WorldWideScience

Sample records for fuzzy control system

  1. Fuzzy logic control and optimization system

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  2. Fuzzy logic control for camera tracking system

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  3. Fuzzy systems for process identification and control

    Gorrini, V.; Bersini, H.

    1994-01-01

    Various issues related to the automatic construction and on-line adaptation of fuzzy controllers are addressed. A Direct Adaptive Fuzzy Control (this is an adaptive control methodology requiring a minimal knowledge of the processes to be coupled with) derived in a way reminiscent of neurocontrol methods, is presented. A classical fuzzy controller and a fuzzy realization of a PID controller is discussed. These systems implement a highly non-linear control law, and provide to be quite robust, even in the case of noisy inputs. In order to identify dynamic processes of order superior to one, we introduce a more complex architecture, called Recurrent Fuzzy System, that use some fuzzy internal variables to perform an inferential chaining.I

  4. Fuzzy logic for structural system control

    Herbert Martins Gomes

    Full Text Available This paper provides some information and numerical tests that aims to investigate the use of a Fuzzy Controller applied to control systems. Some advantages are reported regarding the use of this controller, such as the characteristic ease of implementation due to its semantic feature in the statement of the control rules. On the other hand, it is also hypothesized that these systems have a lower performance loss when the system to be controlled is nonlinear or has time varying parameters. Numerical tests are performed using modal LQR optimal control and Fuzzy control of non-collocated systems with full state feedback in a two-dimensional structure. The paper proposes a way of designing a controller that may be a supervisory Fuzzy controller for a traditional controller or even a fuzzy controller independent from the traditional control, consisting on individual mode controllers. Some comments are drawn regarding the performance of these proposals in a number of arrangements.

  5. Designing PID-Fuzzy Controller for Pendubot System

    Ho Trong Nguyen

    2017-12-01

    Full Text Available In the paper, authors analize dynamic equation of a pendubot system. Familiar kinds of controller – PID, fuzzy controllers – are concerned. Then, a structure of PID-FUZZY is presented. The comparison of three kinds of controllers – PID, fuzzy and PID-FUZZY shows the better response of system under PID-FUZZY controller. Then, the experiments on the real model also prove the better stabilization of the hybrid controller which is combined between linear and intelligent controller.

  6. Fuzzy Logic Based Autonomous Traffic Control System

    Muhammad ABBAS

    2012-01-01

    Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.

  7. A study of fuzzy control in nuclear scale system

    Wang Yu; Zhang Yongming; Wu Ruisheng; Du Xianbin; Liu Shixing

    2001-01-01

    The new development of the nuclear scale system which uses fuzzy control strategy is presented. Good results have been obtained in using fuzzy control to solve the problems, such as un-linearities, instabilities, time delays, which are difficultly described by formula, etc. The fuzzy variance, membership function and fuzzy rules are given, and the noise disturbances of fuzzy control and PID control are also given

  8. Intelligent control-III: fuzzy control system

    Nagrial, M.H.

    2004-01-01

    During the last decade or so, fuzzy logic control (FLC) has emerged as one of the most active and fruitful areas of research and development. The applications include industrial process control to medical diagnostic and financial markets. Many consumer products using this technology are available in the market place. FLC is best suited to complex ill-defined processes that can be controlled by a skilled human operator without much knowledge of their underlying dynamics. This lecture will cover the basic architecture and the design methodology of fuzzy logic controllers. FLC will be strongly based on the concepts of fuzzy set theory, introduced in first lecture. Some practical applications will also be discussed and presented. (author)

  9. Study on Design of Control Module and Fuzzy Control System

    Lee, Chang Kyu; Sohn, Chang Ho; Kim, Jung Seon; Kim, Min Kyu

    2005-01-01

    Performance of control unit is improved by introduction of fuzzy control theory and compensation for input of control unit as FLC(Fuzzy Logic Controller). Here, FLC drives thermal control system by linguistic rule-base. Hence, In case of using compensative PID control unit, it doesn't need to revise or compensate for PID control unit. Consequently, this study shows proof that control system which implements H/W module and then uses fuzzy algorism in this system is stable and has reliable performance

  10. Efficient fuzzy logic controller for magnetic levitation systems | Shu ...

    In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC) is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input ...

  11. Fuzzy controller for an uncertain dynamical system

    Kulczycki, P.; Wisniewski, Rafal

    2002-01-01

    The present paper deals with the time-optimal control for mechanical systems with uncertain load. A fuzzy approach is used in the design of suboptimal feedback controllers, robust with respect to the load. Statistical kernel estimators are used for the specification of crucial parameters. The met......The present paper deals with the time-optimal control for mechanical systems with uncertain load. A fuzzy approach is used in the design of suboptimal feedback controllers, robust with respect to the load. Statistical kernel estimators are used for the specification of crucial parameters....... The methodology proposed in this work may be easily adopted to other modeling uncertainties of mechanical systems, e.g. motion resistance....

  12. Efficient Fuzzy Logic Controller for Magnetic Levitation Systems

    Akorede

    ABSTRACT: Magnetic levitation is a system of suspending a body or a complete system against gravity. Suspending a system ... disturbance signal was applied to the input of the control system. Fuzzy ..... Automatic Control System, fifth edition.

  13. Expert system driven fuzzy control application to power reactors

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ''supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment

  14. Fuzzy Backstepping Sliding Mode Control for Mismatched Uncertain System

    H. Q. Hou

    2014-06-01

    Full Text Available Sliding mode controllers have succeeded in many control problems that the conventional control theories have difficulties to deal with; however it is practically impossible to achieve high-speed switching control. Therefore, in this paper an adaptive fuzzy backstepping sliding mode control scheme is derived for mismatched uncertain systems. Firstly fuzzy sliding mode controller is designed using backstepping method based on the Lyapunov function approach, which is capable of handling mismatched problem. Then fuzzy sliding mode controller is designed using T-S fuzzy model method, it can improve the performance of the control systems and their robustness. Finally this method of control is applied to nonlinear system as a case study; simulation results are also provided the performance of the proposed controller.

  15. Application of fuzzy control in cooling systems save energy design

    Chen, M.L.; Liang, H.Y. [Chienkuo Technology Univ., Changhua, Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    A fuzzy logic programmable logic controller (PLC) was used to control the cooling systems of frigorific equipment. Frigorific equipment is used to move unwanted heat outside of building in order to control indoor temperatures. The aim of the fuzzy logic PLC was to improve the energy efficiency of the cooling system. Control of the cooling pump and cooling tower in the system was based on the water temperature of the condenser during frigorific system operation. A human computer design for the cooling system control was used to set speeds and to automate and adjust the motor according to the fuzzy logic controller. It was concluded that if fuzzy logic controllers are used with all components of frigorific equipment, energy efficiency will be significantly increased. 5 refs., 3 tabs., 9 figs.

  16. System control fuzzy neural sewage pumping stations using genetic algorithms

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  17. Simulation Study of IMC and Fuzzy Controller for HVAC System

    Umamaheshwari

    2009-06-01

    Full Text Available This paper presents how the fuzzy logic controller is used to solve the control problems of complex and non linear process and show that it is more robust and their performance are less sensitive to parametric variations than conventional controllers. These systems will yield a linear response when compared to ordinary controllers. The main advantage of Fuzzy control over conventional controllers is regulation can be done without over shoot.

  18. Hierarchical fuzzy control of low-energy building systems

    Yu, Zhen; Dexter, Arthur [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  19. A fuzzy logic pitch angle controller for power system stabilization

    Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)

    2006-07-12

    In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).

  20. Fuzzy Logic Temperature Control System For The Induction Furnace

    Lei Lei Hnin

    2015-08-01

    Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.

  1. Introduction to fuzzy systems

    Chen, Guanrong

    2005-01-01

    Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on th

  2. Fuzzy Controllers for a Gantry Crane System with Experimental Verifications

    Naif B. Almutairi

    2016-01-01

    Full Text Available The control problem of gantry cranes has attracted the attention of many researchers because of the various applications of these cranes in the industry. In this paper we propose two fuzzy controllers to control the position of the cart of a gantry crane while suppressing the swing angle of the payload. Firstly, we propose a dual PD fuzzy controller where the parameters of each PD controller change as the cart moves toward its desired position, while maintaining a small swing angle of the payload. This controller uses two fuzzy subsystems. Then, we propose a fuzzy controller which is based on heuristics. The rules of this controller are obtained taking into account the knowledge of an experienced crane operator. This controller is unique in that it uses only one fuzzy system to achieve the control objective. The validity of the designed controllers is tested through extensive MATLAB simulations as well as experimental results on a laboratory gantry crane apparatus. The simulation results as well as the experimental results indicate that the proposed fuzzy controllers work well. Moreover, the simulation and the experimental results demonstrate the robustness of the proposed control schemes against output disturbances as well as against uncertainty in some of the parameters of the crane.

  3. Switching Fuzzy Guaranteed Cost Control for Nonlinear Networked Control Systems

    Linqin Cai

    2014-01-01

    Full Text Available This paper deals with the problem of guaranteed cost control for a class of nonlinear networked control systems (NCSs with time-varying delay. A guaranteed cost controller design method is proposed to achieve the desired control performance based on the switched T-S fuzzy model. The switching mechanism is introduced to handle the uncertainties of NCSs. Based on Lyapunov functional approach, some sufficient conditions for the existence of state feedback robust guaranteed cost controller are presented. Simulation results show that the proposed method is effective to guarantee system’s global asymptotic stability and quality of service (QoS.

  4. Adaptive fuzzy controller based MPPT for photovoltaic systems

    Guenounou, Ouahib; Dahhou, Boutaib; Chabour, Ferhat

    2014-01-01

    Highlights: • We propose a fuzzy controller with adaptive output scaling factor as a maximum power point tracker of photovoltaic system. • The proposed controller integrates two different rule bases defined on error and change of error. • Our controller can track the maximum power point with better performances when compared to its conventional counterpart. - Abstract: This paper presents an intelligent approach to optimize the performances of photovoltaic systems. The system consists of a PV panel, a DC–DC boost converter, a maximum power point tracker controller and a resistive load. The key idea of the proposed approach is the use of a fuzzy controller with an adaptive gain as a maximum power point tracker. The proposed controller integrates two different rule bases. The first is used to adjust the duty cycle of the boost converter as in the case of a conventional fuzzy controller while the second rule base is designed for an online adjusting of the controller’s gain. The performances of the adaptive fuzzy controller are compared with those obtained using a conventional fuzzy controllers with different gains and in each case, the proposed controller outperforms its conventional counterpart

  5. Developing a multipurpose sun tracking system using fuzzy control

    Alata, Mohanad [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)]. E-mail: alata@just.edu.jo; Al-Nimr, M.A. [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan); Qaroush, Yousef [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)

    2005-05-01

    The present work demonstrates the design and simulation of time controlled step sun tracking systems that include: one axis sun tracking with the tilted aperture equal to the latitude angle, equatorial two axis sun tracking and azimuth/elevation sun tracking. The first order Sugeno fuzzy inference system is utilized for modeling and controller design. In addition, an estimation of the insolation incident on a two axis sun tracking system is determined by fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm, along with least square estimation (LSE), generates the fuzzy rules that describe the relationship between the input/output data of solar angles that change with time. The fuzzy rules are tuned by an adaptive neuro-fuzzy inference system (ANFIS). Finally, an open loop control system is designed for each of the previous types of sun tracking systems. The results are shown using simulation and virtual reality. The site of application is chosen at Amman, Jordan (32 deg. North, 36 deg. East), and the period of controlling and simulating each type of tracking system is the year 2003.

  6. Application of genetic algorithms to tuning fuzzy control systems

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  7. Modeling and control of an unstable system using probabilistic fuzzy inference system

    Sozhamadevi N.

    2015-09-01

    Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.

  8. Fuzzy control and identification

    Lilly, John H

    2010-01-01

    This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

  9. Hybridizing fuzzy control and timed automata for modeling variable structure fuzzy systems

    Acampora, G.; Loia, V.; Vitiello, A.

    2010-01-01

    During the past several years, fuzzy control has emerged as one of the most suitable and efficient methods for designing and developing complex systems in environments characterized by high level of uncertainty and imprecision. Nowadays, this methodology is used to model systems in several

  10. Fuzzy self-learning control for magnetic servo system

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  11. Adaptive fuzzy trajectory control for biaxial motion stage system

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  12. Application of fuzzy logic control system for reactor feed-water control

    Iijima, T.; Nakajima, Y.

    1994-01-01

    The successful actual application of a fuzzy logic control system to the a nuclear Fugen nuclear power reactor is described. Fugen is a heavy-water moderated, light-water cooled reactor. The introduction of fuzzy logic control system has enabled operators to control the steam drum water level more effectively in comparison to a conventional proportional-integral (PI) control system

  13. Systems control with generalized probabilistic fuzzy-reinforcement learning

    Hinojosa, J.; Nefti, S.; Kaymak, U.

    2011-01-01

    Reinforcement learning (RL) is a valuable learning method when the systems require a selection of control actions whose consequences emerge over long periods for which input-output data are not available. In most combinations of fuzzy systems and RL, the environment is considered to be

  14. Fuzzy Logic Based MPPT Controller for a PV System

    Carlos Robles Algarín

    2017-12-01

    Full Text Available The output power of a photovoltaic (PV module depends on the solar irradiance and the operating temperature; therefore, it is necessary to implement maximum power point tracking controllers (MPPT to obtain the maximum power of a PV system regardless of variations in climatic conditions. The traditional solution for MPPT controllers is the perturbation and observation (P&O algorithm, which presents oscillation problems around the operating point; the reason why improving the results obtained with this algorithm has become an important goal to reach for researchers. This paper presents the design and modeling of a fuzzy controller for tracking the maximum power point of a PV System. Matlab/Simulink (MathWorks, Natick, MA, USA was used for the modeling of the components of a 65 W PV system: PV module, buck converter and fuzzy controller; highlighting as main novelty the use of a mathematical model for the PV module, which, unlike diode based models, only needs to calculate the curve fitting parameter. A P&O controller to compare the results obtained with the fuzzy control was designed. The simulation results demonstrated the superiority of the fuzzy controller in terms of settling time, power loss and oscillations at the operating point.

  15. Fuzzy Logic Applied to an Oven Temperature Control System

    Nagabhushana KATTE

    2011-10-01

    Full Text Available The paper describes the methodology of design and development of fuzzy logic based oven temperature control system. As simple fuzzy logic controller (FLC structure with an efficient realization and a small rule base that can be easily implemented in existing underwater control systems is proposed. The FLC has been designed using bell-shaped membership function for fuzzification, 49 control rules in its rule base and centre of gravity technique for defuzzification. Analog interface card with 16-bits resolution is designed to achieve higher precision in temperature measurement and control. The experimental results of PID and FLC implemented system are drawn for a step input and presented in a comparative fashion. FLC exhibits fast response and it has got sharp rise time and smooth control over conventional PID controller. The paper scrupulously discusses the hardware and software (developed using ‘C’ language features of the system.

  16. Research on laser cladding control system based on fuzzy PID

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  17. A fuzzy control technique for a magnetically levitated system

    Lo Verso, G [C.N.R., Ce.Ri.S.E.P., Palermo (Italy); Trapanese, M [Dipt. di Ingegneria Elettrica, Univ. di Palermo (Italy)

    1996-12-31

    This paper presents the results of some analytical and numerical investigations on a control approach for magnetically leviated systems. This approach is based on fuzzy logic. It has been widely demonstrated that traditional control systems consent to maintain a stiff control on the air gap length. However, the traditional approaches could cause at very high speed, a vertical acceleration of the vehicle cabin larger than the maximum value currently allowed by the ISO standard. It is aim of this work to investigate the possibilities that a fuzzy controller offer in order to solve this problem. In order set up the controller, every mechanical degree of freedom is modelled in terms of some linguistic variables. These linguistic variables are described by several fuzzy sets. It must be noted that, doing so, the disturbances can be described in terms of fuzzy sets, too. A single-mass-model of the vehicle is considered in the paper. The features of the controller are numerically simulated under several types of disturbances and they are compared with a traditional control approach. It is shown how some parameters (especially the vertical acceleration) improve their behaviour. (orig.)

  18. A Genetic Based Neuro-Fuzzy Controller System

    Mohamed, A.H.

    2014-01-01

    Recently, the mobile robots have great importance in the manufacturing processes. They are widely used for assembling processes, handling the dangerous components, moving the weighted things, etc. Designing the controller of the mobile robot is a very complex task. Many simple control systems used the neuro-fuzzy controller in the mobile robots. But, they faced with great complexity when moving in unstructured and dynamic environments. The proposed system introduces the uses of the genetic algorithm for optimizing the parameters of the neuro-fuzzy controller. So, the proposed system can improve the performance of the mobile robots. It has applied for a mobile robot used for moving the dangerous and critical materials in unstructured environment. Its results are compared with other traditional controller systems. The suggested system has proved its success for the real-time applications

  19. Fuzzy control for optimal operation of complex chilling systems; Betriebsoptimierung von komplexen Kaelteanlagen mit Fuzzy-Control

    Talebi-Daryani, R. [Fachhochschule Koeln (Germany). Lehrgebiet und Lab. fuer Regelungs- und Gebaeudeleittechnik; Luther, C. [JCI Regelungstechnik GmbH, Koeln (Germany)

    1998-05-01

    The optimization potentials for the operation of chilling systems within the building supervisory control systems are limited to abilities of PLC functions with their binary logic. The aim of this project is to replace inefficient PLC-solutions for the operation of chilling system by a Fuzzy control system. Optimal operation means: reducing operation time and operation costs of the system, reducing cooling energy generation- and consumption costs. Analysis of the thermal behaviour of the building and the chilling system is necessary, in order to find the current efficient cooling potentials and cooling methods during the operation. Three different Fuzzy controller have been developed with a total rule number of just 70. This realized Fuzzy control system is able to forecast the maximum cooling power of the building, but also to determine the cooling potential of the out door air. This new Fuzzy control system has been successfully commissioned, and remarkable improvement of the system behaviour is reached. Comparison of the system behaviour before and after the implementation of Fuzzy control system proved the benefits of the Fuzzy logic based operation system realized here. The system described here is a joint project between the University of applied sciences Cologne, and Johnson Controls International Cologne. The Fuzzy software tool used here (SUCO soft Fuzzy TECH 4.0), was provided by Kloeckner Moeller Bonn. (orig.) [Deutsch] Die Betriebsoptimierung von Kaelteanlagen innerhalb von Gebaeudeleitsystemen ist auf die Faehigkeiten von logischen Steuerverknuepfungen der Digitaltechnik begrenzt. In diesem Zusammenhang kann nur ein geringer Anteil der Information ueber das thermische Speicherverhalten des jeweiligen Gebaeudes herangezogen werden. Ziel des vorliegenden Projektes war es, die unzureichenden logischen Steuerverknuepfungen durch ein Fuzzy-Control-System zu ersetzen, um die Arbeitsweise der Kaelteanlage zu optimieren. Die Optimierungskriterien dieses

  20. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    Gering, Stefan; Adamy, Jürgen

    2014-01-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis

  1. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  2. Switch Reluctance Motor Control Based on Fuzzy Logic System

    S. V. Aleksandrovsky

    2012-01-01

    Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.

  3. Why fuzzy controllers should be fuzzy

    Nowe, A.

    1996-01-01

    Fuzzy controllers are usually looked at as crisp valued mappings especially when artificial intelligence learning techniques are used to build up the controller. By doing so the semantics of a fuzzy conclusion being a fuzzy restriction on the viable control actions is non-existing. In this paper the authors criticise from an approximation point of view using a fuzzy controller to express a crisp mapping does not seem the right way to go. Secondly it is illustrated that interesting information is contained in a fuzzy conclusion when indeed this conclusion is considered as a fuzzy restriction. This information turns out to be very valuable when viability problems are concerned, i.e. problems where the objective is to keep a system within predefined boundaries

  4. Fuzzy combination of fuzzy and switching state-feedback controllers for nonlinear systems subject to parameter uncertainties.

    Lam, H K; Leung, Frank H F

    2005-04-01

    This paper presents a fuzzy controller, which involves a fuzzy combination of local fuzzy and global switching state-feedback controllers, for nonlinear systems subject to parameter uncertainties with known bounds. The nonlinear system is represented by a fuzzy combined Takagi-Sugeno-Kang model, which is a fuzzy combination of the global and local fuzzy plant models. By combining the local fuzzy and global switching state-feedback controllers using fuzzy logic techniques, the advantages of both controllers can be retained and the undesirable chattering effect introduced by the global switching state-feedback controller can be eliminated. The steady-state error introduced by the global switching state-feedback controller when a saturation function is used can also be removed. Stability conditions, which are related to the system matrices of the local and global closed-loop systems, are derived to guarantee the closed-loop system stability. An application example will be given to demonstrate the merits of the proposed approach.

  5. Intelligent neural network and fuzzy logic control of industrial and power systems

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  6. Fuzzy-Neural Automatic Daylight Control System

    Grif H. Şt.

    2011-12-01

    Full Text Available The paper presents the design and the tuning of a CMAC controller (Cerebellar Model Articulation Controller implemented in an automatic daylight control application. After the tuning process of the controller, the authors studied the behavior of the automatic lighting control system (ALCS in the presence of luminance disturbances. The luminance disturbances were produced by the authors in night conditions and day conditions as well. During the night conditions, the luminance disturbances were produced by turning on and off a halogen desk lamp. During the day conditions the luminance disturbances were produced in two ways: by daylight contributions changes achieved by covering and uncovering a part of the office window and by turning on and off a halogen desk lamp. During the day conditions the luminance disturbances, produced by turning on and off the halogen lamp, have a smaller amplitude than those produced during the night conditions. The luminance disturbance during the night conditions was a helpful tool to select the proper values of the learning rate for CMAC controller. The luminance disturbances during the day conditions were a helpful tool to demonstrate the right setting of the CMAC controller.

  7. A Fuzzy Control System for Inductive Video Games

    Lara-Alvarez, Carlos; Mitre-Hernandez, Hugo; Flores, Juan; Fuentes, Maria

    2017-01-01

    It has been shown that the emotional state of students has an important relationship with learning; for instance, engaged concentration is positively correlated with learning. This paper proposes the Inductive Control (IC) for educational games. Unlike conventional approaches that only modify the game level, the proposed technique also induces emotions in the player for supporting the learning process. This paper explores a fuzzy system that analyzes the players' performance and their emotion...

  8. Speed control for a two-mass drive system using integrated fuzzy estimator and hybrid fuzzy PD/PI controller

    Pai, N-S; Kuo, Y-P

    2008-01-01

    This paper presents a novel speed control scheme for a 2- mass motor drive system. The speed controller is based on the estimated state feedback compensation. The integrated fuzzy observer can give a fast and accuracy estimation of the unmeasured states. Two kinds of hybrid fuzzy proportional-derivative and proportional-integral (HF PD/PI) are proposed to cope with this speed control problem. The first is the static HF PD/PI controller and the second is the dynamic one. Simulation results show that the developed integrated fuzzy observer provide the better estimation performance than that of the Kalman filter and the proposed control schemes can effectively track the desired speed in the presence of load disturbance

  9. State-feedback control of fuzzy discrete-event systems.

    Lin, Feng; Ying, Hao

    2010-06-01

    In a 2002 paper, we combined fuzzy logic with discrete-event systems (DESs) and established an automaton model of fuzzy DESs (FDESs). The model can effectively represent deterministic uncertainties and vagueness, as well as human subjective observation and judgment inherent to many real-world problems, particularly those in biomedicine. We also investigated optimal control of FDESs and applied the results to optimize HIV/AIDS treatments for individual patients. Since then, other researchers have investigated supervisory control problems in FDESs, and several results have been obtained. These results are mostly derived by extending the traditional supervisory control of (crisp) DESs, which are string based. In this paper, we develop state-feedback control of FDESs that is different from the supervisory control extensions. We use state space to describe the system behaviors and use state feedback in control. Both disablement and enforcement are allowed. Furthermore, we study controllability based on the state space and prove that a controller exists if and only if the controlled system behavior is (state-based) controllable. We discuss various properties of the state-based controllability. Aside from novelty, the proposed new framework has the advantages of being able to address a wide range of practical problems that cannot be effectively dealt with by existing approaches. We use the diabetes treatment as an example to illustrate some key aspects of our theoretical results.

  10. Fuzzy Control Teaching Models

    Klaus-Dietrich Kramer

    2016-05-01

    Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.

  11. Design of a Polynomial Fuzzy Observer Controller With Sampled-Output Measurements for Nonlinear Systems Considering Unmeasurable Premise Variables

    Liu, Chuang; Lam, H. K.

    2015-01-01

    In this paper, we propose a polynomial fuzzy observer controller for nonlinear systems, where the design is achieved through the stability analysis of polynomial-fuzzy-model-based (PFMB) observer-control system. The polynomial fuzzy observer estimates the system states using estimated premise variables. The estimated states are then employed by the polynomial fuzzy controller for the feedback control of nonlinear systems represented by the polynomial fuzzy model. The system stability of the P...

  12. Implementation Of Automatic Wiper Speed Control And Headlight Modes Control Systems Using Fuzzy Logic

    ThetKoKo; ZawMyoTun; Hla Myo Tun

    2015-01-01

    Abstract This research paper describes the design and simulation of the automatic wiper speed and headlight modes controllers using fuzzy logic. This proposed system consists of a fuzzy logic controller to control a cars wiper speed and headlight modes. The automatic wiper system detects the rain and its intensity. And according to the rain intensity the wiper speed is automatically controlled. Headlight modes automatically changes either from low beam mode to high beam mode or form high beam...

  13. Fuzzy control applied to nuclear power plant pressurizer system

    Oliveira, Mauro V.; Almeida, Jose C.S., E-mail: mvitor@ien.gov.b, E-mail: jcsa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  14. Fuzzy control applied to nuclear power plant pressurizer system

    Oliveira, Mauro V.; Almeida, Jose C.S.

    2011-01-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  15. Study and simulation of a MPPT controller based on fuzzy logic controller for photovoltaic system

    Belaidi, R.; Chikouche, A.; Fathi, M.; Mohand Kaci, G.; Smara, Z. [Unite de Developpement des Equipements Solaires (Algeria); Haddouche, A. [Universite Badji Mokhtar (Algeria)], E-mail: rachidi3434@yahoo.fr

    2011-07-01

    With the depletion of fossil fuels and the increasing concerns about the environment, renewable energies have become more and more attractive. Photovoltaic systems convert solar energy into electric energy through the use of photovoltaic cells. The aim of this paper is to compare the capacity of fuzzy logic and perturb and observe controllers in optimizing the control performance of photovoltaic systems. Simulations were performed using Matlab and Simulink and were analyzed to determine the effectiveness of both controllers and compare them. Results showed that the fuzzy controller has a better dynamic performance than the perturb and observe controller in terms of response time and damping characteristics. In addition, the fuzzy controller was found to better follow the maximum power point and to provide faster convergence and lower statistical error. This study demonstrated that the fuzzy controller gives a better performance than traditional controllers in optimizing the performance of photovoltaic systems.

  16. Fuzzy model-based servo and model following control for nonlinear systems.

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  17. Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control

    M. Boukhnifer

    2012-11-01

    Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.

  18. Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems

    Junhai Luo

    2014-01-01

    Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.

  19. Adaptive neuro-fuzzy inference system based automatic generation control

    Hosseini, S.H.; Etemadi, A.H. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2008-07-15

    Fixed gain controllers for automatic generation control are designed at nominal operating conditions and fail to provide best control performance over a wide range of operating conditions. So, to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to compute control gains. A control scheme based on artificial neuro-fuzzy inference system (ANFIS), which is trained by the results of off-line studies obtained using particle swarm optimization, is proposed in this paper to optimize and update control gains in real-time according to load variations. Also, frequency relaxation is implemented using ANFIS. The efficiency of the proposed method is demonstrated via simulations. Compliance of the proposed method with NERC control performance standard is verified. (author)

  20. Local Model Predictive Control for T-S Fuzzy Systems.

    Lee, Donghwan; Hu, Jianghai

    2017-09-01

    In this paper, a new linear matrix inequality-based model predictive control (MPC) problem is studied for discrete-time nonlinear systems described as Takagi-Sugeno fuzzy systems. A recent local stability approach is applied to improve the performance of the proposed MPC scheme. At each time k , an optimal state-feedback gain that minimizes an objective function is obtained by solving a semidefinite programming problem. The local stability analysis, the estimation of the domain of attraction, and feasibility of the proposed MPC are proved. Examples are given to demonstrate the advantages of the suggested MPC over existing approaches.

  1. Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system

    Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao

    2008-12-01

    In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.

  2. DESCRIBING FUNCTION METHOD FOR PI-FUZZY CONTROLLED SYSTEMS STABILITY ANALYSIS

    Stefan PREITL

    2004-12-01

    Full Text Available The paper proposes a global stability analysis method dedicated to fuzzy control systems containing Mamdani PI-fuzzy controllers with output integration to control SISO linear / linearized plants. The method is expressed in terms of relatively simple steps, and it is based on: the generalization of the describing function method for the considered fuzzy control systems to the MIMO case, the approximation of the describing functions by applying the least squares method. The method is applied to the stability analysis of a class of PI-fuzzy controlled servo-systems, and validated by considering a case study.

  3. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

    Hamdy, M; Hamdan, I

    2015-07-01

    In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems

    Poursamad, Amir; Markazi, Amir H.D.

    2009-01-01

    This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.

  5. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  6. Model-based fuzzy control solutions for a laboratory Antilock Braking System

    Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan

    2010-01-01

    This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems...

  7. H∞ Control of Polynomial Fuzzy Systems: A Sum of Squares Approach

    Bomo W. Sanjaya

    2014-07-01

    Full Text Available This paper proposes the control design ofa nonlinear polynomial fuzzy system with H∞ performance objective using a sum of squares (SOS approach. Fuzzy model and controller are represented by a polynomial fuzzy model and controller. The design condition is obtained by using polynomial Lyapunov functions that not only guarantee stability but also satisfy the H∞ performance objective. The design condition is represented in terms of an SOS that can be numerically solved via the SOSTOOLS. A simulation study is presented to show the effectiveness of the SOS-based H∞ control designfor nonlinear polynomial fuzzy systems.

  8. H∞ Control of Polynomial Fuzzy Systems: A Sum of Squares Approach

    Bomo W. Sanjaya; Bambang Riyanto Trilaksono; Arief Syaichu-Rohman

    2014-01-01

    This paper proposes the control design ofa nonlinear polynomial fuzzy system with H∞ performance objective using a sum of squares (SOS) approach. Fuzzy model and controller are represented by a polynomial fuzzy model and controller. The design condition is obtained by using polynomial Lyapunov functions that not only guarantee stability but also satisfy the H∞ performance objective. The design condition is represented in terms of an SOS that can be numerically solved via the SOSTOOLS. A simul...

  9. Supervisory System and Multivariable Control Applying Weighted Fuzzy-PID Logic in an Alcoholic Fermentation Process

    Márcio Mendonça

    2015-10-01

    Full Text Available In this work, it is analyzed a multivariate system control of an alcoholic fermentation process with no minimum phase. The control is made with PID classic controllers associated with a supervisory system based on Fuzzy Systems. The Fuzzy system, a priori, send set-points to PID controllers, but also adds protection functions, such as if the biomass valued is at zero or very close. The Fuzzy controller changes the campaign to prevent or mitigate the paralyzation of the process. Three control architectures based on Fuzzy Control Systems are presented and compared in performance with classic control in different campaigns. The third architecture, in particular, adds an adaptive function. A brief summary of Fuzzy theory and correlated works will be presented. And, finally simulations results, conclusions and future works end the article.

  10. Gain Scheduling of PID Controller Based on Fuzzy Systems

    Singh Sandeep

    2016-01-01

    Full Text Available This paper aims to utilize fuzzy rules and reasoning to determine the controller parameters and the PID controller generates the control signal. The objective of this study is to simulate the proposed scheme on various processes and arrive at results providing better response of the system when compared with best industrial auto-tuning technique: Ziegler-Nichols. The proposed scheme is based upon the Ultimate Gain (Ku and the Period (Tu of the system. The error and rate of change in error gains are tuned manually to get the desired response using LabVIEW. This can also be done with various optimization techniques. A thumb rule for choosing the ranges for Kc, Kd and Ki has been obtained experimentally.

