WorldWideScience

Sample records for future world energy

  1. World Energy Future

    International Nuclear Information System (INIS)

    Forbes, A.; Van der Linde, C.; Nicola, S.

    2009-01-01

    In the section World Energy Future of this magazine two articles, two interviews and one column are presented. The article 'A green example to the world' refers briefly to the second World Future Energy Summit in Abu Dhabi, which was held from 18-21 January, 2009. The second article, 'Green Utopia in the desert' attention is paid to the Abu Dhabi government-driven Masdar Initiative. The two interviews concern an interview with BP Alternative Energy ceo Vivienne Cox, and an interview with the founder and CEO of New Energy Finance Michael Liebreich. The column ('An efficient response') focuses on the impact of the economic crisis on energy policy

  2. World Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, A.; Van der Linde, C.; Nicola, S.

    2009-03-15

    In the section World Energy Future of this magazine two articles, two interviews and one column are presented. The article 'A green example to the world' refers briefly to the second World Future Energy Summit in Abu Dhabi, which was held from 18-21 January, 2009. The second article, 'Green Utopia in the desert' attention is paid to the Abu Dhabi government-driven Masdar Initiative. The two interviews concern an interview with BP Alternative Energy ceo Vivienne Cox, and an interview with the founder and CEO of New Energy Finance Michael Liebreich. The column ('An efficient response') focuses on the impact of the economic crisis on energy policy.

  3. Hydropower and the world's energy future

    International Nuclear Information System (INIS)

    2000-11-01

    The potential role of hydropower in the context of world-wide demographic growth and increasing demand for energy, and the benefits inherent in hydroelectric power in comparison with other energy options are discussed. Environmental and social impacts, and examples of mitigation measures are reviewed. Recommendations regarding best practices in the future development of hydroelectric power projects proposed

  4. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  5. How a future energy world could look?

    Directory of Open Access Journals (Sweden)

    Ewert M.

    2012-10-01

    Full Text Available The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  6. How a future energy world could look?

    Science.gov (United States)

    Ewert, M.

    2012-10-01

    The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization) and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  7. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  8. Future petroleum energy resources of the world

    Science.gov (United States)

    Ahlbrandt, T.S.

    2002-01-01

    and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  9. An overview of world future energy demand

    International Nuclear Information System (INIS)

    Jenkin, F.P.

    1995-01-01

    The World Energy Council Commission's report Energy for Tomorrow's World was published in September 1993. The Commission's three year study of world energy problems involved both bottom-up studies, undertaken by groups of experts in nine main regions of the world, and top-down studies of global aspects. The latter included the preparation of energy demand and supply projections up to the study horizon of 2020, together with a brief look at prospects up to 2100. This Paper is based on the Commission's work. (author)

  10. World energy. The facts and the future

    International Nuclear Information System (INIS)

    Hedley, D.

    1981-01-01

    This book examines how energy [including nuclear energy] is used in the world and how much energy is used; fuel resources - where they are, how long they will last, which countries have the fuel and which countries need it the most; the implications of the energy crisis for transport; the development of synthetics; the impact of conservation; the renewable energy sources and what progress is being made with them. The book forecasts how the world energy economy will have changed by the year 2000 and what is likely to happen beyond. (author)

  11. World Energy Scenarios: Composing energy futures to 2050

    International Nuclear Information System (INIS)

    Frei, Christoph; Whitney, Rob; Schiffer, Hans-Wilhelm; Rose, Karl; Rieser, Dan A.; Al-Qahtani, Ayed; Thomas, Philip; Turton, Hal; Densing, Martin; Panos, Evangelos; Volkart, Kathrin

    2013-01-01

    The World Energy Scenarios: Composing energy futures to 2050 is the result of a three-year study conducted by over 60 experts from nearly 30 countries, with modelling provided by the Paul Scherrer Institute. The report assesses two contrasting policy scenarios, the more consumer driven Jazz scenario and the more voter-driven Symphony scenario with a key differentiator being the ability of countries to pass through the Doha Climate Gateway. The WEC scenarios use an explorative approach to assess what is actually happening in the world now, to help gauge what will happen in the future and the real impact of today's choices on tomorrow's energy landscape. Rather than telling policy-makers and senior energy leaders what to do in order to achieve a specific policy goal, the WEC's World Energy Scenarios allow them to test the key assumptions that decision-makers decide to better shape the energy of tomorrow This document includes the French and English versions of the executive summary and the English version of the full report

  12. Some comments on the future world energy

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2011-06-01

    The key problem is the possibility to get mid century the energy necessary for the world development at acceptable cost and impacts with 70 or 80% of renewable energies (essentially solar, wind, hydro and biomass). In 2050 a population of 9 billion (7 in sunny countries) will have probably a gross product 3 or 4 times the present one with a reduced energy intensity; the need of energy may be the double of the present one. The Primary Energy is not an useful reference for most 2050 sources: for instance closing a thermal or nuclear plant supplying 1 TWh and generating 2 TWh more by wind, PV or hydraulics double the Final Energy when reducing the Primary Energy. Presently the Primary Energy is close to 150.000 TWh/year and the Final Energy utilisation to 100.000 TWh. But the present need of Final Energy is lower because many utilizations could use other sources reducing the relevant Final Energy: as examples using PV for cooking in Asia or Africa should divide by over 5 the relevant final energy and using electric cars could divide the Final Energy for transports by 3. The need of Final Energy in 2050 may thus be between 150.000 and 200.000 TWh/year. Anyway the final energy used from many sources will be limited, i.e. a total probably between 60 and 90.000 TWh/year, much under needs of 150.000 to 200.000 TWh/year. There is thus a great uncertainly but it is very likely that the gap will be mid century in the range of 100.000 TWh/year, to be met by coal, wind or solar, essentially through electricity. Electricity will be close to 100.000 TWh/year, with 20.000 from hydro, nuclear, oil and gas and the balance: 80.000 from coal, wind and solar. It is possible to get quite all from wind and solar under 4 conditions: - Coal resources could supply up to 50.000 TWh/year along most of the century at a direct cost lower (before 2040) than solar power by few cents per KWh (at least before 2030 or 2040), i.e. a saving which may be possibly 0,5 or 1% of the gross product. This

  13. Nuclear energy in the world future

    International Nuclear Information System (INIS)

    Haefele, W.; Jaek, W.

    1983-01-01

    Starting from the actual position in the electricity market nuclear energy will grow up to the stabilizing factor in this field. The market penetration of breeding and fusion systems, therefore, will be the next important milestones of nuclear energy development. On the other hand nuclear energy as well as the electric grid itself are good examples for the reconstruction of the non-electric energy market which is dominated by resource and environmental problems. To overcome these problems the installation of a refining step for fossil energy resources and a new transport system besides the electric grid are the next steps toward a crisis-proof energy supply system. (orig.) [de

  14. Energy for the future: the world view

    International Nuclear Information System (INIS)

    Meinel, M.P.; Meinel, A.B.

    1983-01-01

    The relationship between gross national product and energy use is studied for a number of countries and for the United States is particular. The relationship between income inequalities and energy use is also examined. The similarity between income inequality in an economic system and temperature differences in a thermodynamic system is noted. An economic chain analysis is used to derive income inequality distributions for a less-developed country and for a very-developed country. Finally the role of expensive but domestic-origin energy is examined. (U.K.)

  15. World coal prices and future energy demand

    International Nuclear Information System (INIS)

    Bennett, J.

    1992-01-01

    The Clean Air Act Amendments will create some important changes in the US domestic steam coal market, including price increases for compliance coal by the year 2000 and price decreases for high-sulfur coal. In the international market, there is likely to be a continuing oversupply which will put a damper on price increases. The paper examines several forecasts for domestic and international coal prices and notes a range of predictions for future oil prices

  16. Natural gas central to world's future energy mix

    International Nuclear Information System (INIS)

    Carson, M.M.

    1997-01-01

    Continued growth in demand for natural gas is one of three pillars around which the energy mix of the future will take shape and upon which energy strategies should be based. The others are consumption efficiency and growth of renewable energy sources. This paper evaluates world energy supply and demand and includes an analysis of world pipeline gas, electricity, and LNG trends. The paper discusses the natural gas resource, proved reserves, reserves growth, gas prices and demand, country demand trends, world energy use, gas pipeline construction, power generation, electricity consumption and prices, and global carbon emissions

  17. Energy in the world: The present situation and future options

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1989-01-01

    It is reported that the most notable changes on the world energy scene since 1973 concerned the shift in OPEC's role from a base to a swing producer, the disruption of the fast market penetration of nuclear power and the impacts caused by the technical advances at essentially all stages of the energy system. Further, several parts of the world witnessed a strong environmental movement which attracted public attention to the conduct of the energy industry and its social implications and environmental consequences. The lecture illuminates these events in some detail and evaluate their impacts on present and future energy demand, supply and trade patterns. The future energy outlook includes two fundamentally different scenarios. Each scenario in itself appears internally consistent. The diverging projections of future energy demand and supply mixes underlying these scenarios are the result of the inclusion/omission of technical change or dynamics of technology into the analyses. 19 refs, 22 figs

  18. Energy for a righteous world with a safe future

    International Nuclear Information System (INIS)

    Rose, D.J.

    1977-01-01

    We are in charge of our energy future and thus of the future itself. Energy decisions in the past were made on a too narrow and short-term basis, and we can daily clearly observe their inadequacy. The policy's quality does not correspond to the significance of the problem. A greater approximation leads to a consequent policy of the development of energy alternatives, of which some considerably deviate from those which would result at a closer look. This lecture deals with two aspects of the problem, both concern the future of nuclear energy. The first aspect treats extensively the energy possibilities available to the world in the future; the second deals more with the problem of the acceptibility of nuclear energy, reprocessing of nuclear fuels, the relationship to atomic armament and the thus involved problems. (orig.) [de

  19. Future World Energy Constraints and the Direction for Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lightfoot, H.D.

    2004-09-12

    This paper was originally written in response to the concern that rising levels of CO2 in the atmosphere caused by burning of fossil fuels will ultimately contribute to global warming. Now we are beginning to see evidence of coming problems in the supply of fuels for transportation. This paper describes the benefits of adequate energy supply and the problems of future energy supply. Partial solutions are suggested for immediate application as well as longer term solutions to address both of these concerns. To evaluate the situation and solutions we must understand: (1) how much primary energy is currently used world-wide and might be needed in 2100, (2) how important energy is to the welfare of people, (3) the forms of energy sources and end uses and (4) where new sources may come from. The major portion of world primary energy demand is provided by fossil fuels. This portion dropped from 93% in 1970 to 85% in 1995, mainly because of the increased use of nuclear energy. How ever, since the mid-1990s fossil fuels have maintained their 85% share of world energy supply. The importance of the relationship between per capita energy consumption and per capita income for the world is discussed. The limits of conservation, energy efficiency and renewable energies are examined. The contribution of renewable energies is compared to 41 different views of world energy demand in 2100. Without new technology for large scale storage of intermittent electricity from wind and solar the contribution of renewable energies is not likely to grow significantly beyond the current level of 7-8%. The paper offers conclusions and partial solutions that we can work on immediately. Examination of the forms of energy supplied by the sun, which is powered by nuclear fusion, and the way in which nuclear fission currently supplies energy to the world sets the research framework for longer term solutions. This framework points towards two possible longer term complementary res earch projects which

  20. Future World Energy Constraints and the Direction for Solutions

    International Nuclear Information System (INIS)

    Lightfoot, H.D.

    2004-01-01

    This paper was originally written in response to the concern that rising levels of CO2 in the atmosphere caused by burning of fossil fuels will ultimately contribute to global warming. Now we are beginning to see evidence of coming problems in the supply of fuels for transportation. This paper describes the benefits of adequate energy supply and the problems of future energy supply. Partial solutions are suggested for immediate application as well as longer term solutions to address both of these concerns. To evaluate the situation and solutions we must understand: (1) how much primary energy is currently used world-wide and might be needed in 2100, (2) how important energy is to the welfare of people, (3) the forms of energy sources and end uses and (4) where new sources may come from. The major portion of world primary energy demand is provided by fossil fuels. This portion dropped from 93% in 1970 to 85% in 1995, mainly because of the increased use of nuclear energy. How ever, since the mid-1990s fossil fuels have maintained their 85% share of world energy supply. The importance of the relationship between per capita energy consumption and per capita income for the world is discussed. The limits of conservation, energy efficiency and renewable energies are examined. The contribution of renewable energies is compared to 41 different views of world energy demand in 2100. Without new technology for large scale storage of intermittent electricity from wind and solar the contribution of renewable energies is not likely to grow significantly beyond the current level of 7-8%. The paper offers conclusions and partial solutions that we can work on immediately. Examination of the forms of energy supplied by the sun, which is powered by nuclear fusion, and the way in which nuclear fission currently supplies energy to the world sets the research framework for longer term solutions. This framework points towards two possible longer term complementary res earch projects which

  1. World energy: the facts and the future. 2. ed.

    International Nuclear Information System (INIS)

    Hedley, Don.

    1986-01-01

    The world energy situation is examined. Since the first edition of the book was written, the 1979 oil price rise has added weight to the argument that the economics of the second half of the twentieth century have been dominated by the economics of the barrel of oil. This book looks at the major fuels available - coal, natural gas, oil, nuclear energy and electricity. Each is considered in turn, looking at the reserves, costs, demand and the prospects for the future. Questions about the fuels discussed in the book include: how far will the price of oil fall, can nuclear power ever gain full public acceptance, can conservation be the 'fifth fuel', when will the development of synthetic fuels and renewable energy sources regain momentum. The energy supply and demand throughout the world is then presented taking each country, or group of countries in turn and considering each fuel. The future is then considered -prospects for synthetic fuels, renewable energy sources, eg wind and solar power and nuclear fusion. 115 tables present the data on which the book is based and its conclusions drawn. (UK)

  2. Future of Energy in Egypt and the World

    Directory of Open Access Journals (Sweden)

    Hani Nokraschy

    2015-08-01

    Full Text Available If the whole world, which Egypt is a part of, continues business as usual in the field of electricitygeneration, namely, using the same regimes adopts today, burning fossil fuels and Uranium fission,both fuels will run out within sixty years at most and the world will definitely return to the Stone Age.Shall this be the end of the Egyptian people … the history makers?Generating energy is the next necessity to human life after water and food, since it is the majorstimulus of development. However, what is the aim of development if it is only momentary; thenfollowed by an endless abyss?Shall we wait till fossil and nuclear fuels run out? Jostling over the remaining fuel will certainly befierce and we will pay a high price for it, a matter that will subsequently lead to demolishing theingredients of development.Considering that oil is now dominating our way of life, it shall be wise to start immediately planning forthe post-oil age, provided that it is a sustainable plan set up to continue its validity as long as humanslive on this planet; this cannot be achieved except if we shift to renewable energies.Looking at Egypt and its available renewable energy sources, it becomes evident that the solarenergy, particularly in Upper Egypt, can give more than the present and future needs of the Egyptiansociety and even cover the demand of the whole world for electricity.

