all subjected to iterative training for selection of the optimal feature space among extended 210-sized set, embodying interactive second-order effects between 20 independent features. The optimization process minimizes at equal weight the false positives in SVB-class and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supraventricular Arrhythmia databases found the best performance settings of all classification models: Cluster (30 features, Fuzzy (72 features, LDA (142 coefficients, CT (221 decision nodes with top-3 best scored features: normalized current RR-interval, higher/lower frequency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH Arrhythmia database rates the classifiers in descending order of their specificity for SVB-class: CT (99.9%, LDA (99.6%, Cluster (99.5%, Fuzzy (99.4%; sensitivity for ventricular ectopic beats as part from VB-class (commonly reported in published beat-classification studies: CT (96.7%, Fuzzy (94.4%, LDA (94.2%, Cluster (92.4%; positive predictivity: CT (99.2%, Cluster (93.6%, LDA (93.0%, Fuzzy (92.4%. CT has superior accuracy by 0.3-6.8% points, with the advantage for easy model complexity configuration by pruning the tree consisted of easy interpretable 'if-then' rules.

  9. Superiority of Classification Tree versus Cluster, Fuzzy and Discriminant Models in a Heartbeat Classification System.

    Science.gov (United States)

    Krasteva, Vessela; Jekova, Irena; Leber, Remo; Schmid, Ramun; Abächerli, Roger

    2015-01-01

    This study presents a 2-stage heartbeat classifier of supraventricular (SVB) and ventricular (VB) beats. Stage 1 makes computationally-efficient classification of SVB-beats, using simple correlation threshold criterion for finding close match with a predominant normal (reference) beat template. The non-matched beats are next subjected to measurement of 20 basic features, tracking the beat and reference template morphology and RR-variability for subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are compared: cluster, fuzzy, linear discriminant analysis (LDA) and classification tree (CT), all subjected to iterative training for selection of the optimal feature space among extended 210-sized set, embodying interactive second-order effects between 20 independent features. The optimization process minimizes at equal weight the false positives in SVB-class and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supraventricular Arrhythmia databases found the best performance settings of all classification models: Cluster (30 features), Fuzzy (72 features), LDA (142 coefficients), CT (221 decision nodes) with top-3 best scored features: normalized current RR-interval, higher/lower frequency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH Arrhythmia database rates the classifiers in descending order of their specificity for SVB-class: CT (99.9%), LDA (99.6%), Cluster (99.5%), Fuzzy (99.4%); sensitivity for ventricular ectopic beats as part from VB-class (commonly reported in published beat-classification studies): CT (96.7%), Fuzzy (94.4%), LDA (94.2%), Cluster (92.4%); positive predictivity: CT (99.2%), Cluster (93.6%), LDA (93.0%), Fuzzy (92.4%). CT has superior accuracy by 0.3-6.8% points, with the advantage for easy model complexity configuration by pruning the tree consisted of easy interpretable 'if-then' rules.

  10. River flow modelling using fuzzy decision trees

    NARCIS (Netherlands)

    Han, D.; Cluckie, I. D.; Karbassioun, D.; Lawry, J.; Krauskopf, B.

    2002-01-01

    A modern real time flood forecasting system requires its mathematical model(s) to handle highly complex rainfall runoff processes. Uncertainty in real time flood forecasting will involve a variety of components such as measurement noise from telemetry systems, inadequacy of the models, insufficiency

  11. The decision tree approach to classification

    Science.gov (United States)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  12. Comprehensive decision tree models in bioinformatics.

    Science.gov (United States)

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly

  13. Comprehensive decision tree models in bioinformatics.

    Directory of Open Access Journals (Sweden)

    Gregor Stiglic

    Full Text Available PURPOSE: Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. METHODS: This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. RESULTS: The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. CONCLUSIONS: The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets

  14. Classifiability-based omnivariate decision trees.

    Science.gov (United States)

    Li, Yuanhong; Dong, Ming; Kothari, Ravi

    2005-11-01

    Top-down induction of decision trees is a simple and powerful method of pattern classification. In a decision tree, each node partitions the available patterns into two or more sets. New nodes are created to handle each of the resulting partitions and the process continues. A node is considered terminal if it satisfies some stopping criteria (for example, purity, i.e., all patterns at the node are from a single class). Decision trees may be univariate, linear multivariate, or nonlinear multivariate depending on whether a single attribute, a linear function of all the attributes, or a nonlinear function of all the attributes is used for the partitioning at each node of the decision tree. Though nonlinear multivariate decision trees are the most powerful, they are more susceptible to the risks of overfitting. In this paper, we propose to perform model selection at each decision node to build omnivariate decision trees. The model selection is done using a novel classifiability measure that captures the possible sources of misclassification with relative ease and is able to accurately reflect the complexity of the subproblem at each node. The proposed approach is fast and does not suffer from as high a computational burden as that incurred by typical model selection algorithms. Empirical results over 26 data sets indicate that our approach is faster and achieves better classification accuracy compared to statistical model select algorithms.

  15. Permutation based decision making under fuzzy environment using Tabu search

    Directory of Open Access Journals (Sweden)

    Mahdi Bashiri

    2012-04-01

    Full Text Available One of the techniques, which are used for Multiple Criteria Decision Making (MCDM is the permutation. In the classical form of permutation, it is assumed that weights and decision matrix components are crisp. However, when group decision making is under consideration and decision makers could not agree on a crisp value for weights and decision matrix components, fuzzy numbers should be used. In this article, the fuzzy permutation technique for MCDM problems has been explained. The main deficiency of permutation is its big computational time, so a Tabu Search (TS based algorithm has been proposed to reduce the computational time. A numerical example has illustrated the proposed approach clearly. Then, some benchmark instances extracted from literature are solved by proposed TS. The analyses of the results show the proper performance of the proposed method.

  16. PRIA 3 Fee Determination Decision Tree

    Science.gov (United States)

    The PRIA 3 decision tree will help applicants requesting a pesticide registration or certain tolerance action to accurately identify the category of their application and the amount of the required fee before they submit the application.

  17. RE-Powering’s Electronic Decision Tree

    Science.gov (United States)

    Developed by US EPA's RE-Powering America's Land Initiative, the RE-Powering Decision Trees tool guides interested parties through a process to screen sites for their suitability for solar photovoltaics or wind installations

  18. Speech Recognition Using Randomized Relational Decision Trees

    National Research Council Canada - National Science Library

    Amit, Yali

    1999-01-01

    .... This implies that we recognize words as units, without recognizing their subcomponents. Multiple randomized decision trees are used to access the large pool of acoustic events in a systematic manner and are aggregated to produce the classifier.

  19. Solar and Wind Site Screening Decision Trees

    Science.gov (United States)

    EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.

  20. A survey of decision tree classifier methodology

    Science.gov (United States)

    Safavian, S. R.; Landgrebe, David

    1991-01-01

    Decision tree classifiers (DTCs) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps the most important feature of DTCs is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issues. After considering potential advantages of DTCs over single-state classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  1. Parallel object-oriented decision tree system

    Science.gov (United States)

    Kamath,; Chandrika, Cantu-Paz [Dublin, CA; Erick, [Oakland, CA

    2006-02-28

    A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.

  2. Analysis of event tree with imprecise inputs by fuzzy set theory

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Chun, Moon Hyun

    1990-01-01

    Fuzzy set theory approach is proposed as a method to analyze event trees with imprecise or linguistic input variables such as 'likely' or 'improbable' instead of the numerical probability. In this paper, it is shown how the fuzzy set theory can be applied to the event tree analysis. The result of this study shows that the fuzzy set theory approach can be applied as an acceptable and effective tool for analysis of the event tree with fuzzy type of inputs. Comparisons of the fuzzy theory approach with the probabilistic approach of computing probabilities of final states of the event tree through subjective weighting factors and LHS technique show that the two approaches have common factors and give reasonable results

  3. Fuzzy multiple attribute decision making methods and applications

    CERN Document Server

    Chen, Shu-Jen

    1992-01-01

    This monograph is intended for an advanced undergraduate or graduate course as well as for researchers, who want a compilation of developments in this rapidly growing field of operations research. This is a sequel to our previous works: "Multiple Objective Decision Making--Methods and Applications: A state-of-the-Art Survey" (No.164 of the Lecture Notes); "Multiple Attribute Decision Making--Methods and Applications: A State-of-the-Art Survey" (No.186 of the Lecture Notes); and "Group Decision Making under Multiple Criteria--Methods and Applications" (No.281 of the Lecture Notes). In this monograph, the literature on methods of fuzzy Multiple Attribute Decision Making (MADM) has been reviewed thoroughly and critically, and classified systematically. This study provides readers with a capsule look into the existing methods, their characteristics, and applicability to the analysis of fuzzy MADM problems. The basic concepts and algorithms from the classical MADM methods have been used in the development of the f...

  4. Multicriteria Decision Making Method Based on the Higher Order Hesitant Fuzzy Soft Set.

    Science.gov (United States)

    Farhadinia, B

    2014-01-01

    The main goal of this contribution is to introduce the concept of higher order hesitant fuzzy soft set as an extension of fuzzy soft set that encompasses most of the existing extensions of fuzzy soft set as special cases. Furthermore, this new concept provides us with a method for dealing with multicriteria fuzzy decision making problems which are difficult to explain in other existing extensions of fuzzy soft set theory, especially when problems involve parameters with different-dimensional levels.

  5. Taming Data to Make Decisions: Using a Spatial Fuzzy Logic Decision Support Framework to Inform Conservation and Land Use Planning

    Science.gov (United States)

    Sheehan, T.; Baker, B.; Degagne, R. S.

    2015-12-01

    With the abundance of data sources, analytical methods, and computer models, land managers are faced with the overwhelming task of making sense of a profusion of data of wildly different types. Luckily, fuzzy logic provides a method to work with different types of data using language-based propositions such as "the landscape is undisturbed," and a simple set of logic constructs. Just as many surveys allow different levels of agreement with a proposition, fuzzy logic allows values reflecting different levels of truth for a proposition. Truth levels fall within a continuum ranging from Fully True to Fully False. Hence a fuzzy logic model produces continuous results. The Environmental Evaluation Modeling System (EEMS) is a platform-independent, tree-based, fuzzy logic modeling framework. An EEMS model provides a transparent definition of an evaluation model and is commonly developed as a collaborative effort among managers, scientists, and GIS experts. Managers specify a set of evaluative propositions used to characterize the landscape. Scientists, working with managers, formulate functions that convert raw data values into truth values for the propositions and produce a logic tree to combine results into a single metric used to guide decisions. Managers, scientists, and GIS experts then work together to implement and iteratively tune the logic model and produce final results. We present examples of two successful EEMS projects that provided managers with map-based results suitable for guiding decisions: sensitivity and climate change exposure in Utah and the Colorado Plateau modeled for the Bureau of Land Management; and terrestrial ecological intactness in the Mojave and Sonoran region of southern California modeled for the Desert Renewable Energy Conservation Plan.

  6. Discussion on fuzzy decision making based on fuzzy number and compositional rule of inference

    Directory of Open Access Journals (Sweden)

    Chang Ping-Teng

    2015-01-01

    Full Text Available This paper provides an improved decision making approach based on fuzzy numbers and the compositional rule of inference by Yao and Yao (2001. They claimed to have created a new method that combines statistical methods and fuzzy theory for medical diagnosis. Currently, numerous papers have cited that work. In this study, we show that if we follow their matrix multiplication operation approach, we will obtain the same result as the original method proposed by Klir and Yuan (1995. Owing to a wellknown property of (row stochastic matrices, if the multiplication is closed, the fuzzy and defuzzy procedure of Yao and Yao (2001 is redundant. Therefore, we advise researchers to think twice before applying this approach to medical diagnosis.

  7. Advances In Infection Surveillance and Clinical Decision Support With Fuzzy Sets and Fuzzy Logic.

    Science.gov (United States)

    Koller, Walter; de Bruin, Jeroen S; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2015-01-01

    By the use of extended intelligent information technology tools for fully automated healthcare-associated infection (HAI) surveillance, clinicians can be informed and alerted about the emergence of infection-related conditions in their patients. Moni--a system for monitoring nosocomial infections in intensive care units for adult and neonatal patients--employs knowledge bases that were written with extensive use of fuzzy sets and fuzzy logic, allowing the inherent un-sharpness of clinical terms and the inherent uncertainty of clinical conclusions to be a part of Moni's output. Thus, linguistic as well as propositional uncertainty became a part of Moni, which can now report retrospectively on HAIs according to traditional crisp HAI surveillance definitions, as well as support clinical bedside work by more complex crisp and fuzzy alerts and reminders. This improved approach can bridge the gap between classical retrospective surveillance of HAIs and ongoing prospective clinical-decision-oriented HAI support.

  8. Fast Image Texture Classification Using Decision Trees

    Science.gov (United States)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  9. FUZZY DECISION ANALYSIS FOR INTEGRATED ENVIRONMENTAL VULNERABILITY ASSESSMENT OF THE MID-ATLANTIC REGION

    Science.gov (United States)

    A fuzzy decision analysis method for integrating ecological indicators is developed. This is a combination of a fuzzy ranking method and the Analytic Hierarchy Process (AHP). The method is capable ranking ecosystems in terms of environmental conditions and suggesting cumula...

  10. Algorithms for optimal dyadic decision trees

    Energy Technology Data Exchange (ETDEWEB)

    Hush, Don [Los Alamos National Laboratory; Porter, Reid [Los Alamos National Laboratory

    2009-01-01

    A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.

  11. Minimization of Decision Tree Average Depth for Decision Tables with Many-valued Decisions

    KAUST Repository

    Azad, Mohammad

    2014-09-13

    The paper is devoted to the analysis of greedy algorithms for the minimization of average depth of decision trees for decision tables such that each row is labeled with a set of decisions. The goal is to find one decision from the set of decisions. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of average depth of decision trees.

  12. Supplier Selection Group Decision Making in Logistics Service Value Cocreation Based on Intuitionistic Fuzzy Sets

    Directory of Open Access Journals (Sweden)

    Qifeng Wang

    2015-01-01

    Full Text Available Intuitionistic fuzzy information aggregation plays an important role in intuitionistic fuzzy set theory and is widely used in group decision making. In this paper, an induced intuitionistic fuzzy Einstein hybrid aggregation operator (I-IFEHA is investigated for supplier selection group decision making in logistics service value cocreation based on fuzzy measures. We first introduce some aggregation operators and Einstein operations on intuitionistic fuzzy sets and develop a new induced intuitionistic fuzzy Einstein hybrid aggregation operator to accommodate the environment in which the given arguments are intuitionistic fuzzy values. Then, we study the supplier selection group decision model in logistics service value cocreation based on intuitionistic fuzzy sets with the I-IFEHA operator. Finally, an example of 3PL supplier selection in logistics service value cocreation environment is given to verify the developed approach and to demonstrate the effectiveness of the developed approach.

  13. IND - THE IND DECISION TREE PACKAGE

    Science.gov (United States)

    Buntine, W.

    1994-01-01

    A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The

  14. Intuitionistic Fuzzy Soft Rough Set and Its Application in Decision Making

    Directory of Open Access Journals (Sweden)

    Haidong Zhang

    2014-01-01

    Full Text Available The soft set theory, originally proposed by Molodtsov, can be used as a general mathematical tool for dealing with uncertainty. In this paper, we present concepts of soft rough intuitionistic fuzzy sets and intuitionistic fuzzy soft rough sets, and investigate some properties of soft rough intuitionistic fuzzy sets and intuitionistic fuzzy soft rough sets in detail. Furthermore, classical representations of intuitionistic fuzzy soft rough approximation operators are presented. Finally, we develop an approach to intuitionistic fuzzy soft rough sets based on decision making and a numerical example is provided to illustrate the developed approach.

  15. Ship Hull Principal Dimensions Optimization Employing Fuzzy Decision-Making Theory

    OpenAIRE

    Jianping, Chen; Jie, Xu; You, Gong; Li, Xu

    2016-01-01

    The paper presents an optimization method for the ship hull principal dimensions scheme employing the fuzzy decision-making theory. First of all, the paper establishes the fuzzy decision-making model of the ship hull principal dimensions optimization, and then a series of ship hull principal dimensions schemes are accordingly constructed by employing the variable value method. On the basis of this, the fuzzy decision-making method is employed to evaluate the series ship hull principal dimensi...

  16. Developing a Software for Fuzzy Group Decision Support System: A Case Study

    Science.gov (United States)

    Baba, A. Fevzi; Kuscu, Dincer; Han, Kerem

    2009-01-01

    The complex nature and uncertain information in social problems required the emergence of fuzzy decision support systems in social areas. In this paper, we developed user-friendly Fuzzy Group Decision Support Systems (FGDSS) software. The software can be used for multi-purpose decision making processes. It helps the users determine the main and…

  17. Multicriteria group decision making by using trapezoidal valued hesitant fuzzy sets.

    Science.gov (United States)

    Rashid, Tabasam; Husnine, Syed Muhammad

    2014-01-01

    The concept of trapezoidal valued hesitant fuzzy set is introduced. Notion for distance between any two trapezoidal valued hesitant fuzzy elements is given. Using this proposed distance measure, we extend the technique for order preference by similarity to ideal solution for trapezoidal valued hesitant fuzzy sets. An example is constructed to show usefulness of this extension for multicriteria group decision making, where the opinions about the criteria values are expressed as trapezoidal valued hesitant fuzzy set.

  18. Landslide susceptibility mapping of a landside-prone area from Turkey by decision tree analysis

    Science.gov (United States)

    Gorum, Tolga; Celal Tunusluoglu, M.; Sezer, Ebru; Nefeslioglu, Hakan A.; Bozkir, A. Selman; Gokceoglu, Candan

    2010-05-01

    The landslides are accepted as one of the important natural hazards throughout the world. Besides, the regional landslide susceptibility assessments is one of the first stages of the landslide hazard mitigation efforts. For this purpose, various methods have been applied to produce landslide susceptibility maps for many years. However, application of decision tree to landslide susceptibility mapping, one of data mining methods, is not common. Considering this lack in the landslide literature,an application of decision tree method to landslide susceptibility mapping is the main purpose of the present study. As the study area, the Inegol region (Northwestern Turkey) is selected. In the first stage of the study, a landslide inventory is produced by aerial-photo interpretations and field studies. Employing 16 topographic and lithologic variables, the landslide susceptibility analyses are performed by decision tree method. The AUC (Area Under Curve) values for ROC (Receiver-Operating Characteristics) curves are calculated as 0.942 for the landslide susceptibility model obtained from the decision tree analysis. According to the AUC values, the decision tree analysis presents a considerable performance. As a result of the present study, it may be concluded that the decision tree method presents promising results for the regional landslide susceptibility assessment. However, the technique should be studied for different landslide-prone areas and compared with other prediction techniques such as logistic regression, artificial neural networks, fuzzy approaches, etc.

  19. Safety validation of decision trees for hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Xian-Qiang; Liu, Zhe; Lv, Wen-Ping; Luo, Ying; Yang, Guang-Yun; Li, Chong-Hui; Meng, Xiang-Fei; Liu, Yang; Xu, Ke-Sen; Dong, Jia-Hong

    2015-08-21

    To evaluate a different decision tree for safe liver resection and verify its efficiency. A total of 2457 patients underwent hepatic resection between January 2004 and December 2010 at the Chinese PLA General Hospital, and 634 hepatocellular carcinoma (HCC) patients were eligible for the final analyses. Post-hepatectomy liver failure (PHLF) was identified by the association of prothrombin time 50 μmol/L (the "50-50" criteria), which were assessed at day 5 postoperatively or later. The Swiss-Clavien decision tree, Tokyo University-Makuuchi decision tree, and Chinese consensus decision tree were adopted to divide patients into two groups based on those decision trees in sequence, and the PHLF rates were recorded. The overall mortality and PHLF rate were 0.16% and 3.0%. A total of 19 patients experienced PHLF. The numbers of patients to whom the Swiss-Clavien, Tokyo University-Makuuchi, and Chinese consensus decision trees were applied were 581, 573, and 622, and the PHLF rates were 2.75%, 2.62%, and 2.73%, respectively. Significantly more cases satisfied the Chinese consensus decision tree than the Swiss-Clavien decision tree and Tokyo University-Makuuchi decision tree (P decision trees. The Chinese consensus decision tree expands the indications for hepatic resection for HCC patients and does not increase the PHLF rate compared to the Swiss-Clavien and Tokyo University-Makuuchi decision trees. It would be a safe and effective algorithm for hepatectomy in patients with hepatocellular carcinoma.

  20. CUDT: A CUDA Based Decision Tree Algorithm

    Directory of Open Access Journals (Sweden)

    Win-Tsung Lo

    2014-01-01

    Full Text Available Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture, which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.

  1. Venture Capital Investment Selection Decision-making Base on Fuzzy Theory

    Science.gov (United States)

    Zhang, Xubo

    Venture capital investment decision-making is the most important issue in venture capital investment selection. There are higher uncertainty and complexity in venture capital investment decision-making process. This paper analysis these uncertain risk in venture capital investment decision-making base the previous studies. Attributed the venture capital candidate firms' select to fuzzy optimal decision-making. Build a risk-weight fuzzy optimal return model to avoid the decision-making risk. Get the optimal solution set.

  2. Pricing and Remanufacturing Decisions of a Decentralized Fuzzy Supply Chain

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2013-01-01

    costs, and the collecting scaling parameters of the two retailers. The purpose of this paper is to explore how the manufacturer and the two retailers make their own decisions about wholesale price, retail prices, and the remanufacturing rates in the expected value model. Using game theory and fuzzy theory, we examine each firm’s strategy and explore the role of the manufacturer and the two retailers over three different game scenarios. We get some insights into the economic behavior of firms, which can serve as the basis for empirical study in the future.

  3. Fuzzy-valued linguistic soft set theory and multi-attribute decision-making application

    International Nuclear Information System (INIS)

    Aiwu, Zhao; Hongjun, Guan

    2016-01-01

    In this work, we propose the theory of fuzzy linguistic soft set (FLSS) to represent the uncertainty and multi-angle of view when decision makers evaluate an object during decision-making. FLSS integrates fuzzy set theory, linguistic variable and soft set theory. It allows decision makers to utilize linguistic variables to evaluate an object and utilize fuzzy values to describe the corresponding grade of their support of their decisions. Meanwhile, because of the flexibility of soft set, decision makers can use more than one pair of fuzzy-linguistic evaluations to express their opinions from multiple perspectives directly, if necessary. Therefore, it is more flexible and practical than traditional fuzzy set or 2-dimension uncertainty linguistic variable. We also develop a generalized weighted aggregation operator for FLSSs to solve corresponding decision-making issues. Finally, we give a numerical example to verify the practicality and effectiveness of the proposed method.

  4. Hesitant fuzzy soft sets with application in multicriteria group decision making problems.

    Science.gov (United States)

    Wang, Jian-qiang; Li, Xin-E; Chen, Xiao-hong

    2015-01-01

    Soft sets have been regarded as a useful mathematical tool to deal with uncertainty. In recent years, many scholars have shown an intense interest in soft sets and extended standard soft sets to intuitionistic fuzzy soft sets, interval-valued fuzzy soft sets, and generalized fuzzy soft sets. In this paper, hesitant fuzzy soft sets are defined by combining fuzzy soft sets with hesitant fuzzy sets. And some operations on hesitant fuzzy soft sets based on Archimedean t-norm and Archimedean t-conorm are defined. Besides, four aggregation operations, such as the HFSWA, HFSWG, GHFSWA, and GHFSWG operators, are given. Based on these operators, a multicriteria group decision making approach with hesitant fuzzy soft sets is also proposed. To demonstrate its accuracy and applicability, this approach is finally employed to calculate a numerical example.

  5. Intuitionistic Trapezoidal Fuzzy Multiple Criteria Group Decision Making Method Based on Binary Relation

    OpenAIRE

    Zhang, Liyuan; Li, Tao; Xu, Xuanhua

    2014-01-01

    The aim of this paper is to develop a methodology for intuitionistic trapezoidal fuzzy multiple criteria group decision making problems based on binary relation. Firstly, the similarity measure between two vectors based on binary relation is defined, which can be utilized to aggregate preference information. Some desirable properties of the similarity measure based on fuzzy binary relation are also studied. Then, a methodology for fuzzy multiple criteria group decision making is proposed, in ...

  6. The fuzzy cross-entropy for intuitionistic hesitant fuzzy sets and their application in multi-criteria decision-making

    Science.gov (United States)

    Peng, Juan-juan; Wang, Jian-qiang; Wu, Xiao-hui; Zhang, Hong-yu; Chen, Xiao-hong

    2015-10-01

    In this paper, the cross-entropy of intuitionistic hesitant fuzzy sets (IHFSs) is developed by integrating the cross-entropy of intuitionistic fuzzy sets (IFSs) and hesitant fuzzy sets (HFSs). First, several measurement formulae are discussed and their properties are studied. Then, two approaches, which are based on the developed intuitionistic hesitant fuzzy cross-entropy, are proposed for solving multi-criteria decision-making (MCDM) problems within an intuitionistic hesitant fuzzy environment. For both methods, an optimisation model is established in order to determine the weight vector for MCDM problems with incomplete information on criteria weights. Finally, an example is provided in order to illustrate the practicality and effectiveness of the proposed approaches.

  7. FDMS with Q-Learning: A Neuro-Fuzzy Approach to Partially Observable Markov Decision Problems

    Directory of Open Access Journals (Sweden)

    Levent Akin

    2008-11-01

    Full Text Available Finding optimal solutions to Partially Observable Markov Decision Problems is known to be NP-hard. This paper describes a novel neuro-fuzzy approach to obtain fast, robust and easily interpreted solutions by utilizing a combination of several learning techniques including neural networks, fuzzy decision making and Q-learning.

  8. FDMS with Q-Learning: A Neuro-Fuzzy Approach to Partially Observable Markov Decision Problems

    OpenAIRE

    Toygar Karadeniz; Levent Akin

    2004-01-01

    Finding optimal solutions to Partially Observable Markov Decision Problems is known to be NP-hard. This paper describes a novel neuro-fuzzy approach to obtain fast, robust and easily interpreted solutions by utilizing a combination of several learning techniques including neural networks, fuzzy decision making and Q-learning.

  9. FDMS with Q-Learning: A Neuro-Fuzzy Approach to Partially Observable Markov Decision Problems

    Directory of Open Access Journals (Sweden)

    Toygar Karadeniz

    2004-12-01

    Full Text Available Finding optimal solutions to Partially Observable Markov Decision Problems is known to be NP-hard. This paper describes a novel neuro-fuzzy approach to obtain fast, robust and easily interpreted solutions by utilizing a combination of several learning techniques including neural networks, fuzzy decision making and Q-learning.

  10. The Decision Tree: A Tool for Achieving Behavioral Change.

    Science.gov (United States)

    Saren, Dru

    1999-01-01

    Presents a "Decision Tree" process for structuring team decision making and problem solving about specific student behavioral goals. The Decision Tree involves a sequence of questions/decisions that can be answered in "yes/no" terms. Questions address reasonableness of the goal, time factors, importance of the goal, responsibilities, safety,…

  11. Fuzzy Logic Approaches to Multi-Objective Decision-Making in Aerospace Applications

    Science.gov (United States)

    Hardy, Terry L.

    1994-01-01

    Fuzzy logic allows for the quantitative representation of multi-objective decision-making problems which have vague or fuzzy objectives and parameters. As such, fuzzy logic approaches are well-suited to situations where alternatives must be assessed by using criteria that are subjective and of unequal importance. This paper presents an overview of fuzzy logic and provides sample applications from the aerospace industry. Applications include an evaluation of vendor proposals, an analysis of future space vehicle options, and the selection of a future space propulsion system. On the basis of the results provided in this study, fuzzy logic provides a unique perspective on the decision-making process, allowing the evaluator to assess the degree to which each option meets the evaluation criteria. Future decision-making should take full advantage of fuzzy logic methods to complement existing approaches in the selection of alternatives.

  12. Shopping intention prediction using decision trees

    Directory of Open Access Journals (Sweden)

    Dario Šebalj

    2017-09-01

    Full Text Available Introduction: The price is considered to be neglected marketing mix element due to the complexity of price management and sensitivity of customers on price changes. It pulls the fastest customer reactions to that change. Accordingly, the process of making shopping decisions can be very challenging for customer. Objective: The aim of this paper is to create a model that is able to predict shopping intention and classify respondents into one of the two categories, depending on whether they intend to shop or not. Methods: Data sample consists of 305 respondents, who are persons older than 18 years involved in buying groceries for their household. The research was conducted in February 2017. In order to create a model, the decision trees method was used with its several classification algorithms. Results: All models, except the one that used RandomTree algorithm, achieved relatively high classification rate (over the 80%. The highest classification accuracy of 84.75% gave J48 and RandomForest algorithms. Since there is no statistically significant difference between those two algorithms, authors decided to choose J48 algorithm and build a decision tree. Conclusions: The value for money and price level in the store were the most significant variables for classification of shopping intention. Future study plans to compare this model with some other data mining techniques, such as neural networks or support vector machines since these techniques achieved very good accuracy in some previous research in this field.

  13. Quasar Identification and Classification with Decision Trees

    Science.gov (United States)

    Spinka, T.; Carpenter, T.; Brunner, R. J.; Aydt, R.; Auvil, L.; Redman, T.; Tcheng, D.

    2003-12-01

    The massive amounts of data flooding into the astronomy field hold many answers to important problems in contemporary astrophysics. The biggest problem is sifting through massive amounts of data to uncover these secrets. In this presentation, we identify an approach in which we apply data-mining techniques to the problem of photometric quasar identification. We employ decision trees to quickly and robustly identify potential quasars to a high degree of accuracy. We emphasize computational scalability due to the high volume of data and complexity of the data-mining algorithms.

  14. Decision trees with minimum average depth for sorting eight elements

    KAUST Repository

    AbouEisha, Hassan M.

    2015-11-19

    We prove that the minimum average depth of a decision tree for sorting 8 pairwise different elements is equal to 620160/8!. We show also that each decision tree for sorting 8 elements, which has minimum average depth (the number of such trees is approximately equal to 8.548×10^326365), has also minimum depth. Both problems were considered by Knuth (1998). To obtain these results, we use tools based on extensions of dynamic programming which allow us to make sequential optimization of decision trees relative to depth and average depth, and to count the number of decision trees with minimum average depth.

  15. Extended VIKOR Method for Intuitionistic Fuzzy Multiattribute Decision-Making Based on a New Distance Measure

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2017-01-01

    Full Text Available An intuitionistic fuzzy VIKOR (IF-VIKOR method is proposed based on a new distance measure considering the waver of intuitionistic fuzzy information. The method aggregates all individual decision-makers’ assessment information based on intuitionistic fuzzy weighted averaging operator (IFWA, determines the weights of decision-makers and attributes objectively using intuitionistic fuzzy entropy, calculates the group utility and individual regret by the new distance measure, and then reaches a compromise solution. It can be effectively applied to multiattribute decision-making (MADM problems where the weights of decision-makers and attributes are completely unknown and the attribute values are intuitionistic fuzzy numbers (IFNs. The validity and stability of this method are verified by example analysis and sensitivity analysis, and its superiority is illustrated by the comparison with the existing method.

  16. Multiple Attribute Decision Making Based on Hesitant Fuzzy Einstein Geometric Aggregation Operators

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhou

    2014-01-01

    Full Text Available We first define an accuracy function of hesitant fuzzy elements (HFEs and develop a new method to compare two HFEs. Then, based on Einstein operators, we give some new operational laws on HFEs and some desirable properties of these operations. We also develop several new hesitant fuzzy aggregation operators, including the hesitant fuzzy Einstein weighted geometric (HFEWGε operator and the hesitant fuzzy Einstein ordered weighted geometric (HFEWGε operator, which are the extensions of the weighted geometric operator and the ordered weighted geometric (OWG operator with hesitant fuzzy information, respectively. Furthermore, we establish the connections between the proposed and the existing hesitant fuzzy aggregation operators and discuss various properties of the proposed operators. Finally, we apply the HFEWGε operator to solve the hesitant fuzzy decision making problems.

  17. Advances in fuzzy decision making theory and practice

    CERN Document Server

    Skalna, Iwona; Gaweł, Bartłomiej; Basiura, Beata; Duda, Jerzy; Opiła, Janusz; Pełech-Pilichowski, Tomasz

    2015-01-01

    This book shows how common operation management methods and algorithms can be extended to deal with vague or imprecise information in decision-making problems. It describes how to combine decision trees, clustering, multi-attribute decision-making algorithms and Monte Carlo Simulation with the mathematical description of imprecise or vague information, and how to visualize such information. Moreover, it discusses a broad spectrum of real-life management problems including forecasting the apparent consumption of steel products, planning and scheduling of production processes, project portfolio selection and economic-risk estimation. It is a concise, yet comprehensive, reference source for researchers in decision-making and decision-makers in business organizations alike.

  18. A tool for study of optimal decision trees

    KAUST Repository

    Alkhalid, Abdulaziz

    2010-01-01

    The paper describes a tool which allows us for relatively small decision tables to make consecutive optimization of decision trees relative to various complexity measures such as number of nodes, average depth, and depth, and to find parameters and the number of optimal decision trees. © 2010 Springer-Verlag Berlin Heidelberg.

  19. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.

    Science.gov (United States)

    Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald

    2018-01-01

    Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

  20. Forest fire autonomous decision system based on fuzzy logic

    Science.gov (United States)

    Lei, Z.; Lu, Jianhua

    2010-11-01

    The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.

  1. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions

    KAUST Repository

    Azad, Mohammad

    2017-06-16

    We study problems of optimization of decision and inhibitory trees for decision tables with many-valued decisions. As cost functions, we consider depth, average depth, number of nodes, and number of terminal/nonterminal nodes in trees. Decision tables with many-valued decisions (multi-label decision tables) are often more accurate models for real-life data sets than usual decision tables with single-valued decisions. Inhibitory trees can sometimes capture more information from decision tables than decision trees. In this paper, we create dynamic programming algorithms for multi-stage optimization of trees relative to a sequence of cost functions. We apply these algorithms to prove the existence of totally optimal (simultaneously optimal relative to a number of cost functions) decision and inhibitory trees for some modified decision tables from the UCI Machine Learning Repository.

  2. Ship Hull Principal Dimensions Optimization Employing Fuzzy Decision-Making Theory

    Directory of Open Access Journals (Sweden)

    Chen Jianping

    2016-01-01

    Full Text Available The paper presents an optimization method for the ship hull principal dimensions scheme employing the fuzzy decision-making theory. First of all, the paper establishes the fuzzy decision-making model of the ship hull principal dimensions optimization, and then a series of ship hull principal dimensions schemes are accordingly constructed by employing the variable value method. On the basis of this, the fuzzy decision-making method is employed to evaluate the series ship hull principal dimensions schemes. Finally, the optimal ship hull principal dimensions scheme is obtained. The example demonstration verified the proposed method’s validity for ship hull principal dimensions optimization economic performance.

  3. Study of decision framework of wind farm project plan selection under intuitionistic fuzzy set and fuzzy measure environment

    International Nuclear Information System (INIS)

    Wu, Yunna; Geng, Shuai; Xu, Hu; Zhang, Haobo

    2014-01-01

    Highlights: • Experts’ opinions are expressed by using the intuitionistic fuzzy values. • Fuzzy measure is used to solve the dependence problem of criteria. • The compensatory problem of performance scores is reasonably processed. - Abstract: Project selection plays an important role in the entire life cycle of wind farm project and the multi-criteria decision making (MCDM) methods are very important in the whole wind farm project plan selection process. There are problems in the present MCDM methods decrease evaluation quality of the wind farm project plans: first, the information loss exists in the wind farm project plan evaluation process. Second, it is difficult to satisfy the independent assumption of the multi-criteria decision making methods used in the wind farm project plan evaluation in fact. Third, the compensatory problem of performance scores of the wind farm project plans is processed unreasonably. Hence the innovation points of this paper are as follows: first, the intuitionistic fuzzy numbers are used instead of fuzzy numbers or numerical values to reflect the experts’ intuitive preferences to decrease the probability of information loss; second, the fuzzy measure is used to rate the important degrees of criteria in order to avoid the independent assumption and to increase the reasonability; third, the partial compensatory problem of performance scores is well processed by using intuitionistic fuzzy Choquet (IFC) operator and generalized intuitionistic fuzzy ordered geometric averaging (GIFOGA) operator. These operators can deal with the compensatory performance scores and non-compensatory performance scores respectively. Finally, a case study demonstrates the effectiveness of decision framework

  4. On algorithm for building of optimal α-decision trees

    KAUST Repository

    Alkhalid, Abdulaziz

    2010-01-01

    The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic programming and extends methods described in [4] to constructing approximate decision trees. Adjustable approximation rate allows controlling algorithm complexity. The algorithm is applied to build optimal α-decision trees for two data sets from UCI Machine Learning Repository [1]. © 2010 Springer-Verlag Berlin Heidelberg.

  5. Comparison of greedy algorithms for α-decision tree construction

    KAUST Repository

    Alkhalid, Abdulaziz

    2011-01-01

    A comparison among different heuristics that are used by greedy algorithms which constructs approximate decision trees (α-decision trees) is presented. The comparison is conducted using decision tables based on 24 data sets from UCI Machine Learning Repository [2]. Complexity of decision trees is estimated relative to several cost functions: depth, average depth, number of nodes, number of nonterminal nodes, and number of terminal nodes. Costs of trees built by greedy algorithms are compared with minimum costs calculated by an algorithm based on dynamic programming. The results of experiments assign to each cost function a set of potentially good heuristics that minimize it. © 2011 Springer-Verlag.

  6. Automatic design of decision-tree induction algorithms

    CERN Document Server

    Barros, Rodrigo C; Freitas, Alex A

    2015-01-01

    Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning, and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain o

  7. Fuzzy Decision Analysis for Integrated Environmental Vulnerability Assessment of the Mid-Atlantic Region

    Science.gov (United States)

    Liem T. Tran; C. Gregory Knight; Robert V. O' Neill; Elizabeth R. Smith; Kurt H. Riitters; James D. Wickham

    2002-01-01

    A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams,...

  8. A neuro-fuzzy decision support system for the diagnosis of heart failure.

    Science.gov (United States)

    Akinyokun, Charles O; Obot, Okure U; Uzoka, Faith-Michael E; Andy, John J

    2010-01-01

    A neuro-fuzzy decision support system is proposed for the diagnosis of heart failure. The system comprises; knowledge base (database, neural networks and fuzzy logic) of both the quantitative and qualitative knowledge of the diagnosis of heart failure, neuro-fuzzy inference engine and decision support engine. The neural networks employ a multi-layers perception back propagation learning process while the fuzzy logic uses the root sum square inference procedure. The neuro-fuzzy inference engine uses a weighted average of the premise and consequent parameters with the fuzzy rules serving as the nodes and the fuzzy sets representing the weights of the nodes. The decision support engine carries out the cognitive and emotional filtering of the objective and subjective feelings of the medical practitioner. An experimental study of the decision support system was carried out using cases of some patients from three hospitals in Nigeria with the assistance of their medical personnel who collected patients' data over a period of six months. The results of the study show that the neuro-fuzzy system provides a highly reliable diagnosis, while the emotional and cognitive filters further refine the diagnosis results by taking care of the contextual elements of medical diagnosis.

  9. Multiple Attribute Decision-Making Methods Based on Normal Intuitionistic Fuzzy Interaction Aggregation Operators

    Directory of Open Access Journals (Sweden)

    Peide Liu

    2017-11-01

    Full Text Available Normal intuitionistic fuzzy numbers (NIFNs, which combine the normal fuzzy number (NFN with intuitionistic number, can easily express the stochastic fuzzy information existing in real decision making, and power-average (PA operator can consider the relationships of different attributes by assigned weighting vectors which depend upon the input arguments. In this paper, we extended PA operator to process the NIFNs. Firstly, we defined some basic operational rules of NIFNs by considering the interaction operations of intuitionistic fuzzy sets (IFSs, established the distance between two NIFNs, and introduced the comparison method of NIFNs. Then, we proposed some new aggregation operators, including normal intuitionistic fuzzy weighted interaction averaging (NIFWIA operator, normal intuitionistic fuzzy power interaction averaging (NIFPIA operator, normal intuitionistic fuzzy weighted power interaction averaging (NIFWPIA operator, normal intuitionistic fuzzy generalized power interaction averaging (NIFGPIA operator, and normal intuitionistic fuzzy generalized weighted power interaction averaging (NIFGWPIA operator, and studied some properties and some special cases of them. Based on these operators, we developed a decision approach for multiple attribute decision-making (MADM problems with NIFNs. The significant characteristics of the proposed method are that: (1 it is easier to describe the uncertain information than the existing fuzzy sets and stochastic variables; (2 it used the interaction operations in part of IFSs which could overcome the existing weaknesses in operational rules of NIFNs; (3 it adopted PA operator which could relieve the influence of unreasonable data given by biased decision makers; and (4 it made the decision-making results more flexible and reliable because it was with generalized parameter which could be regard as the risk attitude value of decision makers. Finally, an illustrative example is given to verify its feasibility

  10. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

    Science.gov (United States)

    Ernest, Nicholas D.

    Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging

  11. Multimedia medical case retrieval using decision trees.

    Science.gov (United States)

    Quellec, Gwénolé; Lamard, Mathieu; Bekri, Lynda; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian

    2007-01-01

    In this paper, we present a Case Based Reasoning (CBR) system for the retrieval of medical cases made up of a series of images with contextual information (such as the patient age, sex and medical history). Indeed, medical experts generally need varied sources of information (which might be incomplete) to diagnose a pathology. Consequently, we derive a retrieval framework from decision trees, which are well suited to process heterogeneous and incomplete information. To be integrated in the system, images are indexed by their digital content. The method is evaluated on a classified diabetic retinopathy database. On this database, results are promising: the retrieval sensitivity reaches 79.5% for a window of 5 cases, which is almost twice as good as the retrieval of single images alone. As a comparison, the retrieval sensitivity is 52.3% for a standard multimodal case retrieval using a linear combination of heterogeneous distances.