  11. Stability Analysis of a Type of Takagi-Sugeno PI Fuzzy Control Systems Using Circle Criterion

    Kairui Cao

    2011-04-01

    Full Text Available A type of Takagi-Sugeno (T-S Proportional-Integral (PI fuzzy controllers is studied. The T-S PI fuzzy controller is formed by a T-S Proportional-Derivative (PD fuzzy controller connected with an integrator. In this particular structure, the T-S PD fuzzy controller is a weighted sum of some linear PD sub-controllers. The mathematical properties of our T-S PI fuzzy controller are also investigated. Based on these properties, the global asymptotic stability of the fuzzy control systems, in which the T-S PI fuzzy controllers are employed, are analyzed by using the well-known circle criterion. A sufficient condition with an elegant graphical interpretation in the frequency domain is further derived to guarantee the global asymptotic stability of the above fuzzy control systems. Finally, two numerical examples are provided to demonstrate how to deploy this method in analyzing the T-S PI fuzzy control systems in the frequency domain with the aid of some simple graphs.

  12. Indirect fuzzy adaptive control of a class of SISO nonlinear systems

    Laboid, S.; Boucherit, M.S.

    2006-01-01

    This paper presents an adaptive fuzzy control scheme for a class of continuous-time single-input single-output nonlinear systems with unknown dynamics and disturbance. Within this scheme, the fuzzy systems are employed to approximate the unknown system's dynamics. The proposed controller is composed of a well-defined adaptive fuzzy control term that uses the adaptive fuzzy approximation errors and disturbance. Based on a Lyapunov synthesis method, it is shown that the proposed adaptive control scheme guarantees the convergence of the tracking error to zero and the global boundedness of all signals in the closed-loop system. Moreover, the proposed controller allows initialization by zero of all adjusted parameters in the fuzzy approximators, and does not require the knowledge of the lower bound of the control gain and upper bounds of the approximation errors and disturbance. Simulation results performed on an inverted pendulum system are given to point out the good performance of the developed adaptive controller. (author)

  13. Feasibility analysis of fuzzy logic control for ITER Poloidal field (PF) AC/DC converter system

    Hassan, Mahmood Ul; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xiaojiao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Zhang, Xiuqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Humayun, Muhammad [Shanghai Jiaotong University (China)

    2017-05-15

    Highlights: • The implementation of the Fuzzy controller for the ITER PF converter system is presented. • The comparison of the FLC and PI simulation are investigated. • The FLC single and parallel bridge operation are presented. • Fuzzification and Defuzzification algorithms are presented using FLC controller. - Abstract: This paper describes the feasibility analysis of the fuzzy logic control to increase the performance of the ITER poloidal field (PF) converter systems. A fuzzy-logic-based controller is designed for ITER PF converter system, using the traditional PI controller and Fuzzy controller (FC), the dynamic behavior and transient response of the PF converter system are compared under normal operation by analysis and simulation. The analysis results show that the fuzzy logic control can achieve better operation performance than PI control.

  14. Stability Analysis of Positive Polynomial Fuzzy-Model-Based Control Systems with Time Delay under Imperfect Premise Matching

    Li, Xiaomiao; Lam, Hak Keung; Song, Ge; Liu, Fucai

    2017-01-01

    This paper deals with the stability and positivity analysis of polynomial-fuzzy-model-based ({PFMB}) control systems with time delay, which is formed by a polynomial fuzzy model and a polynomial fuzzy controller connected in a closed loop, under imperfect premise matching. To improve the design and realization flexibility, the polynomial fuzzy model and the polynomial fuzzy controller are allowed to have their own set of premise membership functions. A sum-of-squares (SOS)-based stability ana...

  15. Less Conservative ℋ∞ Fuzzy Control for Discrete-Time Takagi-Sugeno Systems

    Leonardo Amaral Mozelli

    2011-01-01

    Full Text Available New analysis and control design conditions of discrete-time fuzzy systems are proposed. Using fuzzy Lyapunov's functions and introducing slack variables, less conservative conditions are obtained. The controller guarantees system stabilization and ℋ∞ performance. Numerical tests and a practical experiment in Chua's circuit are presented to show the effectiveness.

  16. Simulation of the fuzzy-smith control system for the high temperature gas cooled reactor

    Li Deheng; Xu Xiaolin; Zheng Jie; Guo Renjun; Zhang Guifen

    1997-01-01

    The Fuzzy-Smith pre-estimate controller to solve the control of the big delay system is developed, accompanied with the development of the mathematical model of the 10 MW high temperature gas cooled test reactor (HTR-10) and the design of its control system. The simulation results show the Fuzzy-Smith pre-estimate controller has the advantages of both fuzzy control and Smith pre-estimate controller; it has better compensation to the delay and better adaptability to the parameter change of the control object. So it is applicable to the design of the control system for the high temperature gas cooled reactor

  17. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  18. The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

    Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei

    This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.

  19. Analytic Model Predictive Control of Uncertain Nonlinear Systems: A Fuzzy Adaptive Approach

    Xiuyan Peng

    2015-01-01

    Full Text Available A fuzzy adaptive analytic model predictive control method is proposed in this paper for a class of uncertain nonlinear systems. Specifically, invoking the standard results from the Moore-Penrose inverse of matrix, the unmatched problem which exists commonly in input and output dimensions of systems is firstly solved. Then, recurring to analytic model predictive control law, combined with fuzzy adaptive approach, the fuzzy adaptive predictive controller synthesis for the underlying systems is developed. To further reduce the impact of fuzzy approximation error on the system and improve the robustness of the system, the robust compensation term is introduced. It is shown that by applying the fuzzy adaptive analytic model predictive controller the rudder roll stabilization system is ultimately uniformly bounded stabilized in the H-infinity sense. Finally, simulation results demonstrate the effectiveness of the proposed method.

  20. Fuzzy control. Fundamentals, stability and design of fuzzy controllers

    Michels, K. [Fichtner GmbH und Co. KG, Stuttgart (Germany); Klawonn, F. [Fachhochschule Braunschweig/Wolfenbuettel (Germany). Fachbereich Informatik; Kruse, R. [Magdeburg Univ. (Germany). Fakultaet Informatik, Abt. Wiss.- und Sprachverarbeitung; Nuernberger, A. (eds.) [California Univ., Berkeley, CA (United States). Computer Science Division

    2006-07-01

    The book provides a critical discussion of fuzzy controllers from the perspective of classical control theory. Special emphases are placed on topics that are of importance for industrial applications, like (self-) tuning of fuzzy controllers, optimisation and stability analysis. The book is written as a textbook for graduate students as well as a comprehensive reference book about fuzzy control for researchers and application engineers. Starting with a detailed introduction to fuzzy systems and control theory the reader is guided to up-to-date research results. (orig.)

  1. A GA-fuzzy automatic generation controller for interconnected power system

    Boesack, CD

    2011-10-01

    Full Text Available This paper presents a GA-Fuzzy Automatic Generation Controller for large interconnected power systems. The design of Fuzzy Logic Controllers by means of expert knowledge have typically been the traditional design norm, however, this may not yield...

  2. Internet and Fuzzy Based Control System for Rotary Kiln in Cement Manufacturing Plant

    Hanane Zermane

    2017-01-01

    Full Text Available This paper develops an Internet-based fuzzy control system for an industrial process plant to ensure the remote and fuzzy control in cement factories in Algeria. The remote process consists of control, diagnosing alarms occurs, maintaining and synchronizing different regulation loops. Fuzzy control of the kiln ensures that the system be operational at all times, with minimal downtime. Internet technology ensures remote control. The system reduces downtimes and can guided by operators in the main control room or via Internet.

  3. Improved Polynomial Fuzzy Modeling and Controller with Stability Analysis for Nonlinear Dynamical Systems

    Hamed Kharrati; Sohrab Khanmohammadi; Witold Pedrycz; Ghasem Alizadeh

    2012-01-01

    This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB) systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA) is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy m...

  4. Design of fuzzy learning control systems for steam generator water level control

    Park, Gee Yong

    1996-02-01

    A fuzzy learning algorithm is developed in order to construct the useful control rules and tune the membership functions in the fuzzy logic controller used for water level control of nuclear steam generator. The fuzzy logic controllers have shown to perform better than conventional controllers for ill-defined or complex processes such as nuclear steam generator. Whereas the fuzzy logic controller does not need a detailed mathematical model of a plant to be controlled, its structure is to be made on the basis of the operator's linguistic information experienced from the plant operations. It is not an easy work and also there is no systematic way to translate the operator's linguistic information into quantitative information. When the linguistic information of operators is incomplete, tuning the parameters of fuzzy controller is to be performed for better control performance. It is the time and effort consuming procedure that controller designer has to tune the structure of fuzzy logic controller for optimal performance. And if the number of control inputs is many and the rule base is constructed in multidimensional space, it is very difficult for a controller designer to tune the fuzzy controller structure. Hence, the difficulty in putting the experimental knowledge into quantitative (or numerical) data and the difficulty in tuning the rules are the major problems in designing fuzzy logic controller. In order to overcome the problems described above, a learning algorithm by gradient descent method is included in the fuzzy control system such that the membership functions are tuned and the necessary rules are created automatically for good control performance. For stable learning in gradient descent method, the optimal range of learning coefficient not to be trapped and not to provide too slow learning speed is investigated. With the optimal range of learning coefficient, the optimal value of learning coefficient is suggested and with this value, the gradient

  5. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach.

    Lam, H K

    2012-02-01

    This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.

  6. Application of Fuzzy Algorithm in Optimizing Hierarchical Sliding Mode Control for Pendubot System

    Xuan Dung Huynh

    2017-12-01

    Full Text Available Pendubot is a classical under-actuated SIMO model for control algorithm testing in laboratory of universities. In this paper, authors design a fuzzy-sliding control for this system. The controller is designed from a new idea of application of fuzzy algorithm for optioning control parameters. The response of system on TOP position under fuzzysliding control algorithm is proved to be better than under sliding controller through Matlab/Simulink simulation.

  7. Development of Fuzzy Logic Control for Vehicle Air Conditioning System

    Henry Nasution

    2008-08-01

    Full Text Available A vehicle air conditioning system is experimentally investigated. Measurements were taken during the experimental period at a time interval of one minute for a set point temperature of 22, 23 and 24oC with internal heat loads of 0, 1 and 2 kW. The cabin temperature and the speed of the compressor were varied and the performance of the system, energy consumption and energy saving ware analyzed. The main objective of the experimental work is to evaluate the energy saving obtained when the fuzzy logic control (FLC algorithm, through an inverter, continuously regulates the compressor speed. It demonstrates better control of the compressor operation in terms of energy consumption as compared to the control by using a thermostat imposing On/Off cycles on the compressor at the nominal frequency of 50 Hz. The experimental set-up consists of original components from the air conditioning system of a compact passenger vehicle. The experimental results indicate that the proposed technique can save energy and improve indoor comfort significantly for vehicle air conditioning systems compared to the conventional (On/Off control technique.

  8. Adaptive fuzzy-neural-network control for maglev transportation system.

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  9. Selected Aircraft Throttle Controller With Support Of Fuzzy Expert Inference System

    Żurek Józef

    2014-12-01

    Full Text Available The paper describes Zlin 143Lsi aircraft engine work parameters control support method – hourly fuel flow as a main factor under consideration. The method concerns project of aircraft throttle control support system with use of fuzzy logic (fuzzy inference. The primary purpose of the system is aircraft performance optimization, reducing flight cost at the same time and support proper aircraft engine maintenance. Matlab Software and Fuzzy Logic Toolbox were used in the project. Work of the system is presented with use of twenty test samples, five of them are presented graphically. In addition, system control surface, included in the paper, supports system all work range analysis.

  10. Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.

    Mazandarani, Mehran; Pariz, Naser

    2018-05-01

    This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  12. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  13. Single axis control of ball position in magnetic levitation system using fuzzy logic control

    Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan

    2018-03-01

    This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.

  14. Improved Polynomial Fuzzy Modeling and Controller with Stability Analysis for Nonlinear Dynamical Systems

    Hamed Kharrati

    2012-01-01

    Full Text Available This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy modeling. To validate the model, a controller based on proposed polynomial fuzzy systems is designed and then applied to both original nonlinear plant and fuzzy model for comparison. Additionally, stability analysis for the proposed polynomial FMB control system is investigated employing Lyapunov theory and a sum of squares (SOS approach. Moreover, the form of the membership functions is considered in stability analysis. The SOS-based stability conditions are attained using SOSTOOLS. Simulation results are also given to demonstrate the effectiveness of the proposed method.

  15. Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation

    Jin-Hong Jeon

    2011-09-01

    Full Text Available Recently, interest in microgrids, which are composed of distributed generation (DG, distributed storage (DS, and loads, has been growing as a potentially effective clean energy system to mitigate against climate change. The microgrid is operated in the grid-connected mode and the islanded mode according to the conditions of the upstream power grid. The role of the energy storage system (ESS is especially important to maintain constant the frequency and voltage of an islanded microgrid. For this reason, various approaches for ESS control have been put forth. In this paper, a fuzzy PID controller is proposed to improve the frequency control performance of the ESS. This fuzzy PID controller consists of a fuzzy logic controller and a conventional PI controller, connected in series. The fuzzy logic controller has two input signals, and then the output signal of the fuzzy logic controller is the input signal of the conventional PI controller. For comparison of control performance, gains of each PI controller and fuzzy PID controller are tuned by the particle swam optimization (PSO algorithm. In the simulation study, the control performance of the fuzzy PID was also tested under various operating conditions using the PSCAD/EMTDC simulation platform.

  16. Energy Analysis for Air Conditioning System Using Fuzzy Logic Control

    Henry Nasution

    2011-04-01

    Full Text Available Reducing energy consumption and to ensure thermal comfort are two important considerations for the designing an air conditioning system. An alternative approach to reduce energy consumption proposed in this study is to use a variable speed compressor. The control strategy will be proposed using the fuzzy logic controller (FLC. FLC was developed to imitate the performance of human expert operators by encoding their knowledge in the form of linguistic rules. The system is installed on a thermal environmental room with a data acquisition system to monitor the temperature of the room, coefficient of performance (COP, energy consumption and energy saving. The measurements taken during the two hour experimental periods at 5-minutes interval times for temperature setpoints of 20oC, 22oC and 24oC with internal heat loads 0, 500, 700 and 1000 W. The experimental results indicate that the proposed technique can save energy in comparison with On/Off and proportional-integral-derivative (PID control.

  17. Wireless Intelligent Monitoring and Control System of Greenhouse Temperature Based on Fuzzy-PID

    Mei ZHAN

    2014-03-01

    Full Text Available Control effect is not ideal for traditional control method and wired control system, since greenhouse temperature has such characteristics as nonlinear and longtime lag. Therefore, Fuzzy- PID control method was introduced and radio frequency chip CC1110 was applied to design greenhouse wireless intelligent monitoring and control system. The design of the system, the component of nodes and the developed intelligent management software system were explained in this paper. Then describe the design of the control algorithm Fuzzy-PID. By simulating the new method in Matlab software, the results showed that Fuzzy-PID method small overshoot and better dynamic performance compared with general PID control. It has shorter settling time and no steady-state error compared with fuzzy control. It can meet requirements in greenhouse production.

  18. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  19. Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator

    Farzin Piltan

    2013-06-01

    Full Text Available Sliding mode controller (SMC is a significant nonlinear controller under condition of partly uncertain dynamic parameters of system. This controller is used to control of highly nonlinear systems especially for robot manipulators, because this controller is a robust and stable. Conversely, pure sliding mode controller is used in many applications; it has two important drawbacks namely; chattering phenomenon, and nonlinear equivalent dynamic formulation in uncertain dynamic parameter. The nonlinear equivalent dynamic formulation problem and chattering phenomenon in uncertain system can be solved by using artificial intelligence theorem. However fuzzy logic controller is used to control complicated nonlinear dynamic systems, but it cannot guarantee stability and robustness.  In this research parallel fuzzy logic theory is used to compensate the system dynamic uncertainty.

  20. Dissipativity-Based Reliable Control for Fuzzy Markov Jump Systems With Actuator Faults.

    Tao, Jie; Lu, Renquan; Shi, Peng; Su, Hongye; Wu, Zheng-Guang

    2017-09-01

    This paper is concerned with the problem of reliable dissipative control for Takagi-Sugeno fuzzy systems with Markov jumping parameters. Considering the influence of actuator faults, a sufficient condition is developed to ensure that the resultant closed-loop system is stochastically stable and strictly ( Q, S,R )-dissipative based on a relaxed approach in which mode-dependent and fuzzy-basis-dependent Lyapunov functions are employed. Then a reliable dissipative control for fuzzy Markov jump systems is designed, with sufficient condition proposed for the existence of guaranteed stability and dissipativity controller. The effectiveness and potential of the obtained design method is verified by two simulation examples.

  1. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  2. Fuzzy control of pressurizer dynamic process

    Ming Zhedong; Zhao Fuyu

    2006-01-01

    Considering the characteristics of pressurizer dynamic process, the fuzzy control system that takes the advantages of both fuzzy controller and PID controller is designed for the dynamic process in pressurizer. The simulation results illustrate this type of composite control system is with better qualities than those of single fuzzy controller and single PID controller. (authors)

  3. Fuzzy control in environmental engineering

    Chmielowski, Wojciech Z

    2016-01-01

    This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, th...

  4. Fuzzy logic based control system for fresh water aquaculture: A MATLAB based simulation approach

    Rana Dinesh Singh

    2015-01-01

    Full Text Available Fuzzy control is regarded as the most widely used application of fuzzy logic. Fuzzy logic is an innovative technology to design solutions for multiparameter and non-linear control problems. One of the greatest advantages of fuzzy control is that it uses human experience and process information obtained from operator rather than a mathematical model for the definition of a control strategy. As a result, it often delivers solutions faster than conventional control design techniques. The proposed system is an attempt to apply fuzzy logic techniques to predict the stress factor on the fish, based on line data and rule base generated using domain expert. The proposed work includes a use of Data acquisition system, an interfacing device for on line parameter acquisition and analysis, fuzzy logic controller (FLC for inferring the stress factor. The system takes stress parameters on the fish as inputs, fuzzified by using FLC with knowledge base rules and finally provides single output. All the parameters are controlled and calibrated by the fuzzy logic toolbox and MATLAB programming.

  5. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  6. Foundations Of Fuzzy Control

    Jantzen, Jan

    The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...

  7. Variable structure TITO fuzzy-logic controller implementation for a solar air-conditioning system

    Lygouras, J.N.; Pachidis, Th. [Laboratory of Electronics, School of Electrical and Computer Engineering, Democritus University of Thrace, GR-67100 Xanthi (Greece); Kodogiannis, V.S. [Centre for Systems Analysis, School of Computer Science, University of Westminster, London HA1 3TP (United Kingdom); Tarchanidis, K.N. [Department of Petroleum Technology, Technological Education Institute of Kavala, GR-65404, Kavala (Greece); Koukourlis, C.S. [Laboratory of Telecommunications, School of Electrical and Computer Engineering, Democritus University of Thrace, GR-67100 Xanthi (Greece)

    2008-04-15

    The design and implementation of a Two-Input/Two-Output (TITO) variable structure fuzzy-logic controller for a solar-powered air-conditioning system is described in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. The first affects the temperature in the generator of the solar air-conditioner, while the second, the pressure in the power loop. The difficulty of Multi-Input/Multi-Output (MIMO) systems control is how to overcome the coupling effects among each degree of freedom. First, a traditional fuzzy-controller has been designed, its output being one of the components of the control signal for each DC motor driver. Secondly, according to the characteristics of the system's dynamics coupling, an appropriate coupling fuzzy-controller (CFC) is incorporated into a traditional fuzzy-controller (TFC) to compensate for the dynamic coupling among each degree of freedom. This control strategy simplifies the implementation problem of fuzzy control, but can also improve the control performance. This mixed fuzzy controller (MFC) can effectively improve the coupling effects of the systems, and this control strategy is easy to design and implement. Experimental results from the implemented system are presented. (author)

  8. Robust Fuzzy Control for Fractional-Order Uncertain Hydroturbine Regulating System with Random Disturbances

    Fengjiao Wu; Guitao Zhang; Zhengzhong Wang

    2016-01-01

    The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. ...

  9. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  10. A neural fuzzy controller learning by fuzzy error propagation

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  11. Depth Control of Sevofluorane Anesthesia with Microcontroller Based Fuzzy Logic System

    Yardimci, A

    2001-01-01

    ... at the end of the anesthesia. In this study, sevofluorane depth of anesthesia was examined through a microcontroller-based fuzzy logic control system according to the blood pressure and heart rate taken from the patient...

  12. Multi-stage fuzzy PID power system automatic generation controller in deregulated environments

    Shayeghi, H.; Shayanfar, H.A.; Jalili, A.

    2006-01-01

    In this paper, a multi-stage fuzzy proportional integral derivative (PID) type controller is proposed to solve the automatic generation control (AGC) problem in a deregulated power system that operates under deregulation based on the bilateral policy scheme. In each control area, the effects of the possible contracts are treated as a set of new input signals in a modified traditional dynamical model. The multi-stage controller uses the fuzzy switch to blend a proportional derivative (PD) fuzzy logic controller with an integral fuzzy logic input. The proposed controller operates on fuzzy values passing the consequence of a prior stage on to the next stage as fact. The salient advantage of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities. This newly developed strategy leads to a flexible controller with simple structure that is easy to implement, and therefore, it can be useful for the real world power systems. The proposed method is tested on a three area power system with different contracted scenarios under various operating conditions. The results of the proposed controller are compared with those of the classical fuzzy PID type controller and classical PID controller through some performance indices to illustrate its robust performance

  13. Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincare map

    Bonakdar, Mohammad; Samadi, Mostafa; Salarieh, Hassan; Alasty, Aria

    2008-01-01

    In this paper a fuzzy control algorithm is used to stabilize the fixed points of a chaotic system. No knowledge of the dynamic equations of the system is needed in this approach and the whole system is considered as a black box. Two main approaches have been investigated: fuzzy clustering and table look up methods. As illustrative examples these methods have been applied to Bonhoeffer van der Pol oscillator and the Henon chaotic system and the convergence toward fixed points is observed

  14. Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincare map

    Bonakdar, Mohammad; Samadi, Mostafa [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of); Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of)

    2008-05-15

    In this paper a fuzzy control algorithm is used to stabilize the fixed points of a chaotic system. No knowledge of the dynamic equations of the system is needed in this approach and the whole system is considered as a black box. Two main approaches have been investigated: fuzzy clustering and table look up methods. As illustrative examples these methods have been applied to Bonhoeffer van der Pol oscillator and the Henon chaotic system and the convergence toward fixed points is observed.

  15. Fuzzy Control Tutorial

    Dotoli, M.; Jantzen, Jan

    1999-01-01

    The tutorial concerns automatic control of an inverted pendulum, especially rule based control by means of fuzzy logic. A ball balancer, implemented in a software simulator in Matlab, is used as a practical case study. The objectives of the tutorial are to teach the basics of fuzzy control......, and to show how to apply fuzzy logic in automatic control. The tutorial is distance learning, where students interact one-to-one with the teacher using e-mail....

  16. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  17. Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times

    Songtao Zhang

    2017-01-01

    Full Text Available A new fuzzy robust control strategy for the nonlinear supply chain system in the presence of lead times is proposed. Based on Takagi-Sugeno fuzzy control system, the fuzzy control model of the nonlinear supply chain system with lead times is constructed. Additionally, we design a fuzzy robust H∞ control strategy taking the definition of maximal overlapped-rules group into consideration to restrain the impacts such as those caused by lead times, switching actions among submodels, and customers’ stochastic demands. This control strategy can not only guarantee that the nonlinear supply chain system is robustly asymptotically stable but also realize soft switching among subsystems of the nonlinear supply chain to make the less fluctuation of the system variables by introducing the membership function of fuzzy system. The comparisons between the proposed fuzzy robust H∞ control strategy and the robust H∞ control strategy are finally illustrated through numerical simulations on a two-stage nonlinear supply chain with lead times.

  18. Fuzzy logic controller implementation for a solar air-conditioning system

    Lygouras, J.N.; Botsaris, P.N.; Vourvoulakis, J.; Kodogiannis, V.

    2007-01-01

    The implementation of a variable structure fuzzy logic controller for a solar powered air conditioning system and its advantages are investigated in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. Two different control schemes for the DC motors rotational speed adjustment are implemented and tested: the first one is a pure fuzzy controller, its output being the control signal for the DC motor driver. A 7 x 7 fuzzy matrix assigns the controller output with respect to the error value and the derivative of the error. The second scheme is a two-level controller. The lower level is a conventional PID controller, and the higher level is a fuzzy controller acting over the parameters of the low level controller. Step response of the two control loops are presented as experimental results. The contribution of this design is that in the control system, the fuzzy logic is implemented through software in a common, inexpensive, 16-bit microcontroller, which does not have special abilities for fuzzy control

  19. Fuzzy logic controller implementation for a solar air-conditioning system

    Lygouras, J.N.; Vourvoulakis, J. [Laboratory of Electronics, School of Electrical and Computer Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi (Greece); Botsaris, P.N. [Laboratory of Materials, Processes and Mechanical Design, School of Production and Management Engineering, Democritus University of Thrace 67100 Xanthi (Greece); Kodogiannis, V. [Centre for Systems Analysis, School of Computer Science, University of Westminster, London, HA1 3TP (United Kingdom)

    2007-12-15

    The implementation of a variable structure fuzzy logic controller for a solar powered air conditioning system and its advantages are investigated in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. Two different control schemes for the DC motors rotational speed adjustment are implemented and tested: the first one is a pure fuzzy controller, its output being the control signal for the DC motor driver. A 7 x 7 fuzzy matrix assigns the controller output with respect to the error value and the derivative of the error. The second scheme is a two-level controller. The lower level is a conventional PID controller, and the higher level is a fuzzy controller acting over the parameters of the low level controller. Step response of the two control loops are presented as experimental results. The contribution of this design is that in the control system, the fuzzy logic is implemented through software in a common, inexpensive, 16-bit microcontroller, which does not have special abilities for fuzzy control. (author)

  20. Design and implementation of a new fuzzy PID controller for networked control systems.

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

  1. Automatic generation control of TCPS based hydrothermal system under open market scenario: A fuzzy logic approach

    Rao, C. Srinivasa [EEE Department, G. Pulla Reddy Engineering College, Kurnool, Andhra Pradesh (India); Nagaraju, S. Siva [EEE Department, J.N.T.U College of Engg., Kakinada, Andhra Pradesh (India); Raju, P. Sangameswara [EEE Department, S.V. University, Tirupati, Andhra Pradesh (India)

    2009-09-15

    This paper presents the analysis of automatic generation control of a two-area interconnected thyristor controlled phase shifter based hydrothermal system in the continuous mode using fuzzy logic controller under open market scenario. Open transmission access and the evolving of more socialized companies for generation, transmission and distribution affects the formulation of AGC problem. So the traditional AGC two-area system is modified to take into account the effect of bilateral contracts on the dynamics. It is possible to stabilize the system frequency and tie-power oscillations by controlling the phase angle of TCPS which is expected to provide a new ancillary service for the future power systems. A control strategy using TCPS is proposed to provide active control of system frequency. Further dynamic responses for small perturbation considering fuzzy logic controller and PI controller (dual mode controller) have been observed and the superior performance of fuzzy logic controller has been reported analytically and also through simulation. (author)

  2. Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control

    Chen, C.-C.; Hsu, C.-H.; Chen, Y.-J.; Lin, Y.-F.

    2007-01-01

    The almost disturbance decoupling and trajectory tracking of nonlinear control systems using an observer-based fuzzy feedback linearization control (FLC) is developed. Because not all of the state variables of the nonlinear dynamic equations are available, a nonlinear state observer is employed to estimate the state variables. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. In order to demonstrate the practical applicability, the study has investigated a pendulum control system

  3. Adaptive control of discrete-time chaotic systems: a fuzzy control approach

    Feng Gang; Chen Guanrong

    2005-01-01

    This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm

  4. Hierarchical type-2 fuzzy aggregation of fuzzy controllers

    Cervantes, Leticia

    2016-01-01

    This book focuses on the fields of fuzzy logic, granular computing and also considering the control area. These areas can work together to solve various control problems, the idea is that this combination of areas would enable even more complex problem solving and better results. In this book we test the proposed method using two benchmark problems: the total flight control and the problem of water level control for a 3 tank system. When fuzzy logic is used it make it easy to performed the simulations, these fuzzy systems help to model the behavior of a real systems, using the fuzzy systems fuzzy rules are generated and with this can generate the behavior of any variable depending on the inputs and linguistic value. For this reason this work considers the proposed architecture using fuzzy systems and with this improve the behavior of the complex control problems.

  5. CONTROL SYSTEM DESIGN WITH FUZZY LOGIC PID-СONTROLLER TYPE 2

    A. Tунік

    2011-04-01

    Full Text Available This paper presents a fuzzy logic PID-controller synthesis method for solid body guidance. Formany nonlinear systems with nonlinearities and uncertainties, the performance of fuzzy controllertype 1 may not be satisfactory. Therefore, in this work, fuzzy logic type 2 controller design isintroduced. These controllers capture the advantage of a linear controller in terms of simplicity andalso can handle nonlinearity because of their inference mechanism.The main feature of the proposedmethod constitutes in a membership functions type 2 applications. The membership function type 2is represented by upper and lower membership functions of type 1. The interval between these twofunctions represent the footprint of uncertainty, which give an opportunity to synthesize commonregulator for set of a models. The structure of fuzzy logic controller for solid body control isgrounded. Simulation results confirm the effectiveness of the proposed approach.

  6. Memory H ∞ performance control of a class T-S fuzzy system

    Wang, Yanhua; He, Xiqin; Wu, Zhihua; Kang, Xiulan; Xiu, Wei

    2018-03-01

    For much nonlinear system in the control system, both the stability of the system and certain performance indicators are required. The characteristics of T-S model in fuzzy system make it possible to illustrate a great amount of nonlinear system efficiently. First and foremost, the T-S model with uncertainties and external disturbance is utilized to interpret nonlinear system so as to implement H∞ performance control by means of fuzzy control theory. Meantime, owing to the tremendous existence of time delay phenomenon in the controlled, feedback controller with memory fuzzy state is fabricated. On the basis of Lyapunov Stability Theory, the closed-loop system becomes stable by establishing Lyapunov function. Gain matrix of the memory state feedback controller is obtained by applying linear matrix inequality methodology. And simultaneously it makes the system meet the requirement of the H∞ performance indicator. Ultimately, the efficiency of the above-mentioned method is exemplified by the numerical computation.

  7. Implementation Of Automatic Wiper Speed Control And Headlight Modes Control Systems Using Fuzzy Logic

    ThetKoKo

    2015-07-01

    Full Text Available Abstract This research paper describes the design and simulation of the automatic wiper speed and headlight modes controllers using fuzzy logic. This proposed system consists of a fuzzy logic controller to control a cars wiper speed and headlight modes. The automatic wiper system detects the rain and its intensity. And according to the rain intensity the wiper speed is automatically controlled. Headlight modes automatically changes either from low beam mode to high beam mode or form high beam mode to low beam mode depending on the light intensity from the other vehicle coming from the opposite direction. The system comprises of PIC impedance sensor piezoelectric vibration sensor LDR headlamps and a DC motor to accurate the windshield wiper. Piezoelectric sensor is used to detect the rain intensity which is based on the piezoelectric effect. MATLAB software is used to achieve the designed goal.

  8. The Medical Microrobot Control System Design via Fuzzy Logic Application

    A. S. Yuschenko

    2014-01-01

    Full Text Available The aim of the investigation is the development of the instruments and technologies for diagnostics and treatment of tube-like human’s organs such as blood vessels and intestines. The medical microrobots may be applied to move along the tube-like organs by the same way as a worm. Such microrobots had been presented in some works in Russia and abroad among them is a project of BMSTU. The control system of the robot has to adapt the movement process to the peculiarity of the biology environment. The safety of the application of robotic device inside the human body is the main requirement to the construction.An experimental model of microrobot has three segments which contracting successively to ensure progressive movement of the device. The diameter of the robot is smaller than the same of the blood vessel. So it is pressed to the internal cover of the vessel by the special planes to avoid the thrombosis of the vessel. Every segment of robot contain three contact elements, pressure sensors and a regulator to control the pressure of the elements to the internal surface of the vessel. Aboard the robot is a micro-video camera has been mounted to inform the surgeon of the situation inside the vessel and other micro-devices. The supporting plates carry tens metric sensors to control the contact forces. The driver of the robot is of hydraulic type with physiologic solution to avoid the danger of embolism.Microrobot is a part of the robotic system including also a hydro-driver mounted in the stationary part of the system and intelligent interface of the operator. The surgeon-operator has opportunity to observe the inner surface of the vessel by the sensors mounted aboard the robot and to control the robot movement along the vessel. The construction of the microrobot has to guarantee the stable position of the robot in the moving blood flow and its movement inside the vessel without any damage of the inner surface.The peculiarity of the microrobot

  9. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  10. Adaptive Fuzzy Logic based MPPT Control for PV System Under Partial Shading Condition

    Choudhury, Subhashree; Rout, Pravat Kumar

    2016-01-01

    Partial shading causes power loss, hotspots and threatens the reliability of the Photovoltaic generation system. Moreover characteristic curves exhibit multiple peaks. Conventional MPPT techniques under this condition often fail to give optimum MPP. Focusing on the afore mentioned problem an attempt has been made to design an Adaptive Takagi-Sugeno Fuzzy Inference System based Fuzzy Logic Control MPPT.The mathematical model of PV array is simulated using in MATLAB/Simulink environment.Various...