  3. Long-range prospects of world energy demands and future energy sources

    International Nuclear Information System (INIS)

    Kozaki, Yasuji

    1998-01-01

    The long-range prospects for world energy demands are reviewed, and the major factors which are influential in relation to energy demands are discussed. The potential for various kinds of conventional and new energy sources such as fossil fuels, solar energies, nuclear fission, and fusion energies to need future energy demands is also discussed. (author)

  4. The energy future in the world at the 21. century

    International Nuclear Information System (INIS)

    Frot, J.

    2006-04-01

    After a presentation of the world context of the energy consumption (the growth, the petroleum and the natural gas last, the greenhouse effect gases impacts on the climate), and the today research and development domains in the energy sector (petroleum, gas, generation IV nuclear reactors, carbon sequestration, renewable energies, hydrogen, energy storage), the author examines, using 4 scenario, the margins of action, the energy efficiency, the Gross Domestic Product de-materialization and the costs. Then he discusses the hopes and problems in the domains of the transports and the carbon sequestration. A special attention is devoted to the energy efficiency importance. (A.L.B.)

  5. Can the future, world-wide energy supply be achieved without nuclear energy?

    International Nuclear Information System (INIS)

    Kugeler, K.

    1995-01-01

    In the future the world-wide energy demand is going to increase considerably. The use of nuclear energy will continuously grow if the demand of climate researchers for a reduction of the world-wide CO 2 emission is fulfilled and if the possible contribution of regenerative energy sources is assessed realistically. In the future a world-wide use of nuclear energy will be realised according to even higher safety standards. The modification of the German Atom Law, which determines the limitation of damage caused to the reactor plant for future reactors fulfils this demand. The efforts in the field of nuclear technical development will concentrate on the proof of the required safety properties. (orig.) [de

  6. Sustaining the future: the role of nuclear power in meeting future world energy needs

    International Nuclear Information System (INIS)

    Duffey, R.; Sun, Y.

    2003-01-01

    A description is given of recently informed analyses showing the potential that nuclear power has in meeting global energy demands. For both the electricity and transportation sectors, we can quantify the beneficial effects on the environment, and we show how nuclear power deserves credit for its role in assisting future world energy, environmental and economic sustainability. The continuing expansion of the world's and Asia's energy needs, coupled with the need to reduce greenhouse gas (GHG) and other emissions, will require new approaches for large scale energy production and use. This is particularly important for China and Asia with respect to meeting both the energy demand and sustainability challenges. We show and explore the role of nuclear power for large-scale energy applications, including electricity production and hydrogen for transportation. Advanced nuclear technologies, such as those like CANDU's next generation ACR, can meet future global energy market needs, avoid emissions, and mitigate the potential for global climate change. We use the latest IPCC Scenarios out to the year 2100 as a base case, but correct them to examine the sensitivity to large scale nuclear and hydrogen fuel penetration. We show a significant impact of nuclear energy on energy market penetration, and in reducing GHGs and other emissions in the coming century, particularly in the industrial developing world and in Asia. This is achieved without needing emissions credits, as are used or needed as economic support for other sources, or for subsidies via emissions trading schemes. Nuclear power offers the relatively emissions-free means, both to provide electricity for traditional applications and, by electrolytic production of hydrogen, to extend its use deep into the transportation sector. For the published IPCC Marker Scenarios for Asia we show the reduction in GHG emissions when electrolysis using electricity from nuclear power assists the introduction of hydrogen as a fuel

  7. Assessing the role of coal in the world energy future

    International Nuclear Information System (INIS)

    Hibbard Junior, W.R.

    1981-01-01

    Ten recent extensive studies of long range energy futures were evaluated and a consensus of findings developed. Progress toward the consensus was determined. In the next 20 years the United States will need all of the coal, nuclear, oil shale and tar sands that public consensus and the legislatures will permit. Concerns include the cost and availability of OPEC oil, energy efficiency, acid rain, and carbon dioxide build-up. (Author) [pt

  8. Future energy supplies. Lessons from the world energy outlook 2001. Insights

    International Nuclear Information System (INIS)

    Cattier, F.

    2002-01-01

    At a global level, primary energy resources are amply sufficient to meet the growing needs expected over the coming decades. Energy supplies may however be affected by economic, technological or political conditions. Supplies of oil and natural gas will be dependent in particular on the carrying out of the necessary investments in the field of development, production capacity, transport and distribution within a suitable time. The future for coal is above all linked to future environmental policies to be put in place and on the capacity of 'clean' coal technologies to respond to these. Due to their costs, which remain high, and to a lack of incentive policies, renewable energy sources should find it difficult to gain a major share of world energy markets. Finally, the future for nuclear energy remains dependent upon policies concerning security of supply or the fight against climatic change. (author)

  9. Future role of Gulf oil in world energy demand

    International Nuclear Information System (INIS)

    Eltony, M.N.

    1998-01-01

    The view that there will be a growing dependence on oil from the Gulf countries is shared by a great number of oil market analysts. This view is based on the fact that Gulf countries dominate the global oil reserves. Energy analyst argue that as the world demand for oil continues to grow driven largely by the growth in developing countries' consumption coupled with constrained non-OPEC supply, the end result will be that the call on Gulf oil will grow substantially. In summary, this paper has challenged the view of growing dependence on oil from the Gulf using available information in conjunction with reasonable and fairly plausible arguments. The aim was to point out to the GCC member counties the danger of relying on these views in shaping their economic policies and in setting their oil market strategies. They may run the ultimate risk of being left with huge oil reserves that no one wants. (orig.)

  10. World energy

    International Nuclear Information System (INIS)

    Curtis, D.L.

    1990-01-01

    Three major concerns face mankind's future: the impending energy crisis as caused by the depletion of the world's fossil fuel reserves, world atmospheric pollution as caused by the burning of these fuels, and mankind's destruction if the vast energy contained in nuclear weapons stockpiles is released in a global conflict. This paper describes an ambitious, combined solution to these problems by the use of deep underground detonations of thermonuclear devices/bombs to provide a virtually pollution free, world energy source into the far distant future, while achieving a significant increase in mutual trust between the superpowers and all nations. The key is believed to be thermonuclear geothermal stimulation to produce the electrical power needed for a hydrogen economy

  11. Local Power -- Global Connections: linking the world to a sustainable future through decentralized energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Brent, Richard; Sweet, David

    2007-07-01

    Various international dynamics are converging to increase the attractiveness of decentralized energy as a complement to existing centralized energy infrastructures. Decentralized energy (DE) technologies, including onsite renewables, high efficiency cogeneration and industrial energy recycling, offer considerable benefits to those seeking working alternatives to emerging challenges in the energy sector. DE is ideally suited to provide clean affordable energy to areas where modern energy services are currently lacking. Having smaller generators close to where energy is required ensures a safe, reliable and secure energy supply when the energy is required. Furthermore, because DE is a much cleaner alternative than conventional central power plants and the energy provided comes at a much smaller price tag DE is an increasingly acceptable alternative both in the developed and developing world. DE is sure to play a key role in any plan to build a sustainable energy future. (auth)

  12. Structural changes in the world energy supply - adaptations up to current and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Schuermann, H.J.

    1985-03-11

    In this analysis of world energy markets in which he pays particular attention to mineral oil, and with a background of world economic problems which have not yet been solved, the author presents a piece of modern economic history in which he also highlights the political aspects of the supply of crude oil. The world-wide contraction in oil consumption which followed two price escalations, has been caused, it is held by structural factors and is therefore of a long-term nature. Of course, in the foreseeable future, oil will easily remain the most important energy-carrier. However, it will be of less importance for Western Europe and Japan than for North America, trading states and developing countries. Nevertheless, diversification should be encouraged as quickly as possible. This does include natural gas still but for the long-term also coal and atomic energy. The author pleads for world-wide trade relations based on coal and gas in order to complement the fully integrated world oil markets. Similarly atomic energy should be developed as quickly as possible.

  13. Journal of the two worlds. Energies of the future; Revue des deux mondes. Les energies du futur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Confusion and irrationality are the two master-words of today's debates about energies and their impact on safety, environment, ethic and society. On the other hand, reports about urgent decisions to be taken are piling up (wastes reprocessing, future of nuclear energy, European policy etc..). This book analyzes the possible scenarios and the energy challenges at the year 2030 and 2050 vistas. (J.S.)

  14. Future World Energy Demand and Supply: China and India and the Potential Role of Fusion Energy

    International Nuclear Information System (INIS)

    Sheffield, John

    2005-01-01

    Massive increases in energy demand are projected for countries such as China and India over this century e.g., many 100s of megawatts of electricity (MWe) of additional electrical capacity by 2050, with more additions later, are being considered for each of them. All energy sources will be required to meet such a demand. Fortunately, while world energy demand will be increasing, the world is well endowed with a variety of energy resources. However, their distribution does not match the areas of demand and there are many environmental issues.Such geopolitical issues affect China and India and make it important for them to be able to deploy improved technologies. In this regard, South Korea is an interesting example of a country that has developed the capability to do advanced technologies - such as nuclear power plants. International collaborations in developing these technologies, such as the International Thermonuclear Reactor (ITER), may be important in all energy areas. Fusion energy is viewed as an interesting potential option in these three countries

  15. Nuclear fusion and its large potential for the future world energy supply

    Directory of Open Access Journals (Sweden)

    Ongena Jef

    2016-12-01

    Full Text Available An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc. or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confinement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.

  16. Towards a new world: The contributions of nuclear energy to a sustainable future

    International Nuclear Information System (INIS)

    Duffey, R. B.; Miller, A. I.; Fehrenbach, P. J.; Kuran, S.; Tregunno, D.; Suppiah, S.

    2007-01-01

    Over the last few years, the world has seen growing concern about the sustainability of the Planet when supplying increasing energy use. The major issues are: increased energy prices in the world markets; growing energy demand in emerging economies; security and stability of oil and gas supply; potentially adverse climate change due to carbon-based emissions; and the need to deploy economic, sustainable and reliable alternates. Large undefined 'wedges' of alternate energy technologies are needed. In light of these major difficulties, there is renewed interest and need for a greater role for nuclear energy as a safe, sustainable and economic energy contributor. The shift has been, from being viewed by some as politically discounted, to being accepted as absolutely globally essential. We have carefully considered, and systematically, extensively and technically analyzed the contributions that nuclear energy can and should make to a globally sustainable energy future. These include restraining emissions, providing safe and secure power, operating synergistically with other sources, and being both socially and fiscally attractive. Therefore, we quantify in this paper the major contributions: a) The reduction in climate change potential and the global impact of future nuclear energy deployment through emissions reduction, using established analysis tools which varying the plausible future penetration and scale of nuclear energy. b) The minimization of economic costs and the maximization of global benefits, including investment requirements, carbon price implications, competitive market penetration, and effect of variable daily pricing. c) The introduction of fuel switching, including base-load nuclear energy synergistically enabling both hydrogen production and the introduction of significant wind power. d) The management and reduction of waste streams, utilizing intelligent designs and fuel cycles that optimize fuel resource use and minimize emissions, waste disposal

  17. Advanced light water reactors: an economically viable part of the world's future energy mix

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    1996-01-01

    In addition to safety and reliability, a common mission for the international nuclear industry in the 21. century will be ensure affordable electricity. At the Westinghouse Electric Corporation believe our advanced light water reactor (ALWR) design gives us the opportunity to provide the safest, most reliable, lowest cost, most competitive generation method possible for use by nations and utilities worldwide. While the safety and reliability aspects of the ALWR can be proven tangibly and are well-documented, questions have been raised about the technology's ability to work within the world's selling price range for electricity generation. For our industry's financial stability, and especially for the stability of the world's future power needs, Westinghouse has done extensive work on this issue and we are convinced we can meet the competitive challenge. We believe the ALWR can be an economically viable part of the world's future energy mix. This paper will define the competitive challenge that is being addressed by the industry and then analyze three specific areas: capital costs, operating costs, and financing costs. The hidden advantage of nuclear power in responding to these challenges will be explored, and a strong case will be made asserting that the advanced light water reactor will be able to compete in international markets with viable production costs. (authors)

  18. World Energy Scenarios 2050: Impact of the Energy Governance Models to the Future of the European Energy Sector

    International Nuclear Information System (INIS)

    Kisel, E.

    2014-01-01

    World Energy Council has explored the impact of two extreme governance models of energy sector to the global economic and climate developments. Scenario 'Jazz' describes the world, where investments in the energy markets are made by the companies on the purely economic basis. Scenario 'Symphony' describes the world, where decisions about the energy investments are made by the governments. It appears that in case of Scenario 'Jazz' we would reach lower energy prices, but it would also bring along higher and wider consumption of energy, and much higher environmental impact. In case of Scenario 'Symphony' energy prices would be somewhat higher, but environmental and energy efficiency would deliver better results, and there will be more energy-poor people around the world. It can also be observed, that resulting energy mixes of these two scenarios are very different. When Scenario 'Jazz' would leave the share of fossil fuels nearly to the current levels, then Scenario 'Symphony' supports strongly development of Solar and Carbon Capture, Utilisation and Sequestration Technologies. The modelling was also made separately for different regions of the world, the results for Europe can be observed from the report as well. This provides a fruit for thought about the role of the governments in the implementation of the EU 2030 Energy and Climate Strategy. The presentation would describe shortly the methodology of the study, clarifies the assumptions of the scenarios and highlights the main outcomes of the study in for the world and for European energy sector. (author).

  19. The need for nuclear power. Viewpoint on the world's challenging energy future

    International Nuclear Information System (INIS)

    Rhodes, R.; Beller, D.