  12. Multimedia medical case retrieval using decision trees

    Science.gov (United States)

    Quellec, Gwénolé; Lamard, Mathieu; Bekri, Lynda; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian

    2007-01-01

    In this paper, we present a Case Based Reasoning (CBR) system for the retrieval of medical cases made up of a series of images with contextual information (such as the patient age, sex and medical history). Indeed, medical experts generally need varied sources of information (which might be incomplete) to diagnose a pathology. Consequently, we derive a retrieval framework from decision trees, which are well suited to process heterogeneous and incomplete information. To be integrated in the system, images are indexed by their digital content. The method is evaluated on a classified diabetic retinopathy database. On this database, results are promising: the retrieval sensitivity reaches 79.5% for a window of 5 cases, which is almost twice as good as the retrieval of single images alone. As a comparison, the retrieval sensitivity is 52.3% for a standard multimodal case retrieval using a linear combination of heterogeneous distances. PMID:18003014

  13. Fuzzy multiple-criteria decision-making approach for industrial green engineering.

    Science.gov (United States)

    Chiou, Hua-kai; Tzeng, Gwo-hshiung

    2002-12-01

    This paper describes a fuzzy hierarchical analytic approach to determine the weighting of subjective judgments. In addition, it presents a nonadditive fuzzy integral technique to evaluate a green engineering industry case as a fuzzy multicriteria decision-making (FMCDM) problem. When the investment strategies are evaluated from various aspects, such as economic effectiveness, technical feasibility, and environmental regulation, it can be regarded as an FMCDM problem. Since stakeholders cannot clearly estimate each considered criterion in terms of numerical values for the anticipated alternatives/strategies, fuzziness is considered to be applicable. Consequently, this paper uses triangular fuzzy numbers to establish weights and anticipated achievement values. By ranking fuzzy weights and fuzzy synthetic utility values, we can determine the relative importance of criteria and decide the best strategies. This paper applies what is called a lambda fuzzy measure and nonadditive fuzzy integral technique to evaluate the synthetic performance of green engineering strategies for aquatic products processors in Taiwan. In addition, we demonstrate that the nonadditive fuzzy integral is an effective evaluation and appears to be appropriate, especially when the criteria are not independent.

  14. Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in process industry.

    Science.gov (United States)

    Yazdi, Mohammad; Korhan, Orhan; Daneshvar, Sahand

    2018-03-20

    This study aimed at establishing fault tree analysis (FTA) using expert opinion to compute the probability of an event. Thus, in order to find the probability of the top event (TE), all probabilities of the basic events (BEs) should be available when FTA is drawn for an event. In this case, employing expert judgment can be used as an alternative to failure data in an awkward situation. The fuzzy analytical hierarchy process (FAHP) as a standard technique is used to give a specific weight to each expert, and fuzzy set theory is engaged for aggregating expert opinion. In this regards, the probability of BEs will be computed and consequently, the probability of TE is obtained using Boolean algebra. Additionally, for the reduction of the probability of TE in terms of three parameter including safety consequences, cost, and benefit; importance measurement technique and modified TOPSIS was employed. The effectiveness of the proposed approach was demonstrated with a real-life case study.

  15. Fuzzy inference game approach to uncertainty in business decisions and market competitions.

    Science.gov (United States)

    Oderanti, Festus Oluseyi

    2013-01-01

    The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments.

  16. Applications of fuzzy decision making for personnel selection problem: A review

    Directory of Open Access Journals (Sweden)

    Afshari Reza Ali

    2014-01-01

    Full Text Available Personnel selection determines the input quality of personnel, therefore, plays a decisive role in human resource management. Personnel selection problem has been studied extensively. Selecting the best personnel among many alternatives is a multi-criteria decision making (MCDM problem. The necessity of dealing with uncertainty in real world problems has been a long-term research challenge that has originated different methodologies and theories. Fuzzy decision making along with their extensions have provided a wide range of tools that are able to deal with uncertainty in different types of problems. Fuzzy decision making methods have become increasingly popular in decision making for personnel selection. Various decision making approaches have been proposed to solve the problem. This paper presents a comprehensive literature review of the applying Fuzzy decision making techniques in personnel selection problem.

  17. Application of the fuzzy topsis multi-attribute decision making method to determine scholarship recipients

    Science.gov (United States)

    Irvanizam, I.

    2018-03-01

    Some scholarships have been routinely offered by Ministry of Research, Technology and Higher Education of the Republic of Indonesia for students at Syiah Kuala University. In reality, the scholarship selection process is becoming subjective and highly complex problem. Multi-Attribute Decision Making (MADM) techniques can be a solution in order to solve scholarship selection problem. In this study, we demonstrated the application of a fuzzy TOPSIS as an MADM technique by using a numerical example in order to calculate a triangular fuzzy number for the fuzzy data onto a normalized weight. We then use this normalized value to construct the normalized fuzzy decision matrix. We finally use the fuzzy TOPSIS to rank alternatives in descending order based on the relative closeness to the ideal solution. The result in terms of final ranking shows slightly different from the previous work.

  18. Relationships for Cost and Uncertainty of Decision Trees

    KAUST Repository

    Chikalov, Igor

    2013-01-01

    This chapter is devoted to the design of new tools for the study of decision trees. These tools are based on dynamic programming approach and need the consideration of subtables of the initial decision table. So this approach is applicable only to relatively small decision tables. The considered tools allow us to compute: 1. Theminimum cost of an approximate decision tree for a given uncertainty value and a cost function. 2. The minimum number of nodes in an exact decision tree whose depth is at most a given value. For the first tool we considered various cost functions such as: depth and average depth of a decision tree and number of nodes (and number of terminal and nonterminal nodes) of a decision tree. The uncertainty of a decision table is equal to the number of unordered pairs of rows with different decisions. The uncertainty of approximate decision tree is equal to the maximum uncertainty of a subtable corresponding to a terminal node of the tree. In addition to the algorithms for such tools we also present experimental results applied to various datasets acquired from UCI ML Repository [4]. © Springer-Verlag Berlin Heidelberg 2013.

  19. Hybrid Multicriteria Group Decision Making Method for Information System Project Selection Based on Intuitionistic Fuzzy Theory

    OpenAIRE

    Guo, Jian

    2013-01-01

    Information system (IS) project selection is of critical importance to every organization in dynamic competing environment. The aim of this paper is to develop a hybrid multicriteria group decision making approach based on intuitionistic fuzzy theory for IS project selection. The decision makers’ assessment information can be expressed in the form of real numbers, interval-valued numbers, linguistic variables, and intuitionistic fuzzy numbers (IFNs). All these evaluation pieces of information...

  20. Greedy algorithm with weights for decision tree construction

    KAUST Repository

    Moshkov, Mikhail

    2010-12-01

    An approximate algorithm for minimization of weighted depth of decision trees is considered. A bound on accuracy of this algorithm is obtained which is unimprovable in general case. Under some natural assumptions on the class NP, the considered algorithm is close (from the point of view of accuracy) to best polynomial approximate algorithms for minimization of weighted depth of decision trees.

  1. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 ...

  2. Ensemble of randomized soft decision trees for robust classification

    Indian Academy of Sciences (India)

    It is found that an ensembleof randomized soft decision trees has outperformed the related existing soft decision tree. Robustness against the presence of noise is shown by injecting various levels of noise into the training set and a comparison is drawnwith other related methods which favors the proposed method.

  3. Decision-Tree Formulation With Order-1 Lateral Execution

    Science.gov (United States)

    James, Mark

    2007-01-01

    A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive

  4. Dual hesitant pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making

    Directory of Open Access Journals (Sweden)

    Wei Guiwu

    2017-09-01

    Full Text Available In this paper, we investigate the multiple attribute decision making (MADM problem based on the Hamacher aggregation operators with dual Pythagorean hesitant fuzzy information. Then, motivated by the ideal of Hamacher operation, we have developed some Hamacher aggregation operators for aggregating dual hesitant Pythagorean fuzzy information. The prominent characteristic of these proposed operators are studied. Then, we have utilized these operators to develop some approaches to solve the dual hesitant Pythagorean fuzzy multiple attribute decision making problems. Finally, a practical example for supplier selection in supply chain management is given to verify the developed approach and to demonstrate its practicality and effectiveness.

  5. Cloud E-Learning Service Strategies for Improving E-Learning Innovation Performance in a Fuzzy Environment by Using a New Hybrid Fuzzy Multiple Attribute Decision-Making Model

    Science.gov (United States)

    Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung

    2016-01-01

    The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…

  6. Computational study of developing high-quality decision trees

    Science.gov (United States)

    Fu, Zhiwei

    2002-03-01

    Recently, decision tree algorithms have been widely used in dealing with data mining problems to find out valuable rules and patterns. However, scalability, accuracy and efficiency are significant concerns regarding how to effectively deal with large and complex data sets in the implementation. In this paper, we propose an innovative machine learning approach (we call our approach GAIT), combining genetic algorithm, statistical sampling, and decision tree, to develop intelligent decision trees that can alleviate some of these problems. We design our computational experiments and run GAIT on three different data sets (namely Socio- Olympic data, Westinghouse data, and FAA data) to test its performance against standard decision tree algorithm, neural network classifier, and statistical discriminant technique, respectively. The computational results show that our approach outperforms standard decision tree algorithm profoundly at lower sampling levels, and achieves significantly better results with less effort than both neural network and discriminant classifiers.

  7. Relationships among various parameters for decision tree optimization

    KAUST Repository

    Hussain, Shahid

    2014-01-14

    In this chapter, we study, in detail, the relationships between various pairs of cost functions and between uncertainty measure and cost functions, for decision tree optimization. We provide new tools (algorithms) to compute relationship functions, as well as provide experimental results on decision tables acquired from UCI ML Repository. The algorithms presented in this paper have already been implemented and are now a part of Dagger, which is a software system for construction/optimization of decision trees and decision rules. The main results presented in this chapter deal with two types of algorithms for computing relationships; first, we discuss the case where we construct approximate decision trees and are interested in relationships between certain cost function, such as depth or number of nodes of a decision trees, and an uncertainty measure, such as misclassification error (accuracy) of decision tree. Secondly, relationships between two different cost functions are discussed, for example, the number of misclassification of a decision tree versus number of nodes in a decision trees. The results of experiments, presented in the chapter, provide further insight. © 2014 Springer International Publishing Switzerland.

  8. Applied Research of Decision Tree Method on Football Training

    Directory of Open Access Journals (Sweden)

    Liu Jinhui

    2015-01-01

    Full Text Available This paper will make an analysis of decision tree at first, and then offer a further analysis of CLS based on it. As CLS contains the most substantial and most primitive decision-making idea, it can provide the basis of decision tree establishment. Due to certain limitation in details, the ID3 decision tree algorithm is introduced to offer more details. It applies information gain as attribute selection metrics to provide reference for seeking the optimal segmentation point. At last, the ID3 algorithm is applied in football training. Verification is made on this algorithm and it has been proved effectively and reasonably.

  9. A Novel Method for Multiattribute Decision Making with Dual Hesitant Fuzzy Triangular Linguistic Information

    Directory of Open Access Journals (Sweden)

    Yanbing Ju

    2014-01-01

    Full Text Available This paper studies the multiattribute decision making (MADM problems in which the attribute values take the form of dual hesitant fuzzy triangular linguistic elements and the weights of attributes take the form of real numbers. Firstly, to solve the situation where the membership degree and the nonmembership degree of an element to a triangular linguistic variable, the concept, operational laws, score function, and accuracy function of dual hesitant fuzzy triangular linguistic elements (DHFTLEs are defined. Then, some dual hesitant fuzzy triangular linguistic geometric aggregation operators are developed for aggregating the DHFTLEs, including dual hesitant fuzzy triangular linguistic weighted geometric (DHFTLWG operator, dual hesitant fuzzy triangular linguistic ordered weighted geometric (DHFTLOWG operator, dual hesitant fuzzy triangular linguistic hybrid geometric (DHFTLHG operator, generalized dual hesitant fuzzy triangular linguistic weighted geometric (GDHFTLWG operator, and generalized dual hesitant fuzzy triangular linguistic ordered weighted geometric (GDHFTLOWG operator. Furthermore, some desirable properties of these operators are investigated in detail. Based on the proposed operators, an approach to MADM with dual hesitant fuzzy triangular linguistic information is proposed. Finally, a numerical example for investment alternative selection is given to illustrate the application of the proposed method.

  10. Minimization of decision tree depth for multi-label decision tables

    KAUST Repository

    Azad, Mohammad

    2014-10-01

    In this paper, we consider multi-label decision tables that have a set of decisions attached to each row. Our goal is to find one decision from the set of decisions for each row by using decision tree as our tool. Considering our target to minimize the depth of the decision tree, we devised various kinds of greedy algorithms as well as dynamic programming algorithm. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of depth of decision trees.

  11. Construction of α-decision trees for tables with many-valued decisions

    KAUST Repository

    Moshkov, Mikhail

    2011-01-01

    The paper is devoted to the study of greedy algorithm for construction of approximate decision trees (α-decision trees). This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. We consider bound on the number of algorithm steps, and bound on the algorithm accuracy relative to the depth of decision trees. © 2011 Springer-Verlag.

  12. Use of a fuzzy decision-making method in evaluating severe accident management strategies

    International Nuclear Information System (INIS)

    Jae, M.; Moon, J.H.

    2002-01-01

    In developing severe accident management strategies, an engineering decision would be made based on the available data and information that are vague, imprecise and uncertain by nature. These sorts of vagueness and uncertainty are due to lack of knowledge for the severe accident sequences of interest. The fuzzy set theory offers a possibility of handling these sorts of data and information. In this paper, the possibility to apply the decision-making method based on fuzzy set theory to the evaluation of the accident management strategies at a nuclear power plant is scrutinized. The fuzzy decision-making method uses linguistic variables and fuzzy numbers to represent the decision-maker's subjective assessments for the decision alternatives according to the decision criteria. The fuzzy mean operator is used to aggregate the decision-maker's subjective assessments, while the total integral value method is used to rank the decision alternatives. As a case study, the proposed method is applied to evaluating the accident management strategies at a nuclear power plant

  13. Type-2 fuzzy set extension of DEMATEL method combined with perceptual computing for decision making

    Science.gov (United States)

    Hosseini, Mitra Bokaei; Tarokh, Mohammad Jafar

    2013-05-01

    Most decision making methods used to evaluate a system or demonstrate the weak and strength points are based on fuzzy sets and evaluate the criteria with words that are modeled with fuzzy sets. The ambiguity and vagueness of the words and different perceptions of a word are not considered in these methods. For this reason, the decision making methods that consider the perceptions of decision makers are desirable. Perceptual computing is a subjective judgment method that considers that words mean different things to different people. This method models words with interval type-2 fuzzy sets that consider the uncertainty of the words. Also, there are interrelations and dependency between the decision making criteria in the real world; therefore, using decision making methods that cannot consider these relations is not feasible in some situations. The Decision-Making Trail and Evaluation Laboratory (DEMATEL) method considers the interrelations between decision making criteria. The current study used the combination of DEMATEL and perceptual computing in order to improve the decision making methods. For this reason, the fuzzy DEMATEL method was extended into type-2 fuzzy sets in order to obtain the weights of dependent criteria based on the words. The application of the proposed method is presented for knowledge management evaluation criteria.

  14. Objective Attributes Weights Determining Based on Shannon Information Entropy in Hesitant Fuzzy Multiple Attribute Decision Making

    Directory of Open Access Journals (Sweden)

    Yingjun Zhang

    2014-01-01

    Full Text Available Hesitant fuzzy set has been an important tool in dealing with multiple attribute decision making (MADM problems, especially for the decision making situation when only some values of membership are possible for an alternative on attributes. However, determining attributes weights in hesitant fuzzy MADM is still an open problem. In this paper, we propose an objective weighting approach based on Shannon information entropy, which expresses the relative intensities of attribute importance to signify the average intrinsic information transmitted to the decision maker. Furthermore, we construct a hesitant fuzzy MADM approach based on the TOPSIS method and a weighted correlation coefficient proposed in this paper. Finally, we utilize a supplier selection example to validate the objective attributes weights determining method and the proposed hesitant fuzzy MADM approach.

  15. An automated approach to the design of decision tree classifiers

    Science.gov (United States)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  16. Safety analyses of potential exposure in medical irradiation plants by Fuzzy Fault Tree

    International Nuclear Information System (INIS)

    Casamirra, Maddalena; Castiglia, Francesco; Giardina, Mariarosa; Tomarchio, Elio

    2008-01-01

    The results of Fuzzy Fault Tree (FFT) analyses of various accidental scenarios, which involve the operators in potential exposures inside an High Dose Rate (HDR) remote after-loading systems for use in brachytherapy, are reported. To carry out fault tree analyses by means of fuzzy probabilities, the TREEZZY2 computer code is used. Moreover, the HEART (Human Error Assessment and Reduction Technique) model, properly modified on the basis of the fuzzy approach, has been employed to assess the impact of performances haping and error-promoting factors in the context of the accidental events. The assessment of potential dose values for some identified accidental scenarios allows to consider, for a particular event, a fuzzy uncertainty range in potential dose estimate. The availability of lower and upper limits allows evaluating the possibility of optimization of the installation from the point of view of radiation protection. The adequacy of the training and information program for staff and patients (and their family members) and the effectiveness of behavioural rules and safety procedures were tested. Some recommendations on procedures and equipment to reduce the risk of radiological exposure are also provided. (author)

  17. Continuous hesitant fuzzy aggregation operators and their application to decision making under interval-valued hesitant fuzzy setting.

    Science.gov (United States)

    Peng, Ding-Hong; Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua

    2014-01-01

    Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches.

  18. Hybrid Multicriteria Group Decision Making Method for Information System Project Selection Based on Intuitionistic Fuzzy Theory

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2013-01-01

    Full Text Available Information system (IS project selection is of critical importance to every organization in dynamic competing environment. The aim of this paper is to develop a hybrid multicriteria group decision making approach based on intuitionistic fuzzy theory for IS project selection. The decision makers’ assessment information can be expressed in the form of real numbers, interval-valued numbers, linguistic variables, and intuitionistic fuzzy numbers (IFNs. All these evaluation pieces of information can be transformed to the form of IFNs. Intuitionistic fuzzy weighted averaging (IFWA operator is utilized to aggregate individual opinions of decision makers into a group opinion. Intuitionistic fuzzy entropy is used to obtain the entropy weights of the criteria. TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate IS project in group decision making environment. Finally, a numerical example for information system projects selection is given to illustrate application of hybrid multi-criteria group decision making (MCGDM method based on intuitionistic fuzzy theory and TOPSIS method.

  19. Fuzzy methods in decision making process - A particular approach in manufacturing systems

    Science.gov (United States)

    Coroiu, A. M.

    2015-11-01

    We are living in a competitive environment, so we can see and understand that the most of manufacturing firms do the best in order to accomplish meeting demand, increasing quality, decreasing costs, and delivery rate. In present a stake point of interest is represented by the development of fuzzy technology. A particular approach for this is represented through the development of methodologies to enhance the ability to managed complicated optimization and decision making aspects involving non-probabilistic uncertainty with the reason to understand, development, and practice the fuzzy technologies to be used in fields such as economic, engineering, management, and societal problems. Fuzzy analysis represents a method for solving problems which are related to uncertainty and vagueness; it is used in multiple areas, such as engineering and has applications in decision making problems, planning and production. As a definition for decision making process we can use the next one: result of mental processes based upon cognitive process with a main role in the selection of a course of action among several alternatives. Every process of decision making can be represented as a result of a final choice and the output can be represented as an action or as an opinion of choice. Different types of uncertainty can be discovered in a wide variety of optimization and decision making problems related to planning and operation of power systems and subsystems. The mixture of the uncertainty factor in the construction of different models serves for increasing their adequacy and, as a result, the reliability and factual efficiency of decisions based on their analysis. Another definition of decision making process which came to illustrate and sustain the necessity of using fuzzy method: the decision making is an approach of choosing a strategy among many different projects in order to achieve some purposes and is formulated as three different models: high risk decision, usual risk

  20. An experimental comparison of fuzzy logic and analytic hierarchy process for medical decision support systems.

    Science.gov (United States)

    Uzoka, Faith-Michael Emeka; Obot, Okure; Barker, Ken; Osuji, J

    2011-07-01

    The task of medical diagnosis is a complex one, considering the level vagueness and uncertainty management, especially when the disease has multiple symptoms. A number of researchers have utilized the fuzzy-analytic hierarchy process (fuzzy-AHP) methodology in handling imprecise data in medical diagnosis and therapy. The fuzzy logic is able to handle vagueness and unstructuredness in decision making, while the AHP has the ability to carry out pairwise comparison of decision elements in order to determine their importance in the decision process. This study attempts to do a case comparison of the fuzzy and AHP methods in the development of medical diagnosis system, which involves basic symptoms elicitation and analysis. The results of the study indicate a non-statistically significant relative superiority of the fuzzy technology over the AHP technology. Data collected from 30 malaria patients were used to diagnose using AHP and fuzzy logic independent of one another. The results were compared and found to covary strongly. It was also discovered from the results of fuzzy logic diagnosis covary a little bit more strongly to the conventional diagnosis results than that of AHP. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Decision tree methods: applications for classification and prediction.

    Science.gov (United States)

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  2. The fuzzy set theory application to the analysis of accident progression event trees with phenomenological uncertainty issues

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Ahn, Kwang-Il

    1991-01-01

    Fuzzy set theory provides a formal framework for dealing with the imprecision and vagueness inherent in the expert judgement, and therefore it can be used for more effective analysis of accident progression of PRA where experts opinion is a major means for quantifying some event probabilities and uncertainties. In this paper, an example application of the fuzzy set theory is first made to a simple portion of a given accident progression event tree with typical qualitative fuzzy input data, and thereby computational algorithms suitable for application of the fuzzy set theory to the accident progression event tree analysis are identified and illustrated with example applications. Then the procedure used in the simple example is extended to extremely complex accident progression event trees with a number of phenomenological uncertainty issues, i.e., a typical plant damage state 'SEC' of the Zion Nuclear Power Plant risk assessment. The results show that the fuzzy averages of the fuzzy outcomes are very close to the mean values obtained by current methods. The main purpose of this paper is to provide a formal procedure for application of the fuzzy set theory to accident progression event trees with imprecise and qualitative branch probabilities and/or with a number of phenomenological uncertainty issues. (author)

  3. Combining Fuzzy AHP with GIS and Decision Rules for Industrial Site Selection

    Directory of Open Access Journals (Sweden)

    Aissa Taibi

    2017-12-01

    Full Text Available This study combines Fuzzy Analytic Hierarchy Process (FAHP, Geographic Information System (GIS and Decision rules to provide decision makers with a ranking model for industrial sites in Algeria. A ranking of the suitable industrial areas is a crucial multi-criteria decision problem based on socio-economical and technical criteria as on environmental considerations. Fuzzy AHP is used for assessment of the candidate industrial sites by combining fuzzy set theory and analytic hierarchy process (AHP. The decision rule base serves as a filter that performs criteria pre-treatment involving a reduction of their numbers. GIS is used to overlay, generate criteria maps and for visualizing ranked zones on the map. The rank of a zone so obtained is an index that guides decision-makers to the best utilization of the zone in future.

  4. Using the fuzzy majority approach for GIS-based multicriteria group decision-making

    Science.gov (United States)

    Boroushaki, Soheil; Malczewski, Jacek

    2010-03-01

    This paper is concerned with developing a framework for GIS-based multicriteria group decision-making using the fuzzy majority approach. The procedure for solving a spatial group decision-making problem involves two stages. First, each decision-maker solves the problem individually. Second, the individual solutions are aggregated to obtain a group solution. The first stage is operationalized by a linguistic quantifier-guided ordered weighted averaging (OWA) procedure to create individual decision-maker's solution maps. Then the individual maps are combined using the fuzzy majority procedure to generate the group solution map which synthesizes the majority of the decision-makers' preferences. The paper provides an illustrative example of the fuzzy majority method for a land suitability problem. It also demonstrates the implementation of the framework within the ArcGIS environment.

  5. Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method

    Science.gov (United States)

    Lee, G.; Jun, K. S.; Chung, E.-S.

    2015-04-01

    This study proposes an improved group decision making (GDM) framework that combines the VIKOR method with data fuzzification to quantify the spatial flood vulnerability including multiple criteria. In general, GDM method is an effective tool for formulating a compromise solution that involves various decision makers since various stakeholders may have different perspectives on their flood risk/vulnerability management responses. The GDM approach is designed to achieve consensus building that reflects the viewpoints of each participant. The fuzzy VIKOR method was developed to solve multi-criteria decision making (MCDM) problems with conflicting and noncommensurable criteria. This comprising method can be used to obtain a nearly ideal solution according to all established criteria. This approach effectively can propose some compromising decisions by combining the GDM method and fuzzy VIKOR method. The spatial flood vulnerability of the southern Han River using the GDM approach combined with the fuzzy VIKOR method was compared with the spatial flood vulnerability using general MCDM methods, such as the fuzzy TOPSIS and classical GDM methods (i.e., Borda, Condorcet, and Copeland). As a result, the proposed fuzzy GDM approach can reduce the uncertainty in the data confidence and weight derivation techniques. Thus, the combination of the GDM approach with the fuzzy VIKOR method can provide robust prioritization because it actively reflects the opinions of various groups and considers uncertainty in the input data.

  6. Intuitionistic Trapezoidal Fuzzy Multiple Criteria Group Decision Making Method Based on Binary Relation

    Directory of Open Access Journals (Sweden)

    Liyuan Zhang

    2014-01-01

    Full Text Available The aim of this paper is to develop a methodology for intuitionistic trapezoidal fuzzy multiple criteria group decision making problems based on binary relation. Firstly, the similarity measure between two vectors based on binary relation is defined, which can be utilized to aggregate preference information. Some desirable properties of the similarity measure based on fuzzy binary relation are also studied. Then, a methodology for fuzzy multiple criteria group decision making is proposed, in which the criteria values are in the terms of intuitionistic trapezoidal fuzzy numbers (ITFNs. Simple and exact formulas are also proposed to determine the vector of the aggregation and group set. According to the weighted expected values of group set, it is easy to rank the alternatives and select the best one. Finally, we apply the proposed method and the Cosine similarity measure method to a numerical example; the numerical results show that our method is effective and practical.

  7. Fuzzy-Arden-Syntax-based, Vendor-agnostic, Scalable Clinical Decision Support and Monitoring Platform.

    Science.gov (United States)

    Adlassnig, Klaus-Peter; Fehre, Karsten; Rappelsberger, Andrea

    2015-01-01

    This study's objective is to develop and use a scalable genuine technology platform for clinical decision support based on Arden Syntax, which was extended by fuzzy set theory and fuzzy logic. Arden Syntax is a widely recognized formal language for representing clinical and scientific knowledge in an executable format, and is maintained by Health Level Seven (HL7) International and approved by the American National Standards Institute (ANSI). Fuzzy set theory and logic permit the representation of knowledge and automated reasoning under linguistic and propositional uncertainty. These forms of uncertainty are a common feature of patients' medical data, the body of medical knowledge, and deductive clinical reasoning.

  8. A Method for Ordering of LR-Type Fuzzy Numbers: An Important Decision Criteria

    Directory of Open Access Journals (Sweden)

    José A. González Campos

    2016-08-01

    Full Text Available Methods for ordering fuzzy numbers play an important role as decision criteria, with applications in areas such as optimization and data mining, among others. Although there are several proposals for ordering methods in the fuzzy literature, many of them are difficult to apply and present some problems with ranking computation. For that reason, this work proposes an ordering method for fuzzy numbers based on a simple application of a polynomial function. We study some properties of our new method, comparing our results with those generated by other methods previously discussed in literature.

  9. Fuzzy inference system of Tsukamoto method in decision making on ...

    African Journals Online (AJOL)

    . Community chooses insurance for recovery and protection against buildings damage. Insurance companies need to determine the amount of premium which is feasible and affordable by the community. This paper analyzes the fuzzy ...

  10. Fuzzy Modeled K-Cluster Quality Mining of Hidden Knowledge for Decision Support

    OpenAIRE

    S. Parkash  Kumar; K. S. Ramaswami

    2011-01-01

    Problem statement: The work presented Fuzzy Modeled K-means Cluster Quality Mining of hidden knowledge for Decision Support. Based on the number of clusters, number of objects in each cluster and its cohesiveness, precision and recall values, the cluster quality metrics is measured. The fuzzy k-means is adapted approach by using heuristic method which iterates the cluster to form an efficient valid cluster. With the obtained data clusters, quality assessment is made by predictive mining using...

  11. Determining rules for closing customer service centers: A public utility company's fuzzy decision

    Science.gov (United States)

    Dekorvin, Andre; Shipley, Margaret F.; Lea, Robert N.

    1992-01-01

    In the present work, we consider the general problem of knowledge acquisition under uncertainty. Simply stated, the problem reduces to the following: how can we capture the knowledge of an expert when the expert is unable to clearly formulate how he or she arrives at a decision? A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision may have been made. Unique to our work is the fuzzy set representation of the conditions or attributes upon which the expert may possibly base his fuzzy decision. From our examples, we infer certain and possible fuzzy rules for closing a customer service center and illustrate the importance of having the decision closely relate to the conditions under consideration.

  12. An Intuitionistic Fuzzy Logic Models for Multicriteria Decision Making Under Uncertainty

    Science.gov (United States)

    Jana, Biswajit; Mohanty, Sachi Nandan

    2017-04-01

    The purpose of this paper is to enhance the applicability of the fuzzy sets for developing mathematical models for decision making under uncertainty, In general a decision making process consist of four stages, namely collection of information from various sources, compile the information, execute the information and finally take the decision/action. Only fuzzy sets theory is capable to quantifying the linguistic expression to mathematical form in complex situation. Intuitionistic fuzzy set (IFSs) which reflects the fact that the degree of non membership is not always equal to one minus degree of membership. There may be some degree of hesitation. Thus, there are some situations where IFS theory provides a more meaningful and applicable to cope with imprecise information present for solving multiple criteria decision making problem. This paper emphasis on IFSs, which is help for solving real world problem in uncertainty situation.

  13. DecisionMaker software and extracting fuzzy rules under uncertainty

    Science.gov (United States)

    Walker, Kevin B.

    1992-01-01

    Knowledge acquisition under uncertainty is examined. Theories proposed in deKorvin's paper 'Extracting Fuzzy Rules Under Uncertainty and Measuring Definability Using Rough Sets' are discussed as they relate to rule calculation algorithms. A data structure for holding an arbitrary number of data fields is described. Limitations of Pascal for loops in the generation of combinations are also discussed. Finally, recursive algorithms for generating all possible combination of attributes and for calculating the intersection of an arbitrary number of fuzzy sets are presented.

  14. Fuzzy Multi-criteria Decision Making Associated with Risk and Confidence Attributes

    OpenAIRE

    Meshram, Chandrashekhar; Agrawal, Shyam Sundar

    2015-01-01

    The multicriteria decision problems involve uncertainty, it is important to incorporate different types of uncertainty in any proposed solution. In this paper, we presented fuzzy MCDM approach based on risk and confidence analysis that we believe is effective in tackling complex, ill-defined and human-oriented decision problems.

  15. Automated Sleep Stage Scoring by Decision Tree Learning

    National Research Council Canada - National Science Library

    Hanaoka, Masaaki

    2001-01-01

    In this paper we describe a waveform recognition method that extracts characteristic parameters from wave- forms and a method of automated sleep stage scoring using decision tree learning that is in...

  16. Comparison of Greedy Algorithms for Decision Tree Optimization

    KAUST Repository

    Alkhalid, Abdulaziz

    2013-01-01

    This chapter is devoted to the study of 16 types of greedy algorithms for decision tree construction. The dynamic programming approach is used for construction of optimal decision trees. Optimization is performed relative to minimal values of average depth, depth, number of nodes, number of terminal nodes, and number of nonterminal nodes of decision trees. We compare average depth, depth, number of nodes, number of terminal nodes and number of nonterminal nodes of constructed trees with minimum values of the considered parameters obtained based on a dynamic programming approach. We report experiments performed on data sets from UCI ML Repository and randomly generated binary decision tables. As a result, for depth, average depth, and number of nodes we propose a number of good heuristics. © Springer-Verlag Berlin Heidelberg 2013.

  17. Decision tree approach for classification of remotely sensed satellite ...

    Indian Academy of Sciences (India)

    DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using. WEKA, open source ...

  18. Decision tree approach for classification of remotely sensed satellite

    Indian Academy of Sciences (India)

    DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source ...

  19. DTMACC: Decision Trees with Multiple Attributes Concept Clustering

    Science.gov (United States)

    Kushi, Yusuke; Inazumi, Hiroshige

    A decision tree is one of the machine learning techniques and also one of the major knowledge representations of data mining results.This is because it is easy to understand its meaning for human analysts.Even ID3, the representative algorithm, is known to exhibit remarkable performance deterioration under certain circumstances, particularly due to strong correlation between attributes representing the class of examples. One of the approaches to get more preferable decision trees is pre-processing the training data to extend its description, such as attributes generation and attribute selection. There is also the idea of decision trees with a region rule. In this paper, we consider two approaches, i.e., decision trees with a region rule allowing multiple attributes, and a pre-processing method of a region rule to enabling any suitable number of attributes to correspond to branch nodes, where an optimal division condition with arbitrarily multiple attributes is acquired. By using this method, we propose a new decision tree generation algorithm guaranteeing to select effective compound attributes with each branch node, where an MDL-based new evaluation criterion is also defined for determining the optimal number of compound attributes specified to each node.This algorithm is applied to datasets containing only nominal values. It consists of three processes: compound attributes selection, parent node integration, and pruning. We call this new decision trees DTMACC (Decision Trees with Multiple Attributes Concept Clustering). The effectiveness and comprehensiveness of the proposed algorithm are confirmed through experiments comparing to the ordinary decision trees and an effective pre-processing method.

  20. Decision making for health care professionals: use of decision trees within the community mental health setting.

    Science.gov (United States)

    Bonner, G

    2001-08-01

    To examine the application of the decision tree approach to collaborative clinical decision-making in mental health care in the United Kingdom (UK). While this approach to decision-making has been examined in the acute care setting, there is little published evidence of its use in clinical decision-making within the mental health setting. The complexities of dual diagnosis (schizophrenia and substance misuse in this case example) and the varied viewpoints of different professionals often hamper the decision-making process. This paper highlights how the approach was used successfully as a multiprofessional collaborative approach to decision-making in the context of British community mental health care. A selective review of the relevant literature and a case study application of the decision tree framework. The process of applying the decision tree framework to clinical decision-making in mental health practice can be time consuming and client inclusion within the process is not always appropriate. The approach offers a method of assigning numerical values to support complex multiprofessional decision-making as well as considering underpinning literature to inform the final decision. Use of the decision tree offers a common framework that can assist professionals to examine the options available to them in depth, while considering the complex variables that influence decision-making in collaborative mental health practice. Use of the decision tree warrants further consideration in mental health care in terms of practice and education.

  1. HOSPITAL SITE SELECTION USING TWO-STAGE FUZZY MULTI-CRITERIA DECISION MAKING PROCESS

    Directory of Open Access Journals (Sweden)

    Ali Soltani

    2011-01-01

    Full Text Available Site selection for sitting of urban activities/facilities is one of the crucial policy-related decisions taken by urban planners and policy makers. The process of site selection is inherently complicated. A careless site imposes exorbitant costs on city budget and damages the environment inevitably. Nowadays, multi-attributes decision making approaches are suggested to use to improve precision of decision making and reduce surplus side effects. Two well-known techniques, analytical hierarchal process and analytical network process are among multi-criteria decision making systems which can easily be consistent with both quantitative and qualitative criteria. These are also developed to be fuzzy analytical hierarchal process and fuzzy analytical network process systems which are capable of accommodating inherent uncertainty and vagueness in multi-criteria decision-making. This paper reports the process and results of a hospital site selection within the Region 5 of Shiraz metropolitan area, Iran using integrated fuzzy analytical network process systems with Geographic Information System (GIS. The weights of the alternatives were calculated using fuzzy analytical network process. Then a sensitivity analysis was conducted to measure the elasticity of a decision in regards to different criteria. This study contributes to planning practice by suggesting a more comprehensive decision making tool for site selection.

  2. HOSPITAL SITE SELECTION USING TWO-STAGE FUZZY MULTI-CRITERIA DECISION MAKING PROCESS

    Directory of Open Access Journals (Sweden)

    Ali Soltani

    2011-06-01

    Full Text Available Site selection for sitting of urban activities/facilities is one of the crucial policy-related decisions taken by urban planners and policy makers. The process of site selection is inherently complicated. A careless site imposes exorbitant costs on city budget and damages the environment inevitably. Nowadays, multi-attributes decision making approaches are suggested to use to improve precision of decision making and reduce surplus side effects. Two well-known techniques, analytical hierarchal process and analytical network process are among multi-criteria decision making systems which can easily be consistent with both quantitative and qualitative criteria. These are also developed to be fuzzy analytical hierarchal process and fuzzy analytical network process systems which are capable of accommodating inherent uncertainty and vagueness in multi-criteria decision-making. This paper reports the process and results of a hospital site selection within the Region 5 of Shiraz metropolitan area, Iran using integrated fuzzy analytical network process systems with Geographic Information System (GIS. The weights of the alternatives were calculated using fuzzy analytical network process. Then a sensitivity analysis was conducted to measure the elasticity of a decision in regards to different criteria. This study contributes to planning practice by suggesting a more comprehensive decision making tool for site selection.

  3. Multicriteria decision-making approach with hesitant interval-valued intuitionistic fuzzy sets.

    Science.gov (United States)

    Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Chen, Xiao-hong

    2014-01-01

    The definition of hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs) is developed based on interval-valued intuitionistic fuzzy sets (IVIFSs) and hesitant fuzzy sets (HFSs). Then, some operations on HIVIFSs are introduced in detail, and their properties are further discussed. In addition, some hesitant interval-valued intuitionistic fuzzy number aggregation operators based on t-conorms and t-norms are proposed, which can be used to aggregate decision-makers' information in multicriteria decision-making (MCDM) problems. Some valuable proposals of these operators are studied. In particular, based on algebraic and Einstein t-conorms and t-norms, some hesitant interval-valued intuitionistic fuzzy algebraic aggregation operators and Einstein aggregation operators can be obtained, respectively. Furthermore, an approach of MCDM problems based on the proposed aggregation operators is given using hesitant interval-valued intuitionistic fuzzy information. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the developed approach, and the study is supported by a sensitivity analysis and a comparison analysis.

  4. A Fuzzy Multicriteria Group Decision-Making Method with New Entropy of Interval-Valued Intuitionistic Fuzzy Sets

    Directory of Open Access Journals (Sweden)

    Xiaohong Chen

    2013-01-01

    Full Text Available A new entropy measure of interval-valued intuitionistic fuzzy set (IVIFS is proposed by using cotangent function, which overcomes several limitations in the existing methods for calculating entropy of IVIFS. The efficiency of the new entropy is demonstrated by comparing it with several classical entropies. Moreover, an entropy weight model is established to determine the entropy weights for fuzzy multicriteria group decision-making (FMCGDMs problems, which depends on incomplete weight information of criteria in IVIFSs setting. Finally, an illustrative supplier selection problem is used to demonstrate the practicality and effectiveness of the proposed method. It is capable of the handling the FMCGDM problems with incomplete known weights for criteria.

  5. The Decision Tree for Teaching Management of Uncertainty

    Science.gov (United States)

    Knaggs, Sara J.; And Others

    1974-01-01

    A 'decision tree' consists of an outline of the patient's symptoms and a logic for decision and action. It is felt that this approach to the decisionmaking process better facilitates each learner's application of his own level of knowledge and skills. (Author)

  6. Ethnographic Decision Tree Modeling: A Research Method for Counseling Psychology.

    Science.gov (United States)

    Beck, Kirk A.

    2005-01-01

    This article describes ethnographic decision tree modeling (EDTM; C. H. Gladwin, 1989) as a mixed method design appropriate for counseling psychology research. EDTM is introduced and located within a postpositivist research paradigm. Decision theory that informs EDTM is reviewed, and the 2 phases of EDTM are highlighted. The 1st phase, model…

  7. Proactive data mining with decision trees

    CERN Document Server

    Dahan, Haim; Rokach, Lior; Maimon, Oded

    2014-01-01

    This book explores a proactive and domain-driven method to classification tasks. This novel proactive approach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classification trees. The book centers on the core idea of moving observations from one branch of the tree to another. It introduces a novel splitting crite

  8. Bounds on Average Time Complexity of Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    In this chapter, bounds on the average depth and the average weighted depth of decision trees are considered. Similar problems are studied in search theory [1], coding theory [77], design and analysis of algorithms (e.g., sorting) [38]. For any diagnostic problem, the minimum average depth of decision tree is bounded from below by the entropy of probability distribution (with a multiplier 1/log2 k for a problem over a k-valued information system). Among diagnostic problems, the problems with a complete set of attributes have the lowest minimum average depth of decision trees (e.g, the problem of building optimal prefix code [1] and a blood test study in assumption that exactly one patient is ill [23]). For such problems, the minimum average depth of decision tree exceeds the lower bound by at most one. The minimum average depth reaches the maximum on the problems in which each attribute is "indispensable" [44] (e.g., a diagnostic problem with n attributes and kn pairwise different rows in the decision table and the problem of implementing the modulo 2 summation function). These problems have the minimum average depth of decision tree equal to the number of attributes in the problem description. © Springer-Verlag Berlin Heidelberg 2011.