  11. Control of suspended low-gravity simulation system based on self-adaptive fuzzy PID

    Chen, Zhigang; Qu, Jiangang

    2017-09-01

    In this paper, an active suspended low-gravity simulation system is proposed to follow the vertical motion of the spacecraft. Firstly, working principle and mathematical model of the low-gravity simulation system are shown. In order to establish the balance process and suppress the strong position interference of the system, the idea of self-adaptive fuzzy PID control strategy is proposed. It combines the PID controller with a fuzzy controll strategy, the control system can be automatically adjusted by changing the proportional parameter, integral parameter and differential parameter of the controller in real-time. At last, we use the Simulink tools to verify the performance of the controller. The results show that the system can reach balanced state quickly without overshoot and oscillation by the method of the self-adaptive fuzzy PID, and follow the speed of 3m/s, while simulation degree of accuracy of system can reach to 95.9% or more.

  12. Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems

    Yau, H.-T.; Chen, C.-L.

    2006-01-01

    This paper proposes a chattering-free fuzzy sliding-mode control (FSMC) strategy for uncertain chaotic systems. A fuzzy logic control is used to replace the discontinuous sign function of the reaching law in traditional sliding-mode control (SMC), and hence a control input without chattering is obtained in the chaotic systems with uncertainties. Base on the Lyapunov stability theory, we address the design schemes of integration fuzzy sliding-mode control, where the reaching law is proposed by a set of linguistic rules and the control input is chattering free. The Genesio chaotic system is used to test the proposed control strategy and the simulation results show the FSMC not only can control the uncertain chaotic behaviors to a desired state without oscillator very fast, but also the switching function is smooth without chattering. This result implies that this strategy is feasible and effective for chaos control

  13. Fuzzy Networked Control Systems Design Considering Scheduling Restrictions

    H. Benítez-Pérez

    2012-01-01

    known a priory but from a dynamic real-time behavior. To do so, the use of priority dynamic Priority exchange scheduling is performed. The objective of this paper is to show a way to tackle multiple time delays that are bounded and the dynamic response from real-time scheduling approximation. The related control law is designed considering fuzzy logic approximation for nonlinear time delays coupling, where the main advantage is the integration of this behavior through extended state space representation keeping certain linear and bounded behavior and leading to a stable situation during events presentation by guaranteeing stability through Lyapunov.

  14. Adaptive Fuzzy Robust Control for a Class of Nonlinear Systems via Small Gain Theorem

    Xingjian Wang

    2013-01-01

    Full Text Available Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.

  15. Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system

    Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)

    2007-11-15

    This paper attempts to investigate the performance of intelligent fuzzy based coordinated control of the Automatic Generation Control (AGC) loop and the excitation loop equipped with Proportional Integral Derivative (PID) controlled Automatic Voltage Regulator (AVR) system and Power System Stabilizer (PSS) controlled AVR system. The work establishes that PSS controlled AVR system is much more robust in dynamic performance of the system over a wide range of system operating configurations. Thus, it is revealed that PSS equipped AVR is much more superior than PID equipped AVR in damping the oscillation resulting in improved transient response. The paper utilizes a novel class of Particle Swarm Optimization (PSO) termed as Craziness based Particle Swarm Optimization (CRPSO) as optimizing tool to get optimal tuning of PSS parameters as well as the gains of PID controllers. For on-line, off-nominal operating conditions Takagi Sugeno Fuzzy Logic (TSFL) has been applied to obtain the off-nominal optimal gains of PID controllers and parameters of PSS. Implementation of TSFL helps to achieve very fast dynamic response. Fourth order model of generator with AVR and high gain thyristor excitation system is considered for PSS controlled system while normal gain exciter is considered for PID controlled system. Simulation study also reveals that with high gain exciter, PID control is not at all effective. Transient responses are achieved by using modal analysis. (author)

  16. HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS

    M.K. Tan

    2011-07-01

    Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.

  17. Fuzzy logic control for improved pressurizer systems in nuclear power plants

    Brown, Chris; Gabbar, Hossam A.

    2014-01-01

    Highlights: • Improved performance of the pressurizer system in a CANDU nuclear power plant (NPP). • Inventory control for the pressurizer system in NPP. • Compare fuzzy logic with PID in pressurizer system in NPP. • Develop a fuzzy controller to regulate the pressurizer inventory control. • Compare control performance with current proportional controller used at NPP. - Abstract: The pressurizer system in a CANDU nuclear power plant is responsible for maintaining the pressure of the primary heat transport system to ensure the plant is operated within its safe operating envelope. The inventory control for the pressurizer system use a combination of level sensors, feed valves and bleed valves to ensure that there is adequate room in the pressurizer to accommodate any swell or shrinkage in the PHT system. The Darlington Nuclear Generating Station (DNGS) in Ontario, Canada currently uses a proportional controller for the bleed and feed valves to regulate the pressurizer inventory control which can result in large coolant level overshoot along with excessive settling times. The purpose of this paper is to develop a fuzzy controller to regulate the pressurizer inventory control and compare its performance to the current proportional controller used at DNGS. The simulation of the pressurizer inventory control system shows the fuzzy controller performs better than the proportional controller in terms of settling time and overshoot

  18. Probabilistic fuzzy systems as additive fuzzy systems

    Almeida, R.J.; Verbeek, N.; Kaymak, U.; Costa Sousa, da J.M.; Laurent, A.; Strauss, O.; Bouchon-Meunier, B.; Yager, R.

    2014-01-01

    Probabilistic fuzzy systems combine a linguistic description of the system behaviour with statistical properties of data. It was originally derived based on Zadeh’s concept of probability of a fuzzy event. Two possible and equivalent additive reasoning schemes were proposed, that lead to the

  19. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  20. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.

    Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G

    2011-10-01

    In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts.

  1. System identification and adaptive control theory and applications of the neurofuzzy and fuzzy cognitive network models

    Boutalis, Yiannis; Kottas, Theodore; Christodoulou, Manolis A

    2014-01-01

    Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented.  Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model  stems  from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering s...

  2. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

    Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

    2016-07-01

    In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy.

  3. Design of sewage treatment system by applying fuzzy adaptive PID controller

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  4. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  5. Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system

    Sabah Miqoi

    2017-03-01

    Full Text Available In this paper a new maximum power point tracking method based on fuzzy sliding mode control is proposed, and employed in a PV water pumping system based on a DC-DC boost converter, to produce maximum power from the solar panel hence more speed in the DC motor and more water quantity. This method combines two different tracking techniques sliding mode control and fuzzy logic; our controller is based on sliding mode control, then to give better stability and enhance the power production a fuzzy logic technique was added. System modeling, sliding method definition and the new control method presentation are represented in this paper. The results of the simulation that are compared to both sliding mode controller and perturbation and observation method demonstrate effectiveness and robustness of the proposed controller.

  6. Reliable Decentralized Control of Fuzzy Discrete-Event Systems and a Test Algorithm.

    Liu, Fuchun; Dziong, Zbigniew

    2013-02-01

    A framework for decentralized control of fuzzy discrete-event systems (FDESs) has been recently presented to guarantee the achievement of a given specification under the joint control of all local fuzzy supervisors. As a continuation, this paper addresses the reliable decentralized control of FDESs in face of possible failures of some local fuzzy supervisors. Roughly speaking, for an FDES equipped with n local fuzzy supervisors, a decentralized supervisor is called k-reliable (1 ≤ k ≤ n) provided that the control performance will not be degraded even when n - k local fuzzy supervisors fail. A necessary and sufficient condition for the existence of k-reliable decentralized supervisors of FDESs is proposed by introducing the notions of M̃uc-controllability and k-reliable coobservability of fuzzy language. In particular, a polynomial-time algorithm to test the k-reliable coobservability is developed by a constructive methodology, which indicates that the existence of k-reliable decentralized supervisors of FDESs can be checked with a polynomial complexity.

  7. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  8. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.

  10. Stabilizing Planar Inverted Pendulum System Based on Fuzzy Nine-point Controller

    Qi Qian; Liu Feng; Tang Yong-chuan; Yang Yang

    2013-01-01

    In order to stabilize planar inverted pendulum, after analyzing the physical characteristics of the planar inverted pendulum system, a pendulum nine-point controller and a car nine-point controller for X-axis and Y-axis were designed respectively. Then a fuzzy coordinator was designed using the fuzzy control theory based on the priority of those two controllers, and the priority level of the pendulum is higher than the car. Thus, the control tasks of each controller in each axis were harmoniz...

  11. Intelligent control-II: review of fuzzy systems and theory of approximate reasoning

    Nagrial, M.H.

    2004-01-01

    Fuzzy systems are knowledge-based or rule-based systems. The heart of a fuzzy systems knowledge base consisting of the so-called fuzzy IF -THEN rules. This paper reviews various aspects of fuzzy IF-THEN rules. The theory of approximate reasoning, which provides a powerful framework for reasoning the imprecise and uncertain information, , is also reviewed. Additional properties of fuzzy systems are also discussed. (author)

  12. Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control

    Layeghi, Hamed [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: layeghi@mech.sharif.edu; Arjmand, Mehdi Tabe [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: arjmand@mech.sharif.edu; Salarieh, Hassan [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu

    2008-08-15

    In this paper by using a combination of fuzzy identification and the sliding mode control a fuzzy adaptive sliding mode scheme is designed to stabilize the unstable periodic orbits of chaotic systems. The chaotic system is assumed to have an affine form x{sup (n)} = f(X) + g(X)u where f and g are unknown functions. Using only the input-output data obtained from the underlying dynamical system, two fuzzy systems are constructed for identification of f and g. Two distinct methods are utilized for fuzzy modeling, the least squares and the gradient descent techniques. Based on the estimated fuzzy models, an adaptive controller, which works through the sliding mode control, is designed to make the system track the desired unstable periodic orbits. The stability analysis of the overall closed loop system is presented in the paper and the effectiveness of the proposed adaptive scheme is numerically investigated. As a case of study, modified Duffing system is selected for applying the proposed method to stabilize its 2{pi} and 4{pi} periodic orbits. Simulation results show the high performance of the method for stabilizing the unstable periodic orbits of unknown chaotic systems.

  13. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  14. Management of Uncertainty by Statistical Process Control and a Genetic Tuned Fuzzy System

    Stephan Birle

    2016-01-01

    Full Text Available In food industry, bioprocesses like fermentation often are a crucial part of the manufacturing process and decisive for the final product quality. In general, they are characterized by highly nonlinear dynamics and uncertainties that make it difficult to control these processes by the use of traditional control techniques. In this context, fuzzy logic controllers offer quite a straightforward way to control processes that are affected by nonlinear behavior and uncertain process knowledge. However, in order to maintain process safety and product quality it is necessary to specify the controller performance and to tune the controller parameters. In this work, an approach is presented to establish an intelligent control system for oxidoreductive yeast propagation as a representative process biased by the aforementioned uncertainties. The presented approach is based on statistical process control and fuzzy logic feedback control. As the cognitive uncertainty among different experts about the limits that define the control performance as still acceptable may differ a lot, a data-driven design method is performed. Based upon a historic data pool statistical process corridors are derived for the controller inputs control error and change in control error. This approach follows the hypothesis that if the control performance criteria stay within predefined statistical boundaries, the final process state meets the required quality definition. In order to keep the process on its optimal growth trajectory (model based reference trajectory a fuzzy logic controller is used that alternates the process temperature. Additionally, in order to stay within the process corridors, a genetic algorithm was applied to tune the input and output fuzzy sets of a preliminarily parameterized fuzzy controller. The presented experimental results show that the genetic tuned fuzzy controller is able to keep the process within its allowed limits. The average absolute error to the

  15. FUZZY CONTROLLER FOR THE CONTROL OF THE MOBILE PLATFORM OF THE CORBYS ROBOTIC GAIT REHABILITATION SYSTEM

    Maria Kyrarini

    2014-12-01

    Full Text Available In this paper, an inverse kinematics based control algorithm for the joystick control of the mobile platform of the novel mobile robot-assisted gait rehabilitation system CORBYS is presented. The mobile platform has four independently steered and driven wheels. Given the linear and angular velocities of the mobile platform, the inverse kinematics algorithm gives as its output the steering angle and the driving angular velocity of each of the four wheels. The paper is focused on the steering control of the platform for which a fuzzy logic controller is developed and implemented. The experimental results of the real-world steering of the platform are presented in the paper.

  16. Development and comparison of integrated dynamics control systems with fuzzy logic control and sliding mode control

    Song, Jeong Hoon

    2013-01-01

    In this study, four integrated dynamics control (IDC) systems abbreviated as IDCB, IDCS, IDCF, and IDCR are developed, evaluated and compared. IDC systems were integrated with brake and steer control systems to enhance lateral stability and handling performance. To construct the IDC systems, a vehicle model with fourteen degrees of freedom, a fuzzy logic controller, and a sliding mode ABS controller were used. They were tested with various steering inputs when excessive full brake pressure or no brake pressure was applied on dry asphalt, wet asphalt, a snow-covered paved road, and a split-µ road. The results showed that an IDC-equipped vehicle improved lateral stability and controllability in every driving condition compared to an ABS-equipped vehicle. Under all road conditions, IDC controllers enabled the yaw rate to follow the reference yaw rate almost perfectly and reduced the body slip angle. On a split-µ road, IDCB, IDCS, IDCF, and IDCR vehicles drove straight ahead with only very small deviations.

  17. Observer-Based Robust Control of Uncertain Switched Fuzzy Systems with Combined Switching Controller

    Hong Yang

    2013-01-01

    Full Text Available The observer-based robust control for a class of switched fuzzy (SF time-delay systems involving uncertainties and external disturbances is investigated in this paper. A switched fuzzy system, which differs from existing ones, is firstly employed to describe a nonlinear system. Next, a combined switching controller is proposed. The designed controller based on the observer instead of the state information integrates the advantages of both the switching controllers and the supplementary controllers but eliminates their disadvantages. The proposed controller provides good performance during the transient period, and the chattering effect is removed when the system state approaches the origin. Sufficient condition for the solvability of the robust control problem is given for the case that the state of system is not available. Since convex combination techniques are used to derive the delay-independent criteria, some subsystems are allowed to be unstable. Finally, various comparisons of the elaborated examples are conducted to demonstrate the effectiveness of the proposed control design approach.

  18. Polynomial fuzzy model-based control systems stability analysis and control synthesis using membership function dependent techniques

    Lam, Hak-Keung

    2016-01-01

    This book presents recent research on the stability analysis of polynomial-fuzzy-model-based control systems where the concept of partially/imperfectly matched premises and membership-function dependent analysis are considered. The membership-function-dependent analysis offers a new research direction for fuzzy-model-based control systems by taking into account the characteristic and information of the membership functions in the stability analysis. The book presents on a research level the most recent and advanced research results, promotes the research of polynomial-fuzzy-model-based control systems, and provides theoretical support and point a research direction to postgraduate students and fellow researchers. Each chapter provides numerical examples to verify the analysis results, demonstrate the effectiveness of the proposed polynomial fuzzy control schemes, and explain the design procedure. The book is comprehensively written enclosing detailed derivation steps and mathematical derivations also for read...

  19. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  20. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Ahmed M. Othman

    2012-12-01

    Full Text Available In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV systems. Maximum power point tracking (MPPT plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O algorithm and is compared to a designed fuzzy logic controller (FLC. The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  1. Fuzzy Control of Cold Storage Refrigeration System with Dynamic Coupling Compensation

    Xiliang Ma

    2018-01-01

    Full Text Available Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.

  2. Robust Fuzzy Control for Fractional-Order Uncertain Hydroturbine Regulating System with Random Disturbances

    Fengjiao Wu

    2016-01-01

    Full Text Available The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. Furthermore, the proposed method has good robustness which can process external random disturbances and uncertain parameters. Finally, the validity and superiority are proved by the numerical simulations.

  3. Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

    Sung-Woo Kim

    2012-12-01

    Full Text Available The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS. An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

  4. Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system

    Syafaruddin; Hiyama, Takashi [Department of Computer Science and Electrical Engineering of Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Karatepe, Engin [Department of Electrical and Electronics Engineering of Ege University, 35100 Bornova-Izmir (Turkey)

    2009-12-15

    It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. There are two ways to increase the efficiency of PV power generation system. The first is to develop materials offering high conversion efficiency at low cost. The second is to operate PV systems optimally. However, the PV system can be optimally operated only at a specific output voltage and its output power fluctuates under intermittent weather conditions. Moreover, it is very difficult to test the performance of a maximum-power point tracking (MPPT) controller under the same weather condition during the development process and also the field testing is costly and time consuming. This paper presents a novel real-time simulation technique of PV generation system by using dSPACE real-time interface system. The proposed system includes Artificial Neural Network (ANN) and fuzzy logic controller scheme using polar information. This type of fuzzy logic rules is implemented for the first time to operate the PV module at optimum operating point. ANN is utilized to determine the optimum operating voltage for monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies. (author)

  5. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  6. Design of interpretable fuzzy systems

    Cpałka, Krzysztof

    2017-01-01

    This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.

  7. Fuzzy modeling and control of rotary inverted pendulum system using LQR technique

    Fairus, M A; Mohamed, Z; Ahmad, M N

    2013-01-01

    Rotary inverted pendulum (RIP) system is a nonlinear, non-minimum phase, unstable and underactuated system. Controlling such system can be a challenge and is considered a benchmark in control theory problem. Prior to designing a controller, equations that represent the behaviour of the RIP system must be developed as accurately as possible without compromising the complexity of the equations. Through Takagi-Sugeno (T-S) fuzzy modeling technique, the nonlinear system model is then transformed into several local linear time-invariant models which are then blended together to reproduce, or approximate, the nonlinear system model within local region. A parallel distributed compensation (PDC) based fuzzy controller using linear quadratic regulator (LQR) technique is designed to control the RIP system. The results show that the designed controller able to balance the RIP system

  8. Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system

    Larbes, C.; Ait Cheikh, S.M.; Obeidi, T.; Zerguerras, A. [Laboratoire des Dispositifs de Communication et de Conversion Photovoltaique, Departement d' Electronique, Ecole Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200 (Algeria)

    2009-10-15

    This paper presents an intelligent control method for the maximum power point tracking (MPPT) of a photovoltaic system under variable temperature and irradiance conditions. First, for the purpose of comparison and because of its proven and good performances, the perturbation and observation (P and O) technique is briefly introduced. A fuzzy logic controller based MPPT (FLC) is then proposed which has shown better performances compared to the P and O MPPT based approach. The proposed FLC has been also improved using genetic algorithms (GA) for optimisation. Different development stages are presented and the optimized fuzzy logic MPPT controller (OFLC) is then simulated and evaluated, which has shown better performances. (author)

  9. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  10. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  11. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  12. Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system

    Doaa M. Atia

    2017-05-01

    Full Text Available The greenhouse is a complicated nonlinear system, which provides the plants with appropriate environmental conditions for growing. This paper presents a design of a control system for a greenhouse using geothermal energy as a power source for heating system. The greenhouse climate control problem is to create a favourable environment for the crop in order to reach predetermined results for high yield, high quality and low costs. Four controller techniques; PI control, fuzzy logic control, artificial neural network control and adaptive neuro-fuzzy control are used to adjust the greenhouse indoor temperature at the required value. MATLAB/SIMULINK is used to simulate the different types of controller techniques. Finally a comparative study between different control strategies is carried out.

  13. Power consumption analysis of pump station control systems based on fuzzy controllers with discrete terms in iThink software

    Muravyova, E. A.; Bondarev, A. V.; Sharipov, M. I.; Galiaskarova, G. R.; Kubryak, A. I.

    2018-03-01

    In this article, power consumption of pumping station control systems is discussed. To study the issue, two simulation models of oil level control in the iThink software have been developed, using a frequency converter only and using a frequency converter and a fuzzy controller. A simulation of the oil-level control was carried out in a graphic form, and plots of pumps power consumption were obtained. Based on the initial and obtained data, the efficiency of the considered control systems has been compared, and also the power consumption of the systems was shown graphically using a frequency converter only and using a frequency converter and a fuzzy controller. The models analysis has shown that it is more economical and safe to use a control circuit with a frequency converter and a fuzzy controller.

  14. Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.

    Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O

    2009-04-01

    This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.

  15. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure

    Le, Thanh Danh; Ahn, Kyoung Kwan

    2012-01-01

    A novel active vibration isolation system using negative stiffness structure (active system with NSS) for low excitation frequency ranges (< 5 Hz) is developed successfully. Here, the negative stiffness structure (NSS) is used to minimize the attraction of vibration. Then, the fuzzy sliding mode controller (FSMC) is designed to improve the vibration isolation performance of the active system with NSS. Based on Lyapunov stability theorem, the fuzzy control rules are constructed. Next, the experimental apparatus is built for evaluating the isolation efficiency of the proposed system controlled by the FSMC corresponding to various excitation conditions. In addition, the isolation performance of the active system with NSS, the active system without NSS and the passive the system with NSS is compared. The experimental results confirmed that the active system with NSS gives better isolation efficiency than the active system without NSS and the passive system with NSS in low excitation frequency areas

  16. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  17. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  18. Fuzzy Logic System for Intermixed Biogas and Photovoltaics Measurement and Control

    Liston Matindife

    2018-01-01

    Full Text Available This study develops a new integrated measurement and control system for intermixed biogas and photovoltaic systems to achieve safe and optimal energy usage. Literature and field studies show that existing control methods on small- to medium-scale systems fall short of comprehensive system optimization and fault diagnosis, hence the need to revisit these control methods. The control strategy developed in this study is intelligent as it is wholly based on fuzzy logic algorithms. Fuzzy logic controllers due to their superior nonlinear problem solving capabilities to classical controllers considerably simplify controller design. The mathematical models that define classical controllers are difficult or impossible to realize in biogas and photovoltaic generation process. A microcontroller centered fuzzy logic measurement and control embedded system is designed and developed on the existing hybrid biogas and photovoltaic installations. The designed system is able to accurately predict digester stability, quantify biogas output, and carry out biogas fault detection and control. Optimized battery charging and photovoltaic fault detection and control are also successfully implemented. The system is able to optimize the operation and performance of biogas and photovoltaic energy generation.

  19. Fuzzy Tracking and Control Algorithm for an SSVEP-Based BCI System

    Yeou-Jiunn Chen

    2016-09-01

    Full Text Available Subjects with amyotrophic lateral sclerosis (ALS consistently experience decreasing quality of life because of this distinctive disease. Thus, a practical brain-computer interface (BCI application can effectively help subjects with ALS to participate in communication or entertainment. In this study, a fuzzy tracking and control algorithm is proposed for developing a BCI remote control system. To represent the characteristics of the measured electroencephalography (EEG signals after visual stimulation, a fast Fourier transform is applied to extract the EEG features. A self-developed fuzzy tracking algorithm quickly traces the changes of EEG signals. The accuracy and stability of a BCI system can be greatly improved by using a fuzzy control algorithm. Fifteen subjects were asked to attend a performance test of this BCI system. The canonical correlation analysis (CCA was adopted to compare the proposed approach, and the average recognition rates are 96.97% and 94.49% for proposed approach and CCA, respectively. The experimental results showed that the proposed approach is preferable to CCA. Overall, the proposed fuzzy tracking and control algorithm applied in the BCI system can profoundly help subjects with ALS to control air swimmer drone vehicles for entertainment purposes.

  20. Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach.

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng

    2016-03-01

    This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.

  1. Research on the Intelligent Control and Simulation of Automobile Cruise System Based on Fuzzy System

    Xue-wen Chen

    2016-01-01

    Full Text Available In order to improve the active safety driving vehicle and alleviate the intension of driving fatigue, an intelligent control strategy of automobile cruise is put forward based on the throttle or braking pedal combined control adopting the fuzzy control theory. A fuzzy logic controller is presented, which consists of the two input variables, the deviation of the theoretical safe distance and relative distance and the relative velocity between the preceding vehicle and the cruise vehicle, and the single output variable, that is, the throttle opening or the braking pedal travel. Taking the test data of 1.6 L vehicle with auto-transmission as an example, the function on the intelligent cruise control system is simulated adopting MATLAB/Simulink aiming at different working conditions on the city road. The simulation results show that the control strategy possesses integrated capability of automated Stop & Go control, actively following the preceding vehicle on the conditions of keeping the safety distance and the constant velocity cruise. The research results can offer the theory and technology reference for setting dSPACE type and developing the integrated control product of automobile cruise system.

  2. A computationally efficient fuzzy control s

    Abdel Badie Sharkawy

    2013-12-01

    Full Text Available This paper develops a decentralized fuzzy control scheme for MIMO nonlinear second order systems with application to robot manipulators via a combination of genetic algorithms (GAs and fuzzy systems. The controller for each degree of freedom (DOF consists of a feedforward fuzzy torque computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line using GAs, whereas not only the parameters but also the structure of the fuzzy system is optimized. The feedback fuzzy PD system, on the other hand, is used to keep the closed-loop stable. The rule base consists of only four rules per each DOF. Furthermore, the fuzzy feedback system is decentralized and simplified leading to a computationally efficient control scheme. The proposed control scheme has the following advantages: (1 it needs no exact dynamics of the system and the computation is time-saving because of the simple structure of the fuzzy systems and (2 the controller is robust against various parameters and payload uncertainties. The computational complexity of the proposed control scheme has been analyzed and compared with previous works. Computer simulations show that this controller is effective in achieving the control goals.

  3. A fuzzy expert system to Trust-Based Access Control in crowdsourcing environments

    Olusegun Folorunso

    2015-07-01

    Full Text Available Crowdsourcing has been widely accepted across a broad range of application areas. In crowdsourcing environments, the possibility of performing human computation is characterized with risks due to the openness of their web-based platforms where each crowd worker joins and participates in the process at any time, causing serious effect on the quality of its computation. In this paper, a combination of Trust-Based Access Control (TBAC strategy and fuzzy-expert systems was used to enhance the quality of human computation in crowdsourcing environment. A TBAC-fuzzy algorithm was developed and implemented using MATLAB 7.6.0 to compute trust value (Tvalue, priority value as evaluated by fuzzy inference system (FIS and finally generate access decision to each crowd-worker. In conclusion, the use of TBAC is feasible in improving quality of human computation in crowdsourcing environments.

  4. A VIRTUAL REALITY EXPOSURE THERAPY FOR PTSD PATIENTS CONTROLLED BY A FUZZY LOGIC SYSTEM

    Rosa Maria Esteves Moreira da Costa; Fernando Moraes de Oliveira; Regina Serrão Lanzillotti; Raquel Gonçalves; Luis Alfredo Vidal de Carvalho

    2014-01-01

    This paper describes the main characteristics of two integrated systems that explore Virtual Reality technology and Fuzzy Logic to support and to control the assessment of people with Post-Traumatic Stress Disorder during the Virtual Reality Exposure Therapy. The integration of different technologies, the development methodology and the test procedures are described throughout the paper.

  5. A VIRTUAL REALITY EXPOSURE THERAPY FOR PTSD PATIENTS CONTROLLED BY A FUZZY LOGIC SYSTEM

    Rosa Maria Esteves Moreira da Costa

    2014-06-01

    Full Text Available This paper describes the main characteristics of two integrated systems that explore Virtual Reality technology and Fuzzy Logic to support and to control the assessment of people with Post-Traumatic Stress Disorder during the Virtual Reality Exposure Therapy. The integration of different technologies, the development methodology and the test procedures are described throughout the paper.

  6. A virtual reality exposure therapy for PTSD patients controlled by a fuzzy logic system

    Oliveira, F. M.; Lanzillotti, R. S.; Da Costa, R. M. E. M.; Gonçalves, R.; Ventura, P.; Carvalho, L. A. V. de

    2014-01-01

    This paper describes the main characteristics of two integrated systems that explore Virtual Reality technology and Fuzzy Logic to support and to control the assessment of people with Post-Traumatic Stress Disorder during the Virtual Reality Exposure Therapy. The integration of different technologies, the development methodology and the test procedures are described throughout the paper. Peer Reviewed

  7. Application of fuzzy logic control in industry

    Van der Wal, A.J.

    1994-01-01

    An overview is given of the various ways fuzzy logic can be used to improve industrial control. The application of fuzzy logic in control is illustrated by two case studies. The first example shows how fuzzy logic, incorporated in the hardware of an industrial controller, helps to finetune a PID controller, without the operator having any a priori knowledge of the system to be controlled. The second example is from process industry. Here, fuzzy logic supervisory control is implemented in software and enhances the operation of a sintering oven through a subtle combination of priority management and deviation-controlled timing

  8. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  9. Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model

    Aref M.A. Soliman

    2012-04-01

    Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.

  10. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Fuzzy logic controller using different inference methods

    Liu, Z.; De Keyser, R.

    1994-01-01

    In this paper the design of fuzzy controllers by using different inference methods is introduced. Configuration of the fuzzy controllers includes a general rule-base which is a collection of fuzzy PI or PD rules, the triangular fuzzy data model and a centre of gravity defuzzification algorithm. The generalized modus ponens (GMP) is used with the minimum operator of the triangular norm. Under the sup-min inference rule, six fuzzy implication operators are employed to calculate the fuzzy look-up tables for each rule base. The performance is tested in simulated systems with MATLAB/SIMULINK. Results show the effects of using the fuzzy controllers with different inference methods and applied to different test processes

  12. Impulsive control for a Takagi–Sugeno fuzzy model with time-delay and its application to chaotic systems

    Shi-Guo, Peng; Si-Min, Yu

    2009-01-01

    A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi–Sugeno (TS) fuzzy IF–THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov–Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method

  13. Using fuzzy models in machining control system and assessment of sustainability

    Grinek, A. V.; Boychuk, I. P.; Dantsevich, I. M.

    2018-03-01

    Description of the complex relationship of the optimum velocity with the temperature-strength state in the cutting zone for machining a fuzzy model is proposed. The fuzzy-logical conclusion allows determining the processing speed, which ensures effective, from the point of view of ensuring the quality of the surface layer, the temperature in the cutting zone and the maximum allowable cutting force. A scheme for stabilizing the temperature-strength state in the cutting zone using a nonlinear fuzzy PD–controller is proposed. The stability of the nonlinear system is estimated with the help of grapho–analytical realization of the method of harmonic balance and by modeling in MatLab.

  14. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  15. Model predictive control using fuzzy decision functions

    Kaymak, U.; Costa Sousa, da J.M.

    2001-01-01

    Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the

  16. A fuzzy controller for NPPs

    Schildt, G.H.

    1997-01-01

    A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs

  17. A fuzzy controller for NPPs

    Schildt, G.H.

    1996-01-01

    After an introduction into safety terms a fuzzy controller for safety related process control will be presented, especially for applications in the field of NPPs. One can show that the size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage due to real-time behaviour, because program execution time can be much more planned than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principle, and quiescent current principle

  18. A fuzzy controller for NPPs

    Schildt, G H [Technische Univ., Vienna (Austria)

    1997-07-01

    A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs.

  19. Design of Immune-Algorithm-Based Adaptive Fuzzy Controllers for Active Suspension Systems

    Ming-Yuan Shieh

    2014-04-01

    Full Text Available The aim of this paper is to integrate the artificial immune systems and adaptive fuzzy control for the automobile suspension system, which is regarded as a multiobjective optimization problem. Moreover, the fuzzy control rules and membership controls are then introduced for identification and memorization. It leads fast convergence in the search process. Afterwards, by using the diversity of the antibody group, trapping into local optimum can be avoided, and the system possesses a global search capacity and a faster local search for finding a global optimal solution. Experimental results show that the artificial immune system with the recognition and memory functions allows the system to rapidly converge and search for the global optimal approximate solutions.

  20. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives.

    Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-09-22

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance.

  1. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives

    Geraldo Neves De A. Maranhão

    2015-09-01

    Full Text Available In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD for use in Photovoltaic Pumping Systems (PVPS is proposed. The fuzzy logic system (FLS used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC voltage level in the VSD with a good performance.

