WorldWideScience

Sample records for fuzzy clustering method

  1. Fuzzy Clustering Methods and their Application to Fuzzy Modeling

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Zhou, Jianjun

    1999-01-01

    Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...

  2. Fuzzy C-means method for clustering microarray data.

    Science.gov (United States)

    Dembélé, Doulaye; Kastner, Philippe

    2003-05-22

    Clustering analysis of data from DNA microarray hybridization studies is essential for identifying biologically relevant groups of genes. Partitional clustering methods such as K-means or self-organizing maps assign each gene to a single cluster. However, these methods do not provide information about the influence of a given gene for the overall shape of clusters. Here we apply a fuzzy partitioning method, Fuzzy C-means (FCM), to attribute cluster membership values to genes. A major problem in applying the FCM method for clustering microarray data is the choice of the fuzziness parameter m. We show that the commonly used value m = 2 is not appropriate for some data sets, and that optimal values for m vary widely from one data set to another. We propose an empirical method, based on the distribution of distances between genes in a given data set, to determine an adequate value for m. By setting threshold levels for the membership values, genes which are tigthly associated to a given cluster can be selected. Using a yeast cell cycle data set as an example, we show that this selection increases the overall biological significance of the genes within the cluster. Supplementary text and Matlab functions are available at http://www-igbmc.u-strasbg.fr/fcm/

  3. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  4. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    Science.gov (United States)

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. TOWARDS FINDING A NEW KERNELIZED FUZZY C-MEANS CLUSTERING ALGORITHM

    Directory of Open Access Journals (Sweden)

    Samarjit Das

    2014-04-01

    Full Text Available Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead of a Euclidean distance which is used in the conventional Fuzzy C-Means clustering technique, has earned popularity among research community. Like the conventional Fuzzy C-Means clustering technique this technique also suffers from inconsistency in its performance due to the fact that here also the initial centroids are obtained based on the randomly initialized membership values of the objects. Our present work proposes a new method where we have applied the Subtractive clustering technique of Chiu as a preprocessor to Kernelized Fuzzy CMeans clustering technique. With this new method we have tried not only to remove the inconsistency of Kernelized Fuzzy C-Means clustering technique but also to deal with the situations where the number of clusters is not predetermined. We have also provided a comparison of our method with the Subtractive clustering technique of Chiu and Kernelized Fuzzy C-Means clustering technique using two validity measures namely Partition Coefficient and Clustering Entropy.

  6. Dynamic Fuzzy Clustering Method for Decision Support in Electricity Markets Negotiation

    Directory of Open Access Journals (Sweden)

    Ricardo FAIA

    2016-10-01

    Full Text Available Artificial Intelligence (AI methods contribute to the construction of systems where there is a need to automate the tasks. They are typically used for problems that have a large response time, or when a mathematical method cannot be used to solve the problem. However, the application of AI brings an added complexity to the development of such applications. AI has been frequently applied in the power systems field, namely in Electricity Markets (EM. In this area, AI applications are essentially used to forecast / estimate the prices of electricity or to search for the best opportunity to sell the product. This paper proposes a clustering methodology that is combined with fuzzy logic in order to perform the estimation of EM prices. The proposed method is based on the application of a clustering methodology that groups historic energy contracts according to their prices’ similarity. The optimal number of groups is automatically calculated taking into account the preference for the balance between the estimation error and the number of groups. The centroids of each cluster are used to define a dynamic fuzzy variable that approximates the tendency of contracts’ history. The resulting fuzzy variable allows estimating expected prices for contracts instantaneously and approximating missing values in the historic contracts.

  7. A semi-supervised method to detect seismic random noise with fuzzy GK clustering

    International Nuclear Information System (INIS)

    Hashemi, Hosein; Javaherian, Abdolrahim; Babuska, Robert

    2008-01-01

    We present a new method to detect random noise in seismic data using fuzzy Gustafson–Kessel (GK) clustering. First, using an adaptive distance norm, a matrix is constructed from the observed seismic amplitudes. The next step is to find centres of ellipsoidal clusters and construct a partition matrix which determines the soft decision boundaries between seismic events and random noise. The GK algorithm updates the cluster centres in order to iteratively minimize the cluster variance. Multiplication of the fuzzy membership function with values of each sample yields new sections; we name them 'clustered sections'. The seismic amplitude values of the clustered sections are given in a way to decrease the level of noise in the original noisy seismic input. In pre-stack data, it is essential to study the clustered sections in a f–k domain; finding the quantitative index for weighting the post-stack data needs a similar approach. Using the knowledge of a human specialist together with the fuzzy unsupervised clustering, the method is a semi-supervised random noise detection. The efficiency of this method is investigated on synthetic and real seismic data for both pre- and post-stack data. The results show a significant improvement of the input noisy sections without harming the important amplitude and phase information of the original data. The procedure for finding the final weights of each clustered section should be carefully done in order to keep almost all the evident seismic amplitudes in the output section. The method interactively uses the knowledge of the seismic specialist in detecting the noise

  8. An Application of Fuzzy Inference System by Clustering Subtractive Fuzzy Method for Estimating of Product Requirement

    Directory of Open Access Journals (Sweden)

    Fajar Ibnu Tufeil

    2009-06-01

    Full Text Available Model fuzzy memiliki kemampuan untuk menjelaskan secara linguistik suatu sistem yang terlalu kompleks. Aturan-aturan dalam model fuzzy pada umumnya dibangun berdasarkan keahlian manusia dan pengetahuan heuristik dari sistem yang dimodelkan. Teknik ini selanjutnya dikembangkan menjadi teknik yang dapat mengidentifikasi aturan-aturan dari suatu basis data yang telah dikelompokkan berdasarkan persamaan strukturnya. Dalam hal ini metode pengelompokan fuzzy berfungsi untuk mencari kelompok-kelompok data. Informasi yang dihasilkan dari metode pengelompokan ini, yaitu informasi tentang pusat kelompok, digunakan untuk membentuk aturan-aturan dalam sistem penalaran fuzzy. Dalam skripsi ini dibahas mengenai penerapan fuzzy infereance system dengan metode pengelompokan fuzzy subtractive clustering, yaitu untuk membentuk sistem penalaran fuzzy dengan menggunakan model fuzzy Takagi-Sugeno orde satu. Selanjutnya, metode pengelompokan fuzzy subtractive clustering diterapkan dalam memodelkan masalah dibidang pemasaran, yaitu untuk memprediksi permintaan pasar terhadap suatu produk susu. Aplikasi ini dibangun menggunakan Borland Delphi 6.0. Dari hasil pengujian diperoleh tingkat error prediksi terkecil yaitu dengan Error Average 0.08%.

  9. Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering

    Science.gov (United States)

    Onishi, Masaki; Yoda, Ikushi

    In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.

  10. Comparing clustering models in bank customers: Based on Fuzzy relational clustering approach

    Directory of Open Access Journals (Sweden)

    Ayad Hendalianpour

    2016-11-01

    Full Text Available Clustering is absolutely useful information to explore data structures and has been employed in many places. It organizes a set of objects into similar groups called clusters, and the objects within one cluster are both highly similar and dissimilar with the objects in other clusters. The K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms are the most popular clustering algorithms for their easy implementation and fast work, but in some cases we cannot use these algorithms. Regarding this, in this paper, a hybrid model for customer clustering is presented that is applicable in five banks of Fars Province, Shiraz, Iran. In this way, the fuzzy relation among customers is defined by using their features described in linguistic and quantitative variables. As follows, the customers of banks are grouped according to K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms and the proposed Fuzzy Relation Clustering (FRC algorithm. The aim of this paper is to show how to choose the best clustering algorithms based on density-based clustering and present a new clustering algorithm for both crisp and fuzzy variables. Finally, we apply the proposed approach to five datasets of customer's segmentation in banks. The result of the FCR shows the accuracy and high performance of FRC compared other clustering methods.

  11. [Predicting Incidence of Hepatitis E in Chinausing Fuzzy Time Series Based on Fuzzy C-Means Clustering Analysis].

    Science.gov (United States)

    Luo, Yi; Zhang, Tao; Li, Xiao-song

    2016-05-01

    To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.

  12. Neuro-fuzzy system modeling based on automatic fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    Yuangang TANG; Fuchun SUN; Zengqi SUN

    2005-01-01

    A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.

  13. Cluster analysis by optimal decomposition of induced fuzzy sets

    Energy Technology Data Exchange (ETDEWEB)

    Backer, E

    1978-01-01

    Nonsupervised pattern recognition is addressed and the concept of fuzzy sets is explored in order to provide the investigator (data analyst) additional information supplied by the pattern class membership values apart from the classical pattern class assignments. The basic ideas behind the pattern recognition problem, the clustering problem, and the concept of fuzzy sets in cluster analysis are discussed, and a brief review of the literature of the fuzzy cluster analysis is given. Some mathematical aspects of fuzzy set theory are briefly discussed; in particular, a measure of fuzziness is suggested. The optimization-clustering problem is characterized. Then the fundamental idea behind affinity decomposition is considered. Next, further analysis takes place with respect to the partitioning-characterization functions. The iterative optimization procedure is then addressed. The reclassification function is investigated and convergence properties are examined. Finally, several experiments in support of the method suggested are described. Four object data sets serve as appropriate test cases. 120 references, 70 figures, 11 tables. (RWR)

  14. A COMPARISON OF TWO FUZZY CLUSTERING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Samarjit Das

    2013-10-01

    Full Text Available - In fuzzy clustering, unlike hard clustering, depending on the membership value, a single object may belong exactly to one cluster or partially to more than one cluster. Out of a number of fuzzy clustering techniques Bezdek’s Fuzzy C-Means and GustafsonKessel clustering techniques are well known where Euclidian distance and Mahalanobis distance are used respectively as a measure of similarity. We have applied these two fuzzy clustering techniques on a dataset of individual differences consisting of fifty feature vectors of dimension (feature three. Based on some validity measures we have tried to see the performances of these two clustering techniques from three different aspects- first, by initializing the membership values of the feature vectors considering the values of the three features separately one at a time, secondly, by changing the number of the predefined clusters and thirdly, by changing the size of the dataset.

  15. Improved Fuzzy Art Method for Initializing K-means

    Directory of Open Access Journals (Sweden)

    Sevinc Ilhan

    2010-09-01

    Full Text Available The K-means algorithm is quite sensitive to the cluster centers selected initially and can perform different clusterings depending on these initialization conditions. Within the scope of this study, a new method based on the Fuzzy ART algorithm which is called Improved Fuzzy ART (IFART is used in the determination of initial cluster centers. By using IFART, better quality clusters are achieved than Fuzzy ART do and also IFART is as good as Fuzzy ART about capable of fast clustering and capability on large scaled data clustering. Consequently, it is observed that, with the proposed method, the clustering operation is completed in fewer steps, that it is performed in a more stable manner by fixing the initialization points and that it is completed with a smaller error margin compared with the conventional K-means.

  16. Two-Way Regularized Fuzzy Clustering of Multiple Correspondence Analysis.

    Science.gov (United States)

    Kim, Sunmee; Choi, Ji Yeh; Hwang, Heungsun

    2017-01-01

    Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.

  17. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    Science.gov (United States)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  18. A physical analogy to fuzzy clustering

    DEFF Research Database (Denmark)

    Jantzen, Jan

    2004-01-01

    This tutorial paper provides an interpretation of the membership assignment in the fuzzy clustering algorithm fuzzy c-means. The membership of a data point to several clusters is shown to be analogous to the gravitational forces between bodies of mass. This provides an alternative way to explain...

  19. A Trajectory Regression Clustering Technique Combining a Novel Fuzzy C-Means Clustering Algorithm with the Least Squares Method

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2018-04-01

    Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.

  20. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.

    Science.gov (United States)

    Abe, S

    1998-01-01

    In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.

  1. Fuzzy Modeled K-Cluster Quality Mining of Hidden Knowledge for Decision Support

    OpenAIRE

    S. Parkash  Kumar; K. S. Ramaswami

    2011-01-01

    Problem statement: The work presented Fuzzy Modeled K-means Cluster Quality Mining of hidden knowledge for Decision Support. Based on the number of clusters, number of objects in each cluster and its cohesiveness, precision and recall values, the cluster quality metrics is measured. The fuzzy k-means is adapted approach by using heuristic method which iterates the cluster to form an efficient valid cluster. With the obtained data clusters, quality assessment is made by predictive mining using...

  2. Fuzzy Weight Cluster-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Teng Gao

    2015-01-01

    Full Text Available Cluster-based protocol is a kind of important routing in wireless sensor networks. However, due to the uneven distribution of cluster heads in classical clustering algorithm, some nodes may run out of energy too early, which is not suitable for large-scale wireless sensor networks. In this paper, a distributed clustering algorithm based on fuzzy weighted attributes is put forward to ensure both energy efficiency and extensibility. On the premise of a comprehensive consideration of all attributes, the corresponding weight of each parameter is assigned by using the direct method of fuzzy engineering theory. Then, each node works out property value. These property values will be mapped to the time axis and be triggered by a timer to broadcast cluster headers. At the same time, the radio coverage method is adopted, in order to avoid collisions and to ensure the symmetrical distribution of cluster heads. The aggregated data are forwarded to the sink node in the form of multihop. The simulation results demonstrate that clustering algorithm based on fuzzy weighted attributes has a longer life expectancy and better extensibility than LEACH-like algorithms.

  3. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  4. Intuitionistic fuzzy aggregation and clustering

    CERN Document Server

    Xu, Zeshui

    2012-01-01

    This book offers a systematic introduction to the clustering algorithms for intuitionistic fuzzy values, the latest research results in intuitionistic fuzzy aggregation techniques, the extended results in interval-valued intuitionistic fuzzy environments, and their applications in multi-attribute decision making, such as supply chain management, military system performance evaluation, project management, venture capital, information system selection, building materials classification, and operational plan assessment, etc.

  5. Fuzzy sets, rough sets, multisets and clustering

    CERN Document Server

    Dahlbom, Anders; Narukawa, Yasuo

    2017-01-01

    This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making.

  6. Information Clustering Based on Fuzzy Multisets.

    Science.gov (United States)

    Miyamoto, Sadaaki

    2003-01-01

    Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…

  7. Unsupervised Performance Evaluation Strategy for Bridge Superstructure Based on Fuzzy Clustering and Field Data

    Directory of Open Access Journals (Sweden)

    Yubo Jiao

    2013-01-01

    Full Text Available Performance evaluation of a bridge is critical for determining the optimal maintenance strategy. An unsupervised bridge superstructure state assessment method is proposed in this paper based on fuzzy clustering and bridge field measured data. Firstly, the evaluation index system of bridge is constructed. Secondly, a certain number of bridge health monitoring data are selected as clustering samples to obtain the fuzzy similarity matrix and fuzzy equivalent matrix. Finally, different thresholds are selected to form dynamic clustering maps and determine the best classification based on statistic analysis. The clustering result is regarded as a sample base, and the bridge state can be evaluated by calculating the fuzzy nearness between the unknown bridge state data and the sample base. Nanping Bridge in Jilin Province is selected as the engineering project to verify the effectiveness of the proposed method.

  8. A Hybrid Fuzzy Time Series Approach Based on Fuzzy Clustering and Artificial Neural Network with Single Multiplicative Neuron Model

    Directory of Open Access Journals (Sweden)

    Ozge Cagcag Yolcu

    2013-01-01

    Full Text Available Particularly in recent years, artificial intelligence optimization techniques have been used to make fuzzy time series approaches more systematic and improve forecasting performance. Besides, some fuzzy clustering methods and artificial neural networks with different structures are used in the fuzzification of observations and determination of fuzzy relationships, respectively. In approaches considering the membership values, the membership values are determined subjectively or fuzzy outputs of the system are obtained by considering that there is a relation between membership values in identification of relation. This necessitates defuzzification step and increases the model error. In this study, membership values were obtained more systematically by using Gustafson-Kessel fuzzy clustering technique. The use of artificial neural network with single multiplicative neuron model in identification of fuzzy relation eliminated the architecture selection problem as well as the necessity for defuzzification step by constituting target values from real observations of time series. The training of artificial neural network with single multiplicative neuron model which is used for identification of fuzzy relation step is carried out with particle swarm optimization. The proposed method is implemented using various time series and the results are compared with those of previous studies to demonstrate the performance of the proposed method.

  9. Discrimination of neutrons and γ-rays in liquid scintillators based of fuzzy c-means clustering

    International Nuclear Information System (INIS)

    Luo Xiaoliang; Liu Guofu; Yang Jun

    2011-01-01

    A novel method based on fuzzy c-means (FCM) clustering for the discrimination of neutrons and γ-rays in liquid scintillators was presented. The neutrons and γ-rays in the environment were firstly acquired by the portable real-time n-γ discriminator and then discriminated using fuzzy c-means clustering and pulse gradient analysis, respectively. By comparing the results with each other, it is shown that the discrimination results of the fuzzy c-means clustering are consistent with those of the pulse gradient analysis. The decrease in uncertainty and the improvement in discrimination performance of the fuzzy c-means clustering were also observed. (authors)

  10. A fuzzy clustering technique for calorimetric data reconstruction

    International Nuclear Information System (INIS)

    Sandhir, Radha Pyari; Muhuri, Sanjib; Nayak, Tapan K.

    2010-01-01

    In high energy physics experiments, electromagnetic calorimeters are used to measure shower particles produced in p-p or heavy-ion collisions. In order to extract information and reconstruct the characteristics of the various incoming particles, clustering is required to be performed on each of the calorimeter planes. Hard clustering techniques such as Local Maxima Search, Connected-cell Search and K-means Clustering simply assign a data point to a cluster. A data point either lies in a cluster or it does not, and so, overlapping clusters are hardly distinguishable. Fuzzy c-means clustering is a version of the k-means algorithm that incorporates fuzzy logic, so that each point has a weak or strong association to the cluster, determined by the inverse distance to the center of the cluster. The term fuzzy is used because an observation may in fact lie in more than one cluster simultaneously, though to different degrees called 'memberships', as is the case with many high energy physics applications. The centers obtained using the FCM algorithm are based on the geometric locations of the data points

  11. Risk Assessment for Bridges Safety Management during Operation Based on Fuzzy Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Xia Hanyu

    2016-01-01

    Full Text Available In recent years, large span and large sea-crossing bridges are built, bridges accidents caused by improper operational management occur frequently. In order to explore the better methods for risk assessment of the bridges operation departments, the method based on fuzzy clustering algorithm is selected. Then, the implementation steps of fuzzy clustering algorithm are described, the risk evaluation system is built, and Taizhou Bridge is selected as an example, the quantitation of risk factors is described. After that, the clustering algorithm based on fuzzy equivalence is calculated on MATLAB 2010a. In the last, Taizhou Bridge operation management departments are classified and sorted according to the degree of risk, and the safety situation of operation departments is analyzed.

  12. Comments on "The multisynapse neural network and its application to fuzzy clustering".

    Science.gov (United States)

    Yu, Jian; Hao, Pengwei

    2005-05-01

    In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.

  13. Analysis of Learning Development With Sugeno Fuzzy Logic And Clustering

    Directory of Open Access Journals (Sweden)

    Maulana Erwin Saputra

    2017-06-01

    Full Text Available In the first journal, I made this attempt to analyze things that affect the achievement of students in each school of course vary. Because students are one of the goals of achieving the goals of successful educational organizations. The mental influence of students’ emotions and behaviors themselves in relation to learning performance. Fuzzy logic can be used in various fields as well as Clustering for grouping, as in Learning Development analyzes. The process will be performed on students based on the symptoms that exist. In this research will use fuzzy logic and clustering. Fuzzy is an uncertain logic but its excess is capable in the process of language reasoning so that in its design is not required complicated mathematical equations. However Clustering method is K-Means method is method where data analysis is broken down by group k (k = 1,2,3, .. k. To know the optimal number of Performance group. The results of the research is with a questionnaire entered into matlab will produce a value that means in generating the graph. And simplify the school in seeing Student performance in the learning process by using certain criteria. So from the system that obtained the results for a decision-making required by the school.

  14. A Cluster-Based Fuzzy Fusion Algorithm for Event Detection in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ZiQi Hao

    2015-01-01

    Full Text Available As limited energy is one of the tough challenges in wireless sensor networks (WSN, energy saving becomes important in increasing the lifecycle of the network. Data fusion enables combining information from several sources thus to provide a unified scenario, which can significantly save sensor energy and enhance sensing data accuracy. In this paper, we propose a cluster-based data fusion algorithm for event detection. We use k-means algorithm to form the nodes into clusters, which can significantly reduce the energy consumption of intracluster communication. Distances between cluster heads and event and energy of clusters are fuzzified, thus to use a fuzzy logic to select the clusters that will participate in data uploading and fusion. Fuzzy logic method is also used by cluster heads for local decision, and then the local decision results are sent to the base station. Decision-level fusion for final decision of event is performed by base station according to the uploaded local decisions and fusion support degree of clusters calculated by fuzzy logic method. The effectiveness of this algorithm is demonstrated by simulation results.

  15. Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering

    Directory of Open Access Journals (Sweden)

    Jean Marie Vianney Kinani

    2017-01-01

    Full Text Available We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR and fluid-attenuated inversion recovery (FLAIR images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.

  16. CAF: Cluster algorithm and a-star with fuzzy approach for lifetime enhancement in wireless sensor networks

    KAUST Repository

    Yuan, Y.; Li, C.; Yang, Y.; Zhang, Xiangliang; Li, L.

    2014-01-01

    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria. 2014 Yali Yuan et al.

  17. CAF: Cluster algorithm and a-star with fuzzy approach for lifetime enhancement in wireless sensor networks

    KAUST Repository

    Yuan, Y.

    2014-04-28

    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria. 2014 Yali Yuan et al.

  18. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Jensen, Ole Nørregaard

    2010-01-01

    MOTIVATION: Fuzzy c-means clustering is widely used to identify cluster structures in high-dimensional datasets, such as those obtained in DNA microarray and quantitative proteomics experiments. One of its main limitations is the lack of a computationally fast method to set optimal values...... of algorithm parameters. Wrong parameter values may either lead to the inclusion of purely random fluctuations in the results or ignore potentially important data. The optimal solution has parameter values for which the clustering does not yield any results for a purely random dataset but which detects cluster...... formation with maximum resolution on the edge of randomness. RESULTS: Estimation of the optimal parameter values is achieved by evaluation of the results of the clustering procedure applied to randomized datasets. In this case, the optimal value of the fuzzifier follows common rules that depend only...

  19. Comparative Performance Of Using PCA With K-Means And Fuzzy C Means Clustering For Customer Segmentation

    Directory of Open Access Journals (Sweden)

    Fahmida Afrin

    2015-08-01

    Full Text Available Abstract Data mining is the process of analyzing data and discovering useful information. Sometimes it is called knowledge Discovery. Clustering refers to groups whereas data are grouped in such a way that the data in one cluster are similar data in different clusters are dissimilar. Many data mining technologies are developed for customer segmentation. PCA is working as a preprocessor of Fuzzy C means and K- means for reducing the high dimensional and noisy data. There are many clustering method apply on customer segmentation. In this paper the performance of Fuzzy C means and K-means after implementing Principal Component Analysis is analyzed. We analyze the performance on a standard dataset for these algorithms. The results indicate that PCA based fuzzy clustering produces better results than PCA based K-means and is a more stable method for customer segmentation.

  20. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    Science.gov (United States)

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  1. Forecasting Jakarta composite index (IHSG) based on chen fuzzy time series and firefly clustering algorithm

    Science.gov (United States)

    Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.

    2018-03-01

    This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.

  2. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    Science.gov (United States)

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  3. APPLICATION OF FUZZY C-MEANS CLUSTERING TECHNIQUE IN VEHICULAR POLLUTION

    Directory of Open Access Journals (Sweden)

    Samarjit Das

    2013-07-01

    Full Text Available Presently in most of the urban areas all over the world, due to the exponential increase in traffic, vehicular pollution has become one of the key contributors to air pollution. As uncertainty prevails in the process of designating the level of pollution of a particular region, a fuzzy method can be applied to see the membership values of that region to a number of predefined clusters. Also, due to the existence of different pollutants in vehicular pollution, the data used to represent it are in the form of numerical vectors. In our work, we shall apply the fuzzy c-means technique of Bezdek on a dataset representing vehicular pollution to obtain the membership values of pollution due to vehicular emission of a city to one or more of some predefined clusters. We shall try also to see the benefits of adopting a fuzzy approach over the traditional way of determining the level of pollution of the particular region

  4. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  5. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach.

    Science.gov (United States)

    Julie, E Golden; Selvi, S Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  6. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    Directory of Open Access Journals (Sweden)

    E. Golden Julie

    2016-01-01

    Full Text Available Wireless sensor networks (WSNs consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  7. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    Science.gov (United States)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  8. Applying Fuzzy Possibilistic Methods on Critical Objects

    DEFF Research Database (Denmark)

    Yazdani, Hossein; Ortiz-Arroyo, Daniel; Choros, Kazimierz

    2016-01-01

    Providing a flexible environment to process data objects is a desirable goal of machine learning algorithms. In fuzzy and possibilistic methods, the relevance of data objects is evaluated and a membership degree is assigned. However, some critical objects objects have the potential ability to affect...... the performance of the clustering algorithms if they remain in a specific cluster or they are moved into another. In this paper we analyze and compare how critical objects affect the behaviour of fuzzy possibilistic methods in several data sets. The comparison is based on the accuracy and ability of learning...... methods to provide a proper searching space for data objects. The membership functions used by each method when dealing with critical objects is also evaluated. Our results show that relaxing the conditions of participation for data objects in as many partitions as they can, is beneficial....

  9. α/β-particle radiation identification based on fuzzy C-means clustering

    International Nuclear Information System (INIS)

    Yang Yijianxia; Yang Lu; Li Wenqiang

    2013-01-01

    A pulse shape recognition method based on fuzzy C-means clustering for the discrimination of α/βparticle was presented. A detection circuit to isolate α/β-particles is designed. Using a single probe scintillating detector to acquire α/β particles. By comparing the results to pulse amplitude analysis, it is shown that by Fuzzy C-means clustering α-particle count rate increased by 42.9% and the cross-talk ratio of α-β is decreased by 15.9% for 6190 cps 0420 αsource; β-particle count rate increased by 31.8% and the cross -talk ratio of β-α is decreased by 7.7% for 05-05β source. (authors)

  10. Determination System Of Food Vouchers For the Poor Based On Fuzzy C-Means Method

    Science.gov (United States)

    Anamisa, D. R.; Yusuf, M.; Syakur, M. A.

    2018-01-01

    Food vouchers are government programs to tackle the poverty of rural communities. This program aims to help the poor group in getting enough food and nutrients from carbohydrates. There are several factors that influence to receive the food voucher, such as: job, monthly income, Taxes, electricity bill, size of house, number of family member, education certificate and amount of rice consumption every week. In the execution for the distribution of vouchers is often a lot of problems, such as: the distribution of food vouchers has been misdirected and someone who receives is still subjective. Some of the solutions to decision making have not been done. The research aims to calculating the change of each partition matrix and each cluster using Fuzzy C-Means method. Hopefully this research makes contribution by providing higher result using Fuzzy C-Means comparing to other method for this case study. In this research, decision making is done by using Fuzzy C-Means method. The Fuzzy C-Means method is a clustering method that has an organized and scattered cluster structure with regular patterns on two-dimensional datasets. Furthermore, Fuzzy C-Means method used for calculates the change of each partition matrix. Each cluster will be sorted by the proximity of the data element to the centroid of the cluster to get the ranking. Various trials were conducted for grouping and ranking of proposed data that received food vouchers based on the quota of each village. This testing by Fuzzy C-Means method, is developed and abled for determining the recipient of the food voucher with satisfaction results. Fulfillment of the recipient of the food voucher is 80% to 90% and this testing using data of 115 Family Card from 6 Villages. The quality of success affected, has been using the number of iteration factors is 20 and the number of clusters is 3

  11. Clustering Batik Images using Fuzzy C-Means Algorithm Based on Log-Average Luminance

    Directory of Open Access Journals (Sweden)

    Ahmad Sanmorino

    2012-06-01

    Full Text Available Batik is a fabric or clothes that are made ​​with a special staining technique called wax-resist dyeing and is one of the cultural heritage which has high artistic value. In order to improve the efficiency and give better semantic to the image, some researchers apply clustering algorithm for managing images before they can be retrieved. Image clustering is a process of grouping images based on their similarity. In this paper we attempt to provide an alternative method of grouping batik image using fuzzy c-means (FCM algorithm based on log-average luminance of the batik. FCM clustering algorithm is an algorithm that works using fuzzy models that allow all data from all cluster members are formed with different degrees of membership between 0 and 1. Log-average luminance (LAL is the average value of the lighting in an image. We can compare different image lighting from one image to another using LAL. From the experiments that have been made, it can be concluded that fuzzy c-means algorithm can be used for batik image clustering based on log-average luminance of each image possessed.

  12. OPTIMIZING ENERGY CONSUMPTION IN VEHICULAR SENSOR NETWORKS BY CLUSTERING USING FUZZY C-MEANS AND FUZZY SUBTRACTIVE ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. Ebrahimi

    2017-09-01

    Full Text Available Traffic monitoring and managing in urban intelligent transportation systems (ITS can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs; moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH, and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  13. KM-FCM: A fuzzy clustering optimization algorithm based on Mahalanobis distance

    Directory of Open Access Journals (Sweden)

    Zhiwen ZU

    2018-04-01

    Full Text Available The traditional fuzzy clustering algorithm uses Euclidean distance as the similarity criterion, which is disadvantageous to the multidimensional data processing. In order to solve this situation, Mahalanobis distance is used instead of the traditional Euclidean distance, and the optimization of fuzzy clustering algorithm based on Mahalanobis distance is studied to enhance the clustering effect and ability. With making the initialization means by Heuristic search algorithm combined with k-means algorithm, and in terms of the validity function which could automatically adjust the optimal clustering number, an optimization algorithm KM-FCM is proposed. The new algorithm is compared with FCM algorithm, FCM-M algorithm and M-FCM algorithm in three standard data sets. The experimental results show that the KM-FCM algorithm is effective. It has higher clustering accuracy than FCM, FCM-M and M-FCM, recognizing high-dimensional data clustering well. It has global optimization effect, and the clustering number has no need for setting in advance. The new algorithm provides a reference for the optimization of fuzzy clustering algorithm based on Mahalanobis distance.

  14. Pattern Classification of Tropical Cyclone Tracks over the Western North Pacific using a Fuzzy Clustering Method

    Science.gov (United States)

    Kim, H.; Ho, C.; Kim, J.

    2008-12-01

    This study presents the pattern classification of tropical cyclone (TC) tracks over the western North Pacific (WNP) basin during the typhoon season (June through October) for 1965-2006 (total 42 years) using a fuzzy clustering method. After the fuzzy c-mean clustering algorithm to the TC trajectory interpolated into 20 segments of equivalent length, we divided the whole tracks into 7 patterns. The optimal number of the fuzzy cluster is determined by several validity measures. The classified TC track patterns represent quite different features in the recurving latitudes, genesis locations, and geographical pathways: TCs mainly forming in east-northern part of the WNP and striking Korean and Japan (C1); mainly forming in west-southern part of the WNP, traveling long pathway, and partly striking Japan (C2); mainly striking Taiwan and East China (C3); traveling near the east coast of Japan (C4); traveling the distant ocean east of Japan (C5); moving toward South China and Vietnam straightly (C6); and forming in the South China Sea (C7). Atmospheric environments related to each cluster show physically consistent with each TC track patterns. The straight track pattern is closely linked to a developed anticyclonic circulation to the north of the TC. It implies that this ridge acts as a steering flow forcing TCs to move to the northwest with a more west-oriented track. By contrast, recurving patterns occur commonly under the influence of the strong anomalous westerlies over the TC pathway but there definitely exist characteristic anomalous circulations over the mid- latitudes by pattern. Some clusters are closely related to the well-known large-scale phenomena. The C1 and C2 are highly related to the ENSO phase: The TCs in the C1 (C2) is more active during La Niña (El Niño). The TC activity in the C3 is associated with the WNP summer monsoon. The TCs in the C4 is more (less) vigorous during the easterly (westerly) phase of the stratospheric quasi-biennial oscillation

  15. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection

    Science.gov (United States)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.

    2014-04-01

    A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.

  16. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    Science.gov (United States)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  17. Fuzzy clustering-based segmented attenuation correction in whole-body PET

    CERN Document Server

    Zaidi, H; Boudraa, A; Slosman, DO

    2001-01-01

    Segmented-based attenuation correction is now a widely accepted technique to reduce noise contribution of measured attenuation correction. In this paper, we present a new method for segmenting transmission images in positron emission tomography. This reduces the noise on the correction maps while still correcting for differing attenuation coefficients of specific tissues. Based on the Fuzzy C-Means (FCM) algorithm, the method segments the PET transmission images into a given number of clusters to extract specific areas of differing attenuation such as air, the lungs and soft tissue, preceded by a median filtering procedure. The reconstructed transmission image voxels are therefore segmented into populations of uniform attenuation based on the human anatomy. The clustering procedure starts with an over-specified number of clusters followed by a merging process to group clusters with similar properties and remove some undesired substructures using anatomical knowledge. The method is unsupervised, adaptive and a...

  18. Fractal dimension to classify the heart sound recordings with KNN and fuzzy c-mean clustering methods

    Science.gov (United States)

    Juniati, D.; Khotimah, C.; Wardani, D. E. K.; Budayasa, K.

    2018-01-01

    The heart abnormalities can be detected from heart sound. A heart sound can be heard directly with a stethoscope or indirectly by a phonocardiograph, a machine of the heart sound recording. This paper presents the implementation of fractal dimension theory to make a classification of phonocardiograms into a normal heart sound, a murmur, or an extrasystole. The main algorithm used to calculate the fractal dimension was Higuchi’s Algorithm. There were two steps to make a classification of phonocardiograms, feature extraction, and classification. For feature extraction, we used Discrete Wavelet Transform to decompose the signal of heart sound into several sub-bands depending on the selected level. After the decomposition process, the signal was processed using Fast Fourier Transform (FFT) to determine the spectral frequency. The fractal dimension of the FFT output was calculated using Higuchi Algorithm. The classification of fractal dimension of all phonocardiograms was done with KNN and Fuzzy c-mean clustering methods. Based on the research results, the best accuracy obtained was 86.17%, the feature extraction by DWT decomposition level 3 with the value of kmax 50, using 5-fold cross validation and the number of neighbors was 5 at K-NN algorithm. Meanwhile, for fuzzy c-mean clustering, the accuracy was 78.56%.

  19. Determining the number of clusters for kernelized fuzzy C-means algorithms for automatic medical image segmentation

    Directory of Open Access Journals (Sweden)

    E.A. Zanaty

    2012-03-01

    Full Text Available In this paper, we determine the suitable validity criterion of kernelized fuzzy C-means and kernelized fuzzy C-means with spatial constraints for automatic segmentation of magnetic resonance imaging (MRI. For that; the original Euclidean distance in the FCM is replaced by a Gaussian radial basis function classifier (GRBF and the corresponding algorithms of FCM methods are derived. The derived algorithms are called as the kernelized fuzzy C-means (KFCM and kernelized fuzzy C-means with spatial constraints (SKFCM. These methods are implemented on eighteen indexes as validation to determine whether indexes are capable to acquire the optimal clusters number. The performance of segmentation is estimated by applying these methods independently on several datasets to prove which method can give good results and with which indexes. Our test spans various indexes covering the classical and the rather more recent indexes that have enjoyed noticeable success in that field. These indexes are evaluated and compared by applying them on various test images, including synthetic images corrupted with noise of varying levels, and simulated volumetric MRI datasets. Comparative analysis is also presented to show whether the validity index indicates the optimal clustering for our datasets.

  20. Combined Forecasting of Rainfall Based on Fuzzy Clustering and Cross Entropy

    Directory of Open Access Journals (Sweden)

    Baohui Men

    2017-12-01

    Full Text Available Rainfall is an essential index to measure drought, and it is dependent upon various parameters including geographical environment, air temperature and pressure. The nonlinear nature of climatic variables leads to problems such as poor accuracy and instability in traditional forecasting methods. In this paper, the combined forecasting method based on data mining technology and cross entropy is proposed to forecast the rainfall with full consideration of the time-effectiveness of historical data. In view of the flaws of the fuzzy clustering method which is easy to fall into local optimal solution and low speed of operation, the ant colony algorithm is adopted to overcome these shortcomings and, as a result, refine the model. The method for determining weights is also improved by using the cross entropy. Besides, the forecast is conducted by analyzing the weighted average rainfall based on Thiessen polygon in the Beijing–Tianjin–Hebei region. Since the predictive errors are calculated, the results show that improved ant colony fuzzy clustering can effectively select historical data and enhance the accuracy of prediction so that the damage caused by extreme weather events like droughts and floods can be greatly lessened and even kept at bay.

  1. Systematic methods for the design of a class of fuzzy logic controllers

    Science.gov (United States)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental

  2. Hesitant fuzzy sets theory

    CERN Document Server

    Xu, Zeshui

    2014-01-01

    This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...

  3. Applications of Cluster Analysis to the Creation of Perfectionism Profiles: A Comparison of two Clustering Approaches

    Directory of Open Access Journals (Sweden)

    Jocelyn H Bolin

    2014-04-01

    Full Text Available Although traditional clustering methods (e.g., K-means have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

  4. Applications of cluster analysis to the creation of perfectionism profiles: a comparison of two clustering approaches.

    Science.gov (United States)

    Bolin, Jocelyn H; Edwards, Julianne M; Finch, W Holmes; Cassady, Jerrell C

    2014-01-01

    Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

  5. Fuzzy Rules for Ant Based Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Amira Hamdi

    2016-01-01

    Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.