  9. Decision tree induction in the diagnosis of otoneurological diseases.

    Science.gov (United States)

    Viikki, K; Kentala, E; Juhola, M; Pyykkö, I

    1999-01-01

    Expert systems have been applied in medicine as diagnostic aids and education tools. The construction of a knowledge base for an expert system may be a difficult task; to automate this task several machine learning methods have been developed. These methods can be also used in the refinement of knowledge bases for removing inconsistencies and redundancies, and for simplifying decision rules. In this study, decision tree induction was employed to acquire diagnostic knowledge for otoneurological diseases and to extract relevant parameters from the database of an otoneurological expert system ONE. The records of patients with benign positional vertigo, Meniere's disease, sudden deafness, traumatic vertigo, vestibular neuritis and vestibular schwannoma were retrieved from the database of ONE, and for each disease, decision trees were constructed. The study shows that decision tree induction is a useful technique for acquiring diagnostic knowledge for otoneurological diseases and for extracting relevant parameters from a large set of parameters.

  10. Pythagorean fuzzy analytic hierarchy process to multi-criteria decision making

    Science.gov (United States)

    Mohd, Wan Rosanisah Wan; Abdullah, Lazim

    2017-11-01

    A numerous approaches have been proposed in the literature to determine the criteria of weight. The weight of criteria is very significant in the process of decision making. One of the outstanding approaches that used to determine weight of criteria is analytic hierarchy process (AHP). This method involves decision makers (DMs) to evaluate the decision to form the pair-wise comparison between criteria and alternatives. In classical AHP, the linguistic variable of pairwise comparison is presented in terms of crisp value. However, this method is not appropriate to present the real situation of the problems because it involved the uncertainty in linguistic judgment. For this reason, AHP has been extended by incorporating the Pythagorean fuzzy sets. In addition, no one has found in the literature proposed how to determine the weight of criteria using AHP under Pythagorean fuzzy sets. In order to solve the MCDM problem, the Pythagorean fuzzy analytic hierarchy process is proposed to determine the criteria weight of the evaluation criteria. Using the linguistic variables, pairwise comparison for evaluation criteria are made to the weights of criteria using Pythagorean fuzzy numbers (PFNs). The proposed method is implemented in the evaluation problem in order to demonstrate its applicability. This study shows that the proposed method provides us with a useful way and a new direction in solving MCDM problems with Pythagorean fuzzy context.

  11. Alternative measures of risk of extreme events in decision trees

    International Nuclear Information System (INIS)

    Frohwein, H.I.; Lambert, J.H.; Haimes, Y.Y.

    1999-01-01

    A need for a methodology to control the extreme events, defined as low-probability, high-consequence incidents, in sequential decisions is identified. A variety of alternative and complementary measures of the risk of extreme events are examined for their usability as objective functions in sequential decisions, represented as single- or multiple-objective decision trees. Earlier work had addressed difficulties, related to non-separability, with the minimization of some measures of the risk of extreme events in sequential decisions. In an extension of these results, it is shown how some non-separable measures of the risk of extreme events can be interpreted in terms of separable constituents of risk, thereby enabling a wider class of measures of the risk of extreme events to be handled in a straightforward manner in a decision tree. Also for extreme events, results are given to enable minimax- and Hurwicz-criterion analyses in decision trees. An example demonstrates the incorporation of different measures of the risk of extreme events in a multi-objective decision tree. Conceptual formulations for optimizing non-separable measures of the risk of extreme events are identified as an important area for future investigation

  12. Multivariate analysis of flow cytometric data using decision trees.

    Science.gov (United States)

    Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver

    2012-01-01

    Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.

  13. Hesitant Triangular Fuzzy Information Aggregation Operators Based on Bonferroni Means and Their Application to Multiple Attribute Decision Making

    Science.gov (United States)

    Zhou, Xiaoqiang; Yang, Tian

    2014-01-01

    We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness. PMID:25140338

  14. Minimizing size of decision trees for multi-label decision tables

    KAUST Repository

    Azad, Mohammad

    2014-09-29

    We used decision tree as a model to discover the knowledge from multi-label decision tables where each row has a set of decisions attached to it and our goal is to find out one arbitrary decision from the set of decisions attached to a row. The size of the decision tree can be small as well as very large. We study here different greedy as well as dynamic programming algorithms to minimize the size of the decision trees. When we compare the optimal result from dynamic programming algorithm, we found some greedy algorithms produce results which are close to the optimal result for the minimization of number of nodes (at most 18.92% difference), number of nonterminal nodes (at most 20.76% difference), and number of terminal nodes (at most 18.71% difference).

  15. Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

    Directory of Open Access Journals (Sweden)

    Fereshteh Yousefi Rizi

    2009-03-01

    Full Text Available Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM, utilized the FCM algorithm. Then, hanging-togetherness of pixels was handled by employing a spatial membership function. Another problem in airway segmentation that had to be overcome was the leakage into the extra-luminal regions due to the thinness of the airway walls during the process of segmentation. Results:   The result shows an accuracy of 92.92% obtained for segmentation of the airway tree up to the fourth generation. Conclusion:  We have presented a new segmentation method that is not only robust regarding the leakage problem but also functions more efficiently than the traditional FC method.

  16. TOPSIS-based consensus model for group decision-making with incomplete interval fuzzy preference relations.

    Science.gov (United States)

    Liu, Fang; Zhang, Wei-Guo

    2014-08-01

    Due to the vagueness of real-world environments and the subjective nature of human judgments, it is natural for experts to estimate their judgements by using incomplete interval fuzzy preference relations. In this paper, based on the technique for order preference by similarity to ideal solution method, we present a consensus model for group decision-making (GDM) with incomplete interval fuzzy preference relations. To do this, we first define a new consistency measure for incomplete interval fuzzy preference relations. Second, a goal programming model is proposed to estimate the missing interval preference values and it is guided by the consistency property. Third, an ideal interval fuzzy preference relation is constructed by using the induced ordered weighted averaging operator, where the associated weights of characterizing the operator are based on the defined consistency measure. Fourth, a similarity degree between complete interval fuzzy preference relations and the ideal one is defined. The similarity degree is related to the associated weights, and used to aggregate the experts' preference relations in such a way that more importance is given to ones with the higher similarity degree. Finally, a new algorithm is given to solve the GDM problem with incomplete interval fuzzy preference relations, which is further applied to partnership selection in formation of virtual enterprises.

  17. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators.

    Science.gov (United States)

    Yin, Kedong; Yang, Benshuo; Li, Xuemei

    2018-01-24

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.

  18. EEG feature selection method based on decision tree.

    Science.gov (United States)

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  19. Fuzzy multicriteria decision making applied to the strategic plan of Valencia

    OpenAIRE

    Nieto Morote, Ana María

    2000-01-01

    We present a fuzzy multicriteria decision making to get the ranking of several projects presented to the major council of Valencia whose final aim is to define the future urbanistic structure of the city This technique allows us to deal with such problems that are defined by linguistic (and vague)terms, like the case mentioned below.

  20. Digital Library Query Clearing Using Clustering and Fuzzy Decision-Making.

    Science.gov (United States)

    Heywood, M. I.; Zincir-Heywood, A. N.; Chatwin, C. R.

    2000-01-01

    Proposes and analyzes a method for servicing keyword queries expressed in a digital library. Topics include efficiency via the concept of customers and producers; grouping queries into clusters of similar concepts; information density of the library; query delay; query priorities; and fuzzy decision-making. (Author/LRW)

  1. FUZZY MODELS AS DECISION-SUPPORT APPLICATIONS OF ELECTRICAL ENERGY TARIFFING

    Directory of Open Access Journals (Sweden)

    Daniela GHINITA

    2004-12-01

    Full Text Available The paper is a decision – support application which design and use two fuzzy models to estimation an electrical energy tariff, as it to be sell at consumers. The fuzzy tariff estimation model integrate not only the S.C Electrica S.A. rate position, but and some constraints/ compulsions of National Authority of Settlements from Energy (NASE, beginning with 1999, in this transition period from Romania. The paper not refer to a price concrete case (internal tariff used in certain year, production price, transport price, distribution price, spot price, or an external price to be sold electrical energy – EE, etc. The paper shows how, by changing the parameters of S.C Electrica S.A and NASE, it is possible to can perform sensitivity tests on the tariff function model until we obtain an acceptable price. Much more: the two fuzzy models use different rules (conservative and aggressive, with hedge operators, respectively for pricing. Finally, the paper not finished all fuzzy possibilities (rules which can influences the expected value of a some EE tariff but, can create a discussion base about the way of approximate/ fuzzy reasoning, as a decision-support application to find a new EE price.

  2. Improved hybridization of Fuzzy Analytic Hierarchy Process (FAHP) algorithm with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW)

    Science.gov (United States)

    Zaiwani, B. E.; Zarlis, M.; Efendi, S.

    2018-03-01

    In this research, the improvement of hybridization algorithm of Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) in selecting the best bank chief inspector based on several qualitative and quantitative criteria with various priorities. To improve the performance of the above research, FAHP algorithm hybridization with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW) algorithm was adopted, which applied FAHP algorithm to the weighting process and SAW for the ranking process to determine the promotion of employee at a government institution. The result of improvement of the average value of Efficiency Rate (ER) is 85.24%, which means that this research has succeeded in improving the previous research that is equal to 77.82%. Keywords: Ranking and Selection, Fuzzy AHP, Fuzzy TOPSIS, FMADM-SAW.

  3. USING PRECEDENTS FOR REDUCTION OF DECISION TREE BY GRAPH SEARCH

    Directory of Open Access Journals (Sweden)

    I. A. Bessmertny

    2015-01-01

    Full Text Available The paper considers the problem of mutual payment organization between business entities by means of clearing that is solved by search of graph paths. To reduce the decision tree complexity a method of precedents is proposed that consists in saving the intermediate solution during the moving along decision tree. An algorithm and example are presented demonstrating solution complexity coming close to a linear one. The tests carried out in civil aviation settlement system demonstrate approximately 30 percent shortage of real money transfer. The proposed algorithm is planned to be implemented also in other clearing organizations of the Russian Federation.

  4. A Fuzzy Decision Support System for Drawing Directions from Purchasing Portfolio Models

    OpenAIRE

    Aloini, Davide; Dulmin, Riccardo; Mininno, Valeria

    2012-01-01

    Part VI: Services, Supply Chains and Operations; International audience; This work presents a decision support system (DSS) enhancing users to effectively integrate classical purchasing portfolio approaches with additional strategic oriented priorities and information in order to effectively support the definition of purchasing directions and action plans.With these aims, a fuzzy-based DSS is designed and implemented. The decision process gets inputs from the Kraljic (K) matrix and draws dire...

  5. Multi-Criteria Decision Aid for Sustainable Energy Prioritization Using Fuzzy Axiomatic Design

    OpenAIRE

    Basar Oztaysi; Mine Isik; Secil Ercan

    2013-01-01

    Sustainability has gained tremendous importance and has been an important issue both for policy makers and practitioners. Realizing that the resources on the earth are limited, renewable energy alternatives have flourished and started to replace the conventional energy alternatives. Energy planning using different energy alternatives, for the long term becomes a vital decision. In this study, fuzzy multi criteria decision- making methodologies, axiomatic design (AD) and analytic hierarchy pro...

  6. Mathematical Modeling of spatial disease variables by Spatial Fuzzy Logic for Spatial Decision Support Systems

    Science.gov (United States)

    Platz, M.; Rapp, J.; Groessler, M.; Niehaus, E.; Babu, A.; Soman, B.

    2014-11-01

    A Spatial Decision Support System (SDSS) provides support for decision makers and should not be viewed as replacing human intelligence with machines. Therefore it is reasonable that decision makers are able to use a feature to analyze the provided spatial decision support in detail to crosscheck the digital support of the SDSS with their own expertise. Spatial decision support is based on risk and resource maps in a Geographic Information System (GIS) with relevant layers e.g. environmental, health and socio-economic data. Spatial fuzzy logic allows the representation of spatial properties with a value of truth in the range between 0 and 1. Decision makers can refer to the visualization of the spatial truth of single risk variables of a disease. Spatial fuzzy logic rules that support the allocation of limited resources according to risk can be evaluated with measure theory on topological spaces, which allows to visualize the applicability of this rules as well in a map. Our paper is based on the concept of a spatial fuzzy logic on topological spaces that contributes to the development of an adaptive Early Warning And Response System (EWARS) providing decision support for the current or future spatial distribution of a disease. It supports the decision maker in testing interventions based on available resources and apply risk mitigation strategies and provide guidance tailored to the geo-location of the user via mobile devices. The software component of the system would be based on open source software and the software developed during this project will also be in the open source domain, so that an open community can build on the results and tailor further work to regional or international requirements and constraints. A freely available EWARS Spatial Fuzzy Logic Demo was developed wich enables a user to visualize risk and resource maps based on individual data in several data formats.

  7. A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry

    OpenAIRE

    Zeynep Sener; Mehtap Dursun

    2014-01-01

    Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision meth...

  8. Design and Development of Decision Making System Using Fuzzy Analytic Hierarchy Process

    OpenAIRE

    Chin W. Cheong; Lee H. Jie; Mak C. Meng; Amy L.H. Lan

    2008-01-01

    This article aims to develop a fuzzy Multicriteria Decision Making (MCDM) tool that equips with Analytic Hierarchy Process (AHP) framework to help users in semi-structured and unstructured decision making tasks. The tool provides portability and adaptability features by deploying the software on web platform. In addition, this system provides an integrated domain reference channel via a database connection to assist the user obtains relevant information regarding the problem domain before con...

  9. Robust stochastic fuzzy possibilistic programming for environmental decision making under uncertainty

    International Nuclear Information System (INIS)

    Zhang, Xiaodong; Huang, Guo H.; Nie, Xianghui

    2009-01-01

    Nonpoint source (NPS) water pollution is one of serious environmental issues, especially within an agricultural system. This study aims to propose a robust chance-constrained fuzzy possibilistic programming (RCFPP) model for water quality management within an agricultural system, where solutions for farming area, manure/fertilizer application amount, and livestock husbandry size under different scenarios are obtained and interpreted. Through improving upon the existing fuzzy possibilistic programming, fuzzy robust programming and chance-constrained programming approaches, the RCFPP can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original fuzzy constraints, the RCFPP enhances the robustness of the optimization processes and resulting solutions. The results of the case study indicate that useful information can be obtained through the proposed RCFPP model for providing feasible decision schemes for different agricultural activities under different scenarios (combinations of different p-necessity and p i levels). A p-necessity level represents the certainty or necessity degree of the imprecise objective function, while a p i level means the probabilities at which the constraints will be violated. A desire to acquire high agricultural income would decrease the certainty degree of the event that maximization of the objective be satisfied, and potentially violate water management standards; willingness to accept low agricultural income will run into the risk of potential system failure. The decision variables under combined p-necessity and p i levels were useful for the decision makers to justify and/or adjust the decision schemes for the agricultural activities through incorporation of their implicit knowledge. The results also suggest that

  10. Fuzzy model of the computer integrated decision support and management system in mineral processing

    Directory of Open Access Journals (Sweden)

    Miljanović Igor

    2008-01-01

    Full Text Available During the research on the subject of computer integrated systems for decision making and management support in mineral processing based on fuzzy logic, realized at the Department of Applied Computing and System Engineering of the Faculty of Mining and Geology, University of Belgrade, for the needs of doctoral thesis of the first author, and wider demands of the mineral industry, the incompleteness of the developed and contemporary computer integrated systems fuzzy models was noticed. The paper presents an original model with the seven staged hierarchical monitoring-management structure, in which the shortcomings of the models utilized today were eliminated.

  11. Decision tree modeling with relational views

    OpenAIRE

    Bentayeb, Fadila; Darmont, Jérôme

    2007-01-01

    International audience; Data mining is a useful decision support technique that can be used to discover production rules in warehouses or corporate data. Data mining research has made much effort to apply various mining algorithms efficiently on large databases. However, a serious problem in their practical application is the long processing time of such algorithms. Nowadays, one of the key challenges is to integrate data mining methods within the framework of traditional database systems. In...

  12. DTreeSim: A new approach to compute decision tree similarity using re-mining

    OpenAIRE

    BAKIRLI, GÖZDE; BİRANT, DERYA

    2017-01-01

    A number of recent studies have used a decision tree approach as a data mining technique; some of them needed to evaluate the similarity of decision trees to compare the knowledge reflected in different trees or datasets. There have been multiple perspectives and multiple calculation techniques to measure the similarity of two decision trees, such as using a simple formula or an entropy measure. The main objective of this study is to compute the similarity of decision trees using ...

  13. Shopping intention prediction using decision trees

    OpenAIRE

    Šebalj, Dario; Franjković, Jelena; Hodak, Kristina

    2017-01-01

    Introduction: The price is considered to be neglected marketing mix element due to the complexity of price management and sensitivity of customers on price changes. It pulls the fastest customer reactions to that change. Accordingly, the process of making shopping decisions can be very challenging for customer.Objective: The aim of this paper is to create a model that is able to predict shopping intention and classify respondents into one of the two categories, depending on whether they inten...

  14. Fuzzy Decision-Making Approach in Geometric Programming for a Single Item EOQ Model

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2015-06-01

    Full Text Available Background and methods: Fuzzy decision-making approach is allowed in geometric programming for a single item EOQ model with dynamic ordering cost and demand-dependent unit cost. The setup cost varies with the quantity produced/purchased and the modification of objective function with storage area in the presence of imprecisely estimated parameters are investigated.  It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered, and demand per unit compares both fuzzy geometric programming technique and other models for linear membership functions.  Results and conclusions: Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and the results discu ssed. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values.  

  15. Hesitant fuzzy linguistic multicriteria decision-making method based on generalized prioritized aggregation operator.

    Science.gov (United States)

    Wu, Jia-ting; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong

    2014-01-01

    Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is based on the generalized prioritized aggregation operator of HFLNs. Firstly, the new operations and comparison method for HFLNs are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach.

  16. A novel fuzzy logic inference system for decision support in weaning from mechanical ventilation.

    Science.gov (United States)

    Kilic, Yusuf Alper; Kilic, Ilke

    2010-12-01

    Weaning from mechanical ventilation represents one of the most challenging issues in management of critically ill patients. Currently used weaning predictors ignore many important dimensions of weaning outcome and have not been uniformly successful. A fuzzy logic inference system that uses nine variables, and five rule blocks within two layers, has been designed and implemented over mathematical simulations and random clinical scenarios, to compare its behavior and performance in predicting expert opinion with those for rapid shallow breathing index (RSBI), pressure time index and Jabour' weaning index. RSBI has failed to predict expert opinion in 52% of scenarios. Fuzzy logic inference system has shown the best discriminative power (ROC: 0.9288), and RSBI the worst (ROC: 0.6556) in predicting expert opinion. Fuzzy logic provides an approach which can handle multi-attribute decision making, and is a very powerful tool to overcome the weaknesses of currently used weaning predictors.

  17. A framework for sensitivity analysis of decision trees.

    Science.gov (United States)

    Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław

    2018-01-01

    In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.

  18. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    Science.gov (United States)

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek

    2017-05-10

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type-$I$ splitting criteria guarantee, with high probability, the highest expected value of split measure. Type-$II$ criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  19. Evaluation of Decision Trees for Cloud Detection from AVHRR Data

    Science.gov (United States)

    Shiffman, Smadar; Nemani, Ramakrishna

    2005-01-01

    Automated cloud detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based cloud masks that assign cloud-cover classifications to pixels. Many cloud-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In a previous study we compared automatically learned decision trees to cloud masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks p < 0.001.

  20. Practical secure decision tree learning in a teletreatment application

    NARCIS (Netherlands)

    de Hoogh, Sebastiaan; Schoenmakers, Berry; Chen, Ping; op den Akker, Harm

    In this paper we develop a range of practical cryptographic protocols for secure decision tree learning, a primary problem in privacy preserving data mining. We focus on particular variants of the well-known ID3 algorithm allowing a high level of security and performance at the same time. Our

  1. A Decision Tree for Nonmetric Sex Assessment from the Skull.

    Science.gov (United States)

    Langley, Natalie R; Dudzik, Beatrix; Cloutier, Alesia

    2018-01-01

    This study uses five well-documented cranial nonmetric traits (glabella, mastoid process, mental eminence, supraorbital margin, and nuchal crest) and one additional trait (zygomatic extension) to develop a validated decision tree for sex assessment. The decision tree was built and cross-validated on a sample of 293 U.S. White individuals from the William M. Bass Donated Skeletal Collection. Ordinal scores from the six traits were analyzed using the partition modeling option in JMP Pro 12. A holdout sample of 50 skulls was used to test the model. The most accurate decision tree includes three variables: glabella, zygomatic extension, and mastoid process. This decision tree yielded 93.5% accuracy on the training sample, 94% on the cross-validated sample, and 96% on a holdout validation sample. Linear weighted kappa statistics indicate acceptable agreement among observers for these variables. Mental eminence should be avoided, and definitions and figures should be referenced carefully to score nonmetric traits. © 2017 American Academy of Forensic Sciences.

  2. Decision tree approach for classification of remotely sensed satellite ...

    Indian Academy of Sciences (India)

    The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source data mining software. The classified image is compared with the image classified using classical ISODATA clustering and Maximum Likelihood Classifier (MLC) algorithms. Classification result ...

  3. Relationships between depth and number of misclassifications for decision trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    This paper describes a new tool for the study of relationships between depth and number of misclassifications for decision trees. In addition to the algorithm the paper also presents the results of experiments with three datasets from UCI Machine Learning Repository [3]. © 2011 Springer-Verlag.

  4. 'Misclassification error' greedy heuristic to construct decision trees for inconsistent decision tables

    KAUST Repository

    Azad, Mohammad

    2014-01-01

    A greedy algorithm has been presented in this paper to construct decision trees for three different approaches (many-valued decision, most common decision, and generalized decision) in order to handle the inconsistency of multiple decisions in a decision table. In this algorithm, a greedy heuristic ‘misclassification error’ is used which performs faster, and for some cost function, results are better than ‘number of boundary subtables’ heuristic in literature. Therefore, it can be used in the case of larger data sets and does not require huge amount of memory. Experimental results of depth, average depth and number of nodes of decision trees constructed by this algorithm are compared in the framework of each of the three approaches.

  5. On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems

    Science.gov (United States)

    Tunstel, Edward; Jamshidi, Mo

    1997-01-01

    Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.

  6. Multiattribute Decision Making Based on Entropy under Interval-Valued Intuitionistic Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Yingjun Zhang

    2013-01-01

    Full Text Available Multiattribute decision making (MADM is one of the central problems in artificial intelligence, specifically in management fields. In most cases, this problem arises from uncertainty both in the data derived from the decision maker and the actions performed in the environment. Fuzzy set and high-order fuzzy sets were proven to be effective approaches in solving decision-making problems with uncertainty. Therefore, in this paper, we investigate the MADM problem with completely unknown attribute weights in the framework of interval-valued intuitionistic fuzzy (IVIF set (IVIFS. We first propose a new definition of IVIF entropy and some calculation methods for IVIF entropy. Furthermore, we propose an entropy-based decision-making method to solve IVIF MADM problems with completely unknown attribute weights. Particular emphasis is put on assessing the attribute weights based on IVIF entropy. Instead of the traditional methods, which use divergence among attributes or the probabilistic discrimination of attributes to obtain attribute weights, we utilize the IVIF entropy to assess the attribute weights based on the credibility of the decision-making matrix for solving the problem. Finally, a supplier selection example is given to demonstrate the feasibility and validity of the proposed MADM method.

  7. Three fuzzy reasoning models as a decision suport aid, to find an electrical energy tariff

    Directory of Open Access Journals (Sweden)

    Daniela GHINITA

    2005-12-01

    Full Text Available This contribution is a laboratory-work developed as an example of approximate (fuzzy reasoning for students, possible to be used as a decision – support to estimate an electrical energy (EE price for consumers. The three fuzzy tariff estimation models that are developed, integrate not only the S.C Electrica S.A.-single-supplier rate position, but and some (social constraints/ compulsions of National Authority of Settlements from Energy (NASE beginning with 1999, in this transition period from Romania. Although is possible, the paper not refer to a partial-price concrete case (internal tariff used in certain year, production price, transport price, distribution price, spot price, or an external price to be sold electrical energy, etc. This “laboratory-work-paper” shows how, by changing the parameters of S.C Electrica S.A. and NASE, it is possible to can perform sensitivity tests on the tariff function model, until can obtain an acceptable and true price. In this aim, the three fuzzy models use different rules for pricing: conservative, aggressive, and different order of words concerning the rules respectively, finally doing a comparation among prices and models. The paper not finished all fuzzy possibilities (rules which can influences the expected value of a some EE tariff but, with certitude, can create a discussion base, about the way of approximate/ fuzzy reasoning, as a modality to find and to refine an EE price.

  8. An overview of decision tree applied to power systems

    DEFF Research Database (Denmark)

    Liu, Leo; Rather, Zakir Hussain; Chen, Zhe

    2013-01-01

    The corrosive volume of available data in electric power systems motivate the adoption of data mining techniques in the emerging field of power system data analytics. The mainstream of data mining algorithm applied to power system, Decision Tree (DT), also named as Classification And Regression...... Tree (CART), has gained increasing interests because of its high performance in terms of computational efficiency, uncertainty manageability, and interpretability. This paper presents an overview of a variety of DT applications to power systems for better interfacing of power systems with data...... analytics. The fundamental knowledge of CART algorithm is also introduced which is then followed by examples of both classification tree and regression tree with the help of case study for security assessment of Danish power system....

  9. An anonymization technique using intersected decision trees

    Directory of Open Access Journals (Sweden)

    Sam Fletcher

    2015-07-01

    Full Text Available Data mining plays an important role in analyzing the massive amount of data collected in today’s world. However, due to the public’s rising awareness of privacy and lack of trust in organizations, suitable Privacy Preserving Data Mining (PPDM techniques have become vital. A PPDM technique provides individual privacy while allowing useful data mining. We present a novel noise addition technique called Forest Framework, two novel data quality evaluation techniques called EDUDS and EDUSC, and a security evaluation technique called SERS. Forest Framework builds a decision forest from a dataset and preserves all the patterns (logic rules of the forest while adding noise to the dataset. We compare Forest Framework to its predecessor, Framework, and another established technique, GADP. Our comparison is done using our three evaluation criteria, as well as Prediction Accuracy. Our experimental results demonstrate the success of our proposed extensions to Framework and the usefulness of our evaluation criteria.

  10. Extensions of dynamic programming as a new tool for decision tree optimization

    KAUST Repository

    Alkhalid, Abdulaziz

    2013-01-01

    The chapter is devoted to the consideration of two types of decision trees for a given decision table: α-decision trees (the parameter α controls the accuracy of tree) and decision trees (which allow arbitrary level of accuracy). We study possibilities of sequential optimization of α-decision trees relative to different cost functions such as depth, average depth, and number of nodes. For decision trees, we analyze relationships between depth and number of misclassifications. We also discuss results of computer experiments with some datasets from UCI ML Repository. ©Springer-Verlag Berlin Heidelberg 2013.

  11. Three approaches to deal with inconsistent decision tables - Comparison of decision tree complexity

    KAUST Repository

    Azad, Mohammad

    2013-01-01

    In inconsistent decision tables, there are groups of rows with equal values of conditional attributes and different decisions (values of the decision attribute). We study three approaches to deal with such tables. Instead of a group of equal rows, we consider one row given by values of conditional attributes and we attach to this row: (i) the set of all decisions for rows from the group (many-valued decision approach); (ii) the most common decision for rows from the group (most common decision approach); and (iii) the unique code of the set of all decisions for rows from the group (generalized decision approach). We present experimental results and compare the depth, average depth and number of nodes of decision trees constructed by a greedy algorithm in the framework of each of the three approaches. © 2013 Springer-Verlag.

  12. Fuzzy Similarity in Multicriteria Decision-Making Problem Applied to Supplier Evaluation and Selection in Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Pasi Luukka

    2011-01-01

    Full Text Available It is proposed to use fuzzy similarity in fuzzy decision-making approach to deal with the supplier selection problem in supply chain system. According to the concept of fuzzy TOPSIS earlier methods use closeness coefficient which is defined to determine the ranking order of all suppliers by calculating the distances to both fuzzy positive-ideal solution (FPIS and fuzzy negative-ideal solution (FNIS simultaneously. In this paper we propose a new method by doing the ranking using similarity. New proposed method can do ranking with less computations than original fuzzy TOPSIS. We also propose three different cases for selection of FPIS and FNIS and compare closeness coefficient criteria and fuzzy similarity criteria. Numerical example is used to demonstrate the process. Results show that the proposed model is well suited for multiple criteria decision-making for supplier selection. In this paper we also show that the evaluation of the supplier using traditional fuzzy TOPSIS depends highly on FPIS and FNIS, and one needs to select suitable fuzzy ideal solution to get reasonable evaluation.

  13. MR-Tree - A Scalable MapReduce Algorithm for Building Decision Trees

    Directory of Open Access Journals (Sweden)

    Vasile PURDILĂ

    2014-03-01

    Full Text Available Learning decision trees against very large amounts of data is not practical on single node computers due to the huge amount of calculations required by this process. Apache Hadoop is a large scale distributed computing platform that runs on commodity hardware clusters and can be used successfully for data mining task against very large datasets. This work presents a parallel decision tree learning algorithm expressed in MapReduce programming model that runs on Apache Hadoop platform and has a very good scalability with dataset size.

  14. Entropy Measures for Interval-Valued Intuitionistic Fuzzy Sets and Their Application in Group Decision-Making

    Directory of Open Access Journals (Sweden)

    Cuiping Wei

    2015-01-01

    Full Text Available Entropy measure is an important topic in the fuzzy set theory and has been investigated by many researchers from different points of view. In this paper, two new entropy measures based on the cosine function are proposed for intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets. According to the features of the cosine function, the general forms of these two kinds of entropy measures are presented. Compared with the existing ones, the proposed entropy measures can overcome some shortcomings and be used to measure both fuzziness and intuitionism of these two fuzzy sets; as a result, the uncertain information of which can be described more sufficiently. These entropy measures have been applied to assess the experts’ weights and to solve multicriteria fuzzy group decision-making problems.

  15. Application of fuzzy decision making to countermeasure strategies after a nuclear accident

    International Nuclear Information System (INIS)

    Liu, X.; Ruan, D.

    1996-01-01

    In the event of a nuclear accident, any decision on countermeasures to protect the public should be made based upon the basic principles recommended by the International Commission on Radiological Protection. The application of these principles requires that there is a balance between the cost and the averted radiation dose, taking into account many subjective factors such as social/political acceptability, psychological stress, and the confidence of the population in the authorities etc. In the framework of classical methods, it is difficult to quantify human subjective judgements and the uncertainties of data efficiently. Hence, any attempt to find the optimal solution for countermeasure strategies without deliberative sensitivity analysis can be misleading. However, fuzzy sets, with linguistic terms to describe the human subjective judgement and with fuzzy numbers to model the uncertainties of the parameters, can be introduced to eliminate these difficulties. With fuzzy rating, a fuzzy multiple attribute decision making method can rank the possible countermeasure strategies. This paper will describe the procedure of the method and present an illustrative example

  16. Computerized Adaptive Test vs. decision trees: Development of a support decision system to identify suicidal behavior.

    Science.gov (United States)

    Delgado-Gomez, D; Baca-Garcia, E; Aguado, D; Courtet, P; Lopez-Castroman, J

    2016-12-01

    Several Computerized Adaptive Tests (CATs) have been proposed to facilitate assessments in mental health. These tests are built in a standard way, disregarding useful and usually available information not included in the assessment scales that could increase the precision and utility of CATs, such as the history of suicide attempts. Using the items of a previously developed scale for suicidal risk, we compared the performance of a standard CAT and a decision tree in a support decision system to identify suicidal behavior. We included the history of past suicide attempts as a class for the separation of patients in the decision tree. The decision tree needed an average of four items to achieve a similar accuracy than a standard CAT with nine items. The accuracy of the decision tree, obtained after 25 cross-validations, was 81.4%. A shortened test adapted for the separation of suicidal and non-suicidal patients was developed. CATs can be very useful tools for the assessment of suicidal risk. However, standard CATs do not use all the information that is available. A decision tree can improve the precision of the assessment since they are constructed using a priori information. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A Method for Fuzzy Soft Sets in Decision-Making Based on an Ideal Solution

    Directory of Open Access Journals (Sweden)

    Zhicai Liu

    2017-10-01

    Full Text Available In this paper, a decision model based on a fuzzy soft set and ideal solution approaches is proposed. This new decision-making method uses the divide-and-conquer algorithm, and it is different from the existing algorithm (the choice value based approach and the comparison score based approach. The ideal solution is generated according to each attribute (pros or cons of the attributes, with or without constraints of the fuzzy soft sets. Finally, the weighted Hamming distance is used to compute all possible alternatives and get the final result. The core of the decision process is the design phase, the existing decision models based on soft sets mostly neglect the analysis of attributes and decision objectives. This algorithm emphasizes the correct expression of the purpose of the decision maker and the analysis of attributes, as well as the explicit decision function. Additionally, this paper shows the fact that the rank reversal phenomenon occurs in the comparison score algorithm, and an example is provided to illustrate the rank reversal phenomenon. Experiments indicate that the decision model proposed in this paper is efficient and will be useful for practical problems. In addition, as a general model, it can be extended to a wider range of fields, such as classifications, optimization problems, etc.

  18. The Utility of Decision Trees in Oncofertility Care in Japan.

    Science.gov (United States)

    Ito, Yuki; Shiraishi, Eriko; Kato, Atsuko; Haino, Takayuki; Sugimoto, Kouhei; Okamoto, Aikou; Suzuki, Nao

    2017-03-01

    To identify the utility and issues associated with the use of decision trees in oncofertility patient care in Japan. A total of 35 women who had been diagnosed with cancer, but had not begun anticancer treatment, were enrolled. We applied the oncofertility decision tree for women published by Gardino et al. to counsel a consecutive series of women on fertility preservation (FP) options following cancer diagnosis. Percentage of women who decided to undergo oocyte retrieval for embryo cryopreservation and the expected live-birth rate for these patients were calculated using the following equation: expected live-birth rate = pregnancy rate at each age per embryo transfer × (1 - miscarriage rate) × No. of cryopreserved embryos. Oocyte retrieval was performed for 17 patients (48.6%; mean ± standard deviation [SD] age, 36.35 ± 3.82 years). The mean ± SD number of cryopreserved embryos was 5.29 ± 4.63. The expected live-birth rate was 0.66. The expected live-birth rate with FP indicated that one in three oncofertility patients would not expect to have a live birth following oocyte retrieval and embryo cryopreservation. While the decision trees were useful as decision-making tools for women contemplating FP, in the context of the current restrictions on oocyte donation and the extremely small number of adoptions in Japan, the remaining options for fertility after cancer are limited. In order for cancer survivors to feel secure in their decisions, the decision tree may need to be adapted simultaneously with improvements to the social environment, such as greater support for adoption.

  19. Fuzzy decision analysis for project scope change management

    Directory of Open Access Journals (Sweden)

    Farshad Shirazi

    2017-09-01

    Full Text Available It is very important to manage and control projects with the consideration of the triple constraints; namely time, cost and scope. It is also extremely important to manage the scope and all the procurements needed to complete any project. During the project’s lifecycle many changes take place, either positively or negatively, which should be controlled. If the changes are not controlled we may have scope creep that has negative effect on the project. It is commonly considered a negative incident, and thus, should be kept away from the project. By considering this concept, in this paper, we discuss scope change and managing scope and fuzzy analytical hierarchy process is used in selecting the best strategy to manage scope change in projects.

  20. Fuzzy Comprehensive Evaluation (FCE) in Military Decision Support Processes

    Science.gov (United States)

    2013-12-01

    comprehensive evaluation JCA joint campaign analysis JHSV Joint High-Speed Vessel LCS Littoral Combat Ship MCDM multiple criteria decision-making...criteria decision-making ( MCDM ) method. There are different types of MCDM processes, but all handle problems of subjectivity, ambiguity, and...41 V. CONCLUSIONS A. SUMMARY The FCE method is one of many that solve multiple criteria decision-making ( MCDM ) problems by incorporating

  1. Modeling and Testing Landslide Hazard Using Decision Tree

    Directory of Open Access Journals (Sweden)

    Mutasem Sh. Alkhasawneh

    2014-01-01

    Full Text Available This paper proposes a decision tree model for specifying the importance of 21 factors causing the landslides in a wide area of Penang Island, Malaysia. These factors are vegetation cover, distance from the fault line, slope angle, cross curvature, slope aspect, distance from road, geology, diagonal length, longitude curvature, rugosity, plan curvature, elevation, rain perception, soil texture, surface area, distance from drainage, roughness, land cover, general curvature, tangent curvature, and profile curvature. Decision tree models are used for prediction, classification, and factors importance and are usually represented by an easy to interpret tree like structure. Four models were created using Chi-square Automatic Interaction Detector (CHAID, Exhaustive CHAID, Classification and Regression Tree (CRT, and Quick-Unbiased-Efficient Statistical Tree (QUEST. Twenty-one factors were extracted using digital elevation models (DEMs and then used as input variables for the models. A data set of 137570 samples was selected for each variable in the analysis, where 68786 samples represent landslides and 68786 samples represent no landslides. 10-fold cross-validation was employed for testing the models. The highest accuracy was achieved using Exhaustive CHAID (82.0% compared to CHAID (81.9%, CRT (75.6%, and QUEST (74.0% model. Across the four models, five factors were identified as most important factors which are slope angle, distance from drainage, surface area, slope aspect, and cross curvature.

  2. Fuzzy Group Decision Making Approach for Ranking Work Stations Based on Physical Pressure

    Directory of Open Access Journals (Sweden)

    Hamed Salmanzadeh

    2014-06-01

    Full Text Available This paper proposes a Fuzzy Group Decision Making approach for ranking work stations based on physical pressure. Fuzzy group decision making approach allows experts to evaluate different ergonomic factors using linguistic terms such as very high, high, medium, low, very low, rather than precise numerical values. In this way, there is no need to measure parameters and evaluation can be easily made in a group. According to ergonomics much work contents and situations, accompanied with multiple parameters and uncertainties, fuzzy group decision making is the best way to evaluate such a chameleon of concept. A case study was down to utilize the approach and illustrate its application in ergonomic assessment and ranking the work stations based on work pressure and found that this approach provides flexibility, practicality, efficiency in making decision around ergonomics areas. The normalized defuzzification numbers which are resulted from this method are compared with result of quantitative assessment of Automotive Assembly Work Sheet auto, it’s demonstrated that the proposed method result is 10% less than Automotive Assembly Work Sheet, approximately.

  3. Learning and Tuning of Fuzzy Rules

    Science.gov (United States)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  4. A DECISION MAKING MODEL FOR SELECTION OF WIND ENERGY PRODUCTION FARMS BASED ON FUZZY ANALYTIC HIERARCHY PROCESS

    OpenAIRE

    SAGBAS, Aysun; MAZMANOGLU, Adnan; ALP, Reyhan

    2013-01-01

    The purpose of this paper is to present an evaluation model for the prioritization of wind energy production sites, namely, Mersin, Silifke and Anamur, located in Mediterranean Sea region of Turkey. For this purpose, a fuzzy analytical hierarchy decision making approach based on multi-criteria decision making framework including economic, technical, and environmental criteria was performed. It is found that the results obtained from fuzzy analytical hierarchy process (FAHP) approach, Anamur d...

  5. Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control.

    Science.gov (United States)

    Ki, Seo Jin; Ray, Chittaranjan

    2014-09-15

    Determining optimal locations for best management practices (BMPs), including their field considerations and limitations, plays an important role for effective stormwater management. However, these issues have been often overlooked in modeling studies that focused on downstream water quality benefits. This study illustrates the methodology of locating infiltration trenches at suitable locations from spatial overlay analyses which combine multiple layers that address different aspects of field application into a composite map. Using seven thematic layers for each analysis, fuzzy logic was employed to develop a site suitability map for infiltration trenches, whereas the DRASTIC method was used to produce a groundwater vulnerability map on the island of Oahu, Hawaii, USA. In addition, the analytic hierarchy process (AHP), one of the most popular overlay analyses, was used for comparison to fuzzy logic. The results showed that the AHP and fuzzy logic methods developed significantly different index maps in terms of best locations and suitability scores. Specifically, the AHP method provided a maximum level of site suitability due to its inherent aggregation approach of all input layers in a linear equation. The most eligible areas in locating infiltration trenches were determined from the superposition of the site suitability and groundwater vulnerability maps using the fuzzy AND operator. The resulting map successfully balanced qualification criteria for a low risk of groundwater contamination and the best BMP site selection. The results of the sensitivity analysis showed that the suitability scores were strongly affected by the algorithms embedded in fuzzy logic; therefore, caution is recommended with their use in overlay analysis. Accordingly, this study demonstrates that the fuzzy logic analysis can not only be used to improve spatial decision quality along with other overlay approaches, but also is combined with general water quality models for initial and refined

  6. Power Geometric Operators of Hesitant Multiplicative Fuzzy Numbers and Their Application to Multiple Attribute Group Decision Making

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available Multiplicative relations are one of most powerful techniques to express the preferences over alternatives (or criteria. In this paper, we propose a wide range of hesitant multiplicative fuzzy power aggregation geometric operators on multiattribute group decision making (MAGDM problems for hesitant multiplicative information. In this paper, we first develop some compatibility measures for hesitant multiplicative fuzzy numbers, based on which the corresponding support measures can be obtained. Then we propose several aggregation techniques, and investigate their properties. In the end, we develop two approaches for multiple attribute group decision making with hesitant multiplicative fuzzy information and illustrate a real world example to show the behavior of the proposed operators.