  2. UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID

    Ali Moltajaei Farid

    2013-01-01

    Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV.  First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.

  3. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    Derrouazin, A., E-mail: derrsid@gmail.com [University Hassiba BenBouali of Chlef, LGEER,Chlef (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Aillerie, M., E-mail: aillerie@metz.supelec.fr; Charles, J. P. [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Mekkakia-Maaza, N. [Université des sciences et de la Technologie d’Oran, Mohamed Boudiaf-USTO MB,LMSE, Oran Algérie (Algeria)

    2016-07-25

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  4. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    Derrouazin, A.; Aillerie, M.; Charles, J. P.; Mekkakia-Maaza, N.

    2016-01-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  5. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  6. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Fuzzy-Logic Subsumption Controller for Home Energy Management Systems

    Ainsworth, Nathan; Johnson, Brian; Lundstrom, Blake

    2015-10-06

    Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions. We develop a proof-of-concept behavioral HEMS controller and show by simulation on an example home energy system that it capable of making context-dependent tradeoffs between goals under challenging conditions.

  8. Fuzzy control of small servo motors

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  9. Analysis of inventory difference using fuzzy controllers

    Zardecki, A.

    1994-01-01

    The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented

  10. Fuzzy logic control of air-conditioning system in residential buildings

    Abdel-Hamid Attia

    2015-09-01

    Full Text Available There has been a rising concern in reducing the energy consumption in building. Heating ventilation and air condition system is the biggest consumer of energy in building. In this study, fuzzy logic control of the air conditioning system of building for efficient energy operation and comfortable environment is investigated. A theoretical model of the fan coil unit (FCU and the heat transfer between air and coolant fluid is derived. The controlled variables are the room temperature and relative humidity and control consequents are the percentage of chilled and hot water flow rates at summer and the percentage of hot water and steam injected flow rates at winter. A computer simulation has been conducted and fuzzy control results are compared with that of conventional Proportional-Integral-Derivative control. It was found that the proposed control strategy satisfies the space load and at the same time to achieve the comfort zone, as defined by the ASHRAE code. Meanwhile PID control fails to adjust the room temperature at part-load operations. It has been demonstrated that fuzzy controller operation is more efficient and consumes less energy than PID control.

  11. Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.

    El-Bardini, Mohammad; El-Nagar, Ahmad M

    2014-05-01

    In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Embedded system based on a real time fuzzy motor speed controller

    Ebrahim Abd El-Hamid Mohamed Ramadan

    2014-06-01

    Full Text Available This paper describes an implementation of a fuzzy logic control (FLC system and a/the conventional proportional-integral (PI controller for speed control of DC motor, based on field programmable gate array (FPGA circuit. The proposed scheme is aimed to improve the tracking performance and to eliminate the load disturbance in the speed control of DC motors. The proposed fuzzy system has been applied to a permanent magnet DC motor, via a configuration of H-bridge. The fuzzy control algorithm is designed and verified with a nonlinear model, using the MATLAB® tools. Both FLC and conventional PI controller hardware are synthesized, functionally verified and implemented using Xilinx Integrated Software Environment (ISE Version 11.1i. The real time implementation of these controllers is made on Spartan-3E FPGA starter kit (XC3S500E. The practical results showed that the proposed FLC scheme has better tracking performance than the conventional PI controller for the speed control of DC motors.

  13. Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.

    Zhang, Jin-Xi; Yang, Guang-Hong

    2018-05-01

    This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.

  14. Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study

    H. A. Hashim

    2015-01-01

    Full Text Available This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO system (TRMS considering most promising evolutionary techniques. These are gravitational search algorithm (GSA, particle swarm optimization (PSO, artificial bee colony (ABC, and differential evolution (DE. In this study, the gains of four fuzzy proportional derivative (PD controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed.

  15. Distributed Adaptive Fuzzy Control for Nonlinear Multiagent Systems Via Sliding Mode Observers.

    Shen, Qikun; Shi, Peng; Shi, Yan

    2016-12-01

    In this paper, the problem of distributed adaptive fuzzy control is investigated for high-order uncertain nonlinear multiagent systems on directed graph with a fixed topology. It is assumed that only the outputs of each follower and its neighbors are available in the design of its distributed controllers. Equivalent output injection sliding mode observers are proposed for each follower to estimate the states of itself and its neighbors, and an observer-based distributed adaptive controller is designed for each follower to guarantee that it asymptotically synchronizes to a leader with tracking errors being semi-globally uniform ultimate bounded, in which fuzzy logic systems are utilized to approximate unknown functions. Based on algebraic graph theory and Lyapunov function approach, using Filippov-framework, the closed-loop system stability analysis is conducted. Finally, numerical simulations are provided to illustrate the effectiveness and potential of the developed design techniques.

  16. Fuzzy controller for a system with uncertain load

    Kulczycki, P.; Wisniewski, Rafal

    2002-01-01

    In many applications of motion control, problems associated with imprecisely measured or changing load (a mass or a moment of inertia) can be a serious obstacle in the formation of satisfactory controlling systems. This barrier compels the designer to include various kinds of uncertainties...

  17. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    Miltiadis Alamaniotis; Vivek Agarwal

    2014-10-01

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are then inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.

  18. Application of Dynamic Systems Family for Synthesis of Fuzzy Control with Account of Non-linearities

    Andriy Lozynskyy

    2016-01-01

    Full Text Available Dynamic system with nonlinearities has been considered. This system has been divided into a set of linear subsystems. A fuzzy controller of the considered system has been synthesized. It takes into account nonlinearities of the system and provides smooth switching between controllers of the linear subsystems. An unstable subsystem has been utilized, which provides better dynamic characteristics of the considered system. Comparison with traditional controller has been conducted. Corresponding qualitative and quantitative estimates have been provided. They testify the expediency of the proposed approach.

  19. Implementation of the fuzzy theory in control of alternative energy generation system; Aplicacao da teoria fuzzy no controle de sistemas de geracao de energias alternativas

    Caneppele, Fernando de Lima [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Curso de Pos-Graduacao em Energia na Agricultura], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], E-mail: seraphim@fca.unesp.br

    2010-07-01

    This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment. (author)

  20. Fuzzy Life-Extending Control of Anti-Lock Braking System

    Ahmed M. El-Garhy

    2013-12-01

    Full Text Available The repeated operation of the Anti-Lock Braking System (ABS causes accumulation of structural damages in its different subsystems leading to reduction in their functional life time. This paper proposes a Fuzzy Logic based Life-Extending Control (FLEC system for increasing the service life of the ABS. FLEC achieves significant improvement in service life by the trade-off between satisfactory dynamic performance and safe operation. The proposed FLEC incorporates structural damage model of the ABS. The model utilizes the dynamic behavior of the ABS and predicts the wear rates of the brake pads/disc. Based on the predicted wear rates, the proposed fuzzy logic controller modifies its control strategy on-line to keep safe operation leading to increase in service time of the ABS. FLEC is fine tuned via genetic algorithm and its effectiveness is verified through simulations of emergency stops of a passenger vehicle model.

  1. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.

  2. Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures and Input Hysteresis.

    Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun

    2017-10-12

    Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.

  3. Fuzzy Stochastic Optimal Guaranteed Cost Control of Bio-Economic Singular Markovian Jump Systems.

    Li, Li; Zhang, Qingling; Zhu, Baoyan

    2015-11-01

    This paper establishes a bio-economic singular Markovian jump model by considering the price of the commodity as a Markov chain. The controller is designed for this system such that its biomass achieves the specified range with the least cost in a finite-time. Firstly, this system is described by Takagi-Sugeno fuzzy model. Secondly, a new design method of fuzzy state-feedback controllers is presented to ensure not only the regularity, nonimpulse, and stochastic singular finite-time boundedness of this kind of systems, but also an upper bound achieved for the cost function in the form of strict linear matrix inequalities. Finally, two examples including a practical example of eel seedling breeding are given to illustrate the merit and usability of the approach proposed in this paper.

  4. Motion control of planar parallel robot using the fuzzy descriptor system approach.

    Vermeiren, Laurent; Dequidt, Antoine; Afroun, Mohamed; Guerra, Thierry-Marie

    2012-09-01

    This work presents the control of a two-degree of freedom parallel robot manipulator. A quasi-LPV approach, through the so-called TS fuzzy model and LMI constraints problems is used. Moreover, in this context a way to derive interesting control laws is to keep the descriptor form of the mechanical system. Therefore, new LMI problems have to be defined that helps to reduce the conservatism of the usual results. Some relaxations are also proposed to leave the pure quadratic stability/stabilization framework. A comparison study between the classical control strategies from robotics and the control design using TS fuzzy descriptor models is carried out to show the interest of the proposed approach. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Development of Intelligent Fuzzy Controller for a Two-Axis Solar Tracking System

    Cong-Hui Huang

    2016-05-01

    Full Text Available This paper proposes the development of a two-axis sun tracking solar energy system using fuzzy logic as intelligent quality policy. To achieve maximum efficiency for solar panels, it is necessary to follow the sun’s path in the sky. Therefore, the architecture for the two-axis sun tracking solar energy system uses software to control the hardware. The hardware comprises (i solar cells; (ii lead-acid batteries; (iii a gear box; (iv a stepping motor; and (v a light detection circuit, while the software comprises (i a detection system; (ii a fuzzy tracking controller; and (iii a database system. A fuzzy logic controller is designed as the software architecture of the system to decide the timing for tracking the sun. The nearest position that results in receiving direct sunlight is obtained from the database. Our system is fully automatic in a changing environment and takes into account meteorological changes and the effects of the external environment arising from a malfunction. This approach reduces the number of starting motors and results in smaller energy loss in cloudy, cloud mask, or unstable weather conditions.

  6. Expert systems with fuzzy logic for intelligent diagnosis and control of nuclear power plants

    Abdelhai, M.I.; Upadhyaya, B.R.

    1990-01-01

    A model-based production-rule analysis system was developed for the tracking and diagnosis of the condition of a reactor coolant system (RCS) using a fuzzy logic algorithm. Since nuclear power plants are large and complex systems, it is natural that vagueness, uncertainty, and imprecision are introduced to such systems. Even in fully automated power plants, the critical diagnostic and control changes must be made by operators who usually express their diagnostic and control strategies linguistically as sets of heuristic decision rules. Therefore, additional imprecisions are introduced into the systems because of the imprecise nature of such qualitative strategies when they are converted into quantitative rules. Such problems, in which the source of imprecision is the absence of sharply defined criteria of class membership, could be dealt with using fuzzy set theory. Hence, a fuzzy logic algorithm could be initiated to implement a known heuristic whenever the given information is vague and qualitative, and it will allow operators to introduce certain linguistic assertions and commands to diagnose and control the system

  7. Approximations of Fuzzy Systems

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  8. Embedded system in Arduino platform with Fuzzy control to support the grain aeration decision

    Albino Szesz Junior

    Full Text Available ABSTRACT: Aeration is currently the most commonly used technique to improve the drying and storage of grain, depending on temperature and water content of the grain, as of the temperature and relative humidity of the outside air. In order to monitor temperature and humidity of the grain mass, it is possible to have a network of sensors in the cells of both internal and external storage. Use of artificial intelligence through Fuzzy theory, has been used since the 60s and enables their application on various forms. Thus, it is observed that the aeration of grain in function of representing a system of controlled environment can be studied in relation to the application of this theory. Therefore, the aim of this paper is to present an embedded Fuzzy control system based on the mathematical model of CRUZ et al. (2002 and applied to the Arduino platform, for decision support in aeration of grain. For this, an embedded Arduino system was developed, which received the environmental values of temperature and humidity to then be processed in a Fuzzy controller and return the output as a recommendation to control the aeration process rationally. Comparing the results obtained from the graph presented by LASSERAN (1981 it was observed that the system is effective.

  9. Achieving transparency and adaptivity in fuzzy control framework : an application to power transformers predictive overload system

    Acampora, G.; Loia, V.; Ippolito, L.; Siano, P.

    2004-01-01

    From a technologic point of view, the problem of fuzzy control deals with the real implementation of a controller on a specific hardware. Today, the market of micro-controller offers different solutions able to implement a fuzzy controller varying from application domains to programming language

  10. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  11. Studi Eksperimental Pengontrolan Air Conditioning System Dengan Fuzzy Logic Control

    Sudirman -

    2012-11-01

    Full Text Available Electrical energy available in Indonesia at this time is not yet sufficient for all existing activities, this can be proved byfrequent occurrence of blackouts in several areas in Indonesia. It is necessary for a saving in electrical energy consumptionin all sectors, it is one of the refrigeration system. Research was conducted by testing AC (3 HP / 3 phase using 2 differentcontrol systems, namely conventional control and FLC. Testing is done by placing the indoor units in cold storage room.Each test performed with varying load in the test room, ie no light burden, lamp 1000 Watt, and lamp 2000 Watt. Testingusing a conventional control system set point temperature 26 ° C and 3 variations of the differential is 1 , 2 and 3 , the FLCusing the temperature setting point 26 ° C. From this research we can conclude that the application of FLC system produceselectric energy consumption of the lowest compared to conventional control in this case is the differential 1. FLC applicationof electrical energy consumption at load 1000 Watt lower 11% and the load 2000 Watt 4% lower compared withconventional control in diffrensial 1.

  12. Rule-bases construction through self-learning for a table-based Sugeno-Takagi fuzzy logic control system

    C. Boldisor

    2009-12-01

    Full Text Available A self-learning based methodology for building the rule-base of a fuzzy logic controller (FLC is presented and verified, aiming to engage intelligent characteristics to a fuzzy logic control systems. The methodology is a simplified version of those presented in today literature. Some aspects are intentionally ignored since it rarely appears in control system engineering and a SISO process is considered here. The fuzzy inference system obtained is a table-based Sugeno-Takagi type. System’s desired performance is defined by a reference model and rules are extracted from recorded data, after the correct control actions are learned. The presented algorithm is tested in constructing the rule-base of a fuzzy controller for a DC drive application. System’s performances and method’s viability are analyzed.

  13. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system

    Berrazouane, S.; Mohammedi, K.

    2014-01-01

    Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller

  14. Designing neuro-fuzzy controller for electromagnetic anti-lock braking system (ABS) on electric vehicle

    Pramudijanto, Josaphat; Ashfahani, Andri; Lukito, Rian

    2018-03-01

    Anti-lock braking system (ABS) is used on vehicles to keep the wheels unlocked in sudden break (inside braking) and minimalize the stop distance of the vehicle. The problem of it when sudden break is the wheels locked so the vehicle steering couldn’t be controlled. The designed ABS system will be applied on ABS simulator using the electromagnetic braking. In normal condition or in condition without braking, longitudinal velocity of the vehicle will be equal with the velocity of wheel rotation, so the slip ratio will be 0 (0%) and if the velocity of wheel rotation is 0 (in locked condition) then the wheels will be slip 1 (100%). ABS system will keep the value of slip ratio so it will be 0.2 (20%). In this final assignment, the method that is used is Neuro-Fuzzy method to control the slip value on the wheels. The input is the expectable slip and the output is slip from plant. The learning algorithm which is used is Backpropagation that will work by feedforward to get actual output and work by feedback to get error value with target output. The network that was made based on fuzzy mechanism which are fuzzification, inference and defuzzification, Neuro-fuzzy controller can reduce overshoot plant respond to 43.2% compared to plant respond without controller by open loop.

  15. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    Han, Seong Ik; Jeong, Chan Se; Yang, Soon Yong

    2012-01-01

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme

  16. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    Han, Seong Ik [Pusan National University, Busan (Korea, Republic of); Jeong, Chan Se; Yang, Soon Yong [University of Ulsan, Ulsan (Korea, Republic of)

    2012-04-15

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme.

  17. The foundations of fuzzy control

    Lewis, Harold W

    1997-01-01

    Harold Lewis applied a cross-disciplinary approach in his highly accessible discussion of fuzzy control concepts. With the aid of fifty-seven illustrations, he thoroughly presents a unique mathematical formalism to explain the workings of the fuzzy inference engine and a novel test plant used in the research. Additionally, the text posits a new viewpoint on why fuzzy control is more popular in some countries than in others. A direct and original view of Japanese thinking on fuzzy control methods, based on the author's personal knowledge of - and association with - Japanese fuzzy research, is also included.

  18. Low-Speed Cooperative Car-Following Fuzzy Controller for Cybernetic Transport Systems

    Milanés , Vicente; Marouf , Mohamed; Pérez Rastelli , Joshué; Gonzalez Bautista , David; Nashashibi , Fawzi

    2014-01-01

    International audience; — This paper describes the development of a Coop-erative Adaptive Cruise Control (CACC) for the future urban transportation system at low-speed. The control algorithm was evaluated using two Cybecars as prototype vehicles. A longitu-dinal response model for the vehicles was developed to design the CACC system. The control algorithm was implemented on a fuzzy logic-based controller that has been tuned to minimize a cost function in order to get a trade-off between a pro...

  19. Fuzzy Logic based Coordinated Control of Battery Energy Storage System and Dispatchable Distributed Generation for Microgrid

    Zhao, Haoran; Wu, Qiuwei; Wang, Chengshan

    2015-01-01

    Microgrid is an efficient solution to integraterenewable energy sources (RES) into power systems. Inorder to deal with the intermittent characteristics of therenewable energy based distributed generation (DG) units,a fuzzy-logic based coordinated control strategy of thebattery energy storage system...... (BESS) and dispatchableDG units is proposed in this paper for the microgridmanagement system (MMS). In the proposed coordinatedcontrol strategy, the BESS is used to mitigate the activepower exchange at the point of common coupling of themicrogrid for the grid-connected operation, and is used forthe...... frequency control for the island operation. Theeffectiveness of the proposed control strategy was verifiedby case studies using DIgSILENT/PowerFactroy....

  20. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  1. Sensitivity-based self-learning fuzzy logic control for a servo system

    Balenovic, M.

    1998-01-01

    Describes an experimental verification of a self-learning fuzzy logic controller (SLFLC). The SLFLC contains a learning algorithm that utilizes a second-order reference model and a sensitivity model related to the fuzzy controller parameters. The effectiveness of the proposed controller has been

  2. TS Fuzzy Model-Based Controller Design for a Class of Nonlinear Systems Including Nonsmooth Functions

    Vafamand, Navid; Asemani, Mohammad Hassan; Khayatiyan, Alireza

    2018-01-01

    This paper proposes a novel robust controller design for a class of nonlinear systems including hard nonlinearity functions. The proposed approach is based on Takagi-Sugeno (TS) fuzzy modeling, nonquadratic Lyapunov function, and nonparallel distributed compensation scheme. In this paper, a novel...... criterion, new robust controller design conditions in terms of linear matrix inequalities are derived. Three practical case studies, electric power steering system, a helicopter model and servo-mechanical system, are presented to demonstrate the importance of such class of nonlinear systems comprising...

  3. Control of a mechanical gripper with a fuzzy controller

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-01-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  4. T-S Fuzzy Model Based Control Strategy for the Networked Suspension Control System of Maglev Train

    Guang He

    2015-01-01

    Full Text Available The control problem for the networked suspension control system of maglev train with random induced time delay and packet dropouts is investigated. First, Takagi-Sugeno (T-S fuzzy models are utilized to represent the discrete-time nonlinear networked suspension control system, and the parameters uncertainties of the nonlinear model have also been taken into account. The controllers take the form of parallel distributed compensation. Then, a sufficient condition for the stability of the networked suspension control system is derived. Based on the criteria, the state feedback fuzzy controllers are obtained, and the controller gains can be computed by using MATLAB LMI Toolbox directly. Finally, both the numerical simulations and physical experiments on the full-scale single bogie of CMS-04 maglev train have been accomplished to demonstrate the effectiveness of this proposed method.

  5. Expert system for fault diagnosis in process control valves using fuzzy-logic

    Carneiro, Alvaro L.G.; Porto Junior, Almir C.S.

    2013-01-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a rule base

  6. Expert system for fault diagnosis in process control valves using fuzzy-logic

    Carneiro, Alvaro L.G., E-mail: carneiro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Porto Junior, Almir C.S., E-mail: almir@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CIANA/CTMSP), Ipero, SP (Brazil). Centro de Instrucao e Adestramento Nuclear de ARAMAR

    2013-07-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a

  7. MPPT Based on Fuzzy Logic Controller (FLC) for Photovoltaic (PV) System in Solar Car

    Aji, Seno; Ajiatmo, Dwi; Robandi, Imam; Suryoatmojo, Heri

    2013-01-01

    This paper presents a control called Maximum Power Point Tracking (MPPT) for photovoltaic (PV) system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC) is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cy...

  8. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  9. A proposal for off-grid photovoltaic systems with non-controllable loads using fuzzy logic

    Yahyaoui, Imene; Sallem, Souhir; Kamoun, M.B.A.; Tadeo, Fernando

    2014-01-01

    Highlights: • An energy management system is proposed for off-grid PV systems, based on fuzzy logic. • The proposal guarantees the energy balance and battery protection. • The approach is demonstrated using data measured at the target location. - Abstract: A fuzzy-logic based methodology is proposed and evaluated for energy management in off-grid installations with photovoltaic panels as the source of energy and a limited storage capacity in batteries. The decision on the connection or disconnection of components is based on fuzzy rules on the basis of the Photovoltaic Panel Generation measurement, the measured power required by the load, and the estimation of the stored energy in the batteries (this last is obtained from the estimation of the Depth-of-Discharge). The algorithm aims to ensure the system’s autonomy by controlling the switches linking the system components with respect to a multi-objective management criterion developed from the requirements (supply of the load, protection of the battery, etc.). Detailed tests of the proposed system are carried out using data (irradiation, temperature, power consumption, etc.) measured in a household at the target area at several days of the year. The results demonstrate that the proposed approach achieves the objectives of system autonomy, battery protection and power supply stability. Compared with a basic algorithm, the proposed algorithm is not sensitive to sudden changes in atmospheric parameters and avoids overcharging the battery

  10. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  11. FPA Tuned Fuzzy Logic Controlled Synchronous Buck Converter for a Wave/SC Energy System

    SAHIN, E.

    2017-02-01

    Full Text Available This paper presents a flower pollination algorithm (FPA tuned fuzzy logic controlled (FLC synchronous buck converter (SBC for an integrated wave/ supercapacitor (SC hybrid energy system. In order to compensate the irregular wave effects on electrical side of the wave energy converter (WEC, a SC unit charged by solar panels is connected in parallel to the WEC system and a SBC is controlled to provide more reliable and stable voltage to the DC load. In order to test the performance of the designed FLC, a classical proportional-integral-derivative (PID controller is also employed. Both of the controllers are optimized by FPA which is a pretty new optimization algorithm and a well-known optimization algorithm of which particle swarm optimization (PSO to minimize the integral of time weighted absolute error (ITAE performance index. Also, the other error-based objective functions are considered. The entire energy system and controllers are developed in Matlab/Simulink and realized experimentally. Real time applications are done through DS1104 Controller Board. The simulation and experimental results show that FPA tuned fuzzy logic controller provides lower value performance indices than conventional PID controller by reducing output voltage sags and swells of the wave/SC energy system.

  12. Control de un sistema eólico-fotovoltaico utilizando un controlador fuzzy; Control of a wind-photovoltaic system using a controller fuzzy

    Alfredo G M Gámez López

    2011-02-01

    Full Text Available En este artículo, se prueba de manera virtual, un controlador basado en lógica difusa para un sistema híbrido degeneración de energía. La simulación digital emplea como herramienta el Labview, obteniéndose resultadosgráficos descriptivos de la acción del controlador, así como la interfaz gráfica representativa del comportamientodel sistema. In this article is tested a virtual controller using fuzzy logic for a hybrid system of power generation.LABVIEW is used as a digital simulation tool obtaining descriptive graphical results of the action of the driveras well as a graphical interface of the behavior of the system.

  13. A Fuzzy Control System for Reducing Urban Runoff by a Stormwater Storage Tank

    Zhang, P.; Cai, Y.; Wang, J.

    2017-12-01

    Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. Most researches on SST were mainly the design, pollutants removal effect, and operation assessment. While there were few researches on the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormawter runoff. Firstly, the design of SST was investigated. A catchment area and return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff was analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

  14. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Y.-M. Chiang

    2011-01-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  15. Comparison of Sliding Mode Control and Fuzzy Logic control applied to Variable Speed Wind Energy Conversion Systems

    Souhila Rached Zine

    2015-08-01

    Full Text Available wind energy features prominently as a supplementary energy booster. It does not pollute and is inexhaustible. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In This case, the MPPT control becomes important. To realize this control, strategy conventional Proportional and Integral (PI controller is usually used. However, this strategy cannot achieve better performance. This paper proposes other control methods of a turbine which optimizes its production such as fuzzy logic, sliding mode control. These methods improve the quality and energy efficiency. The proposed Sliding Mode Control (SMC strategy and the fuzzy controllers have presented attractive features such as robustness to parametric uncertainties of the turbine, simplicity of its design and good performances. The simulation result under Matlab\\Simulink has validated the performance of the proposed MPPT strategies.

  16. reactor power control using fuzzy logic

    Ahmed, A.E.E.

    2001-01-01

    power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller

  17. Hardware simulation of automatic braking system based on fuzzy logic control

    Noor Cholis Basjaruddin

    2016-07-01

    Full Text Available In certain situations, a moving or stationary object can be a barrier for a vehicle. People and vehicles crossing could potentially get hit by a vehicle. Objects around roads as sidewalks, road separator, power poles, and railroad gates are also a potential source of danger when the driver is inattentive in driving the vehicle. A device that can help the driver to brake automatically is known as Automatic Braking System (ABS. ABS is a part of the Advanced Driver Assistance Systems (ADAS, which is a device designed to assist the driver in driving the process. This device was developed to reduce human error that is a major cause of traffic accidents. This paper presents the design of ABS based on fuzzy logic which is simulated in hardware by using a remote control car. The inputs of fuzzy logic are the speed and distance of the object in front of the vehicle, while the output of fuzzy logic is the intensity of braking. The test results on the three variations of speed: slow-speed, medium-speed, and high-speed shows that the design of ABS can work according to design.

  18. Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system

    Kheirandish, Azadeh; Motlagh, Farid; Shafiabady, Niusha; Dahari, Mahidzal; Khairi Abdul Wahab, Ahmad

    2017-01-01

    Highlights: •Fuzzy cognitive map was proposed for the first time to describe the behaviour of fuel cell electric bicycle system. •Fuzzy rules were applied to explain the cause and effect between concepts. •To predict and analyse the cognitive map involved in the negotiation process. -- Abstract: Modelling Proton Exchange Membrane Fuel Cell (PEMFC) is the fundamental step in designing efficient systems for achieving higher performance. Among the development of new energy technologies, modelling and optimization of energy processes with pollution reduction, sufficient efficiency and low emission are considered one of the most promising areas of study. Despite affecting factors in PEMFC functionality, providing a reliable model for PEMFC is the key of performance optimization challenge. In this paper, fuzzy cognitive map has been used for modelling PEMFC system that is directed to provide a dynamic cognitive map from the affecting factors of the system. Controlling and modification of the system performance in various conditions is more practical by correlations among the performance factors of the PEMFC derived from fuzzy cognitive maps. On the other hand, the information of fuzzy cognitive map modelling is applicable for modification of neural networks structure for providing more accurate results based on the extracted knowledge from the cognitive map and visualization of the system’s performance. Finally, a rule based fuzzy cognitive map has been used that can be implemented for decision-making to control the system. This rule-based approach provides interpretability while enhancing the performance of the overall system.

  19. Combined heuristic with fuzzy system to transmission system expansion planning

    Silva Sousa, Aldir; Asada, Eduardo N. [University of Sao Paulo, Sao Carlos School of Engineering, Department of Electrical Engineering Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos, SP (Brazil)

    2011-01-15

    A heuristic algorithm that employs fuzzy logic is proposed to the power system transmission expansion planning problem. The algorithm is based on the divide to conquer strategy, which is controlled by the fuzzy system. The algorithm provides high quality solutions with the use of fuzzy decision making, which is based on nondeterministic criteria to guide the search. The fuzzy system provides a self-adjusting mechanism that eliminates the manual adjustment of parameters to each system being solved. (author)

  20. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  1. Fuzzy Control of Robotic Arm

    Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.

  2. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems.

    Han, Seong-Ik; Lee, Jang-Myung

    2014-01-01

    This paper proposes a backstepping control system that uses a tracking error constraint and recurrent fuzzy neural networks (RFNNs) to achieve a prescribed tracking performance for a strict-feedback nonlinear dynamic system. A new constraint variable was defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries. An adaptive RFNN was also used to obtain the required improvement on the approximation performances in order to avoid calculating the explosive number of terms generated by the recursive steps of traditional backstepping control. The boundedness and convergence of the closed-loop system was confirmed based on the Lyapunov stability theory. The prescribed performance of the proposed control scheme was validated by using it to control the prescribed error of a nonlinear system and a robot manipulator. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Direct Torque Control System for Permanent Magnet Synchronous Machine with Fuzzy Speed Pi Regulator

    Nabti, K.; Abed, K.; Benalla, H.

    2008-06-01

    The Permanent Magnet Synchronous Machine (PMSM) speed regulation with a conventional PI regulator reduces the speed control precision, increase the torque fluctuation, and consequentially low performances of the whole system. With utilisation of fuzzy logic method, this paper presents the self adaptation of conventional PI regulator parameters Kp and Ki (proportional and integral coefficients respectively), using to regulate the speed in Direct Torque Control strategy (DTC). The ripples of both torque and flux are reduced remarkable, small overshooting and good dynamic of the speed and torque. Simulation results verify the proposed method validity.

  4. Adaptive complementary fuzzy self-recurrent wavelet neural network controller for the electric load simulator system

    Wang Chao

    2016-03-01

    Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.

  5. Uncertainty modeling in vibration, control and fuzzy analysis of structural systems

    Halder, Achintya; Ayyub, Bilal M

    1997-01-01

    This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy

  6. A study of photovoltaic/thermal (PVT)-ground source heat pump hybrid system by using fuzzy logic control

    Andrew Putrayudha, S.; Kang, Eun Chul; Evgueniy, E.; Libing, Y.; Lee, Euy Joon

    2015-01-01

    Renewable Heat Obligation (RHO) implementation in every country becomes an important issue to utilize more renewable energy sources while reducing the usage of fossil fuel. In 2014, South Korea has a target that every commercial building construction that exceeding 10,000 m 2 has to have on-site new & renewable power generation such as combined heat in the beginning of 2016. Photovoltaic/Thermal (PVT) and Geothermal hybrid systems have been introduced in previous research (E.J. Lee et al.) and it showed a great result from its efficiency and also its power consumption for single and multi-building cases. In this paper, Fuzzy Logic control has been applied to optimize the energy consumption of the system. By comparing it with conventional on–off control, fuzzy logic control system shows a better result in reducing primary energy consumption for both heating and cooling systems annually. Two cases were introduced in this paper, GSHP system and PVT–GSHP system with both on–off and fuzzy logic applied respectively. As a result, it shows that fuzzy logic control consumed 13.3% less energy compared with on–off controller for GSHP system annually and 18.3% less energy compared to on–off controller for PVT–GSHP system annually. - Highlights: • Two renewable systems were designed to produce heating, cooling and electricity. • System optimization by applying Fuzzy Logic in terms of energy saving. • Conventional on–off control system vs advance fuzzy logic control system. • Assumption used based on previous research experience, guidelines.

  7. Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage

    Safari, S.; Ardehali, M.M.; Sirizi, M.J.

    2013-01-01

    Highlights: ► Optimized fuzzy logic controller for a hybrid green power system is developed. ► PSO algorithm is used to optimize membership functions of controller. ► Optimized fuzzy logic controller results in lower O and M costs and LPSP. ► Optimization results in less variation of battery state of charge. - Abstract: The objective of this study is to develop an optimized fuzzy logic controller (FLC) for operating an autonomous hybrid green power system (HGPS) based on the particle swarm optimization (PSO) algorithm. An electrolyzer produces hydrogen from surplus energy generated by the wind turbine and photovoltaic array of HGPS for later use by a fuel cell. The PSO algorithm is used to optimize membership functions of the FLC. The FLC inputs are (a) net power flow and (b) batteries state of charge (SOC) and FLC output determines the time for hydrogen production or consumption. Actual data for weekly residential load, wind speed, ambient temperature, and solar irradiation are used for performance simulation and analysis of the HGPS examined. The weekly operation and maintenance (O and M) costs and the loss of power supply probability (LPSP) are considered in the optimization procedure. It is determined that FLC optimization results in (a) reduced fluctuations in batteries SOC which translates into longer life for batteries and the average SOC is increased by 6.18% and (b) less working hours for fuel cell, when the load is met by wind and PV. It is found that the optimized FLC results in lower O and M costs and LPSP by 57% and 33%, respectively, as compared to its un-optimized counterpart. In addition, a reduction of 18% in investment cost is achievable by optimal sizing and reducing the capacity of HGPS equipment.