  6. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    Science.gov (United States)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  7. A Fuzzy Neural Network Based on Non-Euclidean Distance Clustering for Quality Index Model in Slashing Process

    Directory of Open Access Journals (Sweden)

    Yuxian Zhang

    2015-01-01

    Full Text Available The quality index model in slashing process is difficult to build by reason of the outliers and noise data from original data. To the above problem, a fuzzy neural network based on non-Euclidean distance clustering is proposed in which the input space is partitioned into many local regions by the fuzzy clustering based on non-Euclidean distance so that the computation complexity is decreased, and fuzzy rule number is determined by validity function based on both the separation and the compactness among clusterings. Then, the premise parameters and consequent parameters are trained by hybrid learning algorithm. The parameters identification is realized; meanwhile the convergence condition of consequent parameters is obtained by Lyapunov function. Finally, the proposed method is applied to build the quality index model in slashing process in which the experimental data come from the actual slashing process. The experiment results show that the proposed fuzzy neural network for quality index model has lower computation complexity and faster convergence time, comparing with GP-FNN, BPNN, and RBFNN.

  8. A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor

    International Nuclear Information System (INIS)

    Zio, Enrico; Baraldi, Piero; Popescu, Irina Crenguta

    2009-01-01

    This paper extends a method previously introduced by the authors for building a transparent fault classification algorithm by combining the fuzzy clustering, fuzzy logic and decision trees techniques. The baseline method transforms an opaque, fuzzy clustering-based classification model into a fuzzy logic inference model based on linguistic rules which can be represented by a decision tree formalism. The classification model thereby obtained is transparent in that it allows direct interpretation and inspection of the model. An extension in the procedure for the development of the fuzzy logic inference model is introduced to allow the treatment of more complicated cases, e.g. splitted and overlapping clusters. The corresponding computational tool developed relies on a number of parameters which can be tuned by the user to optimally compromise the level of transparency of the classification process and its efficiency. A numerical application is presented with regards to the fault classification in the Steam Generator of a Pressurized Water Reactor.

  9. a Novel 3d Intelligent Fuzzy Algorithm Based on Minkowski-Clustering

    Science.gov (United States)

    Toori, S.; Esmaeily, A.

    2017-09-01

    Assessing and monitoring the state of the earth surface is a key requirement for global change research. In this paper, we propose a new consensus fuzzy clustering algorithm that is based on the Minkowski distance. This research concentrates on Tehran's vegetation mass and its changes during 29 years using remote sensing technology. The main purpose of this research is to evaluate the changes in vegetation mass using a new process by combination of intelligent NDVI fuzzy clustering and Minkowski distance operation. The dataset includes the images of Landsat8 and Landsat TM, from 1989 to 2016. For each year three images of three continuous days were used to identify vegetation impact and recovery. The result was a 3D NDVI image, with one dimension for each day NDVI. The next step was the classification procedure which is a complicated process of categorizing pixels into a finite number of separate classes, based on their data values. If a pixel satisfies a certain set of standards, the pixel is allocated to the class that corresponds to those criteria. This method is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. The result was a fuzzy one dimensional image. This image was also computed for the next 28 years. The classification was done in both specified urban and natural park areas of Tehran. Experiments showed that our method worked better in classifying image pixels in comparison with the standard classification methods.

  10. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    Science.gov (United States)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  11. Clinical assessment using an algorithm based on clustering Fuzzy c-means

    NARCIS (Netherlands)

    Guijarro-Rodriguez, A.; Cevallos-Torres, L.; Yepez-Holguin, J.; Botto-Tobar, M.; Valencia-García, R.; Lagos-Ortiz, K.; Alcaraz-Mármol, G.; Del Cioppo, J.; Vera-Lucio, N.; Bucaram-Leverone, M.

    2017-01-01

    The Fuzzy c-means (FCM) algorithms dene a grouping criterion from a function, which seeks to minimize iteratively the function up to an optimal fuzzy partition is obtained. In the execution of this algorithm relates each element to the clusters that were determined in the same n-dimensional space,

  12. Research and application of fuzzy subtractive clustering model on tensile strength of radiation vulcanization for nitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Zuo Duwen; Wang Hong; Zhu Nankang

    2010-01-01

    By use of fuzzy subtractive clustering model, the relationship between tensile strength of radiation vulcanization of NBRL (Nitrile-butadiene rubber latex) and irradiation parameters have been investigated. The correlation coefficient was calculated to be 0.8222 in the comparison of experimental data to the predicted data. It was obvious that fuzzy model identification method is not only high precision with small computation, but also easy to be used. It can directly supply the evolution of tensile strength of NBR by fuzzy modeling method in radiation vulcanization process for nitrile-butadiene rubber. (authors)

  13. A Geometric Fuzzy-Based Approach for Airport Clustering

    Directory of Open Access Journals (Sweden)

    Maria Nadia Postorino

    2014-01-01

    Full Text Available Airport classification is a common need in the air transport field due to several purposes—such as resource allocation, identification of crucial nodes, and real-time identification of substitute nodes—which also depend on the involved actors’ expectations. In this paper a fuzzy-based procedure has been proposed to cluster airports by using a fuzzy geometric point of view according to the concept of unit-hypercube. By representing each airport as a point in the given reference metric space, the geometric distance among airports—which corresponds to a measure of similarity—has in fact an intrinsic fuzzy nature due to the airport specific characteristics. The proposed procedure has been applied to a test case concerning the Italian airport network and the obtained results are in line with expectations.

  14. Effect of co-operative fuzzy c-means clustering on estimates of three ...

    Indian Academy of Sciences (India)

    infinite isotropic elastic media in concise matrix ... hydrate and free gas accumulation. 2. AVA method ... wave propagation across the boundaries of hori- zontally .... Flow chart showing the sequence of steps in the present scheme of fuzzy c-mean clustering adapted for AVA ... porosity 0.38, OIL API 28.5, brine salinity 0.07, ...

  15. Statistical Methods for Fuzzy Data

    CERN Document Server

    Viertl, Reinhard

    2011-01-01

    Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy m

  16. Soil data clustering by using K-means and fuzzy K-means algorithm

    Directory of Open Access Journals (Sweden)

    E. Hot

    2016-06-01

    Full Text Available A problem of soil clustering based on the chemical characteristics of soil, and proper visual representation of the obtained results, is analysed in the paper. To that aim, K-means and fuzzy K-means algorithms are adapted for soil data clustering. A database of soil characteristics sampled in Montenegro is used for a comparative analysis of implemented algorithms. The procedure of setting proper values for control parameters of fuzzy K-means is illustrated on the used database. In addition, validation of clustering is made through visualisation. Classified soil data are presented on the static Google map and dynamic Open Street Map.

  17. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    DEFF Research Database (Denmark)

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...... model is extracted from the obtained partitions. The identified model has been evaluated by comparing measurements with simulation results. The evaluation shows that the identified model is capable of describing the system dynamics over a reasonably wide frequency range....

  18. A fuzzy method for improving the functionality of search engines based on user's web interactions

    Directory of Open Access Journals (Sweden)

    Farzaneh Kabirbeyk

    2015-04-01

    Full Text Available Web mining has been widely used to discover knowledge from various sources in the web. One of the important tools in web mining is mining of web user’s behavior that is considered as a way to discover the potential knowledge of web user’s interaction. Nowadays, Website personalization is regarded as a popular phenomenon among web users and it plays an important role in facilitating user access and provides information of users’ requirements based on their own interests. Extracting important features about web user behavior plays a significant role in web usage mining. Such features are page visit frequency in each session, visit duration, and dates of visiting a certain pages. This paper presents a method to predict user’s interest and to propose a list of pages based on their interests by identifying user’s behavior based on fuzzy techniques called fuzzy clustering method. Due to the user’s different interests and use of one or more interest at a time, user’s interest may belong to several clusters and fuzzy clustering provide a possible overlap. Using the resulted cluster helps extract fuzzy rules. This helps detecting user’s movement pattern and using neural network a list of suggested pages to the users is provided.

  19. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  20. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  1. Study on distinguishing of Chinese ancient porcelains by neutron activation and fuzzy cluster analysis

    International Nuclear Information System (INIS)

    Wang An

    1992-01-01

    By means of the method of neutron activation, the contents of trace elements in some samples of Chinese ancient porcelains from different places of production were determined. The data were analysed by fuzzy cluster analysis. On the basis of the above mentioned works, a method with regard to the distinguishing and determining of Chinese ancient porcelain was suggested

  2. A Hybrid Fuzzy Multi-hop Unequal Clustering Algorithm for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shawkat K. Guirguis

    2017-01-01

    Full Text Available Clustering is carried out to explore and solve power dissipation problem in wireless sensor network (WSN. Hierarchical network architecture, based on clustering, can reduce energy consumption, balance traffic load, improve scalability, and prolong network lifetime. However, clustering faces two main challenges: hotspot problem and searching for effective techniques to perform clustering. This paper introduces a fuzzy unequal clustering technique for heterogeneous dense WSNs to determine both final cluster heads and their radii. Proposed fuzzy system blends three effective parameters together which are: the distance to the base station, the density of the cluster, and the deviation of the noders residual energy from the average network energy. Our objectives are achieving gain for network lifetime, energy distribution, and energy consumption. To evaluate the proposed algorithm, WSN clustering based routing algorithms are analyzed, simulated, and compared with obtained results. These protocols are LEACH, SEP, HEED, EEUC, and MOFCA.

  3. Multivariate spatial condition mapping using subtractive fuzzy cluster means.

    Science.gov (United States)

    Sabit, Hakilo; Al-Anbuky, Adnan

    2014-10-13

    Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining.

  4. Application of Bibliographic Coupling versus Cited Titles Words in Patent Fuzzy Clustering

    Directory of Open Access Journals (Sweden)

    Anahita Kermani

    2013-03-01

    Full Text Available Attribute selection is one of the steps before patent clustering. Various attributes can be used for clustering. In this study, the effect of using citation and citation title words, respectively, in form of bibliographic coupling and citation title words sharing, were measured and compared with each other, as patent attributes. This study was done in an experimental method, on a collection of 717 US Patent cited in the patents belong to 977/774 subclass of US Patent Classification. Fuzzy C-means was used for patent clustering and extended BCubed precision and extended BCubed recall were used as evaluation measure. The results showed that the clustering produced by bibliographic coupling had better performance than clustering used citation title words and existence of cluster structure were in a wider range of exhaustivity than citation title words.

  5. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering

    Science.gov (United States)

    Chen, Xin; Liu, Li; Zhou, Sida; Yue, Zhenjiang

    2016-09-01

    Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.

  6. Extended Traffic Crash Modelling through Precision and Response Time Using Fuzzy Clustering Algorithms Compared with Multi-layer Perceptron

    Directory of Open Access Journals (Sweden)

    Iman Aghayan

    2012-11-01

    Full Text Available This paper compares two fuzzy clustering algorithms – fuzzy subtractive clustering and fuzzy C-means clustering – to a multi-layer perceptron neural network for their ability to predict the severity of crash injuries and to estimate the response time on the traffic crash data. Four clustering algorithms – hierarchical, K-means, subtractive clustering, and fuzzy C-means clustering – were used to obtain the optimum number of clusters based on the mean silhouette coefficient and R-value before applying the fuzzy clustering algorithms. The best-fit algorithms were selected according to two criteria: precision (root mean square, R-value, mean absolute errors, and sum of square error and response time (t. The highest R-value was obtained for the multi-layer perceptron (0.89, demonstrating that the multi-layer perceptron had a high precision in traffic crash prediction among the prediction models, and that it was stable even in the presence of outliers and overlapping data. Meanwhile, in comparison with other prediction models, fuzzy subtractive clustering provided the lowest value for response time (0.284 second, 9.28 times faster than the time of multi-layer perceptron, meaning that it could lead to developing an on-line system for processing data from detectors and/or a real-time traffic database. The model can be extended through improvements based on additional data through induction procedure.

  7. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    Science.gov (United States)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  8. Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method

    Directory of Open Access Journals (Sweden)

    Ken Yeh

    2010-01-01

    Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.

  9. Fuzzy cluster quantitative computations of component mass transfer in rocks or minerals

    International Nuclear Information System (INIS)

    Liu Dezheng

    2000-01-01

    The author advances a new component mass transfer quantitative computation method on the basis of closure nature of mass percentage of components in rocks or minerals. Using fuzzy dynamic cluster analysis, and calculating restore closure difference, and determining type of difference, and assisted by relevant diagnostic parameters, the method gradually screens out the true constant component. Then, true mass percentage and mass transfer quantity of components of metabolic rocks or minerals are calculated by applying the true constant component fixed coefficient. This method is called true constant component fixed method (TCF method)

  10. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  11. Recurrent fuzzy ranking methods

    Science.gov (United States)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  12. Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.

  13. Fuzzy C-Means Clustering Model Data Mining For Recognizing Stock Data Sampling Pattern

    Directory of Open Access Journals (Sweden)

    Sylvia Jane Annatje Sumarauw

    2007-06-01

    Full Text Available Abstract Capital market has been beneficial to companies and investor. For investors, the capital market provides two economical advantages, namely deviden and capital gain, and a non-economical one that is a voting .} hare in Shareholders General Meeting. But, it can also penalize the share owners. In order to prevent them from the risk, the investors should predict the prospect of their companies. As a consequence of having an abstract commodity, the share quality will be determined by the validity of their company profile information. Any information of stock value fluctuation from Jakarta Stock Exchange can be a useful consideration and a good measurement for data analysis. In the context of preventing the shareholders from the risk, this research focuses on stock data sample category or stock data sample pattern by using Fuzzy c-Me, MS Clustering Model which providing any useful information jar the investors. lite research analyses stock data such as Individual Index, Volume and Amount on Property and Real Estate Emitter Group at Jakarta Stock Exchange from January 1 till December 31 of 204. 'he mining process follows Cross Industry Standard Process model for Data Mining (CRISP,. DM in the form of circle with these steps: Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation and Deployment. At this modelling process, the Fuzzy c-Means Clustering Model will be applied. Data Mining Fuzzy c-Means Clustering Model can analyze stock data in a big database with many complex variables especially for finding the data sample pattern, and then building Fuzzy Inference System for stimulating inputs to be outputs that based on Fuzzy Logic by recognising the pattern. Keywords: Data Mining, AUz..:y c-Means Clustering Model, Pattern Recognition

  14. Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs

    Directory of Open Access Journals (Sweden)

    Theis Fabian J

    2010-10-01

    Full Text Available Abstract Background Extensive and automated data integration in bioinformatics facilitates the construction of large, complex biological networks. However, the challenge lies in the interpretation of these networks. While most research focuses on the unipartite or bipartite case, we address the more general but common situation of k-partite graphs. These graphs contain k different node types and links are only allowed between nodes of different types. In order to reveal their structural organization and describe the contained information in a more coarse-grained fashion, we ask how to detect clusters within each node type. Results Since entities in biological networks regularly have more than one function and hence participate in more than one cluster, we developed a k-partite graph partitioning algorithm that allows for overlapping (fuzzy clusters. It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a weighted k-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were able to structure this graph on a large scale into clusters that are functionally correlated and biologically meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters' elements. We exemplified this for the transcription factor MECP2. Conclusions In order to cope with the overwhelming amount of information available from biomedical literature, we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end, we presented a novel fuzzy k-partite graph partitioning

  15. AUTOMATIC EXTRACTION OF ROCK JOINTS FROM LASER SCANNED DATA BY MOVING LEAST SQUARES METHOD AND FUZZY K-MEANS CLUSTERING

    Directory of Open Access Journals (Sweden)

    S. Oh

    2012-09-01

    Full Text Available Recent development of laser scanning device increased the capability of representing rock outcrop in a very high resolution. Accurate 3D point cloud model with rock joint information can help geologist to estimate stability of rock slope on-site or off-site. An automatic plane extraction method was developed by computing normal directions and grouping them in similar direction. Point normal was calculated by moving least squares (MLS method considering every point within a given distance to minimize error to the fitting plane. Normal directions were classified into a number of dominating clusters by fuzzy K-means clustering. Region growing approach was exploited to discriminate joints in a point cloud. Overall procedure was applied to point cloud with about 120,000 points, and successfully extracted joints with joint information. The extraction procedure was implemented to minimize number of input parameters and to construct plane information into the existing point cloud for less redundancy and high usability of the point cloud itself.

  16. Constructing APT Attack Scenarios Based on Intrusion Kill Chain and Fuzzy Clustering

    Directory of Open Access Journals (Sweden)

    Ru Zhang

    2017-01-01

    Full Text Available The APT attack on the Internet is becoming more serious, and most of intrusion detection systems can only generate alarms to some steps of APT attack and cannot identify the pattern of the APT attack. To detect APT attack, many researchers established attack models and then correlated IDS logs with the attack models. However, the accuracy of detection deeply relied on the integrity of models. In this paper, we propose a new method to construct APT attack scenarios by mining IDS security logs. These APT attack scenarios can be further used for the APT detection. First, we classify all the attack events by purpose of phase of the intrusion kill chain. Then we add the attack event dimension to fuzzy clustering, correlate IDS alarm logs with fuzzy clustering, and generate the attack sequence set. Next, we delete the bug attack sequences to clean the set. Finally, we use the nonaftereffect property of probability transfer matrix to construct attack scenarios by mining the attack sequence set. Experiments show that the proposed method can construct the APT attack scenarios by mining IDS alarm logs, and the constructed scenarios match the actual situation so that they can be used for APT attack detection.

  17. Degradation Assessment and Fault Diagnosis for Roller Bearing Based on AR Model and Fuzzy Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Lingli Jiang

    2011-01-01

    Full Text Available This paper proposes a new approach combining autoregressive (AR model and fuzzy cluster analysis for bearing fault diagnosis and degradation assessment. AR model is an effective approach to extract the fault feature, and is generally applied to stationary signals. However, the fault vibration signals of a roller bearing are non-stationary and non-Gaussian. Aiming at this problem, the set of parameters of the AR model is estimated based on higher-order cumulants. Consequently, the AR parameters are taken as the feature vectors, and fuzzy cluster analysis is applied to perform classification and pattern recognition. Experiments analysis results show that the proposed method can be used to identify various types and severities of fault bearings. This study is significant for non-stationary and non-Gaussian signal analysis, fault diagnosis and degradation assessment.

  18. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.

    Science.gov (United States)

    Wang, Huiya; Feng, Jun; Wang, Hongyu

    2017-07-20

    Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.

  19. Challenges And Results of the Applications of Fuzzy Logic in the Classification of Rich Galaxy Clusters

    Science.gov (United States)

    Girola Schneider, R.

    2017-07-01

    The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.

  20. Evaluation of Modified Categorical Data Fuzzy Clustering Algorithm on the Wisconsin Breast Cancer Dataset

    Directory of Open Access Journals (Sweden)

    Amir Ahmad

    2016-01-01

    Full Text Available The early diagnosis of breast cancer is an important step in a fight against the disease. Machine learning techniques have shown promise in improving our understanding of the disease. As medical datasets consist of data points which cannot be precisely assigned to a class, fuzzy methods have been useful for studying of these datasets. Sometimes breast cancer datasets are described by categorical features. Many fuzzy clustering algorithms have been developed for categorical datasets. However, in most of these methods Hamming distance is used to define the distance between the two categorical feature values. In this paper, we use a probabilistic distance measure for the distance computation among a pair of categorical feature values. Experiments demonstrate that the distance measure performs better than Hamming distance for Wisconsin breast cancer data.

  1. Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.

    Science.gov (United States)

    Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik

    2016-01-01

    Landfill location selection is a multi-criteria decision problem and has a strategic importance for many regions. The conventional methods for landfill location selection are insufficient in dealing with the vague or imprecise nature of linguistic assessment. To resolve this problem, fuzzy multi-criteria decision-making methods are proposed. The aim of this paper is to use fuzzy TODIM (the acronym for Interactive and Multi-criteria Decision Making in Portuguese) and the fuzzy analytic hierarchy process (AHP) methods for the selection of landfill location. The proposed methods have been applied to a landfill location selection problem in the region of Casablanca, Morocco. After determining the criteria affecting the landfill location decisions, fuzzy TODIM and fuzzy AHP methods are applied to the problem and results are presented. The comparisons of these two methods are also discussed.

  2. Development of classification and prediction methods of critical heat flux using fuzzy theory and artificial neural networks

    International Nuclear Information System (INIS)

    Moon, Sang Ki

    1995-02-01

    This thesis applies new information techniques, artificial neural networks, (ANNs) and fuzzy theory, to the investigation of the critical heat flux (CHF) phenomenon for water flow in vertical round tubes. The work performed are (a) classification and prediction of CHF based on fuzzy clustering and ANN, (b) prediction and parametric trends analysis of CHF using ANN with the introduction of dimensionless parameters, and (c) detection of CHF occurrence using fuzzy rule and spatiotemporal neural network (STN). Fuzzy clustering and ANN are used for classification and prediction of the CHF using primary system parameters. The fuzzy clustering classifies the experimental CHF data into a few data clusters (data groups) according to the data characteristics. After classification of the experimental data, the characteristics of the resulted clusters are discussed with emphasis on the distribution of the experimental conditions and physical mechanisms. The CHF data in each group are trained in an artificial neural network to predict the CHF. The artificial neural network adjusts the weight so as to minimize the prediction error within the corresponding cluster. Application of the proposed method to the KAIST CHF data bank shows good prediction capability of the CHF, better than other existing methods. Parametric trends of the CHF are analyzed by applying artificial neural networks to a CHF data base for water flow in uniformly heated vertical round tubes. The analyses are performed from three viewpoints, i.e., for fixed inlet conditions, for fixed exit conditions, and based on local conditions hypothesis. In order to remove the necessity of data classification, Katto and Groeneveld et al.'s dimensionless parameters are introduced in training the ANNs with the experimental CHF data. The trained ANNs predict the CHF better than any other conventional correlations, showing RMS error of 8.9%, 13.1%, and 19.3% for fixed inlet conditions, for fixed exit conditions, and for local

  3. ADAPTIVE WEB SITE DENGAN METODE FUZZY CLUSTERING

    Directory of Open Access Journals (Sweden)

    Muchammad Husni

    2004-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Ledakan pertumbuhan dan perkembangan informasi dalam dunia maya menjadikan personalisasian informasi menjadi isu yang penting. Personalisasi informasi yang akan diberikan oleh situs web akan sangat mempengaruhi pola dan perilaku pengguna dalam pencarian informasi, terutama pada perdagangan elektronis (e-commerce. Salah satu pendekatan yang memungkinkan dalam personalisasian web adalah mencari profil pengguna (user profile dari data historis yang sangat besar di file web log. Pengklasifikasian data tanpa pengawasan (unsupervised clasification atau metode metode clustering cukup baik untuk menganalisa data log akses pengguna yang semi terstruktur. Pada metode ini, didefinisikan "user session" dan juga ukuran perbedaan (dissimilarity diantara dua web session yang menggambarkan pengorganisasian sebuah web site. Untuk mendapatkan sebuah profil akses pengguna, dilakukan pembagian user session berdasarkan pasangan ketidaksamaan menggunakan algoritma Fuzzy Clustering. Kata kunci : Adaptive Website, Fuzzy Clustering, personalisasi informasi.

  4. Drought Forecasting by SPI Index and ANFIS Model Using Fuzzy C-mean Clustering

    Directory of Open Access Journals (Sweden)

    mehdi Komasi

    2013-08-01

    Full Text Available Drought is the interaction between environment and water cycle in the world and affects natural environment of an area when it persists for a longer period. So, developing a suitable index to forecast the spatial and temporal distribution of drought plays an important role in the planning and management of natural resources and water resource systems. In this article, firstly, the drought concept and drought indexes were introduced and then the fuzzy neural networks and fuzzy C-mean clustering were applied to forecast drought via standardized precipitation index (SPI. The results of this research indicate that the SPI index is more capable than the other indexes such as PDSI (Palmer Drought Severity Index, PAI (Palfai Aridity Index and etc. in drought forecasting process. Moreover, application of adaptive nero-fuzzy network accomplished by C-mean clustering has high efficiency in the drought forecasting.

  5. Comparative Investigation of Guided Fuzzy Clustering and Mean Shift Clustering for Edge Detection in Electrical Resistivity Tomography Images of Mineral Deposits

    Science.gov (United States)

    Ward, Wil; Wilkinson, Paul; Chambers, Jon; Bai, Li

    2014-05-01

    Geophysical surveying using electrical resistivity tomography (ERT) can be used as a rapid non-intrusive method to investigate mineral deposits [1]. One of the key challenges with this approach is to find a robust automated method to assess and characterise deposits on the basis of an ERT image. Recent research applying edge detection techniques has yielded a framework that can successfully locate geological interfaces in ERT images using a minimal assumption data clustering technique, the guided fuzzy clustering method (gfcm) [2]. Non-parametric clustering techniques are statistically grounded methods of image segmentation that do not require any assumptions about the distribution of data under investigation. This study is a comparison of two such methods to assess geological structure based on the resistivity images. In addition to gfcm, a method called mean-shift clustering [3] is investigated with comparisons directed at accuracy, computational expense, and degree of user interaction. Neither approach requires the number of clusters as input (a common parameter and often impractical), rather they are based on a similar theory that data can be clustered based on peaks in the probability density function (pdf) of the data. Each local maximum in these functions represents the modal value of a particular population corresponding to a cluster and as such the data are assigned based on their relationships to these model values. The two methods differ in that gfcm approximates the pdf using kernel density estimation and identifies population means, assigning cluster membership probabilities to each resistivity value in the model based on its distance from the distribution averages. Whereas, in mean-shift clustering, the density function is not calculated, but a gradient ascent method creates a vector that leads each datum towards high density distributions iteratively using weighted kernels to calculate locally dense regions. The only parameter needed in both methods

  6. Fuzzy cluster means algorithm for the diagnosis of confusable disease

    African Journals Online (AJOL)

    ... end platform while Microsoft Access was used as the database application. The system gives a measure of each disease within a set of confusable disease. The proposed system had a classification accuracy of 60%. Keywords: Artificial Intelligence, expert system Fuzzy cluster – means Algorithm, physician, Diagnosis ...

  7. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    Science.gov (United States)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  8. Adaptive Scaling of Cluster Boundaries for Large-Scale Social Media Data Clustering.

    Science.gov (United States)

    Meng, Lei; Tan, Ah-Hwee; Wunsch, Donald C

    2016-12-01

    The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.

  9. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.

    Science.gov (United States)

    Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.

  10. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance

    Science.gov (United States)

    Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600

  11. A new method for ordering triangular fuzzy numbers

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2010-09-01

    Full Text Available Ranking fuzzy numbers plays a very important role in linguistic decision making and other fuzzy application systems. In spite of many ranking methods, no one can rank fuzzy numbers with human intuition consistently in all cases. Shortcoming are found in some of the convenient methods for ranking triangular fuzzy numbers such as the coefficient of variation (CV index, distance between fuzzy sets, centroid point and original point, and also weighted mean value. In this paper, we introduce a new method for ranking triangular fuzzy number to overcome the shortcomings of the previous techniques. Finally, we compare our method with some convenient methods for ranking fuzzy numbers to illustrate the advantage our method.

  12. Classification of protein profiles using fuzzy clustering techniques

    DEFF Research Database (Denmark)

    Karemore, Gopal; Mullick, Jhinuk B.; Sujatha, R.

    2010-01-01

     Present  study  has  brought  out  a  comparison  of PCA  and  fuzzy  clustering  techniques  in  classifying  protein profiles  (chromatogram)  of  homogenates  of  different  tissue origins:  Ovarian,  Cervix,  Oral  cancers,  which  were  acquired using HPLC–LIF (High Performance Liquid...... Chromatography- Laser   Induced   Fluorescence)   method   developed   in   our laboratory. Study includes 11 chromatogram spectra each from oral,  cervical,  ovarian  cancers  as  well  as  healthy  volunteers. Generally  multivariate  analysis  like  PCA  demands  clear  data that   is   devoid   of   day......   PCA   mapping   in   classifying   various cancers from healthy spectra with classification rate up to 95 % from  60%.  Methods  are  validated  using  various  clustering indexes   and   shows   promising   improvement   in   developing optical pathology like HPLC-LIF for early detection of various...

  13. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering

    International Nuclear Information System (INIS)

    Acton, P.D.; Pilowsky, L.S.; Kung, H.F.; Ell, P.J.

    1999-01-01

    The segmentation of medical images is one of the most important steps in the analysis and quantification of imaging data. However, partial volume artefacts make accurate tissue boundary definition difficult, particularly for images with lower resolution commonly used in nuclear medicine. In single-photon emission tomography (SPET) neuroreceptor studies, areas of specific binding are usually delineated by manually drawing regions of interest (ROIs), a time-consuming and subjective process. This paper applies the technique of fuzzy c-means clustering (FCM) to automatically segment dynamic neuroreceptor SPET images. Fuzzy clustering was tested using a realistic, computer-generated, dynamic SPET phantom derived from segmenting an MR image of an anthropomorphic brain phantom. Also, the utility of applying FCM to real clinical data was assessed by comparison against conventional ROI analysis of iodine-123 iodobenzamide (IBZM) binding to dopamine D 2 /D 3 receptors in the brains of humans. In addition, a further test of the methodology was assessed by applying FCM segmentation to [ 123 I]IDAM images (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio] benzyl alcohol) of serotonin transporters in non-human primates. In the simulated dynamic SPET phantom, over a wide range of counts and ratios of specific binding to background, FCM correlated very strongly with the true counts (correlation coefficient r 2 >0.99, P 123 I]IBZM data comparable with manual ROI analysis, with the binding ratios derived from both methods significantly correlated (r 2 =0.83, P<0.0001). Fuzzy clustering is a powerful tool for the automatic, unsupervised segmentation of dynamic neuroreceptor SPET images. Where other automated techniques fail completely, and manual ROI definition would be highly subjective, FCM is capable of segmenting noisy images in a robust and repeatable manner. (orig.)

  14. Implementation of Automatic Clustering Algorithm and Fuzzy Time Series in Motorcycle Sales Forecasting

    Science.gov (United States)

    Rasim; Junaeti, E.; Wirantika, R.

    2018-01-01

    Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forecasting in the one-year period obtained in this study are included in good accuracy.

  15. AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number

    Directory of Open Access Journals (Sweden)

    Cooper James B

    2010-03-01

    Full Text Available Abstract Background Clustering the information content of large high-dimensional gene expression datasets has widespread application in "omics" biology. Unfortunately, the underlying structure of these natural datasets is often fuzzy, and the computational identification of data clusters generally requires knowledge about cluster number and geometry. Results We integrated strategies from machine learning, cartography, and graph theory into a new informatics method for automatically clustering self-organizing map ensembles of high-dimensional data. Our new method, called AutoSOME, readily identifies discrete and fuzzy data clusters without prior knowledge of cluster number or structure in diverse datasets including whole genome microarray data. Visualization of AutoSOME output using network diagrams and differential heat maps reveals unexpected variation among well-characterized cancer cell lines. Co-expression analysis of data from human embryonic and induced pluripotent stem cells using AutoSOME identifies >3400 up-regulated genes associated with pluripotency, and indicates that a recently identified protein-protein interaction network characterizing pluripotency was underestimated by a factor of four. Conclusions By effectively extracting important information from high-dimensional microarray data without prior knowledge or the need for data filtration, AutoSOME can yield systems-level insights from whole genome microarray expression studies. Due to its generality, this new method should also have practical utility for a variety of data-intensive applications, including the results of deep sequencing experiments. AutoSOME is available for download at http://jimcooperlab.mcdb.ucsb.edu/autosome.

  16. Fuzzy logic controller using different inference methods

    International Nuclear Information System (INIS)

    Liu, Z.; De Keyser, R.

    1994-01-01

    In this paper the design of fuzzy controllers by using different inference methods is introduced. Configuration of the fuzzy controllers includes a general rule-base which is a collection of fuzzy PI or PD rules, the triangular fuzzy data model and a centre of gravity defuzzification algorithm. The generalized modus ponens (GMP) is used with the minimum operator of the triangular norm. Under the sup-min inference rule, six fuzzy implication operators are employed to calculate the fuzzy look-up tables for each rule base. The performance is tested in simulated systems with MATLAB/SIMULINK. Results show the effects of using the fuzzy controllers with different inference methods and applied to different test processes

  17. Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method

    Directory of Open Access Journals (Sweden)

    Rasim M. Alguliyev

    2015-01-01

    Full Text Available Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method.

  18. Fuzzy Kernel k-Medoids algorithm for anomaly detection problems

    Science.gov (United States)

    Rustam, Z.; Talita, A. S.

    2017-07-01

    Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.

  19. Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Sotirios Kontogiannis

    2017-11-01

    Full Text Available Modern irrigation systems utilize sensors and actuators, interconnected together as a single entity. In such entities, A.I. algorithms are implemented, which are responsible for the irrigation process. In this paper, the authors present an irrigation Open Watering System (OWS architecture that spatially clusters the irrigation process into autonomous irrigation sections. Authors’ OWS implementation includes a Neuro-Fuzzy decision algorithm called FITRA, which originates from the Greek word for seed. In this paper, the FITRA algorithm is described in detail, as are experimentation results that indicate significant water conservations from the use of the FITRA algorithm. Furthermore, the authors propose a new communication protocol over LoRa radio as an alternative low-energy and long-range OWS clusters communication mechanism. The experimental scenarios confirm that the FITRA algorithm provides more efficient irrigation on clustered areas than existing non-clustered, time scheduled or threshold adaptive algorithms. This is due to the FITRA algorithm’s frequent monitoring of environmental conditions, fuzzy and neural network adaptation as well as adherence to past irrigation preferences.

  20. Approximate fuzzy C-means (AFCM) cluster analysis of medical magnetic resonance image (MRI) data

    International Nuclear Information System (INIS)

    DelaPaz, R.L.; Chang, P.J.; Bernstein, R.; Dave, J.V.

    1987-01-01

    The authors describe the application of an approximate fuzzy C-means (AFCM) clustering algorithm as a data dimension reduction approach to medical magnetic resonance images (MRI). Image data consisted of one T1-weighted, two T2-weighted, and one T2*-weighted (magnetic susceptibility) image for each cranial study and a matrix of 10 images generated from 10 combinations of TE and TR for each body lymphoma study. All images were obtained with a 1.5 Tesla imaging system (GE Signa). Analyses were performed on over 100 MR image sets with a variety of pathologies. The cluster analysis was operated in an unsupervised mode and computational overhead was minimized by utilizing a table look-up approach without adversely affecting accuracy. Image data were first segmented into 2 coarse clusters, each of which was then subdivided into 16 fine clusters. The final tissue classifications were presented as color-coded anatomically-mapped images and as two and three dimensional displays of cluster center data in selected feature space (minimum spanning tree). Fuzzy cluster analysis appears to be a clinically useful dimension reduction technique which results in improved diagnostic specificity of medical magnetic resonance images

  1. A possibilistic approach to clustering

    Science.gov (United States)

    Krishnapuram, Raghu; Keller, James M.

    1993-01-01

    Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering methods in that total commitment of a vector to a given class is not required at each image pattern recognition iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from the 'Fuzzy C-Means' (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Recently, we cast the clustering problem into the framework of possibility theory using an approach in which the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.

  2. A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering

    Directory of Open Access Journals (Sweden)

    Li Ma

    2015-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.

  3. Fuzzy cluster analysis on trace elements of Hangzhou Jiaotan Guan Porcelain

    International Nuclear Information System (INIS)

    Gao Zhengyao; Liu Youe; Chen Songhua

    1997-01-01

    Forty samples of South Song 'Jiaotan Guankiln' are analyzed by neutron activation analysis (NAA). The 36 trace element contents in every sample are determined. This trace elements are analyzed by fuzzy cluster method. The result shows that the source of glaze raw material of South Song Guan porcelain is clearly different from that of the body raw material. For Guan kiln of South Song dynasty there was a very stable and lasting source of raw material of glaze and body. The archaeological problems are clarified. The glaze material and body material of modern Guan porcelain are different from those of the ancient Guan Porcelain

  4. Genetic algorithm with fuzzy clustering for optimization of nuclear reactor problems

    International Nuclear Information System (INIS)

    Machado, Marcelo Dornellas; Sacco, Wagner Figueiredo; Schirru, Roberto

    2000-01-01

    Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to introduce a new niching technique based on the fuzzy clustering method FCM, bearing in mind its eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. tests are performed using widely known test functions and their results show that the new method is quite promising, specially to a future application in real world problems like the nuclear reactor core reload. (author)

  5. FUZZY CLUSTERING BASED BAYESIAN FRAMEWORK TO PREDICT MENTAL HEALTH PROBLEMS AMONG CHILDREN

    Directory of Open Access Journals (Sweden)

    M R Sumathi

    2017-04-01

    Full Text Available According to World Health Organization, 10-20% of children and adolescents all over the world are experiencing mental disorders. Correct diagnosis of mental disorders at an early stage improves the quality of life of children and avoids complicated problems. Various expert systems using artificial intelligence techniques have been developed for diagnosing mental disorders like Schizophrenia, Depression, Dementia, etc. This study focuses on predicting basic mental health problems of children, like Attention problem, Anxiety problem, Developmental delay, Attention Deficit Hyperactivity Disorder (ADHD, Pervasive Developmental Disorder(PDD, etc. using the machine learning techniques, Bayesian Networks and Fuzzy clustering. The focus of the article is on learning the Bayesian network structure using a novel Fuzzy Clustering Based Bayesian network structure learning framework. The performance of the proposed framework was compared with the other existing algorithms and the experimental results have shown that the proposed framework performs better than the earlier algorithms.

  6. Prediction of line failure fault based on weighted fuzzy dynamic clustering and improved relational analysis

    Science.gov (United States)

    Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao

    2018-04-01

    With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.

  7. Modified fuzzy c-means applied to a Bragg grating-based spectral imager for material clustering

    Science.gov (United States)

    Rodríguez, Aida; Nieves, Juan Luis; Valero, Eva; Garrote, Estíbaliz; Hernández-Andrés, Javier; Romero, Javier

    2012-01-01

    We have modified the Fuzzy C-Means algorithm for an application related to segmentation of hyperspectral images. Classical fuzzy c-means algorithm uses Euclidean distance for computing sample membership to each cluster. We have introduced a different distance metric, Spectral Similarity Value (SSV), in order to have a more convenient similarity measure for reflectance information. SSV distance metric considers both magnitude difference (by the use of Euclidean distance) and spectral shape (by the use of Pearson correlation). Experiments confirmed that the introduction of this metric improves the quality of hyperspectral image segmentation, creating spectrally more dense clusters and increasing the number of correctly classified pixels.