  7. Enhanced Decision Support Systems in Intensive Care Unit Based on Intuitionistic Fuzzy Sets

    Directory of Open Access Journals (Sweden)

    Hanen Jemal

    2017-01-01

    Full Text Available In areas of medical diagnosis and decision-making, several uncertainty and ambiguity shrouded situations are most often imposed. In this regard, one may well assume that intuitionistic fuzzy sets (IFS should stand as a potent technique useful for demystifying associated with the real healthcare decision-making situations. To this end, we are developing a prototype model helpful for detecting the patients risk degree in Intensive Care Unit (ICU. Based on the intuitionistic fuzzy sets, dubbed Medical Intuitionistic Fuzzy Expert Decision Support System (MIFEDSS, the shown work has its origins in the Modified Early Warning Score (MEWS standard. It is worth noting that the proposed prototype effectiveness validation is associated through a real case study test at the Polyclinic ESSALEMA cited in Sfax, Tunisia. This paper does actually provide some practical initial results concerning the system as carried out in real life situations. Indeed, the proposed system turns out to prove that the MIFEDSS does actually display an imposing capability for an established handily ICU related uncertainty issues. The performance of the prototypes is compared with the MEWS standard which exposed that the IFS application appears to perform highly better in deferring accuracy than the expert MEWS score with higher degrees of sensitivity and specificity being recorded.

  8. Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods Volume 2

    CERN Document Server

    Rao, R Venkata

    2013-01-01

    Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods presents the concepts and details of applications of MADM methods. A range of methods are covered including Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR), Data Envelopment Analysis (DEA), Preference Ranking METHod for Enrichment Evaluations (PROMETHEE), ELimination Et Choix Traduisant la Realité (ELECTRE), COmplex PRoportional ASsessment (COPRAS), Grey Relational Analysis (GRA), UTility Additive (UTA), and Ordered Weighted Averaging (OWA). The existing MADM methods are improved upon and three novel multiple attribute decision making methods for solving the decision making problems of the manufacturing environment are proposed. The concept of integrated weights is introduced in the proposed subjective and objective integrated weights (SOIW) method and the weighted Euclidean distance ba...

  9. Constructing an optimal decision tree for FAST corner point detection

    KAUST Repository

    Alkhalid, Abdulaziz

    2011-01-01

    In this paper, we consider a problem that is originated in computer vision: determining an optimal testing strategy for the corner point detection problem that is a part of FAST algorithm [11,12]. The problem can be formulated as building a decision tree with the minimum average depth for a decision table with all discrete attributes. We experimentally compare performance of an exact algorithm based on dynamic programming and several greedy algorithms that differ in the attribute selection criterion. © 2011 Springer-Verlag.

  10. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices.

    Science.gov (United States)

    Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H

    2016-12-15

    Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy

  11. Interval-Valued Intuitionistic Fuzzy Einstein Geometric Choquet Integral Operator and Its Application to Multiattribute Group Decision-Making

    Directory of Open Access Journals (Sweden)

    Qifeng Wang

    2018-01-01

    Full Text Available With respect to the multiattribute decision-making (MADM problem in which the attributes have interdependent or interactive phenomena under the interval-valued intuitionistic fuzzy environment, we propose a group decision-making approach based on the interval-valued intuitionistic fuzzy Einstein geometric Choquet integral operator (IVIFEGC. Firstly, the Einstein operational laws and some basic principle on interval-valued intuitionistic fuzzy sets are introduced. Then, the IVIFEGC is developed and some desirable properties of the operator are studied. Further, an approach to multiattribute group decision-making with interval-valued intuitionistic fuzzy information is developed, where the attributes have interdependent phenomena. Finally, an illustrative example is used to illustrate the developed approach.

  12. The Representation of Discrete Functions by Decision Trees.

    Science.gov (United States)

    1982-02-28

    complexity theory, is then reviewed. The various findings are regrouped in a short summary of the "state-of-the- art " knowledge about decision trees. 3.2...tables, and tables incorporating calls to subtables in place of accions (each of which is beyond the reach of published analyses). The extension to...I, 135-143. Knuth, D. E. (1973). The Art of Computer Programming. Volume 1: Fundamental Alzorithms. Addison-Wesley, Reading, Mass. (2nd ed.). 122

  13. The Bayesian Decision Tree Technique with a Sweeping Strategy

    OpenAIRE

    Schetinin, V.; Fieldsend, J. E.; Partridge, D.; Krzanowski, W. J.; Everson, R. M.; Bailey, T. C.; Hernandez, A.

    2005-01-01

    The uncertainty of classification outcomes is of crucial importance for many safety critical applications including, for example, medical diagnostics. In such applications the uncertainty of classification can be reliably estimated within a Bayesian model averaging technique that allows the use of prior information. Decision Tree (DT) classification models used within such a technique gives experts additional information by making this classification scheme observable. The use of the Markov C...

  14. Classification and Optimization of Decision Trees for Inconsistent Decision Tables Represented as MVD Tables

    KAUST Repository

    Azad, Mohammad

    2015-10-11

    Decision tree is a widely used technique to discover patterns from consistent data set. But if the data set is inconsistent, where there are groups of examples (objects) with equal values of conditional attributes but different decisions (values of the decision attribute), then to discover the essential patterns or knowledge from the data set is challenging. We consider three approaches (generalized, most common and many-valued decision) to handle such inconsistency. We created different greedy algorithms using various types of impurity and uncertainty measures to construct decision trees. We compared the three approaches based on the decision tree properties of the depth, average depth and number of nodes. Based on the result of the comparison, we choose to work with the many-valued decision approach. Now to determine which greedy algorithms are efficient, we compared them based on the optimization and classification results. It was found that some greedy algorithms Mult\\\\_ws\\\\_entSort, and Mult\\\\_ws\\\\_entML are good for both optimization and classification.

  15. A Multicriteria Decision Making Approach Based on Fuzzy Theory and Credibility Mechanism for Logistics Center Location Selection

    Directory of Open Access Journals (Sweden)

    Bowen Wang

    2014-01-01

    Full Text Available As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center.

  16. A multicriteria decision making approach based on fuzzy theory and credibility mechanism for logistics center location selection.

    Science.gov (United States)

    Wang, Bowen; Xiong, Haitao; Jiang, Chengrui

    2014-01-01

    As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center.

  17. A Multicriteria Decision Making Approach Based on Fuzzy Theory and Credibility Mechanism for Logistics Center Location Selection

    Science.gov (United States)

    Wang, Bowen; Jiang, Chengrui

    2014-01-01

    As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center. PMID:25215319

  18. Generalized Single-Valued Neutrosophic Hesitant Fuzzy Prioritized Aggregation Operators and Their Applications to Multiple Criteria Decision-Making

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2018-01-01

    Full Text Available Single-valued neutrosophic hesitant fuzzy set (SVNHFS is a combination of single-valued neutrosophic set and hesitant fuzzy set, and its aggregation tools play an important role in the multiple criteria decision-making (MCDM process. This paper investigates the MCDM problems in which the criteria under SVNHF environment are in different priority levels. First, the generalized single-valued neutrosophic hesitant fuzzy prioritized weighted average operator and generalized single-valued neutrosophic hesitant fuzzy prioritized weighted geometric operator are developed based on the prioritized average operator. Second, some desirable properties and special cases of the proposed operators are discussed in detail. Third, an approach combined with the proposed operators and the score function of single-valued neutrosophic hesitant fuzzy element is constructed to solve MCDM problems. Finally, an example of investment selection is provided to illustrate the validity and rationality of the proposed method.

  19. A fuzzy multi-criteria decision-making model for trigeneration system

    International Nuclear Information System (INIS)

    Wang Jiangjiang; Jing Youyin; Zhang Chunfa; Shi Guohua; Zhang Xutao

    2008-01-01

    The decision making for trigeneration systems is a compositive project and it should be evaluated and compared in a multi-criteria analysis method. This paper presents a fuzzy multi-criteria decision-making model (FMCDM) for trigeneration systems selection and evaluation. The multi-criteria decision-making methods are briefly reviewed combining the general decision-making process. Then the fuzzy set theory, weighting method and the FMCDM model are presented. Finally, several kinds of trigeneration systems, whose dynamical sources are, respectively stirling engine, gas turbine, gas engine and solid oxide fuel cell, are compared and evaluated with a separate generation system. The case for selecting the optimal trigeneration system applied to a residential building is assessed from the technical, economical, environmental and social aspects, and the FMCDM model combining analytic hierarchical process is applied to the trigeneration case to demonstrate the decision-making process and effectiveness of proposed model. The results show that the gas engine plus lithium bromide absorption water heater/chiller unit for the residential building is the best scheme in the five options

  20. Fuzzy multi-objective decision making on a low and intermediate level waste repository safety assessment

    International Nuclear Information System (INIS)

    Lemos, Francisco Luiz de; Deshpande, Ashok; Guimaraes, Lamartine

    2002-01-01

    Low and intermediate waste disposal facilities safety assessment is comprised of several steps from site selection , construction and operation to post-closure performance assessment. This is a multidisciplinary and complex task , and can not be analyzed by one expert only. This high complexity can lead to ambiguity and vagueness in information and consequently in the decision making process. In order to make the decision process clear and objective, there is the need to provide the decision makers with a clear and comprehensive picture of the whole process and, at the same time, simple and easily understandable by the public. This paper suggests the development of an inference system based on fuzzy decision making methodology. Fuzzy logic tools are specially suited to deal with ambiguous data by using language expressions. This process would be capable of integrating knowledge from various fields of environmental sciences. It has an advantage of keeping record of reasoning for each intermediate decision that lead to the final results which makes it more dependable and defensible as well. (author)

  1. Method of decision tree applied in adopting the decision for promoting a company

    Directory of Open Access Journals (Sweden)

    Cezarina Adina TOFAN

    2015-09-01

    Full Text Available The decision can be defined as the way chosen from several possible to achieve an objective. An important role in the functioning of the decisional-informational system is held by the decision-making methods. Decision trees are proving to be very useful tools for taking financial decisions or regarding the numbers, where a large amount of complex information must be considered. They provide an effective structure in which alternative decisions and the implications of their choice can be assessed, and help to form a correct and balanced vision of the risks and rewards that may result from a certain choice. For these reasons, the content of this communication will review a series of decision-making criteria. Also, it will analyse the benefits of using the decision tree method in the decision-making process by providing a numerical example. On this basis, it can be concluded that the procedure may prove useful in making decisions for companies operating on markets where competition intensity is differentiated.

  2. A fuzzy logic decision support system for assessing clinical nutritional risk

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Hadianfard

    2015-04-01

    Full Text Available Introduction: Studies have indicated a global high prevalence of hospital malnutrition on admission and during hospitalization. Clinical Nutritional Risk Screen (CNRS is a way to identify malnutrition and manage nutritional interventions. Several traditional and non-computer based tools have been suggested for screening nutritional risk levels. The present study was an attempt to employ a computer based fuzzy model decision support system as a nutrition-screening tool for inpatients. Method: This is an applied modeling study. The system architecture was designed based on the fuzzy logic model including input data, inference engine, and output. A clinical nutritionist entered nineteen input variables using a windows-based graphical user interface. The inference engine was involved with knowledge obtained from literature and the construction of ‘IF-THEN’ rules. The output of the system was stratification of patients into four risk levels from ‘No’ to ‘High’ where a number was also allocated to them as a nutritional risk grade. All patients (121 people admitted during implementing the system participated in testing the model. The classification tests were used to measure the CNRS fuzzy model performance. IBM SPSS version 21 was utilized as a tool for data analysis with α = 0.05 as a significance level. Results: Results showed that sensitivity, specificity, accuracy, and precision of the fuzzy model performance were 91.67% (±4.92, 76% (±7.6, 88.43% (±5.7, and 93.62% (±4.32, respectively. Instant performance on admission and very low probability of mistake in predicting malnutrition risk level may justify using the model in hospitals. Conclusion: To conclude, the fuzzy model-screening tool is based on multiple nutritional risk factors, having the capability of classifying inpatients into several nutritional risk levels and identifying the level of required nutritional intervention.

  3. Improving the anesthetic process by a fuzzy rule based medical decision system.

    Science.gov (United States)

    Mendez, Juan Albino; Leon, Ana; Marrero, Ayoze; Gonzalez-Cava, Jose M; Reboso, Jose Antonio; Estevez, Jose Ignacio; Gomez-Gonzalez, José F

    2018-01-01

    The main objective of this research is the design and implementation of a new fuzzy logic tool for automatic drug delivery in patients undergoing general anesthesia. The aim is to adjust the drug dose to the real patient needs using heuristic knowledge provided by clinicians. A two-level computer decision system is proposed. The idea is to release the clinician from routine tasks so that he can focus on other variables of the patient. The controller uses the Bispectral Index (BIS) to assess the hypnotic state of the patient. Fuzzy controller was included in a closed-loop system to reach the BIS target and reject disturbances. BIS was measured using a BIS VISTA monitor, a device capable of calculating the hypnosis level of the patient through EEG information. An infusion pump with propofol 1% is used to supply the drug to the patient. The inputs to the fuzzy inference system are BIS error and BIS rate. The output is infusion rate increment. The mapping of the input information and the appropriate output is given by a rule-base based on knowledge of clinicians. To evaluate the performance of the fuzzy closed-loop system proposed, an observational study was carried out. Eighty one patients scheduled for ambulatory surgery were randomly distributed in 2 groups: one group using a fuzzy logic based closed-loop system (FCL) to automate the administration of propofol (42 cases); the second group using manual delivering of the drug (39 cases). In both groups, the BIS target was 50. The FCL, designed with intuitive logic rules based on the clinician experience, performed satisfactorily and outperformed the manual administration in patients in terms of accuracy through the maintenance stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Decision framework of photovoltaic module selection under interval-valued intuitionistic fuzzy environment

    International Nuclear Information System (INIS)

    Long, Shengping; Geng, Shuai

    2015-01-01

    Highlights: • The evaluation index system is set by the engineering and supply chain perspectives. • The interval-valued intuitionistic fuzzy set (IVIFS) to express the performances. • The IVIFS entropy weight method is applied to improve the objectivity of weights. - Abstract: The selection of appropriate photovoltaic module is of extremely high importance for the solar power station project; however the comprehensive problem of evaluation index system, the information loss problem and the lack-objectivity problem in the selection process will decrease the reasonability of the selection result. The innovation points of this paper are as follows: first, the comprehensive evaluation index system of photovoltaic module is established from the engineering management and supply chain management perspectives to solve the comprehensive problem; second, the interval-valued intuitionistic fuzzy set (IVIFS) are introduced into the photovoltaic modules selection process to express the alternatives’ performances to solve the information loss problem; third, the IVIFS entropy weight method is applied to improve the objectivity of the criteria’s weights. According to the aforementioned solutions, the decision framework of photovoltaic module selection under interval-valued intuitionistic fuzzy environment are established and used in a case study to demonstrate its effectiveness. Therefore, from the theoretical modeling and empirical demonstration, the decision framework proposed in this paper can effectively handle such a complicated problem and lead to an outstanding result.

  5. Assessing experience in the deliberate practice of running using a fuzzy decision-support system.

    Directory of Open Access Journals (Sweden)

    Maria Isabel Roveri

    Full Text Available The judgement of skill experience and its levels is ambiguous though it is crucial for decision-making in sport sciences studies. We developed a fuzzy decision support system to classify experience of non-elite distance runners. Two Mamdani subsystems were developed based on expert running coaches' knowledge. In the first subsystem, the linguistic variables of training frequency and volume were combined and the output defined the quality of running practice. The second subsystem yielded the level of running experience from the combination of the first subsystem output with the number of competitions and practice time. The model results were highly consistent with the judgment of three expert running coaches (r>0.88, p0.86, p<0.001. From the expert's knowledge and the fuzzy model, running experience is beyond the so-called "10-year rule" and depends not only on practice time, but on the quality of practice (training volume and frequency and participation in competitions. The fuzzy rule-based model was very reliable, valid, deals with the marked ambiguities inherent in the judgment of experience and has potential applications in research, sports training, and clinical settings.

  6. A fuzzy decision-support system in road safety planning

    OpenAIRE

    Behnood, Hamid Reza; Ayati, Esmaeel; Brijs, Tom; Neghab, Mohammadali Pirayesh; Shen, Yongjun

    2017-01-01

    The objective of this research was to develop a decision-support system to help road safety policy makers make the right choices in road safety planning based on the efficiency of previously implemented safety measures. The measures considered for each region in the study include performance indicators about police operations, treated black spots, freeway and highway facility supplies, speed control cameras, emergency medical services and road lighting projects. To this end, an inefficiency m...

  7. Integrating GIS with fuzzy multi-criteria decision making for suitable wind farm locations

    Energy Technology Data Exchange (ETDEWEB)

    Iyappan, L.; Pandian, P.K. [Tagore Engineering College. Dept. of Civil Engineering, Tamil Nadu (India)

    2012-07-01

    Wind Energy is spatial in nature and the degree of potential wind farm locations are fuzzy i.e., the boundaries among highly, moderate and least suitable is not clear cut. The study area of this research covers entire taluk of Tirumangalam, Madurai District (India). In this study, to help wind energy companies, policy-makers and investors in evaluating potential wind farm locations in the Tirumangalam Taluk (Tamil Nadu, India), an adaptation of a Geographical Information System (GIS) and Fuzzy Multi-criteria Decision Making(FMDM) approach is attended. The entire processes were completed by using open source GIS software (Quantum GIS and GRASS GIS) with help of freely available data. The software tool takes inputs such as wind power density, Slope, Transmission lines, environmental factors, and economic factors to provide an in-depth analysis for suitable location options. (Author)

  8. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    Science.gov (United States)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  9. A Fuzzy Multi-Attribute Decision Making Model for Strategic Risk Assessment

    Directory of Open Access Journals (Sweden)

    Rabia Arikan

    2013-05-01

    Full Text Available Risk assessment is a very important issue for an effective institution, since the lack of accurate risk assessment method or the improper risk management might cause problems to achieve institutionsarsquo; strategic objectives. There are a finite number of risks which have to be ranked considering many different and conflicting criteria. In this respect, assessing risks by relating to strategic objectives is a multi-attribute decision making problem. In this study, an integrated approach which employs analytic hierarchy process (AHP and fuzzy logarithmic least squares method (LLSM together is proposed for the strategic risk assessment problem. The AHP is used to analyze the structure of the risk assessment problem and to determine weights of the criteria, and fuzzy LLSM method is used to obtain final ranking. Proposed approach is applied to a problem of prioritizing risks in a public institution.

  10. Measuring performance in health care: case-mix adjustment by boosted decision trees.

    Science.gov (United States)

    Neumann, Anke; Holstein, Josiane; Le Gall, Jean-Roger; Lepage, Eric

    2004-10-01

    The purpose of this paper is to investigate the suitability of boosted decision trees for the case-mix adjustment involved in comparing the performance of various health care entities. First, we present logistic regression, decision trees, and boosted decision trees in a unified framework. Second, we study in detail their application for two common performance indicators, the mortality rate in intensive care and the rate of potentially avoidable hospital readmissions. For both examples the technique of boosting decision trees outperformed standard prognostic models, in particular linear logistic regression models, with regard to predictive power. On the other hand, boosting decision trees was computationally demanding and the resulting models were rather complex and needed additional tools for interpretation. Boosting decision trees represents a powerful tool for case-mix adjustment in health care performance measurement. Depending on the specific priorities set in each context, the gain in predictive power might compensate for the inconvenience in the use of boosted decision trees.

  11. Multi-Attribute Decision-Making Based on Prioritized Aggregation Operator under Hesitant Intuitionistic Fuzzy Linguistic Environment

    Directory of Open Access Journals (Sweden)

    Peide Liu

    2017-11-01

    Full Text Available A hesitant intuitionistic fuzzy linguistic set (HIFLS that integrates both qualitative and quantitative evaluations is an extension of the linguistic set, intuitionistic fuzzy set (IFS, hesitant fuzzy set (HFS and hesitant intuitionistic fuzzy set (HIFS. It can describe the qualitative evaluation information given by the decision-makers (DMs and reflect their uncertainty. In this article, we defined some new operational laws and comparative method for HIFLSs. Then, based on these operations, we propose two prioritized aggregation (PA operators for HIFLSs: prioritized weighted averaging operator for HIFLSs (HIFLPWA and prioritized weighted geometric operator for HIFLSs (HIFLPWG. Based on these aggregation operators, an approach for multi-attribute decision-making (MADM is developed under the environment of HIFLSs. Finally, a practical example is given to show the practicality and effectiveness of the developed approach by comparing with the other representative methods.

  12. Nicotine replacement therapy decision based on fuzzy multi-criteria analysis

    Science.gov (United States)

    Tarmudi, Zamali; Matmali, Norfazillah; Abdullah, Mohd Lazim

    2017-08-01

    It has been observed that Nicotine Replacement Therapy (NRT) is one of the alternatives to control and reduce smoking addiction among smokers. Since the decision to choose the best NRT alternative involves uncertainty, ambiguity factors and diverse input datasets, thus, this paper proposes a fuzzy multi-criteria analysis (FMA) to overcome these issues. It focuses on how the fuzzy approach can unify the diversity of datasets based on NRT's decision-making problem. The analysis done employed the advantage of the cost-benefit criterion to unify the mixture of dataset input. The performance matrix was utilised to derive the performance scores. An empirical example regarding the NRT's decision-making problem was employed to illustrate the proposed approach. Based on the calculations, this analytical approach was found to be highly beneficial in terms of usability. It was also very applicable and efficient in dealing with the mixture of input datasets. Hence, the decision-making process can easily be used by experts and patients who are interested to join the therapy/cessation program.

  13. PREDIKSI CALON MAHASISWA BARU MENGUNAKAN METODE KLASIFIKASI DECISION TREE

    Directory of Open Access Journals (Sweden)

    Mambang

    2015-02-01

    Full Text Available Prior to the organization of health education begin the new school year, then the first step will be carried out selection of new admissions from general secondary education graduates and vocational. In this study, predicting new students to take multiple data attributes. The model is a decision tree classification prediction method to create a tree consisting of a root node, internal nodes and terminal nodes. While the root node and internal nodes are variables / features, the terminal node. Based on the experimental results and evaluations are done, it can be concluded that algorithm C4.5 with 80.39% accuracy obtained Uncertainty, Precision 94.44%, Recall of 75.00 % while the C4.5 algorithm with Information Gain Accuracy Ratio 88.24%, 98.28% Precision, 83.82% Recall.

  14. Influence diagrams and decision trees for severe accident management

    International Nuclear Information System (INIS)

    Goetz, W.W.J.; Seebregts, A.J.; Bedford, T.J.

    1996-08-01

    A review of relevent methodologies based on Influence Diagrams (IDs), Decision Trees (DTs), and Containment Event Trees (CETs) was conducted to assess the practicality of these methods for the selection of effective strategies for Severe Accident Management (SAM). The review included an evaluation of some software packages for these methods. The emphasis was on possible pitfalls of using IDs and on practical aspects, the latter by performance of a case study that was based on an existing Level 2 Probabilistic Safety Assessment (PSA). The study showed that the use of a combined ID/DT model has advantages over CET models, in particular when conservatisms in the Level 2 PSA have been identified and replaced by fair assessments of the uncertainties involved. It is recommended to use ID/DT models as complementary to CET models. (orig.)

  15. Using decision trees to understand structure in missing data.

    Science.gov (United States)

    Tierney, Nicholas J; Harden, Fiona A; Harden, Maurice J; Mengersen, Kerrie L

    2015-06-29

    Demonstrate the application of decision trees--classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)--to understand structure in missing data. Data taken from employees at 3 different industrial sites in Australia. 7915 observations were included. The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the 'rpart' and 'gbm' packages for CART and BRT analyses, respectively, from the statistical software 'R'. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Researchers are encouraged to use CART and BRT models to explore and understand missing data. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.

  17. Fault trees for decision making in systems analysis

    International Nuclear Information System (INIS)

    Lambert, H.E.

    1975-01-01

    The application of fault tree analysis (FTA) to system safety and reliability is presented within the framework of system safety analysis. The concepts and techniques involved in manual and automated fault tree construction are described and their differences noted. The theory of mathematical reliability pertinent to FTA is presented with emphasis on engineering applications. An outline of the quantitative reliability techniques of the Reactor Safety Study is given. Concepts of probabilistic importance are presented within the fault tree framework and applied to the areas of system design, diagnosis and simulation. The computer code IMPORTANCE ranks basic events and cut sets according to a sensitivity analysis. A useful feature of the IMPORTANCE code is that it can accept relative failure data as input. The output of the IMPORTANCE code can assist an analyst in finding weaknesses in system design and operation, suggest the most optimal course of system upgrade, and determine the optimal location of sensors within a system. A general simulation model of system failure in terms of fault tree logic is described. The model is intended for efficient diagnosis of the causes of system failure in the event of a system breakdown. It can also be used to assist an operator in making decisions under a time constraint regarding the future course of operations. The model is well suited for computer implementation. New results incorporated in the simulation model include an algorithm to generate repair checklists on the basis of fault tree logic and a one-step-ahead optimization procedure that minimizes the expected time to diagnose system failure. (80 figures, 20 tables)

  18. An Intuitionistic Fuzzy Stochastic Decision-Making Method Based on Case-Based Reasoning and Prospect Theory

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available According to the case-based reasoning method and prospect theory, this paper mainly focuses on finding a way to obtain decision-makers’ preferences and the criterion weights for stochastic multicriteria decision-making problems and classify alternatives. Firstly, we construct a new score function for an intuitionistic fuzzy number (IFN considering the decision-making environment. Then, we aggregate the decision-making information in different natural states according to the prospect theory and test decision-making matrices. A mathematical programming model based on a case-based reasoning method is presented to obtain the criterion weights. Moreover, in the original decision-making problem, we integrate all the intuitionistic fuzzy decision-making matrices into an expectation matrix using the expected utility theory and classify or rank the alternatives by the case-based reasoning method. Finally, two illustrative examples are provided to illustrate the implementation process and applicability of the developed method.

  19. Embedded system in Arduino platform with Fuzzy control to support the grain aeration decision

    Directory of Open Access Journals (Sweden)

    Albino Szesz Junior

    Full Text Available ABSTRACT: Aeration is currently the most commonly used technique to improve the drying and storage of grain, depending on temperature and water content of the grain, as of the temperature and relative humidity of the outside air. In order to monitor temperature and humidity of the grain mass, it is possible to have a network of sensors in the cells of both internal and external storage. Use of artificial intelligence through Fuzzy theory, has been used since the 60s and enables their application on various forms. Thus, it is observed that the aeration of grain in function of representing a system of controlled environment can be studied in relation to the application of this theory. Therefore, the aim of this paper is to present an embedded Fuzzy control system based on the mathematical model of CRUZ et al. (2002 and applied to the Arduino platform, for decision support in aeration of grain. For this, an embedded Arduino system was developed, which received the environmental values of temperature and humidity to then be processed in a Fuzzy controller and return the output as a recommendation to control the aeration process rationally. Comparing the results obtained from the graph presented by LASSERAN (1981 it was observed that the system is effective.

  20. The use of Fuzzy expert system in robots decision-making

    International Nuclear Information System (INIS)

    Jamaseb, Mehdi; Jafari, Shahram; Montaseri, Farshid; Dadgar, Masoud

    2014-01-01

    The main issue that is investigated in this paper, is a method for decision making of mobile robots in different conditions for this purpose, we have used expert system. In this way, that the conditions of the robot are analyzed by on expert person a special issue (like following a ball) using knowledge base and suitable decisions will be mode. Then, using this information fuzzy rules well be built, and using its rules, robots decisions can be implemented like an expert person. In this study, we have used delta3d base for implementing expert systems and CLIPS and also we have used NAO for simulation rcssserver3d robot and 3d football simulation have been used for implementing operation program

  1. Medical case retrieval from a committee of decision trees.

    Science.gov (United States)

    Quellec, Gwénolé; Lamard, Mathieu; Bekri, Lynda; Cazuguel, Guy; Roux, Christian; Cochener, Béatrice

    2010-09-01

    A novel content-based information retrieval framework, designed to cover several medical applications, is presented in this paper. The presented framework allows the retrieval of possibly incomplete medical cases consisting of several images together with semantic information. It relies on a committee of decision trees, decision support tools well suited to process this type of information. In our proposed framework, images are characterized by their digital content. It was applied to two heterogeneous medical datasets for computer-aided diagnoses: a diabetic retinopathy follow-up dataset (DRD) and a mammography-screening dataset (DDSM). Measure of precision among the top five retrieved results of 0.788 + or - 0.137 and 0.869 + or - 0.161 was obtained on DRD and DDSM, respectively. On DRD, for instance, it increases by half the retrieval of single images.

  2. Decision making using AHP (Analytic Hierarchy Process) and fuzzy set theory in waste management

    International Nuclear Information System (INIS)

    Chung, J.Y.; Lee, K.J.; Kim, C.D.

    1995-01-01

    The major problem is how to consider the differences in opinions, when many experts are involved in decision making process. This paper provides a simple general methodology to treat the differences in various opinions. The authors determined the grade of membership through the process of magnitude estimation derived from pairwise comparisons and AHP developed by Saaty. They used fuzzy set theory to consider the differences in opinions and obtain the priorities for each alternative. An example, which can be applied to radioactive waste management, also was presented. The result shows a good agreement with the results of averaging methods

  3. Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class

    OpenAIRE

    Ahmed Abdulghani Taha; Mohammad Abdulghani Taha

    2016-01-01

    This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m...

  4. Optimization and analysis of decision trees and rules: Dynamic programming approach

    KAUST Repository

    Alkhalid, Abdulaziz

    2013-08-01

    This paper is devoted to the consideration of software system Dagger created in KAUST. This system is based on extensions of dynamic programming. It allows sequential optimization of decision trees and rules relative to different cost functions, derivation of relationships between two cost functions (in particular, between number of misclassifications and depth of decision trees), and between cost and uncertainty of decision trees. We describe features of Dagger and consider examples of this systems work on decision tables from UCI Machine Learning Repository. We also use Dagger to compare 16 different greedy algorithms for decision tree construction. © 2013 Taylor and Francis Group, LLC.

  5. The Best Path Analysis in Military Highway Transport Based on DEA and Multiobjective Fuzzy Decision-Making

    Directory of Open Access Journals (Sweden)

    Wu Juan

    2014-01-01

    Full Text Available Military transport path selection directly affects the transport speed, efficiency, and safety. To a certain degree, the results of the path selection determine success or failure of the war situation. The purpose of this paper is to propose a model based on DEA (data envelopment analysis and multiobjective fuzzy decision-making for path selection. The path decision set is established according to a search algorithm based on overlapping section punishment. Considering the influence of various fuzzy factors, the model of optimal path is constructed based on DEA and multitarget fuzzy decision-making theory, where travel time, transport risk, quick response capability, and transport cost constitute the evaluation target set. A reasonable path set can be calculated and sorted according to the comprehensive scores of the paths. The numerical results show that the model and the related algorithms are effective for path selection of military transport.

  6. Decision tree models for data mining in hit discovery.

    Science.gov (United States)

    Hammann, Felix; Drewe, Juergen

    2012-04-01

    Decision tree induction (DTI) is a powerful means of modeling data without much prior preparation. Models are readable by humans, robust and easily applied in real-world applications, features that are mutually exclusive in other commonly used machine learning paradigms. While DTI is widely used in disciplines ranging from economics to medicine, they are an intriguing option in pharmaceutical research, especially when dealing with large data stores. This review covers the automated technologies available for creating decision trees and other rules efficiently, even from large datasets such as chemical libraries. The authors discuss the need for properly documented and validated models. Lastly, the authors cover several case studies in hit discovery, drug metabolism and toxicology, and drug surveillance, and compare them with other established techniques. DTI is a competitive and easy-to-use tool in basic research as well as in hit and drug discovery. Its strengths lie in its ability to handle all sorts of different data formats, the visual nature of the models, and the small computational effort needed for implementation in real-world systems. Limitations include lack of robustness and over-fitted models for certain types of data. As with any modeling technique, proper validation and quality measures are of utmost importance. © 2012 Informa UK, Ltd.

  7. Peripheral Exophytic Oral Lesions: A Clinical Decision Tree

    Directory of Open Access Journals (Sweden)

    Hamed Mortazavi

    2017-01-01

    Full Text Available Diagnosis of peripheral oral exophytic lesions might be quite challenging. This review article aimed to introduce a decision tree for oral exophytic lesions according to their clinical features. General search engines and specialized databases including PubMed, PubMed Central, Medline Plus, EBSCO, Science Direct, Scopus, Embase, and authenticated textbooks were used to find relevant topics by means of keywords such as “oral soft tissue lesion,” “oral tumor like lesion,” “oral mucosal enlargement,” and “oral exophytic lesion.” Related English-language articles published since 1988 to 2016 in both medical and dental journals were appraised. Upon compilation of data, peripheral oral exophytic lesions were categorized into two major groups according to their surface texture: smooth (mesenchymal or nonsquamous epithelium-originated and rough (squamous epithelium-originated. Lesions with smooth surface were also categorized into three subgroups according to their general frequency: reactive hyperplastic lesions/inflammatory hyperplasia, salivary gland lesions (nonneoplastic and neoplastic, and mesenchymal lesions (benign and malignant neoplasms. In addition, lesions with rough surface were summarized in six more common lesions. In total, 29 entities were organized in the form of a decision tree in order to help clinicians establish a logical diagnosis by a stepwise progression method.

  8. Decision Tree Approach to Discovering Fraud in Leasing Agreements

    Directory of Open Access Journals (Sweden)

    Horvat Ivan

    2014-09-01

    Full Text Available Background: Fraud attempts create large losses for financing subjects in modern economies. At the same time, leasing agreements have become more and more popular as a means of financing objects such as machinery and vehicles, but are more vulnerable to fraud attempts. Objectives: The goal of the paper is to estimate the usability of the data mining approach in discovering fraud in leasing agreements. Methods/Approach: Real-world data from one Croatian leasing firm was used for creating tow models for fraud detection in leasing. The decision tree method was used for creating a classification model, and the CHAID algorithm was deployed. Results: The decision tree model has indicated that the object of the leasing agreement had the strongest impact on the probability of fraud. Conclusions: In order to enhance the probability of the developed model, it would be necessary to develop software that would enable automated, quick and transparent retrieval of data from the system, processing according to the rules and displaying the results in multiple categories.

  9. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    Science.gov (United States)

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.

  10. Toward the Decision Tree for Inferring Requirements Maturation Types

    Science.gov (United States)

    Nakatani, Takako; Kondo, Narihito; Shirogane, Junko; Kaiya, Haruhiko; Hori, Shozo; Katamine, Keiichi

    Requirements are elicited step by step during the requirements engineering (RE) process. However, some types of requirements are elicited completely after the scheduled requirements elicitation process is finished. Such a situation is regarded as problematic situation. In our study, the difficulties of eliciting various kinds of requirements is observed by components. We refer to the components as observation targets (OTs) and introduce the word “Requirements maturation.” It means when and how requirements are elicited completely in the project. The requirements maturation is discussed on physical and logical OTs. OTs Viewed from a logical viewpoint are called logical OTs, e.g. quality requirements. The requirements of physical OTs, e.g., modules, components, subsystems, etc., includes functional and non-functional requirements. They are influenced by their requesters' environmental changes, as well as developers' technical changes. In order to infer the requirements maturation period of each OT, we need to know how much these factors influence the OTs' requirements maturation. According to the observation of actual past projects, we defined the PRINCE (Pre Requirements Intelligence Net Consideration and Evaluation) model. It aims to guide developers in their observation of the requirements maturation of OTs. We quantitatively analyzed the actual cases with their requirements elicitation process and extracted essential factors that influence the requirements maturation. The results of interviews of project managers are analyzed by WEKA, a data mining system, from which the decision tree was derived. This paper introduces the PRINCE model and the category of logical OTs to be observed. The decision tree that helps developers infer the maturation type of an OT is also described. We evaluate the tree through real projects and discuss its ability to infer the requirements maturation types.

  11. A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler.

    Science.gov (United States)

    Butt, Muhammad Arif; Akram, Muhammad

    2016-01-01

    We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.

  12. Frank Aggregation Operators for Triangular Interval Type-2 Fuzzy Set and Its Application in Multiple Attribute Group Decision Making

    Directory of Open Access Journals (Sweden)

    Jindong Qin

    2014-01-01

    Full Text Available This paper investigates an approach to multiple attribute group decision-making (MAGDM problems, in which the individual assessments are in the form of triangle interval type-2 fuzzy numbers (TIT2FNs. Firstly, some Frank operation laws of triangle interval type-2 fuzzy set (TIT2FS are defined. Secondly, some Frank aggregation operators such as the triangle interval type-2 fuzzy Frank weighted averaging (TIT2FFWA operator and the triangle interval type-2 fuzzy Frank weighted geometric (TIT2FFWG operator are developed for aggregation TIT2FNs. Furthermore, some desirable properties of the two aggregation operators are analyzed in detail. Finally, an approach based on TIT2FFWA (or TIT2FFWG operator to solve MAGDM is developed. An illustrative example about supplier selection is provided to illustrate the developed procedures. The results demonstrate the practicality and effectiveness of our new method.

  13. A Scientific Decision Framework for Supplier Selection under Interval Valued Intuitionistic Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    R. Krishankumar

    2017-01-01

    Full Text Available This paper proposes a new scientific decision framework (SDF under interval valued intuitionistic fuzzy (IVIF environment for supplier selection (SS. The framework consists of two phases, where, in the first phase, criteria weights are estimated in a sensible manner using newly proposed IVIF based statistical variance (SV method and, in the second phase, the suitable supplier is selected using ELECTRE (ELimination and Choice Expressing REality ranking method under IVIF environment. This method involves three categories of outranking, namely, strong, moderate, and weak. Previous studies on ELECTRE ranking reveal that scholars have only used two categories of outranking, namely, strong and weak, in the formulation of IVIF based ELECTRE, which eventually aggravates fuzziness and vagueness in decision making process due to the potential loss of information. Motivated by this challenge, third outranking category, called moderate, is proposed, which considerably reduces the loss of information by improving checks to the concordance and discordance matrices. Thus, in this paper, IVIF-ELECTRE (IVIFE method is presented and popular TOPSIS method is integrated with IVIFE for obtaining a linear ranking. Finally, the practicality of the proposed framework is demonstrated using SS example and the strength of proposed SDF is realized by comparing the framework with other similar methods.

  14. Decision model on the demographic profile for tuberculosis control using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Laisa Ribeiro de Sá

    2015-06-01

    Full Text Available This study aimed to describe the relationship between demographic factors and the involvement of tuberculosis by applying a decision support model based on fuzzy logic to classify the regions as priority and non-priority in the city of João Pessoa, state of Paraíba (PB. As data source, we used the Notifiable Diseases Information System between 2009 and 2011. We chose the descriptive analysis, relative risk (RR, spatial distribution and fuzzy logic. The total of 1,245 cases remained in the study, accounting for 37.02% of cases in 2009. High and low risk clusters were identified, and the RR was higher among men (8.47, with 12 clusters, and among those uneducated (11.65, with 13 clusters. To demonstrate the functionality of the model was elected the year with highest number of cases, and the municipality district with highest population. The methodology identified priority areas, guiding managers to make decisions that respect the local particularities.

  15. A new approach to enhance the performance of decision tree for classifying gene expression data.

    Science.gov (United States)

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  16. A MOORA based fuzzy multi-criteria decision making approach for supply chain strategy selection

    Directory of Open Access Journals (Sweden)

    Bijan Sarkar

    2012-08-01

    Full Text Available To acquire the competitive advantages in order to survive in the global business scenario, modern companies are now facing the problems of selecting key supply chain strategies. Strategy selection becomes difficult as the number of alternatives and conflicting criteria increases. Multi criteria decision making (MCDM methodologies help the supply chain managers take a lead in a complex industrial set-up. The present investigation applies fuzzy MCDM technique entailing multi-objective optimization on the basis of ratio analysis (MOORA in selection of alternatives in a supply chain. The MOORA method is utilized to three suitable numerical examples for the selection of supply chain strategies (warehouse location selection and vendor/supplier selection. The results obtained by using current approach almost match with those of previous research works published in various open journals. The empirical study has demonstrated the simplicity and applicability of this method as a strategic decision making tool in a supply chain.

  17. Defender-Attacker Decision Tree Analysis to Combat Terrorism.

    Science.gov (United States)

    Garcia, Ryan J B; von Winterfeldt, Detlof

    2016-12-01

    We propose a methodology, called defender-attacker decision tree analysis, to evaluate defensive actions against terrorist attacks in a dynamic and hostile environment. Like most game-theoretic formulations of this problem, we assume that the defenders act rationally by maximizing their expected utility or minimizing their expected costs. However, we do not assume that attackers maximize their expected utilities. Instead, we encode the defender's limited knowledge about the attacker's motivations and capabilities as a conditional probability distribution over the attacker's decisions. We apply this methodology to the problem of defending against possible terrorist attacks on commercial airplanes, using one of three weapons: infrared-guided MANPADS (man-portable air defense systems), laser-guided MANPADS, or visually targeted RPGs (rocket propelled grenades). We also evaluate three countermeasures against these weapons: DIRCMs (directional infrared countermeasures), perimeter control around the airport, and hardening airplanes. The model includes deterrence effects, the effectiveness of the countermeasures, and the substitution of weapons and targets once a specific countermeasure is selected. It also includes a second stage of defensive decisions after an attack occurs. Key findings are: (1) due to the high cost of the countermeasures, not implementing countermeasures is the preferred defensive alternative for a large range of parameters; (2) if the probability of an attack and the associated consequences are large, a combination of DIRCMs and ground perimeter control are preferred over any single countermeasure. © 2016 Society for Risk Analysis.

  18. Bi-Criteria Optimization of Decision Trees with Applications to Data Analysis

    KAUST Repository

    Chikalov, Igor

    2017-10-19

    This paper is devoted to the study of bi-criteria optimization problems for decision trees. We consider different cost functions such as depth, average depth, and number of nodes. We design algorithms that allow us to construct the set of Pareto optimal points (POPs) for a given decision table and the corresponding bi-criteria optimization problem. These algorithms are suitable for investigation of medium-sized decision tables. We discuss three examples of applications of the created tools: the study of relationships among depth, average depth and number of nodes for decision trees for corner point detection (such trees are used in computer vision for object tracking), study of systems of decision rules derived from decision trees, and comparison of different greedy algorithms for decision tree construction as single- and bi-criteria optimization algorithms.