  8. Contributions to fuzzy polynomial techniques for stability analysis and control

    Pitarch Pérez, José Luis

    2014-01-01

    The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees...

  9. A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique

    Mohammed Elsayed Lotfy

    2017-07-01

    Full Text Available A novel polar fuzzy (PF control approach for a hybrid power system is proposed in this research. The proposed control scheme remedies the issues of system frequency and the continuity of demand supply caused by renewable sources’ uncertainties. The hybrid power system consists of a wind turbine generator (WTG, solar photovoltaics (PV, a solar thermal power generator (STPG, a diesel engine generator (DEG, an aqua-electrolyzer (AE, an ultra-capacitor (UC, a fuel-cell (FC, and a flywheel (FW. Furthermore, due to the high cost of the battery energy storage system (BESS, a new idea of vehicle-to-grid (V2G control is applied to use the battery of the electric vehicle (EV as equivalent to large-scale energy storage units instead of small batteries to improve the frequency stability of the system. In addition, EV customers’ convenience is taken into account. A minimal-order observer is used to estimate the supply error. Then, the area control error (ACE signal is calculated in terms of the estimated supply error and the frequency deviation. ACE is considered in the frequency domain. Two PF approaches are utilized in the intended system. The mission of each controller is to mitigate one frequency component of ACE. The responsibility for ACE compensation is shared among all parts of the system according to their speed of response. The performance of the proposed control scheme is compared to the conventional fuzzy logic control (FLC. The effectiveness and robustness of the proposed control technique are verified by numerical simulations under various scenarios.

  10. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Shieh, M-Y; Chang, K-H [Department of E. E., Southern Taiwan University, 1 Nantai St., YungKang City, Tainan County 71005, Taiwan (China); Lia, Y-S [Executive Director Office, ITRI, Southern Taiwan Innovation Park, Tainan County, Taiwan (China)], E-mail: myshieh@mail.stut.edu.tw

    2008-02-15

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  11. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Shieh, M-Y; Chang, K-H; Lia, Y-S

    2008-01-01

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface

  12. Stable and optimal fuzzy control of a laboratory Antilock Braking System

    Precup, Radu-Emil; Spataru, Sergiu; Petriu, Emil M.

    2010-01-01

    of the rules using the domains of the input variables, and doing the local linearization of the plant model. The original T-S FCs are designed by parallel distributed compensation to obtain the state feedback gain matrices in the consequents of the rules. Two T-S FCs are tuned by imposing relaxed stability...... conditions to the fuzzy control systems (FCSs) and the other two T-S FCs are tuned by the linear-quadratic regulator approach applied to each rule. Linear matrix inequalities are solved to guarantee the global stability of the FCSs. Real-time experimental results validate the original T-S FCs and design...

  13. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications.

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.

  14. Fuzzy logic applications to control engineering

    Langari, Reza

    1993-12-01

    This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.

  15. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  16. MPPT Based on Fuzzy Logic Controller (FLC for Photovoltaic (PV System in Solar Car

    Seno Aji

    2013-12-01

    Full Text Available This paper presents a control called Maximum Power Point Tracking (MPPT for photovoltaic (PV system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cycle value is used to adjust the angle of ignition switch (MOSFET gate on the Boost converter. The proposed method was shown through simulation performed using PSIM and MATLAB software. Simulation results show that the system is able to improve the PV power extraction efficiency significantly by approximately 98% of PV’s power.

  17. Nonlinear Control of an Active Magnetic Bearing System Achieved Using a Fuzzy Control with Radial Basis Function Neural Network

    Seng-Chi Chen

    2014-01-01

    Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.

  18. Fuzzy logic control of stand-alone photovoltaic system with battery storage

    Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.

    Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

  19. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    Vandana Sakhre

    2015-01-01

    Full Text Available Fuzzy Counter Propagation Neural Network (FCPN controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL. FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN and Back Propagation Network (BPN on the basis of Mean Absolute Error (MAE, Mean Square Error (MSE, Best Fit Rate (BFR, and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO and a single input and single output (SISO gas furnace Box-Jenkins time series data.

  20. Fuzzy stability and synchronization of hyperchaos systems

    Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin

    2008-01-01

    This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller

  1. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  2. Optimized Aircraft Electric Control System Based on Adaptive Tabu Search Algorithm and Fuzzy Logic Control

    Saifullah Khalid

    2016-09-01

    Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.

  3. Optimal Exponential Synchronization of Chaotic Systems with Multiple Time Delays via Fuzzy Control

    Feng-Hsiag Hsiao

    2013-01-01

    Full Text Available This study presents an effective approach to realize the optimal exponential synchronization of multiple time-delay chaotic (MTDC systems. First, a neural network (NN model is employed to approximate the MTDC system. Then, a linear differential inclusion (LDI state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov’s direct method to ensure that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI. Based on the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level. Finally, a numerical example with simulations is provided to illustrate the concepts discussed throughout this work.

  4. Velocity control of a secondary controlled closed-loop hydrostatic transmission system using an adaptive fuzzy sliding mode controller

    Do, Hoang Thinh; Ahn, Kyoung Kwan [University of Ulsan, Ulsan (Korea, Republic of)

    2013-03-15

    A secondary-controlled hydrostatic transmission system (SC-HST), which considered being an energy-saving system, can recuperate most of the lost vehicle kinetic energy in decelerating and braking time and it shows advantage in fuel economy improvement of vehicle. Almost secondary control units (SCU) in SC-HST inherently contain nonlinear characteristics such as dead-zone input. Therefore, it is difficult to obtain precise position or velocity control by conventional linear controllers. This problem limits the application of SC-HST in industry and mobile vehicle. This paper gives a description of SC-HST and proposes an adaptive fuzzy sliding mode controller (AFSMC) for velocity control of SCU. Experiments were carried out in the condition of disturbance load by using both the proposed controller and PID controller for the comparison and evaluation of the effectiveness of the proposed controller. The experimental results showed that the proposed controller was excellent from the standpoints of performance and stability for the velocity control of SC-HST.

  5. Fuzzy-logic-based power control system for multifield electrostatic precipitators

    Grass, N. [Siemens AG, Erlangen (Germany)

    2002-10-01

    The power consumption of large precipitators can be in the range of 1 MW and above. Depending on the dust load properties, the electrical power may be reduced by up to 50% by applying fuzzy logic, without significantly increasing the dust emissions. The new approach uses fuzzy logic for optimization of existing electrostatic precipitators. The software runs on a standard personal computer platform under the, Windows NT operating system. The controllers of the electrostatic precipitator power supplies are linked to the personal computer via an industrial network (e.g., PROFIBUS). The system determines online the differentials of emission versus electrical power of each field. This measurement is difficult because of overlaid events in the other zones, and process changes. The long response time of the resultant dust emission due to electrical power changes in the precipitator is an additional complication. Rules were defined for a coarse, but fast-response power adaptation of all zones. Fine tuning the running system after the coarse optimization increased the accuracy and reliability. When installed on a 4 x 5 zone precipitator in a power station, significant results were obtained. The power savings over three months of operation were in the range of 40%-60% depending on the load and fuel characteristics. Data were recorded over the test period of three months. The results are presented.

  6. Robust position control of induction motor using fuzzy logic control

    Kim, Sei Chan; Kim, Duk Hun; Yang, Seung Ho; Won, Chung Yuen

    1993-01-01

    In recent years, fuzzy logic or fuzzy set theory has reveived attention of a number of researchers in the area of power electronics and motion control. The paper describes a vector-controlled induction motor position servo drive where fuzzy control is used to get robustness against parameter variation and load torque disturbance effects. Both coarse and fine control with the help of look-up rule tables are used to improve transient response and system settling time. The performance characteristics are then compared with those of proportional-integral(PI) control. The simulation results clearly indicate the superiority of fuzzy control with larger number of rules. The fuzzy controller was implemented with a 16-bit microprocessor and tested in laboratory on a 3-hp IGBT inverter induction motor drive system. The test results verify the simulation performance. (Author)

  7. Design of Power Cable UAV Intelligent Patrol System Based on Adaptive Kalman Filter Fuzzy PID Control

    Chen Siyu

    2017-01-01

    Full Text Available Patrol UAV has poor aerial posture stability and is largely affected by anthropic factors, which lead to some shortages such as low power cable tracking precision, captured image loss and inconvenient temperature measurement, etc. In order to solve these disadvantages, this article puts forward a power cable intelligent patrol system. The core innovation of the system is a 360° platform. This collects the position information of power cables by using far infrared sensors and carries out real-time all-direction adjustment of UAV lifting platform through the adaptive Kalman filter fuzzy PID control algorithm, so that the precise tracking of power cables is achieved. An intelligent patrol system is established to detect the faults more accurately, so that a high intelligence degree of power cable patrol system is realized.

  8. Safety critical application of fuzzy control

    Schildt, G.H.

    1995-01-01

    After an introduction into safety terms a short description of fuzzy logic will be given. Especially, for safety critical applications of fuzzy controllers a possible controller structure will be described. The following items will be discussed: Configuration of fuzzy controllers, design aspects like fuzzfiication, inference strategies, defuzzification and types of membership functions. As an example a typical fuzzy rule set will be presented. Especially, real-time behaviour a fuzzy controllers is mentioned. An example of fuzzy controlling for temperature control purpose within a nuclear reactor together with membership functions and inference strategy of such a fuzzy controller will be presented. (author). 4 refs, 17 figs

  9. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  10. Hybrid neuro-fuzzy system for power generation control with environmental constraints

    Chaturvedi, Krishna Teerth; Pandit, Manjaree; Srivastava, Laxmi

    2008-01-01

    The real time controls at the central energy management centre in a power system, continuously track the load changes and endeavor to match the total power demand with total generation in such a manner that the operating cost is least. However due to the strict government regulations on environmental protection, operation at minimum cost is no longer the only criterion for dispatching electrical power. The idea behind the environmentally constrained combined economic dispatch formulation is to estimate the optimal generation allocation to generating units in such a manner that fuel cost and harmful emission levels are both simultaneously minimized for a given load demand. Conventional optimization techniques are cumbersome for such complex optimization tasks and are not suitable for on-line use due to increased computational burden. This paper proposes a neuro-fuzzy power dispatch method where the uncertainty involved with power demand is modeled as a fuzzy variable. Then Levenberg-Marquardt neural network (LMNN) is used to evaluate the optimal generation schedules. This model trains almost hundred times faster that the popular BP neural network. The proposed method has been tested on two test systems and found to be suitable for on-line combined environmental economic dispatch

  11. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-01-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of −40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C −1 . ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of −40 to 60 °C. (paper)

  12. Control of a hydraulic system by means of a fuzzy approach

    Mohamed Ksantini

    2013-07-01

    Full Text Available Non linear models can be represented conveniently by Takagi-Sugeno fuzzy models when nonlinearities are bounded. This approach uses a collection of linear models which are interpolated by non linear functions. Then the global control law is the interpolation by the same functions of each feedback associated to each linear model. A Lyapunov approach enables to compute these feedback gains. The number of linear models depends directly on the number of nonlinearities the system has. The more models there are, the more difficult it is to guarantee the stability of the closed loop. This paper proposes a method to reduce the number of linear models by assuming a number of nonlinearities considered as uncertainties and to guarantee the global exponential stability of the system. This method is applied on a hydraulic system.

  13. Fuzzy Logic Based Controller for Maintaining Human Comfort within Intelligent Building System

    Nasrodin .T. Mustapha, Momoh J. E. Salami, Nazim and M. Nasiri

    2012-10-01

    Full Text Available This paper presents an intelligent control approach for air handling unit (AHU which is an integral part of heat, ventilation, and air conditioning (HVAC system. In the past years various control design for HVAC have been proposed as this system remarkably consumes very high energy. But most of the proposed designs were focused on the control flow of heat-transfer medium such as chilled or heated water while the importance of the efficient mixture of outdoor and indoor enthalpies is sometimes ignored. These enthalpies invariably determine the best strategy to overcome thermal load in a controlled environment to satisfy human comfort, hence a control design strategy must be able to efficiently regulate the flow and mixture of outdoor and indoor enthalpies by a proper control of AHU dampers and fans. This approach requires sensors to measure temperature and relative humidity of both outdoor and indoor environments. However, unpredictable level of disturbances coming from many sources including heat generated by occupants, electrical items and air leaking and the continuous changes of outdoor enthalpy makes it difficult to model the process. Consequently, conventional controllers are not suitable, hence the use of fuzzy logic controller (FLC is proposed in this paper. This proposed controller operates in a master and slave control loop so as to control the AHU dampers and fans with adjustable output membership function whilst at the same time a scaling-factor method is used to drive the master operation. To implement the proposed system, a small scale prototype has been designed and fabricated. This prototype is an AHU model which consists of ductwork, temperature and humidity sensors, dampers, air cooling and heating systems. A small box is used as a conditioning space in which a room temperature is measured. The control algorithm is programmed using National Instrument (NI LabVIEW and executed using NI FieldPoint. Experimental results reveal that

  14. On fuzzy control of water desalination plants

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  15. On fuzzy control of water desalination plants

    Titli, A [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F [Institute of Technology, Norway (Norway)

    1996-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  16. Maximum Power Point Tracking Control of Photovoltaic Systems: A Polynomial Fuzzy Model-Based Approach

    Rakhshan, Mohsen; Vafamand, Navid; Khooban, Mohammad Hassan

    2018-01-01

    This paper introduces a polynomial fuzzy model (PFM)-based maximum power point tracking (MPPT) control approach to increase the performance and efficiency of the solar photovoltaic (PV) electricity generation. The proposed method relies on a polynomial fuzzy modeling, a polynomial parallel......, a direct maximum power (DMP)-based control structure is considered for MPPT. Using the PFM representation, the DMP-based control structure is formulated in terms of SOS conditions. Unlike the conventional approaches, the proposed approach does not require exploring the maximum power operational point...

  17. Radial Fuzzy Systems

    Coufal, David

    2017-01-01

    Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016

  18. Adaptive Fuzzy Control for Power-Frequency Characteristic Regulation in High-RES Power Systems

    Evangelos Rikos

    2017-07-01

    Full Text Available Future power systems control will require large-scale activation of reserves at distribution level. Despite their high potential, distributed energy resources (DER used for frequency control pose challenges due to unpredictability, grid bottlenecks, etc. To deal with these issues, this study presents a novel strategy of power frequency characteristic dynamic adjustment based on the imbalance state. This way, the concerned operators become aware of the imbalance location but also a more accurate redistribution of responsibilities in terms of reserves activations is achieved. The proposed control is based on the concept of “cells” which are power systems with operating capabilities and responsibilities similar to control areas (CAs, but fostering the use of resources at all voltage levels, particularly distribution grids. Control autonomy of cells allows increased RES hosting. In this study, the power frequency characteristic of a cell is adjusted in real time by means of a fuzzy controller, which curtails part of the reserves, in order to avoid unnecessary deployment throughout a synchronous area, leading to a more localised activation and reducing losses, congestions and reserves exhaustion. Simulation tests in a four-cell reference power system prove that the controller significantly reduces the use of reserves without compromising the overall stability.

  19. Photovoltaic System Regulation Based on a PID Fuzzy Controller to Ensure a Fixed Settling Time

    Paula A. Ortiz-Valencia

    2013-11-01

    Full Text Available The main objective of the controllers in photovoltaic systems (PV is to ensure the maximum extraction of the available power. Those controllers usually combine the action of a maximum power point tracking algorithm (MPPT with a voltage regulator, which has the function of rejecting disturbances at the panel terminals. Such controllers are commonly based on PI and PID structures, it requiring linearized models at an operating point. But, due to disturbances generated by the environment and the load, the operating point of the system changes drastically, which hinder to obtain the desired system performance. This paper proposes to regulate the PV system using a Fuzzy PID controller, which adapts to changes in solar irradiance and load oscillations. This characteristic guarantees a constant settling time, which is required to precisely define the period of the MPPT algorithm. In the case of classical linear controllers, the period of the MPPT algorithm is set to the worst case (longest period which generates additional power losses by slowing down the tracking of the optimal operating point. Therefore, the solution proposed in this paper improves the overall system efficiency. Finally, such a solution is validated through simulations in Matlab®.

  20. Fuzzy optimization in hydrodynamic analysis of groundwater control systems: Case study of the pumping station "Bezdan 1", Serbia

    Bajić Dragoljub

    2014-01-01

    Full Text Available A groundwater control system was designed to lower the water table and allow the pumping station “Bezdan 1” to be built. Based on a hydrodynamic analysis that suggested three alternative solutions, multicriteria optimization was applied to select the best alternative. The fuzzy analytic hierarchy process method was used, based on triangular fuzzy numbers. An assessment of the various factors that influenced the selection of the best alternative, as well as fuzzy optimization calculations, yielded the “weights” of the alternatives and the best alternative was selected for groundwater control at the site of the pumping station “Bezdan 1”. [Projekat Ministarstva nauke Republike Srbije, br. OI-176022, TR-33039 i br. III-43004

  1. LMI-based stability analysis of fuzzy-model-based control systems using approximated polynomial membership functions.

    Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles

    2011-06-01

    Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.

  2. Improvement of the Performance of an Electrocoagulation Process System Using Fuzzy Control of pH.

    Demirci, Yavuz; Pekel, Lutfiye Canan; Altinten, Ayla; Alpbaz, Mustafa

    2015-12-01

    The removal efficiencies of electrocoagulation (EC) systems are highly dependent on the initial value of pH. If an EC system has an acidic influent, the pH of the effluent increases during the treatment process; conversely, if such a system has an alkaline influent, the pH of the effluent decreases during the treatment process. Thus, changes in the pH of the wastewater affect the efficiency of the EC process. In this study, we investigated the dynamic effects of pH. To evaluate approaches for preventing increases in the pH of the system, the MATLAB/Simulink program was used to develop and evaluate an on-line computer-based system for pH control. The aim of this work was to study Proportional-Integral-Derivative (PID) control and fuzzy control of the pH of a real textile wastewater purification process using EC. The performances and dynamic behaviors of these two control systems were evaluated based on determinations of COD, colour, and turbidity removal efficiencies.

  3. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  4. Development and Application of a Fuzzy Control System for a Lead-Acid Battery Bank Connected to a DC Microgrid

    Juan José Martínez

    2018-01-01

    Full Text Available This study presents the development and application of a fuzzy control system (FCS for the control of the charge and discharge process for a bank of batteries connected to a DC microgrid (DC-MG. The DC-MG runs on a maximum power of 1 kW with a 190 V DC bus using two photovoltaic systems of 0.6 kW each, a 1 kW bidirectional DC-AC converter to interconnect the DC-MG with the grid, a bank of 115 Ah to 120 V lead-acid batteries, and a general management system used to define the operating status of the FCS. This FCS uses a multiplexed fuzzy controller, normalizing the controller’s inputs and outputs in each operating status. The design of the fuzzy controller is based on a Mamdani inference system with AND-type fuzzy rules. The input and output variables have two trapezoidal membership functions and three triangular membership functions. LabVIEW and the NI myRIO-1900 embedded design device were used to implement the FCS. Results show the stability of the DC bus of the microgrid when the bank of batteries is in the charging and discharging process, with the bus stabilized in a range of 190 V ± 5%, thus demonstrating short response times to perturbations considering the microgrid’s response dynamics.

  5. A fuzzy logic urea dosage controller design for two-cell selective catalytic reduction systems.

    You, Kun; Wei, Lijiang; Jiang, Kai

    2017-12-22

    Diesel engines have dominated in the heavy-duty vehicular and marine power source. However, the induced air pollution is a big problem. As people's awareness of environmental protection increasing, the emission regulations of diesel-engine are becoming more stringent. In order to achieve the emission regulations, the after-treatment system is a necessary choice. Specifically, the selective catalytic reduction (SCR) system has been widely applied to reduce the NO X emissions of diesel engine. Different from single-cell SCR systems, the two-cell systems have various benefits from the modeling and control perspective. In this paper, the urea dosage controller design for two-cell SCR systems was investigated. Firstly, the two-cell SCR modeling was introduced. Based on the developed model, the design procedure for the fuzzy logic urea dosage controller was well addressed. Secondly, simulations and comparisons were employed via an experimental verification of the whole vehicle simulator. And the results showed that the designed controller simultaneously achieved high NO X reduction rate and low tail-pipe ammonia slip. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Decentralized fuzzy control of multiple nonholonomic vehicles

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  7. Robust Fuzzy Controllers Using FPGAs

    Monroe, Author Gene S., Jr.

    2007-01-01

    Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.

  8. [Research on the Application of Fuzzy Logic to Systems Analysis and Control

    1998-01-01

    Research conducted with the support of NASA Grant NCC2-275 has been focused in the main on the development of fuzzy logic and soft computing methodologies and their applications to systems analysis and control. with emphasis 011 problem areas which are of relevance to NASA's missions. One of the principal results of our research has been the development of a new methodology called Computing with Words (CW). Basically, in CW words drawn from a natural language are employed in place of numbers for computing and reasoning. There are two major imperatives for computing with words. First, computing with words is a necessity when the available information is too imprecise to justify the use of numbers, and second, when there is a tolerance for imprecision which can be exploited to achieve tractability, robustness, low solution cost, and better rapport with reality. Exploitation of the tolerance for imprecision is an issue of central importance in CW.

  9. Intelligent PID controller based on ant system algorithm and fuzzy inference and its application to bionic artificial leg

    谭冠政; 曾庆冬; 李文斌

    2004-01-01

    A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.

  10. Robust adaptive fuzzy neural tracking control for a class of unknown ...

    In this paper, an adaptive fuzzy neural controller (AFNC) for a class of unknown chaotic systems is proposed. The proposed AFNC is comprised of a fuzzy neural controller and a robust controller. The fuzzy neural controller including a fuzzy neural network identifier (FNNI) is the principal controller. The FNNI is used for ...

  11. Finite-Time Stability and Controller Design of Continuous-Time Polynomial Fuzzy Systems

    Xiaoxing Chen

    2017-01-01

    Full Text Available Finite-time stability and stabilization problem is first investigated for continuous-time polynomial fuzzy systems. The concept of finite-time stability and stabilization is given for polynomial fuzzy systems based on the idea of classical references. A sum-of-squares- (SOS- based approach is used to obtain the finite-time stability and stabilization conditions, which include some classical results as special cases. The proposed conditions can be solved with the help of powerful Matlab toolbox SOSTOOLS and a semidefinite-program (SDP solver. Finally, two numerical examples and one practical example are employed to illustrate the validity and effectiveness of the provided conditions.

  12. An Interval Type-2 Fuzzy System with a Species-Based Hybrid Algorithm for Nonlinear System Control Design

    Chung-Ta Li

    2014-01-01

    Full Text Available We propose a species-based hybrid of the electromagnetism-like mechanism (EM and back-propagation algorithms (SEMBP for an interval type-2 fuzzy neural system with asymmetric membership functions (AIT2FNS design. The interval type-2 asymmetric fuzzy membership functions (IT2 AFMFs and the TSK-type consequent part are adopted to implement the network structure in AIT2FNS. In addition, the type reduction procedure is integrated into an adaptive network structure to reduce computational complexity. Hence, the AIT2FNS can enhance the approximation accuracy effectively by using less fuzzy rules. The AIT2FNS is trained by the SEMBP algorithm, which contains the steps of uniform initialization, species determination, local search, total force calculation, movement, and evaluation. It combines the advantages of EM and back-propagation (BP algorithms to attain a faster convergence and a lower computational complexity. The proposed SEMBP algorithm adopts the uniform method (which evenly scatters solution agents over the feasible solution region and the species technique to improve the algorithm’s ability to find the global optimum. Finally, two illustrative examples of nonlinear systems control are presented to demonstrate the performance and the effectiveness of the proposed AIT2FNS with the SEMBP algorithm.

  13. Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system

    Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav

    2015-01-01

    system, in order to smooth the variations at the prime energy generator. In this paper, a decentralized strategy based on fuzzy logic is proposed in order to balance the state of charge of distributed energy storage systems in lowvoltage three phase AC microgrid. The proposed method weights the action...

  14. Direct Adaptive Tracking Control for a Class of Pure-Feedback Stochastic Nonlinear Systems Based on Fuzzy-Approximation

    Huanqing Wang

    2014-01-01

    Full Text Available The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.

  15. An improved efficiency of fuzzy sliding mode control of permanent magnet synchronous motor for wind turbine generator pumping system

    Benchabane, F.; Titaouine, A.; Guettaf, A.; Yahia, K.; Taibi, D.; Bennis, O.

    2012-01-01

    This paper presents an analysis by which the dynamic performances of a permanent magnet synchronous motor (PMSM) motor is controlled through a hysteresis current loop and an outer speed loop with different controllers. The dynamics of the wind turbine pumping drive system with (PI) and a fuzzy sliding mode (FSM) speed controllers are presented. In order to optimize the overall system efficiency, a maximum power point tracker is also used. Simulation is carried out by formatting the mathematical model for wind turbine generator, motor and pump load. The results for such complicated and nonlinear system, with fuzzy sliding mode speed controller show improvement in transient response of the PMSM drive over conventional PI. The effectiveness of the FSM controller is also demonstrated. (author)

  16. Energy Management System Based on Fuzzy fractional order PID Controller for Transient Stability Improvement in Microgrids with Energy Storage

    Moafi, Milad; Marzband, Mousa; Savaghebi, Mehdi

    2016-01-01

    in the islanded Microgrid (MG). To increase performance for a wide range of power system operating conditions, an energy management systems (EMS) is proposed based on a fuzzy fractional order PID (FFOPID) controller. It is able to analyze and simulate the dynamic behavior in grid connected MGs. This controller...... is proposed in the MG encompassing distributed generation resources with “plug and play” ability. The performance of FFOPID controller is verified for frequency control purposes and to support internal bus voltage in both islanded and grid connected operating modes in accordance with the failure time. Energy...... combined with a PID-controller (termed as FLPID) and Fuzzy fractional order PID (termed as FFOPID) are implemented according to the characteristics and limitations of overloading and state of charge (SOC). The obtained results show good performance of FFOPID controllers by improving the transient stability...

  17. Modelling and simulation of a PEM fuel cell power system with a fuzzy logic controller

    Al-Dabbagh, A.W.; Lu, L.; Mazza, A.

    2009-01-01

    Fuel cell power systems are emerging as promising means of electrical power generation on account of the associated clean electricity generation process, as well as their suitability for use in a wide range of applications. During the design stage, the development of a computer model for simulating the behaviour of a system under development can facilitate the experimentation and testing of that system's performance. Since the electrical power output of a fuel cell stack is seldom at a suitable fixed voltage, conditioning circuits and their associated controllers must be incorporated in the design of the fuel cell power system. This paper presents a MATLAB/Simulink model that simulates the behaviour of a Proton Exchange Membrane (PEM) fuel cell, conditioning circuits and their controllers. The computer modelling of the PEMFC was based on adopted mathematical models that describe the fuel cell's operational voltage, while accounting for the irreversibilities associated with the fuel cell stack. The conditioning circuits that are included in the Simulink model are a DC-DC converter and DC-AC inverter circuits. These circuits are the commonly utilized power electronics circuits for regulating and conditioning the output voltage from a fuel cell stack. The modelling of the circuits is based on relationships that govern the output voltage behaviour with respect to their input voltages, switching duty cycle and efficiency. In addition, this paper describes a Fuzzy Logic Controller (FLC) design that is aimed at regulating the conditioning circuits to provide and maintain suitable electrical power for a wide range of applications. (author)

  18. Management of Uncertainty by Statistical Process Control and a Genetic Tuned Fuzzy System

    Birle, Stephan;Hussein, Mohamed Ahmed;Becker, Thomas

    2017-01-01

    In food industry, bioprocesses like fermentation often are a crucial part of the manufacturing process and decisive for the final product quality. In general, they are characterized by highly nonlinear dynamics and uncertainties that make it difficult to control these processes by the use of traditional control techniques. In this context, fuzzy logic controllers offer quite a straightforward way to control processes that are affected by nonlinear behavior and uncertain process knowledge. How...

  19. Using an adaptive fuzzy-logic system to optimize the performances and the reduction of chattering phenomenon in the control of induction motor

    Barazane Linda

    2009-01-01

    Full Text Available Neural networks and fuzzy inference systems are becoming well recognized tools of designing an identifier/controller capable of perceiving the operating environment and imitating a human operator with high performance. Also, by combining these two features, more versatile and robust models, called 'neuro-fuzzy' architectures have been developed. The motivation behind the use of neuro-fuzzy approaches is based on the complexity of real life systems, ambiguities on sensory information or time-varying nature of the system under investigation. In this way, the present contribution concerns the application of neuro-fuzzy approach in order to perform the responses of the speed regulation and to reduce the chattering phenomenon introduced by sliding mode control, which is very harmful to the actuators in our case and may excite the unmodeled dynamics of the system. The type of the neuro-fuzzy system used here is called:' adaptive neuro fuzzy inference controller (ANFIS'. This neuro-fuzzy is destined to replace the speed fuzzy sliding mode controller after its training process. Simulation results reveal some very interesting features. .

  20. Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures.

    Bounemeur, Abdelhamid; Chemachema, Mohamed; Essounbouli, Najib

    2018-05-10

    In this paper, an active fuzzy fault tolerant tracking control (AFFTTC) scheme is developed for a class of multi-input multi-output (MIMO) unknown nonlinear systems in the presence of unknown actuator faults, sensor failures and external disturbance. The developed control scheme deals with four kinds of faults for both sensors and actuators. The bias, drift, and loss of accuracy additive faults are considered along with the loss of effectiveness multiplicative fault. A fuzzy adaptive controller based on back-stepping design is developed to deal with actuator failures and unknown system dynamics. However, an additional robust control term is added to deal with sensor faults, approximation errors, and external disturbances. Lyapunov theory is used to prove the stability of the closed loop system. Numerical simulations on a quadrotor are presented to show the effectiveness of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Multi input-output fuzzy logic smart controller for a residential hybrid solar-wind-storage energy system

    Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J.-P.

    2017-01-01

    Highlights: • We present a fuzzy smart controller for hybrid renewable and conventional energy system. • The rules are based on human intelligence and implemented in the smart controller. • Efficient tracking capability of the proposed controller is proofed in this paper by an example. • Excess produced renewable energy is converted to hydrogen for household use . • Considerable electric grid energy saving is highlighted in the proposed controller system. - Abstract: This study concerns the conception and development of an efficient multi input-output fuzzy logic smart controller, to manage the energy flux of a sustainable hybrid power system, based on renewable power sources, integrating solar panels and a wind turbine associated with storage, applied to a typical residential habitat. In the suggested topology, the energy surplus is redirected to an electrolysis system to produce hydrogen suitable for household utilities. To assume a constant access to electricity in case of consumption peak, connection to the grid is also considered as an exceptional rescue resource. The objective of the presented controller is to exploit instantaneously the produced renewable electric energy and insure savings of electric grid energy. The proposed multi input-output fuzzy logic smart controller has been achieved and verified, outcome switches command signals are discussed and the renewable energy system integration ratio is highlighted.

  2. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  3. Energy Management of An Extended Hybrid Renewable Energy System For Isolated Sites Using A Fuzzy Logic Controller

    Faquir, Sanaa; Yahyaouy, Ali; Tairi, Hamid; Sabor, Jalal

    2018-05-01

    This paper presents the implementation of a fuzzy logic controller to manage the flow of energy in an extended hybrid renewable energy system employed to satisfy the load for a wide isolated site at the city of Essaouira in Morocco. To achieve Efficient energy management, the system is combining two important renewable energies: solar and wind. Lithium Ion batteries were also used as storage devices to store the excess of energy provided by the renewable sources or to supply the system with the required energy when the energy delivered by the input sources is not enough to satisfy the load demand. To manage the energy in the system, a controller based on fuzzy logic was implemented. Real data taken from previous research and meteorological sites was used to test the controller.

  4. Self tuning fuzzy PID type load and frequency controller

    Yesil, E.; Guezelkaya, M.; Eksin, I.

    2004-01-01

    In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices

  5. Intelligent control-I: review of fuzzy logic and fuzzy set theory

    Nagrial, M.H.