  8. A fuzzy automated object classification by infrared laser camera

    Science.gov (United States)

    Kanazawa, Seigo; Taniguchi, Kazuhiko; Asari, Kazunari; Kuramoto, Kei; Kobashi, Syoji; Hata, Yutaka

    2011-06-01

    Home security in night is very important, and the system that watches a person's movements is useful in the security. This paper describes a classification system of adult, child and the other object from distance distribution measured by an infrared laser camera. This camera radiates near infrared waves and receives reflected ones. Then, it converts the time of flight into distance distribution. Our method consists of 4 steps. First, we do background subtraction and noise rejection in the distance distribution. Second, we do fuzzy clustering in the distance distribution, and form several clusters. Third, we extract features such as the height, thickness, aspect ratio, area ratio of the cluster. Then, we make fuzzy if-then rules from knowledge of adult, child and the other object so as to classify the cluster to one of adult, child and the other object. Here, we made the fuzzy membership function with respect to each features. Finally, we classify the clusters to one with the highest fuzzy degree among adult, child and the other object. In our experiment, we set up the camera in room and tested three cases. The method successfully classified them in real time processing.

  9. Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation.

    Directory of Open Access Journals (Sweden)

    Pradipta Maji

    Full Text Available Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.

  10. Unsupervised Approach Data Analysis Based on Fuzzy Possibilistic Clustering: Application to Medical Image MRI

    Directory of Open Access Journals (Sweden)

    Nour-Eddine El Harchaoui

    2013-01-01

    Full Text Available The analysis and processing of large data are a challenge for researchers. Several approaches have been used to model these complex data, and they are based on some mathematical theories: fuzzy, probabilistic, possibilistic, and evidence theories. In this work, we propose a new unsupervised classification approach that combines the fuzzy and possibilistic theories; our purpose is to overcome the problems of uncertain data in complex systems. We used the membership function of fuzzy c-means (FCM to initialize the parameters of possibilistic c-means (PCM, in order to solve the problem of coinciding clusters that are generated by PCM and also overcome the weakness of FCM to noise. To validate our approach, we used several validity indexes and we compared them with other conventional classification algorithms: fuzzy c-means, possibilistic c-means, and possibilistic fuzzy c-means. The experiments were realized on different synthetics data sets and real brain MR images.

  11. Equipment Selection by using Fuzzy TOPSIS Method

    Science.gov (United States)

    Yavuz, Mahmut

    2016-10-01

    In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.

  12. FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taegwon Jeong

    2011-05-01

    Full Text Available Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP, the Weighted-based Adaptive Clustering Algorithm (WACA, and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM. The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  13. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.

    Science.gov (United States)

    Lee, Chongdeuk; Jeong, Taegwon

    2011-01-01

    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  14. An Ontological-Fuzzy Approach to Advance Reservation in Multi-Cluster Grids

    International Nuclear Information System (INIS)

    Ferreira, D J; Dantas, M A R; Bauer, Michael A

    2010-01-01

    Advance reservation is an important mechanism for a successful utilization of available resources in distributed multi-cluster environments. This mechanism allows, for example, a user to provide parameters aiming to satisfy requirements related to applications' execution time and temporal dependence. This predictability can lead the system to reach higher levels of QoS. However, the support for advance reservation has been restricted due to the complexity of large scale configurations and also dynamic changes verified in these systems. In this research work it is proposed an advance reservation method, based on a ontology-fuzzy approach. It allows a user to reserve a wide variety of resources and enable large jobs to be reserved among different nodes. In addition, it dynamically verifies the possibility of reservation with the local RMS, avoiding future allocation conflicts. Experimental results of the proposal, through simulation, indicate that the proposed mechanism reached a successful level of flexibility for large jobs and more appropriated distribution of resources in a distributed multi-cluster configuration.

  15. An Ontological-Fuzzy Approach to Advance Reservation in Multi-Cluster Grids

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, D J; Dantas, M A R; Bauer, Michael A, E-mail: ded@inf.ufsc.br, E-mail: mario@inf.ufsc.br, E-mail: bauer@csd.uwo.ca

    2010-11-01

    Advance reservation is an important mechanism for a successful utilization of available resources in distributed multi-cluster environments. This mechanism allows, for example, a user to provide parameters aiming to satisfy requirements related to applications' execution time and temporal dependence. This predictability can lead the system to reach higher levels of QoS. However, the support for advance reservation has been restricted due to the complexity of large scale configurations and also dynamic changes verified in these systems. In this research work it is proposed an advance reservation method, based on a ontology-fuzzy approach. It allows a user to reserve a wide variety of resources and enable large jobs to be reserved among different nodes. In addition, it dynamically verifies the possibility of reservation with the local RMS, avoiding future allocation conflicts. Experimental results of the proposal, through simulation, indicate that the proposed mechanism reached a successful level of flexibility for large jobs and more appropriated distribution of resources in a distributed multi-cluster configuration.

  16. A fuzzy Hopfield neural network for medical image segmentation

    International Nuclear Information System (INIS)

    Lin, J.S.; Cheng, K.S.; Mao, C.W.

    1996-01-01

    In this paper, an unsupervised parallel segmentation approach using a fuzzy Hopfield neural network (FHNN) is proposed. The main purpose is to embed fuzzy clustering into neural networks so that on-line learning and parallel implementation for medical image segmentation are feasible. The idea is to cast a clustering problem as a minimization problem where the criteria for the optimum segmentation is chosen as the minimization of the Euclidean distance between samples to class centers. In order to generate feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need of finding weighting factors in the energy function, which is formulated and based on a basic concept commonly used in pattern classification, called the within-class scatter matrix principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The fuzzy Hopfield neural network based on the within-class scatter matrix shows the promising results in comparison with the hard c-means method

  17. Hesitant fuzzy methods for multiple criteria decision analysis

    CERN Document Server

    Zhang, Xiaolu

    2017-01-01

    The book offers a comprehensive introduction to methods for solving multiple criteria decision making and group decision making problems with hesitant fuzzy information. It reports on the authors’ latest research, as well as on others’ research, providing readers with a complete set of decision making tools, such as hesitant fuzzy TOPSIS, hesitant fuzzy TODIM, hesitant fuzzy LINMAP, hesitant fuzzy QUALIFEX, and the deviation modeling approach with heterogeneous fuzzy information. The main focus is on decision making problems in which the criteria values and/or the weights of criteria are not expressed in crisp numbers but are more suitable to be denoted as hesitant fuzzy elements. The largest part of the book is devoted to new methods recently developed by the authors to solve decision making problems in situations where the available information is vague or hesitant. These methods are presented in detail, together with their application to different type of decision-making problems. All in all, the book ...

  18. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM).

    NARCIS (Netherlands)

    Bruin, de S.; Stein, A.

    1998-01-01

    This study explores the use of fuzzy c-means clustering of attribute data derived from a digital elevation model to represent transition zones in the soil-landscape. The conventional geographic model used for soil-landscape description is not able to properly deal with these. Fuzzy c-means

  19. A fuzzy logic based PROMETHEE method for material selection problems

    Directory of Open Access Journals (Sweden)

    Muhammet Gul

    2018-03-01

    Full Text Available Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper presents a fuzzy PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation method based on trapezoidal fuzzy interval numbers that can be applied to the selection of materials for an automotive instrument panel. Also, it presents uniqueness in making a significant contribution to the literature in terms of the application of fuzzy decision-making approach to material selection problems. The method is illustrated, validated, and compared against three different fuzzy MCDM methods (fuzzy VIKOR, fuzzy TOPSIS, and fuzzy ELECTRE in terms of its ranking performance. Also, the relationships between the compared methods and the proposed scenarios for fuzzy PROMETHEE are evaluated via the Spearman’s correlation coefficient. Styrene Maleic Anhydride and Polypropylene are determined optionally as suitable materials for the automotive instrument panel case. We propose a generic fuzzy MCDM methodology that can be practically implemented to material selection problem. The main advantages of the methodology are consideration of the vagueness, uncertainty, and fuzziness to decision making environment.

  20. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods

    International Nuclear Information System (INIS)

    Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H.

    2010-01-01

    We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.

  1. Gas load forecasting based on optimized fuzzy c-mean clustering analysis of selecting similar days

    Directory of Open Access Journals (Sweden)

    Qiu Jing

    2017-08-01

    Full Text Available Traditional fuzzy c-means (FCM clustering in short term load forecasting method is easy to fall into local optimum and is sensitive to the initial cluster center.In this paper,we propose to use global search feature of particle swarm optimization (PSO algorithm to avoid these shortcomings,and to use FCM optimization to select similar date of forecast as training sample of support vector machines.This will not only strengthen the data rule of training samples,but also ensure the consistency of data characteristics.Experimental results show that the prediction accuracy of this prediction model is better than that of BP neural network and support vector machine (SVM algorithms.

  2. Classifying OECD Countries According to Health Indicators Using Fuzzy Clustering Ana lysis

    Directory of Open Access Journals (Sweden)

    Nesrin Alptekin

    2015-12-01

    Full Text Available This study was conducted in order to classify OECD countries according to health indicators using fuzzy clustering analysis, to identify the cluster in which Turkey is in and the other countries located in the same cluster with Turkey and to determine whether Turkey shows similar characteristics with other countries located in the same cluster or not. In the study, 34 OECD member countries were discussed. With ten variables that directly and indirectly affect the health, c- means clustering analysis was performed. The NCSS 10 software package was used to analyze the data.In the analysis, it was determined that the most appropriate cluster number is five; three countries involved in the first cluster, nine countries involved in the second cluster, nine countries involved in the third cluster, six countries involved in the fourth cluster and seven countries involved in the fifth cluster. Turkey is located in the fourth cluster. Other countries in the same cluster along with Turkey are Estonia, Hungary, Mexico, Poland and Chile

  3. Digital pulse shape discrimination of detector data using fuzzy clustering

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chatterjee, A.; Ramachandran, K.; Shrivastava, A.; Mahata, K.

    2011-01-01

    In accelerator based experiments, data acquisition is done by CAMAC, VME and other systems. The current trend is to digitize the pulse shapes and not just the peak heights of all the input channels, by means of Flash ADCs. In view of the large number of channels involved, this leads to unprecedented data volumes. Therefore, attempts to perform a first level of analysis in real time using algorithms implemented in FPGA have become important. In the present work, digital pulse shape discrimination using fuzzy clustering has been investigated. The attempt has been to devise general purpose PSD Techniques, loosely coupled with the characteristics of detector or particle type, for particle identification. The method is applicable to neutron-gamma discrimination for liquid scintillators and charged particles detected by Si detectors

  4. Intuitionistic Trapezoidal Fuzzy Group Decision-Making Based on Prospect Choquet Integral Operator and Grey Projection Pursuit Dynamic Cluster

    Directory of Open Access Journals (Sweden)

    Jiahang Yuan

    2017-01-01

    Full Text Available In consideration of the interaction among attributes and the influence of decision makers’ risk attitude, this paper proposes an intuitionistic trapezoidal fuzzy aggregation operator based on Choquet integral and prospect theory. With respect to a multiattribute group decision-making problem, the prospect value functions of intuitionistic trapezoidal fuzzy numbers are aggregated by the proposed operator; then a grey relation-projection pursuit dynamic cluster method is developed to obtain the ranking of alternatives; the firefly algorithm is used to optimize the objective function of projection for obtaining the best projection direction of grey correlation projection values, and the grey correlation projection values are evaluated, which are applied to classify, rank, and prefer the alternatives. Finally, an illustrative example is taken in the present study to make the proposed method comprehensible.

  5. PARTIAL TRAINING METHOD FOR HEURISTIC ALGORITHM OF POSSIBLE CLUSTERIZATION UNDER UNKNOWN NUMBER OF CLASSES

    Directory of Open Access Journals (Sweden)

    D. A. Viattchenin

    2009-01-01

    Full Text Available A method for constructing a subset of labeled objects which is used in a heuristic algorithm of possible  clusterization with partial  training is proposed in the  paper.  The  method  is  based  on  data preprocessing by the heuristic algorithm of possible clusterization using a transitive closure of a fuzzy tolerance. Method efficiency is demonstrated by way of an illustrative example.

  6. Uzawa method for fuzzy linear system

    OpenAIRE

    Ke Wang

    2013-01-01

    An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

  7. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    Science.gov (United States)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  8. a novel two – factor high order fuzzy time series with applications to ...

    African Journals Online (AJOL)

    HOD

    objectively with multiple – factor fuzzy time series, recurrent number of fuzzy relationships, and assigning weights to elements of fuzzy forecasting rules. In this paper, a novel two – factor high – order fuzzy time series forecasting method based on fuzzy C-means clustering and particle swarm optimization is proposed to ...

  9. Supply chain management under fuzziness recent developments and techniques

    CERN Document Server

    Öztayşi, Başar

    2014-01-01

    Supply Chain Management Under Fuzziness presents recently developed fuzzy models and techniques for supply chain management. These include: fuzzy PROMETHEE, fuzzy AHP, fuzzy ANP, fuzzy VIKOR, fuzzy DEMATEL, fuzzy clustering, fuzzy linear programming, and fuzzy inference systems. The book covers both practical applications and new developments concerning these methods. This book offers an excellent resource for researchers and practitioners in supply chain management and logistics, and will provide them with new suggestions and directions for future research. Moreover, it will support graduate students in their university courses, such as specialized courses on supply chains and logistics, as well as related courses in the fields of industrial engineering, engineering management and business administration.

  10. Brain vascular image segmentation based on fuzzy local information C-means clustering

    Science.gov (United States)

    Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie

    2017-02-01

    Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.

  11. Optimasi Penempatan Lokasi Potensial Menara Baru Bersama Pada Sistem Telekomunikasi Seluler Dengan Menggunakan Fuzzy Clustering Di Daerah Sidoarjo

    Directory of Open Access Journals (Sweden)

    Muthmainnah Muthmainnah

    2015-03-01

    Full Text Available Mengikuti perkembangan jumlah pelanggan seluler yang semakin pesat, para operator terus berusaha membangun infrastruktur agar layanan dan kualitasnya semakin meningkat. Salah satu infrastruktur penyelenggaraan yang terus menerus dibangun adalah Base Transceiver Station. Namun, pembangunan BTS tersebut harus mempertimbangkan estetika dan kesesuaian dengan Rencana Tata Ruang Wilayah (RTRW. Tugas akhir ini bertujuan untuk menerapkan metode Fuzzy Clustering dan Harmony Search untuk mengoptimalkan penempatan lokasi potensial menara baru sehingga diperoleh solusi yang optimal. Selain RTRW, titik potensial juga dapat ditentukan dengan menggunakan titik pusat cluster melalui metode Fuzzy C-Means. Setelah itu titik menara baru dapat dioptimasi dengan menggunakan metode Harmony Search dengan meminimalkan fungsi path loss. Hasil optimasi menunjukan bahwa untuk layanan 2G membutuhkan penambahan BTS sebanyak 343 BTS yang mampu melayani kebutuhan trafik sebesar 42230 Erlang, sedangkan untuk layanan 3G membutuhkan penambahan BTS sebanyak 278 BTS yang mampu melayani Offered Bit Quantity (OBQ sebesar 1160857  Kbps dengan total luas coverage BTS nya sebesar 60.798 km2. namun dari segi jumlah menaranya tidak terjadi penambahan pada kedua jenis layanan ini. Hal ini dimaksudkan agar dapat mengefisienkan penggunaan menara eksisting. Dengan menggunakan metode Fuzzy Subtractive Clustering diperoleh 3 (tiga jumlah cluster yang optimal di setiap kecamatan.

  12. Ellipsoidal fuzzy learning for smart car platoons

    Science.gov (United States)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  13. Introduction to Fuzzy Set Theory

    Science.gov (United States)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  14. Model of cholera dissemination using geographic information systems and fuzzy clustering means: case study, Chabahar, Iran.

    Science.gov (United States)

    Pezeshki, Z; Tafazzoli-Shadpour, M; Mansourian, A; Eshrati, B; Omidi, E; Nejadqoli, I

    2012-10-01

    Cholera is spread by drinking water or eating food that is contaminated by bacteria, and is related to climate changes. Several epidemics have occurred in Iran, the most recent of which was in 2005 with 1133 cases and 12 deaths. This study investigated the incidence of cholera over a 10-year period in Chabahar district, a region with one of the highest incidence rates of cholera in Iran. Descriptive retrospective study on data of patients with Eltor and NAG cholera reported to the Iranian Centre of Disease Control between 1997 and 2006. Data on the prevalence of cholera were gathered through a surveillance system, and a spatial database was developed using geographic information systems (GIS) to describe the relation of spatial and climate variables to cholera incidences. Fuzzy clustering (fuzzy C) method and statistical analysis based on logistic regression were used to develop a model of cholera dissemination. The variables were demographic characteristics, specifications of cholera infection, climate conditions and some geographical parameters. The incidence of cholera was found to be significantly related to higher temperature and humidity, lower precipitation, shorter distance to the eastern border of Iran and local health centres, and longer distance to the district health centre. The fuzzy C means algorithm showed that clusters were geographically distributed in distinct regions. In order to plan, manage and monitor any public health programme, GIS provide ideal platforms for the convergence of disease-specific information, analysis and computation of new data for statistical analysis. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  15. A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers

    International Nuclear Information System (INIS)

    Nguyen, Sy Dzung; Choi, Seung-Bok

    2012-01-01

    This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input–output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results. (paper)

  16. A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers

    Science.gov (United States)

    Dzung Nguyen, Sy; Choi, Seung-Bok

    2012-08-01

    This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input-output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results.

  17. Approximation Of Multi-Valued Inverse Functions Using Clustering And Sugeno Fuzzy Inference

    Science.gov (United States)

    Walden, Maria A.; Bikdash, Marwan; Homaifar, Abdollah

    1998-01-01

    Finding the inverse of a continuous function can be challenging and computationally expensive when the inverse function is multi-valued. Difficulties may be compounded when the function itself is difficult to evaluate. We show that we can use fuzzy-logic approximators such as Sugeno inference systems to compute the inverse on-line. To do so, a fuzzy clustering algorithm can be used in conjunction with a discriminating function to split the function data into branches for the different values of the forward function. These data sets are then fed into a recursive least-squares learning algorithm that finds the proper coefficients of the Sugeno approximators; each Sugeno approximator finds one value of the inverse function. Discussions about the accuracy of the approximation will be included.

  18. Face Recognition Method Based on Fuzzy 2DPCA

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2014-01-01

    Full Text Available 2DPCA, which is one of the most important face recognition methods, is relatively sensitive to substantial variations in light direction, face pose, and facial expression. In order to improve the recognition performance of the traditional 2DPCA, a new 2DPCA algorithm based on the fuzzy theory is proposed in this paper, namely, the fuzzy 2DPCA (F2DPCA. In this method, applying fuzzy K-nearest neighbor (FKNN, the membership degree matrix of the training samples is calculated, which is used to get the fuzzy means of each class. The average of fuzzy means is then incorporated into the definition of the general scatter matrix with anticipation that it can improve classification result. The comprehensive experiments on the ORL, the YALE, and the FERET face database show that the proposed method can improve the classification rates and reduce the sensitivity to variations between face images caused by changes in illumination, face expression, and face pose.

  19. Comparıson of Turkey and European Unıon Countrıes’ Health Indıcators by Usıng Fuzzy Clusterıng Analysıs

    Directory of Open Access Journals (Sweden)

    Nesrin Alptekin

    2014-10-01

    Full Text Available In this study, it is aimed to classify of 27 European Union countries and Turkey with the healthcare indicators by using fuzzy clustering analysis. This study also investigates the position of Turkey compared to the European Union countries in terms of healthcare statistics. Fuzzy clustering analysis has been applied to the data obtained from 2012 World Health Report. Based on the Fuzzy clustering analysis, the countries were classified into two different groups. Turkey is placed in the same cluster as Bulgaria, Cyprus, Estonia, Hungary, Latvia, Lithuania, Poland, Romania and Slovakia.

  20. The Anonymization Protection Algorithm Based on Fuzzy Clustering for the Ego of Data in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Mingshan Xie

    2017-01-01

    Full Text Available In order to enhance the enthusiasm of the data provider in the process of data interaction and improve the adequacy of data interaction, we put forward the concept of the ego of data and then analyzed the characteristics of the ego of data in the Internet of Things (IOT in this paper. We implement two steps of data clustering for the Internet of things; the first step is the spatial location of adjacent fuzzy clustering, and the second step is the sampling time fuzzy clustering. Equivalent classes can be obtained through the two steps. In this way we can make the data with layout characteristics to be classified into different equivalent classes, so that the specific location information of the data can be obscured, the layout characteristics of tags are eliminated, and ultimately anonymization protection would be achieved. The experimental results show that the proposed algorithm can greatly improve the efficiency of protection of the data in the interaction with others in the incompletely open manner, without reducing the quality of anonymization and enhancing the information loss. The anonymization data set generated by this method has better data availability, and this algorithm can effectively improve the security of data exchange.

  1. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    Science.gov (United States)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.

  2. Method of dynamic fuzzy symptom vector in intelligent diagnosis

    International Nuclear Information System (INIS)

    Sun Hongyan; Jiang Xuefeng

    2010-01-01

    Aiming at the requirement of diagnostic symptom real-time updating brought from diagnostic knowledge accumulation and great gap in unit and value of diagnostic symptom in multi parameters intelligent diagnosis, the method of dynamic fuzzy symptom vector is proposed. The concept of dynamic fuzzy symptom vector is defined. Ontology is used to specify the vector elements, and the vector transmission method based on ontology is built. The changing law of symptom value is analyzed and fuzzy normalization method based on fuzzy membership functions is built. An instance proved method of dynamic fussy symptom vector is efficient to solve the problems of symptom updating and unify of symptom value and unit. (authors)

  3. Optimization of Inventories for Multiple Companies by Fuzzy Control Method

    OpenAIRE

    Kawase, Koichi; Konishi, Masami; Imai, Jun

    2008-01-01

    In this research, Fuzzy control theory is applied to the inventory control of the supply chain between multiple companies. The proposed control method deals with the amountof inventories expressing supply chain between multiple companies. Referring past demand and tardiness, inventory amounts of raw materials are determined by Fuzzy inference. The method that an appropriate inventory control becomes possible optimizing fuzzy control gain by using SA method for Fuzzy control. The variation of ...

  4. Solving the interval type-2 fuzzy polynomial equation using the ranking method

    Science.gov (United States)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-07-01

    Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

  5. DESCRIBING FUNCTION METHOD FOR PI-FUZZY CONTROLLED SYSTEMS STABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Stefan PREITL

    2004-12-01

    Full Text Available The paper proposes a global stability analysis method dedicated to fuzzy control systems containing Mamdani PI-fuzzy controllers with output integration to control SISO linear / linearized plants. The method is expressed in terms of relatively simple steps, and it is based on: the generalization of the describing function method for the considered fuzzy control systems to the MIMO case, the approximation of the describing functions by applying the least squares method. The method is applied to the stability analysis of a class of PI-fuzzy controlled servo-systems, and validated by considering a case study.

  6. Kernel Clustering with a Differential Harmony Search Algorithm for Scheme Classification

    Directory of Open Access Journals (Sweden)

    Yu Feng

    2017-01-01

    Full Text Available This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the kernel fuzzy clustering to help the clustering method obtain better solutions. Finally, the combination of the kernel fuzzy clustering and the differential harmony search is applied for water diversion scheduling in East Lake. A comparison of the proposed method with other methods has been carried out. The results show that the kernel clustering with the differential harmony search algorithm has good performance to cooperate with the water diversion scheduling problems.

  7. Edge detection methods based on generalized type-2 fuzzy logic

    CERN Document Server

    Gonzalez, Claudia I; Castro, Juan R; Castillo, Oscar

    2017-01-01

    In this book four new methods are proposed. In the first method the generalized type-2 fuzzy logic is combined with the morphological gra-dient technique. The second method combines the general type-2 fuzzy systems (GT2 FSs) and the Sobel operator; in the third approach the me-thodology based on Sobel operator and GT2 FSs is improved to be applied on color images. In the fourth approach, we proposed a novel edge detec-tion method where, a digital image is converted a generalized type-2 fuzzy image. In this book it is also included a comparative study of type-1, inter-val type-2 and generalized type-2 fuzzy systems as tools to enhance edge detection in digital images when used in conjunction with the morphologi-cal gradient and the Sobel operator. The proposed generalized type-2 fuzzy edge detection methods were tested with benchmark images and synthetic images, in a grayscale and color format. Another contribution in this book is that the generalized type-2 fuzzy edge detector method is applied in the preproc...

  8. FEATURE EXTRACTION BASED WAVELET TRANSFORM IN BREAST CANCER DIAGNOSIS USING FUZZY AND NON-FUZZY CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Pelin GORGEL

    2013-01-01

    Full Text Available This study helps to provide a second eye to the expert radiologists for the classification of manually extracted breast masses taken from 60 digital mammıgrams. These mammograms have been acquired from Istanbul University Faculty of Medicine Hospital and have 78 masses. The diagnosis is implemented with pre-processing by using feature extraction based Fast Wavelet Transform (FWT. Afterwards Adaptive Neuro-Fuzzy Inference System (ANFIS based fuzzy subtractive clustering and Support Vector Machines (SVM methods are used for the classification. It is a comparative study which uses these methods respectively. According to the results of the study, ANFIS based subtractive clustering produces ??% while SVM produces ??% accuracy in malignant-benign classification. The results demonstrate that the developed system could help the radiologists for a true diagnosis and decrease the number of the missing cancerous regions or unnecessary biopsies.

  9. Mapping Diversity of Publication Patterns in the Social Sciences and Humanities: An Approach Making Use of Fuzzy Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Frederik T. Verleysen

    2016-11-01

    Full Text Available Purpose: To present a method for systematically mapping diversity of publication patterns at the author level in the social sciences and humanities in terms of publication type, publication language and co-authorship. Design/methodology/approach: In a follow-up to the hard partitioning clustering by Verleysen and Weeren in 2016, we now propose the complementary use of fuzzy cluster analysis, making use of a membership coefficient to study gradual differences between publication styles among authors within a scholarly discipline. The analysis of the probability density function of the membership coefficient allows to assess the distribution of publication styles within and between disciplines. Findings: As an illustration we analyze 1,828 productive authors affiliated in Flanders, Belgium. Whereas a hard partitioning previously identified two broad publication styles, an international one vs. a domestic one, fuzzy analysis now shows gradual differences among authors. Internal diversity also varies across disciplines and can be explained by researchers' specialization and dissemination strategies. Research limitations: The dataset used is limited to one country for the years 2000-2011; a cognitive classification of authors may yield a different result from the affiliation-based classification used here. Practical implications: Our method is applicable to other bibliometric and research evaluation contexts, especially for the social sciences and humanities in non-Anglophone countries. Originality/value: The method proposed is a novel application of cluster analysis to the field of bibliometrics. Applied to publication patterns at the author level in the social sciences and humanities, for the first time it systematically documents intra-disciplinary diversity.

  10. Yager’s ranking method for solving the trapezoidal fuzzy number linear programming

    Science.gov (United States)

    Karyati; Wutsqa, D. U.; Insani, N.

    2018-03-01

    In the previous research, the authors have studied the fuzzy simplex method for trapezoidal fuzzy number linear programming based on the Maleki’s ranking function. We have found some theories related to the term conditions for the optimum solution of fuzzy simplex method, the fuzzy Big-M method, the fuzzy two-phase method, and the sensitivity analysis. In this research, we study about the fuzzy simplex method based on the other ranking function. It is called Yager's ranking function. In this case, we investigate the optimum term conditions. Based on the result of research, it is found that Yager’s ranking function is not like Maleki’s ranking function. Using the Yager’s function, the simplex method cannot work as well as when using the Maleki’s function. By using the Yager’s function, the value of the subtraction of two equal fuzzy numbers is not equal to zero. This condition makes the optimum table of the fuzzy simplex table is undetected. As a result, the simplified fuzzy simplex table becomes stopped and does not reach the optimum solution.

  11. An introduction to fuzzy linear programming problems theory, methods and applications

    CERN Document Server

    Kaur, Jagdeep

    2016-01-01

    The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.

  12. A new fuzzy Monte Carlo method for solving SLAE with ergodic fuzzy Markov chains

    Directory of Open Access Journals (Sweden)

    Maryam Gharehdaghi

    2015-05-01

    Full Text Available In this paper we introduce a new fuzzy Monte Carlo method for solving system of linear algebraic equations (SLAE over the possibility theory and max-min algebra. To solve the SLAE, we first define a fuzzy estimator and prove that this is an unbiased estimator of the solution. To prove unbiasedness, we apply the ergodic fuzzy Markov chains. This new approach works even for cases with coefficients matrix with a norm greater than one.

  13. Mehar Methods for Fuzzy Optimal Solution and Sensitivity Analysis of Fuzzy Linear Programming with Symmetric Trapezoidal Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Sukhpreet Kaur Sidhu

    2014-01-01

    Full Text Available The drawbacks of the existing methods to obtain the fuzzy optimal solution of such linear programming problems, in which coefficients of the constraints are represented by real numbers and all the other parameters as well as variables are represented by symmetric trapezoidal fuzzy numbers, are pointed out, and to resolve these drawbacks, a new method (named as Mehar method is proposed for the same linear programming problems. Also, with the help of proposed Mehar method, a new method, much easy as compared to the existing methods, is proposed to deal with the sensitivity analysis of the same type of linear programming problems.

  14. Identifikasi Gangguan Neurologis Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    Jani Kusanti

    2015-07-01

    Abstract             The use of Adaptive Neuro Fuzzy Inference System (ANFIS methods in the process of identifying one of neurological disorders in the head, known in medical terms ischemic stroke from the ct scan of the head in order to identify the location of ischemic stroke. The steps are performed in the extraction process of identifying, among others, the image of the ct scan of the head by using a histogram. Enhanced image of the intensity histogram image results using Otsu threshold to obtain results pixels rated 1 related to the object while pixel rated 0 associated with the measurement background. The result used for image clustering process, to process image clusters used fuzzy c-mean (FCM clustering result is a row of the cluster center, the results of the data used to construct a fuzzy inference system (FIS. Fuzzy inference system applied is fuzzy inference model of Takagi-Sugeno-Kang. In this study ANFIS is used to optimize the results of the determination of the location of the blockage ischemic stroke. Used recursive least squares estimator (RLSE for learning. RMSE results obtained in the training process of 0.0432053, while in the process of generated test accuracy rate of 98.66%   Keywords— Stroke Ischemik, Global threshold, Fuzzy Inference System model Sugeno, ANFIS, RMSE

  15. Optimal Sizing for Wind/PV/Battery System Using Fuzzy c-Means Clustering with Self-Adapted Cluster Number

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available Integrating wind generation, photovoltaic power, and battery storage to form hybrid power systems has been recognized to be promising in renewable energy development. However, considering the system complexity and uncertainty of renewable energies, such as wind and solar types, it is difficult to obtain practical solutions for these systems. In this paper, optimal sizing for a wind/PV/battery system is realized by trade-offs between technical and economic factors. Firstly, the fuzzy c-means clustering algorithm was modified with self-adapted parameters to extract useful information from historical data. Furthermore, the Markov model is combined to determine the chronological system states of natural resources and load. Finally, a power balance strategy is introduced to guide the optimization process with the genetic algorithm to establish the optimal configuration with minimized cost while guaranteeing reliability and environmental factors. A case of island hybrid power system is analyzed, and the simulation results are compared with the general FCM method and chronological method to validate the effectiveness of the mentioned method.

  16. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering

    Directory of Open Access Journals (Sweden)

    Oliynyk Andriy

    2012-08-01

    Full Text Available Abstract Background Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Results Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting, which is designed to optimize: (i fast and accurate detection, (ii offline sorting and (iii online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com using LabVIEW (National Instruments, USA. We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is

  17. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.

    Science.gov (United States)

    Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando; Fadiga, Luciano

    2012-08-08

    Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike

  18. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    Science.gov (United States)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  19. Approximate solution fuzzy pantograph equation by using homotopy perturbation method

    Science.gov (United States)

    Jameel, A. F.; Saaban, A.; Ahadkulov, H.; Alipiah, F. M.

    2017-09-01

    In this paper, Homotopy Perturbation Method (HPM) is modified and formulated to find the approximate solution for its employment to solve (FDDEs) involving a fuzzy pantograph equation. The solution that can be obtained by using HPM is in the form of infinite series that converge to the actual solution of the FDDE and this is one of the benefits of this method In addition, it can be used for solving high order fuzzy delay differential equations directly without reduction to a first order system. Moreover, the accuracy of HPM can be detected without needing the exact solution. The HPM is studied for fuzzy initial value problems involving pantograph equation. Using the properties of fuzzy set theory, we reformulate the standard approximate method of HPM and obtain the approximate solutions. The effectiveness of the proposed method is demonstrated for third order fuzzy pantograph equation.

  20. A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey

    Directory of Open Access Journals (Sweden)

    Aytac Yildiz

    2013-06-01

    Full Text Available In this paper, we aim to select the most appropriate Hydrogen Energy Storage (HES method for Turkey from among the alternatives of tank, metal hydride and chemical storage, which are determined based on expert opinions and literature review. Thus, we propose a Buckley extension based fuzzy Analytical Hierarchical Process (Fuzzy-AHP and linear normalization based fuzzy Grey Relational Analysis (Fuzzy-GRA combined Multi Criteria Decision Making (MCDM methodology. This combined approach can be applied to a complex decision process, which often makes sense with subjective data or vague information; and used to solve to solve HES selection problem with different defuzzification methods. The proposed approach is unique both in the HES literature and the MCDM literature.

  1. Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms.

    Science.gov (United States)

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-02-01

    The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1method and that predicted by the proposed approach on the one hand and is used to extract the predicted cut-off frequencies on the other hand. Moreover, the transverse velocity of the material constituting the cylindrical shell is extracted. The computational results show that the proposed approach is very efficient to predict the form function and consequently, for acoustic characterization purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Analysis of construction dynamic plan using fuzzy critical path method

    Directory of Open Access Journals (Sweden)

    Kurij Kazimir V.

    2014-01-01

    Full Text Available Critical Path Method (CPM technique has become widely recognized as valuable tool for the planning and scheduling large construction projects. The aim of this paper is to present an analytical method for finding the Critical Path in the precedence network diagram where the duration of each activity is represented by a trapezoidal fuzzy number. This Fuzzy Critical Path Method (FCPM uses a defuzzification formula for trapezoidal fuzzy number and applies it on the total float (slack time for each activity in the fuzzy precedence network to find the critical path. The method presented in this paper is very effective in determining the critical activities and finding the critical paths.

  3. Fuzzy multiple objective decision making methods and applications

    CERN Document Server

    Lai, Young-Jou

    1994-01-01

    In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory, artificial intelligence/expert system, etc. In this volume, methods and applications of crisp, fuzzy and possibilistic multiple objective decision making are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, it presents solutions for real-world problems including production/manufacturing, location, logistics, environment management, banking/finance, personnel, marketing, accounting, agriculture economics and data analysis. This book is a guided tour through the literature in the rapidly growing fields of operations research and decision making and includes the most up-to-date bibliographical listing of literature on the topi...

  4. A Fuzzy Group Prioritization Method for Deriving Weights and its Software Implementation

    Directory of Open Access Journals (Sweden)

    Tarifa Almulhim

    2013-09-01

    Full Text Available Several Multi-Criteria Decision Making (MCDM methods involve pairwise comparisons to obtain the preferences of decision makers (DMs. This paper proposes a fuzzy group prioritization method for deriving group priorities/weights from fuzzy pairwise comparison matrices. The proposed method extends the Fuzzy Preferences Programming Method (FPP by considering the different importance weights of multiple DMs . The elements of the group pairwise comparison matrices are presented as fuzzy numbers rather than exact numerical values, in order to model the uncertainty and imprecision in the DMs’ judgments. Unlike the known fuzzy prioritization techniques, the proposed method is able to derive crisp weights from incomplete and fuzzy set of comparison judgments and does not require additional aggregation procedures. A prototype of a decision tool is developed to assist DMs to implement the proposed method for solving fuzzy group prioritization problems in MATLAB. Detailed numerical examples are used to illustrate the proposed approach.

  5. Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks

    International Nuclear Information System (INIS)

    Moon, Sang Ki; Chang, Soon Heung

    1994-01-01

    A new method to predict the critical heat flux (CHF) is proposed, based on the fuzzy clustering and artificial neural network. The fuzzy clustering classifies the experimental CHF data into a few data clusters (data groups) according to the data characteristics. After classification of the experimental data, the characteristics of the resulting clusters are discussed with emphasis on the distribution of the experimental conditions and physical mechanism. The CHF data in each group are trained in an artificial neural network to predict the CHF. The artificial neural network adjusts the weight so as to minimize the prediction error within the corresponding cluster. Application of the proposed method to the KAIST CHF data bank shows good prediction capability of the CHF, better than other existing methods. ((orig.))

  6. A Proposed Method for Solving Fuzzy System of Linear Equations

    Directory of Open Access Journals (Sweden)

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  7. Bicycle Frame Prediction Techniques with Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2015-03-01

    Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.

  8. Bicycle Frame Prediction Techniques with Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2017-03-01

    Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.

  9. Application of fuzzy methods in tunnelling

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2011-12-01

    Full Text Available Full-face tunnelling machines were used for the tunnel construction in Slovakia for boring of the exploratory galleries of highwaytunnels Branisko and Višňové-Dubná skala. A monitoring system of boring process parameters was installed on the tunnelling machinesand the acquired outcomes were processed by several theoretical approaches. Method IKONA was developed for the determination ofchanges in the rock mass strength characteristics in the line of exploratory gallery. Individual geological sections were evaluated bythe descriptive statistics and the TBM performance was evaluated by the fuzzy method. The paper informs on the procedure of the designof fuzzy models and their verification.

  10. A Fuzzy Method for Medical Diagnosis of Headache

    Science.gov (United States)

    Ahn, Jeong-Yong; Mun, Kill-Sung; Kim, Young-Hyun; Oh, Sun-Young; Han, Beom-Soo

    In this note we propose a fuzzy diagnosis of headache. The method is based on the relations between symptoms and diseases. For this purpose, we suggest a new diagnosis measure using the occurrence information of patient's symptoms and develop an improved interview chart with fuzzy degrees assigned according to the relation among symptoms and three labels of headache. The proposed method is illustrated by two examples.

  11. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  12. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Energy Technology Data Exchange (ETDEWEB)

    Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  13. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN, two learning processes are proposed: (1 a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2 a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE, root mean square error (RMSE, and mean absolute relative error (MARE are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR, instantaneous model (IM, linear model (LM, neural network (NN, and cumulative plots (CP.