  19. Using histograms to introduce randomization in the generation of ensembles of decision trees

    Science.gov (United States)

    Kamath, Chandrika; Cantu-Paz, Erick; Littau, David

    2005-02-22

    A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.

  20. Data Fusion Research of Triaxial Human Body Motion Gesture based on Decision Tree

    Directory of Open Access Journals (Sweden)

    Feihong Zhou

    2014-05-01

    Full Text Available The development status of human body motion gesture data fusion domestic and overseas has been analyzed. A triaxial accelerometer is adopted to develop a wearable human body motion gesture monitoring system aimed at old people healthcare. On the basis of a brief introduction of decision tree algorithm, the WEKA workbench is adopted to generate a human body motion gesture decision tree. At last, the classification quality of the decision tree has been validated through experiments. The experimental results show that the decision tree algorithm could reach an average predicting accuracy of 97.5 % with lower time cost.

  1. Multicriteria group decision-making method using the distances-based similarity measures between intuitionistic trapezoidal fuzzy numbers

    Science.gov (United States)

    Ye, Jun

    2012-10-01

    The Hamming and Euclidean distances between intuitionistic trapezoidal fuzzy numbers and the distances-based similarity measures are proposed in this study, then an intuitionistic trapezoidal fuzzy multicriteria group decision-making method is established using the similarity measures and expected weight values, in which linguistic values of intuitionistic trapezoidal fuzzy numbers for linguistic terms are used to assess alternatives with respect to qualitative criteria and criteria weights. We establish simple and exact formulae to solve the multicriteria group decision-making problem based on the similarity measures between the ideal alternative and each alternative, the ranking order of all the alternatives and the best one can be determined by the proposed similarity measures. Finally, an illustrative example demonstrates the implementation process of the technique.

  2. Ship Engine Room Casualty Analysis by Using Decision Tree Method

    Directory of Open Access Journals (Sweden)

    Ömür Yaşar SAATÇİOĞLU

    2017-03-01

    Full Text Available Ships may encounter undesirable conditions during operations. In consequence of a casualty, fire, explosion, flooding, grounding, injury even death may occur. Besides, these results can be avoidable with precautions and preventive operating processes. In maritime transportation, casualties depend on various factors. These were listed as misuse of the engine equipment and tools, defective machinery or equipment, inadequacy of operational procedure and measure of safety and force majeure effects. Casualty reports which were published in Australia, New Zealand, United Kingdom, Canada and United States until 2015 were examined and the probable causes and consequences of casualties were determined with their occurrence percentages. In this study, 89 marine investigation reports regarding engine room casualties were analyzed. Casualty factors were analyzed with their frequency percentages and also their main causes were constructed. This study aims to investigate engine room based casualties, frequency of each casualty type and main causes by using decision tree method.

  3. Decision making in the manufacturing environment using graph theory and fuzzy multiple attribute decision making methods

    CERN Document Server

    Rao, Ravipudi Venkata

    2007-01-01

    Manufacturing is the backbone of any industrialized nation. Recent worldwide advances in manufacturing technologies have brought about a metamorphism in the industry. Fast-changing technologies on the product front have created a need for an equally fast response from manufacturing industries. To meet these challenges, manufacturing industries have to select appropriate manufacturing strategies, product designs, manufacturing processes, work piece and tool materials, and machinery and equipment. The selection decisions are complex as decision making is more challenging today. Decision makers i

  4. Intracranial hypertension prediction using extremely randomized decision trees.

    Science.gov (United States)

    Scalzo, Fabien; Hamilton, Robert; Asgari, Shadnaz; Kim, Sunghan; Hu, Xiao

    2012-10-01

    Intracranial pressure (ICP) elevation (intracranial hypertension, IH) in neurocritical care is typically treated in a reactive fashion; it is only delivered after bedside clinicians notice prolonged ICP elevation. A proactive solution is desirable to improve the treatment of intracranial hypertension. Several studies have shown that the waveform morphology of the intracranial pressure pulse holds predictors about future intracranial hypertension and could therefore be used to alert the bedside clinician of a likely occurrence of the elevation in the immediate future. In this paper, a computational framework is proposed to predict prolonged intracranial hypertension based on morphological waveform features computed from the ICP. A key contribution of this work is to exploit an ensemble classifier method based on extremely randomized decision trees (Extra-Trees). Experiments on a representative set of 30 patients admitted for various intracranial pressure related conditions demonstrate the effectiveness of the predicting framework on ICP pulses acquired under clinical conditions and the superior results of the proposed approach in comparison to linear and AdaBoost classifiers. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. 5th International Conference on Fuzzy and Neuro Computing

    CERN Document Server

    Panigrahi, Bijaya; Das, Swagatam; Suganthan, Ponnuthurai

    2015-01-01

    This proceedings bring together contributions from researchers from academia and industry to report the latest cutting edge research made in the areas of Fuzzy Computing, Neuro Computing and hybrid Neuro-Fuzzy Computing in the paradigm of Soft Computing. The FANCCO 2015 conference explored new application areas, design novel hybrid algorithms for solving different real world application problems. After a rigorous review of the 68 submissions from all over the world, the referees panel selected 27 papers to be presented at the Conference. The accepted papers have a good, balanced mix of theory and applications. The techniques ranged from fuzzy neural networks, decision trees, spiking neural networks, self organizing feature map, support vector regression, adaptive neuro fuzzy inference system, extreme learning machine, fuzzy multi criteria decision making, machine learning, web usage mining, Takagi-Sugeno Inference system, extended Kalman filter, Goedel type logic, fuzzy formal concept analysis, biclustering e...

  6. Extensions of Dynamic Programming: Decision Trees, Combinatorial Optimization, and Data Mining

    KAUST Repository

    Hussain, Shahid

    2016-07-10

    This thesis is devoted to the development of extensions of dynamic programming to the study of decision trees. The considered extensions allow us to make multi-stage optimization of decision trees relative to a sequence of cost functions, to count the number of optimal trees, and to study relationships: cost vs cost and cost vs uncertainty for decision trees by construction of the set of Pareto-optimal points for the corresponding bi-criteria optimization problem. The applications include study of totally optimal (simultaneously optimal relative to a number of cost functions) decision trees for Boolean functions, improvement of bounds on complexity of decision trees for diagnosis of circuits, study of time and memory trade-off for corner point detection, study of decision rules derived from decision trees, creation of new procedure (multi-pruning) for construction of classifiers, and comparison of heuristics for decision tree construction. Part of these extensions (multi-stage optimization) was generalized to well-known combinatorial optimization problems: matrix chain multiplication, binary search trees, global sequence alignment, and optimal paths in directed graphs.

  7. The value of decision tree analysis in planning anaesthetic care in obstetrics.

    Science.gov (United States)

    Bamber, J H; Evans, S A

    2016-08-01

    The use of decision tree analysis is discussed in the context of the anaesthetic and obstetric management of a young pregnant woman with joint hypermobility syndrome with a history of insensitivity to local anaesthesia and a previous difficult intubation due to a tongue tumour. The multidisciplinary clinical decision process resulted in the woman being delivered without complication by elective caesarean section under general anaesthesia after an awake fibreoptic intubation. The decision process used is reviewed and compared retrospectively to a decision tree analytical approach. The benefits and limitations of using decision tree analysis are reviewed and its application in obstetric anaesthesia is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    Science.gov (United States)

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  9. Design of an Action Selection Mechanism for Cooperative Soccer Robots Based on Fuzzy Decision Making Algorithm

    Directory of Open Access Journals (Sweden)

    S. Alireza Mohades Kasaei

    2010-04-01

    Full Text Available Robocup is an international competition for multi agent research and related subject like: Artificial intelligence, Image processing, machine learning, robot path planning, control, and
    obstacle avoidance. In a soccer robot game, the environment is highly competitive and dynamic. In order to work in the dynamically changing environment, the decision-making system of a soccer robot system should have the features of flexibility and real-time adaptation. In this paper we will
    focus on the Middle Size Soccer Robot league (MSL and new hierarchical hybrid fuzzy methods for decision making and action selection of a robot in Middle Size Soccer Robot league (MSL are presented. First, the behaviors of an agent are introduced, implemented and classified in two layers,
    the Low_Level_Behaviors and the High_Level_Behaviors. In the second layer, a two phase mechanism for decision making is introduced. In phase one, some useful methods are implemented which check the robot’s situation for performing required behaviors. In the next phase, the team strategy, team formation, robot’s role and the robot’s positioning system are introduced. A fuzzy logical approach is employed to recognize the team strategy and further more to tell the player the
    best position to move. We believe that a Dynamic role engine is necessary for a successful team. Dynamic role engine and formation control during offensive or defensive play, help us to prevent collision avoidance among own players when attacking the ball and obstacle avoidance of the opponents. At last, we comprised our implemented algorithm in the Robocup 2007 and 2008 and results showed the efficiency of the introduced methodology. The results are satisfactory which has already been successfully implemented in ADRO RoboCup team. This project is still in progress and some new interesting methods are described in the current report.

  10. Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets with an application to decision making

    Czech Academy of Sciences Publication Activity Database

    De Miguel, L.; Bustince, H.; Fernandez, J.; Indurain, E.; Kolesárová, A.; Mesiar, Radko

    2016-01-01

    Roč. 27, č. 1 (2016), s. 189-197 ISSN 1566-2535 Institutional support: RVO:67985556 Keywords : Mulit-expert decision making * Interval-valued Atanassov intuitionistic fuzzy set * Interval linear order Subject RIV: BA - General Mathematics Impact factor: 5.667, year: 2016 http://library.utia.cas.cz/separaty/2016/E/mesiar-0462471.pdf

  11. Water supply management using an extended group fuzzy decision-making method: a case study in north-eastern Iran

    Science.gov (United States)

    Minatour, Yasser; Bonakdari, Hossein; Zarghami, Mahdi; Bakhshi, Maryam Ali

    2015-09-01

    The purpose of this study was to develop a group fuzzy multi-criteria decision-making method to be applied in rating problems associated with water resources management. Thus, here Chen's group fuzzy TOPSIS method extended by a difference technique to handle uncertainties of applying a group decision making. Then, the extended group fuzzy TOPSIS method combined with a consistency check. In the presented method, initially linguistic judgments are being surveyed via a consistency checking process, and afterward these judgments are being used in the extended Chen's fuzzy TOPSIS method. Here, each expert's opinion is turned to accurate mathematical numbers and, then, to apply uncertainties, the opinions of group are turned to fuzzy numbers using three mathematical operators. The proposed method is applied to select the optimal strategy for the rural water supply of Nohoor village in north-eastern Iran, as a case study and illustrated example. Sensitivity analyses test over results and comparing results with project reality showed that proposed method offered good results for water resources projects.

  12. An integrated multi attribute decision model for energy efficiency processes in petrochemical industry applying fuzzy set theory

    International Nuclear Information System (INIS)

    Taylan, Osman; Kaya, Durmus; Demirbas, Ayhan

    2016-01-01

    Graphical abstract: Evaluation of compressors by comparing the different cost parameters. - Highlights: • Fuzzy sets and systems are used for decision making in MCDM problems. • An integrated Fuzzy AHP and fuzzy TOPSIS approaches are employed for compressor selection. • Compressor selection is a highly complex and non-linear process. • This approach increases the efficiency, reliability of alternative scenarios, and reduces the pay-back period. - Abstract: Energy efficient technologies offered by the market increases productivity. However, decision making for these technologies is usually obstructed in the firms and comes up with organizational barriers. Compressor selection in petrochemical industry requires assessment of several criteria such as ‘reliability, energy consumption, initial investment, capacity, pressure, and maintenance cost.’ Therefore, air compressor selection is a multi-attribute decision making (MADM) problem. The aim of this study is to select the most eligible compressor(s) so as to avoid the high energy consumption due to the capacity and maintenance costs. It is also aimed to avoid failures due to the reliability problems and high pressure. MADM usually takes place in a vague and imprecise environment. Soft computing techniques such as fuzzy sets and system can be used for decision making where vague and imprecise knowledge is available. In this study, an integrated fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order performance by similarity to ideal solution (TOPSIS) methodologies are employed for the compressor selection. Fuzzy AHP was used to determine the weights of criteria and fuzzy TOPSIS was employed to order the scenarios according to their superiority. The total effect of all criteria was determined for all alternative scenarios to make an optimal decision. Moreover, the types of compressor, carbon emission, waste heat recovery and their capacities were analyzed and compared by statistical

  13. A Novel Group Decision-Making Method Based on Sensor Data and Fuzzy Information

    Directory of Open Access Journals (Sweden)

    Yu-Ting Bai

    2016-10-01

    Full Text Available Algal bloom is a typical phenomenon of the eutrophication of rivers and lakes and makes the water dirty and smelly. It is a serious threat to water security and public health. Most scholars studying solutions for this pollution have studied the principles of remediation approaches, but few have studied the decision-making and selection of the approaches. Existing research uses simplex decision-making information which is highly subjective and uses little of the data from water quality sensors. To utilize these data and solve the rational decision-making problem, a novel group decision-making method is proposed using the sensor data with fuzzy evaluation information. Firstly, the optimal similarity aggregation model of group opinions is built based on the modified similarity measurement of Vague values. Secondly, the approaches’ ability to improve the water quality indexes is expressed using Vague evaluation methods. Thirdly, the water quality sensor data are analyzed to match the features of the alternative approaches with grey relational degrees. This allows the best remediation approach to be selected to meet the current water status. Finally, the selection model is applied to the remediation of algal bloom in lakes. The results show this method’s rationality and feasibility when using different data from different sources.

  14. Evaluation and selection of 3PL provider using fuzzy AHP and grey TOPSIS in group decision making

    Science.gov (United States)

    Garside, Annisa Kesy; Saputro, Thomy Eko

    2017-11-01

    Selection of a 3PL provider is a problem of multi criteria decision making, where the decision maker has to select several 3PL provider alternatives based on several evaluation criteria. A decision maker will have difficulty to express judgments in exact numerical values due to the fact that information is often incomplete and the decision environment is uncertain. This paper presents an integrated fuzzy AHP and Grey TOPSIS for the evaluation and selection of 3PL provider method. Fuzzy AHP is used to determine the importance weight of evaluation criteria. For final selection, grey TOPSIS is used to evaluate the alternatives and obtain the overall performance which is measured as closeness coefficient. This method is applied to solve the selection of 3PL provider at PT. X. Five criterias and twelve sub-criterias were determined and then the best alternative among four 3PL providers was selected by proposed method.

  15. An Exhaustive Study of Possibility Measures of Interval-Valued Intuitionistic Fuzzy Sets and Application to Multicriteria Decision Making

    Directory of Open Access Journals (Sweden)

    Fatma Dammak

    2016-01-01

    Full Text Available This work is interested in showing the importance of possibility theory in multicriteria decision making (MCDM. Thus, we apply some possibility measures from literature to the MCDM method using interval-valued intuitionistic fuzzy sets (IVIFSs. These measures are applied to a decision matrix after being transformed with aggregation operators. The results are compared between each other and concluding remarks are drawn.

  16. Multi-pruning of decision trees for knowledge representation and classification

    KAUST Repository

    Azad, Mohammad

    2016-06-09

    We consider two important questions related to decision trees: first how to construct a decision tree with reasonable number of nodes and reasonable number of misclassification, and second how to improve the prediction accuracy of decision trees when they are used as classifiers. We have created a dynamic programming based approach for bi-criteria optimization of decision trees relative to the number of nodes and the number of misclassification. This approach allows us to construct the set of all Pareto optimal points and to derive, for each such point, decision trees with parameters corresponding to that point. Experiments on datasets from UCI ML Repository show that, very often, we can find a suitable Pareto optimal point and derive a decision tree with small number of nodes at the expense of small increment in number of misclassification. Based on the created approach we have proposed a multi-pruning procedure which constructs decision trees that, as classifiers, often outperform decision trees constructed by CART. © 2015 IEEE.

  17. Case Study on High Dimensional Data Analysis Using Decision Tree Model

    OpenAIRE

    Smitha.T; V.Sundaram

    2012-01-01

    The major aspire of this paper is to build a model to predict the chances of occurrences of disease in an area. This paper mainly concentrating the data mining technique-Decision tree model to identify the significant parameters for prediction process. The decision tree model created with the help of ID3 algorithm.

  18. Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments

    Science.gov (United States)

    Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.

    2009-01-01

    The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…

  19. A Decision Tree for Psychology Majors: Supplying Questions as Well as Answers.

    Science.gov (United States)

    Poe, Retta E.

    1988-01-01

    Outlines the development of a psychology careers decision tree to help faculty advise students plan their program. States that students using the decision tree may benefit by learning more about their career options and by acquiring better question-asking skills. (GEA)

  20. An Improved Decision Tree for Predicting a Major Product in Competing Reactions

    Science.gov (United States)

    Graham, Kate J.

    2014-01-01

    When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…

  1. Multi-criteria multi-stakeholder decision analysis using a fuzzy-stochastic approach for hydrosystem management

    Directory of Open Access Journals (Sweden)

    Y. H. Subagadis

    2014-09-01

    Full Text Available The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water–society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.

  2. Development of an OLAP Based Fuzzy Logic System for Supporting Put Away Decision

    Directory of Open Access Journals (Sweden)

    S.H.Chung

    2009-10-01

    Full Text Available In today`s rapidly changing and globally volatile world, manufacturers pay strong efforts on conducting lean production, outsourcing their components, and management on the complex supply chain. Warehouse management plays a vital role to be a successful player in the any kinds of industry which put-away process is a key activity that brings significant influence and challenges to warehouse performance. In this dynamic operating environment, minimizing the operation mistakes and providing accurate real time inventory information to stakeholder become the basic requirements to be an order qualifier. An OLAP based intelligent system called Fuzzy Storage Assignment System (FSAS is proposed to increase availability of decision support data and convert the human knowledge into system for tackling the storage location assignment problem (SLAP. To validate the feasibility of this proposed system, a prototype will be worked out for a third party logistics company.

  3. Fuzzy decision-making: a new method in model selection via various validity criteria

    International Nuclear Information System (INIS)

    Shakouri Ganjavi, H.; Nikravesh, K.

    2001-01-01

    Modeling is considered as the first step in scientific investigations. Several alternative models may be candida ted to express a phenomenon. Scientists use various criteria to select one model between the competing models. Based on the solution of a Fuzzy Decision-Making problem, this paper proposes a new method in model selection. The method enables the scientist to apply all desired validity criteria, systematically by defining a proper Possibility Distribution Function due to each criterion. Finally, minimization of a utility function composed of the Possibility Distribution Functions will determine the best selection. The method is illustrated through a modeling example for the A verage Daily Time Duration of Electrical Energy Consumption in Iran

  4. Detection of benign prostatic hyperplasia nodules in T2W MR images using fuzzy decision forest

    Science.gov (United States)

    Lay, Nathan; Freeman, Sabrina; Turkbey, Baris; Summers, Ronald M.

    2016-03-01

    Prostate cancer is the second leading cause of cancer-related death in men MRI has proven useful for detecting prostate cancer, and CAD may further improve detection. One source of false positives in prostate computer-aided diagnosis (CAD) is the presence of benign prostatic hyperplasia (BPH) nodules. These nodules have a distinct appearance with a pseudo-capsule on T2 weighted MR images but can also resemble cancerous lesions in other sequences such as the ADC or high B-value images. Describing their appearance with hand-crafted heuristics (features) that also exclude the appearance of cancerous lesions is challenging. This work develops a method based on fuzzy decision forests to automatically learn discriminative features for the purpose of BPH nodule detection in T2 weighted images for the purpose of improving prostate CAD systems.

  5. A Fuzzy Logic Enhanced Environmental Protection Education Model for Policies Decision Support in Green Community Development

    Directory of Open Access Journals (Sweden)

    Sung-Lin Hsueh

    2013-01-01

    Full Text Available This study proposes the promotion of environmental protection education among communities as a solution to the serious problems of high energy consumption and carbon emissions around the world. Environmental protection education has direct and lasting influences on everyone in society; therefore, it is helpful in our fight against many serious problems caused by high energy consumption. In this study, the Delphi method and the fuzzy logic theory are used to develop a quantizing assessment model based on qualitative analysis. This model can be used to assess the results and influences of community residents’ participation in environmental protection education on green community development. In addition, it can be used to provide references for governing authorities in their decision making of green community development policies.

  6. Decision Rules, Trees and Tests for Tables with Many-valued Decisions–comparative Study

    KAUST Repository

    Azad, Mohammad

    2013-10-04

    In this paper, we present three approaches for construction of decision rules for decision tables with many-valued decisions. We construct decision rules directly for rows of decision table, based on paths in decision tree, and based on attributes contained in a test (super-reduct). Experimental results for the data sets taken from UCI Machine Learning Repository, contain comparison of the maximum and the average length of rules for the mentioned approaches.

  7. Greedy heuristics for minimization of number of terminal nodes in decision trees

    KAUST Repository

    Hussain, Shahid

    2014-10-01

    This paper describes, in detail, several greedy heuristics for construction of decision trees. We study the number of terminal nodes of decision trees, which is closely related with the cardinality of the set of rules corresponding to the tree. We compare these heuristics empirically for two different types of datasets (datasets acquired from UCI ML Repository and randomly generated data) as well as compare with the optimal results obtained using dynamic programming method.

  8. Tackling Complex Emergency Response Solutions Evaluation Problems in Sustainable Development by Fuzzy Group Decision Making Approaches with Considering Decision Hesitancy and Prioritization among Assessing Criteria

    Directory of Open Access Journals (Sweden)

    Xiao-Wen Qi

    2017-10-01

    Full Text Available In order to be prepared against potential balance-breaking risks affecting economic development, more and more countries have recognized emergency response solutions evaluation (ERSE as an indispensable activity in their governance of sustainable development. Traditional multiple criteria group decision making (MCGDM approaches to ERSE have been facing simultaneous challenging characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued dual hesitant fuzzy set (IVDHFS to comprehensively depict decision hesitancy. To exploit decision information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy measure for IVDHFS so that its derivative decision models can avoid potential information distortion in models based on classic IVDHFS distance measures with subjective supplementing mechanism; further, based on defined entropy measure, we develop two fundamental prioritized operators for IVDHFS by extending Yager’s prioritized operators. Furthermore, on the strength of above methods, we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without known weights for decision makers, respectively. Finally, case studies have been conducted to show effectiveness and practicality of our proposed approaches.

  9. Tackling Complex Emergency Response Solutions Evaluation Problems in Sustainable Development by Fuzzy Group Decision Making Approaches with Considering Decision Hesitancy and Prioritization among Assessing Criteria.

    Science.gov (United States)

    Qi, Xiao-Wen; Zhang, Jun-Ling; Zhao, Shu-Ping; Liang, Chang-Yong

    2017-10-02

    In order to be prepared against potential balance-breaking risks affecting economic development, more and more countries have recognized emergency response solutions evaluation (ERSE) as an indispensable activity in their governance of sustainable development. Traditional multiple criteria group decision making (MCGDM) approaches to ERSE have been facing simultaneous challenging characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued dual hesitant fuzzy set (IVDHFS) to comprehensively depict decision hesitancy. To exploit decision information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy measure for IVDHFS so that its derivative decision models can avoid potential information distortion in models based on classic IVDHFS distance measures with subjective supplementing mechanism; further, based on defined entropy measure, we develop two fundamental prioritized operators for IVDHFS by extending Yager's prioritized operators. Furthermore, on the strength of above methods, we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without known weights for decision makers, respectively. Finally, case studies have been conducted to show effectiveness and practicality of our proposed approaches.

  10. Multi-test decision tree and its application to microarray data classification.

    Science.gov (United States)

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry

    2014-01-01

    Highlights: • We propose a fuzzy-based reliability approach to evaluate basic event reliabilities. • It implements the concepts of failure possibilities and fuzzy sets. • Experts evaluate basic event failure possibilities using qualitative words. • Triangular fuzzy numbers mathematically represent qualitative failure possibilities. • It is a very good alternative for conventional reliability approach. - Abstract: Fault tree analysis has been widely utilized as a tool for nuclear power plant probabilistic safety assessment. This analysis can be completed only if all basic events of the system fault tree have their quantitative failure rates or failure probabilities. However, it is difficult to obtain those failure data due to insufficient data, environment changing or new components. This study proposes a fuzzy-based reliability approach to evaluate basic events of system fault trees whose failure precise probability distributions of their lifetime to failures are not available. It applies the concept of failure possibilities to qualitatively evaluate basic events and the concept of fuzzy sets to quantitatively represent the corresponding failure possibilities. To demonstrate the feasibility and the effectiveness of the proposed approach, the actual basic event failure probabilities collected from the operational experiences of the David–Besse design of the Babcock and Wilcox reactor protection system fault tree are used to benchmark the failure probabilities generated by the proposed approach. The results confirm that the proposed fuzzy-based reliability approach arises as a suitable alternative for the conventional probabilistic reliability approach when basic events do not have the corresponding quantitative historical failure data for determining their reliability characteristics. Hence, it overcomes the limitation of the conventional fault tree analysis for nuclear power plant probabilistic safety assessment

  12. Decision Making for Third Party Logistics Supplier Selection in Semiconductor Manufacturing Industry: A Nonadditive Fuzzy Integral Approach

    Directory of Open Access Journals (Sweden)

    Bang-Ning Hwang

    2015-01-01

    Full Text Available The semiconductor industry has a unique vertically disintegrated structure that consists of various firms specializing in a narrow range of the value chain. To ensure manufacturing and logistics efficiency, the semiconductor manufacturers considerably rely on 3PL suppliers to achieve supply chain excellence. However, 3PL supplier selection is a complex decision-making process involving multiple selection criteria. The goal of this paper is to identify the key 3PL selection criteria by employing the nonadditive fuzzy integral approach. Unlike the traditional multicriterion decision-making (MCDM methods which often assume independence among criteria and additive importance weights, the nonadditive fuzzy integral is a more effective approach to solve the dependency among criteria, vagueness in information, and essential fuzziness of human judgment. In this paper, we demonstrate an empirical case that employs the nonadditive fuzzy integral to evaluate the importance weight of selection criteria and choose the most appropriate 3PL supplier. The research result can become a valuable reference for manufacturing companies operating in comparable situations. Moreover, the systematic framework presented in this study can be easily extended to the analysis of other decision-making domains.

  13. The decision tree classifier - Design and potential. [for Landsat-1 data

    Science.gov (United States)

    Hauska, H.; Swain, P. H.

    1975-01-01

    A new classifier has been developed for the computerized analysis of remote sensor data. The decision tree classifier is essentially a maximum likelihood classifier using multistage decision logic. It is characterized by the fact that an unknown sample can be classified into a class using one or several decision functions in a successive manner. The classifier is applied to the analysis of data sensed by Landsat-1 over Kenosha Pass, Colorado. The classifier is illustrated by a tree diagram which for processing purposes is encoded as a string of symbols such that there is a unique one-to-one relationship between string and decision tree.

  14. Application fuzzy multi-attribute decision analysis method to prioritize project success criteria

    Science.gov (United States)

    Phong, Nguyen Thanh; Quyen, Nguyen Le Hoang Thuy To

    2017-11-01

    Project success is a foundation for project owner to manage and control not only for the current project but also for future potential projects in construction companies. However, identifying the key success criteria for evaluating a particular project in real practice is a challenging task. Normally, it depends on a lot of factors, such as the expectation of the project owner and stakeholders, triple constraints of the project (cost, time, quality), and company's mission, vision, and objectives. Traditional decision-making methods for measuring the project success are usually based on subjective opinions of panel experts, resulting in irrational and inappropriate decisions. Therefore, this paper introduces a multi-attribute decision analysis method (MADAM) for weighting project success criteria by using fuzzy Analytical Hierarchy Process approach. It is found that this method is useful when dealing with imprecise and uncertain human judgments in evaluating project success criteria. Moreover, this research also suggests that although cost, time, and quality are three project success criteria projects, the satisfaction of project owner and acceptance of project stakeholders with the completed project criteria is the most important criteria for project success evaluation in Vietnam.

  15. A New Method of Multiattribute Decision-Making Based on Interval-Valued Hesitant Fuzzy Soft Sets and Its Application

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2017-01-01

    Full Text Available Combining interval-valued hesitant fuzzy soft sets (IVHFSSs and a new comparative law, we propose a new method, which can effectively solve multiattribute decision-making (MADM problems. Firstly, a characteristic function of two interval values and a new comparative law of interval-valued hesitant fuzzy elements (IVHFEs based on the possibility degree are proposed. Then, we define two important definitions of IVHFSSs including the interval-valued hesitant fuzzy soft quasi subset and soft quasi equal based on the new comparative law. Finally, an algorithm is presented to solve MADM problems. We also use the method proposed in this paper to evaluate the importance of major components of the well drilling mud pump.

  16. Decision trees and decision committee applied to star/galaxy separation problem

    Science.gov (United States)

    Vasconcellos, Eduardo Charles

    Vasconcellos et al [1] study the efficiency of 13 diferente decision tree algorithms applied to photometric data in the Sloan Digital Sky Digital Survey Data Release Seven (SDSS-DR7) to perform star/galaxy separation. Each algorithm is defined by a set fo parameters which, when varied, produce diferente final classifications trees. In that work we extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. We find that Functional Tree algorithm (FT) yields the best results by the mean completeness function (galaxy true positive rate) in two magnitude intervals:14=19 (82.1%). We compare FT classification to the SDSS parametric, 2DPHOT and Ball et al (2006) classifications. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination ( 2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 train six FT classifiers with random selected objects from the same 884,126 SDSS-DR7 objects with spectroscopic data that we use before. Both, the decision commitee and our previous single FT classifier will be applied to the new ojects from SDSS data releses eight, nine and ten. Finally we will compare peformances of both methods in this new data set. [1] Vasconcellos, E. C.; de Carvalho, R. R.; Gal, R. R.; LaBarbera, F. L.; Capelato, H. V.; Fraga Campos Velho, H.; Trevisan, M.; Ruiz, R. S. R.. Decision Tree Classifiers for Star/Galaxy Separation. The Astronomical Journal, Volume 141, Issue 6, 2011.

  17. Discovering Patterns in Brain Signals Using Decision Trees

    Directory of Open Access Journals (Sweden)

    Narusci S. Bastos

    2016-01-01

    Full Text Available Even with emerging technologies, such as Brain-Computer Interfaces (BCI systems, understanding how our brains work is a very difficult challenge. So we propose to use a data mining technique to help us in this task. As a case of study, we analyzed the brain’s behaviour of blind people and sighted people in a spatial activity. There is a common belief that blind people compensate their lack of vision using the other senses. If an object is given to sighted people and we asked them to identify this object, probably the sense of vision will be the most determinant one. If the same experiment was repeated with blind people, they will have to use other senses to identify the object. In this work, we propose a methodology that uses decision trees (DT to investigate the difference of how the brains of blind people and people with vision react against a spatial problem. We choose the DT algorithm because it can discover patterns in the brain signal, and its presentation is human interpretable. Our results show that using DT to analyze brain signals can help us to understand the brain’s behaviour.

  18. Discovering Patterns in Brain Signals Using Decision Trees.

    Science.gov (United States)

    Bastos, Narusci S; Adamatti, Diana F; Billa, Cleo Z

    Even with emerging technologies, such as Brain-Computer Interfaces (BCI) systems, understanding how our brains work is a very difficult challenge. So we propose to use a data mining technique to help us in this task. As a case of study, we analyzed the brain's behaviour of blind people and sighted people in a spatial activity. There is a common belief that blind people compensate their lack of vision using the other senses. If an object is given to sighted people and we asked them to identify this object, probably the sense of vision will be the most determinant one. If the same experiment was repeated with blind people, they will have to use other senses to identify the object. In this work, we propose a methodology that uses decision trees (DT) to investigate the difference of how the brains of blind people and people with vision react against a spatial problem. We choose the DT algorithm because it can discover patterns in the brain signal, and its presentation is human interpretable. Our results show that using DT to analyze brain signals can help us to understand the brain's behaviour.

  19. Efficient OCR using simple features and decision trees with backtracking

    International Nuclear Information System (INIS)

    Abuhaiba, Ibrahim S.I.

    2006-01-01

    In this paper, it is shown that it is adequate to use simple and easy-to-compute figures such as those we call sliced horizontal and vertical projections to solve the OCR problem for machine-printed documents. Recognition is achieved using a decision tree supported with backtracking, smoothing, row and column cropping, and other additions to increase the success rate. Symbols from Times New Roman type face are used to train our system. Activating backtracking, smoothing and cropping achieved more than 98% successes rate for a recognition time below 30ms per character. The recognition algorithm was exposed to a hard test by polluting the original dataset with additional artificial noise and could maintain a high successes rate and low error rate for highly polluted images, which is a result of backtracking, and smoothing and row and column cropping. Results indicate that we can depend on simple features and hints to reliably recognize characters. The error rate can be decreased by increasing the size of training dataset. The recognition time can be reduced by using some programming optimization techniques and more powerful computers. (author)

  20. Application of alternating decision trees in selecting sparse linear solvers

    KAUST Repository

    Bhowmick, Sanjukta

    2010-01-01

    The solution of sparse linear systems, a fundamental and resource-intensive task in scientific computing, can be approached through multiple algorithms. Using an algorithm well adapted to characteristics of the task can significantly enhance the performance, such as reducing the time required for the operation, without compromising the quality of the result. However, the best solution method can vary even across linear systems generated in course of the same PDE-based simulation, thereby making solver selection a very challenging problem. In this paper, we use a machine learning technique, Alternating Decision Trees (ADT), to select efficient solvers based on the properties of sparse linear systems and runtime-dependent features, such as the stages of simulation. We demonstrate the effectiveness of this method through empirical results over linear systems drawn from computational fluid dynamics and magnetohydrodynamics applications. The results also demonstrate that using ADT can resolve the problem of over-fitting, which occurs when limited amount of data is available. © 2010 Springer Science+Business Media LLC.

  1. A greedy algorithm for construction of decision trees for tables with many-valued decisions - A comparative study

    KAUST Repository

    Azad, Mohammad

    2013-11-25

    In the paper, we study a greedy algorithm for construction of decision trees. This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. Experimental results for data sets from UCI Machine Learning Repository and randomly generated tables are presented. We make a comparative study of the depth and average depth of the constructed decision trees for proposed approach and approach based on generalized decision. The obtained results show that the proposed approach can be useful from the point of view of knowledge representation and algorithm construction.

  2. Iron Supplementation and Altitude: Decision Making Using a Regression Tree

    Directory of Open Access Journals (Sweden)

    Laura A. Garvican-Lewis, Andrew D. Govus, Peter Peeling, Chris R. Abbiss, Christopher J. Gore

    2016-03-01

    Full Text Available Altitude exposure increases the body’s need for iron (Gassmann and Muckenthaler, 2015, primarily to support accelerated erythropoiesis, yet clear supplementation guidelines do not exist. Athletes are typically recommended to ingest a daily oral iron supplement to facilitate altitude adaptations, and to help maintain iron balance. However, there is some debate as to whether athletes with otherwise healthy iron stores should be supplemented, due in part to concerns of iron overload. Excess iron in vital organs is associated with an increased risk of a number of conditions including cancer, liver disease and heart failure. Therefore clear guidelines are warranted and athletes should be discouraged from ‘self-prescribing” supplementation without medical advice. In the absence of prospective-controlled studies, decision tree analysis can be used to describe a data set, with the resultant regression tree serving as guide for clinical decision making. Here, we present a regression tree in the context of iron supplementation during altitude exposure, to examine the association between pre-altitude ferritin (Ferritin-Pre and the haemoglobin mass (Hbmass response, based on daily iron supplement dose. De-identified ferritin and Hbmass data from 178 athletes engaged in altitude training were extracted from the Australian Institute of Sport (AIS database. Altitude exposure was predominantly achieved via normobaric Live high: Train low (n = 147 at a simulated altitude of 3000 m for 2 to 4 weeks. The remaining athletes engaged in natural altitude training at venues ranging from 1350 to 2800 m for 3-4 weeks. Thus, the “hypoxic dose” ranged from ~890 km.h to ~1400 km.h. Ethical approval was granted by the AIS Human Ethics Committee, and athletes provided written informed consent. An in depth description and traditional analysis of the complete data set is presented elsewhere (Govus et al., 2015. Iron supplementation was prescribed by a sports physician

  3. Optimal Decision-Making in Fuzzy Economic Order Quantity (EOQ Model under Restricted Space: A Non-Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    M. Pattnaik

    2013-08-01

    Full Text Available In this paper the concept of fuzzy Non-Linear Programming Technique is applied to solve an economic order quantity (EOQ model under restricted space. Since various types of uncertainties and imprecision are inherent in real inventory problems they are classically modeled using the approaches from the probability theory. However, there are uncertainties that cannot be appropriately treated by usual probabilistic models. The questions how to define inventory optimization tasks in such environment how to interpret optimal solutions arise. This paper allows the modification of the Single item EOQ model in presence of fuzzy decision making process where demand is related to the unit price and the setup cost varies with the quantity produced/Purchased. This paper considers the modification of objective function and storage area in the presence of imprecisely estimated parameters. The model is developed for the problem by employing different modeling approaches over an infinite planning horizon. It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered and the demand per unit compares both fuzzy non linear and other models. Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and ugh MATLAB (R2009a version software, the two and three dimensional diagrams are represented to the application. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values and to draw managerial insights of the decision problem.

  4. An Approach to Multicriteria Group Decision-Making with Unknown Weight Information Based on Pythagorean Fuzzy Uncertain Linguistic Aggregation Operators

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2017-01-01

    Full Text Available With respect to multicriteria group decision-making (MCGDM problems in which the experts have different priority levels, the criteria values are in the form of Pythagorean fuzzy uncertain linguistic variables (PFULVs, and the information about weights of experts and criteria is completely unknown, a novel decision-making method is developed. Firstly, the concept of PFULV is defined, and some operational laws, score function, accuracy function, and normalized Hamming distance of PFULVs are presented. Then, to aggregate information given by all experts, the Pythagorean fuzzy uncertain linguistic prioritized weighted averaging aggregation (PFULPWAA operator and the Pythagorean fuzzy uncertain linguistic prioritized weighted geometric aggregation (PFULPWGA operator are proposed. Furthermore, in order to get a comprehensive evaluation value for each alternative, the Pythagorean fuzzy uncertain linguistic Maclaurin symmetric mean aggregation (PFULMSMA operator and the weighted PFULMSMA (WPFULMSMA operator are proposed. Moreover, to obtain the information about the weights of criteria, the model based on grey relational analysis (GRA method is established. Finally, a method of MCGDM with PFULVs is developed, and an application example is given to illustrate the validity and feasibility of the provided procedure.

  5. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging.

    Science.gov (United States)

    Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman

    2013-06-01

    To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

  6. Discovering Decision Knowledge from Web Log Portfolio for Managing Classroom Processes by Applying Decision Tree and Data Cube Technology.

    Science.gov (United States)

    Chen, Gwo-Dong; Liu, Chen-Chung; Ou, Kuo-Liang; Liu, Baw-Jhiune

    2000-01-01

    Discusses the use of Web logs to record student behavior that can assist teachers in assessing performance and making curriculum decisions for distance learning students who are using Web-based learning systems. Adopts decision tree and data cube information processing methodologies for developing more effective pedagogical strategies. (LRW)

  7. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine

    Science.gov (United States)

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.

    2009-01-01

    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  8. Fuzzy Simple Additive Weighting Method in the Decision Making of Human Resource Recruitment

    Directory of Open Access Journals (Sweden)

    Budi Prasetiyo

    2016-12-01

    Full Text Available The Company is one of the jobs that was founded to reduce unemployment. The progress of a company is determined by the human resources that exist within the company. So, the selection of workers will join the company need to be selected first. The hardest thing in making a selection factor is the effort to eliminate the subjectivity of the personnel manager so that every choice made is objective based on the criteria expected by the company. To help determine who is accepted as an employee in the company, we need a method that can provide a valid decision. Therefore, we use Fuzzy Multiple Attribute Decision Making with Simple Additive Weighting method (SAW to decide to make in human resource recruitment. This method was chosen because it can provide the best alternative from several alternatives. In this case, the alternative is that the applicants or candidates. This research was conducted by finding the weight values for each attribute. Then do the ranking process that determines the optimal alternative to the best applicants who qualify as employees of the company. Based on calculations by the SAW obtained the two highest ranking results are A5 (alternative 5 and A1 (alternative 1, to obtain two candidates received.

  9. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    Science.gov (United States)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  10. An Analysis on Performance of Decision Tree Algorithms using Student’s Qualitative Data

    OpenAIRE

    T.Miranda Lakshmi; A.Martin; R.Mumtaj Begum; V.Prasanna Venkatesan

    2013-01-01

    Decision Tree is the most widely applied supervised classification technique. The learning and classification steps of decision tree induction are simple and fast and it can be applied to any domain. In this research student qualitative data has been taken from educational data mining and the performance analysis of the decision tree algorithm ID3, C4.5 and CART are compared. The comparison result shows that the Gini Index of CART influence information Gain Ratio of ID3 and C4.5. The classif...

  11. An Applied Research of Decision Tree Algorithm in Track and Field Equipment Training

    Directory of Open Access Journals (Sweden)

    Liu Shaoqing

    2015-01-01

    Full Text Available This paper has conducted a study on the applications of track and field equipment training based on ID3 algorithm of decision tree model. For the selection of the elements used by decision tree, this paper can be divided into track training equipment, field events training equipment and auxiliary training equipment according to the properties of track and field equipment. The decision tree that regards track training equipment as root nodes has been obtained under the conditions of lowering computation cost through the selection of data as well as the application and optimization of ID3 algorithm model.