    2000-01-01

    To meet the world's growing need for energy, the Royal Society and Royal Academy report proposes 'the formation of an international body for energy research and development, funded by contributions from individual nations on the basis of Gross Domestic Product (GDP) or total national energy consumption'. The body would be 'a funding agency supporting research, development and demonstrators elsewhere, not a research center itself'. Its budget might build to an annual level of some $25 billion, 'roughly 1% of the total global energy budget'. If it truly wants to develop efficient and responsible energy supplies, such a body should focus on the nuclear option, on establishing a secure international nuclear-fuel storage and reprocessing system, and on providing expertise for siting, financing, and licensing modular nuclear power systems to developing nations. According to authors, who study the dynamics of energy technologies, 'the share of energy supplied by electricity is growing rapidly in most countries and worldwide'. Throughout history, humankind has gradually decarbonized its dominant fuels, moving steadily away from the more polluting, carbon-rich sources. Thus the world has gone from coal (which has one hydrogen atom per carbon atom and was dominant from 1880 to 1950) to oil (with two hydrogens per carbon, dominant from 1950 to today). Natural gas (four hydrogens per carbon) is steadily increasing its market share. But nuclear fission produces no carbon at all. Physical reality - not arguments about corporate greed, hypothetical risks, radiation exposure, or waste disposal - ought to inform decisions vital to the future of the world. Because diversity and redundancy are important for safety and security, renewable energy sources ought to retain a place in the energy economy of the century to come. But nuclear power should be central. Despite its outstanding record, it has instead been relegated by its opponents to the same twilight zone of contentious

  20. Nuclear power: How competitive down the line? [The world's latest energy outlook sees a mixed future

    International Nuclear Information System (INIS)

    Birol, F.

    2007-01-01

    The world is facing twin energy-related threats: that of not having adequate and secure supplies of energy at affordable prices and that of environmental harm caused by its use. Soaring energy prices and recent geopolitical events have reminded us of the essential role affordable energy plays in economic growth and human development, and of the vulnerability of the global energy system to supply disruptions. Safeguarding energy supplies is once again at the top of the international policy agenda. Yet the current pattern of energy supply carries the threat of severe and irreversible environmental damage. Reconciling the goals of energy security and environmental protection requires strong and coordinated government action and public support. These concerns have revived discussion about the role of nuclear power. Over the past two years, several governments have made statements favouring an increased role of nuclear power in the future energy mix and a few have taken concrete steps towards the construction of a new generation of safe and cost-effective reactors. Over the next two and a half decades, nuclear power along with energy efficiency and renewables, could help address concerns about over-reliance on fossil-fuelled electricity generation, especially worries about climate change and increasing dependence on gas imports: Nuclear power is a low-carbon source of electricity. Operation of one gigawatt of nuclear power generating capacity, if replacing coal-fired generation, avoids the emission of 5.6 million tonnes of CO 2 per year. Nuclear power plants do not emit any airborne pollutants such as sulphur dioxide, nitrogen oxides or particulate matter. Nuclear power plants can help reduce dependence on imported gas; and unlike gas, uranium resources are widely distributed around the world. Under current policies, gas-import dependence will rise in all regions of the OECD (Organization for Economic Cooperation and Development) and in key developing countries by 2030

  1. World energy supply and demand and the future of nuclear power

    International Nuclear Information System (INIS)

    Lantzke, U.

    1977-01-01

    The author discusses the OECD's report ''World Energy Outlook'', which concluded that a severe energy gap could, and probably would, develop by the mid-1980s if present energy policies continue. Should nuclear power fail to make a substantial contribution, this situation is predicted to become even worse. The author states that an energy gap can only be realistically avoided by a combination of (a) deep energy conservation, (b) even greater use of coal, and (c) nuclear power. New energy technologies cannot realistically be expected to make a significant contribution much before the end of the century. Conservation and coal alone, however, will not be sufficient. It is difficult to envisage energy savings of more than 10% without reducing economic activity to a degree that becomes politically unacceptable. Greater use of coal is undoubtedly feasible, but the potential is severely constrained in the medium term for economic, technological and environmental reasons. Nuclear power must also make a significant contribution. However, estimates of OECD nuclear energy supply for 1985 have been scaled drastically downwards during 1976 owing to: uncertainty in the utility sector over future growth in electricity demand; continued, and in some cases increased, opposition to nuclear power; and delays and uncertainties in government nuclear policies and programmes. The author concludes that we cannot afford any further shortfall and we must move urgently to: (a) give strong and unswerving support to thermal nuclear reactor programmes (requiring that governments adopt clear and coherent nuclear policies, taking into account the legitimate concern expressed by the public); (b) develop stable and long-term international arrangements so that the necessary nuclear fuel facilities can be made available on a secure basis for peaceful uses of nuclear power; (c) decide what the real proliferation risk is and agree on action to avoid it; and (d) make renewed and stronger efforts to solve

  2. Estimating future energy use and CO2 emissions of the world's cities

    International Nuclear Information System (INIS)

    Singh, Shweta; Kennedy, Chris

    2015-01-01

    This paper develops a tool for estimating energy-related CO 2 emissions from the world's cities based on regression models. The models are developed considering climatic (heating-degree-days) and urban design (land area per person) independent variables. The tool is applied on 3646 urban areas for estimating impacts on urban emissions of a) global transitioning to Electric Vehicles, b) urban density change and c) IPCC climate change scenarios. Results show that urban density decline can lead to significant increase in energy emissions (upto 346% in electricity & 428% in transportation at 2% density decline by 2050). Among the IPCC climate scenarios tested, A1B is the most effective in reducing growth of emissions (upto 12% in electricity & 35% in heating). The tool can further be improved by including more data in the regression models along with inclusion of other relevant emissions and climatic variables. - Highlights: • A tool for estimation of energy related emissions for urban areas is developed. • Heating degree days and urbanized area per capita are driving variables for urban energy consumption. • Global transition to EVs can only mitigate transportation emissions if GHG intensity of electricity grid is reduced. • Density decline of urban areas can lead to exponential increase of energy related emissions. • Climate change scenarios can slightly reduce the growth of energy related emissions increase by 2050. - A tool for estimation of global impact of urban systems on energy related emissions was developed that can simulate the impact of future scenarios (climate change, urban design etc)

  3. Energy futures

    International Nuclear Information System (INIS)

    Treat, J.E.

    1990-01-01

    This book provides fifteen of the futures industry's leading authorities with broader background in both theory and practice of energy futures trading in this updated text. The authors review the history of the futures market and the fundamentals of trading, hedging, and technical analysis; then they update you with the newest trends in energy futures trading - natural gas futures, options, regulations, and new information services. The appendices outline examples of possible contracts and their construction

  4. World energy supply and demand and the future of nuclear power

    International Nuclear Information System (INIS)

    Lantzke, U.

    1977-01-01

    The OECD's world energy outlook analyses projected trends in energy damnd and supply for the OECD area and other major global regions to 1985. It provides a brief discussion of trends after 1985. OECD energy consumption is projected to grow more slowly than in the past. Conservation effects will increase efficiency of energy use per unit of economic growth. All domestic energy supplies in the OECD are projected to expand faster than in the past. The relative share of non-fossil energy sources in total production will be almost doubled. Assuming moderate economic growth, existing energy policies and a constnat real price for oil, the outlook's reference case projects OECD oil import at 35 million barrels a day by 1985. This level of import demand, when combined with the import needs of other oil importing areas, could approach the limit of availability of world oil supplies and as a result cause severe disequilibrium in world energy markets. The outlook indicates such severe disruption can be avoided by action to improve the world energy supply and demand balance without impeding economic growth objectives. Strong measures will be required both to conserve energy and to develop new energy supplies. The biggest increment to the OECD's energy supply by 1985 is expected to come from nuclear power. This substantial nuclear contribution will be inevitable and irreplaceable. As a result urgent solutions to problems concerning safety, availability of fuel cycle services, the environment, cost escalation and construction delays will be required

  5. The development of the world's population as a factor determining future energy requirements

    International Nuclear Information System (INIS)

    Vossebrecker, H.; Henssen, H.

    1988-01-01

    Urgently desired economic developments improving the conditions of living in the developing countries and, in the long term, introducing a stabilization of the world's population, result in a considerable rise in world energy requirement. This, in turn, causes conflicts and raises major ecological dangers because of the accelerated depletion of fossil sources of energy it entails. The severity of the CO 2 problem emerges clearly only when seen in connection with the population growth of the developing countries. Undoubtedly, therefore, the fossil sources of energy will have to give up their present leading role in world energy supply because of the intolerable environmental pollution they produce and because of the dwindling oil and gas reserves. The only hope remaining for the present is the possibility of nuclear power and renewable energies pointly being able to meet requirements, while all economically reasonable conservation potentials are being exploited. (orig./UA) [de

  6. World Energy Conference

    International Nuclear Information System (INIS)

    Ott, G.; Schilling, H.D.

    1979-01-01

    After making some general remarks about goals, tasks, and works of the World Energy Conference the topics and the frame of the 11th World Energy Conference which will take place in Munich from 8th to 12th September 1980 are outlined. This conference is held under the general topic 'energy for our world' and deals with the reciprocal relation between energy supply, environment, and society. The main part of the publication presented here is the German version of the most important sections of the investigation 'World Energy-Looking Ahead to 2020' by the Conservation Commission (CC) of the World Energy Conference. Added to this is the German original brief version of a report by the Mining-Research Company (Bergbau-Forschung GmbH) to the CC which deals with the estimation of the world's coal resources and their future availability. This report was presented on the 10th World Energy Conference in Istanbul together with the corresponding reports concerning the other energy sources. Finally, an introduction to the technical programme for the 11th World Energy Conference 1980 is given. (UA) [de

  7. The world energy status

    International Nuclear Information System (INIS)

    Meritet, S.

    2010-01-01

    As energy consumption increased by a factor 20 during the 20. century, energy has not only an economic, but also a political role, and its management involves diplomatic, social, and now environmental issues. The author discusses the primary role still hold by fossil energies (coal, gas and oil) in the world energy consumption, comments the energy reserve assessments, outlines the financial needs for a renewable energy development, and questions the future evolution of reserves and consumption, as well as the consequences of climate change or the uncertainty about economic growth. The world energy assessment shows important differences between inhabitants: a US citizen consumes more than eight times more than a Chinese one. The shares of the different energy sources are also different from one country to another. In order to decrease the demand in energy, energy efficiency must be improved and user behaviour must evolve

  8. Energy Futures

    DEFF Research Database (Denmark)

    Davies, Sarah Rachael; Selin, Cynthia

    2012-01-01

    foresight and public and stakeholder engagement are used to reflect on?and direct?the impacts of new technology. In this essay we draw on our experience of anticipatory governance, in the shape of the ?NanoFutures? project on energy futures, to present a reflexive analysis of engagement and deliberation. We...... draw out five tensions of the practice of deliberation on energy technologies. Through tracing the lineages of these dilemmas, we discuss some of the implications of these tensions for the practice of civic engagement and deliberation in a set of questions for this community of practitioner-scholars....

  9. World energy outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-07

    The World Energy Outlook 2006 sets out the IEA's latest projections of world energy supply and demand to 2030 for oil, gas, coal, renewables, nuclear and electricity, plus projections on energy-related CO{sub 2} emissions. The publication is in three parts. Part A: The reference scenario has chapters entitled: Key assumptions; Global Energy Trends; Oil market outlook; Gas market outlook; Coal market outlook; and Power sector outlook. Part B: The alternative policy scenario contains chapters on: Mapping a new energy future; Assessing the cost-effectiveness of alternative policies; Deepening the analysis results by sector; and Getting to and going beyond the alternative policy scenario. Part C: Focus on key topics contains: The impact of higher energy prices; Current trends in oil and gas investment; Prospects for nuclear power; The outlook for biofuels; Energy for coking in developing countries; and Focus on Brazil. 224 figs., 84 tabs., 5 annexes.

  10. World energy outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-07

    The World Energy Outlook 2006 sets out the IEA's latest projections of world energy supply and demand to 2030 for oil, gas, coal, renewables, nuclear and electricity, plus projections on energy-related CO{sub 2} emissions. The publication is in three parts. Part A: The reference scenario has chapters entitled: Key assumptions; Global Energy Trends; Oil market outlook; Gas market outlook; Coal market outlook; and Power sector outlook. Part B: The alternative policy scenario contains chapters on: Mapping a new energy future; Assessing the cost-effectiveness of alternative policies; Deepening the analysis results by sector; and Getting to and going beyond the alternative policy scenario. Part C: Focus on key topics contains: The impact of higher energy prices; Current trends in oil and gas investment; Prospects for nuclear power; The outlook for biofuels; Energy for coking in developing countries; and Focus on Brazil. 224 figs., 84 tabs., 5 annexes.

  11. Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carey W. King

    2015-11-01

    Full Text Available I use energy cost share to characterize the role of energy in the economy. Specifically, I use an estimate of monetary expenditures for primary energy on an annualized basis for forty-four countries from 1978 to 2010 for natural gas, coal, petroleum, and electricity. I show that global energy cost share is significantly correlated to a one-year lag in the change in gross domestic product as well as measures of total factor productivity. Given the historical reduction in the relative cost of energy (including food and fodder for animate power since the start of the Industrial Revolution, combined with a global energy cost share estimate, I conclude that the turn of the 21st Century represents the time period with the cheapest energy in the history of human civilization (to date. This potential historical nadir for energy expenditures around 2000 has important ramifications for strategies to solve future social, economic, and environmental problems such as reducing annual emissions of greenhouse gases (GHGs. Rapidly decreasing annual GHG emissions while internalizing their costs into the economy might feedback to increase energy expenditures to such a degree as to prevent economic growth during that transition.

  12. World energy outlook 2014

    CERN Document Server

    International Energy Agency. Paris

    2014-01-01

    The global energy landscape is evolving at a rapid pace, reshaping long-held expectations for our energy future. The 2014 edition of the World Energy Outlook (WEO) will incorporate all the latest data and developments to produce a comprehensive and authoritative analysis of medium- and longer-term energy trends. It will complement a full set of energy projections – which extend from today through, for the first time, the year 2040 – with strategic insights into their meaning for energy security, the economy and the environment. Oil, natural gas, coal, renewables and energy efficiency will be covered, along with updates on trends in energy-related CO2 emissions, fossil-fuel and renewable energy subsidies, and universal access to modern energy services.

  13. World energy insight

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The 21st World Energy Congress offers a unique opportunity for all stake-holders of the energy sector to meet and exchange visions, strategies and practices, during four days of very intensive and interesting sessions, round-tables and exhibitions. More than 3,000 energy leaders gather from around the world from both developed and developing countries, from all types of energy, from public and private companies and government organisations, in order to think together about how to bring about a sustainable and acceptable energy future. The truth is that nobody has the choice any longer. All energy leaders have to take decisions every day, and they need to have a clear analysis of what is at stake, what the risks are, and what the solutions can be.

  14. World nuclear energy paths

    International Nuclear Information System (INIS)

    Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.

    1979-01-01

    In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand

  15. Development of the energy situation in the world and in Hungary, the future of the nuclear energy

    International Nuclear Information System (INIS)

    Levai, A.