  14. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Science.gov (United States)

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  15. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    Science.gov (United States)

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  16. Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning

    Directory of Open Access Journals (Sweden)

    Ya’nan Wang

    2016-01-01

    Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.

  17. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  18. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  19. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    Science.gov (United States)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  20. Multi-objective decision-making under uncertainty: Fuzzy logic methods

    Science.gov (United States)

    Hardy, Terry L.

    1995-01-01

    Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.

  1. Classifying Aerosols Based on Fuzzy Clustering and Their Optical and Microphysical Properties Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Wenhao Zhang

    2017-01-01

    Full Text Available Classification of Beijing aerosol is carried out based on clustering optical properties obtained from three Aerosol Robotic Network (AERONET sites. The fuzzy c-mean (FCM clustering algorithm is used to classify fourteen-year (2001–2014 observations, totally of 6,732 records, into six aerosol types. They are identified as fine particle nonabsorbing, two kinds of fine particle moderately absorbing (fine-MA1 and fine-MA2, fine particle highly absorbing, polluted dust, and desert dust aerosol. These aerosol types exhibit obvious optical characteristics difference. While five of them show similarities with aerosol types identified elsewhere, the polluted dust aerosol has no comparable prototype. Then the membership degree, a significant parameter provided by fuzzy clustering, is used to analyze internal variation of optical properties of each aerosol type. Finally, temporal variations of aerosol types are investigated. The dominant aerosol types are polluted dust and desert dust in spring, fine particle nonabsorbing aerosol in summer, and fine particle highly absorbing aerosol in winter. The fine particle moderately absorbing aerosol occurs during the whole year. Optical properties of the six types can also be used for radiative forcing estimation and satellite aerosol retrieval. Additionally, methodology of this study can be applied to identify aerosol types on a global scale.

  2. A New Swarm Intelligence Approach for Clustering Based on Krill Herd with Elitism Strategy

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Li

    2015-10-01

    Full Text Available As one of the most popular and well-recognized clustering methods, fuzzy C-means (FCM clustering algorithm is the basis of other fuzzy clustering analysis methods in theory and application respects. However, FCM algorithm is essentially a local search optimization algorithm. Therefore, sometimes, it may fail to find the global optimum. For the purpose of getting over the disadvantages of FCM algorithm, a new version of the krill herd (KH algorithm with elitism strategy, called KHE, is proposed to solve the clustering problem. Elitism tragedy has a strong ability of preventing the krill population from degrading. In addition, the well-selected parameters are used in the KHE method instead of originating from nature. Through an array of simulation experiments, the results show that the KHE is indeed a good choice for solving general benchmark problems and fuzzy clustering analyses.

  3. Clustering of financial time series

    Science.gov (United States)

    D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo

    2013-05-01

    This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.

  4. A heuristic approach to possibilistic clustering algorithms and applications

    CERN Document Server

    Viattchenin, Dmitri A

    2013-01-01

    The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects.   The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover,  a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani’s fuzzy inference systems is introduced. This book addresses engineers, scientist...

  5. An Extension of the Fuzzy Possibilistic Clustering Algorithm Using Type-2 Fuzzy Logic Techniques

    Directory of Open Access Journals (Sweden)

    Elid Rubio

    2017-01-01

    Full Text Available In this work an extension of the Fuzzy Possibilistic C-Means (FPCM algorithm using Type-2 Fuzzy Logic Techniques is presented, and this is done in order to improve the efficiency of FPCM algorithm. With the purpose of observing the performance of the proposal against the Interval Type-2 Fuzzy C-Means algorithm, several experiments were made using both algorithms with well-known datasets, such as Wine, WDBC, Iris Flower, Ionosphere, Abalone, and Cover type. In addition some experiments were performed using another set of test images to observe the behavior of both of the above-mentioned algorithms in image preprocessing. Some comparisons are performed between the proposed algorithm and the Interval Type-2 Fuzzy C-Means (IT2FCM algorithm to observe if the proposed approach has better performance than this algorithm.

  6. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-12-01

    Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights. 

  7. A comparison of fuzzy logic and cluster renewal approaches for heat transfer modeling in a 1296 t/h CFB boiler with low level of flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2017-03-01

    Full Text Available The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K and 111-240 W/(m2K, for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.

  8. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

  9. A new method for generating an invariant iris private key based on the fuzzy vault system.

    Science.gov (United States)

    Lee, Youn Joo; Park, Kang Ryoung; Lee, Sung Joo; Bae, Kwanghyuk; Kim, Jaihie

    2008-10-01

    Cryptographic systems have been widely used in many information security applications. One main challenge that these systems have faced has been how to protect private keys from attackers. Recently, biometric cryptosystems have been introduced as a reliable way of concealing private keys by using biometric data. A fuzzy vault refers to a biometric cryptosystem that can be used to effectively protect private keys and to release them only when legitimate users enter their biometric data. In biometric systems, a critical problem is storing biometric templates in a database. However, fuzzy vault systems do not need to directly store these templates since they are combined with private keys by using cryptography. Previous fuzzy vault systems were designed by using fingerprint, face, and so on. However, there has been no attempt to implement a fuzzy vault system that used an iris. In biometric applications, it is widely known that an iris can discriminate between persons better than other biometric modalities. In this paper, we propose a reliable fuzzy vault system based on local iris features. We extracted multiple iris features from multiple local regions in a given iris image, and the exact values of the unordered set were then produced using the clustering method. To align the iris templates with the new input iris data, a shift-matching technique was applied. Experimental results showed that 128-bit private keys were securely and robustly generated by using any given iris data without requiring prealignment.

  10. Numerical Solution of Fuzzy Differential Equations by Runge-Kutta Verner Method

    Directory of Open Access Journals (Sweden)

    T. Jayakumar

    2015-01-01

    Full Text Available In this paper we study the numerical methods for Fuzzy Differential equations by an application of the Runge-Kutta Verner method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.

  11. Classifying human operator functional state based on electrophysiological and performance measures and fuzzy clustering method.

    Science.gov (United States)

    Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin

    2013-12-01

    The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.

  12. A New Hesitant Fuzzy Linguistic TOPSIS Method for Group Multi-Criteria Linguistic Decision Making

    Directory of Open Access Journals (Sweden)

    Fangling Ren

    2017-11-01

    Full Text Available Hesitant fuzzy linguistic decision making is a focus point in linguistic decision making, in which the main method is based on preference ordering. This paper develops a new hesitant fuzzy linguistic TOPSIS method for group multi-criteria linguistic decision making; the method is inspired by the TOPSIS method and the preference degree between two hesitant fuzzy linguistic term sets (HFLTSs. To this end, we first use the preference degree to define a pseudo-distance between two HFLTSs and analyze its properties. Then we present the positive (optimistic and negative (pessimistic information of each criterion provided by each decision maker and aggregate these by using weights of decision makers to obtain the hesitant fuzzy linguistic positive and negative ideal solutions. On the basis of the proposed pseudo-distance, we finally obtain the positive (negative ideal separation matrix and a new relative closeness degree to rank alternatives. We also design an algorithm based on the provided method to carry out hesitant fuzzy linguistic decision making. An illustrative example shows the elaboration of the proposed method and comparison with the symbolic aggregation-based method, the hesitant fuzzy linguistic TOPSIS method and the hesitant fuzzy linguistic VIKOR method; it seems that the proposed method is a useful and alternative decision-making method.

  13. Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training

    Science.gov (United States)

    Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei

    Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.

  14. Using a fuzzy comprehensive evaluation method to determine product usability: A test case.

    Science.gov (United States)

    Zhou, Ronggang; Chan, Alan H S

    2017-01-01

    In order to take into account the inherent uncertainties during product usability evaluation, Zhou and Chan [1] proposed a comprehensive method of usability evaluation for products by combining the analytic hierarchy process (AHP) and fuzzy evaluation methods for synthesizing performance data and subjective response data. This method was designed to provide an integrated framework combining the inevitable vague judgments from the multiple stages of the product evaluation process. In order to illustrate the effectiveness of the model, this study used a summative usability test case to assess the application and strength of the general fuzzy usability framework. To test the proposed fuzzy usability evaluation framework [1], a standard summative usability test was conducted to benchmark the overall usability of a specific network management software. Based on the test data, the fuzzy method was applied to incorporate both the usability scores and uncertainties involved in the multiple components of the evaluation. Then, with Monte Carlo simulation procedures, confidence intervals were used to compare the reliabilities among the fuzzy approach and two typical conventional methods combining metrics based on percentages. This case study showed that the fuzzy evaluation technique can be applied successfully for combining summative usability testing data to achieve an overall usability quality for the network software evaluated. Greater differences of confidence interval widths between the method of averaging equally percentage and weighted evaluation method, including the method of weighted percentage averages, verified the strength of the fuzzy method.

  15. Effect of defuzzification method of fuzzy modeling

    Science.gov (United States)

    Lapohos, Tibor; Buchal, Ralph O.

    1994-10-01

    Imprecision can arise in fuzzy relational modeling as a result of fuzzification, inference and defuzzification. These three sources of imprecision are difficult to separate. We have determined through numerical studies that an important source of imprecision is the defuzzification stage. This imprecision adversely affects the quality of the model output. The most widely used defuzzification algorithm is known by the name of `center of area' (COA) or `center of gravity' (COG). In this paper, we show that this algorithm not only maps the near limit values of the variables improperly but also introduces errors for middle domain values of the same variables. Furthermore, the behavior of this algorithm is a function of the shape of the reference sets. We compare the COA method to the weighted average of cluster centers (WACC) procedure in which the transformation is carried out based on the values of the cluster centers belonging to each of the reference membership functions instead of using the functions themselves. We show that this procedure is more effective and computationally much faster than the COA. The method is tested for a family of reference sets satisfying certain constraints, that is, for any support value the sum of reference membership function values equals one and the peak values of the two marginal membership functions project to the boundaries of the universe of discourse. For all the member sets of this family of reference sets the defuzzification errors do not get bigger as the linguistic variables tend to their extreme values. In addition, the more reference sets that are defined for a certain linguistic variable, the less the average defuzzification error becomes. In case of triangle shaped reference sets there is no defuzzification error at all. Finally, an alternative solution is provided that improves the performance of the COA method.

  16. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  17. Improved R2* liver iron concentration assessment using a novel fuzzy c-mean clustering scheme

    International Nuclear Information System (INIS)

    Saiviroonporn, Pairash; Viprakasit, Vip; Krittayaphong, Rungroj

    2015-01-01

    In thalassemia patients, R2* liver iron concentration (LIC) measurement is a common clinical tool for assessing iron overload and for determining necessary chelator dose and evaluating its efficacy. Despite the importance of accurate LIC measurement, existing methods suffer from LIC variability, especially at the severe iron overload range due to inclusion of vessel parts in LIC calculation. In this study, we build upon previous Fuzzy C-Mean (FCM) clustering work to formulate a scheme with superior performance in segmenting vessel pixels from the parenchyma. Our method (MIX-FCM) combines our novel 2D-FCM with the existing 1D-FCM algorithm. This study further assessed possible optimal clustering parameters (OP scheme) and proposed a semi-automatic (SA) scheme for routine clinical application. Segmentation of liver parenchyma and vessels was performed on T2* images and their LIC maps in 196 studies from 147 thalassemia major patients. We used manual segmentation as the reference. 1D-FCM clustering was performed on the acquired image alone and 2D-FCM used both the acquired image and its LIC data. To execute the MIX-FCM method, the best outcome (OP-MIX-FCM) was selected from the aforementioned methods and was compared to the SA-MIX-FCM scheme. We used the percent value of the normalized interquartile range (nIQR) to its median to evaluate the variability of all methods. 2D-FCM clustering is more effective than 1D-FCM clustering at the severe overload range only, but inferior for other ranges (where 1D-FCM provides suitable results). This complementary performance between the two methods allows MIX-FCM to improve results for all ranges. OP-MIX-FCM clustering error was 2.1 ± 2.3 %, compared with 10.3 ± 9.9 % and 7.0 ± 11.9 % from 1D- and 2D-FCM clustering, respectively. SA-MIX-FCM result was comparable to OP-MIX-FCM result, with both schemes showing ability to decrease overall nIQR by approximately 30 %. Our proposed 2D-FCM algorithm is not as superior to 1D-FCM as

  18. Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method

    Science.gov (United States)

    Lee, G.; Jun, K. S.; Chung, E.-S.

    2015-04-01

    This study proposes an improved group decision making (GDM) framework that combines the VIKOR method with data fuzzification to quantify the spatial flood vulnerability including multiple criteria. In general, GDM method is an effective tool for formulating a compromise solution that involves various decision makers since various stakeholders may have different perspectives on their flood risk/vulnerability management responses. The GDM approach is designed to achieve consensus building that reflects the viewpoints of each participant. The fuzzy VIKOR method was developed to solve multi-criteria decision making (MCDM) problems with conflicting and noncommensurable criteria. This comprising method can be used to obtain a nearly ideal solution according to all established criteria. This approach effectively can propose some compromising decisions by combining the GDM method and fuzzy VIKOR method. The spatial flood vulnerability of the southern Han River using the GDM approach combined with the fuzzy VIKOR method was compared with the spatial flood vulnerability using general MCDM methods, such as the fuzzy TOPSIS and classical GDM methods (i.e., Borda, Condorcet, and Copeland). As a result, the proposed fuzzy GDM approach can reduce the uncertainty in the data confidence and weight derivation techniques. Thus, the combination of the GDM approach with the fuzzy VIKOR method can provide robust prioritization because it actively reflects the opinions of various groups and considers uncertainty in the input data.

  19. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Energy Technology Data Exchange (ETDEWEB)

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  20. Method of fuzzy inference for one class of MISO-structure systems with non-singleton inputs

    Science.gov (United States)

    Sinuk, V. G.; Panchenko, M. V.

    2018-03-01

    In fuzzy modeling, the inputs of the simulated systems can receive both crisp values and non-Singleton. Computational complexity of fuzzy inference with fuzzy non-Singleton inputs corresponds to an exponential. This paper describes a new method of inference, based on the theorem of decomposition of a multidimensional fuzzy implication and a fuzzy truth value. This method is considered for fuzzy inputs and has a polynomial complexity, which makes it possible to use it for modeling large-dimensional MISO-structure systems.

  1. Comparative Analysis of Fuzzy Set Defuzzification Methods in the Context of Ecological Risk Assessment

    Directory of Open Access Journals (Sweden)

    Užga-Rebrovs Oļegs

    2017-12-01

    Full Text Available Fuzzy inference systems are widely used in various areas of human activity. Their most widespread use lies in the field of fuzzy control of technical devices of different kind. Another direction of using fuzzy inference systems is modelling and assessment of different kind of risks under insufficient or missing objective initial data. Fuzzy inference is concluded by the procedure of defuzzification of the resulting fuzzy sets. A large number of techniques for implementing the defuzzification procedure are available nowadays. The paper presents a comparative analysis of some widespread methods of fuzzy set defuzzification, and proposes the most appropriate methods in the context of ecological risk assessment.

  2. Ranking Fuzzy Numbers with a Distance Method using Circumcenter of Centroids and an Index of Modality

    Directory of Open Access Journals (Sweden)

    P. Phani Bushan Rao

    2011-01-01

    Full Text Available Ranking fuzzy numbers are an important aspect of decision making in a fuzzy environment. Since their inception in 1965, many authors have proposed different methods for ranking fuzzy numbers. However, there is no method which gives a satisfactory result to all situations. Most of the methods proposed so far are nondiscriminating and counterintuitive. This paper proposes a new method for ranking fuzzy numbers based on the Circumcenter of Centroids and uses an index of optimism to reflect the decision maker's optimistic attitude and also an index of modality that represents the neutrality of the decision maker. This method ranks various types of fuzzy numbers which include normal, generalized trapezoidal, and triangular fuzzy numbers along with crisp numbers with the particularity that crisp numbers are to be considered particular cases of fuzzy numbers.

  3. A fuzzy inventory model with acceptable shortage using graded mean integration value method

    Science.gov (United States)

    Saranya, R.; Varadarajan, R.

    2018-04-01

    In many inventory models uncertainty is due to fuzziness and fuzziness is the closed possible approach to reality. In this paper, we proposed a fuzzy inventory model with acceptable shortage which is completely backlogged. We fuzzily the carrying cost, backorder cost and ordering cost using Triangular and Trapezoidal fuzzy numbers to obtain the fuzzy total cost. The purpose of our study is to defuzzify the total profit function by Graded Mean Integration Value Method. Further a numerical example is also given to demonstrate the developed crisp and fuzzy models.

  4. Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincare map

    International Nuclear Information System (INIS)

    Bonakdar, Mohammad; Samadi, Mostafa; Salarieh, Hassan; Alasty, Aria

    2008-01-01

    In this paper a fuzzy control algorithm is used to stabilize the fixed points of a chaotic system. No knowledge of the dynamic equations of the system is needed in this approach and the whole system is considered as a black box. Two main approaches have been investigated: fuzzy clustering and table look up methods. As illustrative examples these methods have been applied to Bonhoeffer van der Pol oscillator and the Henon chaotic system and the convergence toward fixed points is observed

  5. Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincare map

    Energy Technology Data Exchange (ETDEWEB)

    Bonakdar, Mohammad; Samadi, Mostafa [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of); Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of)

    2008-05-15

    In this paper a fuzzy control algorithm is used to stabilize the fixed points of a chaotic system. No knowledge of the dynamic equations of the system is needed in this approach and the whole system is considered as a black box. Two main approaches have been investigated: fuzzy clustering and table look up methods. As illustrative examples these methods have been applied to Bonhoeffer van der Pol oscillator and the Henon chaotic system and the convergence toward fixed points is observed.

  6. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong

    2013-01-01

    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  7. Use of a fuzzy decision-making method in evaluating severe accident management strategies

    International Nuclear Information System (INIS)

    Jae, M.; Moon, J.H.

    2002-01-01

    In developing severe accident management strategies, an engineering decision would be made based on the available data and information that are vague, imprecise and uncertain by nature. These sorts of vagueness and uncertainty are due to lack of knowledge for the severe accident sequences of interest. The fuzzy set theory offers a possibility of handling these sorts of data and information. In this paper, the possibility to apply the decision-making method based on fuzzy set theory to the evaluation of the accident management strategies at a nuclear power plant is scrutinized. The fuzzy decision-making method uses linguistic variables and fuzzy numbers to represent the decision-maker's subjective assessments for the decision alternatives according to the decision criteria. The fuzzy mean operator is used to aggregate the decision-maker's subjective assessments, while the total integral value method is used to rank the decision alternatives. As a case study, the proposed method is applied to evaluating the accident management strategies at a nuclear power plant

  8. FUZZY CLUSTERING: APPLICATION ON ORGANIZATIONAL METAPHORS IN BRAZILIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Angel Cobo

    2012-08-01

    Full Text Available Different theories of organization and management are based on implicit images or metaphors. Nevertheless, a quantitative approach is needed to minimize human subjectivity or bias on metaphors studies. Hence, this paper analyzed the presence of metaphors and clustered them using fuzzy data mining techniques in a sample of 61 Brazilian companies that operate in the state of Rio Grande do Sul. For this purpose the results of a questionnaire answered by 198 employees of companies in the sample were analyzed by R free software. The results show that it is difficult to find a clear image in most organizations. In most cases characteristics of different images or metaphors are observed, so soft computing techniques are particularly appropriate for this type of analysis. However, according to these results, it is noted that the most present image in the organizations studied is that of “organisms” and the least present image is that of a “political system” and of an “instrument of domination”

  9. The application of fuzzy-based methods to central nerve fiber imaging

    DEFF Research Database (Denmark)

    Axer, Hubertus; Jantzen, Jan; Keyserlingk, Diedrich Graf v.

    2003-01-01

    This paper discusses the potential of fuzzy logic methods within medical imaging. Technical advances have produced imaging techniques that can visualize structures and their functions in the living human body. The interpretation of these images plays a prominent role in diagnostic and therapeutic...... decisions, so physicians must deal with a variety of image processing methods and their applications.This paper describes three different sources of medical imagery that allow the visualization of nerve fibers in the human brain: (1) an algorithm for automatic segmentation of some parts of the thalamus....... Fuzzy logic methods were applied to analyze these pictures from low- to high-level image processing. The solutions presented here are motivated by problems of routine neuroanatomic research demonstrating fuzzy-based methods to be valuable tools in medical image processing....

  10. Classification of Children Intelligence with Fuzzy Logic Method

    Science.gov (United States)

    Syahminan; ika Hidayati, Permata

    2018-04-01

    Intelligence of children s An Important Thing To Know The Parents Early on. Typing Can be done With a Child’s intelligence Grouping Dominant Characteristics Of each Type of Intelligence. To Make it easier for Parents in Determining The type of Children’s intelligence And How to Overcome them, for It Created A Classification System Intelligence Grouping Children By Using Fuzzy logic method For determination Of a Child’s degree of intelligence type. From the analysis We concluded that The presence of Intelligence Classification systems Pendulum Children With Fuzzy Logic Method Of determining The type of The Child’s intelligence Can be Done in a way That is easier And The results More accurate Conclusions Than Manual tests.

  11. A Method Based on Intuitionistic Fuzzy Dependent Aggregation Operators for Supplier Selection

    Directory of Open Access Journals (Sweden)

    Fen Wang

    2013-01-01

    Full Text Available Recently, resolving the decision making problem of evaluation and ranking the potential suppliers have become as a key strategic factor for business firms. In this paper, two new intuitionistic fuzzy aggregation operators are developed: dependent intuitionistic fuzzy ordered weighed averaging (DIFOWA operator and dependent intuitionistic fuzzy hybrid weighed aggregation (DIFHWA operator. Some of their main properties are studied. A method based on the DIFHWA operator for intuitionistic fuzzy multiple attribute decision making is presented. Finally, an illustrative example concerning supplier selection is given.

  12. Horizontal and Vertical Rule Bases Method in Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Sadegh Aminifar

    2013-01-01

    Full Text Available Concept of horizontal and vertical rule bases is introduced. Using this method enables the designers to look for main behaviors of system and describes them with greater approximations. The rules which describe the system in first stage are called horizontal rule base. In the second stage, the designer modulates the obtained surface by describing needed changes on first surface for handling real behaviors of system. The rules used in the second stage are called vertical rule base. Horizontal and vertical rule bases method has a great roll in easing of extracting the optimum control surface by using too lesser rules than traditional fuzzy systems. This research involves with control of a system with high nonlinearity and in difficulty to model it with classical methods. As a case study for testing proposed method in real condition, the designed controller is applied to steaming room with uncertain data and variable parameters. A comparison between PID and traditional fuzzy counterpart and our proposed system shows that our proposed system outperforms PID and traditional fuzzy systems in point of view of number of valve switching and better surface following. The evaluations have done both with model simulation and DSP implementation.

  13. Improvement of Fuzzy Image Contrast Enhancement Using Simulated Ergodic Fuzzy Markov Chains

    Directory of Open Access Journals (Sweden)

    Behrouz Fathi-Vajargah

    2014-01-01

    Full Text Available This paper presents a novel fuzzy enhancement technique using simulated ergodic fuzzy Markov chains for low contrast brain magnetic resonance imaging (MRI. The fuzzy image contrast enhancement is proposed by weighted fuzzy expected value. The membership values are then modified to enhance the image using ergodic fuzzy Markov chains. The qualitative performance of the proposed method is compared to another method in which ergodic fuzzy Markov chains are not considered. The proposed method produces better quality image.

  14. Fuzzy multiple attribute decision making methods and applications

    CERN Document Server

    Chen, Shu-Jen

    1992-01-01

    This monograph is intended for an advanced undergraduate or graduate course as well as for researchers, who want a compilation of developments in this rapidly growing field of operations research. This is a sequel to our previous works: "Multiple Objective Decision Making--Methods and Applications: A state-of-the-Art Survey" (No.164 of the Lecture Notes); "Multiple Attribute Decision Making--Methods and Applications: A State-of-the-Art Survey" (No.186 of the Lecture Notes); and "Group Decision Making under Multiple Criteria--Methods and Applications" (No.281 of the Lecture Notes). In this monograph, the literature on methods of fuzzy Multiple Attribute Decision Making (MADM) has been reviewed thoroughly and critically, and classified systematically. This study provides readers with a capsule look into the existing methods, their characteristics, and applicability to the analysis of fuzzy MADM problems. The basic concepts and algorithms from the classical MADM methods have been used in the development of the f...

  15. The implementation of two stages clustering (k-means clustering and adaptive neuro fuzzy inference system) for prediction of medicine need based on medical data

    Science.gov (United States)

    Husein, A. M.; Harahap, M.; Aisyah, S.; Purba, W.; Muhazir, A.

    2018-03-01

    Medication planning aim to get types, amount of medicine according to needs, and avoid the emptiness medicine based on patterns of disease. In making the medicine planning is still rely on ability and leadership experience, this is due to take a long time, skill, difficult to obtain a definite disease data, need a good record keeping and reporting, and the dependence of the budget resulted in planning is not going well, and lead to frequent lack and excess of medicines. In this research, we propose Adaptive Neuro Fuzzy Inference System (ANFIS) method to predict medication needs in 2016 and 2017 based on medical data in 2015 and 2016 from two source of hospital. The framework of analysis using two approaches. The first phase is implementing ANFIS to a data source, while the second approach we keep using ANFIS, but after the process of clustering from K-Means algorithm, both approaches are calculated values of Root Mean Square Error (RMSE) for training and testing. From the testing result, the proposed method with better prediction rates based on the evaluation analysis of quantitative and qualitative compared with existing systems, however the implementation of K-Means Algorithm against ANFIS have an effect on the timing of the training process and provide a classification accuracy significantly better without clustering.

  16. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    Directory of Open Access Journals (Sweden)

    M. Amiri

    2012-10-01

    Full Text Available Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnover rate, Treynor index and Sharpe index. Semivariance is used as a downside risk measure. The proposed model of this paper uses fuzzy variables for return rate and semivariance. A multi-objective fuzzy mean-semivariance portfolio optimization model is implemented and fuzzy programming technique is adopted to solve the resulted problem. The proposed model of this paper has gathered the information of mutual fund traded on Nasdaq from 2007 to 2009 and Pareto optimal solutions are obtained considering different weights for objective functions. The results of asset allocation, rate of return and risk of each cluster are also determined and they are compared with the results of two clustering methods.

  17. High dimensional model representation method for fuzzy structural dynamics

    Science.gov (United States)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  18. A fuzzy levelised energy cost method for renewable energy technology assessment

    International Nuclear Information System (INIS)

    Wright, Daniel G.; Dey, Prasanta K.; Brammer, John G.

    2013-01-01

    Renewable energy project development is highly complex and success is by no means guaranteed. Decisions are often made with approximate or uncertain information yet the current methods employed by decision-makers do not necessarily accommodate this. Levelised energy costs (LEC) are one such commonly applied measure utilised within the energy industry to assess the viability of potential projects and inform policy. The research proposes a method for achieving this by enhancing the traditional discounting LEC measure with fuzzy set theory. Furthermore, the research develops the fuzzy LEC (F-LEC) methodology to incorporate the cost of financing a project from debt and equity sources. Applied to an example bioenergy project, the research demonstrates the benefit of incorporating fuzziness for project viability, optimal capital structure and key variable sensitivity analysis decision-making. The proposed method contributes by incorporating uncertain and approximate information to the widely utilised LEC measure and by being applicable to a wide range of energy project viability decisions. -- Highlights: •Proposes a fuzzy levelised energy cost (F-LEC) methodology to support energy project development. •Incorporates the terms and cost of project finance into the F-LEC method. •Applies the F-LEC method to an example bioenergy project development case

  19. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    Science.gov (United States)

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  20. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    P. Akhavan

    2014-10-01

    Full Text Available Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  1. Extended VIKOR Method for Intuitionistic Fuzzy Multiattribute Decision-Making Based on a New Distance Measure

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2017-01-01

    Full Text Available An intuitionistic fuzzy VIKOR (IF-VIKOR method is proposed based on a new distance measure considering the waver of intuitionistic fuzzy information. The method aggregates all individual decision-makers’ assessment information based on intuitionistic fuzzy weighted averaging operator (IFWA, determines the weights of decision-makers and attributes objectively using intuitionistic fuzzy entropy, calculates the group utility and individual regret by the new distance measure, and then reaches a compromise solution. It can be effectively applied to multiattribute decision-making (MADM problems where the weights of decision-makers and attributes are completely unknown and the attribute values are intuitionistic fuzzy numbers (IFNs. The validity and stability of this method are verified by example analysis and sensitivity analysis, and its superiority is illustrated by the comparison with the existing method.

  2. Analysis of selected structures for model-based measuring methods using fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S. [Hochschule fuer Technik, Wirtschaft und Sozialwesen Zittau/Goerlitz (FH), Zittau (DE). Inst. fuer Prozesstechnik, Prozessautomatisierung und Messtechnik e.V. (IPM)

    2000-07-01

    Monitoring and diagnosis of safety-related technical processes in nuclear enginering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)

  3. Analysis of selected structures for model-based measuring methods using fuzzy logic

    International Nuclear Information System (INIS)

    Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S.

    2000-01-01

    Monitoring and diagnosis of safety-related technical processes in nuclear engineering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)

  4. Delineation of site-specific management zones by fuzzy clustering of soil and topographic attributes: A case study of East Nile Delta, Egypt

    International Nuclear Information System (INIS)

    Saleh, A; Belal, A A

    2014-01-01

    The objective of this study was to define site-specific management zones of 67.2 ha of a wheat pivot field at East of Nile Delta, Egypt for use in precision agriculture based on spatial variability of soil and topographic attributes. The field salinity was analysed by reading the apparent soil electrical conductivity (ECa) with the EM38 sensor horizontally and vertically at 432 locations. The field was sampled for soil attributes systematically with a total of 80 sampling location points. All samples were located using GPS hand held unit. Soil sampling for management zones included soil reaction pH, soil saturation percentage, organic matter, calcium carbonates content, available nitrogen, available phosphorus and available potassium. The field topographic attributes were digital elevation model (DEM), slope, profile curvature, plane curvature, compound topographic index (CTI) and power stream index (PSI). The maps of spatial variability of soil and field topographic attributes were generated using ordinary kriging geostatistical method. Principal component analysis (PCA) was used to determine the most important soil and topographic attributes for representing within-field variability. Principal component analysis of input variables indicated that EM38 horizontal readings (EM38h), soil saturation percentage and digital elevation model were more important attributes for defining field management zones. The fuzzy c-means clustering method was used to divide the field into potential management zones, fuzzy performance index (FPI) and normalized classification entropy (NCE) were used to determine the optimal cluster numbers. Measures of cluster performance indicated no advantage of dividing these fields into more than five management zones. The defined management zones not only provided a better description of the soil properties, but also can direct soil sampling design and provide valuable information for site-specific management in precision agriculture

  5. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    Science.gov (United States)

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  6. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    Science.gov (United States)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  7. Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions

    Science.gov (United States)

    Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi

    2015-01-01

    In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452

  8. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships.

    Science.gov (United States)

    Chen, Shyi-Ming; Chen, Shen-Wen

    2015-03-01

    In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.

  9. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    Science.gov (United States)

    Sanfilippo, Antonio [Richland, WA; Calapristi, Augustin J [West Richland, WA; Crow, Vernon L [Richland, WA; Hetzler, Elizabeth G [Kennewick, WA; Turner, Alan E [Kennewick, WA

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  10. Comparison Of Keyword Based Clustering Of Web Documents By Using Openstack 4j And By Traditional Method

    Directory of Open Access Journals (Sweden)

    Shiza Anand

    2015-08-01

    Full Text Available As the number of hypertext documents are increasing continuously day by day on world wide web. Therefore clustering methods will be required to bind documents into the clusters repositories according to the similarity lying between the documents. Various clustering methods exist such as Hierarchical Based K-means Fuzzy Logic Based Centroid Based etc. These keyword based clustering methods takes much more amount of time for creating containers and putting documents in their respective containers. These traditional methods use File Handling techniques of different programming languages for creating repositories and transferring web documents into these containers. In contrast openstack4j SDK is a new technique for creating containers and shifting web documents into these containers according to the similarity in much more less amount of time as compared to the traditional methods. Another benefit of this technique is that this SDK understands and reads all types of files such as jpg html pdf doc etc. This paper compares the time required for clustering of documents by using openstack4j and by traditional methods and suggests various search engines to adopt this technique for clustering so that they give result to the user querries in less amount of time.

  11. An automatic tuning method of a fuzzy logic controller for nuclear reactors

    International Nuclear Information System (INIS)

    Ramaswamy, P.; Lee, K.Y.; Edwards, R.M.

    1993-01-01

    The design and evaluation by simulation of an automatically tuned fuzzy logic controller is presented. Typically, fuzzy logic controllers are designed based on an expert's knowledge of the process. However, this approach has its limitations in the fact that the controller is hard to optimize or tune to get the desired control action. A method to automate the tuning process using a simplified Kalman filter approach is presented for the fuzzy logic controller to track a suitable reference trajectory. Here, for purposes of illustration an optimal controller's response is used as a reference trajectory to determine automatically the rules for the fuzzy logic controller. To demonstrate the robustness of this design approach, a nonlinear six-delayed neutron group plant is controlled using a fuzzy logic controller that utilizes estimated reactor temperatures from a one-delayed neutron group observer. The fuzzy logic controller displayed good stability and performance robustness characteristics for a wide range of operation

  12. The Interval-Valued Triangular Fuzzy Soft Set and Its Method of Dynamic Decision Making

    Directory of Open Access Journals (Sweden)

    Xiaoguo Chen

    2014-01-01

    Full Text Available A concept of interval-valued triangular fuzzy soft set is presented, and some operations of “AND,” “OR,” intersection, union and complement, and so forth are defined. Then some relative properties are discussed and several conclusions are drawn. A dynamic decision making model is built based on the definition of interval-valued triangular fuzzy soft set, in which period weight is determined by the exponential decay method. The arithmetic weighted average operator of interval-valued triangular fuzzy soft set is given by the aggregating thought, thereby aggregating interval-valued triangular fuzzy soft sets of different time-series into a collective interval-valued triangular fuzzy soft set. The formulas of selection and decision values of different objects are given; therefore the optimal decision making is achieved according to the decision values. Finally, the steps of this method are concluded, and one example is given to explain the application of the method.

  13. Method for solving fully fuzzy linear programming problems using deviation degree measure

    Institute of Scientific and Technical Information of China (English)

    Haifang Cheng; Weilai Huang; Jianhu Cai

    2013-01-01

    A new ful y fuzzy linear programming (FFLP) prob-lem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crispδ-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the δ-fuzzy optimal so-lution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the va-lues of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to il ustrate the proposed method.

  14. Choosing the best method of depreciating assets and after-tax economic analysis under uncertainty using fuzzy approach

    Directory of Open Access Journals (Sweden)

    Saeed Khalili

    2014-08-01

    Full Text Available In the past, different methods for asset depreciation have been defined but most of these procedures deal with certain parameters and inputs. The availability of certain parameters in many real world situations is difficult and sometimes impossible. The primary objective of this paper is to obtain methods for calculating depreciation where some of the defined parameters are under uncertainty. Hence, by using the fuzzy science basics, extension principle and α-cut technique, we rewrite some classic methods for calculating depreciation in fuzzy form. Then, for comparing the methods of fuzzy depreciation under uncertain conditions by using the formula of calculating the Fuzzy Present worth (FPW, the Present worth of Tax saving (PWTS of any aforementioned methods has been obtained. Finally, since the amount of tax savings achieved for each of the methods is a fuzzy number, one of the fuzzy prioritization methods is used in order to select the best depreciation technique.

  15. Using a fuzzy comprehensive evaluation method to determine product usability: A proposed theoretical framework.

    Science.gov (United States)

    Zhou, Ronggang; Chan, Alan H S

    2017-01-01

    In order to compare existing usability data to ideal goals or to that for other products, usability practitioners have tried to develop a framework for deriving an integrated metric. However, most current usability methods with this aim rely heavily on human judgment about the various attributes of a product, but often fail to take into account of the inherent uncertainties in these judgments in the evaluation process. This paper presents a universal method of usability evaluation by combining the analytic hierarchical process (AHP) and the fuzzy evaluation method. By integrating multiple sources of uncertain information during product usability evaluation, the method proposed here aims to derive an index that is structured hierarchically in terms of the three usability components of effectiveness, efficiency, and user satisfaction of a product. With consideration of the theoretical basis of fuzzy evaluation, a two-layer comprehensive evaluation index was first constructed. After the membership functions were determined by an expert panel, the evaluation appraisals were computed by using the fuzzy comprehensive evaluation technique model to characterize fuzzy human judgments. Then with the use of AHP, the weights of usability components were elicited from these experts. Compared to traditional usability evaluation methods, the major strength of the fuzzy method is that it captures the fuzziness and uncertainties in human judgments and provides an integrated framework that combines the vague judgments from multiple stages of a product evaluation process.

  16. Identification of different geologic units using fuzzy constrained resistivity tomography

    Science.gov (United States)

    Singh, Anand; Sharma, S. P.

    2018-01-01

    Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.

  17. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    Directory of Open Access Journals (Sweden)

    Aihong Ren

    2016-01-01

    Full Text Available This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solution of the problem, we apply deviation degree measures to deal with the fuzzy constraints and use a ranking function method of fuzzy numbers to rank the upper and lower level fuzzy objective functions. Then the fully fuzzy bilevel linear programming problem can be transformed into a deterministic bilevel programming problem. Considering the overall balance between improving objective function values and decreasing allowed deviation degrees, the computational procedure for finding a fuzzy optimal solution is proposed. Finally, a numerical example is provided to illustrate the proposed approach. The results indicate that the proposed approach gives a better optimal solution in comparison with the existing method.