  12. Intuitionistic Trapezoidal Fuzzy Group Decision-Making Based on Prospect Choquet Integral Operator and Grey Projection Pursuit Dynamic Cluster

    Directory of Open Access Journals (Sweden)

    Jiahang Yuan

    2017-01-01

    Full Text Available In consideration of the interaction among attributes and the influence of decision makers’ risk attitude, this paper proposes an intuitionistic trapezoidal fuzzy aggregation operator based on Choquet integral and prospect theory. With respect to a multiattribute group decision-making problem, the prospect value functions of intuitionistic trapezoidal fuzzy numbers are aggregated by the proposed operator; then a grey relation-projection pursuit dynamic cluster method is developed to obtain the ranking of alternatives; the firefly algorithm is used to optimize the objective function of projection for obtaining the best projection direction of grey correlation projection values, and the grey correlation projection values are evaluated, which are applied to classify, rank, and prefer the alternatives. Finally, an illustrative example is taken in the present study to make the proposed method comprehensible.

  13. An Extension of the MULTIMOORA Method for Multiple Criteria Group Decision Making Based upon Hesitant Fuzzy Sets

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Li

    2014-01-01

    Full Text Available In order to determine the membership of an element to a set owing to ambiguity between a few different values, the hesitant fuzzy set (HFS has been proposed and widely diffused to deal with vagueness and uncertainty involved in the process of multiple criteria group decision making (MCGDM problems. In this paper, we develop novel definitions of score function and distance measure for HFSs. Some examples are given to illustrate that the proposed definitions are more reasonable than the traditional ones. Furthermore, our study extends the MULTIMOORA (Multiple Objective Optimization on the basis of Ratio Analysis plus Full Multiplicative Form method with HFSs. The proposed method thus provides the means for multiple criteria decision making (MCDM regarding uncertain assessments. Utilization of hesitant fuzzy power aggregation operators also enables facilitating the process of MCGDM. A numerical example of software selection demonstrates the possibilities of application of the proposed method.

  14. Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis.

    Science.gov (United States)

    Hostettler, Isabel Charlotte; Muroi, Carl; Richter, Johannes Konstantin; Schmid, Josef; Neidert, Marian Christoph; Seule, Martin; Boss, Oliver; Pangalu, Athina; Germans, Menno Robbert; Keller, Emanuela

    2018-01-19

    OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.

  15. The integration methods of fuzzy fault mode and effect analysis and fault tree analysis for risk analysis of yogurt production

    Science.gov (United States)

    Aprilia, Ayu Rizky; Santoso, Imam; Ekasari, Dhita Murita

    2017-05-01

    Yogurt is a product based on milk, which has beneficial effects for health. The process for the production of yogurt is very susceptible to failure because it involves bacteria and fermentation. For an industry, the risks may cause harm and have a negative impact. In order for a product to be successful and profitable, it requires the analysis of risks that may occur during the production process. Risk analysis can identify the risks in detail and prevent as well as determine its handling, so that the risks can be minimized. Therefore, this study will analyze the risks of the production process with a case study in CV.XYZ. The method used in this research is the Fuzzy Failure Mode and Effect Analysis (fuzzy FMEA) and Fault Tree Analysis (FTA). The results showed that there are 6 risks from equipment variables, raw material variables, and process variables. Those risks include the critical risk, which is the risk of a lack of an aseptic process, more specifically if starter yogurt is damaged due to contamination by fungus or other bacteria and a lack of sanitation equipment. The results of quantitative analysis of FTA showed that the highest probability is the probability of the lack of an aseptic process, with a risk of 3.902%. The recommendations for improvement include establishing SOPs (Standard Operating Procedures), which include the process, workers, and environment, controlling the starter of yogurt and improving the production planning and sanitation equipment using hot water immersion.

  16. On the analytic hierarchy process and decision support based on fuzzy-linguistic preference structures

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres

    2014-01-01

    The Analytic Hierarchy Process (AHP) has received different fuzzy formulations, where two main lines of research can be identified in literature. The most popular one refers to the Extent Analysis Method, which has been subject of recent criticism, among other things, due to a number......, where experts value pairs of alternatives/criteria with words, making it essentially fuzzy under the view that words can be represented by fuzzy sets for their respective computation. Hence, reasoning with fuzzy logic is justified by the analytical framework that it offers to design the meaning of words...

  17. A Heuristic T-S Fuzzy Model for the Pumped-Storage Generator-Motor Using Variable-Length Tree-Seed Algorithm-Based Competitive Agglomeration

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2018-04-01

    Full Text Available With the fast development of artificial intelligence techniques, data-driven modeling approaches are becoming hotspots in both academic research and engineering practice. This paper proposes a novel data-driven T-S fuzzy model to precisely describe the complicated dynamic behaviors of pumped storage generator motor (PSGM. In premise fuzzy partition of the proposed T-S fuzzy model, a novel variable-length tree-seed algorithm based competitive agglomeration (VTSA-CA algorithm is presented to determine the optimal number of clusters automatically and improve the fuzzy clustering performances. Besides, in order to promote modeling accuracy of PSGM, the input and output formats in the T-S fuzzy model are selected by an economical parameter controlled auto-regressive (CAR model derived from a high-order transfer function of PSGM considering the distributed components in the water diversion system of the power plant. The effectiveness and superiority of the T-S fuzzy model for PSGM under different working conditions are validated by performing comparative studies with both practical data and the conventional mechanistic model.

  18. A Fuzzy Logic-Based Approach for Supporting Decision-Making Process in B2C Electronic Commerce Transaction

    OpenAIRE

    Fahim Akhter; Zakaria Maamar; Dave Hobbs

    2006-01-01

    The purpose of this article is to present an application of fuzzy logic to human reasoning about electronic commerce (e-commerce) transactions. This article uncovers some of the hidden relationships between critical factors such as security, familiarity, design, and competitiveness. We analyze the effect of these factors on human decision process and how they affect the Business-to-Consumer (B2C) outcome when they are used collectively. This research provides a toolset for B2C vendors to acce...

  19. Power Quality Analysis Using a Hybrid Model of the Fuzzy Min-Max Neural Network and Clustering Tree.

    Science.gov (United States)

    Seera, Manjeevan; Lim, Chee Peng; Loo, Chu Kiong; Singh, Harapajan

    2016-12-01

    A hybrid intelligent model comprising a modified fuzzy min-max (FMM) clustering neural network and a modified clustering tree (CT) is developed. A review of clustering models with rule extraction capabilities is presented. The hybrid FMM-CT model is explained. We first use several benchmark problems to illustrate the cluster evolution patterns from the proposed modifications in FMM. Then, we employ a case study with real data related to power quality monitoring to assess the usefulness of FMM-CT. The results are compared with those from other clustering models. More importantly, we extract explanatory rules from FMM-CT to justify its predictions. The empirical findings indicate the usefulness of the proposed model in tackling data clustering and power quality monitoring problems under different environments.

  20. A Fuzzy Rule Based Decision Support System for Identifying Location of Water Harvesting Technologies in Rainfed Agricultural Regions

    Science.gov (United States)

    Chaubey, I.; Vema, V. K.; Sudheer, K.

    2016-12-01

    Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.

  1. Using Decision Trees to Detect and Isolate Leaks in the J-2X

    Data.gov (United States)

    National Aeronautics and Space Administration — Full title: Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine Mark Schwabacher, NASA Ames Research Center Robert Aguilar, Pratt...

  2. Detecting Structural Metadata with Decision Trees and Transformation-Based Learning

    National Research Council Canada - National Science Library

    Kim, Joungbum; Schwarm, Sarah E; Ostendorf, Mari

    2004-01-01

    .... Specifically, combinations of decision trees and language models are used to predict sentence ends and interruption points and given these events transformation based learning is used to detect edit...

  3. Statistical Sensitive Data Protection and Inference Prevention with Decision Tree Methods

    National Research Council Canada - National Science Library

    Chang, LiWu

    2003-01-01

    .... We consider inference as correct classification and approach it with decision tree methods. As in our previous work, sensitive data are viewed as classes of those test data and non-sensitive data are the rest attribute values...

  4. Group Decision Making Process for Supplier Selection with TOPSIS Method under Interval-Valued Intuitionistic Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Mohammad Izadikhah

    2012-01-01

    Full Text Available Supplier selection is a fundamental issue of supply chain area that heavily contributes to the overall supply chain performance, and, also, it is a hard problem since supplier selection is typically a multicriteria group decision problem. In many practical situations, there usually exists incomplete and uncertain, and the decision makers cannot easily express their judgments on the candidates with exact and crisp values. Therefore, in this paper an extended technique for order preference by similarity to ideal solution (TOPSIS method for group decision making with Atanassov's interval-valued intuitionistic fuzzy numbers is proposed to solve the supplier selection problem under incomplete and uncertain information environment. In other researches in this area, the weights of each decision maker and in many of them the weights of criteria are predetermined, but these weights have been calculated in this paper by using the decision matrix of each decision maker. Also, the normalized Hamming distance is proposed to calculate the distance between Atanassov's interval-valued intuitionistic fuzzy numbers. Finally, a numerical example for supplier selection is given to clarify the main results developed in this paper.

  5. Construction and application of hierarchical decision tree for classification of ultrasonographic prostate images

    NARCIS (Netherlands)

    Giesen, R. J.; Huynen, A. L.; Aarnink, R. G.; de la Rosette, J. J.; Debruyne, F. M.; Wijkstra, H.

    1996-01-01

    A non-parametric algorithm is described for the construction of a binary decision tree classifier. This tree is used to correlate textural features, computed from ultrasonographic prostate images, with the histopathology of the imaged tissue. The algorithm consists of two parts; growing and pruning.

  6. EVALUATION OF DECISION TREE CLASSIFICATION ACCURACY TO MAP LAND COVER IN CAPIXABA, ACRE

    Directory of Open Access Journals (Sweden)

    Symone Maria de Melo Figueiredo

    2006-03-01

    Full Text Available This study evaluated the accuracy of mapping land cover in Capixaba, state of Acre, Brazil, using decision trees. Elevenattributes were used to build the decision trees: TM Landsat datafrom bands 1, 2, 3, 4, 5, and 7; fraction images derived from linearspectral unmixing; and the normalized difference vegetation index (NDVI. The Kappa values were greater than 0,83, producingexcellent classification results and demonstrating that the technique is promising for mapping land cover in the study area.

  7. Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree

    Science.gov (United States)

    2008-04-01

    REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music

  8. Tips for teachers of evidence-based medicine: making sense of decision analysis using a decision tree.

    Science.gov (United States)

    Lee, Anna; Joynt, Gavin M; Ho, Anthony M H; Keitz, Sheri; McGinn, Thomas; Wyer, Peter C

    2009-05-01

    Decision analysis is a tool that clinicians can use to choose an option that maximizes the overall net benefit to a patient. It is an explicit, quantitative, and systematic approach to decision making under conditions of uncertainty. In this article, we present two teaching tips aimed at helping clinical learners understand the use and relevance of decision analysis. The first tip demonstrates the structure of a decision tree. With this tree, a clinician may identify the optimal choice among complicated options by calculating probabilities of events and incorporating patient valuations of possible outcomes. The second tip demonstrates how to address uncertainty regarding the estimates used in a decision tree. We field tested the tips twice with interns and senior residents. Teacher preparatory time was approximately 90 minutes. The field test utilized a board and a calculator. Two handouts were prepared. Learners identified the importance of incorporating values into the decision-making process as well as the role of uncertainty. The educational objectives appeared to be reached. These teaching tips introduce clinical learners to decision analysis in a fashion aimed to illustrate principles of clinical reasoning and how patient values can be actively incorporated into complex decision making.

  9. Detailed Sponge City Planning Based on Hierarchical Fuzzy Decision-Making: A Case Study on Yangchen Lake

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    2017-11-01

    Full Text Available We proposed a Hierarchical Fuzzy Inference System (HFIS framework to offer better decision supports with fewer user-defined data (uncertainty. The framework consists two parts: a fuzzified Geographic Information System (GIS and a HFIS system. The former provides comprehensive information on the criterion unit and the latter helps in making more robust decisions. The HFIS and the traditional Multi-Criteria Decision Making (MCDM method were applied to a case study and compared. The fuzzified GIS maps maintained a majority of the dominant characteristics of the criterion unit but also revealed some non-significant information according to the surrounding environment. The urban planning map generated by the two methods shares similar strategy choices (6% difference, while the spatial distribution of strategies shares 69.7% in common. The HFIS required fewer subjective decisions than the MCDM (34 user-defined decision rules vs. 141 manual evaluations.

  10. Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree

    Science.gov (United States)

    Wahyuni, Sri

    2018-03-01

    Data mining was the process of finding useful information from a large set of databases. One of the existing techniques in data mining was classification. The method used was decision tree method and algorithm used was C4.5 algorithm. The decision tree method was a method that transformed a very large fact into a decision tree which was presenting the rules. Decision tree method was useful for exploring data, as well as finding a hidden relationship between a number of potential input variables with a target variable. The decision tree of the C4.5 algorithm was constructed with several stages including the selection of attributes as roots, created a branch for each value and divided the case into the branch. These stages would be repeated for each branch until all the cases on the branch had the same class. From the solution of the decision tree there would be some rules of a case. In this case the researcher classified the data of prisoners at Labuhan Deli prison to know the factors of detainees committing criminal acts of drugs. By applying this C4.5 algorithm, then the knowledge was obtained as information to minimize the criminal acts of drugs. From the findings of the research, it was found that the most influential factor of the detainee committed the criminal act of drugs was from the address variable.

  11. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    Science.gov (United States)

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.

    Science.gov (United States)

    Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert

    2015-11-01

    Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination. © 2015 American Academy of Forensic Sciences.

  13. Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-11-01

    Full Text Available Decision tree classification is one of the most efficient methods for obtaining land use/land cover (LULC information from remotely sensed imageries. However, traditional decision tree classification methods cannot effectively eliminate the influence of mixed pixels. This study aimed to integrate pixel unmixing and decision tree to improve LULC classification by removing mixed pixel influence. The abundance and minimum noise fraction (MNF results that were obtained from mixed pixel decomposition were added to decision tree multi-features using a three-dimensional (3D Terrain model, which was created using an image fusion digital elevation model (DEM, to select training samples (ROIs, and improve ROI separability. A Landsat-8 OLI image of the Yunlong Reservoir Basin in Kunming was used to test this proposed method. Study results showed that the Kappa coefficient and the overall accuracy of integrated pixel unmixing and decision tree method increased by 0.093% and 10%, respectively, as compared with the original decision tree method. This proposed method could effectively eliminate the influence of mixed pixels and improve the accuracy in complex LULC classifications.

  14. Integrated Evaluation of Urban Water Bodies for Pollution Abatement Based on Fuzzy Multicriteria Decision Approach

    Science.gov (United States)

    Hashim, Sarfraz; Yuebo, Xie; Saifullah, Muhammad; Nabi Jan, Ramila; Muhetaer, Adila

    2015-01-01

    Today's ecology is erected with miscellaneous framework. However, numerous sources deteriorate it, such as urban rivers that directly cause the environmental pollution. For chemical pollution abatement from urban water bodies, many techniques were introduced to rehabilitate the water quality of these water bodies. In this research, Bacterial Technology (BT) was applied to urban rivers escalating the necessity to control the water pollution in different places (Xuxi River (XXU); Gankeng River (GKS); Xia Zhang River (XZY); Fenghu and Song Yang Rivers (FSR); Jiu Haogang River (JHH)) in China. For data analysis, the physiochemical parameters such as temperature, chemical oxygen demand (COD), dissolved oxygen (DO), total phosphorus (TP), and ammonia nitrogen (NH3N) were determined before and after the treatment. Multicriteria Decision Making (MCDM) method was used for relative significance of different water quality on each station, based on fuzzy analytical hierarchy process (FAHP). The overall results revealed that the pollution is exceeding at “JHH” due to the limit of “COD” as critical water quality parameter and after treatment, an abrupt recovery of the rivers compared with the average improved efficiency of nutrients was 79%, 74%, 68%, and 70% of COD, DO, TP, and NH3N, respectively. The color of the river's water changed to its original form and aquatic living organism appeared with clear effluents from them. PMID:26516623

  15. Fuzzy trace theory and medical decisions by minors: differences in reasoning between adolescents and adults.

    Science.gov (United States)

    Wilhelms, Evan A; Reyna, Valerie F

    2013-06-01

    Standard models of adolescent risk taking posit that the cognitive abilities of adolescents and adults are equivalent, and that increases in risk taking that occur during adolescence are the result of socio emotional differences in impulsivity, sensation seeking, and lack of self-control. Fuzzy-trace theory incorporates these socio emotional differences. However, it predicts that there are also cognitive differences between adolescents and adults, specifically that there are developmental increases in gist-based intuition that reflects understanding. Gist understanding, as opposed to verbatim-based analysis, generally has been hypothesized to have a protective effect on risk taking in adolescence. Gist understanding is also an essential element of informed consent regarding risks in medical decision- making. Evidence thus supports the argument that adolescents' status as mature minors should be treated as an exception rather than a presumption, because accuracy in verbatim analysis is not mature gist understanding. Use of the exception should be accompanied by medical experts' input on the bottom-line gist of risks involved in treatment.

  16. Integrated Evaluation of Urban Water Bodies for Pollution Abatement Based on Fuzzy Multicriteria Decision Approach.

    Science.gov (United States)

    Hashim, Sarfraz; Yuebo, Xie; Saifullah, Muhammad; Nabi Jan, Ramila; Muhetaer, Adila

    2015-01-01

    Today's ecology is erected with miscellaneous framework. However, numerous sources deteriorate it, such as urban rivers that directly cause the environmental pollution. For chemical pollution abatement from urban water bodies, many techniques were introduced to rehabilitate the water quality of these water bodies. In this research, Bacterial Technology (BT) was applied to urban rivers escalating the necessity to control the water pollution in different places (Xuxi River (XXU); Gankeng River (GKS); Xia Zhang River (XZY); Fenghu and Song Yang Rivers (FSR); Jiu Haogang River (JHH)) in China. For data analysis, the physiochemical parameters such as temperature, chemical oxygen demand (COD), dissolved oxygen (DO), total phosphorus (TP), and ammonia nitrogen (NH3N) were determined before and after the treatment. Multicriteria Decision Making (MCDM) method was used for relative significance of different water quality on each station, based on fuzzy analytical hierarchy process (FAHP). The overall results revealed that the pollution is exceeding at "JHH" due to the limit of "COD" as critical water quality parameter and after treatment, an abrupt recovery of the rivers compared with the average improved efficiency of nutrients was 79%, 74%, 68%, and 70% of COD, DO, TP, and NH3N, respectively. The color of the river's water changed to its original form and aquatic living organism appeared with clear effluents from them.

  17. Integrated Evaluation of Urban Water Bodies for Pollution Abatement Based on Fuzzy Multicriteria Decision Approach

    Directory of Open Access Journals (Sweden)

    Sarfraz Hashim

    2015-01-01

    Full Text Available Today’s ecology is erected with miscellaneous framework. However, numerous sources deteriorate it, such as urban rivers that directly cause the environmental pollution. For chemical pollution abatement from urban water bodies, many techniques were introduced to rehabilitate the water quality of these water bodies. In this research, Bacterial Technology (BT was applied to urban rivers escalating the necessity to control the water pollution in different places (Xuxi River (XXU; Gankeng River (GKS; Xia Zhang River (XZY; Fenghu and Song Yang Rivers (FSR; Jiu Haogang River (JHH in China. For data analysis, the physiochemical parameters such as temperature, chemical oxygen demand (COD, dissolved oxygen (DO, total phosphorus (TP, and ammonia nitrogen (NH3N were determined before and after the treatment. Multicriteria Decision Making (MCDM method was used for relative significance of different water quality on each station, based on fuzzy analytical hierarchy process (FAHP. The overall results revealed that the pollution is exceeding at “JHH” due to the limit of “COD” as critical water quality parameter and after treatment, an abrupt recovery of the rivers compared with the average improved efficiency of nutrients was 79%, 74%, 68%, and 70% of COD, DO, TP, and NH3N, respectively. The color of the river’s water changed to its original form and aquatic living organism appeared with clear effluents from them.

  18. Total Path Length and Number of Terminal Nodes for Decision Trees

    KAUST Repository

    Hussain, Shahid

    2014-09-13

    This paper presents a new tool for study of relationships between total path length (average depth) and number of terminal nodes for decision trees. These relationships are important from the point of view of optimization of decision trees. In this particular case of total path length and number of terminal nodes, the relationships between these two cost functions are closely related with space-time trade-off. In addition to algorithm to compute the relationships, the paper also presents results of experiments with datasets from UCI ML Repository1. These experiments show how two cost functions behave for a given decision table and the resulting plots show the Pareto frontier or Pareto set of optimal points. Furthermore, in some cases this Pareto frontier is a singleton showing the total optimality of decision trees for the given decision table.

  19. Fuzziness, democracy, control and collective decision-choice system a theory on political economy of rent-seeking and profit-harvesting

    CERN Document Server

    Dompere, Kofi Kissi

    2014-01-01

    This volume presents an analysis of the problems and solutions of the market mockery of the democratic collective decision-choice system with imperfect information structure composed of defective and deceptive structures using methods of fuzzy rationality. The book is devoted to the political economy of rent-seeking, rent-protection and rent-harvesting to enhance profits under democratic collective decision-choice systems. The toolbox used in the monograph consists of methods of fuzzy decision, approximate reasoning, negotiation games and fuzzy mathematics. The monograph further discusses the rent-seeking phenomenon in the Schumpeterian and Marxian political economies where the rent-seeking activities transform the qualitative character of the general capitalism into oligarchic socialism and making the democratic collective decision-choice system as an ideology rather than social calculus for resolving conflicts in preferences in the collective decision-choice space without violence.    

  20. Hesitant fuzzy sets theory

    CERN Document Server

    Xu, Zeshui

    2014-01-01

    This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...

  1. Fuzzy logic in management

    CERN Document Server

    Carlsson, Christer; Fullér, Robert

    2004-01-01

    Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...

  2. Assessing the impact of a ttendance in students ’ final success using the Decision- Making Tree

    Directory of Open Access Journals (Sweden)

    ALIJA Sadri

    2018-01-01

    Full Text Available In this paper, we use the decision-making tree to explain the impact attendance has on students’ final success. The paper analyses the results of 56 students in 3 subjects during the academic year 2016/2017 (first, second and third- year students of Business Mathematics, Statistics and Managerial Economics at the SEE University in Tetovo . The results show that attendance is the most important of the 5 attributes in this study, placing itat the root of the tree. In constructing the Decision-making Tree, we have used the ID3 Algorithm within the Weka software package.

  3. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    Directory of Open Access Journals (Sweden)

    Esther I. Metting

    2016-01-01

    Full Text Available The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years with suspicion of an obstructive pulmonary disease was derived from an asthma/chronic obstructive pulmonary disease (COPD service where patients were assessed using spirometry, the Asthma Control Questionnaire, the Clinical COPD Questionnaire, history data and medication use. All patients were diagnosed through the Internet by a pulmonologist. The Chi-squared Automatic Interaction Detection method was used to build the decision tree. The tree was externally validated in another real-life primary care population (n=3215. Our tree correctly diagnosed 79% of the asthma patients, 85% of the COPD patients and 32% of the asthma–COPD overlap syndrome (ACOS patients. External validation showed a comparable pattern (correct: asthma 78%, COPD 83%, ACOS 24%. Our decision tree is considered to be promising because it was based on real-life primary care patients with a specialist's diagnosis. In most patients the diagnosis could be correctly predicted. Predicting ACOS, however, remained a challenge. The total decision tree can be implemented in computer-assisted diagnostic systems for individual patients. A simplified version of this tree can be used in daily clinical practice as a desk tool.

  4. Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.

    Science.gov (United States)

    Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin

    2017-08-16

    The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.

  5. Boundary expansion algorithm of a decision tree induction for an imbalanced dataset

    Directory of Open Access Journals (Sweden)

    Kesinee Boonchuay

    2017-10-01

    Full Text Available A decision tree is one of the famous classifiers based on a recursive partitioning algorithm. This paper introduces the Boundary Expansion Algorithm (BEA to improve a decision tree induction that deals with an imbalanced dataset. BEA utilizes all attributes to define non-splittable ranges. The computed means of all attributes for minority instances are used to find the nearest minority instance, which will be expanded along all attributes to cover a minority region. As a result, BEA can successfully cope with an imbalanced dataset comparing with C4.5, Gini, asymmetric entropy, top-down tree, and Hellinger distance decision tree on 25 imbalanced datasets from the UCI Repository.

  6. MRI-based decision tree model for diagnosis of biliary atresia.

    Science.gov (United States)

    Kim, Yong Hee; Kim, Myung-Joon; Shin, Hyun Joo; Yoon, Haesung; Han, Seok Joo; Koh, Hong; Roh, Yun Ho; Lee, Mi-Jung

    2018-02-23

    To evaluate MRI findings and to generate a decision tree model for diagnosis of biliary atresia (BA) in infants with jaundice. We retrospectively reviewed features of MRI and ultrasonography (US) performed in infants with jaundice between January 2009 and June 2016 under approval of the institutional review board, including the maximum diameter of periportal signal change on MRI (MR triangular cord thickness, MR-TCT) or US (US-TCT), visibility of common bile duct (CBD) and abnormality of gallbladder (GB). Hepatic subcapsular flow was reviewed on Doppler US. We performed conditional inference tree analysis using MRI findings to generate a decision tree model. A total of 208 infants were included, 112 in the BA group and 96 in the non-BA group. Mean age at the time of MRI was 58.7 ± 36.6 days. Visibility of CBD, abnormality of GB and MR-TCT were good discriminators for the diagnosis of BA and the MRI-based decision tree using these findings with MR-TCT cut-off 5.1 mm showed 97.3 % sensitivity, 94.8 % specificity and 96.2 % accuracy. MRI-based decision tree model reliably differentiates BA in infants with jaundice. MRI can be an objective imaging modality for the diagnosis of BA. • MRI-based decision tree model reliably differentiates biliary atresia in neonatal cholestasis. • Common bile duct, gallbladder and periportal signal changes are the discriminators. • MRI has comparable performance to ultrasonography for diagnosis of biliary atresia.

  7. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    Science.gov (United States)

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  8. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    Science.gov (United States)

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  9. Decision tree analysis to evaluate dry cow strategies under UK conditions

    NARCIS (Netherlands)

    Berry, E.A.; Hogeveen, H.; Hillerton, J.E.

    2004-01-01

    Economic decisions on animal health strategies address the cost-benefit aspect along with animal welfare and public health concerns. Decision tree analysis at an individual cow level highlighted that there is little economic difference between the use of either dry cow antibiotic or an internal teat

  10. Assessing School Readiness for a Practice Arrangement Using Decision Tree Methodology.

    Science.gov (United States)

    Barger, Sara E.

    1998-01-01

    Questions in a decision-tree address mission, faculty interest, administrative support, and practice plan as a way of assessing arrangements for nursing faculty's clinical practice. Decisions should be based on congruence between the human resource allocation and the reward systems. (SK)

  11. Visualization of Decision Tree State for the Classification of Parkinson's Disease

    NARCIS (Netherlands)

    Valentijn, E

    2016-01-01

    Decision trees have been shown to be effective at classifying subjects with Parkinson’s disease when provided with features (subject scores) derived from FDG-PET data. Such subject scores have strong discriminative power but are not intuitive to understand. We therefore augment each decision node

  12. Application of Fuzzy theory with neutral network and cognitive map on decision making

    International Nuclear Information System (INIS)

    Hla Aung; Tin Maung

    2001-01-01

    The format reasoning involves establishment of causal relationships among concepts. These are commonly represented by cognitive maps. However, the concepts and their relationships could be fuzzy. In this paper we review some properties of fuzzy cognitive maps. This paper shows that one of the solutions is to introduce the idea of disconcepts along with concepts to arrive at reasonings that are intuitively satisfying. A neutral network architecture based on associative memory and a framework for fuzzy cognitive maps based knowledge processing tool has also been proposed. The proposed method is tested on a cognitive map of a publishing company. (author)

  13. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.

    Science.gov (United States)

    Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto

    2012-11-21

    This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.

  14. Fuzzy Multi-actor Multi-criteria Decision Making for Sustainability Assessment of biomass-based technologies for hydrogen production

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Fedele, Andrea; Mason, Marco

    2013-01-01

    The purpose of this paper is to develop a sustainability assessment method to rank the prior sequence of biomass-based technologies for hydrogen production. A novel fuzzy Multi-actor Multi-criteria Decision Making method which allows multiple groups of decision-makers to use linguistic variables ......, supercritical water gasification and fermentative hydrogen production have been studied by the proposed method, and biomass gasification has been considered as the most sustainable scenario and can be chosen for further development.......The purpose of this paper is to develop a sustainability assessment method to rank the prior sequence of biomass-based technologies for hydrogen production. A novel fuzzy Multi-actor Multi-criteria Decision Making method which allows multiple groups of decision-makers to use linguistic variables...... to assess the biomass-based technologies for hydrogen production has been developed. Fifteen criteria relevant to in economic, environmental, technological and social-political aspects have been used in sustainability assessment. Four biomass-based technologies including pyrolysis, conventional gasification...

  15. Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hu-Chen [School of Management, Hefei University of Technology, Hefei 230009 (China); Department of Industrial Engineering and Management, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Wu, Jing [Department of Public Management, Tongji University, Shanghai 200092 (China); Li, Ping, E-mail: yiwuchulp@126.com [Shanghai Pudong New Area Zhoupu Hospital, No. 135 Guanyue Road, Shanghai 201318 (China); East Hospital Affiliated to Tongji University, No. 150 Jimo Road, Shanghai 200120 (China)

    2013-12-15

    Highlights: • Propose a VIKOR-based fuzzy MCDM technique for evaluating HCW disposal methods. • Linguistic variables are used to assess the ratings and weights for the criteria. • The OWA operator is utilized to aggregate individual opinions of decision makers. • A case study is given to illustrate the procedure of the proposed framework. - Abstract: Nowadays selection of the appropriate treatment method in health-care waste (HCW) management has become a challenge task for the municipal authorities especially in developing countries. Assessment of HCW disposal alternatives can be regarded as a complicated multi-criteria decision making (MCDM) problem which requires consideration of multiple alternative solutions and conflicting tangible and intangible criteria. The objective of this paper is to present a new MCDM technique based on fuzzy set theory and VIKOR method for evaluating HCW disposal methods. Linguistic variables are used by decision makers to assess the ratings and weights for the established criteria. The ordered weighted averaging (OWA) operator is utilized to aggregate individual opinions of decision makers into a group assessment. The computational procedure of the proposed framework is illustrated through a case study in Shanghai, one of the largest cities of China. The HCW treatment alternatives considered in this study include “incineration”, “steam sterilization”, “microwave” and “landfill”. The results obtained using the proposed approach are analyzed in a comparative way.

  16. The Studies of Decision Tree in Estimation of Breast Cancer Risk by Using Polymorphism Nucleotide

    Directory of Open Access Journals (Sweden)

    Frida Seyedmir

    2017-07-01

    Full Text Available Abstract Introduction:   Decision tree is the data mining tools to collect, accurate prediction and sift information from massive amounts of data that are used widely in the field of computational biology and bioinformatics. In bioinformatics can be predict on diseases, including breast cancer. The use of genomic data including single nucleotide polymorphisms is a very important factor in predicting the risk of diseases. The number of seven important SNP among hundreds of thousands genetic markers were identified as factors associated with breast cancer. The objective of this study is to evaluate the training data on decision tree predictor error of the risk of breast cancer by using single nucleotide polymorphism genotype. Methods: The risk of breast cancer were calculated associated with the use of SNP formula:xj = fo * In human,  The decision tree can be used To predict the probability of disease using single nucleotide polymorphisms .Seven SNP with different odds ratio associated with breast cancer considered and coding and design of decision tree model, C4.5, by  Csharp2013 programming language were done. In the decision tree created with the coding, the four important associated SNP was considered. The decision tree error in two case of coding and using WEKA were assessment and percentage of decision tree accuracy in prediction of breast cancer were calculated. The number of trained samples was obtained with systematic sampling. With coding, two scenarios as well as software WEKA, three scenarios with different sets of data and the number of different learning and testing, were evaluated. Results: In both scenarios of coding, by increasing the training percentage from 66/66 to 86/42, the error reduced from 55/56 to 9/09. Also by running of WEKA on three scenarios with different sets of data, the number of different education, and different tests by increasing records number from 81 to 2187, the error rate decreased from 48/15 to 13

  17. Network-centric fuzzy resource manager: structure and validation

    Science.gov (United States)

    Smith, James F., III; Firth, Zachary

    2003-07-01

    A fuzzy logic expert system has been developed that automatically allocates electronic attack resources on different platforms in real-time. This resource manager is made up of four trees, the isolated platform tree, the multi-platform tree that allows an individual platform to respond to a threat. The multi-platform tree allows a group of platforms to respond to a threat in a collaborative fashion. A genetic algorithm is used to optimize the resource manager. A genetic program is used to evolve optimal fuzzy decision tree topology. The non-uniqueness of the tree structure is considered. The superiority of a genetic program evolved tree compared to a tree written down exclusively based on expertise is discussed. Fuzzy membership functions related to four fuzzy concepts are given. Experiments designed to test these concepts in the expert system are discussed, as well as the resource manager's ability to: allow multiple platforms to self-organize without the benefit of a commander; to tolerate errors made by other systems; and to deal with multiple distinct enemy strategies.

  18. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    Science.gov (United States)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  19. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process.

    Science.gov (United States)

    Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.

  20. [Comparison of Discriminant Analysis and Decision Trees for the Detection of Subclinical Keratoconus].

    Science.gov (United States)

    Kleinhans, Sonja; Herrmann, Eva; Kohnen, Thomas; Bühren, Jens

    2017-08-15

    Background Iatrogenic keratectasia is one of the most dreaded complications of refractive surgery. In most cases, keratectasia develops after refractive surgery of eyes suffering from subclinical stages of keratoconus with few or no signs. Unfortunately, there has been no reliable procedure for the early detection of keratoconus. In this study, we used binary decision trees (recursive partitioning) to assess their suitability for discrimination between normal eyes and eyes with subclinical keratoconus. Patients and Methods The method of decision tree analysis was compared with discriminant analysis which has shown good results in previous studies. Input data were 32 eyes of 32 patients with newly diagnosed keratoconus in the contralateral eye and preoperative data of 10 eyes of 5 patients with keratectasia after laser in-situ keratomileusis (LASIK). The control group was made up of 245 normal eyes after LASIK and 12-month follow-up without any signs of iatrogenic keratectasia. Results Decision trees gave better accuracy and specificity than did discriminant analysis. The sensitivity of decision trees was lower than the sensitivity of discriminant analysis. Conclusion On the basis of the patient population of this study, decision trees did not prove to be superior to linear discriminant analysis for the detection of subclinical keratoconus. Georg Thieme Verlag KG Stuttgart · New York.

  1. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process

    Science.gov (United States)

    Masías, Víctor H.; Krause, Mariane; Valdés, Nelson; Pérez, J. C.; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657

  2. Using Decision Trees to Characterize Verbal Communication During Change and Stuck Episodes in the Therapeutic Process

    Directory of Open Access Journals (Sweden)

    Víctor Hugo eMasías

    2015-04-01

    Full Text Available Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBtree, and REPtree are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1,760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.

  3. IMPROVING ADAPTABILITY OF DECISION TREE FOR MINING BIG DATA

    OpenAIRE

    HANG YANG; SIMON FONG

    2013-01-01

    Big data has become a popular research topic since the data explosion in the past decade. An efficient analytical methodology provides a way of discovering the potential value from big data. Sampling technique is unsuitable any more that the full data will tell the truths. To this end, the data mining algorithm shall be robust to imperfect data, which may lead to tree size explosion and detrimental accuracy problems. In this paper, we propose an incremental optimization mechanism to solve the...

  4. Using fuzzy multiple criteria decision-making approach for assessing the risk of railway reconstruction project in Taiwan.

    Science.gov (United States)

    Lu, Shih-Tong; Yu, Shih-Heng; Chang, Dong-Shang

    2014-01-01

    This study investigates the risk factors in railway reconstruction project through complete literature reviews on construction project risks and scrutinizing experiences and challenges of railway reconstructions in Taiwan. Based on the identified risk factors, an assessing framework based on the fuzzy multicriteria decision-making (fuzzy MCDM) approach to help construction agencies build awareness of the critical risk factors on the execution of railway reconstruction project, measure the impact and occurrence likelihood for these risk factors. Subjectivity, uncertainty and vagueness within the assessment process are dealt with using linguistic variables parameterized by trapezoid fuzzy numbers. By multiplying the degree of impact and the occurrence likelihood of risk factors, estimated severity values of each identified risk factor are determined. Based on the assessment results, the construction agencies were informed of what risks should be noticed and what they should do to avoid the risks. That is, it enables construction agencies of railway reconstruction to plan the appropriate risk responses/strategies to increase the opportunity of project success and effectiveness.

  5. Using Fuzzy Multiple Criteria Decision-Making Approach for Assessing the Risk of Railway Reconstruction Project in Taiwan

    Science.gov (United States)

    Yu, Shih-Heng; Chang, Dong-Shang

    2014-01-01

    This study investigates the risk factors in railway reconstruction project through complete literature reviews on construction project risks and scrutinizing experiences and challenges of railway reconstructions in Taiwan. Based on the identified risk factors, an assessing framework based on the fuzzy multicriteria decision-making (fuzzy MCDM) approach to help construction agencies build awareness of the critical risk factors on the execution of railway reconstruction project, measure the impact and occurrence likelihood for these risk factors. Subjectivity, uncertainty and vagueness within the assessment process are dealt with using linguistic variables parameterized by trapezoid fuzzy numbers. By multiplying the degree of impact and the occurrence likelihood of risk factors, estimated severity values of each identified risk factor are determined. Based on the assessment results, the construction agencies were informed of what risks should be noticed and what they should do to avoid the risks. That is, it enables construction agencies of railway reconstruction to plan the appropriate risk responses/strategies to increase the opportunity of project success and effectiveness. PMID:24772014

  6. AGGREGATION IN FUZZY FAULT TREE QUANTIFICATION: COMPARISON OF MEANS AND EXPERTONS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    R NAIT-SAID

    2003-06-01

    Full Text Available This paper presents a comparison of the two techniques: arithmetic means and expertons, used for aggregation of experts’ judgments relative to basic events of fault trees. Valuations as confidence intervals included in [0, 1] have been considered. First, bounds are numbers to one decimal; next, numbers belonging to [0, 1]. In this last case, R+_expertons concept is used, with a counter-expertise form proposed. The means technique is well known in practice, but as fault tree is a logical diagram built by "AND" and "OR" gates, i.e. nonlinear operators, its use leads to wrong results and expertons technique should be used.

  7. Fuzzy Boundary and Fuzzy Semiboundary

    OpenAIRE

    M. Athar; B. Ahmad

    2008-01-01

    We present several properties of fuzzy boundary and fuzzy semiboundary which have been supported by examples. Properties of fuzzy semi-interior, fuzzy semiclosure, fuzzy boundary, and fuzzy semiboundary have been obtained in product-related spaces. We give necessary conditions for fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions. Moreover, fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions have been characterized via fuzzy-derived (resp., fuzz...

  8. The Application of a Decision-making Approach based on Fuzzy ANP and TOPSIS for Selecting a Strategic Supplier

    Directory of Open Access Journals (Sweden)

    Rajesri Govindaraju

    2015-09-01

    Full Text Available Supplier selection becomes very important when used in the context of strategic partnerships because of the long-term orientation of the relationship. This paper describes the application of a decision-making approach for selecting a strategic partner (supplier. The approach starts with defining a set of criteria that fits the company’s condition. In the next steps, a combination of fuzzy-ANP and TOPSIS methods is used to determine the weight for each criterion and rank all the alternatives. The application of the approach in an Indonesian manufacturing company showed that the three factors that got the highest weight were “geographical location”, “current operating performance”, and “reliability”. Geographical location got the highest weight because it affects many other factors such as reaction to changes in demand, after-sales service, and delivery lead-time. Application of the approach helps decision-makers to gain effectiveness and efficiency in the decision-making process because it facilitates them to express their group’s collective preferences while also providing opportunities for members to express their individual preferences. Future research can be directed at combining qualitative and quantitative criteria to develop the best criteria and methods for the selection of the best suppliers based on fuzzy ANP and TOPSIS.

  9. Fuzzy logic controller optimization

    Science.gov (United States)

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  10. Post-event human decision errors: operator action tree/time reliability correlation

    International Nuclear Information System (INIS)

    Hall, R.E.; Fragola, J.; Wreathall, J.

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations

  11. An Efficient Method of Vibration Diagnostics For Rotating Machinery Using a Decision Tree

    Directory of Open Access Journals (Sweden)

    Bo Suk Yang

    2000-01-01

    Full Text Available This paper describes an efficient method to automatize vibration diagnosis for rotating machinery using a decision tree, which is applicable to vibration diagnosis expert system. Decision tree is a widely known formalism for expressing classification knowledge and has been used successfully in many diverse areas such as character recognition, medical diagnosis, and expert systems, etc. In order to build a decision tree for vibration diagnosis, we have to define classes and attributes. A set of cases based on past experiences is also needed. This training set is inducted using a result-cause matrix newly developed in the present work instead of using a conventionally implemented cause-result matrix. This method was applied to diagnostics for various cases taken from published work. It is found that the present method predicts causes of the abnormal vibration for test cases with high reliability.

  12. Post-event human decision errors: operator action tree/time reliability correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R E; Fragola, J; Wreathall, J

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations.

  13. Comparison of Taxi Time Prediction Performance Using Different Taxi Speed Decision Trees

    Science.gov (United States)

    Lee, Hanbong

    2017-01-01

    In the STBO modeler and tactical surface scheduler for ATD-2 project, taxi speed decision trees are used to calculate the unimpeded taxi times of flights taxiing on the airport surface. The initial taxi speed values in these decision trees did not show good prediction accuracy of taxi times. Using the more recent, reliable surveillance data, new taxi speed values in ramp area and movement area were computed. Before integrating these values into the STBO system, we performed test runs using live data from Charlotte airport, with different taxi speed settings: 1) initial taxi speed values and 2) new ones. Taxi time prediction performance was evaluated by comparing various metrics. The results show that the new taxi speed decision trees can calculate the unimpeded taxi-out times more accurately.