    1977-01-01

    At present the source of the energy consumption per person increases with 3.6% yearly in the world and this rate is estimated to be 2.8% in 2000. In Hungary the increase of the energy demands was 4.2% and in the following years it will be 4%. The ratio of the hydrocarbons will yet increase and the ratio of coal will decrease till 1980. The amount of the imported energy has always been significant and will further increase. The quantity of the fissile materials is about 1% of the whole energy store in the world. The problem can be temporarily solved by breeder reactors but the permanent solution can be based on solar energy or on the utilization of nuclear fusion. Participation of the nuclear energy in the world's energy production is still 1-2% but it increases quickly. At present the light water reactors dominate over the gas-cooled and heavy water reactors. There are a lot of problems in connection with breeder reactors. (V.N.)

  16. On the future role of Gulf oil in meeting world energy demand

    International Nuclear Information System (INIS)

    Nagy Eltony, M.

    1996-01-01

    The validity of the view of a growing dependence of the world on oil from the Persian Gulf, and the resulting implications for the economies of the Gulf countries were examined. The prevailing view in the countries of the Persian Gulf is that the demand for oil will continue to rise, resulting in the inevitable increase in prices which will in turn alleviate the budget deficit problems currently encountered by most of the countries of the Gulf Cooperation Council (GCC) states. The author argues that the implication of this view is that GCC countries are failing to address the fundamental structural problems within their economies, and raise questions that tend to undermine this hypothesis of continuing dependence on Gulf oil by the rest of the world. Some of these factors are growing reliance on electricity and natural gas, environmental concerns, development of alternative fuels, political instability in the Gulf states and the potential interruption in supply, all of which tend to accelerate the trend towards reduced demand for Gulf oil. The following have been recommended as ways of avoiding the ultimate risk of huge unwanted oil reserves: diversification of the economies of GCC countries; reduced spending and increased investment in developing further capacity from non-GCC sources through cooperation and joint ventures between developing countries and international companies; a more active role in worldwide decisions relating to environmental concerns; and finally, a systematic monitoring and evaluation of the likely impacts of new developments in all areas of alternative energy. 17 refs

  17. World Energy Outlook 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-09

    The world appears to be emerging from the worst economic crisis in decades. Many countries have made pledges under the Copenhagen Accord to reduce greenhouse-gas emissions. Commitments have also been made by the G-20 and APEC to phase out inefficient fossil-fuel subsidies. Are we, at last, on the path to a secure, reliable and environmentally sustainable energy system? Updated projections of energy demand, production, trade and investment, fuel by fuel and region by region to 2035 are provided in the 2010 edition of the World Energy Outlook (WEO). It includes, for the first time, a new scenario that anticipates future actions by governments to meet the commitments they have made to tackle climate change and growing energy insecurity. WEO-2010 shows: what more must be done and spent to achieve the goal of the Copenhagen Accord to limit the global temperature increase to 2 deg. C and how these actions would impact on oil markets; how emerging economies -- led by China and India -- will increasingly shape the global energy landscape; what role renewables can play in a clean and secure energy future; what removing fossil-fuel subsidies would mean for energy markets, climate change and state budgets; the trends in Caspian energy markets and the implications for global energy supply; the prospects for unconventional oil; and how to give the entire global population access to modern energy services. With extensive data, projections and analysis, this publication provides invaluable insights into how the energy system could evolve over the next quarter of a century. The book is essential reading for anyone with a stake in the energy sector.

  18. World Energy Outlook 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-10

    What will the credit crunch and economic recession mean for energy markets? Will investment cutbacks lead us towards a supply crunch a few years down the line? How could the transition to a clean global energy system be financed? These are just three of the questions that World Energy Outlook 2009 addresses. Incorporating recent developments in energy and environmental policy, this year's Outlook draws on the latest data reflecting the impact of the global financial and economic crisis and takes into account ongoing gyrations in energy prices. The resulting analysis presents a full update of energy projections through to 2030, fuel by fuel, and with more country-level detail than ever before. WEO-2009 puts the spotlight on three special topics: (1) Financing energy investment under a post-2012 climate framework: What policy action is needed to increase deployment of new energy technologies? Where are the most cost-effective opportunities for carbon mitigation? This ground-breaking analysis, which zooms in on the crucial period through to 2020, provides a robust quantitative basis for United Nations Framework Convention on Climate Change negotiations in the lead-up to the crucial climate meeting in Copenhagen in December 2009. (2) Prospects for global natural gas markets: How hard will the credit crisis and economic recession hit gas demand and investment in gas supply? How will geology and geopolitics affect future gas supplies? Through field-by-field analysis of production trends of the world's key gas fields and a bottom-up analysis of upstream costs and investment, WEO-2009 takes a hard look at future global gas supply. (3) Energy trends in Southeast Asia: In recognition of the growing influence Southeast Asia is having on global energy markets, WEO-2009 includes an in-depth analysis of this fast-growing region. The annual WEO report -- the flagship publication of the IEA -- is widely recognised as the most authoritative source of global energy

  19. World Energy Outlook 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Industry and government decision-makers and others with a stake in the energy sector all benefit from the contents of World Energy Outlook (WEO) 2012. It presents authoritative projections of energy trends through to 2035 and insights into what they mean for energy security, environmental sustainability and economic development. Oil, coal, natural gas, renewables and nuclear power are all covered, together with an update on climate change issues. Global energy demand, production, trade, investment and carbon dioxide emissions are broken down by region or country, by fuel and by sector. Special strategic analyses cover: What unlocking the purely economic potential for energy efficiency could do, country by country and sector by sector, for energy markets, the economy and the environment; The Iraqi energy sector, examining both its importance in satisfying the country’s own needs and its crucial role in meeting global oil and gas demand; The water-energy nexus, as water resources become increasingly stressed and access more contentious; Measures of progress towards providing universal access to modern energy services. There are many uncertainties, but many decisions cannot wait. The insights of this publication are invaluable to those who must shape our energy future.

  20. Energy in the World in 2011: which lessons to be drawn for the future?

    International Nuclear Information System (INIS)

    Bauquis, Pierre-Rene

    2012-01-01

    The author comments and discusses some recent events, trends and evolutions in the energy sector, notably in terms of energy production, consumption and prices. He addresses different energy sources: oil (reserves, production, exploration), natural gas and non conventional gases (tight gas, coal bed methane, shale gas), renewable energies (biomass, wind, solar), nuclear energy (the Fukushima accident and its consequences)

  1. World energy insight 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The World Energy Insight 2011 is the official publication of the World Energy Council. It includes interviews, articles and case studies from a distinguished panel of World Energy Council Officers, CEOs, government ministers, academics and opinion formers from all areas of the energy sector and provides perspectives from around the globe. Government, industry and NGO's offer both policy and technology perspectives. The insights within this publication add to the work that WEC is doing to provide the forum for energy leaders, along with the on-going WEC studies and programmes on Energy Policies, 2050 Energy Scenarios, Energy Resources & Technologies, Energy for Urban Innovation, Rules Of Energy Trade and Global Energy Access.

  2. Serving two purposes: Plans for a MOOC and a World Campus course called Energy, the Environment, and Our Future (Invited)

    Science.gov (United States)

    Bralower, T. J.; Alley, R. B.; Blumsack, S.; Keller, K.; Feineman, M. D.

    2013-12-01

    We are in the final stages of developing a Massive Open Online Course entitled Energy, the Environment, and Our Future. The course is a broad overview of the implications of the current energy options on Earth's climate and the choices for more sustainable energy sources in the future. The course is founded in concepts explored in the book and PBS series Earth: The Operators' Manual, but it includes more in-depth treatment of renewable energy as well as the ethical issues surrounding energy choices. One of the key aspects of the course is that it is being designed to be taught in two formats, the first, an eight week MOOC through Coursera in Fall semester 2013, and the second, a 16 week online course developed as part of the NSF Geo-STEP InTeGrate program and offered through the Penn State World Campus. The advantage of the MOOC format is the ability to reach out to thousands of students worldwide, exposing them to the science behind important issues that may have a direct impact on the lifestyle decisions they make, while the World Campus course allows us to explore deeper levels of cognition through application of carefully designed pedagogies. The principal difference between the two versions of the course will be assessment. The MOOC will have embedded assessment between pages and end of module quizzes. The InTeGrate course will have a range of assessments that are directly linked to the goals and objectives of the course. These will include active learning exercises built around energy and climate data. Both of the versions are works in progress and we anticipate modifying them regularly based on student feedback.

  3. The future of energy

    CERN Document Server

    Towler, Brian F

    2014-01-01

    Using the principle that extracting energy from the environment always involves some type of impact on the environment, The Future of Energy discusses the sources, technologies, and tradeoffs involved in meeting the world's energy needs. A historical, scientific, and technical background set the stage for discussions on a wide range of energy sources, including conventional fossil fuels like oil, gas, and coal, as well as emerging renewable sources like solar, wind, geothermal, and biofuels. Readers will learn that there are no truly ""green"" energy sources-all energy usage involves some trad

  4. Solar energy - substitute energy of the future. Energy problems all over the world. Sonne - Ersatzenergie der Zukunft. Energieprobleme in aller Welt

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Following some remarks on the current energy situation, with the focus on petroleum and nuclear energy, explanations on a wall-map are given which illustrates in simplified form the key figures of a world scenario for the year 2030 (population-energy consumption) and a solar energy balance. For the scenario, figures of the International Institute of Applied System Analysis (IIASA) were used.

  5. World energy resources

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available As energy is the main “fuel” for social and economic development and since energy-related activities have significant environmental impacts, it is important for decision-makers to have access to reliable and accurate data in an user-friendly format. The World Energy Council (WEC has for decades been a pioneer in the field of energy resources and every three years publishes its flagship report Survey of Energy Resources. A commented analysis in the light of latest data summarized in such a report, World Energy Resources (WER 2013, is presented together with the evolution of the world energy resources over the last twenty years.

  6. World energy resources

    Science.gov (United States)

    Clerici, A.; Alimonti, G.

    2015-08-01

    As energy is the main "fuel" for social and economic development and since energy-related activities have significant environmental impacts, it is important for decision-makers to have access to reliable and accurate data in an user-friendly format. The World Energy Council (WEC) has for decades been a pioneer in the field of energy resources and every three years publishes its flagship report Survey of Energy Resources. A commented analysis in the light of latest data summarized in such a report, World Energy Resources (WER) 2013, is presented together with the evolution of the world energy resources over the last twenty years.

  7. Strategic R and D Planning for an Energy Future in an Interdependent World

    Energy Technology Data Exchange (ETDEWEB)

    Schainker, R.B.; Gellings, C.; Rosinski, S.

    2007-07-01

    This paper presents a summary of key results of a comprehensive analysis of technology R and D needs for the U.S. electric utility industry. It focuses on the impacts of the world-wide interdependencies for the price of gas/oil fuel and the costs for environmental emissions as drivers to define four 'what-if' scenarios that act as a basis to define key R and D topics U.S. electric utilities need to address. This paper is based on past work the U.S. Electric Power Research Institute performed on a technology roadmap, which is a high-level document that provides guidance on strategic technology planning over the next 40-50 years for the electricity industry. However, critical uncertainties over this timeframe - such as fuel prices, the economy, the environment, technology advances, and regulatory policies - complicate effective identification and development of R and D priorities. To address these uncertainties and to develop a nearer-term technology-oriented action plan, EPRI undertook an Electric Power Industry Technology Scenarios project that uses scenario planning to explicitly incorporate uncertainty and focuses on a 20-year planning horizon. (auth)

  8. The future of energy

    International Nuclear Information System (INIS)

    Romer, A.

    2001-01-01

    The article discusses not only the future of energy and resource consumption in various areas of the world, but also its development over the centuries since the industrial revolution. The present situation, with large discrepancies between the energy consumption of industrialised nations and the developing countries is examined. Social and environmental aspects are discussed and the sustainable use of the Earth's resources and the inconsistencies in this area is looked at. Rather than adopting a moralistic approach, the article appeals to man's powers of innovation and sense of responsibility in order to develop solutions to today's and future energy supply problems. The article is richly illustrated with diagrams and graphs on world energy and social statistics

  9. The International Energy Agency's world energy outlook

    International Nuclear Information System (INIS)

    O'Dell, S.

    1996-01-01

    The 1996 edition of the World Energy Outlook to 2010 was reviewed. An overview of the energy projections was provided based on assumptions about economic growth and energy prices, geological potential, technological developments, the availability of traditional fuels outside the OECD and the future preferences of energy users. Demand vs. price movements were modelled, based on 'capacity constraints' and 'energy saving ' scenarios. Three major conclusions derived from the projections were: (1) world primary energy demand will grow steadily as it has over the past two decades, (2) fossil fuels will account for 90 per cent of total primary energy demand in 2010, and (3) a structural shift in the shares of different regions in world energy demand is likely to occur, i.e., the OECD share will fall in favor of the share of the ROW (rest of the world). 4 tabs., 9 figs

  10. World energy insight 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The World Energy Insight 2011 is the official publication of the World Energy Council. It includes interviews, articles and case studies from a distinguished panel of World Energy Council Officers, CEOs, government ministers, academics and opinion formers from all areas of the energy sector and provides perspectives from around the globe. Government, industry and NGO's offer both policy and technology perspectives. The insights within this publication add to the work that WEC is doing to provide the forum for energy leaders, along with the on-going WEC studies and programmes on Energy Policies, 2050 Energy Scenarios, Energy Resources & Technologies, Energy for Urban Innovation, Rules Of Energy Trade and Global Energy Access.

  11. Future energy, exotic energy

    Energy Technology Data Exchange (ETDEWEB)

    Dumon, R

    1974-01-01

    The Detroit Energy Conference has highlighted the declining oil reserves, estimated worldwide at 95 billion tons vs. an annual rate of consumption of over 3 billion tons. The present problem is one of price; also, petroleum seems too valuable to be simply burned. New sources must come into action before 1985. The most abundant is coal, with 600 billion tons of easily recoverable reserves; then comes oil shale with a potential of 400 billion tons of oil. Exploitation at the rate of 55 go 140 million tons/yr is planned in the U.S. after 1985. More exotic and impossible to estimate quantitatively are such sources as wind, tides, and the thermal energy of the oceans--these are probably far in the future. The same is true of solar and geothermal energy in large amounts. The only other realistic energy source is nuclear energy: the European Economic Community looks forward to covering 60% of its energy needs from nuclear energy in the year 2000. Even today, from 400 mw upward, a nuclear generating plant is more economical than a fossil fueled one. Conservation will become the byword, and profound changes in society are to be expected.

  12. World energy projections to 2030

    International Nuclear Information System (INIS)

    Criqui, P.; Kouvaritakis, N.