  18. Research on conflict resolution of collaborative design with fuzzy case-based reasoning method

    Institute of Scientific and Technical Information of China (English)

    HOU Jun-ming; SU Chong; LIANG Shuang; WANG Wan-shan

    2009-01-01

    Collaborative design is a new style for modern mechanical design to meet the requirement of increasing competition. Designers of different places complete the same work, but the conflict appears in the process of design which may interface the design. Case-based reasoning (CBR) method is applied to the problem of conflict resolution, which is in the artificial intelligence field. However, due to the uncertainties in knowledge representation, attribute description, and similarity measures of CBR, it is very difficult to find the similar cases from case database. A fuzzy CBR method was proposed to solve the problem of conflict resolution in collaborative design. The process of fuzzy CBR was introduced. Based on the feature attributes and their relative weights determined by a fuzzy technique, a fuzzy CBR retrieving mechanism was developed to retrieve conflict resolution cases that tend to enhance the functions of the database. By indexing, calculating the weight and defuzzicating of the cases, the case similarity can be obtained. Then the case consistency was measured to keep the right result. Finally, the fuzzy CBR method for conflict resolution was demonstrated by means of a case study. The prototype system based on web is developed to illustrate the methodology.

  19. Land cover classification using reformed fuzzy C-means

    Indian Academy of Sciences (India)

    This paper explains the task of land cover classification using reformed fuzzy C means. Clustering is the assignment of objects into groups called clusters so that objects from the same cluster are more similar to each other than objects from different clusters. The most basic attribute for clustering of an image is its luminance ...

  20. A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising

    Science.gov (United States)

    Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua

    2018-04-01

    In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.

  1. Application of Fuzzy Comprehensive Evaluation Method in Trust Quantification

    Directory of Open Access Journals (Sweden)

    Shunan Ma

    2011-10-01

    Full Text Available Trust can play an important role for the sharing of resources and information in open network environments. Trust quantification is thus an important issue in dynamic trust management. By considering the fuzziness and uncertainty of trust, in this paper, we propose a fuzzy comprehensive evaluation method to quantify trust along with a trust quantification algorithm. Simulation results show that the trust quantification algorithm that we propose can effectively quantify trust and the quantified value of an entity's trust is consistent with the behavior of the entity.

  2. METHOD FOR SOLVING FUZZY ASSIGNMENT PROBLEM USING MAGNITUDE RANKING TECHNIQUE

    OpenAIRE

    D. Selvi; R. Queen Mary; G. Velammal

    2017-01-01

    Assignment problems have various applications in the real world because of their wide applicability in industry, commerce, management science, etc. Traditional classical assignment problems cannot be successfully used for real life problem, hence the use of fuzzy assignment problems is more appropriate. In this paper, the fuzzy assignment problem is formulated to crisp assignment problem using Magnitude Ranking technique and Hungarian method has been applied to find an optimal solution. The N...

  3. Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification

    International Nuclear Information System (INIS)

    Na, Man Gyun; Kim, Jin Weon; Hwang, In Joon

    2006-01-01

    In this work, the collapse moment due to wall-thinned defects is estimated through fuzzy model identification. A subtractive clustering method is used as the basis of a fast and robust algorithm for identifying the fuzzy model. The fuzzy model is optimized by a genetic algorithm combined with a least squares method. The developed fuzzy model has been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy model to reduce the sensitivity to the input change and the fuzzy model are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, three fuzzy models are trained, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.5397% for the training data and 0.8673% for the test data. It is known from this result that the fuzzy models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows

  4. Fuzzy-logic based strategy for validation of multiplex methods: example with qualitative GMO assays.

    Science.gov (United States)

    Bellocchi, Gianni; Bertholet, Vincent; Hamels, Sandrine; Moens, W; Remacle, José; Van den Eede, Guy

    2010-02-01

    This paper illustrates the advantages that a fuzzy-based aggregation method could bring into the validation of a multiplex method for GMO detection (DualChip GMO kit, Eppendorf). Guidelines for validation of chemical, bio-chemical, pharmaceutical and genetic methods have been developed and ad hoc validation statistics are available and routinely used, for in-house and inter-laboratory testing, and decision-making. Fuzzy logic allows summarising the information obtained by independent validation statistics into one synthetic indicator of overall method performance. The microarray technology, introduced for simultaneous identification of multiple GMOs, poses specific validation issues (patterns of performance for a variety of GMOs at different concentrations). A fuzzy-based indicator for overall evaluation is illustrated in this paper, and applied to validation data for different genetically modified elements. Remarks were drawn on the analytical results. The fuzzy-logic based rules were shown to be applicable to improve interpretation of results and facilitate overall evaluation of the multiplex method.

  5. Query by example video based on fuzzy c-means initialized by fixed clustering center

    Science.gov (United States)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  6. Software Tool Implementing the Fuzzy AHP Method in Ecological Risk Assessment

    Directory of Open Access Journals (Sweden)

    Radionovs Andrejs

    2017-12-01

    Full Text Available Due to the increased spread of invasive animals and plants in the territory of Latvia, the necessity of ecological risk assessment related to such kind of spread has grown lately. In cases with sufficient statistical data, the risk assessment may be successfully performed on the basis of statistical methods. The amount of statistical data in the context of spread of invasive animals and plants is pretty poor; therefore, the only method of ecological risk assessment remains subjective judgements of experts. The present paper proposes using a programming tool for ecological risk analysis elaborated by the authors. With the help of this programming tool the method of Fuzzy Analytical Hierarchical Process is implemented. The elements of the pairwise comparison matrix are allowed to be expressed by triangular and trapezoidal fuzzy sets. The presented tool makes it possible to design the fuzzy pair-wise comparison matrix and process the results in a user-friendly way.

  7. Uncovering and testing the fuzzy clusters based on lumped Markov chain in complex network.

    Science.gov (United States)

    Jing, Fan; Jianbin, Xie; Jinlong, Wang; Jinshuai, Qu

    2013-01-01

    Identifying clusters, namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. By means of a lumped Markov chain model of a random walker, we propose two novel ways of inferring the lumped markov transition matrix. Furthermore, some useful results are proposed based on the analysis of the properties of the lumped Markov process. To find the best partition of complex networks, a novel framework including two algorithms for network partition based on the optimal lumped Markovian dynamics is derived to solve this problem. The algorithms are constructed to minimize the objective function under this framework. It is demonstrated by the simulation experiments that our algorithms can efficiently determine the probabilities with which a node belongs to different clusters during the learning process and naturally supports the fuzzy partition. Moreover, they are successfully applied to real-world network, including the social interactions between members of a karate club.

  8. Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

    Directory of Open Access Journals (Sweden)

    Fereshteh Yousefi Rizi

    2009-03-01

    Full Text Available Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM, utilized the FCM algorithm. Then, hanging-togetherness of pixels was handled by employing a spatial membership function. Another problem in airway segmentation that had to be overcome was the leakage into the extra-luminal regions due to the thinness of the airway walls during the process of segmentation. Results:   The result shows an accuracy of 92.92% obtained for segmentation of the airway tree up to the fourth generation. Conclusion:  We have presented a new segmentation method that is not only robust regarding the leakage problem but also functions more efficiently than the traditional FC method.

  9. Navigation Algorithm Using Fuzzy Control Method in Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Cviklovič Vladimír

    2016-03-01

    Full Text Available The issue of navigation methods is being continuously developed globally. The aim of this article is to test the fuzzy control algorithm for track finding in mobile robotics. The concept of an autonomous mobile robot EN20 has been designed to test its behaviour. The odometry navigation method was used. The benefits of fuzzy control are in the evidence of mobile robot’s behaviour. These benefits are obtained when more physical variables on the base of more input variables are controlled at the same time. In our case, there are two input variables - heading angle and distance, and two output variables - the angular velocity of the left and right wheel. The autonomous mobile robot is moving with human logic.

  10. Hybrid Multicriteria Group Decision Making Method for Information System Project Selection Based on Intuitionistic Fuzzy Theory

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2013-01-01

    Full Text Available Information system (IS project selection is of critical importance to every organization in dynamic competing environment. The aim of this paper is to develop a hybrid multicriteria group decision making approach based on intuitionistic fuzzy theory for IS project selection. The decision makers’ assessment information can be expressed in the form of real numbers, interval-valued numbers, linguistic variables, and intuitionistic fuzzy numbers (IFNs. All these evaluation pieces of information can be transformed to the form of IFNs. Intuitionistic fuzzy weighted averaging (IFWA operator is utilized to aggregate individual opinions of decision makers into a group opinion. Intuitionistic fuzzy entropy is used to obtain the entropy weights of the criteria. TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate IS project in group decision making environment. Finally, a numerical example for information system projects selection is given to illustrate application of hybrid multi-criteria group decision making (MCGDM method based on intuitionistic fuzzy theory and TOPSIS method.

  11. Stability-integrated Fuzzy C means segmentation for spatial ...

    Indian Academy of Sciences (India)

    V ROYNA DAISY

    2018-03-16

    Mar 16, 2018 ... clusters and including spatial information to basic Fuzzy C Means clustering are done in .... modify the objective function with Kernel distance function .... spatial information, thus making it sensitive to noise and outliers.

  12. Identification of flooded area from satellite images using Hybrid Kohonen Fuzzy C-Means sigma classifier

    Directory of Open Access Journals (Sweden)

    Krishna Kant Singh

    2017-06-01

    Full Text Available A novel neuro fuzzy classifier Hybrid Kohonen Fuzzy C-Means-σ (HKFCM-σ is proposed in this paper. The proposed classifier is a hybridization of Kohonen Clustering Network (KCN with FCM-σ clustering algorithm. The network architecture of HKFCM-σ is similar to simple KCN network having only two layers, i.e., input and output layer. However, the selection of winner neuron is done based on FCM-σ algorithm. Thus, embedding the features of both, a neural network and a fuzzy clustering algorithm in the classifier. This hybridization results in a more efficient, less complex and faster classifier for classifying satellite images. HKFCM-σ is used to identify the flooding that occurred in Kashmir area in September 2014. The HKFCM-σ classifier is applied on pre and post flooding Landsat 8 OLI images of Kashmir to detect the areas that were flooded due to the heavy rainfalls of September, 2014. The classifier is trained using the mean values of the various spectral indices like NDVI, NDWI, NDBI and first component of Principal Component Analysis. The error matrix was computed to test the performance of the method. The method yields high producer’s accuracy, consumer’s accuracy and kappa coefficient value indicating that the proposed classifier is highly effective and efficient.

  13. Research on Coordinated Robotic Motion Control Based on Fuzzy Decoupling Method in Fluidic Environments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available The underwater recovery of autonomous underwater vehicles (AUV is a process of 6-DOF motion control, which is related to characteristics with strong nonlinearity and coupling. In the recovery mission, the vehicle requires high level control accuracy. Considering an AUV called BSAV, this paper established a kinetic model to describe the motion of AUV in the horizontal plane, which consisted of nonlinear equations. On the basis of this model, the main coupling variables were analyzed during recovery. Aiming at the strong coupling problem between the heading control and sway motion, we designed a decoupling compensator based on the fuzzy theory and the decoupling theory. We analyzed to the rules of fuzzy compensation, the input and output membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, and obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, and improves the control precision. Through the water tank experiments and analysis of experimental data, the effectiveness and feasibility of AUV recovery movement coordinated control based on fuzzy decoupling method are validated successful, and show that the fuzzy decoupling control method has a high practical value in the recovery mission.

  14. Fuzzy randomness uncertainty in civil engineering and computational mechanics

    CERN Document Server

    Möller, Bernd

    2004-01-01

    This book, for the first time, provides a coherent, overall concept for taking account of uncertainty in the analysis, the safety assessment, and the design of structures. The reader is introduced to the problem of uncertainty modeling and familiarized with particular uncertainty models. For simultaneously considering stochastic and non-stochastic uncertainty the superordinated uncertainty model fuzzy randomness, which contains real valued random variables as well as fuzzy variables as special cases, is presented. For this purpose basic mathematical knowledge concerning the fuzzy set theory and the theory of fuzzy random variables is imparted. The body of the book comprises the appropriate quantification of uncertain structural parameters, the fuzzy and fuzzy probabilistic structural analysis, the fuzzy probabilistic safety assessment, and the fuzzy cluster structural design. The completely new algorithms are described in detail and illustrated by way of demonstrative examples.

  15. Two generalizations of Kohonen clustering

    Science.gov (United States)

    Bezdek, James C.; Pal, Nikhil R.; Tsao, Eric C. K.

    1993-01-01

    The relationship between the sequential hard c-means (SHCM), learning vector quantization (LVQ), and fuzzy c-means (FCM) clustering algorithms is discussed. LVQ and SHCM suffer from several major problems. For example, they depend heavily on initialization. If the initial values of the cluster centers are outside the convex hull of the input data, such algorithms, even if they terminate, may not produce meaningful results in terms of prototypes for cluster representation. This is due in part to the fact that they update only the winning prototype for every input vector. The impact and interaction of these two families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering method, but which often leads ideas to clustering algorithms is discussed. Then two generalizations of LVQ that are explicitly designed as clustering algorithms are presented; these algorithms are referred to as generalized LVQ = GLVQ; and fuzzy LVQ = FLVQ. Learning rules are derived to optimize an objective function whose goal is to produce 'good clusters'. GLVQ/FLVQ (may) update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends upon a choice for the update neighborhood or learning rate distribution - these are taken care of automatically. Segmentation of a gray tone image is used as a typical application of these algorithms to illustrate the performance of GLVQ/FLVQ.

  16. Study of Inverted Pendulum Robot Using Fuzzy Servo Control Method

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2012-09-01

    Full Text Available The inverted pendulum robot is a classical problem in controls. The inherit instabilities in the setup make it a natural target for a control system. Inverted pendulum robot is suitable to use for investigation and verification of various control methods for dynamic systems. Maintaining an equilibrium position of the pendulum pointing up is a challenge as this equilibrium position is unstable. As the inverted pendulum robot system is nonlinear it is well-suited to be controlled by fuzzy logic. In this paper, Lagrange method has been applied to develop the mathematical model of the system. The objective of the simulation to be shown using the fuzzy control method can stabilize the nonlinear system of inverted pendulum robot.

  17. MRI definition of target volumes using fuzzy logic method for three-dimensional conformal radiation therapy

    International Nuclear Information System (INIS)

    Caudrelier, Jean-Michel; Vial, Stephane; Gibon, David; Kulik, Carine; Fournier, Charles; Castelain, Bernard; Coche-Dequeant, Bernard; Rousseau, Jean

    2003-01-01

    Purpose: Three-dimensional (3D) volume determination is one of the most important problems in conformal radiation therapy. Techniques of volume determination from tomographic medical imaging are usually based on two-dimensional (2D) contour definition with the result dependent on the segmentation method used, as well as on the user's manual procedure. The goal of this work is to describe and evaluate a new method that reduces the inaccuracies generally observed in the 2D contour definition and 3D volume reconstruction process. Methods and Materials: This new method has been developed by integrating the fuzziness in the 3D volume definition. It first defines semiautomatically a minimal 2D contour on each slice that definitely contains the volume and a maximal 2D contour that definitely does not contain the volume. The fuzziness region in between is processed using possibility functions in possibility theory. A volume of voxels, including the membership degree to the target volume, is then created on each slice axis, taking into account the slice position and slice profile. A resulting fuzzy volume is obtained after data fusion between multiorientation slices. Different studies have been designed to evaluate and compare this new method of target volume reconstruction and a classical reconstruction method. First, target definition accuracy and robustness were studied on phantom targets. Second, intra- and interobserver variations were studied on radiosurgery clinical cases. Results: The absolute volume errors are less than or equal to 1.5% for phantom volumes calculated by the fuzzy logic method, whereas the values obtained with the classical method are much larger than the actual volumes (absolute volume errors up to 72%). With increasing MRI slice thickness (1 mm to 8 mm), the phantom volumes calculated by the classical method are increasing exponentially with a maximum absolute error up to 300%. In contrast, the absolute volume errors are less than 12% for phantom

  18. Fuzzy logic in management

    CERN Document Server

    Carlsson, Christer; Fullér, Robert

    2004-01-01

    Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...

  19. FUSION SEGMENTATION METHOD BASED ON FUZZY THEORY FOR COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2017-09-01

    Full Text Available The image segmentation method based on two-dimensional histogram segments the image according to the thresholds of the intensity of the target pixel and the average intensity of its neighborhood. This method is essentially a hard-decision method. Due to the uncertainties when labeling the pixels around the threshold, the hard-decision method can easily get the wrong segmentation result. Therefore, a fusion segmentation method based on fuzzy theory is proposed in this paper. We use membership function to model the uncertainties on each color channel of the color image. Then, we segment the color image according to the fuzzy reasoning. The experiment results show that our proposed method can get better segmentation results both on the natural scene images and optical remote sensing images compared with the traditional thresholding method. The fusion method in this paper can provide new ideas for the information extraction of optical remote sensing images and polarization SAR images.

  20. New fuzzy EWMA control charts for monitoring phase II fuzzy profiles

    Directory of Open Access Journals (Sweden)

    Ghazale Moghadam

    2016-01-01

    Full Text Available In many quality control applications, the quality of a process or product is explained by the relationship between response variable and one or more explanatory variables, called a profile. In this paper, a new fuzzy EWMA control chart for phase II fuzzy profile monitoring is proposed. To this end, we extend EWMA control charts to its equivalent Fuzzy type and then implement fuzzy ranking methods to determine whether the process fuzzy profile is under or out of control. The proposed method is capable of identifying small changes in process under condition of process profile explaining parameters vagueness, roughness and uncertainty. Determining the source of changes, this method provides us with the possibility of recognizing the causes of process transition from stable mode, removing these causes and restoring the process stable mode.

  1. A Recourse-Based Type-2 Fuzzy Programming Method for Water Pollution Control under Uncertainty

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-11-01

    Full Text Available In this study, a recourse-based type-2 fuzzy programming (RTFP method is developed for supporting water pollution control of basin systems under uncertainty. The RTFP method incorporates type-2 fuzzy programming (TFP within a two-stage stochastic programming with recourse (TSP framework to handle uncertainties expressed as type-2 fuzzy sets (i.e., a fuzzy set in which the membership function is also fuzzy and probability distributions, as well as to reflect the trade-offs between conflicting economic benefits and penalties due to violated policies. The RTFP method is then applied to a real case of water pollution control in the Heshui River Basin (a rural area of China, where chemical oxygen demand (COD, total nitrogen (TN, total phosphorus (TP, and soil loss are selected as major indicators to identify the water pollution control strategies. Solutions of optimal production plans of economic activities under each probabilistic pollutant discharge allowance level and membership grades are obtained. The results are helpful for the authorities in exploring the trade-off between economic objective and pollutant discharge decision-making based on river water pollution control.

  2. Fuzzy logic control to be conventional method

    International Nuclear Information System (INIS)

    Eker, Ilyas; Torun, Yunis

    2006-01-01

    Increasing demands for flexibility and fast reactions in modern process operation and production methods result in nonlinear system behaviour of partly unknown systems, and this necessitates application of alternative control methods to meet the demands. Fuzzy logic (FL) control can play an important role because knowledge based design rules can easily be implemented in systems with unknown structure, and it is going to be a conventional control method since the control design strategy is simple and practical and is based on linguistic information. Computational complexity is not a limitation any more because the computing power of computers has been significantly improved even for high speed industrial applications. This makes FL control an important alternative method to the conventional PID control method for use in nonlinear industrial systems. This paper presents a practical implementation of the FL control to an electrical drive system. Such drive systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behaviour. For a multi-mass drive system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the operation of the systems. The proposed FL control configuration is based on speed error and change of speed error. The feasibility and effectiveness of the control method are experimentally demonstrated. The results obtained from conventional FL control, fuzzy PID and adaptive FL control are compared with traditional PID control for the dynamic responses of the closed loop drive system

  3. Fuzzy logic control to be conventional method

    Energy Technology Data Exchange (ETDEWEB)

    Eker, Ilyas [University of Gaziantep, Gaziantep (Turkey). Department of Electrical and Electronic Engineering; Torun, Yunis [University of Gaziantep, Gaziantep (Turkey). Technical Vocational School of Higher Education

    2006-03-01

    Increasing demands for flexibility and fast reactions in modern process operation and production methods result in nonlinear system behaviour of partly unknown systems, and this necessitates application of alternative control methods to meet the demands. Fuzzy logic (FL) control can play an important role because knowledge based design rules can easily be implemented in systems with unknown structure, and it is going to be a conventional control method since the control design strategy is simple and practical and is based on linguistic information. Computational complexity is not a limitation any more because the computing power of computers has been significantly improved even for high speed industrial applications. This makes FL control an important alternative method to the conventional PID control method for use in nonlinear industrial systems. This paper presents a practical implementation of the FL control to an electrical drive system. Such drive systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behaviour. For a multi-mass drive system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the operation of the systems. The proposed FL control configuration is based on speed error and change of speed error. The feasibility and effectiveness of the control method are experimentally demonstrated. The results obtained from conventional FL control, fuzzy PID and adaptive FL control are compared with traditional PID control for the dynamic responses of the closed loop drive system. (author)

  4. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ahmed Elazab

    2015-01-01

    Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.

  5. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers

    CERN Document Server

    Li, Deng-Feng

    2016-01-01

    This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .

  6. Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

    Directory of Open Access Journals (Sweden)

    Reza Ezzati

    2014-08-01

    Full Text Available In this paper, we propose the least square method for computing the positive solution of a non-square fully fuzzy linear system. To this end, we use Kaffman' arithmetic operations on fuzzy numbers \\cite{17}. Here, considered existence of exact solution using pseudoinverse, if they are not satisfy in positive solution condition, we will compute fuzzy vector core and then we will obtain right and left spreads of positive fuzzy vector by introducing constrained least squares problem. Using our proposed method, non-square fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  7. Fuzzy Search Method for Hi Education Information Security

    Directory of Open Access Journals (Sweden)

    Grigory Grigorevich Novikov

    2016-03-01

    Full Text Available The main reason of the research is how to use fuzzy search method for information security of Hi Education or some similar purposes. So many sensitive information leaks are through non SUMMARY 149 classified documents legal publishing. That’s why many intelligence services so love to use the «mosaic» information collection method. This article is about how to prevent it.

  8. An Interval-Valued Intuitionistic Fuzzy TOPSIS Method Based on an Improved Score Function

    Directory of Open Access Journals (Sweden)

    Zhi-yong Bai

    2013-01-01

    Full Text Available This paper proposes an improved score function for the effective ranking order of interval-valued intuitionistic fuzzy sets (IVIFSs and an interval-valued intuitionistic fuzzy TOPSIS method based on the score function to solve multicriteria decision-making problems in which all the preference information provided by decision-makers is expressed as interval-valued intuitionistic fuzzy decision matrices where each of the elements is characterized by IVIFS value and the information about criterion weights is known. We apply the proposed score function to calculate the separation measures of each alternative from the positive and negative ideal solutions to determine the relative closeness coefficients. According to the values of the closeness coefficients, the alternatives can be ranked and the most desirable one(s can be selected in the decision-making process. Finally, two illustrative examples for multicriteria fuzzy decision-making problems of alternatives are used as a demonstration of the applications and the effectiveness of the proposed decision-making method.

  9. Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters

    Directory of Open Access Journals (Sweden)

    Fabian Andres Lara-Molina

    Full Text Available Abstract The components of flexible rotors are subjected to uncertainties. The main sources of uncertainties include the variation of mechanical properties. This contribution aims at analyzing the dynamics of flexible rotors under uncertain parameters modeled as fuzzy and fuzzy random variables. The uncertainty analysis encompasses the modeling of uncertain parameters and the numerical simulation of the corresponding flexible rotor model by using an approach based on fuzzy dynamic analysis. The numerical simulation is accomplished by mapping the fuzzy parameters of the deterministic flexible rotor model. Thereby, the flexible rotor is modeled by using both the Fuzzy Finite Element Method and the Fuzzy Stochastic Finite Element Method. Numerical simulations illustrate the methodology conveyed in terms of orbits and frequency response functions subject to uncertain parameters.

  10. A Fuzzy Obstacle Avoidance Controller Using a Lookup-Table Sharing Method and Its Applications for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Jinwook Kim

    2011-11-01

    Full Text Available A Lookup-Table (LUT based design enhances the processing speed of a fuzzy obstacle avoidance controller by reducing the operation time. Also, a LUT sharing method provides efficient ways of reducing the LUT memory size. In order to share the LUT which is used for a fuzzy obstacle avoidance controller, an idea of using a basis function is developed. As applications of the shared LUT-based fuzzy controller, a laser-sensor-based fuzzy controller and an ultrasonic-sensor-based fuzzy controller are introduced in this paper. This paper suggests a LUT sharing method that reduces the LUT buffer size without a significant degradation of the performance. The LUT sharing method makes the buffer size independent of the fuzzy system's complexity. A simulation using MSRDS (Microsoft Robotics Developer Studio is used to evaluate the proposed method. To investigate the performance of the controller, experiments are carried out using a Pioneer P3-DX with LabVIEW as an integration tool. Although the simulation and experiments show little difference between the fully valued LUT-based method and the LUT sharing method in terms of the operation time, the LUT sharing method reduces almost 95% of the full-valued LUT-based buffer size.

  11. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    Science.gov (United States)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  12. The Forecasting of Labour Force Participation and the Unemployment Rate in Poland and Turkey Using Fuzzy Time Series Methods

    Directory of Open Access Journals (Sweden)

    Yolcu Ufuk

    2016-06-01

    Full Text Available Fuzzy time series methods based on the fuzzy set theory proposed by Zadeh (1965 was first introduced by Song and Chissom (1993. Since fuzzy time series methods do not have the assumptions that traditional time series do and have effective forecasting performance, the interest on fuzzy time series approaches is increasing rapidly. Fuzzy time series methods have been used in almost all areas, such as environmental science, economy and finance. The concepts of labour force participation and unemployment have great importance in terms of both the economy and sociology of countries. For this reason there are many studies on their forecasting. In this study, we aim to forecast the labour force participation and unemployment rate in Poland and Turkey using different fuzzy time series methods.

  13. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    Energy Technology Data Exchange (ETDEWEB)

    Tsantis, Stavros [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Spiliopoulos, Stavros; Karnabatidis, Dimitrios [Department of Radiology, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Skouroliakou, Aikaterini [Department of Energy Technology Engineering, Technological Education Institute of Athens, Athens 12210 (Greece); Hazle, John D. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Kagadis, George C., E-mail: gkagad@gmail.com, E-mail: George.Kagadis@med.upatras.gr, E-mail: GKagadis@mdanderson.org [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-07-15

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  14. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    International Nuclear Information System (INIS)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios; Skouroliakou, Aikaterini; Hazle, John D.; Kagadis, George C.

    2014-01-01

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  15. Semi-supervised clustering methods.

    Science.gov (United States)

    Bair, Eric

    2013-01-01

    Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as "semi-supervised clustering" methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided.

  16. Hierarchical type-2 fuzzy aggregation of fuzzy controllers

    CERN Document Server

    Cervantes, Leticia

    2016-01-01

    This book focuses on the fields of fuzzy logic, granular computing and also considering the control area. These areas can work together to solve various control problems, the idea is that this combination of areas would enable even more complex problem solving and better results. In this book we test the proposed method using two benchmark problems: the total flight control and the problem of water level control for a 3 tank system. When fuzzy logic is used it make it easy to performed the simulations, these fuzzy systems help to model the behavior of a real systems, using the fuzzy systems fuzzy rules are generated and with this can generate the behavior of any variable depending on the inputs and linguistic value. For this reason this work considers the proposed architecture using fuzzy systems and with this improve the behavior of the complex control problems.

  17. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph method

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Seong, Poong Hyun

    2004-01-01

    In this study, The Fuzzy Signed Digraph method which has been researched and applied to the chemical process is improved and applied to the fault diagnosis of the pressurizer in nuclear power plants. The Fuzzy Signed-Digraph (FSD) is the method which applies the fuzzy number to the Signed-Digraph (SDG) method. The current SDG methods have many merits as follows: (1) SDG method can directly use the value of sensors not the alarm to the fault diagnosis. (2) This method can diagnose the fault independent on the pattern. (3) This method can diagnose the faults fastly because the method uses the cause-effect relation instead of the complex control equation among the variables. But, they are not proper to be applied to the diagnosis of the multi-faults and to diagnose faults on real time. It is because the unmeasured nodes in those methods must be connected to each other in order to find out the single fault under the single-fault assumption. These methods need long CPU time and cannot be applied to the multi-faults diagnosis. We propose a method in which the values of the unmeasured nodes are calculated from the relations between the unmeasured nodes and the measured nodes. By using this method, the CPU time for diagnosis can be reduced. This CPU time reduction makes the real-time diagnosis possible. This method can also be applied for the multi-faults diagnosis. This method is applied to the diagnosis of the pressurizer of the nuclear power plant KORI-2 in Korea. (author)

  18. An automatic iterative decision-making method for intuitionistic fuzzy linguistic preference relations

    Science.gov (United States)

    Pei, Lidan; Jin, Feifei; Ni, Zhiwei; Chen, Huayou; Tao, Zhifu

    2017-10-01

    As a new preference structure, the intuitionistic fuzzy linguistic preference relation (IFLPR) was recently introduced to efficiently deal with situations in which the membership and non-membership are represented as linguistic terms. In this paper, we study the issues of additive consistency and the derivation of the intuitionistic fuzzy weight vector of an IFLPR. First, the new concepts of order consistency, additive consistency and weak transitivity for IFLPRs are introduced, and followed by a discussion of the characterisation about additive consistent IFLPRs. Then, a parameterised transformation approach is investigated to convert the normalised intuitionistic fuzzy weight vector into additive consistent IFLPRs. After that, a linear optimisation model is established to derive the normalised intuitionistic fuzzy weights for IFLPRs, and a consistency index is defined to measure the deviation degree between an IFLPR and its additive consistent IFLPR. Furthermore, we develop an automatic iterative decision-making method to improve the IFLPRs with unacceptable additive consistency until the adjusted IFLPRs are acceptable additive consistent, and it helps the decision-maker to obtain the reasonable and reliable decision-making results. Finally, an illustrative example is provided to demonstrate the validity and applicability of the proposed method.

  19. Hesitant Fuzzy Thermodynamic Method for Emergency Decision Making Based on Prospect Theory.

    Science.gov (United States)

    Ren, Peijia; Xu, Zeshui; Hao, Zhinan

    2017-09-01

    Due to the timeliness of emergency response and much unknown information in emergency situations, this paper proposes a method to deal with the emergency decision making, which can comprehensively reflect the emergency decision making process. By utilizing the hesitant fuzzy elements to represent the fuzziness of the objects and the hesitant thought of the experts, this paper introduces the negative exponential function into the prospect theory so as to portray the psychological behaviors of the experts, which transforms the hesitant fuzzy decision matrix into the hesitant fuzzy prospect decision matrix (HFPDM) according to the expectation-levels. Then, this paper applies the energy and the entropy in thermodynamics to take the quantity and the quality of the decision values into account, and defines the thermodynamic decision making parameters based on the HFPDM. Accordingly, a whole procedure for emergency decision making is conducted. What is more, some experiments are designed to demonstrate and improve the validation of the emergency decision making procedure. Last but not the least, this paper makes a case study about the emergency decision making in the firing and exploding at Port Group in Tianjin Binhai New Area, which manifests the effectiveness and practicability of the proposed method.

  20. Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions

    Science.gov (United States)

    Tsaur, Ruey-Chyn

    2015-02-01

    In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.

  1. Comparison of Four Weighting Methods in Fuzzy-based Land Suitability to Predict Wheat Yield

    Directory of Open Access Journals (Sweden)

    Fatemeh Rahmati

    2017-06-01

    Full Text Available Introduction: Land suitability evaluation is a process to examine the degree of land fitness for specific utilization and also makes it possible to estimate land productivity potential. In 1976, FAO provided a general framework for land suitability classification. It has not been proposed a specific method to perform this classification in the framework. In later years, a collection of methods was presented based on the FAO framework. In parametric method, different land suitability aspects are defined as completely discrete groups and are separated from each other by distinguished and consistent ranges. Therefore, land units that have moderate suitability can only choose one of the characteristics of predefined classes of land suitability. Fuzzy logic is an extension of Boolean logic by LotfiZadeh in 1965 based on the mathematical theory of fuzzy sets, which is a generalization of the classical set theory. By introducing the notion of degree in the verification of a condition, fuzzy method enables a condition to be in a state other than true or false, as well as provides a very valuable flexibility for reasoning, which makes it possible to take into account inaccuracies and uncertainties. One advantage of fuzzy logic in order to formalize human reasoning is that the rules are set in natural language. In evaluation method based on fuzzy logic, the weights are used for land characteristics. The objective of this study was to compare four methods of weight calculation in the fuzzy logic to predict the yield of wheat in the study area covering 1500 ha in Kian town in Shahrekord (Chahrmahal and Bakhtiari province, Iran. Materials and Methods: In such investigations, climatic factors, and soil physical and chemical characteristics are studied. This investigation involves several studies including a lab study, and qualitative and quantitative land suitability evaluation with fuzzy logic for wheat. Factors affecting the wheat production consist of

  2. Personnel Selection Based on Fuzzy Methods

    Directory of Open Access Journals (Sweden)

    Lourdes Cañós

    2011-03-01

    Full Text Available The decisions of managers regarding the selection of staff strongly determine the success of the company. A correct choice of employees is a source of competitive advantage. We propose a fuzzy method for staff selection, based on competence management and the comparison with the valuation that the company considers the best in each competence (ideal candidate. Our method is based on the Hamming distance and a Matching Level Index. The algorithms, implemented in the software StaffDesigner, allow us to rank the candidates, even when the competences of the ideal candidate have been evaluated only in part. Our approach is applied in a numerical example.

  3. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    OpenAIRE

    Aihong Ren

    2016-01-01

    This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solut...

  4. AN APPLICATION OF FUZZY PROMETHEE METHOD FOR SELECTING OPTIMAL CAR PROBLEM

    Directory of Open Access Journals (Sweden)

    SERKAN BALLI

    2013-06-01

    Full Text Available Most of the economical, industrial, financial or political decision problems are multi-criteria. In these multi criteria problems, optimal selection of alternatives is hard and complex process. Recently, some kinds of methods are improved to solve these problems. Promethee is one of most efficient and easiest method and solves problems that consist quantitative criteria.  However, in daily life, there are criteria which are explained as linguistic and cannot modeled numerical. Hence, Promethee method is incomplete for linguistic criteria which are imprecise. To satisfy this deficiency, fuzzy set approximation can be used. Promethee method, which is extended with using fuzzy inputs, is applied to car selection for seven different cars in same class by using criteria: price, fuel, performance and security. The obtained results are appropriate and consistent.

  5. A new type of simplified fuzzy rule-based system

    Science.gov (United States)

    Angelov, Plamen; Yager, Ronald

    2012-02-01

    Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.

  6. Application of fuzzy decision-making method in nuclear emergency

    International Nuclear Information System (INIS)

    Xu Zhixin; Xi Shuren; Qu Jingyuan

    2005-01-01

    Protective actions such as evacuation, sheltering and iodine administration can be taken to mitigate the radiological consequence in the event of an accidental release. In general, decision-making of countermeasures involves both quantitative and qualitative criteria. The conventional approaches to assessing these criteria tend to be less effective when dealing with those qualitative criteria that are imprecise or vague. In this regard, fuzzy set method is an alternative tool. It can cope with vague assessment in a better way. This paper presents the application of fussy methodology to decision-making of protective actions in nuclear emergencies. In this method linguistic terms and fuzzy triangular numbers are used to represent decision-maker's subjective assessment for different decision criteria considered and decision alternatives versus the decision criteria. Following the assessment performed by specialists, corresponding evaluations can be synthesized and ranked. Finally, the optimal strategy for implementing protective actions can be recommended. (authors)

  7. Integrating Fuzzy AHP and Fuzzy ARAS for evaluating financial performance

    Directory of Open Access Journals (Sweden)

    Abdolhamid Safaei Ghadikolaei

    2014-09-01

    Full Text Available Multi Criteria Decision Making (MCDM is an advanced field of Operation Research; recently MCDM methods are efficient and common tools for performance evaluation in many areas such as finance and economy. The aim of this study is to show one of applications of mathematics in real word. This study with considering value based measures and accounting based measures simultaneously, provided a hybrid approach of MCDM methods in fuzzy environment for financial performance evaluation of automotive and parts manufacturing industry of Tehran stock exchange (TSE.for this purpose Fuzzy analytic hierarchy process (FAHP is applied to determine the relative important of each criterion, then The companies are ranked according their financial performance by using fuzzy additive ratio assessment (Fuzzy ARAS method. The finding of this study showed effective of this approach in evaluating financial performance.

  8. Semi-supervised clustering methods

    Science.gov (United States)

    Bair, Eric

    2013-01-01

    Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as “semi-supervised clustering” methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided. PMID:24729830

  9. Pemodelan Sistem Fuzzy Dengan Menggunakan Matlab

    Directory of Open Access Journals (Sweden)

    Afan Galih Salman

    2010-12-01

    Full Text Available Fuzzy logic is a method in soft computing category, a method that could process uncertain, inaccurate, and less cost implemented data. Some methods in soft computing category besides fuzzy logic are artificial network nerve, probabilistic reasoning, and evolutionary computing. Fuzzy logic has the ability to develop fuzzy system that is intelligent system in uncertain environment. Some stages in fuzzy system formation process is input and output analysis, determining input and output variable, defining each fuzzy set member function, determining rules based on experience or knowledge of an expert in his field, and implementing fuzzy system. Overall, fuzzy logic uses simple mathematical concept, understandable, detectable uncertain and accurate data. Fuzzy system could create and apply expert experiences directly without exercise process and effort to decode the knowledge into a computer until becoming a modeling system that could be relied on decision making.

  10. Esophageal cancer prediction based on qualitative features using adaptive fuzzy reasoning method

    Directory of Open Access Journals (Sweden)

    Raed I. Hamed

    2015-04-01

    Full Text Available Esophageal cancer is one of the most common cancers world-wide and also the most common cause of cancer death. In this paper, we present an adaptive fuzzy reasoning algorithm for rule-based systems using fuzzy Petri nets (FPNs, where the fuzzy production rules are represented by FPN. We developed an adaptive fuzzy Petri net (AFPN reasoning algorithm as a prognostic system to predict the outcome for esophageal cancer based on the serum concentrations of C-reactive protein and albumin as a set of input variables. The system can perform fuzzy reasoning automatically to evaluate the degree of truth of the proposition representing the risk degree value with a weight value to be optimally tuned based on the observed data. In addition, the implementation process for esophageal cancer prediction is fuzzily deducted by the AFPN algorithm. Performance of the composite model is evaluated through a set of experiments. Simulations and experimental results demonstrate the effectiveness and performance of the proposed algorithms. A comparison of the predictive performance of AFPN models with other methods and the analysis of the curve showed the same results with an intuitive behavior of AFPN models.