    2004-01-01

    In the past decade or so, fuzzy systems have supplanted conventional technologies in many engineering systems, in particular in control systems and pattern recognition. Fuzzy logic has found applications in a variety of consumer products e.g. washing machines, camcorders, digital cameras, air conditioners, subway trains, cement kilns and many others. The fuzzy technology is also being applied in information technology, where it provides decision-support and expert systems with powerful reasoning capabilities. Fuzzy sets, introduced by Zadeh in 1965 as a mathematical way to represent vagueness in linguistics, can be considered a generalisation of classical set theory. Fuzziness is often confused with probability. This lecture will introduce the principal concepts and mathematical notions of fuzzy set theory. (author)

  6. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks.

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M

    2015-09-18

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  7. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks

    Vicente Hernández Díaz

    2015-09-01

    Full Text Available The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT and Cyber-Physical Systems (CPS are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container, and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  8. Improvement of adaptive fuzzy control for a photovoltaic/wind/diesel generating system; Taiyoko/furyoku/diesel hatsuden system no saitekigata fuzzy seigyo no kairyo

    Nagaike, H; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan).Faculty of Engineering

    1996-10-27

    The photovoltaic/wind/diesel generating system that uses a storage battery as auxiliary power has been proposed to supply power from the system to the independent area. In this system, it is important to generate no insufficient power from the viewpoint of effective energy utilization and minimize the fuel consumption of a diesel generator. Authors have proposed the adaptive fuzzy control that changes the shape of the membership function of input variables according to the parameter indicating the system state. However, a parameter was rapidly changed in the conventional method. This badly influences the control. Therefore, the way to determine the parameter that indicates the state of this system was improved. Assume that an input value is set to the average value between a certain point of time and the {Delta}t time as the method for determining a parameter. If the {Delta}t value is lower, the change in a membership function is more effective. As a result, a greater fuel reduction effect was obtained. 4 refs., 8 figs., 1 tab.

  9. Reachable set estimation for Takagi-Sugeno fuzzy systems against unknown output delays with application to tracking control of AUVs.

    Zhong, Zhixiong; Zhu, Yanzheng; Ahn, Choon Ki

    2018-03-20

    In this paper, we address the problem of reachable set estimation for continuous-time Takagi-Sugeno (T-S) fuzzy systems subject to unknown output delays. Based on the reachable set concept, a new controller design method is also discussed for such systems. An effective method is developed to attenuate the negative impact from the unknown output delays, which likely degrade the performance/stability of systems. First, an augmented fuzzy observer is proposed to capacitate a synchronous estimation for the system state and the disturbance term owing to the unknown output delays, which ensures that the reachable set of the estimation error is limited via the intersection operation of ellipsoids. Then, a compensation technique is employed to eliminate the influence on the system performance stemmed from the unknown output delays. Finally, the effectiveness and correctness of the obtained theories are verified by the tracking control of autonomous underwater vehicles. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Analysis of maizena drying system using temperature control based fuzzy logic method

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  11. Neuro-fuzzy Control of Integrating Processes

    Anna Vasičkaninová

    2011-11-01

    Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.

  12. FUZZY SLIDING MODE CONTROLLER FOR DOUBLY FED ...

    2010-12-31

    Dec 31, 2010 ... against internal and external perturbations, but the FSMC is superior to ... controller, doubly fed induction motor, fuzzy logic control. 1. ... capabilities in accounting for modeling imprecision and bounded disturbances. It ..... To show the effect of the parameters uncertainties, we have simulated the system with.

  13. Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller

    Jingang Guo; Xiaoping Jian; Guangyu Lin

    2014-01-01

    Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs). A sliding mode controller (SMC) based on the exponential reaching law for the anti-lock braking system (ABS) is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC). A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the m...

  14. Intelligent Mechatronics Systems for Transport Climate Parameters Optimization Using Fuzzy Logic Control

    Beinarts, I; Ļevčenkovs, A; Kuņicina, N

    2007-01-01

    In article interest is concentrated on the climate parameters optimization in passengers’ salon of public electric transportation vehicles. The article presents mathematical problem for using intelligent agents in mechatronics problems for climate parameters optimal control. Idea is to use fuzzy logic and intelligent algorithms to create coordination mechanism for climate parameters control to save electrical energy, and it increases the level of comfort for passengers. A special interest for...

  15. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    Shun-Yuan Wang

    2015-03-01

    Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  16. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system

    Jahedi, G.; Ardehali, M.M.

    2011-01-01

    The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.

  17. Optimizing biological waste water cleaning by means of modern control systems (fuzzy logic); Optimierung der biologischen Abwasserreinigung durch moderne Regelsysteme (Fuzzy-Logik)

    Lohse, M.; Boening, T.; Hegemann, G. [Fachhochschule Muenster (Germany). Inst. fuer Abfall- und Abwasserwirtschaft e.V.

    1999-07-01

    Within the framework of a project sponsored by EUREGIO, test series with the biological activation stages of a German and a Dutch sewage treatment plant each are carried out using different process concepts for the control of oxygen supply by fuzzy logic. As the currently available results demonstrate, the developed fuzzy-logic fields of characteristic curves permit establishing a stable and, thus, little energy-consuming process with optimum oxygen supply in comparison with conventional control. (orig.) [German] Im Rahmen eines von der EUREGIO gefoerderten Forschungsprojektes werden Versuchsreihen im Bereich der biologischen Belebungsstufen einer deutschen und einer niederlaendischen Abwasserreinigungsanlage (ARA) mit unterschiedlichen Verfahrenskonzepten hinsichtlich der Regelung der Sauerstoffzufuhr mit Hilfe der Fuzzy-Logik Technik durchgefuehrt. Die bisherigen Versuchsergebnisse zeigen, dass - im Vergleich zur konventionellen Regelung - durch die entwickelten Fuzzy-Logik Kennfelder ein stabiler und damit energiearmer Prozess mit optimaler Sauerstoffzufuhr erzeugt wird. (orig.)

  18. Design of fuzzy systems using neurofuzzy networks.

    Figueiredo, M; Gomide, F

    1999-01-01

    This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.

  19. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  20. Conventional control and fuzzy control of a dc-dc converter for machine drive

    Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)

    1997-12-31

    Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.

  1. Design, Modelling, and Implementation of a Fuzzy Controller for an Intelligent Road Signaling System

    José Manuel Lozano Domínguez

    2018-01-01

    Full Text Available Crossing points are not always 100% visible for drivers due to different factors (e.g., poor road maintenance, occlusion of vertical signs, and adverse weather conditions. USA estimated in 2015 the number of traffic accidents involving pedestrians and vehicles in 70,000 of whom 5,376 resulted in deceased people. To contribute in this field, this paper presents the design, implementation, and testing of a smart prototype system applied to pedestrian crossings—not regulated by semaphores—which try to reduce the accident rate on roads. The hardware and software system consists of a set of autonomous, intelligent, and wireless low-cost devices that generate a visual warning barrier perceived by drivers from a suitable distance when pedestrians traverse a crosswalk. In this way, drivers can reduce the speed of their vehicles and stop safely. The system’s intelligence is carried out by a fuzzy controller that performs sensory fusion at both low level and high level with various types of sensors from local and neighboring devices. The tests conducted have determined an average success of 94.64% and a precision of 100%, thus corresponding with a very good test according to a ROC analysis. As a result, the system proposed has been patented and extended to international PCT.

  2. Design of a stable fuzzy controller for an articulated vehicle.

    Tanaka, K; Kosaki, T

    1997-01-01

    This paper presents a backward movement control of an articulated vehicle via a model-based fuzzy control technique. A nonlinear dynamic model of the articulated vehicle is represented by a Takagi-Sugeno fuzzy model. The concept of parallel distributed compensation is employed to design a fuzzy controller from the Takagi-Sugeno fuzzy model of the articulated vehicle. Stability of the designed fuzzy control system is guaranteed via Lyapunov approach. The stability conditions are characterized in terms of linear matrix inequalities since the stability analysis is reduced to a problem of finding a common Lyapunov function for a set of Lyapunov inequalities. Simulation results and experimental results show that the designed fuzzy controller effectively achieves the backward movement control of the articulated vehicle.

  3. Design of polynomial fuzzy observer-controller for nonlinear systems with state delay: sum of squares approach

    Gassara, H.; El Hajjaji, A.; Chaabane, M.

    2017-07-01

    This paper investigates the problem of observer-based control for two classes of polynomial fuzzy systems with time-varying delay. The first class concerns a special case where the polynomial matrices do not depend on the estimated state variables. The second one is the general case where the polynomial matrices could depend on unmeasurable system states that will be estimated. For the last case, two design procedures are proposed. The first one gives the polynomial fuzzy controller and observer gains in two steps. In the second procedure, the designed gains are obtained using a single-step approach to overcome the drawback of a two-step procedure. The obtained conditions are presented in terms of sum of squares (SOS) which can be solved via the SOSTOOLS and a semi-definite program solver. Illustrative examples show the validity and applicability of the proposed results.

  4. A model reference and sensitivity model-based self-learning fuzzy logic controller as a solution for control of nonlinear servo systems

    Kovacic, Z.; Bogdan, S.; Balenovic, M.

    1999-01-01

    In this paper, the design, simulation and experimental verification of a self-learning fuzzy logic controller (SLFLC) suitable for the control of nonlinear servo systems are described. The SLFLC contains a learning algorithm that utilizes a second-order reference model and a sensitivity model

  5. A fuzzy quality function deployment approach to improve a component of a supervisory control and data acquisition system

    Cristea Ciprian; Saşa Ciprian; Cristea Maria

    2017-01-01

    Monitoring and control of electric transformer stations, frequently spread out over small or large geographical areas, are achieved with supervisory control and data acquisition (SCADA). Quality function deployment (QFD) is a valuable analyzing tool in product design and development. To solve the uncertainty or inherent imprecision in QFD, many researchers have applied the fuzzy set theory to QFD and have developed various fuzzy QFD approaches. The literature regarding applying fuzzy QFD for ...

  6. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy inference system was implemented and utilized for modeling and controller design. In addition, the estimation of the heat transfer rate and water mass flow rate ...

  7. A SELF-ORGANISING FUZZY LOGIC CONTROLLER

    ES Obe

    One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a rule- base ... The greatest limitation of fuzzy logic control is the lack ..... c(kT)= e(kT)-e((k-1)T). (16) .... with the aid of fuzzy models”, It in Industrial.

  8. Implementation of a Fuzzy Logic Speed Controller for a Permanent ...

    In this paper DC motor control models were mathematically extracted and implemented using fuzzy logic speed controller. All control systems suffer from problems related to undesirable overshoot, longer settling times and vibrations while going from one state to another. To overcome the maximum overshoot, fuzzy logic ...

  9. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System

    Shivashankar Sukumar

    2017-10-01

    Full Text Available Solar power generation is intermittent in nature. It is nearly impossible for a photovoltaic (PV system to supply power continuously and consistently to a varying load. Operating a controllable source like a fuel cell in parallel with PV can be a solution to supply power to variable loads. In order to coordinate the power supply from fuel cells and PVs, a power management system needs to be designed for the microgrid system. This paper presents a power management system for a grid-connected PV and solid oxide fuel cell (SOFC, considering variation in the load and solar radiation. The objective of the proposed system is to minimize the power drawn from the grid and operate the SOFC within a specific power range. Since the PV is operated at the maximum power point, the power management involves the control of SOFC active power where a proportional and integral (PI controller is used. The control parameters of the PI controller Kp (proportional constant and Ti (integral time constant are determined by the genetic algorithm (GA and simplex method. In addition, a fuzzy logic controller is also developed to generate appropriate control parameters for the PI controller. The performance of the controllers is evaluated by minimizing the integral of time multiplied by absolute error (ITAE criterion. Simulation results showed that the fuzzy-based PI controller outperforms the PI controller tuned by the GA and simplex method in managing the power from the hybrid source effectively under variations of load and solar radiation.

  10. Fuzzy expert systems using CLIPS

    Le, Thach C.

    1994-01-01

    This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.

  11. Design of control system for piezoelectric deformable mirror based on fuzzy self-adaptive PID control

    Xiao, Nan; Gao, Wei; Song, Zongxi

    2017-10-01

    With the rapid development of adaptive optics technology, it is widely used in the fields of astronomical telescope imaging, laser beam shaping, optical communication and so on. As the key component of adaptive optics systems, the deformable mirror plays a role in wavefront correction. In order to achieve the high speed and high precision of deformable mirror system tracking control, it is necessary to find out the influence of each link on the system performance to model the system and design the controller. This paper presents a method about the piezoelectric deformable mirror driving control system.

  12. Fuzzy multivariable control of domestic heat pumps

    Underwood, C.P.

    2015-01-01

    Poor control has been identified as one of the reasons why recent field trials of domestic heat pumps in the UK have produced disappointing results. Most of the technology in use today uses a thermostatically-controlled fixed speed compressor with a mechanical expansion device. This article investigates improved control of these heat pumps through the design and evaluation of a new multivariable fuzzy logic control system utilising a variable speed compressor drive with capacity control linked through to evaporator superheat control. A new dynamic thermal model of a domestic heat pump validated using experimental data forms the basis of the work. The proposed control system is evaluated using median and extreme daily heating demand profiles for a typical UK house compared with a basic thermostatically-controlled alternative. Results show good tracking of the heating temperature and superheat control variables, reduced cycling and an improvement in performance averaging 20%. - Highlights: • A new dynamic model of a domestic heat pump is developed and validated. • A new multivariable fuzzy logic heat pump control system is developed/reported. • The fuzzy controller regulates both plant capacity and evaporator superheat degree. • Thermal buffer storage is also considered as well as compressor cycling. • The new controller shows good variable tracking and a reduction in energy of 20%.

  13. Experimental enhancement of fuzzy fractional order PI+I controller of grid connected variable speed wind energy conversion system

    Beddar, Antar; Bouzekri, Hacene; Babes, Badreddine; Afghoul, Hamza

    2016-01-01

    Highlights: • Fuzzy fractional order PI+I for wind energy conversion system is developed. • Investigation of the control methods performances under wind and load variations. • PSO algorithm with frequency method are used for parameters tuning. • Experimental results are presented. - Abstract: In this paper, fuzzy fractional order PI+I (FFOPI+I) controller for grid connected Variable Speed Wind Energy Conversion System (VS-WECS) is proposed. The FFOPI+I controller is applied to control a Permanent Magnet Synchronous Generator (PMSG) connected to the grid and nonlinear load through a back-to-back AC-DC-AC PWM converter. The control strategy of the Machine Side Converter (MSC) aims, at first, to extract a maximum power under fluctuating wind speed. Then, the Grid Side Converter (GSC) is controlled to improve the power quality and ensure sinusoidal current in the grid side. The FFOPI+I controller implements a Fuzzy Logic Controller (FLC) in parallel with Fractional Order PI (FOPI) and conventional PI controllers by having a commune proportional gain. The FLC changes the integral gains at runtime. The initial parameters of the FFOPI+I controller were calculated using a frequency method to create a search space then the PSO algorithm is used to select the optimal parameters. To evaluate the performance of the proposed controller in steady and transient states, an experimental test bench has been built in laboratory using dSPACE1104 card. The experimental results demonstrate the effectiveness and feasibility of the FFOPI+I over FOPI and conventional PI controllers by realizing maximum power extraction and improving the grid-side power factor for a wide range of wind speed.

  14. Neuro-fuzzy system modeling based on automatic fuzzy clustering

    Yuangang TANG; Fuchun SUN; Zengqi SUN

    2005-01-01

    A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.

  15. Optimizing pipeline transportation using a fuzzy controller

    Aramaki, Thiago L.; Correa, Joao L. L.; Montalvoa, Antonio F. F. [National Control and Operation Center Tranpetro, Rio de Janeiro, (Brazil)

    2010-07-01

    The optimization of pipeline transportation is a big concern for the transporter companies. This paper is the third of a series of three articles which investigated the application of a system to simulate the human ability to operate a pipeline in an optimized way. The present paper presents the development of a proportional integral (PI) fuzzy controller, in order to optimize pipeline transportation capacity. The fuzzy adaptive PI controller system was developed and tested with a hydraulic simulator. On-field data were used from the OSBRA pipeline. The preliminary tests showed that the performance of the software simulation was satisfactory. It varied the set-point of the conventional controller within the limits of flow meters. The transport capacity of the pipe was maximize without compromising the integrity of the commodities transported. The system developed proved that it can be easily deployed as a specialist optimizing system to be added to SCADA systems.

  16. Fuzzy-predictive direct power control implementation of a grid connected photovoltaic system, associated with an active power filter

    Ouchen, Sabir; Betka, Achour; Abdeddaim, Sabrina; Menadi, Abdelkrim

    2016-01-01

    Highlights: • An implementation on dSPACE 1104 of a double stage grid connected photovoltaic system, associated with an active power filter. • A fuzzy logic controller for maximum power point tracking of photovoltaic generator using a boost converter. • Predictive direct power control almost eliminates the effect of harmonics under a unite power factor. • The robustness of control strategies was examined in different irradiance level conditions. - Abstract: The present paper proposes a real time implementation of an optimal operation of a double stage grid connected photovoltaic system, associated with a shunt active power filter. On the photovoltaic side, a fuzzy logic based maximum power point taking control is proposed to track permanently the optimum point through an adequate tuning of a boost converter regardless the solar irradiance variations; whereas, on the grid side, a model predictive direct power control is applied, to ensure both supplying a part of the load demand with the extracted photovoltaic power, and a compensation of undesirable harmonic contents of the grid current, under a unity power factor operation. The implementation of the control strategies is conducted on a small scale photovoltaic system, controlled via a dSPACE 1104 single card. The obtained experimental results show on one hand, that the proposed Fuzzy logic based maximum power taking point technique provides fast and high performances under different irradiance levels while compared with a sliding mode control, and ensures 1.57% more in efficiency. On the other hand, the predictive power control ensures a flexible settlement of active power amounts exchanges with the grid, under a unity power functioning. Furthermore, the grid current presents a sinusoidal shape with a tolerable total harmonic distortion coefficient 4.71%.

  17. Application of fuzzy logic operation and control to BWRs

    Junichi Tanji; Mitsuo Kinoshita; Takaharu Fukuzaki; Yasuhiro Kobayashi

    1993-01-01

    Fuzzy logic control schemes employing linguistic decision rules for flexible operator control strategies have undergone application tests in dynamic systems. The advantages claimed for fuzzy logic control are its abilities: (a) to facilitate direct use of skillful operator know-how for automatic operation and control of the systems and (b) to provide robust multivariable control for complex plants. The authors have also studied applications of fuzzy logic control to automatic startup operations and load-following control in boiling water reactors, pursuing these same advantages

  18. Hybrid Genetic Algorithm Fuzzy-Based Control Schemes for Small Power System with High-Penetration Wind Farms

    Mohammed Elsayed Lotfy

    2018-03-01

    Full Text Available Wind is a clean, abundant, and inexhaustible source of energy. However, wind power is not constant, as windmill output is proportional to the cube of wind speed. As a result, the generated power of wind turbine generators (WTGs fluctuates significantly. Power fluctuation leads to frequency deviation and voltage flicker inside the system. This paper presents a new methodology for controlling system frequency and power. Two decentralized fuzzy logic-based control schemes with a high-penetration non-storage wind–diesel system are studied. First, one is implemented in the governor of conventional generators to damp frequency oscillation, while the other is applied to control the pitch angle system of wind turbines to smooth wind output power fluctuations and enhance the power system performance. A genetic algorithm (GA is employed to tune and optimize the membership function parameters of the fuzzy logic controllers to obtain optimal performance. The effectiveness of the suggested controllers is validated by time domain simulation for the standard IEEE nine-bus three-generator test system, including three wind farms. The robustness of the power system is checked under normal and faulty operating conditions.

  19. A fuzzy controller for the VASPS (Vertical Annular Separation and Pumping System) subsea separation and pumping system; Um controlador fuzzy para o sistema de separacao e bombeamento submarino - VASP (Vertical Annular Separation and Pumping System)

    Teixeira, Alex F.; Mendes, Jose Ricardo P.; Morooka, Celso K. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Estevam, Valdir [PETROBRAS, Rio de Janeiro, RJ (Brazil); Guilherme, Ivan R. [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas. Dept. de Estatistica, Matematica Aplicada e Computacao; Rigo, Jose Eduardo [Centro Federal de Educacao Tecnologica no Espirito Santo (CEFETES), Vitoria, ES (Brazil)

    2004-07-01

    In this paper the designs of a fuzzy controller for the VASPS (Vertical Annular Separation and Pumping System) liquid level and separation pressure control are presented, as well as a simulation of its work to evaluate the performance of the controller designed. The VASPS is a two-phase subsea separation and pumping system, which is made up of a separation vessel, where the mixture (liquid and gas) enters and suffers the separation process through three levels, the expansion chamber, the helix and the pool. The liquid inside the pool is taken to the platform using a pump that with a choke control the pool liquid level. The pool liquid level control is necessary because if the level exceeds the maximum value allowed, the liquid can invade the space occupied by the helix and hinder the separation process. An the other hand if the level is below the minimum allowed the pump can be damaged. The separation pressure control is important for operational security and efficiency issues, because when we keep the separation pressure near an optimum value we are maximizing its efficiency. With the controller and the simulator, many simulations of the work of system were made to get results that could be used to evaluate if the designed controller solved the problem and if its performance were satisfactory. After, a PID control system was designed to be used as comparison with the results obtained with the fuzzy controller, since the PID is widely used in the industrial environment. (author)

  20. Fuzzy logic control of nuclear power plant

    Yao Liangzhong; Guo Renjun; Ma Changwen

    1996-01-01

    The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed

  1. Fuzzy production planning models for an unreliable production system with fuzzy production rate and stochastic/fuzzy demand rate

    K. A. Halim

    2011-01-01

    Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.

  2. Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems

    Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka

    2018-06-01

    One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.

  3. Fuzzy logic control to be conventional method

    Eker, Ilyas [University of Gaziantep, Gaziantep (Turkey). Department of Electrical and Electronic Engineering; Torun, Yunis [University of Gaziantep, Gaziantep (Turkey). Technical Vocational School of Higher Education

    2006-03-01

    Increasing demands for flexibility and fast reactions in modern process operation and production methods result in nonlinear system behaviour of partly unknown systems, and this necessitates application of alternative control methods to meet the demands. Fuzzy logic (FL) control can play an important role because knowledge based design rules can easily be implemented in systems with unknown structure, and it is going to be a conventional control method since the control design strategy is simple and practical and is based on linguistic information. Computational complexity is not a limitation any more because the computing power of computers has been significantly improved even for high speed industrial applications. This makes FL control an important alternative method to the conventional PID control method for use in nonlinear industrial systems. This paper presents a practical implementation of the FL control to an electrical drive system. Such drive systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behaviour. For a multi-mass drive system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the operation of the systems. The proposed FL control configuration is based on speed error and change of speed error. The feasibility and effectiveness of the control method are experimentally demonstrated. The results obtained from conventional FL control, fuzzy PID and adaptive FL control are compared with traditional PID control for the dynamic responses of the closed loop drive system. (author)

  4. Fuzzy logic control to be conventional method

    Eker, Ilyas; Torun, Yunis

    2006-01-01

    Increasing demands for flexibility and fast reactions in modern process operation and production methods result in nonlinear system behaviour of partly unknown systems, and this necessitates application of alternative control methods to meet the demands. Fuzzy logic (FL) control can play an important role because knowledge based design rules can easily be implemented in systems with unknown structure, and it is going to be a conventional control method since the control design strategy is simple and practical and is based on linguistic information. Computational complexity is not a limitation any more because the computing power of computers has been significantly improved even for high speed industrial applications. This makes FL control an important alternative method to the conventional PID control method for use in nonlinear industrial systems. This paper presents a practical implementation of the FL control to an electrical drive system. Such drive systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behaviour. For a multi-mass drive system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the operation of the systems. The proposed FL control configuration is based on speed error and change of speed error. The feasibility and effectiveness of the control method are experimentally demonstrated. The results obtained from conventional FL control, fuzzy PID and adaptive FL control are compared with traditional PID control for the dynamic responses of the closed loop drive system

  5. Control of beam halo-chaos using fuzzy logic controller

    Gao Yuan; Yuan Haiying; Tan Guangxing; Luo Wenguang

    2012-01-01

    Considering the ion beam with initial K-V distribution in the periodic focusing magnetic filed channels (PFCs) as a typical sample, a fuzzy control method for control- ling beam halo-chaos was studied. A fuzzy proportional controller, using output of fuzzy inference as a control factor, was presented for adjusting exterior focusing magnetic field. The stability of controlled system was proved by fuzzy phase plane analysis. The simulation results demonstrate that the chaotic radius of envelope can be controlled to the matched radius via controlling magnetic field. This method was also applied to the multi-particle model. Under the control condition, the beam halos and its regeneration can be eliminated effectively, and that both the compactness and the uniformity of ion beam are improved evidently. Since the exterior magnetic field can be rather easily adjusted by proportional control and the fuzzy logic controller is independent to the mathematical model, this method has adaptive ability and is easily realized in experiment. The research offers a valuable reference for the design of the PFCs in the high- current linear ion accelerators. (authors)

  6. A New Fuzzy Sliding Mode Controller with a Disturbance Estimator for Robust Vibration Control of a Semi-Active Vehicle Suspension System

    Byung-Keun Song

    2017-10-01

    Full Text Available This paper presents a new fuzzy sliding mode controller (FSMC to improve control performances in the presence of uncertainties related to model errors and external disturbance (UAD. As a first step, an adaptive control law is designed using Lyapunov stability analysis. The control law can update control parameters of the FSMC with a disturbance estimator (DE in which the closed-loop stability and finite-time convergence of tracking error are guaranteed. A solution for estimating the compensative quantity of the impact of UAD on a control system and a set of solutions are then presented in order to avoid the singular cases of the fuzzy-based function approximation, increase convergence ability, and reduce the calculating cost. Subsequently, the effectiveness of the proposed controller is verified through the investigation of vibration control performances of a semi-active vehicle suspension system featuring a magnetorheological damper (MRD. It is shown that the proposed controller can provide better control ability of vibration control with lower consumed power compared with two existing fuzzy sliding mode controllers.

  7. A Fuzzy Rule-based Controller For Automotive Vehicle Guidance

    Hessburg, Thomas; Tomizuka, Masayoshi

    1991-01-01

    A fuzzy rule-based controller is applied to lateral guidance of a vehicle for an automated highway system. The fuzzy rules, based on human drivers' experiences, are developed to track the center of a lane in the presence of external disturbances and over a range of vehicle operating conditions.

  8. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    user

    The paper developed artificial intelligence technique adaptive neuro-fuzzy ... system is highly appreciated and essential in most of our daily life. ... It can construct an input-output mapping based on human knowledge and specific input-output data ... fuzzy controllers to produce desirable internal temperature and air quality, ...

  9. Self-learning fuzzy controllers based on temporal back propagation

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  10. Compensation of Actuator’s Saturation by Using Fuzzy Logic and Imperialist Competitive Algorithm in a System with PID Controller

    Abbas Ali Zamani

    2012-07-01

    Full Text Available Physical systems always include constraints and limits. Usually, the limits and constraints, in the control systems, are appeared as temperature and pressure limits or pumps capacity. One of the existing limits in the systems with PID controller is associated with the actuator’s saturation limits. With the saturating of the actuator, the controller’s output and plant’s input will be different and the output signal of controller do not lead the system and their states could not update correctly where this issue makes the system response undesirable. In this paper, by adding a fuzzy compensator that it’s parameters are tuned using imperialist competitive algorithm, the actuator saturation is prevented and the important parameters of the system response, such as setting time and overshoot, are improved.

  11. Fuzzy Behaviors for Control of Mobile Robots

    Saleh Zein-Sabatto

    2003-02-01

    Full Text Available In this research work, an RWI B-14 robot has been used as the development platform to embody some basic behaviors that can be combined to build more complex robotics behaviors. Emergency, avoid-obstacle, left wall- following, right wall-following, and move-to-point behaviors have been designed and embodied as basic robot behaviors. The basic behaviors developed in this research are designed based on fuzzy control technique and are integrated and coordinated to from complex robotics system. More behaviors can be added into the system as needed. A robot task can be defined by the user and executed by the intelligent robot control system. Testing results showed that fuzzy behaviors made the robot move intelligently and adapt to changes in its environment.

  12. Multi-Model Adaptive Fuzzy Controller for a CSTR Process

    Shubham Gogoria

    2015-09-01

    Full Text Available Continuous Stirred Tank Reactors are intensively used to control exothermic reactions in chemical industries. It is a very complex multi-variable system with non-linear characteristics. This paper deals with linearization of the mathematical model of a CSTR Process. Multi model adaptive fuzzy controller has been designed to control the reactor concentration and temperature of CSTR process. This method combines the output of multiple Fuzzy controllers, which are operated at various operating points. The proposed solution is a straightforward implementation of Fuzzy controller with gain scheduler to control the linearly inseparable parameters of a highly non-linear process.

  13. Adaptive Interval Type-2 Fuzzy Logic Control for PMSM Drives with a Modified Reference Frame

    Chaoui, Hicham; Khayamy, Mehdy; Aljarboua, Abdullah Abdulaziz

    2017-01-01

    In this paper, an adaptive interval type-2 fuzzy logic control scheme is proposed for high-performance permanent magnet synchronous machine drives. This strategy combines the power of type-2 fuzzy logic systems with the adaptive control theory

  14. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  15. Type-2 fuzzy logic uncertain systems’ modeling and control

    Antão, Rómulo

    2017-01-01

    This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.

  16. Hybrid fuzzy logic control of laser surface heat treatments

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  17. Fuzzy adaptive speed control of a permanent magnet synchronous motor

    Choi, Han Ho; Jung, Jin-Woo; Kim, Rae-Young

    2012-05-01

    A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

  18. A Neuro-Control Design Based on Fuzzy Reinforcement Learning

    Katebi, S.D.; Blanke, M.

    This paper describes a neuro-control fuzzy critic design procedure based on reinforcement learning. An important component of the proposed intelligent control configuration is the fuzzy credit assignment unit which acts as a critic, and through fuzzy implications provides adjustment mechanisms....... The fuzzy credit assignment unit comprises a fuzzy system with the appropriate fuzzification, knowledge base and defuzzification components. When an external reinforcement signal (a failure signal) is received, sequences of control actions are evaluated and modified by the action applier unit. The desirable...... ones instruct the neuro-control unit to adjust its weights and are simultaneously stored in the memory unit during the training phase. In response to the internal reinforcement signal (set point threshold deviation), the stored information is retrieved by the action applier unit and utilized for re...

  19. Control of a methanol reformer system using an Adaptive Neuro‐Fuzzy Inference System approach

    Justesen, Kristian Kjær; Andersen, John; Ehmsen, Mikkel Præstholm

    This work presents a stoichiometry control strategy for a reformed methanol fuel cell system, which uses a reformer to produce hydrogen for an HTPEM fuel cell. One such system is the Serenus H3-350 battery charger developed by the Danish company Serenegy® which this work is based on. The poster...

  20. Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control

    Ivković Sanja

    2014-01-01

    Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.

  1. Dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit

    Thameem Ansari, M.Md.; Velusami, S.

    2010-01-01

    A design of dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The hybrid genetic algorithm-simulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed controller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.

  2. Optimized Fuzzy-Cuckoo Controller for Active Power Control of Battery Energy Storage System, Photovoltaic, Fuel Cell and Wind Turbine in an Isolated Micro-Grid

    Mohsen Einan

    2017-08-01

    Full Text Available This paper presents a new control strategy for isolated micro-grids including wind turbines (WT, fuel cells (FC, photo-voltaic (PV and battery energy storage systems (BESS. FC have been used in parallel with BESSs in order to increase their lifetime and efficiency. The changes in some parameters such as wind speed, sunlight, and consumption, lead to improper performance of droop. To overcome this challenge, a new intelligent method using a combination of fuzzy controller and cuckoo optimization algorithm (COA techniques for active power controllers in isolated networks is proposed. In this paper, COA is compared with genetic algorithm (GA and particles swarm optimization algorithm (PSO. In order to show efficiency of the proposed controller, this optimal controller has been compared with droop, optimized droop, and conventional fuzzy methods, the dynamic analysis of the island is implemented to assess the behavior of isolated generations accurately and simulation results are reported.

  3. Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources

    Otilia Elena Dragomir

    2015-11-01

    Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.