    2000-01-01

    This paper provides a description of the international energy projections elaborated with the POLES energy model for the purpose of analysing, in other papers of this issue, the impacts of technological change at world level and to 2030. Section 2 describes the key exogenous hypotheses on population and economic growth used for this projection, as well as the main resulting changes for the world energy system and in terms of CO 2 emissions. In Section 3 the dynamics of the energy systems are further analysed for four main world regions, while Section 4 is dedicated to the identification of the key uncertainties and of their possible impacts on future energy development. Finally, the last section presents the key messages of this outlook, which shows a rapidly growing world economy and energy consumption with increasing oil and gas prices, although this last feature remains subject to uncertainties on resource endowment estimates. (orig.)

  13. World energy outlook 2004

    International Nuclear Information System (INIS)

    2004-01-01

    The World Energy Outlook is the most complete and authoritative energy publication and has received several prestigious awards from government and industry in recognition of its analytical excellence. The new edition offers: - Analysis: Over 550 pages of detailed analysis with 150 graphs and tables. - Projections: Supply and demand projections to 2030 for oil, gas, coal, renewables, nuclear and electricity, plus projections of energy related CO 2 emissions. -World Alternative Policy Scenario:A detailed assessment of the impact of possible climate change policies and energy efficient technologies. -Russia: An in-depth study of the 'most important energy country'. - Energy and Development: An analysis of energy's role in overcoming world poverty. - Reserves: A detailed analysis of world oil and gas reserves and of the problems involved in measuring them

  14. The World energy issue

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2011-01-01

    This Power Point document proposes figures and data about the current world energy consumption, the various energy sources, the share of primary energy consumption by different sectors, and the levels of energy reserves. It addresses the issue of global warming (evolution of temperature, regional anomalies, the challenge of limitation of temperature, the greenhouse gas emissions), the strategic role of electricity (energy mix, heat production with electricity), energy savings, electricity production (key data on solar, wind, solar and biomass energy, possibilities of carbon capture, nuclear energy, costs of these different energies)

  15. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  16. The energy future in the world at the 21. century; L'avenir energetique mondial au 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Frot, J

    2006-04-15

    After a presentation of the world context of the energy consumption (the growth, the petroleum and the natural gas last, the greenhouse effect gases impacts on the climate), and the today research and development domains in the energy sector (petroleum, gas, generation IV nuclear reactors, carbon sequestration, renewable energies, hydrogen, energy storage), the author examines, using 4 scenario, the margins of action, the energy efficiency, the Gross Domestic Product de-materialization and the costs. Then he discusses the hopes and problems in the domains of the transports and the carbon sequestration. A special attention is devoted to the energy efficiency importance. (A.L.B.)

  17. The world energy outlook

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    The oil and gas resources of the Middle East and North Africa (MENA) will be critical to meeting the world's growing appetite for energy. The greater part of the world's remaining reserves lie in that region. They are relatively under-exploited and are sufficient to meet rising global demand for the next quarter century and beyond. The export revenues they would generate would help sustain the region's economic development. But there is considerable uncertainty about the pace at which investment in the region's upstream industry will occur, how quickly production capacity will expand and, given rising domestic energy needs, how much of the expected increase in supply will be available for export. The implications for both MENA producers and consuming countries are profound. The World Energy Outlook, published by the International Energy Agency (IEA), seeks to shed light on these very complex issues

  18. World energy scene

    Energy Technology Data Exchange (ETDEWEB)

    Bondi, H

    1980-01-01

    Coal will have an increasing role in world energy in the next three decades. The coming dependence on coal as the major fuel will radically affect international cooperation, as the US, USSR, and China account for approx. 85% of the known geological resources, and coal's likely economic marginality poses questions as to which producer will be capable of a profitable export trade. Energy transportability is becoming more important, as people can no longer move near to the sources. Also discussed are the uncompetitiveness of wasteful energy expenditure; the crucial relation of energy consumption to a country's gross national product; the energy intensities of selected industries; the necessity of elasticity in responding to changing energy supplies; the need for increased energy consumption in building up the developing countries; and good control, made achievable via advances in solid-state electronics, as the deciding factor in proper energy management.

  19. Key World Energy Statistics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997. This new edition responds to the enormously positive reaction to the book since then. Key World Energy Statistics produced by the IEA contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts. It exists in different formats to suit our readers' requirements.

  20. World Energy Outlook 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-07

    The 2008 report provides invaluable analysis to help policy makers around the world assess and address the challenges posed by worsening oil supply prospects, higher energy prices and rising emissions of greenhouse gases. In the WEO-2008 Reference Scenario, which assumes no new government policies, world primary energy demand grows by 1.6% per year on average between 2006 and 2030 - an increase of 45%. This is slower than projected last year, mainly due to the impact of the economic slowdown, prospects for higher energy prices and some new policy initiatives. Demand for oil rises from 85 million barrels per day now to 106 mb/d in 2030 - 10 mb/d less than projected last year. Demand for coal rises more than any other fuel in absolute terms, accounting for over a third of the increase in energy use. Modern renewables grow most rapidly, overtaking gas to become the second-largest source of electricity soon after 2010. China and India account for over half of incremental energy demand to 2030 while the Middle East emerges as a major new demand centre. The share of the world's energy consumed in cities grows from two-thirds to almost three-quarters in 2030. Almost all of the increase in fossil-energy production occurs in non-OECD countries. These trends call for energy-supply investment of $26.3 trillion to 2030, or over 1 trillion US dollars/year. Yet the credit squeeze could delay spending, potentially setting up a supply-crunch that could choke economic recovery. In addition to providing a comprehensive update of long-term energy projections to 2030, WEO-2008 takes a detailed look at the prospects for oil and gas production. Oil will remain the world's main source of energy for many years to come, even under the most optimistic of assumptions about the development of alternative technology. But the sources of oil, the cost of producing it and the prices that consumers will have to pay for it are extremely uncertain. It is far from certain that companies will be

  1. World Energy Outlook 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-07

    The 2008 report provides invaluable analysis to help policy makers around the world assess and address the challenges posed by worsening oil supply prospects, higher energy prices and rising emissions of greenhouse gases. In the WEO-2008 Reference Scenario, which assumes no new government policies, world primary energy demand grows by 1.6% per year on average between 2006 and 2030 - an increase of 45%. This is slower than projected last year, mainly due to the impact of the economic slowdown, prospects for higher energy prices and some new policy initiatives. Demand for oil rises from 85 million barrels per day now to 106 mb/d in 2030 - 10 mb/d less than projected last year. Demand for coal rises more than any other fuel in absolute terms, accounting for over a third of the increase in energy use. Modern renewables grow most rapidly, overtaking gas to become the second-largest source of electricity soon after 2010. China and India account for over half of incremental energy demand to 2030 while the Middle East emerges as a major new demand centre. The share of the world's energy consumed in cities grows from two-thirds to almost three-quarters in 2030. Almost all of the increase in fossil-energy production occurs in non-OECD countries. These trends call for energy-supply investment of $26.3 trillion to 2030, or over 1 trillion US dollars/year. Yet the credit squeeze could delay spending, potentially setting up a supply-crunch that could choke economic recovery. In addition to providing a comprehensive update of long-term energy projections to 2030, WEO-2008 takes a detailed look at the prospects for oil and gas production. Oil will remain the world's main source of energy for many years to come, even under the most optimistic of assumptions about the development of alternative technology. But the sources of oil, the cost of producing it and the prices that consumers will have to pay for it are extremely uncertain. It is far from certain that companies

  2. Future energy perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Christensen, J.M. [Risoe National Lab., Systems Analysis Dept., Roskilde (Denmark)

    2002-10-01

    Future energy perspectives: 1) The global energy consumption will continue to grow primarily in developing countries, their share of global energy consumption will grow from approx. 35% in 1990 to 60% in 2050. 2) Policy focus will be primarily on environmental concerns in the industrial countries and on energy for development and access to energy for the poor in developing countries. 3) With global climate concerns and the implementation of the Kyoto protocol, global environment issues will have increased prominence in energy sector priorities. 4) Fossil fuel resources are on a global level still abundant and prices are expected to be relatively low in the short to medium term. 5) Energy supply security has for geopolitical reasons become an increasing concern especially in the US and the EU. 6) Significant investments are required to ensure development of new clean energy technologies for introduction in the medium to long term. 7) Market reforms are being implemented in almost all regions of the world changing both the investment and policy regimes. 8) International studies (IPCC and WEC) have analysed several alternative energy scenarios Alternative policies and priorities can lead to a wide range of different energy futures. 9) WEC middle scenario B, from 1990 to 2050; predicts growth in GDP 3.5 times and primary energy consumption 2.2 times and CO{sub 2} 1.5 times. This scenario is expecting supply to be dominated by fossil fuel (80% in 1990 and still 65% in 2050), with high share of natural gas and nuclear with slow growth in renewable energy. 10) A more radical scenario (C1) is expecting renewable energy such as biomass, solar and wind to contribute 27% in 2050; declining oil and coal; increased use of natural gas and a minor contribution from nuclear. A development path like this require significant near-term investments in technology research and development. 11) The large increase in global energy demand in the next century will require large investments

  3. Future energy perspectives

    International Nuclear Information System (INIS)

    Halsnaes, K.; Christensen, J.M.

    2002-01-01

    Future energy perspectives: 1) The global energy consumption will continue to grow primarily in developing countries, their share of global energy consumption will grow from approx. 35% in 1990 to 60% in 2050. 2) Policy focus will be primarily on environmental concerns in the industrial countries and on energy for development and access to energy for the poor in developing countries. 3) With global climate concerns and the implementation of the Kyoto protocol, global environment issues will have increased prominence in energy sector priorities. 4) Fossil fuel resources are on a global level still abundant and prices are expected to be relatively low in the short to medium term. 5) Energy supply security has for geopolitical reasons become an increasing concern especially in the US and the EU. 6) Significant investments are required to ensure development of new clean energy technologies for introduction in the medium to long term. 7) Market reforms are being implemented in almost all regions of the world changing both the investment and policy regimes. 8) International studies (IPCC and WEC) have analysed several alternative energy scenarios Alternative policies and priorities can lead to a wide range of different energy futures. 9) WEC middle scenario B, from 1990 to 2050; predicts growth in GDP 3.5 times and primary energy consumption 2.2 times and CO 2 1.5 times. This scenario is expecting supply to be dominated by fossil fuel (80% in 1990 and still 65% in 2050), with high share of natural gas and nuclear with slow growth in renewable energy. 10) A more radical scenario (C1) is expecting renewable energy such as biomass, solar and wind to contribute 27% in 2050; declining oil and coal; increased use of natural gas and a minor contribution from nuclear. A development path like this require significant near-term investments in technology research and development. 11) The large increase in global energy demand in the next century will require large investments. The

  4. World Energy Outlook 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In a world where big differences in regional energy prices impact competitiveness, who are the potential winners and losers? Huge volumes of oil are needed to meet growing demand and offset declines in existing fields. Where will it all come from? What could trigger a rapid convergence in natural gas prices between Asia, Europe and North America, and how would it affect energy markets? Is the growth in renewable energy self-sustaining and is it sufficient to put us on track to meet global climate goals? How much progress is being made in phasing out fossil-fuel subsidies and expanding access to modern energy services to the world’s poor? The answers to these and many other questions are found in WEO-2013, which covers the prospects for all energy sources, regions and sectors to 2035. Oil is analysed in-depth: resources, production, demand, refining and international trade. Energy efficiency – a major factor in the global energy balance – is treated in much the same way as conventional fuels: Its prospects and contribution are presented in a dedicated chapter. And the report examines the outlook for Brazil's energy sector in detail and the implications for the global energy landscape.

  5. Energy content of world trade

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Gernot [Environmental Defense Fund, 257 Park Avenue South, New York, NY 10010 (United States)

    2010-12-15

    This paper constructs a comprehensive dataset of oil and total energy embedded in world trade of manufacturing goods for 73 countries from 1978 to 2000. Applying the data to debates on the dependency on foreign energy sources makes clear that achieving complete energy independence in the foreseeable future is unlikely to be feasible and may not be desirable. Applying it to the discussion of environmental Kuznets curves (EKCs) highlights an important distinction between production and consumption of energy. Richer countries use relatively less energy in their industrial production yet still consume relatively large amounts of energy indirectly. A further investigation largely excludes structural shifts of production in and out of the manufacturing sector as an explanation for the downward-sloping portion of the EKC. Country-level analyses add caveats but show tentative support for the cross-country conclusions. (author)

  6. Nuclear energy in the world

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter reports the nuclear energy beginning in the world including a chronology of the atomic bomb birth, the annual growth rate of electronuclear energy in the world, a comparison of energy production in thermoelectric bases

  7. World Energy Update

    International Nuclear Information System (INIS)

    Ferriter, JP.

    1996-01-01

    This document deals with the importance of fossil fuels in energy consumption. In the future, the increasing energy demand will still be met by fossil fuels, although the latter will be consumed mainly in newly industrializing nations and less in developed countries. This demand for fossil fuels must be met while satisfying the objectives of security of supply and environmental protection. As far as security is concerned, it requires the maintenance and improvement of emergency response capability. Energy policy options must be developed to sustain economic growth while minimising environmental degradation. Eventually, since industrializing countries are growing in importance, new forms of association should be explored between the IEA and major energy players. (TEC)

  8. The future of energy

    International Nuclear Information System (INIS)

    Rubbia, C.

    2000-01-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with

  9. The future of energy

    International Nuclear Information System (INIS)

    Rubbia, C.

    2001-01-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with

  10. The future of energy

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C. [ENEA, Rome (Italy)

    2000-07-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with.

  11. Nuclear energy facing the future

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In conjunction with the 25th anniversary of the establishment of the IAEA, the contribution that nuclear energy can make to future world energy requirements is discussed and nuclear power generation statistics examined with especial reference to data on capacity and outages. (U.K.)

  12. Future of energy

    International Nuclear Information System (INIS)

    Wright, John

    2005-01-01

    Australia has one of the most cost-effective energy conversion and delivery systems in the world. We are blessed with abundant, high-quality fossil fuels consisting mainly of coal, gas and (diminishing) oil resources. However, this past blessing is also a future curse as this fuel mix, coupled with limits to hydroelectric growth and no nuclear generation capacity, has endowed Australia with one of the highest greenhouse gas (GHG) emissions per unit of GDP in the developed world (currently 43 per cent above the International Energy Agency average). This prompted Claude Mandil, head of the IEA, to observe: 'Environmental sustainability represent Australia's greatest energy challenge, with high and growing carbon dioxide emissions.' The challenge for Australia is how to make the massive cuts in GHG emissions required to minimise our world trade risks (which will come at a cost, and put pressure on our energy cost-effectiveness) while maintaining an internationally competitive energy sector. This challenge is exacerbated by a healthy national growth rate which will be accompanied by at least a 50 per cent growth in energy demand by 2020, with a doubling by 2050. Electricity industry projections predict an investment in new generation capacity well in excess of $30 billion to keep up with demand over the next two decades. The stark reality is that if we con tinue to supply and use energy the way we do now, we may as well forget about stabilising our GHG emissions from the energy sector, let alone reducing them in the future. This urgent situation presents a huge opportunity for the introduction of new and improved low-emission energy conversion technologies and demand management systems that vastly reduce GHG emissions per unit of productivity - in fact, an opportunity to transform Australia's energy sector to levels of innovation, social acceptance and environmental performance that has no precedent in this country. We have little choice other than to make a start. Are

  13. The present and future place of nuclear power in the world and its role in relation to environmental risks and energy production

    International Nuclear Information System (INIS)

    Blix, H.