  11. A SOCIOLOGICAL ANALYSIS OF THE CHILDBEARING COEFFICIENT IN THE ALTAI REGION BASED ON METHOD OF FUZZY LINEAR REGRESSION

    Directory of Open Access Journals (Sweden)

    Sergei Vladimirovich Varaksin

    2017-06-01

    Full Text Available Purpose. Construction of a mathematical model of the dynamics of childbearing change in the Altai region in 2000–2016, analysis of the dynamics of changes in birth rates for multiple age categories of women of childbearing age. Methodology. A auxiliary analysis element is the construction of linear mathematical models of the dynamics of childbearing by using fuzzy linear regression method based on fuzzy numbers. Fuzzy linear regression is considered as an alternative to standard statistical linear regression for short time series and unknown distribution law. The parameters of fuzzy linear and standard statistical regressions for childbearing time series were defined with using the built in language MatLab algorithm. Method of fuzzy linear regression is not used in sociological researches yet. Results. There are made the conclusions about the socio-demographic changes in society, the high efficiency of the demographic policy of the leadership of the region and the country, and the applicability of the method of fuzzy linear regression for sociological analysis.

  12. Deterministic and fuzzy-based methods to evaluate community resilience

    Science.gov (United States)

    Kammouh, Omar; Noori, Ali Zamani; Taurino, Veronica; Mahin, Stephen A.; Cimellaro, Gian Paolo

    2018-04-01

    Community resilience is becoming a growing concern for authorities and decision makers. This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework. PEOPLES is a multi-layered framework that defines community resilience using seven dimensions. Each of the dimensions is described through a set of resilience indicators collected from literature and they are linked to a measure allowing the analytical computation of the indicator's performance. The first method proposed in this paper requires data on previous disasters as an input and returns as output a performance function for each indicator and a performance function for the whole community. The second method exploits a knowledge-based fuzzy modeling for its implementation. This method allows a quantitative evaluation of the PEOPLES indicators using descriptive knowledge rather than deterministic data including the uncertainty involved in the analysis. The output of the fuzzy-based method is a resilience index for each indicator as well as a resilience index for the community. The paper also introduces an open source online tool in which the first method is implemented. A case study illustrating the application of the first method and the usage of the tool is also provided in the paper.

  13. Hesitant fuzzy linguistic multicriteria decision-making method based on generalized prioritized aggregation operator.

    Science.gov (United States)

    Wu, Jia-ting; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong

    2014-01-01

    Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is based on the generalized prioritized aggregation operator of HFLNs. Firstly, the new operations and comparison method for HFLNs are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach.

  14. Multi-dimensional Fuzzy Euler Approximation

    Directory of Open Access Journals (Sweden)

    Yangyang Hao

    2017-05-01

    Full Text Available Multi-dimensional Fuzzy differential equations driven by multi-dimen-sional Liu process, have been intensively applied in many fields. However, we can not obtain the analytic solution of every multi-dimensional fuzzy differential equation. Then, it is necessary for us to discuss the numerical results in most situations. This paper focuses on the numerical method of multi-dimensional fuzzy differential equations. The multi-dimensional fuzzy Taylor expansion is given, based on this expansion, a numerical method which is designed for giving the solution of multi-dimensional fuzzy differential equation via multi-dimensional Euler method will be presented, and its local convergence also will be discussed.

  15. Water supply management using an extended group fuzzy decision-making method: a case study in north-eastern Iran

    Science.gov (United States)

    Minatour, Yasser; Bonakdari, Hossein; Zarghami, Mahdi; Bakhshi, Maryam Ali

    2015-09-01

    The purpose of this study was to develop a group fuzzy multi-criteria decision-making method to be applied in rating problems associated with water resources management. Thus, here Chen's group fuzzy TOPSIS method extended by a difference technique to handle uncertainties of applying a group decision making. Then, the extended group fuzzy TOPSIS method combined with a consistency check. In the presented method, initially linguistic judgments are being surveyed via a consistency checking process, and afterward these judgments are being used in the extended Chen's fuzzy TOPSIS method. Here, each expert's opinion is turned to accurate mathematical numbers and, then, to apply uncertainties, the opinions of group are turned to fuzzy numbers using three mathematical operators. The proposed method is applied to select the optimal strategy for the rural water supply of Nohoor village in north-eastern Iran, as a case study and illustrated example. Sensitivity analyses test over results and comparing results with project reality showed that proposed method offered good results for water resources projects.

  16. A heart disease recognition embedded system with fuzzy cluster algorithm.

    Science.gov (United States)

    de Carvalho, Helton Hugo; Moreno, Robson Luiz; Pimenta, Tales Cleber; Crepaldi, Paulo C; Cintra, Evaldo

    2013-06-01

    This article presents the viability analysis and the development of heart disease identification embedded system. It offers a time reduction on electrocardiogram - ECG signal processing by reducing the amount of data samples, without any significant loss. The goal of the developed system is the analysis of heart signals. The ECG signals are applied into the system that performs an initial filtering, and then uses a Gustafson-Kessel fuzzy clustering algorithm for the signal classification and correlation. The classification indicated common heart diseases such as angina, myocardial infarction and coronary artery diseases. The system uses the European electrocardiogram ST-T Database (EDB) as a reference for tests and evaluation. The results prove the system can perform the heart disease detection on a data set reduced from 213 to just 20 samples, thus providing a reduction to just 9.4% of the original set, while maintaining the same effectiveness. This system is validated in a Xilinx Spartan(®)-3A FPGA. The field programmable gate array (FPGA) implemented a Xilinx Microblaze(®) Soft-Core Processor running at a 50MHz clock rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. A REVIEW WAVELET TRANSFORM AND FUZZY K-MEANS BASED IMAGE DE-NOISING METHOD

    OpenAIRE

    Nidhi Patel*, Asst. Prof. Pratik Kumar Soni

    2017-01-01

    The research area of image processing technique using fuzzy k-means and wavelet transform. The enormous amount of data necessary for images is a main reason for the growth of many areas within the research field of computer imaging such as image processing and compression. In order to get this in requisites of the concerned research work, wavelet transforms and k-means clustering is applied. This can be done in order to discover more possible combinations that may lead to the finest de-noisin...

  18. Foundations Of Fuzzy Control

    DEFF Research Database (Denmark)

    Jantzen, Jan

    The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...

  19. Evaluation of Cloud Services: A Fuzzy Multi-Criteria Group Decision Making Method

    Directory of Open Access Journals (Sweden)

    Santoso Wibowo

    2016-12-01

    Full Text Available This paper presents a fuzzy multi-criteria group decision making method for evaluating the performance of Cloud services in an uncertain environment. Intuitionistic fuzzy numbers are used to better model the subjectivity and imprecision in the performance evaluation process. An effective algorithm is developed based on the technique for order preference by similarity to the ideal solution and the Choquet integral operator for adequately solving the performance evaluation problem. An example is presented for demonstrating the applicability of the proposed method for solving the multi-criteria group decision making problem in real situations.

  20. Fuzzy methods in decision making process - A particular approach in manufacturing systems

    Science.gov (United States)

    Coroiu, A. M.

    2015-11-01

    We are living in a competitive environment, so we can see and understand that the most of manufacturing firms do the best in order to accomplish meeting demand, increasing quality, decreasing costs, and delivery rate. In present a stake point of interest is represented by the development of fuzzy technology. A particular approach for this is represented through the development of methodologies to enhance the ability to managed complicated optimization and decision making aspects involving non-probabilistic uncertainty with the reason to understand, development, and practice the fuzzy technologies to be used in fields such as economic, engineering, management, and societal problems. Fuzzy analysis represents a method for solving problems which are related to uncertainty and vagueness; it is used in multiple areas, such as engineering and has applications in decision making problems, planning and production. As a definition for decision making process we can use the next one: result of mental processes based upon cognitive process with a main role in the selection of a course of action among several alternatives. Every process of decision making can be represented as a result of a final choice and the output can be represented as an action or as an opinion of choice. Different types of uncertainty can be discovered in a wide variety of optimization and decision making problems related to planning and operation of power systems and subsystems. The mixture of the uncertainty factor in the construction of different models serves for increasing their adequacy and, as a result, the reliability and factual efficiency of decisions based on their analysis. Another definition of decision making process which came to illustrate and sustain the necessity of using fuzzy method: the decision making is an approach of choosing a strategy among many different projects in order to achieve some purposes and is formulated as three different models: high risk decision, usual risk

  1. Optimization of the test intervals of a nuclear safety system by genetic algorithms, solution clustering and fuzzy preference assignment

    International Nuclear Information System (INIS)

    Zio, E.; Bazzo, R.

    2010-01-01

    In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into 'families'. On the basis of the decision maker's preferences, each family is then synthetically represented by a 'head of the family' solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions

  2. Image matching navigation based on fuzzy information

    Institute of Scientific and Technical Information of China (English)

    田玉龙; 吴伟仁; 田金文; 柳健

    2003-01-01

    In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.

  3. Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization

    International Nuclear Information System (INIS)

    Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.

    2009-01-01

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.

  4. Parallel fuzzy connected image segmentation on GPU.

    Science.gov (United States)

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  5. Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering

    Science.gov (United States)

    Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi

    2015-12-01

    High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.

  6. Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model

    Directory of Open Access Journals (Sweden)

    Mi-Yuan Shan

    2013-01-01

    Full Text Available We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO in vague sets (IVSs is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable.

  7. Signal trend identification with fuzzy methods

    International Nuclear Information System (INIS)

    Reifman, J.; Tsoukalas, L. H.; Wang, X.; Wei, T. Y. C.

    1999-01-01

    A fuzzy-logic-based methodology for on-line signal trend identification is introduced. Although signal trend identification is complicated by the presence of noise, fuzzy logic can help capture important features of on-line signals and classify incoming power plant signals into increasing, decreasing and steady-state trend categories. In order to verify the methodology, a code named PROTREN is developed and tested using plant data. The results indicate that the code is capable of detecting transients accurately, identifying trends reliably, and not misinterpreting a steady-state signal as a transient one

  8. Fuzzy histogram for internal and external fuzzy directional relations

    OpenAIRE

    Salamat , Nadeem; Zahzah , El-Hadi

    2009-01-01

    5 Pages; Spatial relations have key point importance in image analysis and computer vision. Numerous technics have been developed to study these relations especially directional relations. Modern digital computers give rise to quantitative methods and among them fuzzy methods have core importance due to handling imprecise knowledge information and vagueness. In most fuzzy methods external directional relations are considered which are useful for small scale space image analysis but in large s...

  9. Pesticide applicators questionnaire content validation: A fuzzy delphi method.

    Science.gov (United States)

    Manakandan, S K; Rosnah, I; Mohd Ridhuan, J; Priya, R

    2017-08-01

    The most crucial step in forming a set of survey questionnaire is deciding the appropriate items in a construct. Retaining irrelevant items and removing important items will certainly mislead the direction of a particular study. This article demonstrates Fuzzy Delphi method as one of the scientific analysis technique to consolidate consensus agreement within a panel of experts pertaining to each item's appropriateness. This method reduces the ambiguity, diversity, and discrepancy of the opinions among the experts hence enhances the quality of the selected items. The main purpose of this study was to obtain experts' consensus on the suitability of the preselected items on the questionnaire. The panel consists of sixteen experts from the Occupational and Environmental Health Unit of Ministry of Health, Vector-borne Disease Control Unit of Ministry of Health and Occupational and Safety Health Unit of both public and private universities. A set of questionnaires related to noise and chemical exposure were compiled based on the literature search. There was a total of six constructs with 60 items in which three constructs for knowledge, attitude, and practice of noise exposure and three constructs for knowledge, attitude, and practice of chemical exposure. The validation process replicated recent Fuzzy Delphi method that using a concept of Triangular Fuzzy Numbers and Defuzzification process. A 100% response rate was obtained from all the sixteen experts with an average Likert scoring of four to five. Post FDM analysis, the first prerequisite was fulfilled with a threshold value (d) ≤ 0.2, hence all the six constructs were accepted. For the second prerequisite, three items (21%) from noise-attitude construct and four items (40%) from chemical-practice construct had expert consensus lesser than 75%, which giving rise to about 12% from the total items in the questionnaire. The third prerequisite was used to rank the items within the constructs by calculating the average

  10. Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William

    2012-01-01

    Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.

  11. Fuzzy data analysis

    CERN Document Server

    Bandemer, Hans

    1992-01-01

    Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.

  12. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    Science.gov (United States)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  13. Solution of second order linear fuzzy difference equation by Lagrange's multiplier method

    Directory of Open Access Journals (Sweden)

    Sankar Prasad Mondal

    2016-06-01

    Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.

  14. Intuitionistic fuzzy calculus

    CERN Document Server

    Lei, Qian

    2017-01-01

    This book offers a comprehensive and systematic review of the latest research findings in the area of intuitionistic fuzzy calculus. After introducing the intuitionistic fuzzy numbers’ operational laws and their geometrical and algebraic properties, the book defines the concept of intuitionistic fuzzy functions and presents the research on the derivative, differential, indefinite integral and definite integral of intuitionistic fuzzy functions. It also discusses some of the methods that have been successfully used to deal with continuous intuitionistic fuzzy information or data, which are different from the previous aggregation operators focusing on discrete information or data. Mainly intended for engineers and researchers in the fields of fuzzy mathematics, operations research, information science and management science, this book is also a valuable textbook for postgraduate and advanced undergraduate students alike.

  15. A Two-Stage Fuzzy Logic Control Method of Traffic Signal Based on Traffic Urgency Degree

    OpenAIRE

    Yan Ge

    2014-01-01

    City intersection traffic signal control is an important method to improve the efficiency of road network and alleviate traffic congestion. This paper researches traffic signal fuzzy control method on a single intersection. A two-stage traffic signal control method based on traffic urgency degree is proposed according to two-stage fuzzy inference on single intersection. At the first stage, calculate traffic urgency degree for all red phases using traffic urgency evaluation module and select t...

  16. A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management

    Directory of Open Access Journals (Sweden)

    Somaye Yeylaghi

    2017-06-01

    Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.

  17. Implementation of Steiner point of fuzzy set.

    Science.gov (United States)

    Liang, Jiuzhen; Wang, Dejiang

    2014-01-01

    This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.

  18. AN INTELLIGENT NEURO-FUZZY TERMINAL SLIDING MODE CONTROL METHOD WITH APPLICATION TO ATOMIC FORCE MICROSCOPE

    Directory of Open Access Journals (Sweden)

    Seied Yasser Nikoo

    2016-11-01

    Full Text Available In this paper, a neuro-fuzzy fast terminal sliding mode control method is proposed for controlling a class of nonlinear systems with bounded uncertainties and disturbances. In this method, a nonlinear terminal sliding surface is firstly designed. Then, this sliding surface is considered as input for an adaptive neuro-fuzzy inference system which is the main controller. A proportinal-integral-derivative controller is also used to asist the neuro-fuzzy controller in order to improve the performance of the system at the begining stage of control operation. In addition, bee algorithm is used in this paper to update the weights of neuro-fuzzy system as well as the parameters of the proportinal-integral-derivative controller. The proposed control scheme is simulated for vibration control in a model of atomic force microscope system and the results are compared with conventional sliding mode controllers. The simulation results show that the chattering effect in the proposed controller is decreased in comparison with the sliding mode and the terminal sliding mode controllers. Also, the method provides the advantages of fast convergence and low model dependency compared to the conventional methods.

  19. Fuzzy methods and design; Fuzzy shuho to sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, H. [Kwansei Gakuin Univ., Hyogo (Japan)

    1996-03-05

    This paper explains the application of the fuzzy theory to a design. A rational decision in design with only an objective logic requires conditions such that a set of selectable alternative plans and the results of executing them are known, and that a rule or a sequential relation exists to decide the order of preference of the alternative plans. In a case where the optimum anti-earthquake design was applied, for example, the seismic motion, subsoil and properties of materials or the like used to be treated stochastically and statistically as being of random nature. However, elements of uncertainty are actually involved other than the randomness, in consideration of cost effectiveness, safety and such. In the problems of anti-earthquake design by the fuzzy theory, the restrictive conditions are stipulated with a membership function respectively, such that the design earthquake motion is in a range larger than the maximum motion, and that the stress or displacement is each in the range smaller than the allowable stress or displacement of members; in addition, the weight is expressed to be the minimum as the objective function. 9 refs., 1 fig.

  20. Analisis Perbandingan Algoritma Fuzzy C-Means dan K-Means

    OpenAIRE

    Yohannes, Yohannes

    2016-01-01

    Klasterisasi merupakan teknik pengelompokkan data berdasarkan kemiripan data. Teknik klasterisasi ini banyak digunakan pada bidang ilmu komputer khususnya pengolahan citra, pengenalan pola, dan data mining. Banyak sekali algoritma yang digunakan untuk klasterisasi data. Algoritma yang sering digunakan untuk klasterisasi data pada umumnya adalah Fuzzy C-Means dan K-Means. Algoritma Fuzzy C-Means merupakan algoritma klasterisasi dimana data dikelompokkan ke dalam suatu pusat cluster data denga...

  1. The Accuracy Of Fuzzy Sugeno Method With Antropometry On Determination Natural Patient Status

    Science.gov (United States)

    Syahputra, Dinur; Tulus; Sawaluddin

    2017-12-01

    Anthropometry is one of the processes that can be used to assess nutritional status. In general anthropometry is defined as body size in terms of nutrition, then anthropometry is reviewed from various age levels and nutritional levels. Nutritional status is a description of the balance between nutritional intake with the needs of the body individually. Fuzzy logic is a logic that has a vagueness between right and wrong or between 0 and 1. Sugeno method is used because in the process of calculating nutritional status so far is still done by anthropometry. Currently information technology is growing in any aspect, one of them in the aspect of calculation with data taken from anthropometry. In this case the calculation can use the Fuzzy Sugeno Method, in order to know the great accuracy obtained. Then the results obtained using fuzzy sugeno integrated with anthropometry has an accuracy of 81.48%.

  2. Fifty years of fuzzy logic and its applications

    CERN Document Server

    Rishe, Naphtali; Kandel, Abraham

    2015-01-01

    This book presents a comprehensive report on the evolution of Fuzzy Logic since its formulation in Lotfi Zadeh’s seminal paper on “fuzzy sets,” published in 1965. In addition, it features a stimulating sampling from the broad field of research and development inspired by Zadeh’s paper. The chapters, written by pioneers and prominent scholars in the field, show how fuzzy sets have been successfully applied to artificial intelligence, control theory, inference, and reasoning. The book also reports on theoretical issues; features recent applications of Fuzzy Logic in the fields of neural networks, clustering, data mining, and software testing; and highlights an important paradigm shift caused by Fuzzy Logic in the area of uncertainty management. Conceived by the editors as an academic celebration of the fifty years’ anniversary of the 1965 paper, this work is a must-have for students and researchers willing to get an inspiring picture of the potentialities, limitations, achievements and accomplishments...

  3. Controlling Smart Green House Using Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2017-03-01

    Full Text Available To increase agricultural output it is needed a system that can help the environmental conditions for optimum plant growth. Smart greenhouse allows for plants to grow optimally, because the temperature and humidity can be controlled so that no drastic changes. It is necessary for optimal smart greenhouse needed a system to manipulate the environment in accordance with the needs of the plant. In this case the setting temperature and humidity in the greenhouse according to the needs of the plant. So using an automated system for keeping such environmental condition is important. In this study, the authors use fuzzy logic to make the duration of watering the plants more dynamic in accordance with the input temperature and humidity so that the temperature and humidity in the green house plants maintained in accordance to the reference condition. Based on the experimental results using fuzzy logic method is effective to control the duration of watering and to maintain the optimum temperature and humidity inside the greenhouse

  4. Controlling Smart Green House Using Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2015-10-01

    Full Text Available To increase agricultural output it is needed a system that can help the environmental conditions for optimum plant growth. Smart greenhouse allows for plants to grow optimally, because the temperature and humidity can be controlled so that no drastic changes. It is necessary for optimal smart greenhouse needed a system to manipulate the environment in accordance with the needs of the plant. In this case the setting temperature and humidity in the greenhouse according to the needs of the plant. So using an automated system for keeping such environmental condition is important. In this study, the authors use fuzzy logic to make the duration of watering the plants more dynamic in accordance with the input temperature and humidity so that the temperature and humidity in the green house plants maintained in accordance to the reference condition. Based on the experimental results using fuzzy logic method is effective to control the duration of watering and to maintain the optimum temperature and humidity inside the greenhouse

  5. A sequential fuzzy diagnosis method for rotating machinery using ant colony optimization and possibility theory

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hao; Ping, Xueliang; Cao, Yi; Lie, Ke [Jiangnan University, Wuxi (China); Chen, Peng [Mie University, Mie (Japan); Wang, Huaqing [Beijing University, Beijing (China)

    2014-04-15

    This study proposes a novel intelligent fault diagnosis method for rotating machinery using ant colony optimization (ACO) and possibility theory. The non-dimensional symptom parameters (NSPs) in the frequency domain are defined to reflect the features of the vibration signals measured in each state. A sensitive evaluation method for selecting good symptom parameters using principal component analysis (PCA) is proposed for detecting and distinguishing faults in rotating machinery. By using ACO clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. A fuzzy diagnosis method using sequential inference and possibility theory is also proposed, by which the conditions of the machinery can be identified sequentially. Lastly, the proposed method is compared with a conventional neural networks (NN) method. Practical examples of diagnosis for a V-belt driving equipment used in a centrifugal fan are provided to verify the effectiveness of the proposed method. The results verify that the faults that often occur in V-belt driving equipment, such as a pulley defect state, a belt defect state and a belt looseness state, are effectively identified by the proposed method, while these faults are difficult to detect using conventional NN.

  6. Aumann Fuzzy Improper Integral and Its Application to Solve Fuzzy Integro-Differential Equations by Laplace Transform Method

    Directory of Open Access Journals (Sweden)

    Elhassan Eljaoui

    2018-01-01

    Full Text Available We introduce the Aumann fuzzy improper integral to define the convolution product of a fuzzy mapping and a crisp function in this paper. The Laplace convolution formula is proved in this case and used to solve fuzzy integro-differential equations with kernel of convolution type. Then, we report and correct an error in the article by Salahshour et al. dealing with the same topic.

  7. The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network

    Science.gov (United States)

    Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.

    2017-05-01

    The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.

  8. Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method

    Science.gov (United States)

    Nugraha, A. L.; Awaluddin, M.; Sasmito, B.

    2018-02-01

    One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.

  9. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  10. Enhancement of ELM by Clustering Discrimination Manifold Regularization and Multiobjective FOA for Semisupervised Classification

    OpenAIRE

    Qing Ye; Hao Pan; Changhua Liu

    2015-01-01

    A novel semisupervised extreme learning machine (ELM) with clustering discrimination manifold regularization (CDMR) framework named CDMR-ELM is proposed for semisupervised classification. By using unsupervised fuzzy clustering method, CDMR framework integrates clustering discrimination of both labeled and unlabeled data with twinning constraints regularization. Aiming at further improving the classification accuracy and efficiency, a new multiobjective fruit fly optimization algorithm (MOFOA)...

  11. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    Science.gov (United States)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  12. Fuzzy Modelling for Human Dynamics Based on Online Social Networks.

    Science.gov (United States)

    Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2017-08-24

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.

  13. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques.

    Science.gov (United States)

    Chen, Shyi-Ming; Manalu, Gandhi Maruli Tua; Pan, Jeng-Shyang; Liu, Hsiang-Chuan

    2013-06-01

    In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization (PSO) techniques. First, we fuzzify the historical training data of the main factor and the secondary factor, respectively, to form two-factors second-order fuzzy logical relationships. Then, we group the two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, we obtain the optimal weighting vector for each fuzzy-trend logical relationship group by using PSO techniques to perform the forecasting. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index and the NTD/USD exchange rates. The experimental results show that the proposed method gets better forecasting performance than the existing methods.

  14. FFLP problem with symmetric trapezoidal fuzzy numbers

    Directory of Open Access Journals (Sweden)

    Reza Daneshrad

    2015-04-01

    Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.

  15. An input feature selection method applied to fuzzy neural networks for signal esitmation

    International Nuclear Information System (INIS)

    Na, Man Gyun; Sim, Young Rok

    2001-01-01

    It is well known that the performance of a fuzzy neural networks strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output. As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural networks and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PAC), genetic algorithms (GA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods

  16. Optimal Selection Method of Process Patents for Technology Transfer Using Fuzzy Linguistic Computing

    Directory of Open Access Journals (Sweden)

    Gangfeng Wang

    2014-01-01

    Full Text Available Under the open innovation paradigm, technology transfer of process patents is one of the most important mechanisms for manufacturing companies to implement process innovation and enhance the competitive edge. To achieve promising technology transfers, we need to evaluate the feasibility of process patents and optimally select the most appropriate patent according to the actual manufacturing situation. Hence, this paper proposes an optimal selection method of process patents using multiple criteria decision-making and 2-tuple fuzzy linguistic computing to avoid information loss during the processes of evaluation integration. An evaluation index system for technology transfer feasibility of process patents is designed initially. Then, fuzzy linguistic computing approach is applied to aggregate the evaluations of criteria weights for each criterion and corresponding subcriteria. Furthermore, performance ratings for subcriteria and fuzzy aggregated ratings of criteria are calculated. Thus, we obtain the overall technology transfer feasibility of patent alternatives. Finally, a case study of aeroengine turbine manufacturing is presented to demonstrate the applicability of the proposed method.

  17. Determination of interrill soil erodibility coefficient based on Fuzzy and Fuzzy-Genetic Systems

    Directory of Open Access Journals (Sweden)

    Habib Palizvan Zand

    2017-02-01

    Full Text Available Introduction: Although the fuzzy logic science has been used successfully in various sudies of hydrology and soil erosion, but in literature review no article was found about its performance for estimating of interrill erodibility. On the other hand, studies indicate that genetic algorithm techniques can be used in fuzzy models and finding the appropriate membership functions for linguistic variables and fuzzy rules. So this study was conducted to develop the fuzzy and fuzzy–genetics models and investigation of their performance in the estimation of soil interrill erodibility factor (Ki. Materials and Methods: For this reason 36 soil samples with different physical and chemical properties were collected from west of Azerbaijan province . soilsamples were also taken from the Ap or A horizon of each soil profile. The samples were air-dried , sieved and Some soil characteristics such as soil texture, organic matter (OM, cation exchange capacity (CEC, sodium adsorption ratio (SAR, EC and pH were determined by the standard laboratory methods. Aggregates size distributions (ASD were determined by the wet-sieving method and fractal dimension of soil aggregates (Dn was also calculated. In order to determination of soil interrill erodibility, the flume experiment performed by packing soil a depth of 0.09-m in 0.5 × 1.0 m. soil was saturated from the base and adjusted to 9% slope and was subjected to at least 90 min rainfall . Rainfall intensity treatments were 20, 37 and 47 mm h-1. During each rainfall event, runoff was collected manually in different time intervals, being less than 60 s at the beginning, up to 15 min near the end of the test. At the end of the experiment, the volumes of runoff samples and the mass of sediment load at each time interval were measured. Finally interrill erodibility values were calculated using Kinnell (11 Equation. Then by statistical analyses Dn and sand percent of the soils were selected as input variables and Ki as

  18. Evaluate E-loyalty of sales website: a Fuzzy mathematics method

    Science.gov (United States)

    Yi, Ying; Liu, Zhen-Yu; Xiong, Ying-Zi

    The study about online consumer loyalty is limited, but how to evaluate the customers' E-loyalty to a sales website is always a noticeable question. By using some methods of fuzzy mathematics, we provide a more accurate way to evaluate E-loyalty of sales website. Moreover, this method can differentiate level and degree of each factor that influences E-loyalty.

  19. A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis.

    Science.gov (United States)

    Han, Ying; Lu, Zhenyu; Du, Zhenguang; Luo, Qi; Chen, Sheng

    2018-05-01

    Bipolar disorder is often mis-diagnosed as unipolar depression in the clinical diagnosis. The main reason is that, different from other diseases, bipolarity is the norm rather than exception in bipolar disorder diagnosis. YinYang bipolar fuzzy set captures bipolarity and has been successfully used to construct a unified inference mathematical modeling method to bipolar disorder clinical diagnosis. Nevertheless, symptoms and their interrelationships are not considered in the existing method, circumventing its ability to describe complexity of bipolar disorder. Thus, in this paper, a YinYang bipolar fuzzy multi-criteria group decision making method to bipolar disorder clinical diagnosis is developed. Comparing with the existing method, the new one is more comprehensive. The merits of the new method are listed as follows: First of all, multi-criteria group decision making method is introduced into bipolar disorder diagnosis for considering different symptoms and multiple doctors' opinions. Secondly, the discreet diagnosis principle is adopted by the revised TOPSIS method. Last but not the least, YinYang bipolar fuzzy cognitive map is provided for the understanding of interrelations among symptoms. The illustrated case demonstrates the feasibility, validity, and necessity of the theoretical results obtained. Moreover, the comparison analysis demonstrates that the diagnosis result is more accurate, when interrelations about symptoms are considered in the proposed method. In a conclusion, the main contribution of this paper is to provide a comprehensive mathematical approach to improve the accuracy of bipolar disorder clinical diagnosis, in which both bipolarity and complexity are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The use of fuzzy real option valuation method to rank Giga ...

    African Journals Online (AJOL)

    The use of fuzzy real option valuation method to rank Giga Investment Projects on Iran's natural gas reserves. ... Journal of Fundamental and Applied Sciences ... methodology – discounted cash flow analysis – in valuation of Giga investments.

  1. Fuzzy Bi-level Decision-Making Techniques: A Survey

    Directory of Open Access Journals (Sweden)

    Guangquan Zhang

    2016-04-01

    Full Text Available Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques.

  2. A Simplified Version of the Fuzzy Decision Method and its Comparison with the Paraconsistent Decision Method

    Science.gov (United States)

    de Carvalho, Fábio Romeu; Abe, Jair Minoro

    2010-11-01

    Two recent non-classical logics have been used to make decision: fuzzy logic and paraconsistent annotated evidential logic Et. In this paper we present a simplified version of the fuzzy decision method and its comparison with the paraconsistent one. Paraconsistent annotated evidential logic Et, introduced by Da Costa, Vago and Subrahmanian (1991), is capable of handling uncertain and contradictory data without becoming trivial. It has been used in many applications such as information technology, robotics, artificial intelligence, production engineering, decision making etc. Intuitively, one Et logic formula is type p(a, b), in which a and b belong to [0, 1] (real interval) and represent respectively the degree of favorable evidence (or degree of belief) and the degree of contrary evidence (or degree of disbelief) found in p. The set of all pairs (a; b), called annotations, when plotted, form the Cartesian Unitary Square (CUS). This set, containing a similar order relation of real number, comprises a network, called lattice of the annotations. Fuzzy logic was introduced by Zadeh (1965). It tries to systematize the knowledge study, searching mainly to study the fuzzy knowledge (you don't know what it means) and distinguish it from the imprecise one (you know what it means, but you don't know its exact value). This logic is similar to paraconsistent annotated one, since it attributes a numeric value (only one, not two values) to each proposition (then we can say that it is an one-valued logic). This number translates the intensity (the degree) with which the preposition is true. Let's X a set and A, a subset of X, identified by the function f(x). For each element x∈X, you have y = f(x)∈[0, 1]. The number y is called degree of pertinence of x in A. Decision making theories based on these logics have shown to be powerful in many aspects regarding more traditional methods, like the one based on Statistics. In this paper we present a first study for a simplified

  3. Fuzzy Neuron: Method and Hardware Realization

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Norman F.

    2014-01-01

    This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.

  4. Multicriteria optimization in a fuzzy environment: The fuzzy analytic hierarchy process

    Directory of Open Access Journals (Sweden)

    Gardašević-Filipović Milanka

    2010-01-01

    Full Text Available In the paper the fuzzy extension of the Analytic Hierarchy Process (AHP based on fuzzy numbers, and its application in solving a practical problem, are considered. The paper advocates the use of contradictory test to check the fuzzy user preferences during fuzzy AHP decision-making process. We also propose consistency check and deriving priorities from inconsistent fuzzy judgment matrices to be included in the process, in order to check if the fuzzy approach can be applied in the AHP for the problem considered. An aggregation of local priorities obtained at different levels into composite global priorities for the alternatives based on weighted-sum method is also discussed. The contradictory fuzzy judgment matrix is analyzed. Our theoretical consideration has been verified by an application of commercially available Super Decisions program (developed for solving multi-criteria optimization problems using AHP approach on the problem previously treated in the literature. The obtained results are compared with those from the literature. The conclusions are given and the possibilities for further work in the field are pointed out.

  5. Membership determination of open clusters based on a spectral clustering method

    Science.gov (United States)

    Gao, Xin-Hua

    2018-06-01

    We present a spectral clustering (SC) method aimed at segregating reliable members of open clusters in multi-dimensional space. The SC method is a non-parametric clustering technique that performs cluster division using eigenvectors of the similarity matrix; no prior knowledge of the clusters is required. This method is more flexible in dealing with multi-dimensional data compared to other methods of membership determination. We use this method to segregate the cluster members of five open clusters (Hyades, Coma Ber, Pleiades, Praesepe, and NGC 188) in five-dimensional space; fairly clean cluster members are obtained. We find that the SC method can capture a small number of cluster members (weak signal) from a large number of field stars (heavy noise). Based on these cluster members, we compute the mean proper motions and distances for the Hyades, Coma Ber, Pleiades, and Praesepe clusters, and our results are in general quite consistent with the results derived by other authors. The test results indicate that the SC method is highly suitable for segregating cluster members of open clusters based on high-precision multi-dimensional astrometric data such as Gaia data.

  6. Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method

    Directory of Open Access Journals (Sweden)

    Jun Dong

    2018-04-01

    Full Text Available For better utilizing renewable energy resources and improving the sustainability of power systems, demand response is widely applied in China, especially in recent decades. Considering the massive potential flexible resources in the residential sector, demand response programs are able to achieve significant benefits. This paper proposes an effective performance evaluation framework for such programs aimed at residential customers. In general, the evaluation process will face multiple criteria and some uncertain factors. Therefore, we combine the multi-criteria decision making concept and fuzzy set theory to accomplish the model establishment. By introducing trapezoidal fuzzy numbers into the Vlsekriterijumska Optimizacijia I Kompromisno Resenje (VIKOR method, the evaluation model can effectively deal with the subjection and fuzziness of experts’ opinions. Furthermore, we ameliorate the criteria weight determination procedure of traditional models via combining the fuzzy Analytic Hierarchy Process and Shannon entropy method, which can incorporate objective information and subjective judgments. Finally, the proposed evaluation framework is verified by the empirical analysis of five demand response projects in Chinese residential areas. The results give a valid performance ranking of the five alternatives and indicate that more attention should be paid to the criteria affiliated with technology level and economy benefits. In addition, a series of sensitivity analyses are conducted to examine the validity and effectiveness of the established evaluation framework and results. The study improves traditional multi-criteria decision making method VIKOR by introducing trapezoidal fuzzy numbers and combination weighing technique, which can provide an effective mean for performance evaluation of residential demand response programs in a fuzzy environment.

  7. Solution of Fuzzy Differential Equations Using Fuzzy Sumudu Transforms

    Directory of Open Access Journals (Sweden)

    Raheleh Jafari

    2018-01-01

    Full Text Available The uncertain nonlinear systems can be modeled with fuzzy differential equations (FDEs and the solutions of these equations are applied to analyze many engineering problems. However, it is very difficult to obtain solutions of FDEs. In this paper, the solutions of FDEs are approximated by utilizing the fuzzy Sumudu transform (FST method. Significant theorems are suggested in order to explain the properties of FST. The proposed method is validated with three real examples.

  8. An intelligent clustering based methodology for confusable diseases ...

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application ... In this paper, an intelligent system driven by fuzzy clustering algorithm and Adaptive Neuro-Fuzzy Inference System for ... Data on patients diagnosed and confirmed by laboratory tests of viral ...

  9. A new method for solving single and multi-objective fuzzy minimum ...

    Indian Academy of Sciences (India)

    in internet transmission (Liu & Kao 2004) petroleum industry (Ghatee ... A number has been proposed for the ranking of fuzzy numbers. ...... Chanas S and Kuchta D 1998 Fuzzy integer transportation problem. Fuzzy ... Model 32: 1289–1297.

  10. Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method

    Directory of Open Access Journals (Sweden)

    Seçil YALAZ

    2016-10-01

    Full Text Available Our work on regression and classification provides a new contribution to the analysis of time series used in many areas for years. Owing to the fact that convergence could not obtained with the methods used in autocorrelation fixing process faced with time series regression application, success is not met or fall into obligation of changing the models’ degree. Changing the models’ degree may not be desirable in every situation. In our study, recommended for these situations, time series data was fuzzified by using the simple membership function and fuzzy rule generation technique (SMRGT and to estimate future an equation has created by applying fuzzy least square regression (FLSR method which is a simple linear regression method to this data. Although SMRGT has success in determining the flow discharge in open channels and can be used confidently for flow discharge modeling in open canals, as well as in pipe flow with some modifications, there is no clue about that this technique is successful in fuzzy linear regression modeling. Therefore, in order to address the luck of such a modeling, a new hybrid model has been described within this study. In conclusion, to demonstrate our methods’ efficiency, classical linear regression for time series data and linear regression for fuzzy time series data were applied to two different data sets, and these two approaches performances were compared by using different measures.

  11. Geometrical Fuzzy Search Method for the Business Information Security Systems

    Directory of Open Access Journals (Sweden)

    Grigory Grigorievich Novikov

    2014-12-01

    Full Text Available The main reason of the article is how to use one of new fuzzy search method for information security of business or some other purposes. So many sensitive information leaks are through non-classified documents legal publishing. That’s why many intelligence services like to use the “mosaic” information collection method so much: This article is about how to prevent it.

  12. Fuzzy production planning models for an unreliable production system with fuzzy production rate and stochastic/fuzzy demand rate

    Directory of Open Access Journals (Sweden)

    K. A. Halim

    2011-01-01

    Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.