  4. Optimized Fuzzy-Cuckoo Controller for Active Power Control of Battery Energy Storage System, Photovoltaic, Fuel Cell and Wind Turbine in an Isolated Micro-Grid

    Mohsen Einan; Hossein Torkaman; Mahdi Pourgholi

    2017-01-01

    This paper presents a new control strategy for isolated micro-grids including wind turbines (WT), fuel cells (FC), photo-voltaic (PV) and battery energy storage systems (BESS). FC have been used in parallel with BESSs in order to increase their lifetime and efficiency. The changes in some parameters such as wind speed, sunlight, and consumption, lead to improper performance of droop. To overcome this challenge, a new intelligent method using a combination of fuzzy controller and cuckoo optimi...

  5. Methanol Reformer System Modeling and Control using an Adaptive Neuro-Fuzzy Inference System approach

    Justesen, Kristian Kjær; Ehmsen, Mikkel Præstholm; Andersen, John

    2012-01-01

    This work presents the experimental study and modelling of a methanol reformer system for a high temperature polymer electrolyte membrane (HTPEM) fuel cell stack. The analyzed system is a fully integrated HTPEM fuel cell system with a DC/DC control output able to be used as e.g. a mobile battery...... charger. The advantages of using a HTPEM methanol reformer is that the high quality waste heat can be used as a system heat input to heat and evaporate the input methanol/water mixture which afterwards is catalytically converted into a hydrogen rich gas usable in the high CO tolerant HTPEM fuel cells....... Creating a fuel cell system able to use a well known and easily distributable liquid fuel such as methanol is a good choice in some applications such as range extenders for electric vehicles as an alternative to compressed hydrogen. This work presents a control strategy called Current Correction...

  6. Design of Two Feeder Three Phase Four Wire Distribution System Utilizing Multi Converter UPQC with Fuzzy Logic Controller

    Chandra Babu Paduchuri

    2014-01-01

    Full Text Available This paper proposes the instantaneous p-q theory based fuzzy logic controller (FLC for multi converter unified power quality conditioner (MC-UPQC to mitigate power quality issues in two feeders three-phase four-wire distribution systems. The proposed system is extended system of the existing one feeder three-phase four-wire distribution system, which is operated with UPQC. This system is employed with three voltage source converters, which are connected commonly to two feeder distribution systems. The performance of this proposed system used to compensate voltage sag, neutral current mitigation and compensation of voltage and current harmonics under linear and nonlinear load conditions. The neutral current flowing in series transformers is zero in the implementation of the proposed system. The simulation performance analysis is carried out using MATLAB.

  7. Multi-stage fuzzy load frequency control using PSO

    Shayeghi, H.; Jalili, A.; Shayanfar, H.A.

    2008-01-01

    In this paper, a particle swarm optimization (PSO) based multi-stage fuzzy (PSOMSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operate under deregulation based on the bilateral policy scheme. In this strategy the control is tuned on line from the knowledge base and fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by PSO algorithm, that has a strong ability to find the most optimistic results. The motivation for using the PSO technique is to reduce fuzzy system effort and take large parametric uncertainties into account. This newly developed control strategy combines the advantage of PSO and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed PSO based MSF (PSOMSF) controller is tested on a three-area restructured power system under different operating conditions and contract variations. The results of the proposed PSOMSF controller are compared with genetic algorithm based multi-stage fuzzy (GAMSF) control through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes

  8. Multi-stage fuzzy load frequency control using PSO

    Shayeghi, H. [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran); Jalili, A. [Islamic Azad University, Ardabil Branch, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran)

    2008-10-15

    In this paper, a particle swarm optimization (PSO) based multi-stage fuzzy (PSOMSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operate under deregulation based on the bilateral policy scheme. In this strategy the control is tuned on line from the knowledge base and fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by PSO algorithm, that has a strong ability to find the most optimistic results. The motivation for using the PSO technique is to reduce fuzzy system effort and take large parametric uncertainties into account. This newly developed control strategy combines the advantage of PSO and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed PSO based MSF (PSOMSF) controller is tested on a three-area restructured power system under different operating conditions and contract variations. The results of the proposed PSOMSF controller are compared with genetic algorithm based multi-stage fuzzy (GAMSF) control through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes. (author)

  9. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Fuzzy Adaptation Algorithms’ Control for Robot Manipulators with Uncertainty Modelling Errors

    Yongqing Fan

    2018-01-01

    Full Text Available A novel fuzzy control scheme with adaptation algorithms is developed for robot manipulators’ system. At the beginning, one adjustable parameter is introduced in the fuzzy logic system, the robot manipulators system with uncertain nonlinear terms as the master device and a reference model dynamic system as the slave robot system. To overcome the limitations such as online learning computation burden and logic structure in conventional fuzzy logic systems, a parameter should be used in fuzzy logic system, which composes fuzzy logic system with updated parameter laws, and can be formed for a new fashioned adaptation algorithms controller. The error closed-loop dynamical system can be stabilized based on Lyapunov analysis, the number of online learning computation burdens can be reduced greatly, and the different kinds of fuzzy logic systems with fuzzy rules or without any fuzzy rules are also suited. Finally, effectiveness of the proposed approach has been shown in simulation example.

  11. Optimization of thermal waste treatment with the INSPECT system by camera based characteristic values and Fuzzy Control; Optimierung der thermischen Abfallbehandlung mit dem INSPECT-System durch kamerabasierte Kenngroessen und Fuzzy Control

    Keller, H.B.; Matthes, J. [Forschungszentrum Karlsruhe GmbH, Eggenstein-Leopoldshafen (Germany). Inst. fuer Angewandte Informatik; Schoenecker, H.; Krakau, T. [ci-Tec GmbH, Karlsruhe (Germany)

    2007-07-01

    The application of modern procedures for control and regulation at industrial procedures requires the knowledge of important process variables which are not measurable on-line. Optical measurements by means of video cameras and infrared cameras enable a non-destructive observation of the combustion process in locally different developments. Thus, process variables can be determined by means of special software of image processing in real time. For grate firings and rotating kilns, INSPECT applications are developed. The characteristics computed thereby directly can be used by means of a Fuzzy control module or by external systems for the optimization of the firing regulation. The enormous potential of the optimization with the INSPECT system impressively is confirmed by the past installations and by the process improvements obtained thereby. The INSPECT system was developed in co-operation with Ci-Tec GmbH (Ratingen, Federal Republic of Germany) and marketed, maintained and further developed by Ci-Tec GmbH.

  12. Simple Neuron-Fuzzy Tool for Small Control Devices

    Madsen, Per Printz

    2008-01-01

    Small control computers, running a kind of Fuzzy controller, are more and more used in many systems from household machines to large industrial systems. The purpose of this paper is firstly to describe a tool that is easy to use for implementing self learning Fuzzy systems, that can be executed...... can be described by four different kinds of membership functions. The output fuzzyfication is based on singletons. The rule base can be written in a natural language. The result of the learning is a new version of the Fuzzy system described in the FuNNy language. A simple shower control example...... is shown.  This example shows that FuNNy is able to control the shower and that the learning is able to optimize the Fuzzy system....

  13. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  14. Advances in type-2 fuzzy sets and systems theory and applications

    Mendel, Jerry; Tahayori, Hooman

    2013-01-01

    This book explores recent developments in the theoretical foundations and novel applications of general and interval type-2 fuzzy sets and systems, including: algebraic properties of type-2 fuzzy sets, geometric-based definition of type-2 fuzzy set operators, generalizations of the continuous KM algorithm, adaptiveness and novelty of interval type-2 fuzzy logic controllers, relations between conceptual spaces and type-2 fuzzy sets, type-2 fuzzy logic systems versus perceptual computers; modeling human perception of real world concepts with type-2 fuzzy sets, different methods for generating membership functions of interval and general type-2 fuzzy sets, and applications of interval type-2 fuzzy sets to control, machine tooling, image processing and diet.  The applications demonstrate the appropriateness of using type-2 fuzzy sets and systems in real world problems that are characterized by different degrees of uncertainty.

  15. Cascade fuzzy control for gas engine driven heat pump

    Li Shuze; Zhang Wugao; Zhang Rongrong; Lv Dexu; Huang Zhen

    2005-01-01

    In addition to absorption chillers, today's gas cooling technology includes gas engine driven heat pump systems (GEHP) in a range of capacities and temperature capacities suitable for most commercial air conditioning and refrigeration applications. Much is expected from GEHPs as a product that would help satisfy the air conditioning system demand from medium and small sized buildings, restrict electric power demand peaks in summer and save energy in general. This article describes a kind of control strategy for a GEHP, a cascade fuzzy control. GEHPs have large and varying time constants and their dynamic modeling cannot be easily achieved. A cascade control strategy is effective for systems that have large time constants and disturbances, and a fuzzy control strategy is fit for a system that lacks an accurate model. This cascade fuzzy control structure brings together the best merits of fuzzy control and cascade control structures. The performance of the cascade fuzzy control is compared to that of a cascade PI (proportional and integral) control strategy, and it is shown by example that the cascade fuzzy control strategy gives a better performance, reduced reaction time and smaller overshoot temperature

  16. Bayesian fuzzy logic-based estimation of electron cyclotron heating (ECH) power deposition in MHD control systems

    Davoudi, Mehdi, E-mail: mehdi.davoudi@polimi.it [Department of Electrical and Computer Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin (Iran, Islamic Republic of); Davoudi, Mohsen, E-mail: davoudi@eng.ikiu.ac.ir [Department of Electrical Engineering, Imam Khomeini International University, Qazvin, 34148-96818 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • A couple of algorithms to diagnose if Electron Cyclotron Heating (ECH) power is deposited properly on the expected deposition minor radius are proposed. • The algorithms are based on Bayesian theory and Fuzzy logic. • The algorithms are tested on the off-line experimental data acquired from Frascati Tokamak Upgrade (FTU), Frascati, Italy. • Uncertainties and evidences derived from the combination of online information formed by the measured diagnostic data and the prior information are also estimated. - Abstract: In the thermonuclear fusion systems, the new plasma control systems use some measured on-line information acquired from different sensors and prior information obtained by predictive plasma models in order to stabilize magnetic hydro dynamics (MHD) activity in a tokamak. Suppression of plasma instabilities is a key issue to improve the confinement time of controlled thermonuclear fusion with tokamaks. This paper proposes a couple of algorithms based on Bayesian theory and Fuzzy logic to diagnose if Electron Cyclotron Heating (ECH) power is deposited properly on the expected deposition minor radius (r{sub DEP}). Both algorithms also estimate uncertainties and evidences derived from the combination of the online information formed by the measured diagnostic data and the prior information. The algorithms have been employed on a set of off-line ECE channels data which have been acquired from the experimental shot number 21364 at Frascati Tokamak Upgrade (FTU), Frascati, Italy.

  17. Stress Testing of an Artificial Pancreas System With Pizza and Exercise Leads to Improvements in the System's Fuzzy Logic Controller.

    Mauseth, Richard; Lord, Sandra M; Hirsch, Irl B; Kircher, Robert C; Matheson, Don P; Greenbaum, Carla J

    2015-09-14

    Under controlled conditions, the Dose Safety artificial pancreas (AP) system controller, which utilizes "fuzzy logic" (FL) methodology to calculate and deliver appropriate insulin dosages based on changes in blood glucose, successfully managed glycemic excursions. The aim of this study was to show whether stressing the system with pizza (high carbohydrate/high fat) meals and exercise would reveal deficits in the performance of the Dose Safety FL controller (FLC) and lead to improvements in the dosing matrix. Ten subjects with type 1 diabetes (T1D) were enrolled and participated in 30 studies (17 meal, 13 exercise) using 2 versions of the FLC. After conducting 13 studies with the first version (FLC v2.0), interim results were evaluated and the FLC insulin-dosing matrix was modified to create a new controller version (FLC v2.1) that was validated through regression testing using v2.0 CGM datasets prior to its use in clinical studies. The subsequent 17 studies were performed using FLC v2.1. Use of FLC v2.1 vs FLC v2.0 in the pizza meal tests showed improvements in mean blood glucose (205 mg/dL vs 232 mg/dL, P = .04). FLC v2.1 versus FLC v2.0 in exercise tests showed improvements in mean blood glucose (146 mg/dL vs 201 mg/dL, P = .004), percentage time spent >180 mg/dL (19.3% vs 46.7%, P = .001), and percentage time spent 70-180 mg/dL (80.0% vs 53.3%, P = .002). Stress testing the AP system revealed deficits in the FLC performance, which led to adjustments to the dosing matrix followed by improved FLC performance when retested. © 2015 Diabetes Technology Society.

  18. Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system

    Mahendran, Venmathi; Ramabadran, Ramaprabha

    2016-11-01

    Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.

  19. Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach.

    Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian

    2011-04-01

    This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.

  20. Fuzzy power control algorithm for a pressurized water reactor

    Hah, Y.J.; Lee, B.W.

    1994-01-01

    A fuzzy power control algorithm is presented for automatic reactor power control in a pressurized water reactor (PWR). Automatic power shape control is complicated by the use of control rods with a conventional proportional-integral-differential controller because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability needed for load-following operations including frequency control. In an attempt to achieve automatic power shape control without any design modifications to the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multiple-input multiple-output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of PWRs during the load-following operations

  1. Fuzzy modeling and control theory and applications

    Matía, Fernando; Jiménez, Emilio

    2014-01-01

    Much work on fuzzy control, covering research, development and applications, has been developed in Europe since the 90's. Nevertheless, the existing books in the field are compilations of articles without interconnection or logical structure or they express the personal point of view of the author. This book compiles the developments of researchers with demonstrated experience in the field of fuzzy control following a logic structure and a unified the style. The first chapters of the book are dedicated to the introduction of the main fuzzy logic techniques, where the following chapters focus on concrete applications. This book is supported by the EUSFLAT and CEA-IFAC societies, which include a large number of researchers in the field of fuzzy logic and control. The central topic of the book, Fuzzy Control, is one of the main research and development lines covered by these associations.

  2. Expected value analysis for integrated supplier selection and inventory control of multi-product inventory system with fuzzy cost

    Sutrisno, Widowati, Tjahjana, R. Heru

    2017-12-01

    The future cost in many industrial problem is obviously uncertain. Then a mathematical analysis for a problem with uncertain cost is needed. In this article, we deals with the fuzzy expected value analysis to solve an integrated supplier selection and supplier selection problem with uncertain cost where the costs uncertainty is approached by a fuzzy variable. We formulate the mathematical model of the problems fuzzy expected value based quadratic optimization with total cost objective function and solve it by using expected value based fuzzy programming. From the numerical examples result performed by the authors, the supplier selection problem was solved i.e. the optimal supplier was selected for each time period where the optimal product volume of all product that should be purchased from each supplier for each time period was determined and the product stock level was controlled as decided by the authors i.e. it was followed the given reference level.

  3. Fuzzy logic applied to the control of the energy consumption in intelligent buildings; Logica fuzzy aplicada ao controle do consumo de energia eletrica em edificios inteligentes

    Costa, Herbert R. do N.

    1998-02-01

    This work shows a study on the using of fuzzy control algorithms for the energy optimization of a standard building. The simulation of this type of control was performed using a central conditioned air model and the fuzzy control architecture already used in various control projects. This situation allowed a comparative study among the the control algorithms normally used in conditioned air installations, and the control performed through the building automation system, using an algorithm based on fuzzy logic.

  4. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    Zhixian Yang

    2014-01-01

    Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

  5. Design and optimization of fuzzy-PID controller for the nuclear reactor power control

    Liu Cheng; Peng Jinfeng; Zhao Fuyu; Li Chong

    2009-01-01

    This paper introduces a fuzzy proportional-integral-derivative (fuzzy-PID) control strategy, and applies it to the nuclear reactor power control system. At the fuzzy-PID control strategy, the fuzzy logic controller (FLC) is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region and the genetic algorithm to improve the 'extending' precision through quadratic optimization for the membership function (MF) of the FLC. Thus the FLC tunes the gains of PID controller to adapt the model changing with the power. The fuzzy-PID has been designed and simulated to control the reactor power. The simulation results show the favorable performance of the fuzzy-PID controller.

  6. Admission Control for Multiservices Traffic in Hierarchical Mobile IPv6 Networks by Using Fuzzy Inference System

    Jung-Shyr Wu

    2012-01-01

    Full Text Available CAC (Call Admission Control plays a significant role in providing QoS (Quality of Service in mobile wireless networks. In addition to much research that focuses on modified Mobile IP to get better efficient handover performance, CAC should be introduced to Mobile IP-based network to guarantee the QoS for users. In this paper, we propose a CAC scheme which incorporates multiple traffic types and adjusts the admission threshold dynamically using fuzzy control logic to achieve better usage of resources. The method can provide QoS in Mobile IPv6 networks with few modifications on MAP (Mobility Anchor Point functionality and slight change in BU (Binding Update message formats. According to the simulation results, the proposed scheme presents good performance of voice and video traffic at the expenses of poor performance on data traffic. It is evident that these CAC schemes can reduce the probability of the handoff dropping and the cell overload and limit the probability of the new call blocking.

  7. What procedure to choose while designing a fuzzy control? Towards mathematical foundations of fuzzy control

    Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert

    1991-01-01

    Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.

  8. Control of a mechanical gripper with a fuzzy controller; Control de una garra robotizada mediante un controlador borroso

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-07-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers.

  9. Control of a mechanical gripper with a fuzzy controller; Control de una garra robotizada mediante un controlador borroso

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-07-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  10. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  11. Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller

    Omur Can Ozguney

    2017-08-01

    Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.

  12. Adaptive neuro-fuzzy controller of switched reluctance motor

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  13. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  14. Cylinder Position Servo Control Based on Fuzzy PID

    Shibo Cai

    2013-01-01

    Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.

  15. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2016-10-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Automatic Laser Pointer Detection Algorithm for Environment Control Device Systems Based on Template Matching and Genetic Tuning of Fuzzy Rule-Based Systems

    F.

    2012-04-01

    Full Text Available In this paper we propose a new approach for laser-based environment device control systems based on the automatic design of a Fuzzy Rule-Based System for laser pointer detection. The idea is to improve the success rate of the previous approaches decreasing as much as possible the false offs and increasing the success rate in images with laser spot, i.e., the detection of a false laser spot (since this could lead to dangerous situations. To this end, we propose to analyze both, the morphology and color of a laser spot image together, thus developing a new robust algorithm. Genetic Fuzzy Systems have also been employed to improve the laser spot system detection by means of a fine tuning of the involved membership functions thus reducing the system false offs, which is the main objective in this problem. The system presented in this paper, makes use of a Fuzzy Rule-Based System adjusted by a Genetic Algorithm, which, based on laser morphology and color analysis, shows a better success rate than previous approaches.

  17. DC motor speed control using fuzzy logic controller

    Ismail, N. L.; Zakaria, K. A.; Nazar, N. S. Moh; Syaripuddin, M.; Mokhtar, A. S. N.; Thanakodi, S.

    2018-02-01

    The automatic control has played a vital role in the advance of engineering and science. Nowadays in industries, the control of direct current (DC) motor is a common practice thus the implementation of DC motor controller speed is important. The main purpose of motor speed control is to keep the rotation of the motor at the present speed and to drive a system at the demand speed. The main purpose of this project is to control speed of DC Series Wound Motor using Fuzzy Logic Controller (FLC). The expectation of this project is the Fuzzy Logic Controller will get the best performance compared to dc motor without controller in terms of settling time (Ts), rise time (Tr), peak time (Tp) and percent overshoot (%OS).

  18. Robust hydraulic position controller by a fuzzy state controller

    Zhao, T.; Van der Wal, A.J.

    1994-01-01

    In nuclear industry, one of the most important design considerations of controllers is their robustness. Robustness in this context is defined as the ability of a system to be controlled in a stable way over a wide range of system parameters. Generally the systems to be controlled are linearized, and stability is subsequently proven for this idealized system. By combining classical control theory and fuzzy set theory, a new kind of state controller is proposed and successfully applied to a hydraulic position servo with excellent robustness against variation of system parameters

  19. Smart Spectrometer for Distributed Fuzzy Control

    Benoit, Eric; Foulloy, Laurent

    2009-01-01

    Document rédigé sous FrameMaker (pas sous Latex); International audience; If the main use of colour measurement is the metrology, it is now possible to find industrial control applications which uses this information. Using colour in process control leads to specific problems where human perception has to be replaced by colour sensors. This paper relies on the fuzzy representation of colours that can be taken into account by fuzzy controllers. If smart sensors already include intelligent func...

  20. Fuzzy logic controller for the LOLA AO tip-tilt corrector system

    Sotelo, Pablo D.; Flores, Ruben; Garfias, Fernando; Cuevas, Salvador

    1998-09-01

    At the INSTITUTO DE ASTRONOMIA we developed an adaptive optics system for the correction of the two first orders of the Zernike polynomials measuring the image controid. Here we discus the two system modalities based in two different control strategies and we present simulations comparing the systems. For the classic control system we present telescope results.

  1. Fuzzy logic-based battery charge controller

    Daoud, A.; Midoun, A.

    2006-01-01

    Photovoltaic power system are generally classified according to their functional and operational requirements, their component configurations, and how the equipment is connected to other power sources and electrical loads, photovoltaic systems can be designed to provide DC and/or AC power service, can operate interconnected with or independent of the utility grid, and can be connected with other energy sources and energy storage systems. Batteries are often used in PV systems for the purpose of storing energy produced by the PV array during the day, and to supply it to electrical loads as needed (during the night and periods of cloudy weather). The lead acid battery, although know for more than one hundred years, has currently offered the best response in terms of price, energetic efficiency and lifetime. The main function of controller or regulator in PV system is too fully charge the battery without permitting overcharge while preventing reverse current flow at night. If a no-self-regulating solar array is connected to lead acid batteries with no overcharge protection, battery life will be compromised. Simple controllers contain a transistor that disconnects or reconnects the PV in the charging circuit once a pre-set voltage is reached. More sophisticated controllers utilize pulse with modulation (PWM) to assure the battery is being fully charged. The first 70% to 80% of battery capacity is easily replaced, but the last 20% to 30% requires more attention and therefore more complexity. This complexity is avoided by using a skilled operators experience in the form of the rules. Thus a fuzzy control system seeks to control the battery that cannot be controlled well by a conventional control such as PID, PD, PI etc., due to the unavailability of an accurate mathematical model of the battery. In this paper design of an intelligent battery charger, in which the control algorithm is implemented with fuzzy logic is discussed. The digital architecture is implemented with

  2. Fuzzy controllers in nuclear material accounting

    Zardecki, A.

    1994-01-01

    Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers can operate in real time; their learning process does not require many iterations to converge. For this reason fuzzy controllers are potentially useful in time series forecasting, where the authors want to detect and identify trends in real time. They describe an object-oriented implementation of the algorithm advanced by Wang and Mendel. Numerical results are presented both for inventory data and time series corresponding to chaotic situations, such as encountered in the context of strange attractors. In the latter case, the effects of noise on the predictive power of the fuzzy controller are explored

  3. Fuzzy Control in the Process Industry

    Jantzen, Jan; Verbruggen, Henk; Østergaard, Jens-Jørgen

    1999-01-01

    Control problems in the process industry are dominated by non-linear and time-varying behaviour, many inner loops, and much interaction between the control loops. Fuzzy controllers have in some cases nevertheless mimicked the control actions of a human operator. Simple fuzzy controllers can...... be designed starting from PID controllers, and in more complex cases these can be used in connection with model-based predictive control. For high level control and supervisory control several simple controllers can be combined in a priority hierarchy such as the one developed in the cement industry...

  4. A fuzzy logic controller for feedwater regulation in pressurized water reactors

    Eryuerek, E.E.; Upadhyaya, B.R.; Alguindigue, I.E.

    1994-01-01

    Fuzzy control refers to the application of fuzzy logic theory to control systems. In this paper fuzzy controllers for steam generator water level control and pump speed control are presented, and their performance in the presence of perturbations is discussed. In order to test the robustness of the controllers, their performance is compared with the performance of model based adaptive controllers and traditional PID controllers. The control actions calculated by the fuzzy controllers is have the characteristic of quick and smooth control compared to the others

  5. Adaptive fuzzy PID control for a quadrotor stabilisation

    Cherrat, N.; Boubertakh, H.; Arioui, H.

    2018-02-01

    This paper deals with the design of an adaptive fuzzy PID control law for attitude and altitude stabilization of a quadrotor despite the system model uncertainties and disturbances. To this end, a PID control with adaptive gains is used in order to approximate a virtual ideal control previously designed to achieve the predefined objective. Specifically, the control gains are estimated and adjusted by mean of a fuzzy system whose parameters are adjusted online via a gradient descent-based adaptation law. The analysis of the closed-loop system is given by the Lyapunov approach. The simulation results are presented to illustrate the efficiency of the proposed approach.

  6. Fuzzy regulator design for wind turbine yaw control.

    Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.

  7. Fuzzy Regulator Design for Wind Turbine Yaw Control

    Stefanos Theodoropoulos

    2014-01-01

    Full Text Available This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.

  8. Control of multi-machine using adaptive fuzzy

    Bouchiba Bousmaha

    2011-01-01

    Full Text Available An indirect Adaptive fuzzy excitation control (IAFLC of power systems based on multi-input-multi-output linearization technique is developed in this paper. The power system considered in this paper consists of two generators and infinite bus connected through a network of transformers and transmission lines. The fuzzy controller is constructed from fuzzy feedback linearization controller whose parameters are adjusted indirectly from the estimates of plant parameters. The adaptation law adjusts the controller parameters on-line so that the plant output tracks the reference model output. Simulation results shown that the proposed controller IAFLC, compared with a controller based on tradition linearization technique can enhance the transient stability of the power system.

  9. Biogas plant control system

    Balasevicius, L.; Dervinis, G.; Macerauskas, V.

    2002-01-01

    This paper presents intelligent control system for the pig farm biogas production process. The system uses a fuzzy logic models based on knowledge of experts and operators. Four fuzzy models are introduced. The adequacy of fuzzy models is verified using real data and MATLAB simulation. Proposed expert system is implemented into traditional SCADA system for biogas process prediction and failure analyzing. (authors)

  10. Adaptive fuzzy control of a class of nonaffine nonlinear system with input saturation based on passivity theorem.

    Molavi, Ali; Jalali, Aliakbar; Ghasemi Naraghi, Mahdi

    2017-07-01

    In this paper, based on the passivity theorem, an adaptive fuzzy controller is designed for a class of unknown nonaffine nonlinear systems with arbitrary relative degree and saturation input nonlinearity to track the desired trajectory. The system equations are in normal form and its unforced dynamic may be unstable. As relative degree one is a structural obstacle in system passivation approach, in this paper, backstepping method is used to circumvent this obstacle and passivate the system step by step. Because of the existence of uncertainty and disturbance in the system, exact passivation and reference tracking cannot be tackled, so the approximate passivation or passivation with respect to a set is obtained to hold the tracking error in a neighborhood around zero. Furthermore, in order to overcome the non-smoothness of the saturation input nonlinearity, a parametric smooth nonlinear function with arbitrary approximation error is used to approximate the input saturation. Finally, the simulation results for the theoretical and practical examples are given to validate the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Systematic methods for the design of a class of fuzzy logic controllers

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental

  12. Using a coupled inductor controlled by fuzzy logic to improve the efficiency of a Buck converter in a PV system

    Abouchabana Nabil

    2017-01-01

    Full Text Available Photovoltaic generators (PVG produce a variable power according to the solar radiation (G and temperature (T. This variation affects the sizing of the components of DC / DC converters, powered by such PVG, and make it difficult. The effects may differ from one component to another. The main and critical one is presented by the inductor, the element that stores the energy during sampled periods. We propose in this work an auto-adaptation of these inductor values to maintain optimal performance of the power yield of these converters. Our idea is to replace the inductor by a coupled inductor where this adjustment is made by the addition of an adjustable electric field in the magnetic core. Low current intensities come from the PVG supply the second inductor of the coupled inductor through a circuit controlled by a fuzzy controller (FC. The whole system is modeled and simulated under MATLAB/SIMULINK for the control part of the system and under PSPICE for the power part of the system. The obtained results show good performances of the proposed converter over the standard one.

  13. Using a coupled inductor controlled by fuzzy logic to improve the efficiency of a Buck converter in a PV system

    Abouchabana, Nabil; Haddadi, Mourad; Rabhi, Abdelhamid; El Hajjaji, Ahmed

    2017-11-01

    Photovoltaic generators (PVG) produce a variable power according to the solar radiation (G) and temperature (T). This variation affects the sizing of the components of DC / DC converters, powered by such PVG, and make it difficult. The effects may differ from one component to another. The main and critical one is presented by the inductor, the element that stores the energy during sampled periods. We propose in this work an auto-adaptation of these inductor values to maintain optimal performance of the power yield of these converters. Our idea is to replace the inductor by a coupled inductor where this adjustment is made by the addition of an adjustable electric field in the magnetic core. Low current intensities come from the PVG supply the second inductor of the coupled inductor through a circuit controlled by a fuzzy controller (FC). The whole system is modeled and simulated under MATLAB/SIMULINK for the control part of the system and under PSPICE for the power part of the system. The obtained results show good performances of the proposed converter over the standard one.

  14. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  15. Fuzzy algorithm for an automatic reactor power control in a PWR

    Hah, Yung Joon; Song, In Ho; Yu, Sung Sik; Choi, Jung In; Lee, Byong Whi

    1994-01-01

    A fuzzy algorithm is presented for automatic reactor power control in a pressurized water reactor. Automatic power shape control is complicated by the use of control rods because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability for the load - follow operation including frequency control. In an attempt to achieve automatic power shape control without any design modification of the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multi - input multi - output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to the Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of the pressurized water reactor during the load - follow operation

  16. Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method

    Ken Yeh

    2010-01-01

    Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.

  17. Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method

    METİN, Muzaffer; GÜÇLÜ, Rahmi

    2014-01-01

    In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...

  18. Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller

    Jingang Guo

    2014-10-01

    Full Text Available Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs. A sliding mode controller (SMC based on the exponential reaching law for the anti-lock braking system (ABS is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC. A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the motor braking and the hydraulic braking. Simulations were carried out with Matlab/Simulink. By comparing with a conventional Bang-bang ABS controller, braking stability and passenger comfort is improved with the proposed SMC controller, and the chatting phenomenon is reduced effectively with the parameter optimizing by FLC. With the increasing proportion of the motor braking torque, the tracking of the slip ratio is more rapid and accurate. Furthermore, the braking distance is shortened and the conversion energy is enhanced.

  19. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  20. Water Quality Control for Shrimp Pond Using Adaptive Neuro Fuzzy Inference System : The First Project

    Umam, F.; Budiarto, H.

    2018-01-01

    Shrimp farming becomes the main commodity of society in Madura Island East Java Indonesia. Because of Madura island has a very extreme weather, farmers have difficulty in keeping the balance of pond water. As a consequence of this condition, there are some farmers experienced losses. In this study an adaptive control system was developed using ANFIS method to control pH balance (7.5-8.5), Temperature (25-31°C), water level (70-120 cm) and Dissolved Oxygen (4-7,5 ppm). Each parameter (pH, temperature, level and DO) is controlled separately but can work together. The output of the control system is in the form of pump activation which provides the antidote to the imbalance that occurs in pond water. The system is built with two modes at once, which are automatic mode and manual mode. The manual control interface based on android which is easy to use.

  1. Control of a classical microtron and application of fuzzy logic

    Krist, Pavel; Bila, Jiri

    2011-01-01

    Control problems of the classical microtron with a Kapitza type accelerating cavity were addressed. A fuzzy controller was used, which enabled the system to be controlled even though the accelerating voltage, whose setting is vital for maintaining the accelerator in the stable state, cannot not be measured

  2. Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.

  3. Adaptive fuzzy control for a simulation of hydraulic analogy of a nuclear reactor

    Ruan, D.; Li, X.; Eynde, G. van den

    2000-01-01

    In the framework of the on-going R and D project on fuzzy control applications to the Belgian Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK-CEN), we have constructed a real fuzzy-logic-control demo model. The demo model is suitable for us to test and compare some new algorithms of fuzzy control and intelligent systems, which is advantageous because it is always difficult and time consuming, due to safety aspects, to do all experiments in a real nuclear environment. In this chapter, we first report briefly on the construction of the demo model, and then introduce the results of a fuzzy control, a proportional-integral-derivative (PID) control and an advanced fuzzy control, in which the advanced fuzzy control is a fuzzy control with an adaptive function that can self-regulate the fuzzy control rules. Afterwards, we present a comparative study of those three methods. The results have shown that fuzzy control has more advantages in terms of flexibility, robustness, and easily updated facilities with respect to the PID control of the demo model, but that PID control has much higher regulation resolution due to its integration terms. The adaptive fuzzy control can dynamically adjust the rule base, therefore it is more robust and suitable to those very uncertain occasions. (orig.)