    1987-03-01

    This speech was delivered at a Seminar on Managing Environmental Risks, 1987. It states and enlarges on the three following propositions: First, that the world will need more energy - not least electric energy - energy savings and modified lifestyles will not be enough to compensate for new needs; Second, that our choice of energy mixes is one of the important factors deciding what future environmental risk and damage we shall live with; Third, that nuclear power offers us one of the most environmentally benign sources of energy generation. The paper points to coal and nuclear energy as the two principal realistic options for future large-scale production of electricity in the world. Questions regarding nuclear safety are discussed in particular the accident at Chernobyl. As regards the use of coal and gas it is concluded that it is imperative to tighten the emission restrictions for environmental reasons. It is also stressed that the use of nuclear power should not be examined in isolation. The Agency's nuclear safety standards are mentioned since they are being reviewed to see if some of them should be updated in the light of lessons from Chernobyl. 2 refs

  14. Energy for a sustainable world

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Reddy, A.K.N.; Williams, R.H.

    1988-01-01

    The book is devoted to the problem of energy planning for a sustainable world. The principal objective of the conventional approach to energy problem is economic growth and consequently the primary goal of conventional energy planning is to make energy supply expansion possible. This conventional approach is aggravating societal inequalities, environmental and security problems, and eroding self-reliance. On the other hand societal goals in energy planning should be equity, economic efficiency, environmental harmony, long-term viability, self-reliance and peace. These goals are relevant to both developing and industrialised countries. These goals should, therefore, be incorporated in a normative approach to energy planning. This can be done by focussing on end-uses of energy and the services which energy performs. In the first chapter, the relation of global energy problem with other major global problems such as North-South disparities, environmental degradation, climate change, population explosion and nuclear weapons is brought out. The energy strategies for industrialized countries and for developing countries are examined in chapters 2 and 3 respectively. The focus in both chapters is on end-uses of enegy, management of energy demand and exploitation of synergisms. In chapter 4, rough estimates of global energy demand are given and an illustrative energy scenario compatible with societal goals is described. In chapter 5, the policies necessary to implement end-use-oriented energy strategies are outlined. These policies relate to market mechanisms, administrative allocation of energy carriers, regulation and taxes. In the concluding chapter 6, the political feasibility of implementing the kind of energy future envisaged is discussed. The main finding of the authors is that it is possible to formulate energy strategies compatible with the solution of major global problems referred to in chapter 1 with about the same level of global energy use as today. (M.G.B.)

  15. Energy content of world trade

    International Nuclear Information System (INIS)

    Wagner, Gernot

    2010-01-01

    This paper constructs a comprehensive dataset of oil and total energy embedded in world trade of manufacturing goods for 73 countries from 1978 to 2000. Applying the data to debates on the dependency on foreign energy sources makes clear that achieving complete energy independence in the foreseeable future is unlikely to be feasible and may not be desirable. Applying it to the discussion of environmental Kuznets curves (EKCs) highlights an important distinction between production and consumption of energy. Richer countries use relatively less energy in their industrial production yet still consume relatively large amounts of energy indirectly. A further investigation largely excludes structural shifts of production in and out of the manufacturing sector as an explanation for the downward-sloping portion of the EKC. Country-level analyses add caveats but show tentative support for the cross-country conclusions. - Research highlights: →Energy dependency goes beyond direct imports; energy is also embedded in trade. →Production-based energy use follows an inverse U-shape, consumption-based energy use does not. →Richer countries import energy-intensive products and, thus, export pollution.

  16. World energy and the Venezuelan energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, F

    1985-01-01

    The purpose of this study of world energy and the Venezuelan energy sector is to provide a comprehensive survey of this basic element essential to life itself and to the progress of humankind. It begins with a brief historical review from the beginning of the twentieth century to the present day and then gives, most importantly, a forecast for the twenty-first century which takes account of past and present trends and looks towards the end of the present century and to the beginning of the future.

  17. Energy futures-2

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants

  18. Mobile energy sharing futures

    DEFF Research Database (Denmark)

    Worgan, Paul; Knibbe, Jarrod; Plasencia, Diego Martinez

    2016-01-01

    We foresee a future where energy in our mobile devices can be shared and redistributed to suit our current task needs. Many of us are beginning to carry multiple mobile devices and we seek to re-evaluate the traditional view of a mobile device as only accepting energy. In our vision, we can...... sharing futures....

  19. The alternative energy future

    International Nuclear Information System (INIS)

    Spitzley, H.

    1989-02-01

    The alternative energy future can be achieved only by making energy conservation programmes successful, and by fully committing to the utilization of soft energy sources. This is the perspective drawn by the author who in this book investigates the fundamentals of an ecologically and socially sound energy policy for the future. Looking at California, USA, where completely near concepts have been put to work in the energy sector since the mid-seventies, the author shows how it can be done, by rewarding energy conserving activities, using available energy sources more efficiently, developing the means for renewable energy exploitation wherever appropriate. A turn in energy policy is feasible also in West Germany, both in technical and political terms. Starting from the experience gained in the USA, the author presents an outline of options and potentials of a new energy strategy for the Federal Republic of Germany. (orig./HP) [de

  20. Crafting our energy future

    International Nuclear Information System (INIS)

    van Schagen, Frank

    2005-01-01

    unquestionably part of our future energy mix, trying to implement them on a large scale without a regulatory framework that puts a value on carbon emissions will be costly and the costs will fall on both industry and the community. We must, nevertheless, continue to pursue their development and introduction over the medium term. Clean coal offers a number of attractions. Apart from being cost-competitive with other forms of energy, it can also help solve a far larger problem for Australia: our growing dependence on imported transport fuels and the greenhouse emissions of our transport sector. Because it is a chemical - not a combustion - process, IGCC is capable of producing a range of products from coal: syngas, clean diesel fuel, hydrogen (the cleanest fuel of all), fertiliser and other industrial materials. In other words, coal-IGCC can provide motive power for the new ultra-efficient diesel engines, for hybrid cars or for vehicles powered by fuel cells. This is a big advantage over technologies that only produce electricity. The transport sector contributes 14 per cent of Australia's greenhouse emissions. If we are to overcome the greenhouse problem, we need to cut emissions from transport as well as from electricity generation. Clean coal can help achieve this. Also, Australians are already world leaders at mining, handling, analysing, processing, burning and exporting coal. We will need to grow those skills to pursue the clean coal route, but we already have a head-start in our skills base. The new Asia-Pacific greenhouse partnership between Australia, the US, Japan, China, India and South Korea offers us an opportunity to be among the world leaders in the clean energy game. We can be an exporter of clean energy, of energy-rich products (like aluminium or magnesium) and of clean technology and know-how. In other words, we can use our brains as well as our resources. This will not only sustain our own future but will also help our trading partners to maintain growth and to

  1. World energy prospects

    International Nuclear Information System (INIS)

    Ruttley, E.

    1983-01-01

    The purpose of this paper is to show that the real basis for energy projection has changed by little and that we should not be deluded by the present apparent glut of certain primary energy resources, nor by excess electricity generation into believing that the fundamentals of the energy problem have changed. Not the energy problem, but the economics have changed. Various aspects of energy, including energy demand, energy conversion, energy consumption, energy policy, as well as different sources of energy are discussed. The question is asked whether these resources would be able to supply in the energy demand

  2. Assessing the future of energy

    International Nuclear Information System (INIS)

    Moncomble, J.E.

    2015-01-01

    The World Energy Council has designed 2 tools named Jazz and Symphonie that allow the assessment of the potential impacts of energy choices on the future in terms of climate warming, investments, energy mix,... The Jazz roadmap aims at energy equity which means individual access to energy at a reasonable cost while the Symphonie roadmap focuses on environmental issues through appropriate practice and coordinated international policies. Both tools are integrated it means that they describe a whole world by most of its aspects: population, GDP per capita, number of cars by inhabitant, economic growth... A basic application of both tools shows that in 2050 the nuclear power will have increased (compared to today's level) but the share of nuclear power in the energy mix will have decreased for Jazz and increased for Symphonie. (A.C.)

  3. Socially responsible energy futures

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    After examining briefly the usual positions of nuclear critics and nuclear proponents, Dr. Starr says that the proponents (of whom he is one) have a broader case for nuclear power not thus far effectively advanced - a case based chiefly on a visible concern with social values and the future welfare of humanity. Such a broader case for nuclear power has always existed - a case based on motivations that initially spurred development of this energy resource over the past several decades, but one that has tended to be neglected in the public debate. A concern to avoid worldwide catastrophe is central to this broader case for nuclear power. The threat is perceived as resulting directly from the pending unavailability of petroleum and natural gas at a reasonable cost. This unavailability could lead to global tensions and political instabilities, economic crises, and, ultimately, to military conflicts based on need to obtain and control liquid-fuel resources. It is felt that past history and current events substantiate the threat inherent in the international struggle for raw materials. The broader - and more compelling - case for nuclear power lies in its potential for removing a major threat to the peace, stability, and welfare of the world that is inherent in the growing scarcity of petroleum and natural gas resources and in the limited geographical availability of coal. The catastrophe that could be avoided is at least as threatening as the one projected by those who oppose the use of nuclear power, and, Dr. Starr argues, more realistic in its potential for world-shattering impacts

  4. World energy perspectives

    International Nuclear Information System (INIS)

    2002-01-01

    Basic facts on energy reserves and main environmental effects of energy production are recalled. Physical constraints associated to the different energy production means are summarized, and present cost estimates are given. (author)

  5. Future of US Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cragg, C.; Nicola, S.; Kemfert, C.

    2009-01-15

    Barack Obama has promised to boost renewable energy sources and energy efficiency and to join the global effort to curb climate change. But he also looks upon domestic energy in terms of national security. These two priorities clash in important ways. One thing is certain: US energy policy is about to change drastically - and global energy relations along with them. In this section of the magazine two articles are dedicated to the future of energy in the USA. In between the articles is a column on the question if climate protection creates jobs.

  6. Future of US Energy

    International Nuclear Information System (INIS)

    Cragg, C.; Nicola, S.; Kemfert, C.

    2009-01-01

    Barack Obama has promised to boost renewable energy sources and energy efficiency and to join the global effort to curb climate change. But he also looks upon domestic energy in terms of national security. These two priorities clash in important ways. One thing is certain: US energy policy is about to change drastically - and global energy relations along with them. In this section of the magazine two articles are dedicated to the future of energy in the USA. In between the articles is a column on the question if climate protection creates jobs

  7. Energy for Tomorrow's world

    International Nuclear Information System (INIS)

    1993-01-01

    This report treats of principal challenges in the field of energy. It takes in account following factors: the increase of energy demand of a population in continual growth; efforts to promote technologies, economical in energy and protecting for environment; getting capital to invest in developing countries and a harmonious combination of energies to have a stable supply

  8. The energy in the world

    International Nuclear Information System (INIS)

    Lung, M.; Comby, B.

    2001-12-01

    In the future the energy demand will double and the electric power demand will treble. In this framework and after a presentation of the energy price and the energy needs, the authors propose actions domains. (A.L.B.)

  9. Rethinking the World's energy

    International Nuclear Information System (INIS)

    Silva, Wilson da

    2012-01-01

    Can we really shift the world completely away from fossil fuels in the next 20 years? In June 2011 at the Perimeter Institute for Theoretical Physics, Canada, forty physicists from around the world came together for the Equinox Summit: 2030. They discussed how to power modern civilisation this century without warming the planet to catastrophic levels, by using science. Five key solutions, dubbed 'exemplar pathways' emerged; large-scale storage, enhanced geothermal, advanced nuclear, off-grid electricity and smart urbanization.

  10. Energies of the future

    International Nuclear Information System (INIS)

    Matthoefer, H.

    1977-01-01

    This paper outlines the general principles of the energy policy of the Federal Government. The main points of emphasis are stressed, and the limits of energy supply for the ever-growing demand without new options are pointed out. For the future, a reasonable extension of nuclear power is required. Solar energy and energy conservation are no alternatives. The tendency of this papar points to the 2nd amendment of the energy programme of the Federal Government that will soon be published. (UA) 891 UA [de

  11. Toward sustainable energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Pasztor, J. (United Nations Environment Programme, Nairobi (Kenya))

    1990-01-01

    All energy systems have adverse as well as beneficial impacts on the environment. They vary in quality, quantity, in time and in space. Environmentally sensitive energy management tries to minimize the adverse impacts in an equitable manner between different groups in the most cost-effective ways. Many of the enviornmental impacts of energy continue to be externalized. Consequently, these energy systems which can externalize their impacts more easily are favoured, while others remain relatively expensive. The lack of full integration of environmental factors into energy policy and planning is the overriding problem to be resolved before a transition towards sustainable energy futures can take place. The most pressing problem in the developing countries relates to the unsustainable and inefficient use of biomass resources, while in the industrialized countries, the major energy-environment problems arise out of the continued intensive use of fossil fuel resources. Both of these resource issues have their role to play in climate change. Although there has been considerable improvement in pollution control in a number of situations, most of the adverse impacts will undoubtedly increase in the future. Population growth will lead to increased demand, and there will also be greater use of lower grade fuels. Climate change and the crisis in the biomass resource base in the developing countries are the most critical energy-environment issues to be resolved in the immediate future. In both cases, international cooperation is an essential requirement for successful resolution. 26 refs.

  12. Our future energy

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-15

    The Danish Government's plan ''Our Future Energy'' seeks to create green growth and help the country convert to 100 percent renewable energy use by 2050. The Danish Government in November 2011 presented its plan for how the country can secure its energy future. Titled ''Our Future Energy'', the strategy presents specific measures for fulfilling the Government's goal of stimulating green growth. The plan is based on the previous government's Energy Strategy 2050, but raises the bar higher. The long-term goal of the plan is to implement an energy and transport network that relies solely on renewable energy sources. By 2020, the initiatives will lead to extensive reductions in energy consumption, making it possible for half of the country's electricity consumption to be covered by wind power. Coal is to be phased out of Danish power plants by 2030. And by 2035, all electricity and heating will be generated using renewable sources. (Author)

  13. World governance for energy

    International Nuclear Information System (INIS)

    Kerebel, C.; Keppler, J.H.