  13. Fuzzy control and identification

    CERN Document Server

    Lilly, John H

    2010-01-01

    This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

  14. Intelligent Technique for Signal Processing to Identify the Brain Disorder for Epilepsy Captures Using Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Gurumurthy Sasikumar

    2016-01-01

    Full Text Available The new direction of understand the signal that is created from the brain organization is one of the main chores in the brain signal processing. Amid all the neurological disorders the human brain epilepsy is measured as one of the extreme prevalent and then programmed artificial intelligence detection technique is an essential due to the crooked and unpredictable nature of happening of epileptic seizures. We proposed an Improved Fuzzy firefly algorithm, which would enhance the classification of the brain signal efficiently with minimum iteration. An important bunching technique created on fuzzy logic is the Fuzzy C means. Together in the feature domain with the spatial domain the features gained after multichannel EEG signals remained combined by means of fuzzy algorithms. And for better precision segmentation process the firefly algorithm is applied to optimize the Fuzzy C-means membership function. Simultaneously for the efficient clustering method the convergence criteria are set. On the whole the proposed technique yields more accurate results and that gives an edge over other techniques. This proposed algorithm result compared with other algorithms like fuzzy c means algorithm and PSO algorithm.

  15. Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method

    Science.gov (United States)

    Mamonova, T.; Syryamkin, V.; Vasilyeva, T.

    2016-04-01

    The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.

  16. Fuzziness and fuzzy modelling in Bulgaria's energy policy decision-making dilemma

    International Nuclear Information System (INIS)

    Wang Xingquan

    2006-01-01

    The decision complexity resulting from imprecision in decision variables and parameters, a major difficulty for conventional decision analysis methods, can be relevantly analysed and modelled by fuzzy logic. Bulgaria's nuclear policy decision-making process implicates such complexity of imprecise nature: stakeholders, criteria, measurement, etc. Given the suitable applicability of fuzzy logic in this case, this article tries to offer a concrete fuzzy paradigm including delimitation of decision space, quantification of imprecise variables, and, of course, parameterisation. (author)

  17. Design of a Fuzzy Rule Base Expert System to Predict and Classify ...

    African Journals Online (AJOL)

    The main objective of design of a rule base expert system using fuzzy logic approach is to predict and forecast the risk level of cardiac patients to avoid sudden death. In this proposed system, uncertainty is captured using rule base and classification using fuzzy c-means clustering is discussed to overcome the risk level, ...

  18. Application of fuzzy method in the spectrophotometrical research of biological object

    International Nuclear Information System (INIS)

    Gadzieva, N.N.; Gardashova, L.A.; Velijanova, M.Z.

    2003-01-01

    Full Text: Adsorption spectra of tobacco's alhogol infusion has been received in visible range. Linear dependence between spectroscopy parameters and tobacco quality has been found. Based on spectroscopy dates using theory of Fuzzy method, clear borders tobacco classification by its quality

  19. A Lexicographic Method for Matrix Games with Payoffs of Triangular Intuitionistic Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Jiang-Xia Nan

    2010-09-01

    Full Text Available The intuitionistic fuzzy set (IF-set has not been applied to matrix game problems yet since it was introduced by K.T.Atanassov. The aim of this paper is to develop a methodology for solving matrix games with payoffs of triangular intuitionistic fuzzy numbers (TIFNs. Firstly the concept of TIFNs and their arithmetic operations and cut sets are introduced as well as the ranking order relations. Secondly the concept of solutions for matrix games with payoffs of TIFNs is defined. A lexicographic methodology is developed to determine the solutions of matrix games with payoffs of TIFNs for both Players through solving a pair of bi-objective linear programming models derived from two new auxiliary intuitionistic fuzzy programming models. The proposed method is illustrated with a numerical example.

  20. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    Science.gov (United States)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  1. Dynamic Allan Variance Analysis Method with Time-Variant Window Length Based on Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Shanshan Gu

    2015-01-01

    Full Text Available To solve the problem that dynamic Allan variance (DAVAR with fixed length of window cannot meet the identification accuracy requirement of fiber optic gyro (FOG signal over all time domains, a dynamic Allan variance analysis method with time-variant window length based on fuzzy control is proposed. According to the characteristic of FOG signal, a fuzzy controller with the inputs of the first and second derivatives of FOG signal is designed to estimate the window length of the DAVAR. Then the Allan variances of the signals during the time-variant window are simulated to obtain the DAVAR of the FOG signal to describe the dynamic characteristic of the time-varying FOG signal. Additionally, a performance evaluation index of the algorithm based on radar chart is proposed. Experiment results show that, compared with different fixed window lengths DAVAR methods, the change of FOG signal with time can be identified effectively and the evaluation index of performance can be enhanced by 30% at least by the DAVAR method with time-variant window length based on fuzzy control.

  2. A New Method to Find Fuzzy Nth Order Derivation and Applications to Fuzzy Nth Order Arithmetic Based on Generalized H-Derivation

    Directory of Open Access Journals (Sweden)

    Laleh Hooshangian

    2014-07-01

    Full Text Available In this paper, fuzzy nth-order derivative for n in N is introduced. To do this, nth-order derivation under generalized Hukuhara derivative here in discussed. Calculations on the fuzzy nth-order derivative on fuzzy functions and their relationships, in general, are introduced. Then, the fuzzy nth-order differential equations is solved, for n in N.

  3. Neuro-fuzzy modelling of hydro unit efficiency

    International Nuclear Information System (INIS)

    Iliev, Atanas; Fushtikj, Vangel

    2003-01-01

    This paper presents neuro-fuzzy method for modeling of the hydro unit efficiency. The proposed method uses the characteristics of the fuzzy systems as universal function approximates, as well the abilities of the neural networks to adopt the parameters of the membership's functions and rules in the consequent part of the developed fuzzy system. Developed method is practically applied for modeling of the efficiency of unit which will be installed in the hydro power plant Kozjak. Comparison of the performance of the derived neuro-fuzzy method with several classical polynomials models is also performed. (Author)

  4. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators.

    Science.gov (United States)

    Yin, Kedong; Yang, Benshuo; Li, Xuemei

    2018-01-24

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.

  5. Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.

    Science.gov (United States)

    de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2017-01-01

    Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.

  6. Qualitative assessment of environmental impacts through fuzzy logic

    International Nuclear Information System (INIS)

    Peche G, Roberto

    2008-01-01

    The vagueness of many concepts usually utilized in environmental impact studies, along with frequent lack of quantitative information, suggests that fuzzy logic can be applied to carry out qualitative assessment of such impacts. This paper proposes a method for valuing environmental impacts caused by projects, based on fuzzy sets theory and methods of approximate reasoning. First, impacts must be described by a set of features. A linguistic variable is assigned to each feature, whose values are fuzzy sets. A fuzzy evaluation of environmental impacts is achieved using rule based fuzzy inference and the estimated fuzzy value of each feature. Generalized modus ponens has been the inference method. Finally, a crisp value of impact is attained by aggregation and defuzzification of all fuzzy results

  7. Fuzzy norm method for evaluating random vibration of airborne platform from limited PSD data

    Directory of Open Access Journals (Sweden)

    Wang Zhongyu

    2014-12-01

    Full Text Available For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density (PSD data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method (FNM is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.

  8. The Adaptive-Clustering and Error-Correction Method for Forecasting Cyanobacteria Blooms in Lakes and Reservoirs

    Directory of Open Access Journals (Sweden)

    Xiao-zhe Bai

    2017-01-01

    Full Text Available Globally, cyanobacteria blooms frequently occur, and effective prediction of cyanobacteria blooms in lakes and reservoirs could constitute an essential proactive strategy for water-resource protection. However, cyanobacteria blooms are very complicated because of the internal stochastic nature of the system evolution and the external uncertainty of the observation data. In this study, an adaptive-clustering algorithm is introduced to obtain some typical operating intervals. In addition, the number of nearest neighbors used for modeling was optimized by particle swarm optimization. Finally, a fuzzy linear regression method based on error-correction was used to revise the model dynamically near the operating point. We found that the combined method can characterize the evolutionary track of cyanobacteria blooms in lakes and reservoirs. The model constructed in this paper is compared to other cyanobacteria-bloom forecasting methods (e.g., phase space reconstruction and traditional-clustering linear regression, and, then, the average relative error and average absolute error are used to compare the accuracies of these models. The results suggest that the proposed model is superior. As such, the newly developed approach achieves more precise predictions, which can be used to prevent the further deterioration of the water environment.

  9. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  10. Optimization of warehouse location through fuzzy multi-criteria decision making methods

    Directory of Open Access Journals (Sweden)

    C. L. Karmaker

    2015-07-01

    Full Text Available Strategic warehouse location-allocation problem is a multi-staged decision-making problem having both numerical and qualitative criteria. In order to survive in the global business scenario by improving supply chain performance, companies must examine the cross-functional drivers in the optimization of logistic systems. A meticulous observation makes evident that strategy warehouse location selection has become challenging as the number of alternatives and conflicting criteria increases. The issue becomes particularly problematic when the conventional concept has been applied in dealing with the imprecise nature of the linguistic assessment. The qualitative decisions for selection process are often complicated by the fact that often it is imprecise for the decision makers. Such problem must be overcome with defined efforts. Fuzzy multi-criteria decision making methods have been used in this research as aids in making location-allocation decisions. The anticipated methods in this research consist of two steps at its core. In the first step, the criteria of the existing problem are inspected and identified and then the weights of the sector and subsector are determined that have come to light by using Fuzzy AHP. In the second step, eligible alternatives are ranked by using TOPSIS and Fuzzy TOPSIS comparatively. A demonstration of the application of these methodologies in a real life problem is presented.

  11. Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Yi Cao

    2013-06-01

    Full Text Available A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD and the relative crossing information (RCI methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO clustering algorithm, the synthesizing symptom parameters (SSP for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP, and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well.

  12. Fuzzy linguistic model for interpolation

    International Nuclear Information System (INIS)

    Abbasbandy, S.; Adabitabar Firozja, M.

    2007-01-01

    In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method

  13. A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhi-tao Wang

    2015-01-01

    Full Text Available As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM clustering algorithm and support vector machine (SVM classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain the state pattern, on the basis of which the preclassification of EGT is completed. Then, SVM multiclassification model is designed to carry out the state pattern recognition and fault diagnosis. As an example, the historical monitoring data of EGT from an industrial gas turbine is analyzed and used to verify the performance of the fusion fault diagnosis approach presented in this paper. The results show that this approach can make full use of the unsupervised feature extraction ability of FCM clustering algorithm and the sample classification generalization properties of SVM multiclassification model, which offers an effective way to realize the online condition recognition and fault diagnosis of gas turbine EGT.

  14. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    Science.gov (United States)

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  15. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    Directory of Open Access Journals (Sweden)

    C. K. Kwong

    2013-01-01

    Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  16. Collaborative Filtering Based on Sequential Extraction of User-Item Clusters

    Science.gov (United States)

    Honda, Katsuhiro; Notsu, Akira; Ichihashi, Hidetomo

    Collaborative filtering is a computational realization of “word-of-mouth” in network community, in which the items prefered by “neighbors” are recommended. This paper proposes a new item-selection model for extracting user-item clusters from rectangular relation matrices, in which mutual relations between users and items are denoted in an alternative process of “liking or not”. A technique for sequential co-cluster extraction from rectangular relational data is given by combining the structural balancing-based user-item clustering method with sequential fuzzy cluster extraction appraoch. Then, the tecunique is applied to the collaborative filtering problem, in which some items may be shared by several user clusters.

  17. Influence of fuzzy norms and other heuristics on "Mixed fuzzy rule formation" - [Corrigendum

    OpenAIRE

    Gabriel, Thomas R.; Berthold, Michael R.

    2008-01-01

    We hereby correct an error in Ref. [2], in which we studied the influence of various parameters that affect the generalization performance of fuzzy models constructed using the mixed fuzzy rule formation method [1].

  18. Ensemble Genetic Fuzzy Neuro Model Applied for the Emergency Medical Service via Unbalanced Data Evaluation

    Directory of Open Access Journals (Sweden)

    Muammar Sadrawi

    2018-03-01

    Full Text Available Equally partitioned data are essential for prediction. However, in some important cases, the data distribution is severely unbalanced. In this study, several algorithms are utilized to maximize the learning accuracy when dealing with a highly unbalanced dataset. A linguistic algorithm is applied to evaluate the input and output relationship, namely Fuzzy c-Means (FCM, which is applied as a clustering algorithm for the majority class to balance the minority class data from about 3 million cases. Each cluster is used to train several artificial neural network (ANN models. Different techniques are applied to generate an ensemble genetic fuzzy neuro model (EGFNM in order to select the models. The first ensemble technique, the intra-cluster EGFNM, works by evaluating the best combination from all the models generated by each cluster. Another ensemble technique is the inter-cluster model EGFNM, which is based on selecting the best model from each cluster. The accuracy of these techniques is evaluated using the receiver operating characteristic (ROC via its area under the curve (AUC. Results show that the AUC of the unbalanced data is 0.67974. The random cluster and best ANN single model have AUCs of 0.7177 and 0.72806, respectively. For the ensemble evaluations, the intra-cluster and the inter-cluster EGFNMs produce 0.7293 and 0.73038, respectively. In conclusion, this study achieved improved results by performing the EGFNM method compared with the unbalanced training. This study concludes that selecting several best models will produce a better result compared with all models combined.

  19. Cluster Analysis of Customer Reviews Extracted from Web Pages

    Directory of Open Access Journals (Sweden)

    S. Shivashankar

    2010-01-01

    Full Text Available As e-commerce is gaining popularity day by day, the web has become an excellent source for gathering customer reviews / opinions by the market researchers. The number of customer reviews that a product receives is growing at very fast rate (It could be in hundreds or thousands. Customer reviews posted on the websites vary greatly in quality. The potential customer has to read necessarily all the reviews irrespective of their quality to make a decision on whether to purchase the product or not. In this paper, we make an attempt to assess are view based on its quality, to help the customer make a proper buying decision. The quality of customer review is assessed as most significant, more significant, significant and insignificant.A novel and effective web mining technique is proposed for assessing a customer review of a particular product based on the feature clustering techniques, namely, k-means method and fuzzy c-means method. This is performed in three steps : (1Identify review regions and extract reviews from it, (2 Extract and cluster the features of reviews by a clustering technique and then assign weights to the features belonging to each of the clusters (groups and (3 Assess the review by considering the feature weights and group belongingness. The k-means and fuzzy c-means clustering techniques are implemented and tested on customer reviews extracted from web pages. Performance of these techniques are analyzed.

  20. The foundations of fuzzy control

    CERN Document Server

    Lewis, Harold W

    1997-01-01

    Harold Lewis applied a cross-disciplinary approach in his highly accessible discussion of fuzzy control concepts. With the aid of fifty-seven illustrations, he thoroughly presents a unique mathematical formalism to explain the workings of the fuzzy inference engine and a novel test plant used in the research. Additionally, the text posits a new viewpoint on why fuzzy control is more popular in some countries than in others. A direct and original view of Japanese thinking on fuzzy control methods, based on the author's personal knowledge of - and association with - Japanese fuzzy research, is also included.

  1. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model

    International Nuclear Information System (INIS)

    Galdi, V.; Piccolo, A.; Siano, P.

    2009-01-01

    Nowadays, incentives and financing options for developing renewable energy facilities and the new development in variable speed wind technology make wind energy a competitive source if compared with conventional generation ones. In order to improve the effectiveness of variable speed wind systems, adaptive control systems able to cope with time variances of the system under control are necessary. On these basis, a data driven designing methodology for TSK fuzzy models design is presented in this paper. The methodology, on the basis of given input-output numerical data, generates the 'best' TSK fuzzy model able to estimate with high accuracy the maximum extractable power from a variable speed wind turbine. The design methodology is based on fuzzy clustering methods for partitioning the input-output space combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation

  2. A Fuzzy Logic Based Method for Analysing Test Results

    Directory of Open Access Journals (Sweden)

    Le Xuan Vinh

    2017-11-01

    Full Text Available Network operators must perform many tasks to ensure smooth operation of the network, such as planning, monitoring, etc. Among those tasks, regular testing of network performance, network errors and troubleshooting is very important. Meaningful test results will allow the operators to evaluate network performanceof any shortcomings and to better plan for network upgrade. Due to the diverse and mainly unquantifiable nature of network testing results, there is a needs to develop a method for systematically and rigorously analysing these results. In this paper, we present STAM (System Test-result Analysis Method which employs a bottom-up hierarchical processing approach using Fuzzy logic. STAM is capable of combining all test results into a quantitative description of the network performance in terms of network stability, the significance of various network erros, performance of each function blocks within the network. The validity of this method has been successfully demonstrated in assisting the testing of a VoIP system at the Research Instiute of Post and Telecoms in Vietnam. The paper is organized as follows. The first section gives an overview of fuzzy logic theory the concepts of which will be used in the development of STAM. The next section describes STAM. The last section, demonstrating STAM’s capability, presents a success story in which STAM is successfully applied.

  3. Fuzzy comprehensive evaluation method of F statistics weighting in ...

    African Journals Online (AJOL)

    In order to rapidly identify the source of water inrush in coal mine, and provide the theoretical basis for mine water damage prevention and control, fuzzy comprehensive evaluation model was established. The F statistics of water samples was normalized as the weight of fuzzy comprehensive evaluation for determining the ...

  4. Segmentasi Citra USG (Ultrasonography Kanker Payudara Menggunakan Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ri Munarto

    2018-01-01

    Full Text Available Health is a valuable treasure in survival and can be used as a parameter of quality assurance of human life. Some people even tend to ignore of health, so don’t care about the disease that will them attack and finally to death. Noted the main disease that causes death in the world is cancer. Cancer has many types, but the greatest death in each year is caused by breast cancer. Indonesia found more than 80% of cases in advanced stage, it is estimated that the incidence get 12 people from 10000 women. These numbers will to grow when there is no such treatment as prevention or early diagnosis. Growing of breast cancer patients inversely proportional to the percentage of complaints patients to doctors diagnosis in USG (Ultrasonography breast cancer 20%. The problem is ultrasound imaging which is distorted by speckle noise. The solution is to help easier for doctors to diagnose the presence and form of breast cancer using USG. Speckle noise on USG is able to good reduce using SRAD (Speckle Reducing Anisotropic Diffusion. The filtering results are then well segmented using Fuzzy C-Means Clustering with an accuracy 91.43% of 35 samples USG image breast cancer.

  5. Compound Option Pricing under Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Xiandong Wang

    2014-01-01

    Full Text Available Considering the uncertainty of a financial market includes two aspects: risk and vagueness; in this paper, fuzzy sets theory is applied to model the imprecise input parameters (interest rate and volatility. We present the fuzzy price of compound option by fuzzing the interest and volatility in Geske’s compound option pricing formula. For each α, the α-level set of fuzzy prices is obtained according to the fuzzy arithmetics and the definition of fuzzy-valued function. We apply a defuzzification method based on crisp possibilistic mean values of the fuzzy interest rate and fuzzy volatility to obtain the crisp possibilistic mean value of compound option price. Finally, we present a numerical analysis to illustrate the compound option pricing under fuzzy environment.

  6. Clustering methods for the optimization of atomic cluster structure

    Science.gov (United States)

    Bagattini, Francesco; Schoen, Fabio; Tigli, Luca

    2018-04-01

    In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.

  7. Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster

    Science.gov (United States)

    Syakur, M. A.; Khotimah, B. K.; Rochman, E. M. S.; Satoto, B. D.

    2018-04-01

    Clustering is a data mining technique used to analyse data that has variations and the number of lots. Clustering was process of grouping data into a cluster, so they contained data that is as similar as possible and different from other cluster objects. SMEs Indonesia has a variety of customers, but SMEs do not have the mapping of these customers so they did not know which customers are loyal or otherwise. Customer mapping is a grouping of customer profiling to facilitate analysis and policy of SMEs in the production of goods, especially batik sales. Researchers will use a combination of K-Means method with elbow to improve efficient and effective k-means performance in processing large amounts of data. K-Means Clustering is a localized optimization method that is sensitive to the selection of the starting position from the midpoint of the cluster. So choosing the starting position from the midpoint of a bad cluster will result in K-Means Clustering algorithm resulting in high errors and poor cluster results. The K-means algorithm has problems in determining the best number of clusters. So Elbow looks for the best number of clusters on the K-means method. Based on the results obtained from the process in determining the best number of clusters with elbow method can produce the same number of clusters K on the amount of different data. The result of determining the best number of clusters with elbow method will be the default for characteristic process based on case study. Measurement of k-means value of k-means has resulted in the best clusters based on SSE values on 500 clusters of batik visitors. The result shows the cluster has a sharp decrease is at K = 3, so K as the cut-off point as the best cluster.

  8. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    Science.gov (United States)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  9. The Interval-Valued Triangular Fuzzy Soft Set and Its Method of Dynamic Decision Making

    OpenAIRE

    Xiaoguo Chen; Hong Du; Yue Yang

    2014-01-01

    A concept of interval-valued triangular fuzzy soft set is presented, and some operations of “AND,” “OR,” intersection, union and complement, and so forth are defined. Then some relative properties are discussed and several conclusions are drawn. A dynamic decision making model is built based on the definition of interval-valued triangular fuzzy soft set, in which period weight is determined by the exponential decay method. The arithmetic weighted average operator of interval-valued triangular...

  10. Implementation of the - Constraint Method in Special Class of Multi-objective Fuzzy Bi-Level Nonlinear Problems

    Directory of Open Access Journals (Sweden)

    Azza Hassan Amer

    2017-12-01

    Full Text Available Geometric programming problem is a powerful tool for solving some special type nonlinear programming problems. In the last few years we have seen a very rapid development on solving multiobjective geometric programming problem. A few mathematical programming methods namely fuzzy programming, goal programming and weighting methods have been applied in the recent past to find the compromise solution. In this paper, -constraint method has been applied in bi-level multiobjective geometric programming problem to find the Pareto optimal solution at each level. The equivalent mathematical programming problems are formulated to find their corresponding value of the objective function based on the duality theorem at eash level. Here, we have developed a new algorithm for fuzzy programming technique to solve bi-level multiobjective geometric programming problems to find an optimal compromise solution. Finally the solution procedure of the fuzzy technique is illustrated by a numerical example

  11. FUZZY LOGIC IN LEGAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Z. Gonul BALKIR

    2011-04-01

    Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal

  12. A novel algorithm for solving optimal path planning problems based on parametrization method and fuzzy aggregation

    International Nuclear Information System (INIS)

    Zamirian, M.; Kamyad, A.V.; Farahi, M.H.

    2009-01-01

    In this Letter a new approach for solving optimal path planning problems for a single rigid and free moving object in a two and three dimensional space in the presence of stationary or moving obstacles is presented. In this approach the path planning problems have some incompatible objectives such as the length of path that must be minimized, the distance between the path and obstacles that must be maximized and etc., then a multi-objective dynamic optimization problem (MODOP) is achieved. Considering the imprecise nature of decision maker's (DM) judgment, these multiple objectives are viewed as fuzzy variables. By determining intervals for the values of these fuzzy variables, flexible monotonic decreasing or increasing membership functions are determined as the degrees of satisfaction of these fuzzy variables on their intervals. Then, the optimal path planning policy is searched by maximizing the aggregated fuzzy decision values, resulting in a fuzzy multi-objective dynamic optimization problem (FMODOP). Using a suitable t-norm, the FMODOP is converted into a non-linear dynamic optimization problem (NLDOP). By using parametrization method and some calculations, the NLDOP is converted into the sequence of conventional non-linear programming problems (NLPP). It is proved that the solution of this sequence of the NLPPs tends to a Pareto optimal solution which, among other Pareto optimal solutions, has the best satisfaction of DM for the MODOP. Finally, the above procedure as a novel algorithm integrating parametrization method and fuzzy aggregation to solve the MODOP is proposed. Efficiency of our approach is confirmed by some numerical examples.

  13. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods

    Directory of Open Access Journals (Sweden)

    V. Vakhshoori

    2016-09-01

    Full Text Available A regional scale basin susceptible to landslide located in Qaemshahr area in northern Iran was chosen for comparing the reliability of weight of evidence (WofE, fuzzy logic, and frequency ratio (FR methods for landslide susceptibility mapping. The locations of 157 landslides were identified using Google Earth® or extracted from archived data, from which, 22 rockslides were eliminated from the data-set due to their different conditions. The 135 remaining landslides were randomly divided into two groups of modelling (70% and validation (30% data-sets. Elevation, slope degree, slope aspect, lithology, land use/cover, normalized difference vegetation index, rainfall, distance to drainage network, roads, and faults were considered as landslide causative factors. The landslide susceptibility maps were prepared using the three mentioned methods. The validation process was measured by the success and prediction rates calculated by area under receiver operating characteristic curve. The ‘OR’, ‘AND’, ‘SUM’, and ‘PRODUCT’ operators of the fuzzy logic method were unacceptable because these operators classify the target area into either very high or very low susceptible zones that are inconsistent with the physical conditions of the study area. The results of fuzzy ‘GAMMA’ operators were relatively reliable while, FR and WofE methods showed results that are more reliable.

  14. FUZZY-GENETIC CONTROL OF QUADROTOR UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    Attila Nemes

    2016-03-01

    Full Text Available This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the equations of motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation results of the proposed new quadrotor dynamic model identification method are promising.

  15. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    Science.gov (United States)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  16. Empirical research in service engineering based on AHP and fuzzy methods

    Science.gov (United States)

    Zhang, Yanrui; Cao, Wenfu; Zhang, Lina

    2015-12-01

    Recent years, management consulting industry has been rapidly developing worldwide. Taking a big management consulting company as research object, this paper established an index system of service quality of consulting, based on customer satisfaction survey, evaluated service quality of the consulting company by AHP and fuzzy comprehensive evaluation methods.

  17. Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.

    Science.gov (United States)

    Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin

    2018-03-02

    Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.

  18. Decision and game theory in management with intuitionistic fuzzy sets

    CERN Document Server

    Li, Deng-Feng

    2014-01-01

    The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to us...

  19. α-Cut method based importance measure for criticality analysis in fuzzy probability – Based fault tree analysis

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry; Sony Tjahyani, D.T.; Widodo, Surip; Tjahjono, Hendro

    2017-01-01

    Highlights: •FPFTA deals with epistemic uncertainty using fuzzy probability. •Criticality analysis is important for reliability improvement. •An α-cut method based importance measure is proposed for criticality analysis in FPFTA. •The α-cut method based importance measure utilises α-cut multiplication, α-cut subtraction, and area defuzzification technique. •Benchmarking confirm that the proposed method is feasible for criticality analysis in FPFTA. -- Abstract: Fuzzy probability – based fault tree analysis (FPFTA) has been recently developed and proposed to deal with the limitations of conventional fault tree analysis. In FPFTA, reliabilities of basic events, intermediate events and top event are characterized by fuzzy probabilities. Furthermore, the quantification of the FPFTA is based on fuzzy multiplication rule and fuzzy complementation rule to propagate uncertainties from basic event to the top event. Since the objective of the fault tree analysis is to improve the reliability of the system being evaluated, it is necessary to find the weakest path in the system. For this purpose, criticality analysis can be implemented. Various importance measures, which are based on conventional probabilities, have been developed and proposed for criticality analysis in fault tree analysis. However, not one of those importance measures can be applied for criticality analysis in FPFTA, which is based on fuzzy probability. To be fully applied in nuclear power plant probabilistic safety assessment, FPFTA needs to have its corresponding importance measure. The objective of this study is to develop an α-cut method based importance measure to evaluate and rank the importance of basic events for criticality analysis in FPFTA. To demonstrate the applicability of the proposed measure, a case study is performed and its results are then benchmarked to the results generated by the four well known importance measures in conventional fault tree analysis. The results

  20. On Intuitionistic Fuzzy Filters of Intuitionistic Fuzzy Coframes

    Directory of Open Access Journals (Sweden)

    Rajesh K. Thumbakara

    2013-01-01

    Full Text Available Frame theory is the study of topology based on its open set lattice, and it was studied extensively by various authors. In this paper, we study quotients of intuitionistic fuzzy filters of an intuitionistic fuzzy coframe. The quotients of intuitionistic fuzzy filters are shown to be filters of the given intuitionistic fuzzy coframe. It is shown that the collection of all intuitionistic fuzzy filters of a coframe and the collection of all intutionistic fuzzy quotient filters of an intuitionistic fuzzy filter are coframes.

  1. Why fuzzy controllers should be fuzzy

    International Nuclear Information System (INIS)

    Nowe, A.

    1996-01-01

    Fuzzy controllers are usually looked at as crisp valued mappings especially when artificial intelligence learning techniques are used to build up the controller. By doing so the semantics of a fuzzy conclusion being a fuzzy restriction on the viable control actions is non-existing. In this paper the authors criticise from an approximation point of view using a fuzzy controller to express a crisp mapping does not seem the right way to go. Secondly it is illustrated that interesting information is contained in a fuzzy conclusion when indeed this conclusion is considered as a fuzzy restriction. This information turns out to be very valuable when viability problems are concerned, i.e. problems where the objective is to keep a system within predefined boundaries

  2. Optimal solution of full fuzzy transportation problems using total integral ranking

    Science.gov (United States)

    Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.

    2018-03-01

    Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.

  3. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  4. Fuzzy control of small servo motors

    Science.gov (United States)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  5. Interactive visual exploration and refinement of cluster assignments.

    Science.gov (United States)

    Kern, Michael; Lex, Alexander; Gehlenborg, Nils; Johnson, Chris R

    2017-09-12

    With ever-increasing amounts of data produced in biology research, scientists are in need of efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don't properly account for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and contextual data. In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes. Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce improved clusterings that better differentiate genotypes and phenotypes.

  6. Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm

    Science.gov (United States)

    Ayvaz, M. Tamer

    2007-11-01

    This study proposes an inverse solution algorithm through which both the aquifer parameters and the zone structure of these parameters can be determined based on a given set of observations on piezometric heads. In the zone structure identification problem fuzzy c-means ( FCM) clustering method is used. The association of the zone structure with the transmissivity distribution is accomplished through an optimization model. The meta-heuristic harmony search ( HS) algorithm, which is conceptualized using the musical process of searching for a perfect state of harmony, is used as an optimization technique. The optimum parameter zone structure is identified based on three criteria which are the residual error, parameter uncertainty, and structure discrimination. A numerical example given in the literature is solved to demonstrate the performance of the proposed algorithm. Also, a sensitivity analysis is performed to test the performance of the HS algorithm for different sets of solution parameters. Results indicate that the proposed solution algorithm is an effective way in the simultaneous identification of aquifer parameters and their corresponding zone structures.

  7. DSTiPE Algorithm for Fuzzy Spatio-Temporal Risk Calculation in Wireless Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2008-09-01

    Time and location data play a very significant role in a variety of factory automation scenarios, such as automated vehicles and robots, their navigation, tracking, and monitoring, to services of optimization and security. In addition, pervasive wireless capabilities combined with time and location information are enabling new applications in areas such as transportation systems, health care, elder care, military, emergency response, critical infrastructure, and law enforcement. A person/object in proximity to certain areas for specific durations of time may pose a risk hazard either to themselves, others, or the environment. This paper presents a novel fuzzy based spatio-temporal risk calculation DSTiPE method that an object with wireless communications presents to the environment. The presented Matlab based application for fuzzy spatio-temporal risk cluster extraction is verified on a diagonal vehicle movement example.

  8. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    Science.gov (United States)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  9. Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis

    Directory of Open Access Journals (Sweden)

    Sizilio Gláucia RMA

    2012-11-01

    Full Text Available Abstract Background Across the globe, breast cancer is one of the leading causes of death among women and, currently, Fine Needle Aspirate (FNA with visual interpretation is the easiest and fastest biopsy technique for the diagnosis of this deadly disease. Unfortunately, the ability of this method to diagnose cancer correctly when the disease is present varies greatly, from 65% to 98%. This article introduces a method to assist in the diagnosis and second opinion of breast cancer from the analysis of descriptors extracted from smears of breast mass obtained by FNA, with the use of computational intelligence resources - in this case, fuzzy logic. Methods For data acquisition of FNA, the Wisconsin Diagnostic Breast Cancer Data (WDBC, from the University of California at Irvine (UCI Machine Learning Repository, available on the internet through the UCI domain was used. The knowledge acquisition process was carried out by the extraction and analysis of numerical data of the WDBC and by interviews and discussions with medical experts. The PDM-FNA-Fuzzy was developed in four steps: 1 Fuzzification Stage; 2 Rules Base; 3 Inference Stage; and 4 Defuzzification Stage. Performance cross-validation was used in the tests, with three databases with gold pattern clinical cases randomly extracted from the WDBC. The final validation was held by medical specialists in pathology, mastology and general practice, and with gold pattern clinical cases, i.e. with known and clinically confirmed diagnosis. Results The Fuzzy Method developed provides breast cancer pre-diagnosis with 98.59% sensitivity (correct pre-diagnosis of malignancies; and 85.43% specificity (correct pre-diagnosis of benign cases. Due to the high sensitivity presented, these results are considered satisfactory, both by the opinion of medical specialists in the aforementioned areas and by comparison with other studies involving breast cancer diagnosis using FNA. Conclusions This paper presents an

  10. A Lateral Control Method of Intelligent Vehicle Based on Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2015-01-01

    Full Text Available A lateral control method is proposed for intelligent vehicle to track the desired trajectory. Firstly, a lateral control model is established based on the visual preview and dynamic characteristics of intelligent vehicle. Then, the lateral error and orientation error are melded into an integrated error. Considering the system parameter perturbation and the external interference, a sliding model control is introduced in this paper. In order to design a sliding surface, the integrated error is chosen as the parameter of the sliding mode switching function. The sliding mode switching function and its derivative are selected as two inputs of the controller, and the front wheel angle is selected as the output. Next, a fuzzy neural network is established, and the self-learning functions of neural network is utilized to construct the fuzzy rules. Finally, the simulation results demonstrate the effectiveness and robustness of the proposed method.

  11. Fuzzy logic control of nuclear power plant

    International Nuclear Information System (INIS)

    Yao Liangzhong; Guo Renjun; Ma Changwen

    1996-01-01

    The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed

  12. Influence of fuzzy norms and other heuristics on “Mixed fuzzy rule formation”

    OpenAIRE

    Gabriel, Thomas R.; Berthold, Michael R.

    2004-01-01

    In Mixed Fuzzy Rule Formation [Int. J. Approx. Reason. 32 (2003) 67] a method to extract mixed fuzzy rules from data was introduced. The underlying algorithm s performance is influenced by the choice of fuzzy t-norm and t-conorm, and a heuristic to avoid conflicts between patterns and rules of different classes throughout training. In the following addendum to [Int. J. Approx. Reason. 32 (2003) 67], we discuss in more depth how these parameters affect the generalization performance of the res...

  13. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems.

    Science.gov (United States)

    Almaraashi, Majid

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data.

  14. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method.

    Science.gov (United States)

    Deng, Xinyang; Jiang, Wen

    2017-09-12

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.

  15. a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation

    Science.gov (United States)

    Nadi, S.; Houshyaripour, A. H.

    2017-09-01

    This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.

  16. Method of reliability allocation based on fault tree analysis and fuzzy math in nuclear power plants

    International Nuclear Information System (INIS)

    Chen Zhaobing; Deng Jian; Cao Xuewu

    2005-01-01

    Reliability allocation is a kind of a difficult multi-objective optimization problem. It can not only be applied to determine the reliability characteristic of reactor systems, subsystem and main components but also be performed to improve the design, operation and maintenance of nuclear plants. The fuzzy math known as one of the powerful tools for fuzzy optimization and the fault analysis deemed to be one of the effective methods of reliability analysis can be applied to the reliability allocation model so as to work out the problems of fuzzy characteristic of some factors and subsystem's choice respectively in this paper. Thus we develop a failure rate allocation model on the basis of the fault tree analysis and fuzzy math. For the choice of the reliability constraint factors, we choose the six important ones according to practical need for conducting the reliability allocation. The subsystem selected by the top-level fault tree analysis is to avoid allocating reliability for all the equipment and components including the unnecessary parts. During the reliability process, some factors can be calculated or measured quantitatively while others only can be assessed qualitatively by the expert rating method. So we adopt fuzzy decision and dualistic contrast to realize the reliability allocation with the help of fault tree analysis. Finally the example of the emergency diesel generator's reliability allocation is used to illustrate reliability allocation model and improve this model simple and applicable. (authors)

  17. A New Method of Multiattribute Decision-Making Based on Interval-Valued Hesitant Fuzzy Soft Sets and Its Application

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2017-01-01

    Full Text Available Combining interval-valued hesitant fuzzy soft sets (IVHFSSs and a new comparative law, we propose a new method, which can effectively solve multiattribute decision-making (MADM problems. Firstly, a characteristic function of two interval values and a new comparative law of interval-valued hesitant fuzzy elements (IVHFEs based on the possibility degree are proposed. Then, we define two important definitions of IVHFSSs including the interval-valued hesitant fuzzy soft quasi subset and soft quasi equal based on the new comparative law. Finally, an algorithm is presented to solve MADM problems. We also use the method proposed in this paper to evaluate the importance of major components of the well drilling mud pump.

  18. Nature Disaster Risk Evaluation with a Group Decision Making Method Based on Incomplete Hesitant Fuzzy Linguistic Preference Relations

    Directory of Open Access Journals (Sweden)

    Ming Tang

    2018-04-01

    Full Text Available Because the natural disaster system is a very comprehensive and large system, the disaster reduction scheme must rely on risk analysis. Experts’ knowledge and experiences play a critical role in disaster risk assessment. The hesitant fuzzy linguistic preference relation is an effective tool to express experts’ preference information when comparing pairwise alternatives. Owing to the lack of knowledge or a heavy workload, information may be missed in the hesitant fuzzy linguistic preference relation. Thus, an incomplete hesitant fuzzy linguistic preference relation is constructed. In this paper, we firstly discuss some properties of the additive consistent hesitant fuzzy linguistic preference relation. Next, the incomplete hesitant fuzzy linguistic preference relation, the normalized hesitant fuzzy linguistic preference relation, and the acceptable hesitant fuzzy linguistic preference relation are defined. Afterwards, three procedures to estimate the missing information are proposed. The first one deals with the situation in which there are only n − 1 known judgments involving all the alternatives; the second one is used to estimate the missing information of the hesitant fuzzy linguistic preference relation with more known judgments; while the third procedure is used to deal with ignorance situations in which there is at least one alternative with totally missing information. Furthermore, an algorithm for group decision making with incomplete hesitant fuzzy linguistic preference relations is given. Finally, we illustrate our model with a case study about flood disaster risk evaluation. A comparative analysis is presented to testify the advantage of our method.