  14. A modified decision tree algorithm based on genetic algorithm for mobile user classification problem.

    Science.gov (United States)

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity.

  15. Using decision trees and their ensembles for analysis of NIR spectroscopic data

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey V.

    Advanced machine learning methods, like convolutional neural networks and decision trees, became extremely popular in the last decade. This, first of all, is directly related to the current boom in Big data analysis, where traditional statistical methods are not efficient. According to the kaggle.......com — the most popular online resource for Big data problems and solutions — methods based on decision trees and their ensembles are most widely used for solving the problems. It can be noted that the decision trees and convolutional neural networks are not very popular in Chemometrics. One of the reasons...... for that is the landscape of the data matrix: the modern machine learning methods need number of measurements much larger than the number of variables to avoid overfitting, which is opposite to the layout of the data we usually deal with. Another drawback is a lack of interactive instruments for exploring...

  16. Diagnosis of Constant Faults in Read-Once Contact Networks over Finite Bases using Decision Trees

    KAUST Repository

    Busbait, Monther I.

    2014-05-01

    We study the depth of decision trees for diagnosis of constant faults in read-once contact networks over finite bases. This includes diagnosis of 0-1 faults, 0 faults and 1 faults. For any finite basis, we prove a linear upper bound on the minimum depth of decision tree for diagnosis of constant faults depending on the number of edges in a contact network over that basis. Also, we obtain asymptotic bounds on the depth of decision trees for diagnosis of each type of constant faults depending on the number of edges in contact networks in the worst case per basis. We study the set of indecomposable contact networks with up to 10 edges and obtain sharp coefficients for the linear upper bound for diagnosis of constant faults in contact networks over bases of these indecomposable contact networks. We use a set of algorithms, including one that we create, to obtain the sharp coefficients.

  17. Comparison of hospital charge prediction models for gastric cancer patients: neural network vs. decision tree models.

    Science.gov (United States)

    Wang, Jing; Li, Man; Hu, Yun-tao; Zhu, Yu

    2009-09-14

    In recent years, artificial neural network is advocated in modeling complex multivariable relationships due to its ability of fault tolerance; while decision tree of data mining technique was recommended because of its richness of classification arithmetic rules and appeal of visibility. The aim of our research was to compare the performance of ANN and decision tree models in predicting hospital charges on gastric cancer patients. Data about hospital charges on 1008 gastric cancer patients and related demographic information were collected from the First Affiliated Hospital of Anhui Medical University from 2005 to 2007 and preprocessed firstly to select pertinent input variables. Then artificial neural network (ANN) and decision tree models, using same hospital charge output variable and same input variables, were applied to compare the predictive abilities in terms of mean absolute errors and linear correlation coefficients for the training and test datasets. The transfer function in ANN model was sigmoid with 1 hidden layer and three hidden nodes. After preprocess of the data, 12 variables were selected and used as input variables in two types of models. For both the training dataset and the test dataset, mean absolute errors of ANN model were lower than those of decision tree model (1819.197 vs. 2782.423, 1162.279 vs. 3424.608) and linear correlation coefficients of the former model were higher than those of the latter (0.955 vs. 0.866, 0.987 vs. 0.806). The predictive ability and adaptive capacity of ANN model were better than those of decision tree model. ANN model performed better in predicting hospital charges of gastric cancer patients of China than did decision tree model.

  18. Comparison of hospital charge prediction models for gastric cancer patients: neural network vs. decision tree models

    Directory of Open Access Journals (Sweden)

    Hu Yun-tao

    2009-09-01

    Full Text Available Abstract Background In recent years, artificial neural network is advocated in modeling complex multivariable relationships due to its ability of fault tolerance; while decision tree of data mining technique was recommended because of its richness of classification arithmetic rules and appeal of visibility. The aim of our research was to compare the performance of ANN and decision tree models in predicting hospital charges on gastric cancer patients. Methods Data about hospital charges on 1008 gastric cancer patients and related demographic information were collected from the First Affiliated Hospital of Anhui Medical University from 2005 to 2007 and preprocessed firstly to select pertinent input variables. Then artificial neural network (ANN and decision tree models, using same hospital charge output variable and same input variables, were applied to compare the predictive abilities in terms of mean absolute errors and linear correlation coefficients for the training and test datasets. The transfer function in ANN model was sigmoid with 1 hidden layer and three hidden nodes. Results After preprocess of the data, 12 variables were selected and used as input variables in two types of models. For both the training dataset and the test dataset, mean absolute errors of ANN model were lower than those of decision tree model (1819.197 vs. 2782.423, 1162.279 vs. 3424.608 and linear correlation coefficients of the former model were higher than those of the latter (0.955 vs. 0.866, 0.987 vs. 0.806. The predictive ability and adaptive capacity of ANN model were better than those of decision tree model. Conclusion ANN model performed better in predicting hospital charges of gastric cancer patients of China than did decision tree model.

  19. Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

    Science.gov (United States)

    Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman

    2016-02-01

    To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.

  20. [Analysis of the characteristics of the older adults with depression using data mining decision tree analysis].

    Science.gov (United States)

    Park, Myonghwa; Choi, Sora; Shin, A Mi; Koo, Chul Hoi

    2013-02-01

    The purpose of this study was to develop a prediction model for the characteristics of older adults with depression using the decision tree method. A large dataset from the 2008 Korean Elderly Survey was used and data of 14,970 elderly people were analyzed. Target variable was depression and 53 input variables were general characteristics, family & social relationship, economic status, health status, health behavior, functional status, leisure & social activity, quality of life, and living environment. Data were analyzed by decision tree analysis, a data mining technique using SPSS Window 19.0 and Clementine 12.0 programs. The decision trees were classified into five different rules to define the characteristics of older adults with depression. Classification & Regression Tree (C&RT) showed the best prediction with an accuracy of 80.81% among data mining models. Factors in the rules were life satisfaction, nutritional status, daily activity difficulty due to pain, functional limitation for basic or instrumental daily activities, number of chronic diseases and daily activity difficulty due to disease. The different rules classified by the decision tree model in this study should contribute as baseline data for discovering informative knowledge and developing interventions tailored to these individual characteristics.

  1. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    Science.gov (United States)

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  2. Decision tree based knowledge acquisition and failure diagnosis using a PWR loop vibration model

    International Nuclear Information System (INIS)

    Bauernfeind, V.; Ding, Y.

    1993-01-01

    An analytical vibration model of the primary system of a 1300 MW PWR was used for simulating mechanical faults. Deviations in the calculated power density spectra and coherence functions are determined and classified. The decision tree technique is then used for a personal computer supported knowledge presentation and for optimizing the logical relationships between the simulated faults and the observed symptoms. The optimized decision tree forms the knowledge base and can be used to diagnose known cases as well as to include new data into the knowledge base if new faults occur. (author)

  3. Vlsi implementation of flexible architecture for decision tree classification in data mining

    Science.gov (United States)

    Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak

    2017-07-01

    The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.

  4. Logistics Service Provider Selection through an Integrated Fuzzy Multicriteria Decision Making Approach

    Directory of Open Access Journals (Sweden)

    Gülşen Akman

    2014-01-01

    Full Text Available Nowadays, the demand of third-party logistics provider becomes an increasingly important issue for companies to improve their customer service and to decrease logistics costs. This paper presents an integrated fuzzy approach for the evaluation and selection of 3rd party logistics service providers. This method consists of two techniques: (1 use fuzzy analytic hierarchy process to identify weights of evaluation criteria; (2 apply fuzzy technique for order preference by similarity to ideal solution (TOPSIS method to evaluate and sequence alternatives and to make the final selection. Finally, an actual industrial application is performed in logistics department of a tire manufacturing company. For this, first, eight logistics supplier selection criteria were determined, and then the best alternative among seven logistics service provider companies was selected by the proposed method.

  5. A Multi Criteria Group Decision-Making Model for Teacher Evaluation in Higher Education Based on Cloud Model and Decision Tree

    Science.gov (United States)

    Chang, Ting-Cheng; Wang, Hui

    2016-01-01

    This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…

  6. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region.

    Science.gov (United States)

    Chang, Ni-Bin; Parvathinathan, G; Breeden, Jeff B

    2008-04-01

    Landfill siting is a difficult, complex, tedious, and protracted process requiring evaluation of many different criteria. This paper presents a fuzzy multicriteria decision analysis alongside with a geospatial analysis for the selection of landfill sites. It employs a two-stage analysis synergistically to form a spatial decision support system (SDSS) for waste management in a fast-growing urban region, south Texas. The first-stage analysis makes use of the thematic maps in Geographical information system (GIS) in conjunction with environmental, biophysical, ecological, and socioeconomic variables leading to support the second-stage analysis using the fuzzy multicriteria decision-making (FMCDM) as a tool. It differs from the conventional methods of integrating GIS with MCDM for landfill selection because the approach follows two sequential steps rather than a full-integrated scheme. The case study was made for the city of Harlingen in south Texas, which is rapidly evolving into a large urban area due to its vantage position near the US-Mexico borderlands. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of FMCDM method to identify the most suitable site using the information provided by the regional experts with reference to five chosen criteria. Research findings show that the proposed SDSS may aid in recognizing the pros and cons of potential areas for the localization of landfill sites in any study region. Based on initial GIS screening and final FMCDM assessment, "site 1" was selected as the most suitable site for the new landfill in the suburban area of the City of Harlingen. Sensitivity analysis was performed using Monte Carlo simulation where the decision weights associated with all criteria were varied to investigate their relative impacts on the rank ordering of the potential sites in the second stage. Despite variations of the decision weights within a range of 20%, it shows that "site 1

  7. A fuzzy approach to a multiple criteria and geographical information system for decision support on suitable locations for biogas plants

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres; Bojesen, Mikkel; Hougaard, Jens Leth

    The purpose of this paper is to model the multi-criteria decision problem of identifying the most suitable facility locations for biogas plants under an integrated decision support methodology. Here the Geographical Information System (GIS) is used for measuring the attributes of the alternatives...... according to a given set of criteria. Measurements are taken in interval form, expressing the natural imprecision of common data, and the Fuzzy Weighted Overlap Dominance (FWOD) procedure is applied for aggregating and exploiting this kind of data, obtaining suitability degrees for every alternative....... The estimation of criteria weights, which is necessary for applying the FWOD procedure, is done by means of the Analytical Hierarchy Process (AHP), such that a combined AHP-FWOD methodology allows identifying the more suitable sites for building biogas plants. We show that the FWOD relevance-ranking procedure...

  8. A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants

    DEFF Research Database (Denmark)

    Franco, Camilo; Bojesen, Mikkel; Hougaard, Jens Leth

    2015-01-01

    The purpose of this paper is to model the multi-criteria decision problem of identifying the most suitable facility locations for biogas plants under an integrated decision support methodology. Here the Geographical Information System (GIS) is used for measuring the attributes of the alternatives...... according to a given set of criteria. Measurements are taken in interval form, expressing the natural imprecision of common data, and the Fuzzy Weighted Overlap Dominance (FWOD) procedure is applied for aggregating and exploiting this kind of data, obtaining suitability degrees for every alternative....... The estimation of criteria weights, which is necessary for applying the FWOD procedure, is done by means of the Analytical Hierarchy Process (AHP), used jointly with the LLSM-AHP for the estimation of upper and lower bounds for the weights. Then, a combined AHP-FWOD methodology allows identifying the more...

  9. Fuzzy Multi-actor Multi-criteria Decision Making for Sustainability Assessment of biomass-based technologies for hydrogen production

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Fedele, Andrea; Mason, Marco

    2013-01-01

    The purpose of this paper is to develop a sustainability assessment method to rank the prior sequence of biomass-based technologies for hydrogen production. A novel fuzzy Multi-actor Multi-criteria Decision Making method which allows multiple groups of decision-makers to use linguistic variables...... to assess the biomass-based technologies for hydrogen production has been developed. Fifteen criteria relevant to in economic, environmental, technological and social-political aspects have been used in sustainability assessment. Four biomass-based technologies including pyrolysis, conventional gasification......, supercritical water gasification and fermentative hydrogen production have been studied by the proposed method, and biomass gasification has been considered as the most sustainable scenario and can be chosen for further development....

  10. Some Applications of Fuzzy Sets and the Analytical Hierarchy Process to Decision Making.

    Science.gov (United States)

    1984-09-01

    comparing them with prevailing ideas. Third, new ideas are not born polished and ready to be applied. They need some time to mature. It is in that...and we let Z = (John, Mike) and the fuzzy relation resemblance from Y to Z defined John Mike Bcb .3 •8 Tca .5 .7 Then we can compcse the resemblance

  11. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model

    Science.gov (United States)

    Reyna, Valerie F.; Brainerd, Charles J.

    2011-01-01

    From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals--that reasoning biases emerge with development--have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts…

  12. Fuzzy-logic-based resource allocation for isolated and multiple platforms

    Science.gov (United States)

    Smith, James F., III; Rhyne, Robert D., II

    2000-08-01

    Modern naval battle forces generally include many different platforms each with its own sensors, radar, ESM, and communications. The sharing of information measured by local sensors via communication links across the battle group should allow for optimal or near optimal decision. The survival of the battle group or members of the group depends on the automatic real-time allocation of various resources. A fuzzy logic algorithm has been developed that automatically allocates electronic attack resources in real- time. The particular approach to fuzzy logic that is used is the fuzzy decision tree, a generalization of the standard artificial intelligence technique of decision trees. The controller must be able to make decisions based on rules provided by experts. The fuzzy logic approach allows the direct incorporation of expertise forming a fuzzy linguistic description, i.e. a formal representation of the system in terms of fuzzy if-then rules. Genetic algorithm based optimization is conducted to determine the form of the membership functions for the fuzzy root concepts. The isolated platform and multi platform resource manager models are discussed as well as the underlying multi-platform communication model. The resource manager is shown to exhibit excellent performance under many demanding scenarios.

  13. Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic Algorithm for Classification Problem

    Science.gov (United States)

    Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.

  14. Test Reviews: Euler, B. L. (2007). "Emotional Disturbance Decision Tree". Lutz, FL: Psychological Assessment Resources

    Science.gov (United States)

    Tansy, Michael

    2009-01-01

    The Emotional Disturbance Decision Tree (EDDT) is a teacher-completed norm-referenced rating scale published by Psychological Assessment Resources, Inc., in Lutz, Florida. The 156-item EDDT was developed for use as part of a broader assessment process to screen and assist in the identification of 5- to 18-year-old children for the special…

  15. Relationships between average depth and number of misclassifications for decision trees

    KAUST Repository

    Chikalov, Igor

    2014-02-14

    This paper presents a new tool for the study of relationships between the total path length or the average depth and the number of misclassifications for decision trees. In addition to algorithm, the paper also presents the results of experiments with datasets from UCI ML Repository [9] and datasets representing Boolean functions with 10 variables.

  16. Dynamic Programming Strategies on the Decision Tree Hidden behind the Optimizing Problems

    OpenAIRE

    Zoltan KATAI

    2007-01-01

    The aim of the paper is to present the characteristics of certain dynamic programming strategies on the decision tree hidden behind the optimizing problems and thus to offer such a clear tool for their study and classification which can help in the comprehension of the essence of this programming technique.

  17. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

    Science.gov (United States)

    Thomas, Emily H.; Galambos, Nora

    2004-01-01

    To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

  18. A decision tree approach using silvics to guide planning for forest restoration

    Science.gov (United States)

    Sharon M. Hermann; John S. Kush; John C. Gilbert

    2013-01-01

    We created a decision tree based on silvics of longleaf pine (Pinus palustris) and historical descriptions to develop approaches for restoration management at Horseshoe Bend National Military Park located in central Alabama. A National Park Service goal is to promote structure and composition of a forest that likely surrounded the 1814 battlefield....

  19. Decision-tree induction to detect clinical mastitis with automatic milking

    NARCIS (Netherlands)

    Kamphuis, C.; Mollenhorst, H.; Feelders, A.; Pietersma, D.; Hogeveen, H.

    2010-01-01

    a b s t r a c t This study explored the potential of using decision-tree induction to develop models for the detection of clinical mastitis with automatic milking. Sensor data (including electrical conductivity and colour) of over 711,000 quarter milkings were collected from December 2006 till

  20. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    NARCIS (Netherlands)

    Metting, Esther I; In 't Veen, Johannes C C M; Dekhuijzen, P N Richard; van Heijst, Ellen; Kocks, Janwillem W H; Muilwijk-Kroes, Jacqueline B; Chavannes, Niels H; van der Molen, Thys

    2016-01-01

    The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years) with suspicion of an obstructive pulmonary disease was derived from an

  1. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Science.gov (United States)

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  2. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    NARCIS (Netherlands)

    Metting, E.I.; Veen, J.C. In 't; Dekhuijzen, P.N.R.; Heijst, E. van; Kocks, J.W.; Muilwijk-Kroes, J.B.; Chavannes, N.H.; Molen, T. van der

    2016-01-01

    The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53+/-17 years) with suspicion of an obstructive pulmonary disease was derived from an

  3. Dynamic Security Assessment of Western Danish Power System Based on Ensemble Decision Trees

    DEFF Research Database (Denmark)

    Liu, Leo; Bak, Claus Leth; Chen, Zhe

    2014-01-01

    With the increasing penetration of renewable energy resources and other forms of dispersed generation, more and more uncertainties will be brought to the dynamic security assessment (DSA) of power systems. This paper proposes an approach that uses ensemble decision trees (EDT) for online DSA. Fed...

  4. Relationships Between Average Depth and Number of Nodes for Decision Trees

    KAUST Repository

    Chikalov, Igor

    2013-07-24

    This paper presents a new tool for the study of relationships between total path length or average depth and number of nodes of decision trees. In addition to algorithm, the paper also presents the results of experiments with datasets from UCI ML Repository [1]. © Springer-Verlag Berlin Heidelberg 2014.

  5. Which Types of Leadership Styles Do Followers Prefer? A Decision Tree Approach

    Science.gov (United States)

    Salehzadeh, Reza

    2017-01-01

    Purpose: The purpose of this paper is to propose a new method to find the appropriate leadership styles based on the followers' preferences using the decision tree technique. Design/methodology/approach: Statistical population includes the students of the University of Isfahan. In total, 750 questionnaires were distributed; out of which, 680…

  6. An ordering heuristic for building Binary Decision Diagrams for fault-trees

    Energy Technology Data Exchange (ETDEWEB)

    Bouissou, M. [Electricite de France (EDF), 75 - Paris (France)

    1997-12-31

    Binary Decision Diagrams (BDD) have recently made a noticeable entry in the RAMS field. This kind of representation for boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cut-sets search) and quantitatively (exact calculation of top event probability). The object of the paper is to present a pre-processing of the fault-tree which ensures that the results given by different heuristics on the `optimized` fault-tree are not too sensitive to the way the tree is written. This property is based on a theoretical proof. In contrast with some well known heuristics, the method proposed is not based only on intuition and practical experiments. (author) 12 refs.

  7. An ordering heuristic for building Binary Decision Diagrams for fault-trees

    International Nuclear Information System (INIS)

    Bouissou, M.

    1997-01-01

    Binary Decision Diagrams (BDD) have recently made a noticeable entry in the RAMS field. This kind of representation for boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cut-sets search) and quantitatively (exact calculation of top event probability). The object of the paper is to present a pre-processing of the fault-tree which ensures that the results given by different heuristics on the 'optimized' fault-tree are not too sensitive to the way the tree is written. This property is based on a theoretical proof. In contrast with some well known heuristics, the method proposed is not based only on intuition and practical experiments. (author)

  8. Ultrasonographic diagnosis of biliary atresia based on a decision-making tree model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi; Cheon, Jung Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun Hye; Kim, In One; You, Sun Kyoung [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-12-15

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.

  9. Simple Prediction of Type 2 Diabetes Mellitus via Decision Tree Modeling

    Directory of Open Access Journals (Sweden)

    Mehrab Sayadi

    2017-06-01

    Full Text Available Background: Type 2 Diabetes Mellitus (T2DM is one of the most important risk factors in cardiovascular disorders considered as a common clinical and public health problem. Early diagnosis can reduce the burden of the disease. Decision tree, as an advanced data mining method, can be used as a reliable tool to predict T2DM. Objectives: This study aimed to present a simple model for predicting T2DM using decision tree modeling. Materials and Methods: This analytical model-based study used a part of the cohort data obtained from a database in Healthy Heart House of Shiraz, Iran. The data included routine information, such as age, gender, Body Mass Index (BMI, family history of diabetes, and systolic and diastolic blood pressure, which were obtained from the individuals referred for gathering baseline data in Shiraz cohort study from 2014 to 2015. Diabetes diagnosis was used as binary datum. Decision tree technique and J48 algorithm were applied using the WEKA software (version 3.7.5, New Zealand. Additionally, Receiver Operator Characteristic (ROC curve and Area Under Curve (AUC were used for checking the goodness of fit. Results: The age of the 11302 cases obtained after data preparation ranged from 18 to 89 years with the mean age of 48.1 ± 11.4 years. Additionally, 51.1% of the cases were male. In the tree structure, blood pressure and age were placed where most information was gained. In our model, however, gender was not important and was placed on the final branch of the tree. Total precision and AUC were 87% and 89%, respectively. This indicated that the model had good accuracy for distinguishing patients from normal individuals. Conclusions: The results showed that T2DM could be predicted via decision tree model without laboratory tests. Thus, this model can be used in pre-clinical and public health screening programs.

  10. Ultrasonographic Diagnosis of Biliary Atresia Based on a Decision-Making Tree Model.

    Science.gov (United States)

    Lee, So Mi; Cheon, Jung-Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun-Hae; Cho, Hyun-Hye; Kim, In-One; You, Sun Kyoung

    2015-01-01

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.

  11. Multivariate decision tree design for the classification of multi-jet topologies in $e^{+}e^{-}$ collisions

    CERN Document Server

    Mjahed, M

    2002-01-01

    The binary decision tree method is used to separate between several multi-jet topologies in e/sup +/e/sup -/ collisions. Instead of the univariate process usually taken, a new design procedure for constructing multivariate decision trees is proposed. The segmentation is obtained by considering some features functions, where linear and nonlinear discriminant functions and a minimal distance method are used. The classification focuses on ALEPH simulated events, with multi-jet topologies. Compared to a standard univariate tree, the multivariate decision trees offer significantly better performance. (30 refs).

  12. The application of a decision tree to establish the parameters associated with hypertension.

    Science.gov (United States)

    Tayefi, Maryam; Esmaeili, Habibollah; Saberi Karimian, Maryam; Amirabadi Zadeh, Alireza; Ebrahimi, Mahmoud; Safarian, Mohammad; Nematy, Mohsen; Parizadeh, Seyed Mohammad Reza; Ferns, Gordon A; Ghayour-Mobarhan, Majid

    2017-02-01

    Hypertension is an important risk factor for cardiovascular disease (CVD). The goal of this study was to establish the factors associated with hypertension by using a decision-tree algorithm as a supervised classification method of data mining. Data from a cross-sectional study were used in this study. A total of 9078 subjects who met the inclusion criteria were recruited. 70% of these subjects (6358 cases) were randomly allocated to the training dataset for the constructing of the decision-tree. The remaining 30% (2720 cases) were used as the testing dataset to evaluate the performance of decision-tree. Two models were evaluated in this study. In model I, age, gender, body mass index, marital status, level of education, occupation status, depression and anxiety status, physical activity level, smoking status, LDL, TG, TC, FBG, uric acid and hs-CRP were considered as input variables and in model II, age, gender, WBC, RBC, HGB, HCT MCV, MCH, PLT, RDW and PDW were considered as input variables. The validation of the model was assessed by constructing a receiver operating characteristic (ROC) curve. The prevalence rates of hypertension were 32% in our population. For the decision-tree model I, the accuracy, sensitivity, specificity and area under the ROC curve (AUC) value for identifying the related risk factors of hypertension were 73%, 63%, 77% and 0.72, respectively. The corresponding values for model II were 70%, 61%, 74% and 0.68, respectively. We have developed a decision tree model to identify the risk factors associated with hypertension that maybe used to develop programs for hypertension management. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Predicting the probability of mortality of gastric cancer patients using decision tree.

    Science.gov (United States)

    Mohammadzadeh, F; Noorkojuri, H; Pourhoseingholi, M A; Saadat, S; Baghestani, A R

    2015-06-01

    Gastric cancer is the fourth most common cancer worldwide. This reason motivated us to investigate and introduce gastric cancer risk factors utilizing statistical methods. The aim of this study was to identify the most important factors influencing the mortality of patients who suffer from gastric cancer disease and to introduce a classification approach according to decision tree model for predicting the probability of mortality from this disease. Data on 216 patients with gastric cancer, who were registered in Taleghani hospital in Tehran,Iran, were analyzed. At first, patients were divided into two groups: the dead and alive. Then, to fit decision tree model to our data, we randomly selected 20% of dataset to the test sample and remaining dataset considered as the training sample. Finally, the validity of the model examined with sensitivity, specificity, diagnosis accuracy and the area under the receiver operating characteristic curve. The CART version 6.0 and SPSS version 19.0 softwares were used for the analysis of the data. Diabetes, ethnicity, tobacco, tumor size, surgery, pathologic stage, age at diagnosis, exposure to chemical weapons and alcohol consumption were determined as effective factors on mortality of gastric cancer. The sensitivity, specificity and accuracy of decision tree were 0.72, 0.75 and 0.74 respectively. The indices of sensitivity, specificity and accuracy represented that the decision tree model has acceptable accuracy to prediction the probability of mortality in gastric cancer patients. So a simple decision tree consisted of factors affecting on mortality of gastric cancer may help clinicians as a reliable and practical tool to predict the probability of mortality in these patients.

  14. Using T3, an improved decision tree classifier, for mining stroke-related medical data.

    Science.gov (United States)

    Tjortjis, C; Saraee, M; Theodoulidis, B; Keane, J A

    2007-01-01

    Medical data are a valuable resource from which novel and potentially useful knowledge can be discovered by using data mining. Data mining can assist and support medical decision making and enhance clinical management and investigative research. The objective of this work is to propose a method for building accurate descriptive and predictive models based on classification of past medical data. We also aim to compare this method with other well established data mining methods and identify strengths and weaknesses. We propose T3, a decision tree classifier which builds predictive models based on known classes, by allowing for a certain amount of misclassification error in training in order to achieve better descriptive and predictive accuracy. We then experiment with a real medical data set on stroke, and various subsets, in order to identify strengths and weaknesses. We also compare performance with a very successful and well established decision tree classifier. T3 demonstrated impressive performance when predicting unseen cases of stroke resulting in as little as 0.4% classification error while the state of the art decision tree classifier resulted in 33.6% classification error respectively. This paper presents and evaluates T3, a classification algorithm that builds decision trees of depth at most three, and results in high accuracy whilst keeping the tree size reasonably small. T3 demonstrates strong descriptive and predictive power without compromising simplicity and clarity. We evaluate T3 based on real stroke register data and compare it with C4.5, a well-known classification algorithm, showing that T3 produces significantly more accurate and readable classifiers.

  15. Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles

    Directory of Open Access Journals (Sweden)

    Wong G William

    2008-06-01

    Full Text Available Abstract Background Pancreatic cancer is the fourth leading cause of cancer death in the United States. Consequently, identification of clinically relevant biomarkers for the early detection of this cancer type is urgently needed. In recent years, proteomics profiling techniques combined with various data analysis methods have been successfully used to gain critical insights into processes and mechanisms underlying pathologic conditions, particularly as they relate to cancer. However, the high dimensionality of proteomics data combined with their relatively small sample sizes poses a significant challenge to current data mining methodology where many of the standard methods cannot be applied directly. Here, we propose a novel methodological framework using machine learning method, in which decision tree based classifier ensembles coupled with feature selection methods, is applied to proteomics data generated from premalignant pancreatic cancer. Results This study explores the utility of three different feature selection schemas (Student t test, Wilcoxon rank sum test and genetic algorithm to reduce the high dimensionality of a pancreatic cancer proteomic dataset. Using the top features selected from each method, we compared the prediction performances of a single decision tree algorithm C4.5 with six different decision-tree based classifier ensembles (Random forest, Stacked generalization, Bagging, Adaboost, Logitboost and Multiboost. We show that ensemble classifiers always outperform single decision tree classifier in having greater accuracies and smaller prediction errors when applied to a pancreatic cancer proteomics dataset. Conclusion In our cross validation framework, classifier ensembles generally have better classification accuracies compared to that of a single decision tree when applied to a pancreatic cancer proteomic dataset, thus suggesting its utility in future proteomics data analysis. Additionally, the use of feature selection

  16. Predicting metabolic syndrome using decision tree and support vector machine methods.

    Science.gov (United States)

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According

  17. Prognostic Factors and Decision Tree for Long-term Survival in Metastatic Uveal Melanoma.

    Science.gov (United States)

    Lorenzo, Daniel; Ochoa, María; Piulats, Josep Maria; Gutiérrez, Cristina; Arias, Luis; Català, Jaum; Grau, María; Peñafiel, Judith; Cobos, Estefanía; Garcia-Bru, Pere; Rubio, Marcos Javier; Padrón-Pérez, Noel; Dias, Bruno; Pera, Joan; Caminal, Josep Maria

    2017-12-04

    The purpose of this study was to demonstrate the existence of a bimodal survival pattern in metastatic uveal melanoma. Secondary aims were to identify the characteristics and prognostic factors associated with long-term survival and to develop a clinical decision tree. The medical records of 99 metastatic uveal melanoma patients were retrospectively reviewed. Patients were classified as either short (≤ 12 months) or long-term survivors (> 12 months) based on a graphical interpretation of the survival curve after diagnosis of the first metastatic lesion. Ophthalmic and oncological characteristics were assessed in both groups. Of the 99 patients, 62 (62.6%) were classified as short-term survivors, and 37 (37.4%) as long-term survivors. The multivariate analysis identified the following predictors of long-term survival: age ≤ 65 years (p=0.012) and unaltered serum lactate dehydrogenase levels (p=0.018); additionally, the size (smaller vs. larger) of the largest liver metastasis showed a trend towards significance (p=0.063). Based on the variables significantly associated with long-term survival, we developed a decision tree to facilitate clinical decision-making. The findings of this study demonstrate the existence of a bimodal survival pattern in patients with metastatic uveal melanoma. The presence of certain clinical characteristics at diagnosis of distant disease is associated with long-term survival. A decision tree was developed to facilitate clinical decision-making and to counsel patients about the expected course of disease.

  18. Klasifikasi Nilai Kelayakan Calon Debitur Baru Menggunakan Decision Tree C4.5

    Directory of Open Access Journals (Sweden)

    Bambang Hermanto

    2017-01-01

    Full Text Available In an effort to improve the quality of customer service, especially in terms of feasibility assessment of borrowers due to the increasing number of new prospective borrowers loans financing the purchase of a motor vehicle, then the company needs a decision making tool allowing you to easily and quickly estimate Where the debtor is able to pay off the loans. This study discusses the process generates C4.5 decision tree algorithm and utilizing the learning group of debtor financing dataset motorcycle. The decision tree is then interpreted into the form of decision rules that can be understood and used as a reference in processing the data of borrowers in determining the feasibility of prospective new borrowers. Feasibility value refers to the value of the destination parameter credit status. If the value of the credit is paid off status mean estimated prospective borrower is able to repay the loan in question, but if the credit status parameters estimated worth pull means candidates concerned debtor is unable to pay loans.. System testing is done by comparing the results of the testing data by learning data in three scenarios with the decision that the data is valid at over 70% for all case scenarios. Moreover, in generated tree  and generate rules takes fairly quickly, which is no more than 15 minutes for each test scenario

  19. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    Science.gov (United States)

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  20. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT for Aquaculture

    Directory of Open Access Journals (Sweden)

    Yingyi Chen

    2017-01-01

    Full Text Available In the Internet of Things (IoT equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  1. Decision aid by fuzzy inference: a case study related to the problem of radioactive waste management

    International Nuclear Information System (INIS)

    Krunsch, P.; Fiordalisa, A.; Fortemps, Ph.

    1999-01-01

    This paper illustrates a fuzzy inference system (FIS) developed to assist the economic calculus in radioactive waste management (RWM). The extended time horizons and, in addition, the first-of-a-kind nature of many RWM systems induce large cost uncertainties in project funding. The traditional approach in economic calculus is to include contingency factors in basic cost estimates. A distinction is made between T-factors, used for technological uncertainties, and P-factors, used for project contingencies. In the particular case of nuclear projects, the Electric Power Research Institute (EPRI) has developed specific recommendations for defining both contingency factors. As a generalisation of the EPRI results, a new methodology using fuzzy inference rules is proposed. The inputs to the FIS are derived from the answers of experts regarding both the degrees of technological maturity and project advancement. Inferred T- and P-factors proposed by the FIS are given either as single estimates as possibility intervals. (authors)

  2. Modeling entrepreneurial decision-making process using concepts from fuzzy set theory

    OpenAIRE

    Khefacha, Islem; Belkacem, Lotfi

    2015-01-01

    Entrepreneurship and entrepreneurial culture are receiving an increased amount of attention in both academic research and practice. The different fields of study have focused on the analysis of the characteristics of potential entrepreneurs and the firm-creation process. In this paper, we develop and test an economic-psychological model of factors that influence individuals' intentions to go into business. We introduce a new measure of entrepreneurial intention based on the logic fuzzy techni...

  3. Fuzzy Trace Theory and Medical Decisions by Minors: Differences in Reasoning between Adolescents and Adults

    OpenAIRE

    Wilhelms, Evan A.; Reyna, Valerie F.

    2013-01-01

    Standard models of adolescent risk taking posit that the cognitive abilities of adolescents and adults are equivalent, and that increases in risk taking that occur during adolescence are the result of socio emotional differences in impulsivity, sensation seeking, and lack of self-control. Fuzzy-trace theory incorporates these socio emotional differences. However, it predicts that there are also cognitive differences between adolescents and adults, specifically that there are developmental inc...

  4. Knowledge-based systems as decision support tools in an ecosystem approach to fisheries: Comparing a fuzzy-logic and rule-based approach

    DEFF Research Database (Denmark)

    Jarre, Astrid; Paterson, B.; Moloney, C.L.

    2008-01-01

    rule-based Boolean and fuzzy-logic models have been used successfully as knowledge-based decision support tools. This study compares two such systems relevant to fisheries management in an EAF developed for the southern Benguela. The first is a rule-based system for the prediction of anchovy...

  5. Evaluating Emergency Response Solutions for Sustainable Community Development by Using Fuzzy Multi-Criteria Group Decision Making Approaches: IVDHF-TOPSIS and IVDHF-VIKOR

    Directory of Open Access Journals (Sweden)

    Junling Zhang

    2016-03-01

    Full Text Available Emergency management is vital in implementing sustainable community development, for which community planning must include emergency response solutions to potential natural and manmade hazards. To help maintain such solution repository, we investigate effective fuzzy multi-criteria group decision making (FMCGDM approaches for the complex problems of evaluating alternative emergency response solutions, where weights for decision makers and criteria are unknown due to problem complexity. We employ interval-valued dual hesitant fuzzy (IVDHF set to address decision hesitancy more effectively. Based on IVDHF assessments, we develop a deviation maximizing model to compute criteria weights and another compatibility maximizing model to calculate weights for decision makers. Then, two ideal-solution-based FMCGDM approaches are proposed: (i by introducing a synthesized IVDHF group decision matrix into TOPSIS, we develop an IVDHF-TOPSIS approach for fuzzy group settings; (ii when emphasizing both maximum group utility and minimum individual regret, we extend VIKOR to develop an IVDHF-VIKOR approach, where the derived decision makers’ weights are utilized to obtain group decision matrix and the determined criteria weights are integrated to reflect the relative importance of distances from the compromised ideal solution. Compared with aggregation-operators-based approach, IVDHF-TOPSIS and IVDHF-VIKOR can alleviate information loss and computational complexity. Numerical examples have validated the effectiveness of the proposed approaches.

  6. Assessment of air quality in Haora River basin using fuzzy multiple-attribute decision making techniques.

    Science.gov (United States)

    Singh, Ajit Pratap; Chakrabarti, Sumanta; Kumar, Sumit; Singh, Anjaney

    2017-08-01

    This paper deals with assessment of air quality in Haora River basin using two techniques. Initially, air quality indices were evaluated using a modified EPA method. The indices were also evaluated using a fuzzy comprehensive assessment (FCA) method. The results obtained from the fuzzy comprehensive assessment method were compared to that obtained from the modified EPA method. To illustrate the applicability of the methodology proposed herein, a case study has been presented. Air samples have been collected at 10 sampling sites located along Haora River. Six important air pollutants, namely, carbon monoxide, sulfur dioxide, nitrogen dioxide, suspended particulate matter (SPM), PM 10 , and lead, were monitored continuously, and air quality maps were generated on the GIS platform. Comparison of the methodologies has clearly highlighted superiority and robustness of the fuzzy comprehensive assessment method in determining air quality indices under study. It has effectively addressed the inherent uncertainties involved in the evaluation, modeling, and interpretation of sampling data, which was beyond the scope of the traditional weighted approaches employed otherwise. The FCA method is robust and prepares a credible platform of air quality evaluation and identification, in face of the uncertainties that remain eclipsed in the traditional approaches like the modified EPA method. The insights gained through the present study are believed to be of pivotal significance in guiding the development and implementation of effective environmental remedial action plans in the study area.

  7. Application of decision tree algorithm for identification of rock forming minerals using energy dispersive spectrometry

    Science.gov (United States)

    Akkaş, Efe; Çubukçu, H. Evren; Artuner, Harun

    2014-05-01

    Rapid and automated mineral identification is compulsory in certain applications concerning natural rocks. Among all microscopic and spectrometric methods, energy dispersive X-ray spectrometers (EDS) integrated with scanning electron microscopes produce rapid information with reliable chemical data. Although obtaining elemental data with EDS analyses is fast and easy by the help of improving technology, it is rather challenging to perform accurate and rapid identification considering the large quantity of minerals in a rock sample with varying dimensions ranging between nanometer to centimeter. Furthermore, the physical properties of the specimen (roughness, thickness, electrical conductivity, position in the instrument etc.) and the incident electron beam (accelerating voltage, beam current, spot size etc.) control the produced characteristic X-ray, which in turn affect the elemental analyses. In order to minimize the effects of these physical constraints and develop an automated mineral identification system, a rule induction paradigm has been applied to energy dispersive spectral data. Decision tree classifiers divide training data sets into subclasses using generated rules or decisions and thereby it produces classification or recognition associated with these data sets. A number of thinsections prepared from rock samples with suitable mineralogy have been investigated and a preliminary 12 distinct mineral groups (olivine, orthopyroxene, clinopyroxene, apatite, amphibole, plagioclase, K- feldspar, zircon, magnetite, titanomagnetite, biotite, quartz), comprised mostly of silicates and oxides, have been selected. Energy dispersive spectral data for each group, consisting of 240 reference and 200 test analyses, have been acquired under various, non-standard, physical and electrical conditions. The reference X-Ray data have been used to assign the spectral distribution of elements to the specified mineral groups. Consequently, the test data have been analyzed using

  8. Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.

    Science.gov (United States)

    Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael

    2015-08-01

    The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.

  9. Recurrent fuzzy ranking methods

    Science.gov (United States)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  10. Fuzzy multi-attribute decision making evaluation of e-learning websites using FAHP, COPRAS, VIKOR, WDBA

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2017-09-01

    Full Text Available The present paper emphasizes on the development of a hierarchical model using Fuzzy Multiple Attribute Decision Making (FMADM method for the selection of E-learning websites. The working of the model developed in this research mainly consists of three steps: (i Summarization and identification of selection indexes, (ii Selection indexes weights calculations using Fuzzy Analytical Hierarchy Process (FAHP and (iii Ranking of alternatives by implementing three MADM analytical methods as Complex Proportional Assessment (COPRAS, Visekriterijumsko Kompromisno Rangiranje (VIKOR and Weighted Distance Based Approximation (WDBA. In order to demonstrate the applicability and utility of the proposed methods, an empirical example related to the selection of E-learning websites that are widely used to learn the ‘C’ Programming Language for the software development is carried out. In addition, the results of these three methods are also compared to analyze the critical aspects of the selection indexes. It strongly shows that the developed FMADM model of this paper could be an efficient and effective assessment tool.

  11. A Fuzzy-Grey Multicriteria Decision Making Approach for Green Supplier Selection in Low-Carbon Supply Chain

    Directory of Open Access Journals (Sweden)

    Qinghua Pang

    2017-01-01

    Full Text Available Due to the increasing awareness of global warming and environmental protection, many practitioners and researchers have paid much attention to the low-carbon supply chain management in recent years. Green supplier selection is one of the most critical activities in the low-carbon supply chain management, so it is important to establish the comprehensive criteria and develop a method for green supplier selection in low-carbon supply chain. The paper proposes a fuzz-grey multicriteria decision making approach to deal with these problems. First, the paper establishes 4 main criteria and 22 subcriteria for green supplier selection. Then, a method integrating fuzzy set theory and grey relational analysis is proposed. It uses the membership function of normal distribution to compare each supplier and uses grey relation analysis to calculate the weight of each criterion and improves fuzzy comprehensive evaluation. The proposed method can make the localization of individual green supplier more objectively and more accurately in the same trade. Finally, a case study in the steel industry is presented to demonstrate the effectiveness of the proposed approach.