    2009-01-01

    As energy is a strategic stake for industrial societies through supply security, economical competitiveness and environmental performance, it is well-founded and useful to consider the way that energy production and consumption are organized. This document introduces the notion of energy governance and its different interpretations, then analyses its stakes and challenges (petroleum, natural gas, investment needs), and discusses some of the debates already in progress, such as the UNO's negotiations on greenhouse gas emission reduction or the impact of the WTO talks on energy exchanges

  14. Energy independence versus world market

    International Nuclear Information System (INIS)

    Noel, P.

    2003-01-01

    The geo-policy is the unity of the rules and political actions coming from taking into account the problem of the national energy demands facing the world energy market. The aim of this paper is to show that these actions are confronted to two paradigms of public policy. One is the research of the energy policy, the other is the effort of building and safety of the world market. (A.L.B.)

  15. World energy outlook

    International Nuclear Information System (INIS)

    1996-01-01

    Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: - to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; -to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and - to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994) and the Czech Republic (21st December 1995). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention). (author)

  16. Key World Energy Statistics 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.

  17. Energies of the future

    International Nuclear Information System (INIS)

    2005-12-01

    This document takes stock on the researches concerning the energies of the future. The hydrogen and the fuel cells take the main part with also the new fuels. Some researches programs are detailed as the costs decrease of the hydrogen engines, the design of an hydrogen production reactor from ethanol or the conversion of 95% of ethanol in gaseous hydrogen. (A.L.B.)

  18. IEA World Energy Outlook 2010-A comment

    International Nuclear Information System (INIS)

    Khatib, Hisham

    2011-01-01

    The World Energy Outlook 2010 is a comprehensive energy report issued by the IEA. It is rewritten annually to reflect the world's changing energy and economy realities; it also introduces new issues relevant to the energy sector. This year it dealt with Caspian Energy, Energy Poverty and Energy Subsidies. WEO is controversial in few aspects; it still promotes a 450 Scenario which has become out of reach. This year however it introduced a more realistic New Policies Scenario which will need a lot of good will and investments to accomplish. Governmental policies are going to chart future energy sector performance; increasingly this is becoming decided by non-OECD countries. A more pragmatic future energy outlook is needed to reflect developing countries priorities for growth and utilization of local resources and how to accommodate this with abatement priorities through energy efficiency measures and technologies. - Research highlights: → We critically review the findings of the IEA - World Energy Outlook 2010. → The main '450 Scenario' is no longer realistic. → Some of the other indicators like the Energy Development Index are also critically reviewed and improvements proposed.

  19. World energy rivalry

    International Nuclear Information System (INIS)

    Lafargue, Francois

    2008-01-01

    The economic development of China and India changes significantly the energy balances, and these countries try to diversify their hydrocarbon supplies in order to reduce their dependence on the Middle-East. As the USA have the same objective, there is an actual competition between these three countries for the access to hydrocarbons. The author first proposes an overview of the evolution of US and Chinese oil policies, of their suppliers and of their consumption. He discusses the energy relationships these both countries have with Russia and India, and then the relationships the USA, China and India have with African countries, Latin American countries, and Central Asian countries. The author discusses the consequences of this competition between the three countries. They can be political (support to autocratic regimes), or concern other sectors like agriculture (high oil prices result in higher farm production costs, and the development of biofuels has consequences on crop prices). The author concludes that this rivalry may result in an economic instability and in political tensions

  20. Geothermal energy in the world energy scenario

    International Nuclear Information System (INIS)

    Barbier, E.

    1989-01-01

    This paper reports on the world energy consumption between 1960 and 1984 from primary energy sources (coal, natural gas, oil, hydropower, nuclear energy) and the same in percentages from 1925. This highlights the diminishing role of coal and the increased consumption of gas and oil. The latter has stabilized around 42% of the total after the drop in demand resulting from the oil crisis of 1973. The world energy consumption has then been divided into industrialized and developing countries. It appears that the latter, with a population equal to 68% of the total world population, consumed 23% of the world energy in 1982. Furthermore, the consumption figures show that the demand for domestic energy is much smaller in developing countries, and it is well-known that domestic energy consumed is one of the parameters used to assess standard of living. The total installed electric capacity throughout the world is then reported, divided between developed and developing countries, showing that the latter consumed 11% of all the electricity generated in the world in 1981. The world installed electric power of geothermal origin at the end of 1985 is shown, along with estimates for 1990. Geothermal energy represents 0.2% of the world electric power. This is obviously a small figure and indicates that geothermal energy plays a minor role on the world energy scene. However, if we distinguish between industrialized and developing countries, we can observe that, with their currently limited electrical consumption but good geothermal prospects, the developing countries could achieve quite a significant contribution to their total electric energy from that of geothermal origin, increasing at the moment from 3 to 19%. Finally, a comparison is made between electricity generating costs of different sources, showing that geothermal energy is competitive. A table illustrates the world evolution in installed geothermal capacity from 1950 to 1985. The non-electric uses of geothermal energy

  1. The Energy Future.

    Science.gov (United States)

    Newman, John; Bonino, Christopher A; Trainham, James A

    2018-06-07

    The foreseeable energy future will be driven by economics of known technologies and the desire to reduce CO 2 emissions to the atmosphere. Renewable energy options are compared with each other and with the use of fossil fuels with carbon capture and sequestration (CCS). Economic analysis is used to determine the best of several alternatives. One can disagree on the detailed costs, including externalities such as climate change and air and water pollution. But the differences in capital and operating costs between known technologies are so significant that one can draw clear conclusions. Results show that renewable energy cannot compete with fossil fuels on a cost basis alone because energy is intrinsic to the molecule, except for hydroelectricity. However, fossil fuels are implicated in climate change. Using renewable energy exclusively, including transportation and electricity needs, could reduce the standard of living in the United States by 43% to 62%, which would correspond to the level in about 1970. If capture and sequester of CO 2 are implemented, the cost of using fossil fuels will increase, but they beat renewable energy handily as an economic way to produce clean energy.

  2. Challenges for future energy usage

    International Nuclear Information System (INIS)

    Rebhan, E.

    2009-01-01

    In the last 2000 years the world's population and the worldwide total energy consumption have been continuously increasing, at a rate even greater than exponential. By now a situation has been reached in which energy resources are running short, which for a long time have been treated as though they were almost inexhaustible. The ongoing growth of the world's population and a growing hunger for energy in underdeveloped and emerging countries imply that the yearly overall energy consumption will continue to grow, by about 1.6 percent every year so that it would have doubled by 2050. This massive energy consumption has led to and is progressively leading to severe changes in our environment and is threatening a climatic state that, for the last 10 000 years, has been unusually benign. The coincidence of the shortage of conventional energy resources with the hazards of an impending climate change is a dangerous threat to the well-being of all, but it is also a challenging opportunity for improvements in our energy usage. On a global scale, conventional methods such as the burning of coal, gas and oil or the use of nuclear fission will still dominate for some time. In their case, the challenge consists in making them more efficient and environmentally benign, and using them only where and when it is unavoidable. Alternative energies must be expanded and economically improved. Among these, promising techniques such as solar thermal and geothermal energy production should be promoted from a shadow existence and further advanced. New technologies, for instance nuclear fusion or transmutation of radioactive nuclear waste, are also quite promising. Finally, a careful analysis of the national and global energy flow systems and intelligent energy management, with emphasis on efficiency, overall effectiveness and sustainability, will acquire increasing importance. Thereby, economic viability, political and legal issues as well as moral aspects such as fairness to disadvantaged

  3. China's energy future

    International Nuclear Information System (INIS)

    Horsnell, Paul

    1997-01-01

    The influence of China's growing energy demand on world oil markets is considered. Starting from a very low base of energy consumption per capita, China's potential for growth in oil demand is likely still to be subject to the extremely strong impact of a stop-go economic policy in which the availability of oil is used as a macroeconomic control variable to counter inflation. This has led to considerable monthly variations in oil import levels. While this situation continues, the buying pressure from China will tend to alternate between a trickle and a flood with consequent destabilizing impacts on the market. The markets potentially involved are those of Asia, the Middle East, West Africa and the Mediterranean with knock-on effects in the North Sea and Rotterdam. China is likely to constitute a major indirect force in these markets as a volatile source of demand at the margin. (UK)

  4. 1999 world energy consumption (ENERDATA)

    International Nuclear Information System (INIS)

    Martin, J.M.

    2000-01-01

    Here is given a compilation of detailed statistical tables on various aspects of world energy production and consumption over the years 1994 to 1999. The present tables indicate the production, trade and consumption of crude oil, liquefied natural gas, oil products, natural gas, coal, lignite, electric power; the energy balance for the year 1999; the total energy consumption in European Union, Western Europe, North America, Japan and Pacific, CIS and Central Europe, Latin America, Asia, Middle East and Africa for the years 1994 to 1999. The CO 2 emissions for these countries are also given. These data are an extraction of the energy statistics yearbook, ENERDATA, June 2000. They are commented by Mr J.M. Martin. According to ENERDATA, the 1999 world energy consumption stagnates. (O.M.)

  5. Energy future 2050

    Energy Technology Data Exchange (ETDEWEB)

    Syri, S; Kainiemi, L; Riikonen, V [Aalto Univ. School of Engineering, Espoo (Finland). Dept. of Energy Technology

    2011-07-01

    The track was organized by the Department of Energy Technology, School of Engineering, at Aalto University. Energy future 2050 -track introduced participants to the global long-term challenges of achieving a sustainable energy supply. According to the Intergovernmental Panel on Climate Change (IPCC), effective climate change mitigation would require the global greenhouse gas emissions to be reduced by 50-85% from the present level by 2050. For industrialized countries, this would probably mean a practically carbon-neutral economy and energy supply, as developing countries need more possibilities for growth and probably enter stricter emission reduction commitments with some delay. In the beginning of the workshop, students were introduced to global energy scenarios and the challenge of climate change mitigation. Students worked in three groups with the following topics: How to gain public acceptance of Carbon (dioxide) Capture and Storage (CCS) ? Personal emissions trading as a tool to achieve deep emission cuts, How to get rid of fossil fuel subsidies? Nordic cases are peat use in Finland and Sweden. (orig.)

  6. The United States and world energy markets

    International Nuclear Information System (INIS)

    Ramsay, W.C.

    1992-01-01

    The United States, dominating the world's energy markets as a producer and consumer, is sensitive to changes in this market and intends to influence the development of global energy policy. Supply will be increased by nations such as Venezuela, Indonesia and perhaps in the future a United Yemen and the Commonwealth of Independent States, moving to freer market economies which will allow investment opportunities previously inaccessible to foreign companies. Although world energy demand will grow, little of this will be in the US where, under the National Energy Strategy, comprehensive measures are being introduced to improve energy efficiency. The US energy security will be further improved by such measures as diversification of supply, larger domestic production and increasing interdependence between suppliers, traders and consumers. (author)

  7. World energy projection system: Model documentation

    Science.gov (United States)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  8. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  9. Securing India's energy future

    International Nuclear Information System (INIS)

    Raghuraman, V.

    2009-01-01

    India's development aspirations are challenged by energy security and climate change considerations. The integrated energy policy clearly deliberates the need to intensify all energy options with emphasis on maximizing indigenous coal production, harnessing hydropower, increasing adoption of renewables, intensifying hydrocarbon exploration and production and anchoring nuclear power development to meet the long-term requirements. The report also emphasizes the need to secure overseas hydrocarbon and coal assets. Subsequently the National Action Plan on climate change has underscored the need to wean away from fossil fuels, the ambitious National Solar Mission is a case in point. Ultimately securing India's energy future lies in clean coal, safe nuclear and innovative solar. Coal is the key energy option in the foreseeable future. Initiatives are needed to take lead role in clean coal technologies, in-situ coal gasification, tapping coal bed methane, coal to liquids and coal to gas technologies. There is need to intensify oil exploration by laying the road-map to open acreage to unlock the hydrocarbon potential. Pursue alternate routes based on shale, methane from marginal fields. Effectively to use oil diplomacy to secure and diversify sources of supply including trans-national pipelines and engage with friendly countries to augment strategic resources. Technologies to be accessed and developed with international co-operation and financial assistance. Public-Private Partnerships, in collaborative R and D projects need to be accelerated. Nuclear share of electricity generation capacity to be increased 6 to 7% of 63000 MW by 2031-32 and further to 25% (300000 MW) capacity by 2050 is to be realized by operationalizing the country's thorium programme. Nuclear renaissance has opened up opportunities for the Indian industry to meet not only India's requirements but also participate in the global nuclear commerce; India has the potential to emerge as a manufacturing hub

  10. The future of nuclear energy

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  11. World supply of nuclear energy

    International Nuclear Information System (INIS)

    Pecqueur, Michel.

    1981-01-01

    At the end of 1980 nuclear energy accounted for 9% of the world production of electricity stemming from 262 power stations, utilising mainly the process of water reactors and representing an installed capacity of 142 GWe. This production, apparently limited, already represents the equivalent of 150 million TOE. The 600 nuclear power stations in service, under construction or ordered represent a total of 450 GWe. In 1985, their production ought to cover 15% of the world requirements of electricity, which corresponds to a doubling of the share of nuclear energy within 6 years. During these recent years, the development of nuclear energy has undergone a significant slowing down and the number of orders for new nuclear power stations has dropped considerably in particular in the United States. Considering the time required and the available industrial capacity, the accumulated capacity which could be installed worlwide by 1990 could attain 530 GWe, equivalent to 650 MTOE covering 24% of the world production of electricity and 7% of the world consumption of primary energy. A determined effort for the end of this century could end up by the installation of 1200 GWe of capacity, generating 1.5 GTOE. The share of nuclear energy would then represent 35% of the production of electricity [fr

  12. Key World Energy Statistics 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997 and every year since then it has been more and more successful. Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.