  19. Nature Disaster Risk Evaluation with a Group Decision Making Method Based on Incomplete Hesitant Fuzzy Linguistic Preference Relations.

    Science.gov (United States)

    Tang, Ming; Liao, Huchang; Li, Zongmin; Xu, Zeshui

    2018-04-13

    Because the natural disaster system is a very comprehensive and large system, the disaster reduction scheme must rely on risk analysis. Experts' knowledge and experiences play a critical role in disaster risk assessment. The hesitant fuzzy linguistic preference relation is an effective tool to express experts' preference information when comparing pairwise alternatives. Owing to the lack of knowledge or a heavy workload, information may be missed in the hesitant fuzzy linguistic preference relation. Thus, an incomplete hesitant fuzzy linguistic preference relation is constructed. In this paper, we firstly discuss some properties of the additive consistent hesitant fuzzy linguistic preference relation. Next, the incomplete hesitant fuzzy linguistic preference relation, the normalized hesitant fuzzy linguistic preference relation, and the acceptable hesitant fuzzy linguistic preference relation are defined. Afterwards, three procedures to estimate the missing information are proposed. The first one deals with the situation in which there are only n-1 known judgments involving all the alternatives; the second one is used to estimate the missing information of the hesitant fuzzy linguistic preference relation with more known judgments; while the third procedure is used to deal with ignorance situations in which there is at least one alternative with totally missing information. Furthermore, an algorithm for group decision making with incomplete hesitant fuzzy linguistic preference relations is given. Finally, we illustrate our model with a case study about flood disaster risk evaluation. A comparative analysis is presented to testify the advantage of our method.

  20. The fuzzy cluster analysis of terracotta warriors and horses of Qin Shihuang's mausoleum in pit No.3

    International Nuclear Information System (INIS)

    Zhao Weijuan; Gao Zhengyao; Li Guoxia; Xie Jianzhong; Han Guohe

    2003-01-01

    Terracotta warriors and horses of Qin Shihuang's mausoleum is famous in the world, but their original place of raw material is still a riddle up to now. A total of 44 samples of pottery warriors and horses of Qin Shihuang's mausoleum in pit No.3, 20 samples of clay nearby Museum of the Terracotta Warriors and Horses of Qin Shihuang's Mausoleum, one sample of Yaozhou porcelain body are selected for analysis. The contents of 32 micro elements in these samples are measured by neutron activation analysis (NAA). These data are analyzed by fuzzy cluster analysis, and the trend cluster analysis diagram is obtained. The results show that in terms of chemical composition of the microelements the terracotta warriors and horses from pit No.3 are close to loam soil layer nearby Qin Shihuang's mausoleum, but become estranged from loess layers, and have no relation to Yaozhou porcelain body. Thus it is reasonable to deduce that the Lishan may be considered as the original place of raw materials of the terracotta warriors and horses of Qin Shihuang's mausoleum, and the kiln sites may be also neighborhood of Qin Shihuang's mausoleum

  1. Expert System Diagnosis of Cataract Eyes Using Fuzzy Mamdani Method

    Science.gov (United States)

    Santosa, I.; Romla, L.; Herawati, S.

    2018-01-01

    Cataracts are eye diseases characterized by cloudy or opacity of the lens of the eye by changing the colour of black into grey-white which slowly continues to grow and develop without feeling pain and pain that can cause blindness in human vision. Therefore, researchers make an expert system of cataract eye disease diagnosis by using Fuzzy Mamdani and how to care. The fuzzy method can convert the crisp value to linguistic value by fuzzification and includes in the rule. So this system produces an application program that can help the public in knowing cataract eye disease and how to care based on the symptoms suffered. From the results of the design implementation and testing of expert system applications to diagnose eye disease cataracts, it can be concluded that from a trial of 50 cases of data, obtained test results accuracy between system predictions with expert predictions obtained a value of 78% truth.

  2. Macroscopic Rock Texture Image Classification Using a Hierarchical Neuro-Fuzzy Class Method

    Directory of Open Access Journals (Sweden)

    Laercio B. Gonçalves

    2010-01-01

    Full Text Available We used a Hierarchical Neuro-Fuzzy Class Method based on binary space partitioning (NFHB-Class Method for macroscopic rock texture classification. The relevance of this study is in helping Geologists in the diagnosis and planning of oil reservoir exploration. The proposed method is capable of generating its own decision structure, with automatic extraction of fuzzy rules. These rules are linguistically interpretable, thus explaining the obtained data structure. The presented image classification for macroscopic rocks is based on texture descriptors, such as spatial variation coefficient, Hurst coefficient, entropy, and cooccurrence matrix. Four rock classes have been evaluated by the NFHB-Class Method: gneiss (two subclasses, basalt (four subclasses, diabase (five subclasses, and rhyolite (five subclasses. These four rock classes are of great interest in the evaluation of oil boreholes, which is considered a complex task by geologists. We present a computer method to solve this problem. In order to evaluate system performance, we used 50 RGB images for each rock classes and subclasses, thus producing a total of 800 images. For all rock classes, the NFHB-Class Method achieved a percentage of correct hits over 73%. The proposed method converged for all tests presented in the case study.

  3. Simulasi Kecepatan Kendaraan dengan Menggunakan Logika Fuzzy

    OpenAIRE

    Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta

    2008-01-01

    Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road. The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...

  4. Developing a multipurpose sun tracking system using fuzzy control

    Energy Technology Data Exchange (ETDEWEB)

    Alata, Mohanad [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)]. E-mail: alata@just.edu.jo; Al-Nimr, M.A. [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan); Qaroush, Yousef [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)

    2005-05-01

    The present work demonstrates the design and simulation of time controlled step sun tracking systems that include: one axis sun tracking with the tilted aperture equal to the latitude angle, equatorial two axis sun tracking and azimuth/elevation sun tracking. The first order Sugeno fuzzy inference system is utilized for modeling and controller design. In addition, an estimation of the insolation incident on a two axis sun tracking system is determined by fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm, along with least square estimation (LSE), generates the fuzzy rules that describe the relationship between the input/output data of solar angles that change with time. The fuzzy rules are tuned by an adaptive neuro-fuzzy inference system (ANFIS). Finally, an open loop control system is designed for each of the previous types of sun tracking systems. The results are shown using simulation and virtual reality. The site of application is chosen at Amman, Jordan (32 deg. North, 36 deg. East), and the period of controlling and simulating each type of tracking system is the year 2003.

  5. Effect of Deep Cryogenic treatment on AISI A8 Tool steel & Development of Wear Mechanism maps using Fuzzy Clustering

    Science.gov (United States)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    Tool steels are widely classified according to their constituents and type of thermal treatments carried out to obtain its properties. Viking a special purpose tool steel coming under AISI A8 cold working steel classification is widely used for heavy duty blanking and forming operations. The optimum combination of wear resistance and toughness as well as ease of machinability in pre-treated condition makes this material accepted in heavy cutting and non cutting tool manufacture. Air or vacuum hardening is recommended as the normal treatment procedure to obtain the desired mechanical and tribological properties for steels under this category. In this study, we are incorporating a deep cryogenic phase within the conventional treatment cycle both before and after tempering. The thermal treatments at sub zero temperatures up to -195°C using cryogenic chamber with liquid nitrogen as medium was conducted. Micro structural changes in its microstructure and the corresponding improvement in the tribological and physical properties are analyzed. The cryogenic treatment leads to more conversion of retained austenite to martensite and also formation of fine secondary carbides. The microstructure is studied using the micrographs taken using optical microscopy. The wear tests are conducted on DUCOM tribometer for different combinations of speed and load under normal temperature. The wear rates and coefficient of friction obtained from these experiments are used to developed wear mechanism maps with the help of fuzzy c means clustering and probabilistic neural network models. Fuzzy C means clustering is an effective algorithm to group data of similar patterns. The wear mechanisms obtained from the computationally developed maps are then compared with the SEM photographs taken and the improvement in properties due to this additional cryogenic treatment is validated.

  6. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  7. Logarithmic Similarity Measure between Interval-Valued Fuzzy Sets and Its Fault Diagnosis Method

    Directory of Open Access Journals (Sweden)

    Zhikang Lu

    2018-02-01

    Full Text Available Fault diagnosis is an important task for the normal operation and maintenance of equipment. In many real situations, the diagnosis data cannot provide deterministic values and are usually imprecise or uncertain. Thus, interval-valued fuzzy sets (IVFSs are very suitable for expressing imprecise or uncertain fault information in real problems. However, existing literature scarcely deals with fault diagnosis problems, such as gasoline engines and steam turbines with IVFSs. However, the similarity measure is one of the important tools in fault diagnoses. Therefore, this paper proposes a new similarity measure of IVFSs based on logarithmic function and its fault diagnosis method for the first time. By the logarithmic similarity measure between the fault knowledge and some diagnosis-testing samples with interval-valued fuzzy information and its relation indices, we can determine the fault type and ranking order of faults corresponding to the relation indices. Then, the misfire fault diagnosis of the gasoline engine and the vibrational fault diagnosis of a turbine are presented to demonstrate the simplicity and effectiveness of the proposed diagnosis method. The fault diagnosis results of gasoline engine and steam turbine show that the proposed diagnosis method not only gives the main fault types of the gasoline engine and steam turbine but also provides useful information for multi-fault analyses and predicting future fault trends. Hence, the logarithmic similarity measure and its fault diagnosis method are main contributions in this study and they provide a useful new way for the fault diagnosis with interval-valued fuzzy information.

  8. Application of multi response optimization with grey relational analysis and fuzzy logic method

    Science.gov (United States)

    Winarni, Sri; Wahyu Indratno, Sapto

    2018-01-01

    Multi-response optimization is an optimization process by considering multiple responses simultaneously. The purpose of this research is to get the optimum point on multi-response optimization process using grey relational analysis and fuzzy logic method. The optimum point is determined from the Fuzzy-GRG (Grey Relational Grade) variable which is the conversion of the Signal to Noise Ratio of the responses involved. The case study used in this research are case optimization of electrical process parameters in electrical disharge machining. It was found that the combination of treatments resulting to optimum MRR and SR was a 70 V gap voltage factor, peak current 9 A and duty factor 0.8.

  9. Simulasi Kecepatan Kendaraan Dengan Menggunakan Logika Fuzzy

    OpenAIRE

    Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta

    2009-01-01

    Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road.  The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...

  10. THIRD PARTY LOGISTIC SERVICE PROVIDER SELECTION USING FUZZY AHP AND TOPSIS METHOD

    Directory of Open Access Journals (Sweden)

    Golam Kabir

    2012-03-01

    Full Text Available The use of third party logistic(3PL services providers is increasing globally to accomplish the strategic objectives. In the increasingly competitive environment, logistics strategic management requires systematic and structured approach to have cutting edge over the rival. Logistics service provider selection is a complex multi-criteria decision making process; in which, decision makers have to deals with the optimization of conflicting objectives such as quality, cost, and delivery time. In this paper, fuzzy analytic hierarchy process (FAHP approach based on technique for order preference by similarity to ideal solution (TOPSIS method has been proposed for evaluating and selecting an appropriate logistics service provider, where the ratings of each alternative and importance weight of each criterion are expressed in triangular fuzzy numbers.

  11. Decision Making in Uncertain Rural Scenarios by means of Fuzzy TOPSIS Method

    Directory of Open Access Journals (Sweden)

    Eva Armero

    2011-01-01

    Full Text Available A great deal of uncertain information which is difficult to quantify is taken into account by farmers and experts in the enterprise when making decisions. We are interested in the problems of the implementation of a rabbit-breeding farm. One of the first decisions to be taken refers to the design or type of structure for housing the animals, which is determined by the level of environmental control sought to be maintained in its interior. A farmer was consulted, and his answers were incorporated into the analysis, by means of the fuzzy TOPSIS methodology. The main purpose of this paper is to study the problem by means of the fuzzy TOPSIS method as multicriteria decision making, when the information was given in linguistic terms.

  12. Automatic approach to deriving fuzzy slope positions

    Science.gov (United States)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  13. Efficient solution of a multi objective fuzzy transportation problem

    Science.gov (United States)

    Vidhya, V.; Ganesan, K.

    2018-04-01

    In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.

  14. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

    Directory of Open Access Journals (Sweden)

    Xue-Gang Zhou

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

  15. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.

    Science.gov (United States)

    Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-12-02

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  16. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals

    Directory of Open Access Journals (Sweden)

    Manuel Castañón–Puga

    2015-12-01

    Full Text Available The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs. This approach takes advantage of wireless local area networks (WLANs over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  17. Improving of Business Planning Using the Method of Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Iryna Kosteteska

    2016-03-01

    Full Text Available Purpose: Summarize the experience of using modern methods in the business plan with the application of economic and mathematical modeling. Methodology: Theoretical and methodological basis of the study is the basic principles of economic theory, agricultural economics and scientific research of leading home and foreign scholars on the theory of planning. Originality: This further justifies business planning processes in agriculture from the standpoint of raising economic protection of farmers. The methodology for assessing farm income for planned indicators through the application of fuzzy numbers method in business planning is improved.

  18. COMPARISON of FUZZY-BASED MODELS in LANDSLIDE HAZARD MAPPING

    Directory of Open Access Journals (Sweden)

    N. Mijani

    2017-09-01

    Full Text Available Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR and Quality Sum (QS. The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.

  19. Lithology identification of aquifers from geophysical well logs and fuzzy logic analysis: Shui-Lin Area, Taiwan

    Science.gov (United States)

    Hsieh, Bieng-Zih; Lewis, Charles; Lin, Zsay-Shing

    2005-04-01

    The purpose of this study is to construct a fuzzy lithology system from well logs to identify formation lithology of a groundwater aquifer system in order to better apply conventional well logging interpretation in hydro-geologic studies because well log responses of aquifers are sometimes different from those of conventional oil and gas reservoirs. The input variables for this system are the gamma-ray log reading, the separation between the spherically focused resistivity and the deep very-enhanced resistivity curves, and the borehole compensated sonic log reading. The output variable is groundwater formation lithology. All linguistic variables are based on five linguistic terms with a trapezoidal membership function. In this study, 50 data sets are clustered into 40 training sets and 10 testing sets for constructing the fuzzy lithology system and validating the ability of system prediction, respectively. The rule-based database containing 12 fuzzy lithology rules is developed from the training data sets, and the rule strength is weighted. A Madani inference system and the bisector of area defuzzification method are used for fuzzy inference and defuzzification. The success of training performance and the prediction ability were both 90%, with the calculated correlation of training and testing equal to 0.925 and 0.928, respectively. Well logs and core data from a clastic aquifer (depths 100-198 m) in the Shui-Lin area of west-central Taiwan are used for testing the system's construction. Comparison of results from core analysis, well logging and the fuzzy lithology system indicates that even though the well logging method can easily define a permeable sand formation, distinguishing between silts and sands and determining grain size variation in sands is more subjective. These shortcomings can be improved by a fuzzy lithology system that is able to yield more objective decisions than some conventional methods of log interpretation.

  20. Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion

    Directory of Open Access Journals (Sweden)

    Didier Kumwimba Seya

    2015-11-01

    Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.

  1. A New Fuzzy Harmony Search Algorithm Using Fuzzy Logic for Dynamic Parameter Adaptation

    Directory of Open Access Journals (Sweden)

    Cinthia Peraza

    2016-10-01

    Full Text Available In this paper, a new fuzzy harmony search algorithm (FHS for solving optimization problems is presented. FHS is based on a recent method using fuzzy logic for dynamic adaptation of the harmony memory accepting (HMR and pitch adjustment (PArate parameters that improve the convergence rate of traditional harmony search algorithm (HS. The objective of the method is to dynamically adjust the parameters in the range from 0.7 to 1. The impact of using fixed parameters in the harmony search algorithm is discussed and a strategy for efficiently tuning these parameters using fuzzy logic is presented. The FHS algorithm was successfully applied to different benchmarking optimization problems. The results of simulation and comparison studies demonstrate the effectiveness and efficiency of the proposed approach.

  2. Solving fully fuzzy transportation problem using pentagonal fuzzy numbers

    Science.gov (United States)

    Maheswari, P. Uma; Ganesan, K.

    2018-04-01

    In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.

  3. Study on intelligence fault diagnosis method for nuclear power plant equipment based on rough set and fuzzy neural network

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xia Hong; Xie Chunli; Chen Zhihui; Chen Hongxia

    2007-01-01

    Rough set theory and fuzzy neural network are combined, to take full advantages of the two of them. Based on the reduction technology to knowledge of Rough set method, and by drawing the simple rule from a large number of initial data, the fuzzy neural network was set up, which was with better topological structure, improved study speed, accurate judgment, strong fault-tolerant ability, and more practical. In order to test the validity of the method, the inverted U-tubes break accident of Steam Generator and etc are used as examples, and many simulation experiments are performed. The test result shows that it is feasible to incorporate the fault intelligence diagnosis method based on rough set and fuzzy neural network in the nuclear power plant equipment, and the method is simple and convenience, with small calculation amount and reliable result. (authors)

  4. Approximate Solution of LR Fuzzy Sylvester Matrix Equations

    Directory of Open Access Journals (Sweden)

    Xiaobin Guo

    2013-01-01

    Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.

  5. Minimal solution of linear formed fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    Maryam Mosleh

    2012-10-01

    Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.

  6. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    Directory of Open Access Journals (Sweden)

    Huu-Tho Nguyen

    Full Text Available Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process and a fuzzy COmplex PRoportional ASsessment (COPRAS for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.

  7. Fuzzy Control Teaching Models

    Directory of Open Access Journals (Sweden)

    Klaus-Dietrich Kramer

    2016-05-01

    Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.

  8. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    Science.gov (United States)

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  9. Flows in networks under fuzzy conditions

    CERN Document Server

    Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich

    2017-01-01

    This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...

  10. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  11. Fuzzy interval Finite Element/Statistical Energy Analysis for mid-frequency analysis of built-up systems with mixed fuzzy and interval parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2016-10-01

    This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.

  12. Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method

    Directory of Open Access Journals (Sweden)

    Majid Shadman Roodposhti

    2016-09-01

    Full Text Available Assessing Landslide Susceptibility Mapping (LSM contributes to reducing the risk of living with landslides. Handling the vagueness associated with LSM is a challenging task. Here we show the application of hybrid GIS-based LSM. The hybrid approach embraces fuzzy membership functions (FMFs in combination with Shannon entropy, a well-known information theory-based method. Nine landslide-related criteria, along with an inventory of landslides containing 108 recent and historic landslide points, are used to prepare a susceptibility map. A random split into training (≈70% and testing (≈30% samples are used for training and validation of the LSM model. The study area—Izeh—is located in the Khuzestan province of Iran, a highly susceptible landslide zone. The performance of the hybrid method is evaluated using receiver operating characteristics (ROC curves in combination with area under the curve (AUC. The performance of the proposed hybrid method with AUC of 0.934 is superior to multi-criteria evaluation approaches using a subjective scheme in this research in comparison with a previous study using the same dataset through extended fuzzy multi-criteria evaluation with AUC value of 0.894, and was built on the basis of decision makers’ evaluation in the same study area.

  13. A Heuristic T-S Fuzzy Model for the Pumped-Storage Generator-Motor Using Variable-Length Tree-Seed Algorithm-Based Competitive Agglomeration

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2018-04-01

    Full Text Available With the fast development of artificial intelligence techniques, data-driven modeling approaches are becoming hotspots in both academic research and engineering practice. This paper proposes a novel data-driven T-S fuzzy model to precisely describe the complicated dynamic behaviors of pumped storage generator motor (PSGM. In premise fuzzy partition of the proposed T-S fuzzy model, a novel variable-length tree-seed algorithm based competitive agglomeration (VTSA-CA algorithm is presented to determine the optimal number of clusters automatically and improve the fuzzy clustering performances. Besides, in order to promote modeling accuracy of PSGM, the input and output formats in the T-S fuzzy model are selected by an economical parameter controlled auto-regressive (CAR model derived from a high-order transfer function of PSGM considering the distributed components in the water diversion system of the power plant. The effectiveness and superiority of the T-S fuzzy model for PSGM under different working conditions are validated by performing comparative studies with both practical data and the conventional mechanistic model.

  14. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    Science.gov (United States)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  15. A novel method of sensitivity analysis testing by applying the DRASTIC and fuzzy optimization methods to assess groundwater vulnerability to pollution: the case of the Senegal River basin in Mali

    Science.gov (United States)

    Souleymane, Keita; Zhonghua, Tang

    2017-08-01

    Vulnerability to groundwater pollution in the Senegal River basin was studied by two different but complementary methods: the DRASTIC method (which evaluates the intrinsic vulnerability) and the fuzzy method (which assesses the specific vulnerability by taking into account the continuity of the parameters). The validation of this application has been tested by comparing the connection in groundwater and distribution of different established classes of vulnerabilities as well as the nitrate distribution in the study area. Three vulnerability classes (low, medium and high) have been identified by both the DRASTIC method and the fuzzy method (between which the normalized model was used). An integrated analysis reveals that high classes with 14.64 % (for the DRASTIC method), 21.68 % (for the normalized DRASTIC method) and 18.92 % (for the fuzzy method) are not the most dominant. In addition, a new method for sensitivity analysis was used to identify (and confirm) the main parameters which impact the vulnerability to pollution with fuzzy membership. The results showed that the vadose zone is the main parameter which impacts groundwater vulnerability to pollution while net recharge contributes least to pollution in the study area. It was also found that the fuzzy method better assesses the vulnerability to pollution with a coincidence rate of 81.13 % versus that of 77.35 % for the DRASTIC method. These results serve as a guide for policymakers to identify areas sensitive to pollution before such sites are used for socioeconomic infrastructures.

  16. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

    Directory of Open Access Journals (Sweden)

    De-Gang Wang

    2012-01-01

    Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

  17. Fuzzy preference based interactive fuzzy physical programming and its application in multi-objective optimization

    International Nuclear Information System (INIS)

    Zhang, Xu; Huang, Hong Zhong; Yu, Lanfeng

    2006-01-01

    Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer

  18. NONLINEAR ASSIGNMENT-BASED METHODS FOR INTERVAL-VALUED INTUITIONISTIC FUZZY MULTI-CRITERIA DECISION ANALYSIS WITH INCOMPLETE PREFERENCE INFORMATION

    OpenAIRE

    TING-YU CHEN

    2012-01-01

    In the context of interval-valued intuitionistic fuzzy sets, this paper develops nonlinear assignment-based methods to manage imprecise and uncertain subjective ratings under incomplete preference structures and thereby determines the optimal ranking order of the alternatives for multiple criteria decision analysis. By comparing each interval-valued intuitionistic fuzzy number's score function, accuracy function, membership uncertainty index, and hesitation uncertainty index, a ranking proced...

  19. Fuzzy Evidence in Identification, Forecasting and Diagnosis

    CERN Document Server

    Rotshtein, Alexander P

    2012-01-01

    The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...

  20. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz [Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic)

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  1. Application of ANNs approach for solving fully fuzzy polynomials system

    Directory of Open Access Journals (Sweden)

    R. Novin

    2017-11-01

    Full Text Available In processing indecisive or unclear information, the advantages of fuzzy logic and neurocomputing disciplines should be taken into account and combined by fuzzy neural networks. The current research intends to present a fuzzy modeling method using multi-layer fuzzy neural networks for solving a fully fuzzy polynomials system. To clarify the point, it is necessary to inform that a supervised gradient descent-based learning law is employed. The feasibility of the method is examined using computer simulations on a numerical example. The experimental results obtained from the investigation of the proposed method are valid and delivers very good approximation results.

  2. Fuzzy relational calculus theory, applications and software

    CERN Document Server

    Peeva, Ketty

    2004-01-01

    This book examines fuzzy relational calculus theory with applications in various engineering subjects. The scope of the text covers unified and exact methods with algorithms for direct and inverse problem resolution in fuzzy relational calculus. Extensive engineering applications of fuzzy relation compositions and fuzzy linear systems (linear, relational and intuitionistic) are discussed. Some examples of such applications include solutions of equivalence, reduction and minimization problems in fuzzy machines, pattern recognition in fuzzy languages, optimization and inference engines in textile and chemical engineering, etc. A comprehensive overview of the authors' original work in fuzzy relational calculus is also provided in each chapter. The attached CD-Rom contains a toolbox with many functions for fuzzy calculations, together with an original algorithm for inverse problem resolution in MATLAB. This book is also suitable for use as a textbook in related courses at advanced undergraduate and graduate level...

  3. Fuzzy systems for process identification and control

    International Nuclear Information System (INIS)

    Gorrini, V.; Bersini, H.

    1994-01-01

    Various issues related to the automatic construction and on-line adaptation of fuzzy controllers are addressed. A Direct Adaptive Fuzzy Control (this is an adaptive control methodology requiring a minimal knowledge of the processes to be coupled with) derived in a way reminiscent of neurocontrol methods, is presented. A classical fuzzy controller and a fuzzy realization of a PID controller is discussed. These systems implement a highly non-linear control law, and provide to be quite robust, even in the case of noisy inputs. In order to identify dynamic processes of order superior to one, we introduce a more complex architecture, called Recurrent Fuzzy System, that use some fuzzy internal variables to perform an inferential chaining.I

  4. Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems

    Science.gov (United States)

    El-Sebakhy, Emad A.

    2009-09-01

    Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.

  5. Solving Fully Fuzzy Linear System of Equations in General Form

    Directory of Open Access Journals (Sweden)

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  6. Decision model on the demographic profile for tuberculosis control using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Laisa Ribeiro de Sá

    2015-06-01

    Full Text Available This study aimed to describe the relationship between demographic factors and the involvement of tuberculosis by applying a decision support model based on fuzzy logic to classify the regions as priority and non-priority in the city of João Pessoa, state of Paraíba (PB. As data source, we used the Notifiable Diseases Information System between 2009 and 2011. We chose the descriptive analysis, relative risk (RR, spatial distribution and fuzzy logic. The total of 1,245 cases remained in the study, accounting for 37.02% of cases in 2009. High and low risk clusters were identified, and the RR was higher among men (8.47, with 12 clusters, and among those uneducated (11.65, with 13 clusters. To demonstrate the functionality of the model was elected the year with highest number of cases, and the municipality district with highest population. The methodology identified priority areas, guiding managers to make decisions that respect the local particularities.

  7. STUDI SIMULASI MENGGUNAKAN FUZZY C-MEANS DALAM MENGKLASIFIKASI KONSTRUK TES

    Directory of Open Access Journals (Sweden)

    Rukli Rukli

    2013-01-01

    Full Text Available Tulisan ini memperkenalkan metode fuzzy c-means dalam mengklasifikasi konstruk tes. Untuk memverifikasi sifat unidimensional suatu tes biasanya menggunakan analisis faktor sebagai bagian dari statistik parametrik dengan beberapa persyaratan yang ketat sedangkan metode fuzzy c-means termasuk metode heuristik yang tidak memerlukan persyaratan yang ketat. Studi simulasi penelitian ini menggunakan dua metode yakni analisis faktor menggunakan program SPSS dan fuzzy c-means menggunakan program Matlab. Data simulasi menggunakan tipe data dikotomi dan politomi yang dibangkitkan lewat prog-ram Microsoft Office Excel dengan desain 2 kategori, yakni: tiga butir soal dengan banyak peserta tes 10, dan 30 butir soal dengan banyak peserta tes 100. Hasil simulasi menunjukkan bahwa metode fuzzy c-means lebih memberikan gambaran pengelompokan secara deskriptif dan dinamis pada semua desain yang telah dibuat dalam memverifikasi unidimensional pada suatu tes. Kata kunci: fuzzy c-means, analisis faktor, unidimensional _____________________________________________________________ SIMULATION STUDY USING FUZZY C-MEANS FOR CLASIFYING TEST CONSTRUCTION Abstract This paper introduces the fuzzy c-means method for classifying the test constructs. To verify the unidimensional a test typically uses factor analysis as part of parametric statistics with some strict requirements, while fuzzy c-means methods including method heuristic that do not require strict require-ments. Simulation comparison between the method of factor analysis using SPSS program and fuzzy c-means methods using Matlab. Simulation data using data type dichotomy and politomus generated through Microsoft Office Excel programs each with a number of 3 items using the number of participants 10 tests, while the number of 30 test items using the number as many as 100 participants. The simulation results show that the fuzzy c-means method provides a more descriptive and dyna-mic grouping of all the designs that

  8. Group Decision-Making for Hesitant Fuzzy Sets Based on Characteristic Objects Method

    Directory of Open Access Journals (Sweden)

    Shahzad Faizi

    2017-07-01

    Full Text Available There are many real-life problems that, because of the need to involve a wide domain of knowledge, are beyond a single expert. This is especially true for complex problems. Therefore, it is usually necessary to allocate more than one expert to a decision process. In such situations, we can observe an increasing importance of uncertainty. In this paper, the Multi-Criteria Decision-Making (MCDM method called the Characteristic Objects Method (COMET is extended to solve problems for Multi-Criteria Group Decision-Making (MCGDM in a hesitant fuzzy environment. It is a completely new idea for solving problems of group decision-making under uncertainty. In this approach, we use L-R-type Generalized Fuzzy Numbers (GFNs to get the degree of hesitancy for an alternative under a certain criterion. Therefore, the classical COMET method was adapted to work with GFNs in group decision-making problems. The proposed extension is presented in detail, along with the necessary background information. Finally, an illustrative numerical example is provided to elaborate the proposed method with respect to the support of a decision process. The presented extension of the COMET method, as opposed to others’ group decision-making methods, is completely free of the rank reversal phenomenon, which is identified as one of the most important MCDM challenges.

  9. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    Science.gov (United States)

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  10. Fuzzy based method for project planning of the infrastructure design for the diagnostic in ITER

    International Nuclear Information System (INIS)

    Piros, Attila; Veres, Gábor

    2013-01-01

    The long-term design projects need special preparation before the start of the execution. This preparation usually includes the drawing of the network diagram for the whole procedure. This diagram includes the time estimation of the individual subtasks and gives us information about the predicted dates of the milestones. The calculated critical path in this network characterizes a specific design project concerning to its duration very well. Several methods are available to support this step of preparation. This paper describes a new method to map the structure of the design process and clarify the milestones and predict the dates of these milestones. The method is based on the PERT (Project Evaluation and Review Technique) network but as a novelty it applies fuzzy logic to find out the concerning times in this graph. With the application of the fuzzy logic the handling of the different kinds of design uncertainties becomes feasible. Many kinds of design uncertainties exist from the possible electric blackout up to the illness of an engineer. In many cases these uncertainties are related with human errors and described with linguistic expressions. The fuzzy logic enables to transform these ambiguous expressions into numeric values for further mathematical evaluation. The method is introduced in the planning of the design project of the infrastructure for the diagnostic systems of ITER. The method not only helps the project in the planning phase, but it will be a powerful tool in mathematical modeling and monitoring of the project execution

  11. Fuzzy based method for project planning of the infrastructure design for the diagnostic in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Piros, Attila, E-mail: attila.piros@gt3.bme.hu [Department of Machine and Product Design, Budapest University of Technology and Economics, Budapest (Hungary); Veres, Gábor [Department of Plasma Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-10-15

    The long-term design projects need special preparation before the start of the execution. This preparation usually includes the drawing of the network diagram for the whole procedure. This diagram includes the time estimation of the individual subtasks and gives us information about the predicted dates of the milestones. The calculated critical path in this network characterizes a specific design project concerning to its duration very well. Several methods are available to support this step of preparation. This paper describes a new method to map the structure of the design process and clarify the milestones and predict the dates of these milestones. The method is based on the PERT (Project Evaluation and Review Technique) network but as a novelty it applies fuzzy logic to find out the concerning times in this graph. With the application of the fuzzy logic the handling of the different kinds of design uncertainties becomes feasible. Many kinds of design uncertainties exist from the possible electric blackout up to the illness of an engineer. In many cases these uncertainties are related with human errors and described with linguistic expressions. The fuzzy logic enables to transform these ambiguous expressions into numeric values for further mathematical evaluation. The method is introduced in the planning of the design project of the infrastructure for the diagnostic systems of ITER. The method not only helps the project in the planning phase, but it will be a powerful tool in mathematical modeling and monitoring of the project execution.

  12. Defuzzification Strategies for Fuzzy Classifications of Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Peter Hofmann

    2016-06-01

    Full Text Available The classes in fuzzy classification schemes are defined as fuzzy sets, partitioning the feature space through fuzzy rules, defined by fuzzy membership functions. Applying fuzzy classification schemes in remote sensing allows each pixel or segment to be an incomplete member of more than one class simultaneously, i.e., one that does not fully meet all of the classification criteria for any one of the classes and is member of more than one class simultaneously. This can lead to fuzzy, ambiguous and uncertain class assignation, which is unacceptable for many applications, indicating the need for a reliable defuzzification method. Defuzzification in remote sensing has to date, been performed by “crisp-assigning” each fuzzy-classified pixel or segment to the class for which it best fulfills the fuzzy classification rules, regardless of its classification fuzziness, uncertainty or ambiguity (maximum method. The defuzzification of an uncertain or ambiguous fuzzy classification leads to a more or less reliable crisp classification. In this paper the most common parameters for expressing classification uncertainty, fuzziness and ambiguity are analysed and discussed in terms of their ability to express the reliability of a crisp classification. This is done by means of a typical practical example from Object Based Image Analysis (OBIA.

  13. A comparative study of fuzzy target selection methods in direct marketing

    NARCIS (Netherlands)

    Costa Sousa, da J.M.; Kaymak, U.; Madeira, S.

    2002-01-01

    Target selection in direct marketing is an important data mining problem for which fuzzy modeling can be used. The paper compares several fuzzy modeling techniques applied to target selection based on recency, frequency and monetary value measures. The comparison uses cross validation applied to

  14. Evaluating high risks in large-scale projects using an extended VIKOR method under a fuzzy environment

    Directory of Open Access Journals (Sweden)

    S. Ebrahimnejad

    2012-04-01

    Full Text Available The complexity of large-scale projects has led to numerous risks in their life cycle. This paper presents a new risk evaluation approach in order to rank the high risks in large-scale projects and improve the performance of these projects. It is based on the fuzzy set theory that is an effective tool to handle uncertainty. It is also based on an extended VIKOR method that is one of the well-known multiple criteria decision-making (MCDM methods. The proposed decision-making approach integrates knowledge and experience acquired from professional experts, since they perform the risk identification and also the subjective judgments of the performance rating for high risks in terms of conflicting criteria, including probability, impact, quickness of reaction toward risk, event measure quantity and event capability criteria. The most notable difference of the proposed VIKOR method with its traditional version is just the use of fuzzy decision-matrix data to calculate the ranking index without the need to ask the experts. Finally, the proposed approach is illustrated with a real-case study in an Iranian power plant project, and the associated results are compared with two well-known decision-making methods under a fuzzy environment.

  15. CF-Pursuit: A Pursuit Method with a Clothoid Fitting and a Fuzzy Controller for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Yunxiao Shan

    2015-09-01

    Full Text Available Simple and efficient geometric controllers, like Pure-Pursuit, have been widely used in various types of autonomous vehicles to solve tracking problems. In this paper, we have developed a new pursuit method, named CF-Pursuit, which has been based on Pure-Pursuit but with certain differences. In CF-Pursuit, in order to reduce fitting errors, we used a clothoid C1 curve to replace the circle employed in Pure-Pursuit. This improvement to the fitting method helps the Pursuit method to decrease tracking errors. As regards the selection of look-ahead distance, we employed a fuzzy system to directly consider the path's curvature. There are three input variables in this fuzzy system, 6mcurvature, 9mcurvature and 12mcurvature, calculated from the clothoid fit with the current position and the goal position on the defined path. A Sugeno fuzzy model was adapted to output a reasonable look-ahead distance using the experiences of human drivers as well as our own tests. Compared with some other geometric controllers, CF-Pursuit performs better in robustness, cross track errors and stability. The results from field tests have proven the CF-Pursuit is a practical and efficient geometric method for the path tracking problems of autonomous vehicles.

  16. Fuzzy reasoning on Horn Set

    International Nuclear Information System (INIS)

    Liu, X.; Fang, K.

    1986-01-01

    A theoretical study in fuzzy reasoning on Horn Set is presented in this paper. The authors first introduce the concepts of λ-Horn Set of clauses and λ-Input Half Lock deduction. They then use the λ-resolution method to discuss fuzzy reasoning on λ-Horn set of clauses. It is proved that the proposed λ-Input Half Lock resolution method is complete with the rules in certain format

  17. The gap values in the profile matching method by fuzzy logic

    Science.gov (United States)

    Sitepu, S. A.; Efendi, S.; Situmorang, Z.

    2018-03-01

    In this research, the determination of the appropriate values of Gap for the assessment of promotion criteria of position in an institution / company. In this study the authors use Fuzzy Sugeno logic on the determination of Gap values used in Profile Matching method. Test results of 5 employees obtained the eligibility of promotion with the position of Z* values between in 3.20 to 4.11.

  18. A revisit to quadratic programming with fuzzy parameters

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.

  19. Type-2 fuzzy granular models

    CERN Document Server

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  20. An Intuitionistic Fuzzy Stochastic Decision-Making Method Based on Case-Based Reasoning and Prospect Theory

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available According to the case-based reasoning method and prospect theory, this paper mainly focuses on finding a way to obtain decision-makers’ preferences and the criterion weights for stochastic multicriteria decision-making problems and classify alternatives. Firstly, we construct a new score function for an intuitionistic fuzzy number (IFN considering the decision-making environment. Then, we aggregate the decision-making information in different natural states according to the prospect theory and test decision-making matrices. A mathematical programming model based on a case-based reasoning method is presented to obtain the criterion weights. Moreover, in the original decision-making problem, we integrate all the intuitionistic fuzzy decision-making matrices into an expectation matrix using the expected utility theory and classify or rank the alternatives by the case-based reasoning method. Finally, two illustrative examples are provided to illustrate the implementation process and applicability of the developed method.