  4. An Approach for Environment Mapping and Control of Wall Follower Cellbot Through Monocular Vision and Fuzzy System

    Farias, Karoline de M.; Rodrigues Junior, WIlson Leal; Bezerra Neto, Ranulfo P.; Rabelo, Ricardo A. L.; Santana, Andre M.

    2017-01-01

    This paper presents an approach using range measurement through homography calculation to build 2D visual occupancy grid and control the robot through monocular vision. This approach is designed for a Cellbot architecture. The robot is equipped with wall following behavior to explore the environment, which enables the robot to trail objects contours, residing in the fuzzy control the responsibility to provide commands for the correct execution of the robot movements while facing the advers...

  5. Delay-Dependent Finite-Time H∞ Controller Design for a Kind of Nonlinear Descriptor Systems via a T-S Fuzzy Model

    Baoyan Zhu

    2015-01-01

    Full Text Available Delay-dependent finite-time H∞ controller design problems are investigated for a kind of nonlinear descriptor system via a T-S fuzzy model in this paper. The solvable conditions of finite-time H∞ controller are given to guarantee that the loop-closed system is impulse-free and finite-time bounded and holds the H∞ performance to a prescribed disturbance attenuation level γ. The method given is the ability to eliminate the impulsive behavior caused by descriptor systems in a finite-time interval, which confirms the existence and uniqueness of solutions in the interval. By constructing a nonsingular matrix, we overcome the difficulty that results in an infeasible linear matrix inequality (LMI. Using the FEASP solver and GEVP solver of the LMI toolbox, we perform simulations to validate the proposed methods for a nonlinear descriptor system via the T-S fuzzy model, which shows the application of the T-S fuzzy method in studying the finite-time control problem of a nonlinear system. Meanwhile the method was also applied to the biological economy system to eliminate impulsive behavior at the bifurcation value, stabilize the loop-closed system in a finite-time interval, and achieve a H∞ performance level.

  6. Fuzzy Logic Controller Design for Intelligent Robots

    Ching-Han Chen

    2017-01-01

    Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.

  7. Optimization of Inventories for Multiple Companies by Fuzzy Control Method

    Kawase, Koichi; Konishi, Masami; Imai, Jun

    2008-01-01

    In this research, Fuzzy control theory is applied to the inventory control of the supply chain between multiple companies. The proposed control method deals with the amountof inventories expressing supply chain between multiple companies. Referring past demand and tardiness, inventory amounts of raw materials are determined by Fuzzy inference. The method that an appropriate inventory control becomes possible optimizing fuzzy control gain by using SA method for Fuzzy control. The variation of ...

  8. FUZZY MAPPING IN DATA SONIFICATION SYSTEM OF WIRELESS SENSOR NETWORK

    Arseny A. Markhotin

    2016-11-01

    Full Text Available Problem Statement. This paper describes the modeling of sonification system with possible types of wireless sensor network data. Fuzzy logic is used for the data-to-sound mapping. Methods. Devised sonification system includes input data model and sound synthesis core. It was created in Pure Data. For fuzzy output of mapped data the Fuzzy Logic Toolboxof MATLABwas used. Moreover, the system model has an ability to send data to the side application via UDP protocol. Results. We offer the method of timbre space organization for sonification system output and the following output of control sound characteristics depending on the type of input data. Practical Relevance. The offered approach of using fuzzy logic in sonification systems can be applied in development of new applications when the formalization of data-to-sound mapping is difficult and also complicated timbal space organization is required.

  9. A modeling of fuzzy logic controller on gamma scanning device

    Arjoni Amir

    2010-01-01

    Modeling and simulation of controller to set the high position and direction of the source of gamma radiation isotope Co-60 and Nal(TL) detector of gamma scanning device by using fuzzy logic controller FLC have been done. The high positions and in the right direction of gamma radiation and Nal (TI) detector obtained the optimal enumeration. The counting data obtained from gamma scanning device counting system is affected by the instability of high position and direction of the gamma radiation source and Nal(TI) detector or the height and direction are not equal between the gamma radiation source and Nal(TI) detector. Assumed a high position and direction of radiation sources can be fixed while the high position detector h (2, 1,0, -1, -2) can be adjusted up and down and the detector can be changed direction to the left or right angle ω (2, 1 , 0, -1, -2) when the position and direction are no longer aligned with the direction of the source of gamma radiation, the counting results obtained will not be optimal. Movement detector direction towards the left or right and the high detector arranged by the DC motor using fuzzy logic control in order to obtain the amount of output fuzzy logic control which forms the optimal output quantity count. The variation of height difference h between the source position of the gamma radiation detector and change direction with the detector angle ω becomes the input variable membership function (member function) whereas the fuzzy logic for the output variable membership function of fuzzy logic control output is selected scale fuzzy logic is directly proportional to the amount of optimal counting. From the simulation results obtained by the relationship between the amount of data output variable of fuzzy logic controller and the amount of data input variable height h and direction detector ω is depicted in graphical form surface. (author)

  10. Uzawa method for fuzzy linear system

    Ke Wang

    2013-01-01

    An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

  11. A Novel Supercapacitor/Lithium-Ion Hybrid Energy System with a Fuzzy Logic-Controlled Fast Charging and Intelligent Energy Management System

    Muhammad Adil Khan

    2018-05-01

    Full Text Available The electric powered wheelchair (EPW is an essential assistive tool for people with serious injuries or disability. This manuscript describes the validation of applied research for reducing the charging time of an electric wheelchair using a hybrid electric system (HES composed of a supercapacitor (SC bank and a lithium-ion battery with a fuzzy logic controller (FLC-based fast charging system for Li-ion batteries and a fuzzy logic-based intelligent energy management system (FLIEMS for controlling the power flow within the HES. The fast charging FLC was designed to drive the voltage difference (Vd among the different cells of a multi-cell battery and the cell voltage (Vc of an individual cell. These parameters (voltage difference and cell voltage were used as input voltages to reduce the charge time and activate a bypass equalization (BPE scheme. BPE was introduced in this paper so that the battery operates within the safe voltage range. For SC/Li-ion HES, the FLIEMS presented in this paper controls the bi-directional power flow to smooth the power extracted from Li-ion batteries. Moreover, a dual active bridge isolated bidirectional DC converter (DAB-IBDC was used for power conversion. The DAB-IBDC presented in this paper has the characteristics of galvanic isolation, and high power conversion efficiency compared to the conventional converter circuits due to the reduced reverse power flow and current stresses.

  12. A Fuzzy-Logic Subsumption Controller for Home Energy Management Systems

    Ainstworth, Nathan; Johnson, Brian; Lundstrom, Blake

    2015-10-05

    Presentation for NAPS 2015 associated with conference publication CP-64392. Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions.

  13. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  14. Improvement of Microgrid Dynamic Performance under Fault Circumstances using ANFIS for Fast Varying Solar Radiation and Fuzzy Logic Controller for Wind System

    Izadbakhsh Maziar

    2014-12-01

    Full Text Available The microgrid (MG technology integrates distributed generations, energy storage elements and loads. In this paper, dynamic performance enhancement of an MG consisting of wind turbine was investigated using permanent magnet synchronous generation (PMSG, photovoltaic (PV, microturbine generation (MTG systems and flywheel under different circumstances. In order to maximize the output of solar arrays, maximum power point tracking (MPPT technique was used by an adaptive neuro-fuzzy inference system (ANFIS; also, control of turbine output power in high speed winds was achieved using pitch angle control technic by fuzzy logic. For tracking the maximum point, the proposed ANFIS was trained by the optimum values. The simulation results showed that the ANFIS controller of grid-connected mode could easily meet the load demand with less fluctuation around the maximum power point. Moreover, pitch angle controller, which was based on fuzzy logic with wind speed and active power as the inputs, could have faster responses, thereby leading to flatter power curves, enhancement of the dynamic performance of wind turbine and prevention of both frazzle and mechanical damages to PMSG. The thorough wind power generation system, PV system, MTG, flywheel and power electronic converter interface were proposed by using Mat-lab/Simulink.

  15. Distributed traffic signal control using fuzzy logic

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  16. Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power systems with UPFC and SMES

    Pratap Chandra Pradhan

    2016-03-01

    Full Text Available In this paper, a Firefly Algorithm (FA optimized fuzzy PID controller is proposed for Automatic Generation Control (AGC of multi-area multi-source power system. Initially, a two area six units power system is used and the gains of the fuzzy PID controller are optimized employing FA optimization technique using an ITAE criterion. The superiority of the proposed FA optimized fuzzy PID controller has been demonstrated by comparing the results with some recently published approaches such as optimal control and Differential Evolution (DE optimized PID controller for the identical interconnected power system. Then, physical constraints such as Time Delay (TD, reheat turbine and Generation Rate Constraint (GRC are included in the system model and the superiority of FA is demonstrated by comparing the results over DE, Gravitational Search Algorithm (GSA and Genetic Algorithm (GA optimization techniques for the same interconnected power system. Additionally, a Unified Power Flow Controller (UPFC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Simulation results show that the system performances are improved significantly with the proposed UPFC and SMES units. Sensitivity analysis of the system is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters. Finally, the effectiveness of the proposed controller design is verified by considering different types of load patterns.

  17. Control Synthesis of Discrete-Time T-S Fuzzy Systems: Reducing the Conservatism Whilst Alleviating the Computational Burden.

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Peng, Chen

    2017-09-01

    The augmented multi-indexed matrix approach acts as a powerful tool in reducing the conservatism of control synthesis of discrete-time Takagi-Sugeno fuzzy systems. However, its computational burden is sometimes too heavy as a tradeoff. Nowadays, reducing the conservatism whilst alleviating the computational burden becomes an ideal but very challenging problem. This paper is toward finding an efficient way to achieve one of satisfactory answers. Different from the augmented multi-indexed matrix approach in the literature, we aim to design a more efficient slack variable approach under a general framework of homogenous matrix polynomials. Thanks to the introduction of a new extended representation for homogeneous matrix polynomials, related matrices with the same coefficient are collected together into one sole set and thus those redundant terms of the augmented multi-indexed matrix approach can be removed, i.e., the computational burden can be alleviated in this paper. More importantly, due to the fact that more useful information is involved into control design, the conservatism of the proposed approach as well is less than the counterpart of the augmented multi-indexed matrix approach. Finally, numerical experiments are given to show the effectiveness of the proposed approach.

  18. Synchronization of generalized Henon map by using adaptive fuzzy controller

    Xue Yueju E-mail: xueyj@mail.tsinghua.edu.cn; Yang Shiyuan E-mail: ysy-dau@tsinghua.edu.cn

    2003-08-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization.

  19. Synchronization of generalized Henon map by using adaptive fuzzy controller

    Xue Yueju; Yang Shiyuan

    2003-01-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization

  20. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  1. Implementation of fuzzy logic control algorithm in embedded ...

    Fuzzy logic control algorithm solves problems that are difficult to address with traditional control techniques. This paper describes an implementation of fuzzy logic control algorithm using inexpensive hardware as well as how to use fuzzy logic to tackle a specific control problem without any special software tools. As a case ...

  2. Design of a fuzzy logic based controller for neutron power regulation

    Velez D, D.

    2000-01-01

    This work presents a fuzzy logic controller design for neutron power control, from its source to its full power level, applied to a nuclear reactor model. First, we present the basic definitions on fuzzy sets as generalized definitions of the crisp (non fuzzy) set theory. Likewise, we define the basic operations on fuzzy sets (complement, union, and intersection), and the operations on fuzzy relations such as projection and cylindrical extension operations. Furthermore, some concepts of the fuzzy control theory, such as the main modules of the typical fuzzy controller structure and its internal variables, are defined. After the knowledge base is obtained by simulation of the reactor behavior, where the controlled system is modeled by a simple nonlinear reactor model, this model is used to infer a set of fuzzy rules for the reactor response to different insertions of reactivity. The reduction of the response time, using fuzzy rule based controllers on this reactor, is possible by adjusting the output membership functions, by selecting fuzzy rule sets, or by increasing the number of crisp inputs to the fuzzy controller. System characteristics, such as number of rules, response times, and safety parameter values, were considered in the evaluation of each controller merits. Different fuzzy controllers are designed to attain the desired power level, to maintain a constant level for long periods of time, and to keep the reactor away from a shutdown condition. The basic differences among the controllers are the number of crisp inputs and the novel implementation of a crisp power level-based selection of different sets of output membership functions. Simulation results highlight, mainly: (1) A decrease of the response variations at low power level, and (2) a decrease in the time required to attain the desired neutron power. Finally, we present a comparative study of different fuzzy control algorithms applied to a nuclear model. (Author)

  3. Self-learning fuzzy logic controllers based on reinforcement

    Wang, Z.; Shao, S.; Ding, J.

    1996-01-01

    This paper proposes a new method for learning and tuning Fuzzy Logic Controllers. The self-learning scheme in this paper is composed of Bucket-Brigade and Genetic Algorithm. The proposed method is tested on the cart-pole system. Simulation results show that our approach has good learning and control performance

  4. RANCANG BANGUN FERMENTOR YOGURT DENGAN SISTEM KONTROL LOGIKA FUZZY MENGGUNAKAN MIKROKONTROLER ATMEGA32 (Yogurt Fermenter Design with Fuzzy Logic Control System Using Microcontroller ATMega32

    Dimas Firmanda Al Riza

    2015-02-01

    settling time selama 1 jam 20 menit dan rata-rata error sebesar -0,36 oC. Proses fermentasi selama 16 jam menggunakan fermentor dengan kontroler fuzzy menghasilkan yogurt dengan pH sebesar 3,66, jumlah mikroba Lactobacillus sp. sebanyak 4,85 x 108cfu/mL, dan Streptococcus sp. sebanyak 1,34 x 10 6 cfu/mL. Kata kunci: Fermentasi, yogurt, susu sapi, fuzzy, kontrol suhu

  5. Five Level Cascaded H-Bridge D-STATCOM using a new Fuzzy and PI Controllers model for Wind Energy Systems

    YANMAZ, K.

    2017-11-01

    Full Text Available Power quality is one of the important issues in wind energy systems as in all renewable energy systems. Reactive component of current in distribution systems causes negative effects on the network, including power loses, voltage drop, and reduced line capacity. Static Synchronous Compensator (STATCOM has been used increasingly instead of conventional devices such as switched capacitor groups and Static Var Compensator (SVC to improve the power quality. Flexible AC Transmission System (FACTS devices such as STATCOM are also used in power distribution systems and called Distribution STATCOM (D-STATCOM. D-STATCOM is used to improve the power quality in distribution systems as an inverter based device. Fixed parameter conventional PI controllers are usually used to control D-STATCOM devices. D-STATCOM device used in a wind power distribution system has a voltage-controlled inverter structure based on a five-level H-bridge topology. A new indirect current control scheme based on synchronous reference frame theory is proposed to produce gate pulses that are needed for the inverter. A fuzzy adaptive PI controller (FLCM-PI is designed and used in the control scheme such that the parameters of the PI controller are modified by a fuzzy logic controller (FLC to adapt the operation for changing conditions. The D-STATCOM topology with the proposed controller is simulated and experimentally tested.

  6. Research on fuzzy PID control to electronic speed regulator

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  7. control of a dc motor using fuzzy logic control algorithm

    user

    controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic .... controlled separately excited permanent magnet DC motor (PMDC). ... When the field current is constant, the flux induced by the field ...

  8. Different control applications on a vehicle using fuzzy logic control

    Vehicle vibrations; active suspensions; fuzzy logic control; vehicle model. 1. .... The general expression of the mathematical model is shown below: .... Figure 5a presents the time history of the control force when the controller exists only under.

  9. Genetic algorithm-based optimal fuzzy control system for the MT 25 microtron

    Krist, Pavel; Bíla, J.; Chvátil, David

    2013-01-01

    Roč. 8, MAY (2013), T05003 ISSN 1748-0221 R&D Projects: GA ČR GA13-27885S Institutional support: RVO:61389005 Keywords : hardware and accelerator control systems * accelerator modelling and simulations * multi- particle dynamics * single- particle dynamics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/05/T05003/pdf/1748-0221_8_05_T05003.pdf

  10. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  11. Fuzzy logic based variable speed wind generation system

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.

    1996-12-31

    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  12. A fuzzy behaviorist approach to sensor-based robot control

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  13. New approach to solve symmetric fully fuzzy linear systems

    concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...

  14. Fuzzy model-based control of a nuclear reactor

    Van Den Durpel, L.; Ruan, D.

    1994-01-01

    The fuzzy model-based control of a nuclear power reactor is an emerging research topic world-wide. SCK-CEN is dealing with this research in a preliminary stage, including two aspects, namely fuzzy control and fuzzy modelling. The aim is to combine both methodologies in contrast to conventional model-based PID control techniques, and to state advantages of including fuzzy parameters as safety and operator feedback. This paper summarizes the general scheme of this new research project

  15. Introduction to type-2 fuzzy logic control theory and applications

    Mendel, Jerry M; Tan, Woei-Wan; Melek, William W; Ying, Hao

    2014-01-01

    Written by world-class leaders in type-2 fuzzy logic control, this book offers a self-contained reference for both researchers and students. The coverage provides both background and an extensive literature survey on fuzzy logic and related type-2 fuzzy control. It also includes research questions, experiment and simulation results, and downloadable computer programs on an associated website. This key resource will prove useful to students and engineers wanting to learn type-2 fuzzy control theory and its applications.

  16. A two-stage planning and control model toward Economically Adapted Power Distribution Systems using analytical hierarchy processes and fuzzy optimization

    Schweickardt, Gustavo [Instituto de Economia Energetica, Fundacion Bariloche, Centro Atomico Bariloche - Pabellon 7, Av. Bustillo km 9500, 8400 Bariloche (Argentina); Miranda, Vladimiro [INESC Porto, Instituto de Engenharia de Sistemas e Computadores do Porto and FEUP, Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, 378, 4200-465 Porto (Portugal)

    2009-07-15

    This work presents a model to evaluate the Distribution System Dynamic De-adaptation respecting its planning for a given period of Tariff Control. The starting point for modeling is brought about by the results from a multi-criteria method based on Fuzzy Dynamic Programming and on Analytic Hierarchy Processes applied in a mid/short-term horizon (stage 1). Then, the decision-making activities using the Hierarchy Analytical Processes will allow defining, for a Control of System De-adaptation (stage 2), a Vector to evaluate the System Dynamic Adaptation. It is directly associated to an eventual series of inbalances that take place during its evolution. (author)

  17. Improved fuzzy PID controller design using predictive functional control structure.

    Wang, Yuzhong; Jin, Qibing; Zhang, Ridong

    2017-11-01

    In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community

    Yu-Shan Cheng

    2018-02-01

    Full Text Available Self-consumption of household photovoltaic (PV storage systems has become profitable for residential owners under the trends of limited feed-in power and decreasing PV feed-in tariffs. For individual PV-storage systems, the challenge mainly lies in managing surplus generation of battery and grid power flow, ideally without relying on error-prone forecasts for both generation and consumption. Considering the large variation in power profiles of different houses in a neighborhood, the strategy is also supposed to be beneficial and applicable for the entire community. In this study, an adaptable battery charging control strategy is designed in order to obtain minimum costs for houses without any meteorological or load forecasts. Based on fuzzy logic control (FLC, battery state-of-charge (SOC and the variation of SOC (∆SOC are taken as input variables to dynamically determine output charging power with minimum costs. The proposed FLC-based algorithm benefits from the charging battery as much as possible during the daytime, and meanwhile properly preserves the capacity at midday when there is high possibility of curtailment loss. In addition, due to distinct power profiles in each individual house, input membership functions of FLC are improved by particle swarm optimization (PSO to achieve better overall performance. A neighborhood with 74 houses in Germany is set up as a scenario for comparison to prior studies. Without forecasts of generation and consumption power, the proposed method leads to minimum costs in 98.6% of houses in the community, and attains the lowest average expenses for a single house each year.

  19. Uncertain rule-based fuzzy systems introduction and new directions

    Mendel, Jerry M

    2017-01-01

    The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from time-series forecasting to knowledge mining to control. In this new edition, a bottom-up approach is presented that begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty. The author covers fuzzy rule-based systems – from type-1 to interval type-2 to general type-2 – in one volume. For hands-on experience, the book provides information on accessing MatLab and Java software to complement the content. The book features a full suite of classroom material. Presents fully updated material on new breakthroughs in human-inspired rule-based techniques for handling real-world uncertainties; Allows those already familiar with type-1 fuzzy se...

  20. Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm

    Mittal, Ruchi; Kaur, Magandeep

    2010-11-01

    In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.

  1. Fuzzy logic controller for crude oil levels at Escravos Tank Farm ...

    Fuzzy logic controller (FLC) for crude oil flow rates and tank levels was designed for monitoring flow and tank level management at Escravos Tank Farm in Nigeria. The fuzzy control system incorporated essence of expert knowledge required to handle the tasks. Proportional Integral Derivative (PID) control of crude flow ...

  2. A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs

    Ruano, M.V.; Ribes, J.; Sin, Gürkan

    2010-01-01

    A systematic approach for fine-tuning fuzzy controllers has been developed and evaluated for an aeration control system implemented in a WWTR The challenge with the application of fuzzy controllers to WWTPs is simply that they contain many parameters, which need to be adjusted for different WWTP ...

  3. Study of Inverted Pendulum Robot Using Fuzzy Servo Control Method

    Dazhong Wang

    2012-09-01

    Full Text Available The inverted pendulum robot is a classical problem in controls. The inherit instabilities in the setup make it a natural target for a control system. Inverted pendulum robot is suitable to use for investigation and verification of various control methods for dynamic systems. Maintaining an equilibrium position of the pendulum pointing up is a challenge as this equilibrium position is unstable. As the inverted pendulum robot system is nonlinear it is well-suited to be controlled by fuzzy logic. In this paper, Lagrange method has been applied to develop the mathematical model of the system. The objective of the simulation to be shown using the fuzzy control method can stabilize the nonlinear system of inverted pendulum robot.

  4. Fuzzy batch controller for granular materials

    Zamyatin Nikolaj; Smirnov Gennadij; Fedorchuk Yuri; Rusina Olga

    2018-01-01

    The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy infer...

  5. CLOSED LOOP CONTROL OF EMBEDDED Z-SOURCE INVERTER WITH FUZZY CONTROLLER FOR SOLAR PV APPLICATIONS

    Midde Mahesh*, K. Leleedhar Rao

    2017-01-01

    This paper proposes the use of Embedded Z –source inverter system with fuzzy controller for Solar Photo Voltaic (PV) applications with adjustable speed drives. Closed loop operation FUZZY control strategies of EZSI system are proposed. EZSI produces the same voltage gain as Z-source inverter (ZSI) but due to the DC sources embedded within the X- shaped impedance network, it has the added advantage of inherent source filtering capability and also reduced capacitor sizing. This can be achiev...

  6. Fuzzy batch controller for granular materials

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  7. Fuzzy sliding mode controller for doubly fed induction motor speed ...

    The use of the nonlinear fuzzy sliding mode method provides very good performance for motor operation and robustness of the control law despite the external/internal perturbations. The chattering effects is eliminated by a particular function "sat" that presents a serious problem to applications of variable structure systems.

  8. Control-technical optimization of topped denitrification through fuzzy control; Regelungstechnische Optimierung der vorgeschalteten Denitrifikation durch Anwendung von Fuzzy-Control

    Meyer, U. [Hydroplan Ingenieurgesellschaft, Worms (Germany); Poepel, H.J. [Technische Univ. Darmstadt (Germany). Inst. WAR - Wasserversorgung, Abwassertechnik, Abfalltechnik, Umwelt- und Raumplanung

    1999-07-01

    The present paper describes complex fuzzy systems for controlling nitrogen elimination at plants with topped denitrification. For the design and testing of the fuzzy systems, dynamic simulation calculations and experimental tests were carried out in a semi-technical pilot plant. The controlling fuzzy systems indicate the supposed oxygen values for individual tank areas and the most appropriate partitioning of the activated sludge tank (anoxic/aerobic zone) as a function of the input quantities used. It is established that, with the more flexible control behaviour, a more stable nitrogen elimination and, at the same time, a cut in the amount of air transferred to the system can be attained in comparison with a conventional control. (orig.) [German] Im Rahmen dieses Beitrags werden komplexe Fuzzy-Systeme zur Regelung der Stickstoffelimination in Anlagen mit vorgeschalteter Denitrifikation vorgestellt. Zum Entwurf und zur Erprobung der Fuzzy-Systeme wurden dynamische Simulationsrechnungen und experimentelle Untersuchungen an einer halbtechnischen Versuchsanlage durchgefuehrt. Die uebergeordneten Fuzzy-Systeme geben in Abhaengigkeit der verwendeten Eingangsgroessen Sauerstoffsollwerte fuer die einzelnen Beckenbereiche und die jeweils guenstigste Aufteilung des Belebungsbeckens (anoxische/aerobe Zone) vor. Die Ergebnisse zeigen, dass durch das flexible Reglerverhalten eine stabilere Stickstoffelimination und gleichzeitig eine Einsparung an eingetragener Luftmenge im Vergleich zu einem konventionellen Regelsystem erreicht werden kann. (orig.)

  9. On the application of bezier surfaces for GA-Fuzzy controller design for use in automatic generation control

    Boesack, CD

    2012-03-01

    Full Text Available Automatic Generation Control (AGC) of large interconnected power systems are typically controlled by a PI or PID type control law. Recently intelligent control techniques such as GA-Fuzzy controllers have been widely applied within the power...

  10. Energy Management of Dual-Source Propelled Electric Vehicle using Fuzzy Controller Optimized via Genetic Algorithm

    Khoobi, Saeed; Halvaei, Abolfazl; Hajizadeh, Amin

    2016-01-01

    Energy and power distribution between multiple energy sources of electric vehicles (EVs) is the main challenge to achieve optimum performance from EV. Fuzzy inference systems are powerful tools due to nonlinearity and uncertainties of EV system. Design of fuzzy controllers for energy management...... of EV relies too much on the expert experience and it may lead to sub-optimal performance. This paper develops an optimized fuzzy controller using genetic algorithm (GA) for an electric vehicle equipped with two power bank including battery and super-capacitor. The model of EV and optimized fuzzy...

  11. Adaptation in the fuzzy self-organising controller

    Jantzen, Jan; Poulsen, Niels Kjølstad

    2003-01-01

    This simulation study provides an analysis of the adaptation mechanism in the self-organising fuzzy controller, SOC. The approach is to apply a traditional adaptive control viewpoint. A simplified performance measure in the SOC controller is used in a loss function, and thus the MIT rule implies...... an update mechanism similar to the SOC update mechanism. Two simulations of proportionally controlled systems show the behaviour of the proportional gain as it adapts to a specified behaviour....

  12. STUDY THE EFFECTIVENESS APPLICATIONS OF FUZZY CONTROLLER WITH TWO ENTRANCES IN THE SYSTEM OF ACTIVE QUEUE MANAGEMENT THE PACKETS IN TCP/IP NETWORKS

    O. V. Nevdachyna

    2016-01-01

    Full Text Available The paper presents an approach to solving the overloading problem in TCP/IP networks. Offered fuzzy controller with two inputs for system of active queue management packages in TCP/IP networks, and investigated its use in these systems with a random change of traffic load. Proposed controller has two inputs, one of which is the value of the difference between the current queue length and the second – the difference between the current level of usage of the buffer. The output of the fuzzy controller calculates the probability of discarding packet.Mathematical model system of active queue management that is studied is presented in an interactive MATLAB system, in wherein also is demonstrated the processes occurring in the system with a random change of traffic load. The research results show that the AQM-system with fuzzy controller with two entrances stable enough maintains the desired current length the queue for sufficiently small values of the probability of dropping/marking packets (at acceptable size of queue q0= 200 packets, the average probability of dropping / marking is not more than 3,5×10–3 or less 0,35% packets is discarded or marked from the total number of incoming packets. The results obtained will help improve the efficiency of the functioning and operation of TCP / IP networks by increasing data transmission quality. this happens due introduction of the proposed controller at the design of new, more efficient routers for networks to minimize the delay of information.

  13. Implementation of a fuzzy logic/neural network multivariable controller

    Cordes, G.A.; Clark, D.E.; Johnson, J.A.; Smartt, H.B.; Wickham, K.L.; Larson, T.K.

    1992-01-01

    This paper describes a multivariable controller developed at the Idaho National Engineering Laboratory (INEL) that incorporates both fuzzy logic rules and a neural network. The controller was implemented in a laboratory demonstration and was robust, producing smooth temperature and water level response curves with short time constants. In the future, intelligent control systems will be a necessity for optimal operation of autonomous reactor systems located on earth or in space. Even today, there is a need for control systems that adapt to the changing environment and process. Hybrid intelligent control systems promise to provide this adaptive capability. Fuzzy logic implements our imprecise, qualitative human reasoning. The values of system variables (controller inputs) and control variables (controller outputs) are described in linguistic terms and subdivided into fully overlapping value ranges. The fuzzy rule base describes how combinations of input parameter ranges determine the output control values. Neural networks implement our human learning. In this controller, neural networks were embedded in the software to explore their potential for adding adaptability

  14. Fuzzy logic controllers and chaotic natural convection loops

    Theler, German

    2007-01-01

    The study of natural circulation loops is a subject of special concern for the engineering design of advanced nuclear reactors, as natural convection provides an efficient and completely passive heat removal system. However, under certain circumstances thermal-fluid-dynamical instabilities may appear, threatening the reactor safety as a whole.On the other hand, fuzzy logic controllers provide an ideal framework to approach highly non-linear control problems. In the present work, we develop a software-based fuzzy logic controller and study its application to chaotic natural convection loops.We numerically analyse the linguistic control of the loop known as the Welander problem in such conditions that, if the controller were not present, the circulation flow would be non-periodic unstable.We also design a Taka gi-Sugeno fuzzy controller based on a fuzzy model of a natural convection loop with a toroidal geometry, in order to stabilize a Lorenz-chaotic behaviour.Finally, we show experimental results obtained in a rectangular natural circulation loop [es

  15. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  16. Advanced Takagi‒Sugeno fuzzy systems delay and saturation

    Benzaouia, Abdellah

    2014-01-01

    This monograph puts the reader in touch with a decade’s worth of new developments in the field of fuzzy control specifically those of the popular Takagi-Sugeno (T-S) type. New techniques for stabilizing control analysis and design based on multiple Lyapunov functions and linear matrix inequalities (LMIs), are proposed. All the results are illustrated with numerical examples and figures and a rich bibliography is provided for further investigation. Control saturations are taken into account within the fuzzy model. The concept of positive invariance is used to obtain sufficient asymptotic stability conditions for the fuzzy system with constrained control inside a subset of the state space. The authors also consider the non-negativity of the states. This is of practical importance in many chemical, physical and biological processes that involve quantities that have intrinsically constant and non-negative sign: concentration of substances, level of liquids, etc. Results for linear systems are then extended to l...

  17. To the Problem of Electromechanical Interaction in Elevators with Controlled Electric Drive and Fuzzy Speed Controller

    A. S. Koval

    2010-01-01

    Full Text Available The paper considers problems concerning electromechanical interaction in elevators with an adjustable asynchronous electric drive equipped with the vector control systems under direct torque control and direct torque control with pulse-width modulator. A mathematical description of electromechanical elevator system with due account of nonlinearity of the worm gear is given in the paper. The paper presents a simplified circuit design of a control system with a fuzzy speed controller. It has been established that the factor of electromechanical interaction in electromechanical system with the adjustable asynchronous electric drive and an fuzzy speed controller is within the range which corresponds to existence of the essential electromechanical interaction.

  18. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  19. Active structural control with stable fuzzy PID techniques

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  20. Fuzzy control with random delays using invariant cones and its application to control of energy processes in microelectromechanical motion devices

    Sinha, A.S.C. [Purdue Univ., Indianapolis, IN (United States). Dept. of Electrical Engineering; Lyshevski, S. [Rochester Inst. of Technology, NY (United States)

    2005-05-01

    In this paper, a class of microelectromechanical systems described by nonlinear differential equations with random delays is examined. Robust fuzzy controllers are designed to control the energy conversion processes with the ultimate objective to guarantee optimal achievable performance. The fuzzy rule base used consists of a collection of r fuzzy IF-THEN rules defined as a function of the conditional variable. The method of the theory of cones and Lyapunov functionals is used to design a class of local fuzzy control laws. A verifiably sufficient condition for stochastic stability of fuzzy stochastic microelectromechanical systems is given. As an example, we have considered the design of a fuzzy control law for an electrostatic micromotor. (author)