  12. Application of Decision-Tree Model to Groundwater Productivity-Potential Mapping

    Directory of Open Access Journals (Sweden)

    Saro Lee

    2015-09-01

    Full Text Available For the sustainable use of groundwater, this study analyzed groundwater productivity-potential using a decision-tree approach in a geographic information system (GIS in Boryeong and Pohang cities, Korea. The model was based on the relationship between groundwater-productivity data, including specific capacity (SPC, and its related hydrogeological factors. SPC data which is measured and calculated for groundwater productivity and data about related factors, including topography, lineament, geology, forest and soil data, were collected and input into a spatial database. A decision-tree model was applied and decision trees were constructed using the chi-squared automatic interaction detector (CHAID and the quick, unbiased, and efficient statistical tree (QUEST algorithms. The resulting groundwater-productivity-potential (GPP maps were validated using area-under-the-curve (AUC analysis with the well data that had not been used for training the model. In the Boryeong city, the CHAID and QUEST algorithms had accuracies of 83.31% and 79.47%, and in the Pohang city, the CHAID and QUEST algorithms had accuracies of 86.18% and 80.00%. As another validation, the GPP maps were validated by comparing the actual SPC data. As the result, in the Boryeong city, the CHAID and QUEST algorithms had accuracies of 96.55% and 94.92% and in the Pohang city, the CHAID and QUEST algorithms had accuracies of 87.88% and 87.50%. These results indicate that decision-tree models can be useful for development of groundwater resources.

  13. Certain and possible rules for decision making using rough set theory extended to fuzzy sets

    Science.gov (United States)

    Dekorvin, Andre; Shipley, Margaret F.

    1993-01-01

    Uncertainty may be caused by the ambiguity in the terms used to describe a specific situation. It may also be caused by skepticism of rules used to describe a course of action or by missing and/or erroneous data. To deal with uncertainty, techniques other than classical logic need to be developed. Although, statistics may be the best tool available for handling likelihood, it is not always adequate for dealing with knowledge acquisition under uncertainty. Inadequacies caused by estimating probabilities in statistical processes can be alleviated through use of the Dempster-Shafer theory of evidence. Fuzzy set theory is another tool used to deal with uncertainty where ambiguous terms are present. Other methods include rough sets, the theory of endorsements and nonmonotonic logic. J. Grzymala-Busse has defined the concept of lower and upper approximation of a (crisp) set and has used that concept to extract rules from a set of examples. We will define the fuzzy analogs of lower and upper approximations and use these to obtain certain and possible rules from a set of examples where the data is fuzzy. Central to these concepts will be the idea of the degree to which a fuzzy set A is contained in another fuzzy set B, and the degree of intersection of a set A with set B. These concepts will also give meaning to the statement; A implies B. The two meanings will be: (1) if x is certainly in A then it is certainly in B, and (2) if x is possibly in A then it is possibly in B. Next, classification will be looked at and it will be shown that if a classification will be looked at and it will be shown that if a classification is well externally definable then it is well internally definable, and if it is poorly externally definable then it is poorly internally definable, thus generalizing a result of Grzymala-Busse. Finally, some ideas of how to define consensus and group options to form clusters of rules will be given.

  14. Local linear model tree and Neuro-Fuzzy system for modelling and control of an experimental pH neutralization process

    OpenAIRE

    Petchinathan,G.; Valarmathi,K.; Devaraj,D.; Radhakrishnan,T. K.

    2014-01-01

    This paper describes the modelling and control of a pH neutralization process using a Local Linear Model Tree (LOLIMOT) and an adaptive neuro-fuzzy inference system (ANFIS). The Direct and Inverse model building using LOLIMOT and ANFIS structures is described and compared. The direct and inverse models of the pH system are identified based on experimental data for the LOLIMOT and ANFIS structures. The identified models are implemented in the experimental pH system with IMC structure using a G...

  15. GENERATION OF 2D LAND COVER MAPS FOR URBAN AREAS USING DECISION TREE CLASSIFICATION

    DEFF Research Database (Denmark)

    Höhle, Joachim

    2014-01-01

    image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software “R”; the generation of the dense and accurate digital surface model by the “Match-T DSM” program of the Trimble Company. A practical...... like buildings, roads, grassland, trees, hedges, and walls from such an ‘intelligent’ point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using...

  16. An Assessment for A Filtered Containment Venting Strategy Using Decision Tree Models

    International Nuclear Information System (INIS)

    Shin, Hoyoung; Jae, Moosung

    2016-01-01

    In this study, a probabilistic assessment of the severe accident management strategy through a filtered containment venting system was performed by using decision tree models. In Korea, the filtered containment venting system has been installed for the first time in Wolsong unit 1 as a part of Fukushima follow-up steps, and it is planned to be applied gradually for all the remaining reactors. Filtered containment venting system, one of severe accident countermeasures, prevents a gradual pressurization of the containment building exhausting noncondensable gas and vapor to the outside of the containment building. In this study, a probabilistic assessment of the filtered containment venting strategy, one of the severe accident management strategies, was performed by using decision tree models. Containment failure frequencies of each decision were evaluated by the developed decision tree model. The optimum accident management strategies were evaluated by comparing the results. Various strategies in severe accident management guidelines (SAMG) could be improved by utilizing the methodology in this study and the offsite risk analysis methodology

  17. Binary Decision Trees for Preoperative Periapical Cyst Screening Using Cone-beam Computed Tomography.

    Science.gov (United States)

    Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa

    2017-03-01

    Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.

  18. Validating a decision tree for serious infection: diagnostic accuracy in acutely ill children in ambulatory care.

    Science.gov (United States)

    Verbakel, Jan Y; Lemiengre, Marieke B; De Burghgraeve, Tine; De Sutter, An; Aertgeerts, Bert; Bullens, Dominique M A; Shinkins, Bethany; Van den Bruel, Ann; Buntinx, Frank

    2015-08-07

    Acute infection is the most common presentation of children in primary care with only few having a serious infection (eg, sepsis, meningitis, pneumonia). To avoid complications or death, early recognition and adequate referral are essential. Clinical prediction rules have the potential to improve diagnostic decision-making for rare but serious conditions. In this study, we aimed to validate a recently developed decision tree in a new but similar population. Diagnostic accuracy study validating a clinical prediction rule. Acutely ill children presenting to ambulatory care in Flanders, Belgium, consisting of general practice and paediatric assessment in outpatient clinics or the emergency department. Physicians were asked to score the decision tree in every child. The outcome of interest was hospital admission for at least 24 h with a serious infection within 5 days after initial presentation. We report the diagnostic accuracy of the decision tree in sensitivity, specificity, likelihood ratios and predictive values. In total, 8962 acute illness episodes were included, of which 283 lead to admission to hospital with a serious infection. Sensitivity of the decision tree was 100% (95% CI 71.5% to 100%) at a specificity of 83.6% (95% CI 82.3% to 84.9%) in the general practitioner setting with 17% of children testing positive. In the paediatric outpatient and emergency department setting, sensitivities were below 92%, with specificities below 44.8%. In an independent validation cohort, this clinical prediction rule has shown to be extremely sensitive to identify children at risk of hospital admission for a serious infection in general practice, making it suitable for ruling out. NCT02024282. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Fuzzy multi-objective approach for optimal selection of suppliers and transportation decisions in an eco-efficient closed loop supply chain network

    DEFF Research Database (Denmark)

    Govindan, Kannan; Darbari, Jyoti Dhingra; Agarwal, Vernika

    2017-01-01

    into the decision making process by selecting environmentally responsible suppliers to procure components based on sustainable criteria, choosing appropriate recovery options for end-of-use (EOU) inkjet printers, and planning an efficient transportation network design for reducing the carbon emission...... activities. A weighted fuzzy mathematical programming approach is utilised for generating a fuzzy, properly efficient solution as the desired compromised solution for the CLSC network problem configuration. The relevance of the model is justified using a real data set derived from a case study of the firm...... with higher sustainable performance and vehicles with lesser emission rate could substantially enhance firm's sustainable image and result in higher profits in the future....

  20. The Multi-Attribute Group Decision-Making Method Based on Interval Grey Trapezoid Fuzzy Linguistic Variables

    Directory of Open Access Journals (Sweden)

    Kedong Yin

    2017-12-01

    Full Text Available With respect to multi-attribute group decision-making (MAGDM problems, where attribute values take the form of interval grey trapezoid fuzzy linguistic variables (IGTFLVs and the weights (including expert and attribute weight are unknown, improved grey relational MAGDM methods are proposed. First, the concept of IGTFLV, the operational rules, the distance between IGTFLVs, and the projection formula between the two IGTFLV vectors are defined. Second, the expert weights are determined by using the maximum proximity method based on the projection values between the IGTFLV vectors. The attribute weights are determined by the maximum deviation method and the priorities of alternatives are determined by improved grey relational analysis. Finally, an example is given to prove the effectiveness of the proposed method and the flexibility of IGTFLV.

  1. Fuzzy Logic Engine

    Science.gov (United States)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  2. Visualizing Decision Trees in Games to Support Children's Analytic Reasoning: Any Negative Effects on Gameplay?

    Directory of Open Access Journals (Sweden)

    Robert Haworth

    2010-01-01

    Full Text Available The popularity and usage of digital games has increased in recent years, bringing further attention to their design. Some digital games require a significant use of higher order thought processes, such as problem solving and reflective and analytical thinking. Through the use of appropriate and interactive representations, these thought processes could be supported. A visualization of the game's internal structure is an example of this. However, it is unknown whether including these extra representations will have a negative effect on gameplay. To investigate this issue, a digital maze-like game was designed with its underlying structure represented as a decision tree. A qualitative, exploratory study with children was performed to examine whether the tree supported their thought processes and what effects, if any, the tree had on gameplay. This paper reports the findings of this research and discusses the implications for the design of games in general.

  3. Embedded system in Arduino platform with Fuzzy control to support the grain aeration decision

    OpenAIRE

    Szesz Junior,Albino; Monteiro Junior,Marcos; Dias,Ariangelo Hauer; Mathias,Ivo Mário; Conti,Giuvane

    2016-01-01

    ABSTRACT: Aeration is currently the most commonly used technique to improve the drying and storage of grain, depending on temperature and water content of the grain, as of the temperature and relative humidity of the outside air. In order to monitor temperature and humidity of the grain mass, it is possible to have a network of sensors in the cells of both internal and external storage. Use of artificial intelligence through Fuzzy theory, has been used since the 60s and enables their applicat...

  4. [The application of decision tree in the research of anemia among rural children under 3-year-old].

    Science.gov (United States)

    Ma, Yu-gang; Bi, Yu-xue; Yan, Hong; Deng, Li-na; Liang, Wei-feng; Wang, Bei; Zhang, Xue-li

    2009-05-01

    To study the application of decision tree in the research of anemia among rural children. In the Enterprise Miner module of software SAS 8.2, 3000 observations were sampled from database and the decision tree model was built. The model using decision tree of CART bases on Gini impurity index. The misclassification rate of decision tree model was, training set 21.2%, validation set 21.9%. The Root ASE of decision tree model was, training set 0.399, validation set 0.404. The area under the ROC curve was larger than the reference line. The diagnostic chart showed that the corresponding percentage was higher than the other. The decision tree model selected 9 important factors and ranked them by their power, among which mother of anemia (1.00) was the most important factor. Others were children's age (0.75), time of ablactation (0.53), mother's age (0.32), the time of egg supplementation (0.26), category of the project county (0.26), the time of milk supplementation (0.16), number of people in the family (0.13), the education status of the mother (0.12). Decision tree produced simple and easy rules that might be used to classify and predict in the same research. Decision tree could screen out the important factors of anemia and identify the cutting-points for factors. With the wide application of decision tree, it would exhibit important application values in the research of the rural children health care.

  5. Multi-stage ranking of emergency technology alternatives for water source pollution accidents using a fuzzy group decision making tool.

    Science.gov (United States)

    Qu, Jianhua; Meng, Xianlin; You, Hong

    2016-06-05

    Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method.

    Science.gov (United States)

    Liu, Hu-Chen; Wu, Jing; Li, Ping

    2013-12-01

    Nowadays selection of the appropriate treatment method in health-care waste (HCW) management has become a challenge task for the municipal authorities especially in developing countries. Assessment of HCW disposal alternatives can be regarded as a complicated multi-criteria decision making (MCDM) problem which requires consideration of multiple alternative solutions and conflicting tangible and intangible criteria. The objective of this paper is to present a new MCDM technique based on fuzzy set theory and VIKOR method for evaluating HCW disposal methods. Linguistic variables are used by decision makers to assess the ratings and weights for the established criteria. The ordered weighted averaging (OWA) operator is utilized to aggregate individual opinions of decision makers into a group assessment. The computational procedure of the proposed framework is illustrated through a case study in Shanghai, one of the largest cities of China. The HCW treatment alternatives considered in this study include "incineration", "steam sterilization", "microwave" and "landfill". The results obtained using the proposed approach are analyzed in a comparative way. Copyright © 2013. Published by Elsevier Ltd.

  7. External validation of a decision tree early warning score using only laboratory data

    DEFF Research Database (Denmark)

    Holm Atkins, Tara E; Öhman, Malin C; Brabrand, Mikkel

    2018-01-01

    INTRODUCTION: Early warning scores (EWS) have been developed to identify the degree of illness severity among acutely ill patients. One system, The Laboratory Decision Tree Early Warning Score (LDT-EWS) is wholly laboratory data based. Laboratory data was used in the development of a rare...... computerized method, developing a decision tree analysis. This article externally validates LDT-EWS, which is obligatory for an EWS before clinical use. METHOD: We conducted a retrospective review of prospectively collected data based on a time limited sample of all patients admitted through the medical...... with a goodness-of-fit test of X2=5.37 (7 degrees of freedom), p=0.62. CONCLUSION: LDT-EWS has acceptable ability to identify patients at high risk of dying during hospitalization with good precision. Further studies performing impact analysis are required before this score should be implemented in clinical...

  8. Circum-Arctic petroleum systems identified using decision-tree chemometrics

    Science.gov (United States)

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.; Gautier, D.L.

    2007-01-01

    Source- and age-related biomarker and isotopic data were measured for more than 1000 crude oil samples from wells and seeps collected above approximately 55??N latitude. A unique, multitiered chemometric (multivariate statistical) decision tree was created that allowed automated classification of 31 genetically distinct circumArctic oil families based on a training set of 622 oil samples. The method, which we call decision-tree chemometrics, uses principal components analysis and multiple tiers of K-nearest neighbor and SIMCA (soft independent modeling of class analogy) models to classify and assign confidence limits for newly acquired oil samples and source rock extracts. Geochemical data for each oil sample were also used to infer the age, lithology, organic matter input, depositional environment, and identity of its source rock. These results demonstrate the value of large petroleum databases where all samples were analyzed using the same procedures and instrumentation. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  9. Three-dimensional object recognition using similar triangles and decision trees

    Science.gov (United States)

    Spirkovska, Lilly

    1993-01-01

    A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.

  10. Monte Carlo Tree Search for Continuous and Stochastic Sequential Decision Making Problems

    International Nuclear Information System (INIS)

    Couetoux, Adrien

    2013-01-01

    In this thesis, I studied sequential decision making problems, with a focus on the unit commitment problem. Traditionally solved by dynamic programming methods, this problem is still a challenge, due to its high dimension and to the sacrifices made on the accuracy of the model to apply state of the art methods. I investigated on the applicability of Monte Carlo Tree Search methods for this problem, and other problems that are single player, stochastic and continuous sequential decision making problems. In doing so, I obtained a consistent and anytime algorithm, that can easily be combined with existing strong heuristic solvers. (author)

  11. Using Decision Trees for Estimating Mode Choice of Trips in Buca-Izmir

    Science.gov (United States)

    Oral, L. O.; Tecim, V.

    2013-05-01

    Decision makers develop transportation plans and models for providing sustainable transport systems in urban areas. Mode Choice is one of the stages in transportation modelling. Data mining techniques can discover factors affecting the mode choice. These techniques can be applied with knowledge process approach. In this study a data mining process model is applied to determine the factors affecting the mode choice with decision trees techniques by considering individual trip behaviours from household survey data collected within Izmir Transportation Master Plan. From this perspective transport mode choice problem is solved on a case in district of Buca-Izmir, Turkey with CRISP-DM knowledge process model.

  12. USING DECISION TREES FOR ESTIMATING MODE CHOICE OF TRIPS IN BUCA-IZMIR

    Directory of Open Access Journals (Sweden)

    L. O. Oral

    2013-05-01

    Full Text Available Decision makers develop transportation plans and models for providing sustainable transport systems in urban areas. Mode Choice is one of the stages in transportation modelling. Data mining techniques can discover factors affecting the mode choice. These techniques can be applied with knowledge process approach. In this study a data mining process model is applied to determine the factors affecting the mode choice with decision trees techniques by considering individual trip behaviours from household survey data collected within Izmir Transportation Master Plan. From this perspective transport mode choice problem is solved on a case in district of Buca-Izmir, Turkey with CRISP-DM knowledge process model.

  13. Quantifying human and organizational factors in accident management using decision trees: the HORAAM method

    Energy Technology Data Exchange (ETDEWEB)

    Baumont, G.; Menage, F.; Schneiter, J.R.; Spurgin, A.; Vogel, A

    2000-11-01

    In the framework of the level 2 Probabilistic Safety Study (PSA 2) project, the Institute for Nuclear Safety and Protection (IPSN) has developed a method for taking into account Human and Organizational Reliability Aspects during accident management. Actions are taken during very degraded installation operations by teams of experts in the French framework of Crisis Organization (ONC). After describing the background of the framework of the Level 2 PSA, the French specific Crisis Organization and the characteristics of human actions in the Accident Progression Event Tree, this paper describes the method developed to introduce in PSA the Human and Organizational Reliability Analysis in Accident Management (HORAAM). This method is based on the Decision Tree method and has gone through a number of steps in its development. The first one was the observation of crisis center exercises, in order to identify the main influence factors (IFs) which affect human and organizational reliability. These IFs were used as headings in the Decision Tree method. Expert judgment was used in order to verify the IFs, to rank them, and to estimate the value of the aggregated factors to simplify the quantification of the tree. A tool based on Mathematica was developed to increase the flexibility and the efficiency of the study.

  14. Strong sum distance in fuzzy graphs.

    Science.gov (United States)

    Tom, Mini; Sunitha, Muraleedharan Shetty

    2015-01-01

    In this paper the idea of strong sum distance which is a metric, in a fuzzy graph is introduced. Based on this metric the concepts of eccentricity, radius, diameter, center and self centered fuzzy graphs are studied. Some properties of eccentric nodes, peripheral nodes and central nodes are obtained. A characterisation of self centered complete fuzzy graph is obtained and conditions under which a fuzzy cycle is self centered are established. We have proved that based on this metric, an eccentric node of a fuzzy tree G is a fuzzy end node of G and a node is an eccentric node of a fuzzy tree if and only if it is a peripheral node of G and the center of a fuzzy tree consists of either one or two neighboring nodes. The concepts of boundary nodes and interior nodes in a fuzzy graph based on strong sum distance are introduced. Some properties of boundary nodes, interior nodes and complete nodes are studied.

  15. Inductive Decision Tree Analysis of the Validity Rank of Construction Parameters of Innovative Gear Pump after Tooth Root Undercutting

    Directory of Open Access Journals (Sweden)

    Deptuła A.

    2017-02-01

    Full Text Available The article presents an innovative use of inductive algorithm for generating the decision tree for an analysis of the rank validity parameters of construction and maintenance of the gear pump with undercut tooth. It is preventet an alternative way of generating sets of decisions and determining the hierarchy of decision variables to existing the methods of discrete optimization.

  16. Inductive Decision Tree Analysis of the Validity Rank of Construction Parameters of Innovative Gear Pump after Tooth Root Undercutting

    Science.gov (United States)

    Deptuła, A.; Partyka, M. A.

    2017-02-01

    The article presents an innovative use of inductive algorithm for generating the decision tree for an analysis of the rank validity parameters of construction and maintenance of the gear pump with undercut tooth. It is preventet an alternative way of generating sets of decisions and determining the hierarchy of decision variables to existing the methods of discrete optimization.

  17. Exploratory Use of Decision Tree Analysis in Classification of Outcome in Hypoxic–Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Thanh G. Phan

    2018-03-01

    Full Text Available BackgroundPrognostication following hypoxic ischemic encephalopathy (brain injury is important for clinical management. The aim of this exploratory study is to use a decision tree model to find clinical and MRI associates of severe disability and death in this condition. We evaluate clinical model and then the added value of MRI data.MethodThe inclusion criteria were as follows: age ≥17 years, cardio-respiratory arrest, and coma on admission (2003–2011. Decision tree analysis was used to find clinical [Glasgow Coma Score (GCS, features about cardiac arrest, therapeutic hypothermia, age, and sex] and MRI (infarct volume associates of severe disability and death. We used the area under the ROC (auROC to determine accuracy of model. There were 41 (63.7% males patients having MRI imaging with the average age 51.5 ± 18.9 years old. The decision trees showed that infarct volume and age were important factors for discrimination between mild to moderate disability and severe disability and death at day 0 and day 2. The auROC for this model was 0.94 (95% CI 0.82–1.00. At day 7, GCS value was the only predictor; the auROC was 0.96 (95% CI 0.86–1.00.ConclusionOur findings provide proof of concept for further exploration of the role of MR imaging and decision tree analysis in the early prognostication of hypoxic ischemic brain injury.

  18. Advocating the broad use of the decision tree method in education

    OpenAIRE

    Almeida, Leandro S.; Gomes, Cristiano Mauro Assis

    2017-01-01

    Predictive studies have been widely undertaken in the field of education to provide strategic information about the extensive set of processes related to teaching and learning, as well as about what variables predict certain educational outcomes, such as academic achievement or dropout. As in any other area, there is a set of standard techniques that is usually used in predictive studies in the field education. Even though the Decision Tree Method is a well-known and standard approach in Data...

  19. The Studies of Decision Tree in Estimation of Breast Cancer Risk by Using Polymorphism Nucleotide

    OpenAIRE

    Frida Seyedmir; Kamal Mirzaie; Morteza Bitaraf Sani

    2017-01-01

    Abstract Introduction:   Decision tree is the data mining tools to collect, accurate prediction and sift information from massive amounts of data that are used widely in the field of computational biology and bioinformatics. In bioinformatics can be predict on diseases, including breast cancer. The use of genomic data including single nucleotide polymorphisms is a very important factor in predicting the risk of diseases. The number of seven important SNP among hundreds of thousan...

  20. Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree

    CERN Document Server

    Gligorov, V.V.

    2013-01-01

    High-level triggering is a vital component in many modern particle physics experiments. This paper describes a modification to the standard boosted decision tree (BDT) classifier, the so-called "bonsai" BDT, that has the following important properties: it is more efficient than traditional cut-based approaches; it is robust against detector instabilities, and it is very fast. Thus, it is fit-for-purpose for the online running conditions faced by any large-scale data acquisition system.

  1. Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree

    Science.gov (United States)

    Gligorov, V. V.; Williams, M.

    2013-02-01

    High-level triggering is a vital component of many modern particle physics experiments. This paper describes a modification to the standard boosted decision tree (BDT) classifier, the so-called bonsai BDT, that has the following important properties: it is more efficient than traditional cut-based approaches; it is robust against detector instabilities, and it is very fast. Thus, it is fit-for-purpose for the online running conditions faced by any large-scale data acquisition system.

  2. Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree

    International Nuclear Information System (INIS)

    Gligorov, V V; Williams, M

    2013-01-01

    High-level triggering is a vital component of many modern particle physics experiments. This paper describes a modification to the standard boosted decision tree (BDT) classifier, the so-called bonsai BDT, that has the following important properties: it is more efficient than traditional cut-based approaches; it is robust against detector instabilities, and it is very fast. Thus, it is fit-for-purpose for the online running conditions faced by any large-scale data acquisition system.

  3. Non-compliance with a postmastectomy radiotherapy guideline: Decision tree and cause analysis

    OpenAIRE

    Razavi, Amir R; Gill, Hans; Åhlfeldt, Hans; Shahsavar, Nosrat

    2008-01-01

    Background: The guideline for postmastectomy radiotherapy (PMRT), which is prescribed to reduce recurrence of breast cancer in the chest wall and improve overall survival, is not always followed. Identifying and extracting important patterns of non-compliance are crucial in maintaining the quality of care in Oncology. Methods: Analysis of 759 patients with malignant breast cancer using decision tree induction (DTI) found patterns of non-compliance with the guideline. The PMRT guideline was us...

  4. Classification tree methods for development of decision rules for botulism and cyanide poisoning.

    Science.gov (United States)

    Sasser, Howell; Nussbaum, Marcy; Beuhler, Michael; Ford, Marsha

    2008-06-01

    Identification of predictors of potential mass poisonings may increase the speed and accuracy with which patients are recognized, potentially reducing the number ultimately exposed and the degree to which they are affected. This analysis used a decision-tree method to sort such potential predictors. Data from the Toxic Exposure Surveillance System were used to select cyanide and botulism cases from 1993 to 2005 for analysis. Cases of other poisonings from a single poison center were used as controls. After duplication was omitted and removal of cases from the control sample was completed, there remained 1,122 cyanide cases, 262 botulism cases, and 70,804 controls available for both analyses. Classification trees for each poisoning type were constructed, using 131 standardized clinical effects. These decision rules were compared with the current case surveillance definitions of one active poison center and the American Association of Poison Control Centers (AAPCC). The botulism analysis produced a 4-item decision rule with sensitivity (Se) of 68% and specificity (Sp) of 90%. Use of the single poison center and AAPCC definitions produced Se of 19.5% and 16.8%, and Sp of 99.5% and 83.2%, respectively. The cyanide analysis produced a 9-item decision rule with Se of 74% and Sp of 77%. The single poison center and AAPCC case definitions produced Se of 10.2% and 8.6%, and Sp of 99.8% and 99.8%, respectively. These results suggest the possibility of improved poisoning case surveillance sensitivity using classification trees. This method produced substantially higher sensitivities, but not specificities, for both cyanide and botulism. Despite limitations, these results show the potential of a classification-tree approach in the detection of poisoning events.

  5. Fuzzy Decision-Making Fuser (FDMF for Integrating Human-Machine Autonomous (HMA Systems with Adaptive Evidence Sources

    Directory of Open Access Journals (Sweden)

    Yu-Ting Liu

    2017-06-01

    Full Text Available A brain-computer interface (BCI creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This

  6. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  7. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    Science.gov (United States)

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Decision Trees for Continuous Data and Conditional Mutual Information as a Criterion for Splitting Instances.

    Science.gov (United States)

    Drakakis, Georgios; Moledina, Saadiq; Chomenidis, Charalampos; Doganis, Philip; Sarimveis, Haralambos

    2016-01-01

    Decision trees are renowned in the computational chemistry and machine learning communities for their interpretability. Their capacity and usage are somewhat limited by the fact that they normally work on categorical data. Improvements to known decision tree algorithms are usually carried out by increasing and tweaking parameters, as well as the post-processing of the class assignment. In this work we attempted to tackle both these issues. Firstly, conditional mutual information was used as the criterion for selecting the attribute on which to split instances. The algorithm performance was compared with the results of C4.5 (WEKA's J48) using default parameters and no restrictions. Two datasets were used for this purpose, DrugBank compounds for HRH1 binding prediction and Traditional Chinese Medicine formulation predicted bioactivities for therapeutic class annotation. Secondly, an automated binning method for continuous data was evaluated, namely Scott's normal reference rule, in order to allow any decision tree to easily handle continuous data. This was applied to all approved drugs in DrugBank for predicting the RDKit SLogP property, using the remaining RDKit physicochemical attributes as input.

  9. Imitation learning of car driving skills with decision trees and random forests

    Directory of Open Access Journals (Sweden)

    Cichosz Paweł

    2014-09-01

    Full Text Available Machine learning is an appealing and useful approach to creating vehicle control algorithms, both for simulated and real vehicles. One common learning scenario that is often possible to apply is learning by imitation, in which the behavior of an exemplary driver provides training instances for a supervised learning algorithm. This article follows this approach in the domain of simulated car racing, using the TORCS simulator. In contrast to most prior work on imitation learning, a symbolic decision tree knowledge representation is adopted, which combines potentially high accuracy with human readability, an advantage that can be important in many applications. Decision trees are demonstrated to be capable of representing high quality control models, reaching the performance level of sophisticated pre-designed algorithms. This is achieved by enhancing the basic imitation learning scenario to include active retraining, automatically triggered on control failures. It is also demonstrated how better stability and generalization can be achieved by sacrificing human-readability and using decision tree model ensembles. The methodology for learning control models contributed by this article can be hopefully applied to solve real-world control tasks, as well as to develop video game bots

  10. Decision-tree approach to evaluating inactive uranium-processing sites for liner requirements

    International Nuclear Information System (INIS)

    Relyea, J.F.

    1983-03-01

    Recently, concern has been expressed about potential toxic effects of both radon emission and release of toxic elements in leachate from inactive uranium mill tailings piles. Remedial action may be required to meet disposal standards set by the states and the US Environmental Protection Agency (EPA). In some cases, a possible disposal option is the exhumation and reburial (either on site or at a new location) of tailings and reliance on engineered barriers to satisfy the objectives established for remedial actions. Liners under disposal pits are the major engineered barrier for preventing contaminant release to ground and surface water. The purpose of this report is to provide a logical sequence of action, in the form of a decision tree, which could be followed to show whether a selected tailings disposal design meets the objectives for subsurface contaminant release without a liner. This information can be used to determine the need and type of liner for sites exhibiting a potential groundwater problem. The decision tree is based on the capability of hydrologic and mass transport models to predict the movement of water and contaminants with time. The types of modeling capabilities and data needed for those models are described, and the steps required to predict water and contaminant movement are discussed. A demonstration of the decision tree procedure is given to aid the reader in evaluating the need for the adequacy of a liner

  11. Fundamentals of the fuzzy logic-based generalized theory of decisions

    CERN Document Server

    Aliev, Rafik Aziz

    2013-01-01

    Every day decision making and decision making in complex human-centric systems are characterized by imperfect decision-relevant information. Main drawback of the existing decision theories is namely incapability to deal with imperfect information and modeling vague preferences. Actually, a paradigm of non-numerical probabilities in decision making has a long history and arose also in Keynes’s analysis of uncertainty. There is a need for further generalization – a move to decision theories with perception-based imperfect information described in NL. The languages of new decision models for human-centric systems should be not languages based on binary logic but human-centric computational schemes able to operate on NL-described information. Development of new theories is now possible due to an increased computational power of information processing systems which allows for computations with imperfect information, particularly, imprecise and partially true information, which are much more complex than comput...

  12. LOCAL BINARIZATION FOR DOCUMENT IMAGES CAPTURED BY CAMERAS WITH DECISION TREE

    Directory of Open Access Journals (Sweden)

    Naser Jawas

    2012-07-01

    Full Text Available Character recognition in a document image captured by a digital camera requires a good binary image as the input for the separation the text from the background. Global binarization method does not provide such good separation because of the problem of uneven levels of lighting in images captured by cameras. Local binarization method overcomes the problem but requires a method to partition the large image into local windows properly. In this paper, we propose a local binariation method with dynamic image partitioning using integral image and decision tree for the binarization decision. The integral image is used to estimate the number of line in the document image. The number of line in the document image is used to devide the document into local windows. The decision tree makes a decision for threshold in every local window. The result shows that the proposed method can separate the text from the background better than using global thresholding with the best OCR result of the binarized image is 99.4%. Pengenalan karakter pada sebuah dokumen citra yang diambil menggunakan kamera digital membutuhkan citra yang terbinerisasi dengan baik untuk memisahkan antara teks dengan background. Metode binarisasi global tidak memberikan hasil pemisahan yang bagus karena permasalahan tingkat pencahayaan yang tidak seimbang pada citra hasil kamera digital. Metode binarisasi lokal dapat mengatasi permasalahan tersebut namun metode tersebut membutuhkan metode untuk membagi citra ke dalam bagian-bagian window lokal. Pada paper ini diusulkan sebuah metode binarisasi lokal dengan pembagian citra secara dinamis menggunakan integral image dan decision tree untuk keputusan binarisasi lokalnya. Integral image digunakan untuk mengestimasi jumlah baris teks dalam dokumen citra. Jumlah baris tersebut kemudian digunakan untuk membagi citra dokumen ke dalam window lokal. Keputusan nilai threshold untuk setiap window lokal ditentukan dengan decisiontree. Hasilnya menunjukkan

  13. Using decision tree to predict serum ferritin level in women with anemia

    Directory of Open Access Journals (Sweden)

    Parisa Safaee

    2016-04-01

    Full Text Available Background: Data mining is known as a process of discovering and analysing large amounts of data in order to find meaningful rules and trends. In healthcare, data mining offers numerous opportunities to study the unknown patterns in a data set. These patterns can be used to diagnosis, prognosis and treatment of patients by physicians. The main objective of this study was to predict the level of serum ferritin in women with anemia and to specify the basic predictive factors of iron deficiency anemia using data mining techniques. Methods: In this research 690 patients and 22 variables have been studied in women population with anemia. These data include 11 laboratories and 11 clinical variables of patients related to the patients who have referred to the laboratory of Imam Hossein and Shohada-E- Haft Tir hospitals from April 2013 to April 2014. Decision tree technique has been used to build the model. Results: The accuracy of the decision tree with all the variables is 75%. Different combinations of variables were examined in order to determine the best model to predict. Regarding the optimum obtained model of the decision tree, the RBC, MCH, MCHC, gastrointestinal cancer and gastrointestinal ulcer were identified as the most important predictive factors. The results indicate if the values of MCV, MCHC and MCH variables are normal and the value of RBC variable is lower than normal limitation, it is diagnosed that the patient is likely 90% iron deficiency anemia. Conclusion: Regarding the simplicity and the low cost of the complete blood count examination, the model of decision tree was taken into consideration to diagnose iron deficiency anemia in patients. Also the impact of new factors such as gastrointestinal hemorrhoids, gastrointestinal surgeries, different gastrointestinal diseases and gastrointestinal ulcers are considered in this paper while the previous studies have been limited only to assess laboratory variables. The rules of the

  14. Fuzzy diagnosis

    International Nuclear Information System (INIS)

    Watanabe, K.

    1990-01-01

    Studies have been made on fuzzy diagnosis using inverse problem solutions of the fuzzy relational equation of ao R=b, where a is the failure vector, R the fuzzy relation matrix and b the sympton vector. Four phases of analyses were carried out in this study. First, fault tree analysis was undertaken to investigate what kind of causes produce fall of water level in a steam drum of ATR (Advanced Thermal Reactor), which is heavy-water-moderated boiling-water-cooled pressure-tube-type reactor. Next, simulation for 100 seconds was executed to determine how plant parameters respond to an occurrence of a transient induced by the cause. Third, the simulation data was analysed utilizing an autoregressive model. From this analysis, a total of 36 coherency functions up to 0.5 Hz in each transient were computed among nine important and detectable plant parameters, that is neutron flux, flow rate of coolant, steam and feed water, water level in the steam drum, pressure and opening area of control valve in a steam pipe, feed water temperature and electrical power. Last, the inverse problem of the fuzzy relational equation was solved. Relation matrices were adjusted from 0.00 to 1.00, after nine membership functions following the Gussian distribution for the symptom vector were estimated from correlation values of the coherency functions

  15. A decision tree – based method for the differential diagnosis of Aortic Stenosis from Mitral Regurgitation using heart sounds

    Directory of Open Access Journals (Sweden)

    Loukis Euripides N

    2004-06-01

    Full Text Available Abstract Background New technologies like echocardiography, color Doppler, CT, and MRI provide more direct and accurate evidence of heart disease than heart auscultation. However, these modalities are costly, large in size and operationally complex and therefore are not suitable for use in rural areas, in homecare and generally in primary healthcare set-ups. Furthermore the majority of internal medicine and cardiology training programs underestimate the value of cardiac auscultation and junior clinicians are not adequately trained in this field. Therefore efficient decision support systems would be very useful for supporting clinicians to make better heart sound diagnosis. In this study a rule-based method, based on decision trees, has been developed for differential diagnosis between "clear" Aortic Stenosis (AS and "clear" Mitral Regurgitation (MR using heart sounds. Methods For the purposes of our experiment we used a collection of 84 heart sound signals including 41 heart sound signals with "clear" AS systolic murmur and 43 with "clear" MR systolic murmur. Signals were initially preprocessed to detect 1st and 2nd heart sounds. Next a total of 100 features were determined for every heart sound signal and relevance to the differentiation between AS and MR was estimated. The performance of fully expanded decision tree classifiers and Pruned decision tree classifiers were studied based on various training and test datasets. Similarly, pruned decision tree classifiers were used to examine their differentiation capabilities. In order to build a generalized decision support system for heart sound diagnosis, we have divided the problem into sub problems, dealing with either one morphological characteristic of the heart-sound waveform or with difficult to distinguish cases. Results Relevance analysis on the different heart sound features demonstrated that the most relevant features are the frequency features and the morphological features that

  16. Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees.

    Science.gov (United States)

    Huys, Quentin J M; Eshel, Neir; O'Nions, Elizabeth; Sheridan, Luke; Dayan, Peter; Roiser, Jonathan P

    2012-01-01

    When planning a series of actions, it is usually infeasible to consider all potential future sequences; instead, one must prune the decision tree. Provably optimal pruning is, however, still computationally ruinous and the specific approximations humans employ remain unknown. We designed a new sequential reinforcement-based task and showed that human subjects adopted a simple pruning strategy: during mental evaluation of a sequence of choices, they curtailed any further evaluation of a sequence as soon as they encountered a large loss. This pruning strategy was Pavlovian: it was reflexively evoked by large losses and persisted even when overwhelmingly counterproductive. It was also evident above and beyond loss aversion. We found that the tendency towards Pavlovian pruning was selectively predicted by the degree to which subjects exhibited sub-clinical mood disturbance, in accordance with theories that ascribe Pavlovian behavioural inhibition, via serotonin, a role in mood disorders. We conclude that Pavlovian behavioural inhibition shapes highly flexible, goal-directed choices in a manner that may be important for theories of decision-making in mood disorders.

  17. Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees.

    Directory of Open Access Journals (Sweden)

    Quentin J M Huys

    Full Text Available When planning a series of actions, it is usually infeasible to consider all potential future sequences; instead, one must prune the decision tree. Provably optimal pruning is, however, still computationally ruinous and the specific approximations humans employ remain unknown. We designed a new sequential reinforcement-based task and showed that human subjects adopted a simple pruning strategy: during mental evaluation of a sequence of choices, they curtailed any further evaluation of a sequence as soon as they encountered a large loss. This pruning strategy was Pavlovian: it was reflexively evoked by large losses and persisted even when overwhelmingly counterproductive. It was also evident above and beyond loss aversion. We found that the tendency towards Pavlovian pruning was selectively predicted by the degree to which subjects exhibited sub-clinical mood disturbance, in accordance with theories that ascribe Pavlovian behavioural inhibition, via serotonin, a role in mood disorders. We conclude that Pavlovian behavioural inhibition shapes highly flexible, goal-directed choices in a manner that may be important for theories of decision-making in mood disorders.

  18. Improvement of adequate use of warfarin for the elderly using decision tree-based approaches.

    Science.gov (United States)

    Liu, K E; Lo, C-L; Hu, Y-H

    2014-01-01

    Due to the narrow therapeutic range and high drug-to-drug interactions (DDIs), improving the adequate use of warfarin for the elderly is crucial in clinical practice. This study examines whether the effectiveness of using warfarin among elderly inpatients can be improved when machine learning techniques and data from the laboratory information system are incorporated. Having employed 288 validated clinical cases in the DDI group and 89 cases in the non-DDI group, we evaluate the prediction performance of seven classification techniques, with and without an Adaptive Boosting (AdaBoost) algorithm. Measures including accuracy, sensitivity, specificity and area under the curve are used to evaluate model performance. Decision tree-based classifiers outperform other investigated classifiers in all evaluation measures. The classifiers supplemented with AdaBoost can generally improve the performance. In addition, weight, congestive heart failure, and gender are among the top three critical variables affecting prediction accuracy for the non-DDI group, while age, ALT, and warfarin doses are the most influential factors for the DDI group. Medical decision support systems incorporating decision tree-based approaches improve predicting performance and thus may serve as a supplementary tool in clinical practice. Information from laboratory tests and inpatients' history should not be ignored because related variables are shown to be decisive in our prediction models, especially when the DDIs exist.

  19. Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making

    Science.gov (United States)

    harliana, Putri; Rahim, Robbi

    2017-12-01

    Membership function is a curve that shows mapping the input data points into the value or degree of membership which has an interval between 0 and 1. One way to get membership value is through a function approach. There are some membership functions can be used on mamdani fuzzy inference system. They are triangular, trapezoid, singleton, sigmoid, Gaussian, etc. In this paper only discuss three membership functions, are triangular, trapezoid and Gaussian. These three membership functions will be compared to see the difference in parameter values and results obtained. For case study in this paper is admission of students at popular school. There are three variable can be used, they are students’ report, IQ score and parents’ income. Which will then be created if-then rules.

  20. Socioeconomic determinants of menarche in rural Polish girls using the decision trees method.

    Science.gov (United States)

    Matusik, Stanisław; Laska-Mierzejewska, Teresa; Chrzanowska, Maria

    2011-05-01

    The aim of this study was to assess the usefulness of the decision trees method as a research method of multidimensional associations between menarche and socioeconomic variables. The article is based on data collected from the rural area of Choszczno in the West Pomerania district of Poland between 1987 and 2001. Girls were asked about the appearance of first menstruation (a yes/no method). The average menarchal age was estimated by the probit analysis method, using second grade polynomials. The socioeconomic status of the girls' families was determined using five qualitative variables: fathers' and mothers' educational level, source of income, household appliances and the number of children in a family. For classification based on five socioeconomic variables, one of the most effective algorithms CART (Classification and Regression Trees) was used. In 2001 the menarchal age in 66% of examined girls was properly classified, while a higher efficiency of 70% was obtained for girls examined in 1987. The decision trees method enabled the definition of the hierarchy of socioeconomic variables influencing girls' biological development level. The strongest discriminatory power was attributed to the number of children in a family, and the mother's and then father's educational level. Using this method it is possible to detect differences in strength of socioeconomic variables associated with girls' pubescence before 1987 and after 2001 during the transformation of the economic and political systems in Poland. However, the decision trees method is infrequently applied in social sciences and constitutes a novelty; this article proves its usefulness in examining relations between biological processes and a population's living conditions.