  13. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    Since 1992 the World Energy Council (WEC) has been collaborating with ADEME (Agency for Environment and Energy Efficiency, France) on a joint project 'Energy Efficiency Policies and Indicators'. APERC (Asia Pacific Energy Research Centre) and OLADE (Latin American Energy Organisation) have also participated in the study, which has been monitoring and evaluating energy efficiency policies and their impacts around the world. WEC Member Committees have been providing data and information and ENERDATA (France) has provided technical assistance. This report, published in August 2004, presents and evaluates energy efficiency policies in 63 countries, with a specific focus on five policy measures, for which in-depth case studies were prepared by selected experts: - Minimum energy efficiency standards for household electrical appliances; - Innovative energy efficiency funds; - Voluntary/negotiated agreements on energy efficiency/ CO 2 ; - Local energy information centres; - Packages of measures. In particular, the report identifies the policy measures, which have proven to be the most effective, and can be recommended to countries which have recently embarked on the development and implementation of energy demand management policies. During the past ten years, the Kyoto Protocol and, more recently, emerging concerns about security of supply have raised, both the public and the political profile of energy efficiency. Almost all OECD countries and an increasing number of other countries are implementing energy efficiency policies adapted to their national circumstances. In addition to the market instruments (voluntary agreements, labels, information, etc.), regulatory measures are widely introduced where the market fails to give the right signals (buildings, appliances). In developing countries, energy efficiency is equally important, even if the drivers are different compared to industrialized countries. Reduction of greenhouse gas emissions and local pollution often have a

  14. World Energy Roadmap - A Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, A.A.; Alfehaid, M.A.

    2007-07-01

    The dialogue between energy consumers and producers that has been going on for the past fifteen years has revealed the basic parameters of the complex energy scene. While the consumers are concerned with security of supply, the producers have equal concern with access to markets. A common ground for the two groups is sustainable development because both aim at the continuous flow of oil to ensure continued economic growth. Both have valid concerns and share equal responsibility towards the world at large where competitive advantages available to both groups are employed to achieve global sustainable development. The key to achieving this goal in a world of competing and (to some extent) conflicting priorities is not only a sizable and irreversible investment by both groups, but also the desire to relax unwarranted regulations that have hindered progress in the energy industry. (auth)

  15. Maturity effects in energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos (Calgary Univ., AB (CA). Dept. of Economics)

    1992-04-01

    This paper examines the effects of maturity on future price volatility and trading volume for 129 energy futures contracts recently traded in the NYMEX. The results provide support for the maturity effect hypothesis, that is, energy futures prices to become more volatile and trading volume increases as futures contracts approach maturity. (author).

  16. Energy and the third world

    International Nuclear Information System (INIS)

    Johns, M.W.

    1980-01-01

    For the past 300 years Western society has been experiencing a growth in the availability of cheap energy, to the point where per capita energy consumption in 1977 was around 8000 watts. In less developed countries, on the other hand, per capita consumption has stayed between 400 and 500 watts, the same as in ancient Greece. With abundant energy comes more abundant life. The developed countires therefore have a moral obligation to help the rest of the world develop useable energy sources, including nuclear power. It has been said that nuclear power is unsuitable for developing countires; such an attitude is arrogant and condescending. It is up to the developing countries to choose what form of energy they will exploit. (LL)

  17. World energy assessment. Energy and the challenge of sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J. (ed.)

    2001-09-01

    The report, prepared by a team with Professor Goldemberg as chair, is a comprehensive volume on energy policy. It begins with a concise overview which has also been published as a 40-page pamphlet. Part I, energy and major global issues, places energy in the context of poverty, population, gender, urbanization, environment, health and security. Part II considers world energy resources and technology options, including renewable energy technologies and end-use efficiency. Part III asks 'Are sustainable futures possible?' and examines six scenarios of energy systems developed by IIASA and the World Energy Council, Part IV asks 'Where do we go from here' and Part V contains further information and reference material.

  18. World energy: a study in inequality

    International Nuclear Information System (INIS)

    Fells, I.

    1984-01-01

    The proceedings of the 12th World Energy Conference are discussed under the headings: developing countries' standpoint (energy and food famine, great increase in population); biogas perhaps the answer; coal - 'expensive misjudgement' (over-optimistic predictions of demand, but developing countries an important future coal market); price of stack gas clean-up; explaining the nuclear case (need to explain nuclear case to counter the anti-nuclear lobby); collaborative fast reactor development in Europe; nuclear energy in developing countries; fuel for transport - a neglected subject. (U.K.)

  19. World energy use - 2000 developments

    International Nuclear Information System (INIS)

    Stritar, A.

    2001-01-01

    The paper is presenting the analysis of World energy consumption in the year 2000. Special emphasis is given to the contribution of primary energy use to the global greenhouse effect. The analysis is based on data published by British Petroleum. It is also an update of my analysis published at the same conference one year ago. It can be seen that nuclear power is still the fastest growing primary energy sector in the World, that its share in primary energy mix is increasing and that it is even the fastest increasing share of all sources. Nuclear consumption in Europe is still increasing, but surprisingly the use of coal has increased too in the last year. Consumption is rapidly increasing in North America, while nuclear share there is still fastest growing. In Asia the rate of nuclear growths has slowed down in the last year, gas is now the fastest growing primary energy source. In countries of the former Soviet Union the nuclear energy is the only sector that has reached the level of production of ten years ago. It is worrying that in the countries of OECD the coal consumption is increasing again. Finally, it is also very worrying that the overall consumption of fossil fuels worldwide is increasing. What will happen with the greenhouse effect?(author)

  20. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  1. World energy data system (WENDS)

    International Nuclear Information System (INIS)

    Lareau, W.E.

    1979-01-01

    This paper presents a unique application of System 2000: the storage of preformatted textual information in a completely user oriented data base. The World Energy Data System is an information system which allows qualified users online access to non-classified management level data on worldwide energy technology and research and development activities. WENDS has been used to transmit up-to-date informaion on foreign energy technology and research and development programs to DOE program divisions, the Congress, and other U.S. government officials going abroad. The WENDS concept is first described. Then, the method of storage of the textual information is discussed followed by a discussion of the retrieval system which is thoroughly designed to serve the user

  2. U.S. energy outlook and future energy impacts

    Science.gov (United States)

    Hamburger, Randolph John

    2011-12-01

    Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that could force a repeat of the 2008 price spike of $145/bbl for crude oil. Emerging market growth coupled with inefficiencies, frictions, and speculation in the energy markets has the potential to create drastic economic shocks throughout the world. The 2007 economic crisis has pushed back investment in energy projects where a low-growth scenario in world GDP could create drastic price increases in world energy prices. Without a long-term energy supply plan, the U.S. is destined to see growth reduced and its trade imbalances continue to deteriorate with increasing energy costs. Analysis of the U.S. natural gas futures markets and the impact of financial speculation on natural gas market pricing determined that financial speculation adds to price movements in the energy markets, which could cause violent swings in energy prices.

  3. Scenarios of future energy intensities

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In this chapter, the authors present scenarios of potential change in energy intensities in the OECD countries and in the Soviet Union. These scenarios are meant to illustrate how intensities might evolve over the next 20 years given different conditions with respect to energy prices, energy-efficiency policies, and other key factors. Changes in intensity will also be affected by the rates of growth and stock turnover in each sector. They have not tried to forecast how activity levels and structure will evolve. However, the OECD scenarios assume a world in which GDP averages growth in the 2-3%/year range, with some differences among countries. For the Soviet Union, the degree and pace of intensity decline will be highly dependent on the success of the transition to a market economy; each scenario explicitly envisions a different degree of success. They have not constructed comparable scenarios for the developing countries. The scenarios presented in this chapter do not predict what will happen in the future. They believe, however, that they illustrate a plausible set of outcomes if energy prices, policies, programs, and other factors evolve as described in each case. With higher energy prices and vigorous policies and programs, intensities in the OECD countries in 2010 could be nearly 50% less on average than the level where trends seem to be point. In the former Soviet Union, a combination of rapid, successful economic reform and extra effort to improve energy efficiency might result in average intensity being nearly 40% less than in a slow reform case. And in the LDCs, a mixture of sound policies, programs, and energy pricing reform could also lead to intensities being far lower than they would be otherwise. 8 refs., 10 figs., 1 tab

  4. Energy for the future

    International Nuclear Information System (INIS)

    Hammond, A.L.; Metz, W.D.; Maygh, T.H.II.

    1975-01-01

    A review of the most important conceivable possibilities today of producing and converting energy is given. Furthermore, the energy transfer as well as possibilities for the economical use of energy are dealt with. A presentation of the research priorities characterizes the present state of the energy policy

  5. Energy the enabler, in our changing world

    International Nuclear Information System (INIS)

    Koomanoff, F.A.

    1992-01-01

    Historical industrial and social development made possible by energy technologies throughout the world serves as a paradigm for looking into the future. Energy usage is directly responsible for productivity. World population is increasing rapidly necessitating still more energy. The number of college students (a measure of new ideas and demands) has also increased rapidly. The U.S. has led in energy usage and the resultant growth in transportation and communication but changes are occurring. Urbanization - another effect of energy - shows the majority of high density populations now are in developing countries. Societies are changing from single nation states to interdependent loosely-knit larger socio-economic-environmental areas - Economic Communities. Successful technology must now engage producers, users, governments, as well as communities of interest. Political management systems must recognize these changes to permit the continued development of energy technologies. Looking toward the 21st Century and our continued development in a changing world necessitates recognition of the need for a systems orientation, interdisciplinary approach to find multi-answers to problems. All must participate in the decision making process - looking for solutions (rather than identification of problems) learning together and from each other - and most importantly, managing conflict before it manages us. (orig.)

  6. Nuclear energy education scenario around the world

    International Nuclear Information System (INIS)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane

    2013-01-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  7. Nuclear energy education scenario around the world

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane, E-mail: praroberta@uol.com.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  8. Brazil in the global energy world

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Frank D.; Vossoughi, Shapour [University of Kansas (KU), KS (United States)

    2012-07-01

    Brazil is the 10th largest energy consumer in the world and the third largest in the Western Hemisphere, behind the United States and Canada. Total primary energy consumption in Brazil has increased significantly in recent years; and over the past decade, Brazil has made great strides in increasing its total energy production, particularly oil. Brazil has the second-largest crude oil reserves in South America (behind Venezuela), and is one of the fastest growing oil producers in the world. According to United States Energy Information Administration (EIA), Brazil had 12.2 billion barrels of proven oil reserves in 2008. In 2007, Brazil's state owned Petroleo Brasileiro S.A. (PETROBRAS) announced that it had discovered an estimated 5-8 billion barrels of recoverable reserves (including both oil and natural gas) in the Tupi field, located in the Santos Basin. In 2008, subsequent discoveries were announced, to include Jupiter and Carioca (aka Sugar Loaf). Although PETROBRAS has yet to confirm the size of the discoveries, some industry analysts estimate the total extent of recoverable oil and natural gas reserves in the entire pre-salt layer have approached 40 to 80 billion barrels of oil equivalent. The reserves occur below a salt zone that is estimated to be 7,000 meters below the ocean surface. However, Brazil faces many challenges to recover the hydrocarbons to include technical, political, fiscal, and infrastructure hurdles. In spite of the challenges ahead, these discoveries transformed the nature and focus of Brazil's oil industry, economy, and future; and the potential impact of the pre-salt discoveries upon world oil markets is vast. The purpose of this paper is to discuss how the recent discoveries will affect Brazil's future and the impact it will have on the global energy world. (author)

  9. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Davies, N.A.

    1989-01-01

    The author discusses international progress in fusion research during the last three years. Much of the technical progress has been achieved through international collaboration in magnetic fusion research. This progress has stimulated political interest in a multinational effort, aimed at designing and possibly constructing the world's first experimental fusion reactor. This interest was reflected in recent summit-level discussions involving President Mitterand, General Secretary Gorbachev, and President Reagan. Most recently, the European Community (EC), Japan, the United States, and the U.S.S.R. have decided to begin serious preparation for taking the next step toward practical fusion energy. These parties have agreed to begin the design and supporting R and D for an International Thermonuclear Experimental Reactor (ITER) under the auspices of the International Atomic Energy Agency (IAEA). The initiation of this international program to prepare for a fusion test reactor is discussed

  10. Energy in India's Future: Insights

    International Nuclear Information System (INIS)

    Lesourne, J.; Ramsay, W.C.; Jaureguy-Naudin, Maite; Boillot, Jean-Joseph; Autheman, Nicolas; Ruet, Joel; Siddiqui, Zakaria; Zaleski, C. Pierre; Cruciani, Michel

    2009-01-01

    In the decades following India's independence from British rule in 1947, the West's image of India was summarized in three simple cliches: the world's largest democracy, an impoverished continent, and economic growth hampered by a fussy bureaucracy and the caste system, all in a context of a particular religion. These cliches are perhaps one of the reasons that the success of India's green revolution was recognized so late, a revolution that allowed the country to develop its agricultural sector and to feed its population. Since the 1990's, the easing of planning constraints have liberated the Indian economy and allowed it to embark on a more significant path of growth. New cliches have begun to replace the old: India will become a second China and, lagging by 10 to 20 years, will follow the same trajectory, with its development marked more by services and the use of renewable energy. However, these trends will not prevent primary energy demand from exploding. On the contrary, India faces difficult choices on how it increases clean, secure, affordable energy to all its citizens. Many of the choices are the same as found elsewhere, but on a scale matched only by China. The IFRI European Governance and Geopolitics of Energy Project intends this study to deepen public understanding of the magnitude of India's challenges. Various aspects of the serious energy problems are studied throughout this monograph. The authors have written freely on these matters without attempting to reconcile their different viewpoints. The first chapter, by Maite Jaureguy-Naudin and Jacques Lesourne, presents an overview of India's present and future energy system. The authors follow a prudent but realistic view of India's future. The second chapter, by Jean-Joseph Boillot, a French expert on India who has published several books and articles on this subject, and Nicolas Autheman, research fellow, describes in greater detail the specifics of India's economy and the actors who are now present

  11. World trends in wind energy

    International Nuclear Information System (INIS)

    Kane, Mamadou

    2016-01-01

    A set of articles proposes an overview of some recent, important and characteristic trends in the field of wind energy all over the world. China, with 30,8 GW of newly installed capacities in 2015 has just overtaken the European Union as far as the total installed power is concerned (145 GW against 142 GW). Job growth in the wind energy sector has reached 20 per cent in the USA in 2015. In this country, major companies held 52 per cent of the market in 2015 while a new American research plan has been approved for the development of offshore wind energy. In South Africa, a German company specialised in blade inspection and repair will provide the Obelisk group with its services on blades and towers for wind turbines. As far as the UK is concerned, the article outlines and comments the continuing decrease of production costs. In India, General Electric is about to launch a new technology of digital wind farm which is supposed to improve production by simulating availability and productivity over the farm lifetime while reducing costs. In Norway, a Norwegian company proposes a new battery-based storage solution, Batwind, for offshore wing energy

  12. Energy for the future

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    The very existence of modern civilization is dependent on the supply of energy which comes from sun, geothermal energy sources, hydroelectricity, tides, ocean winds and nuclear sources. Potential of these sources for long-term solution of man's energy problems is examined. Nuclear source of energy is discussed in detail and other sources are dealt in brief. Fission reactor system which is now generating power on commercial basis is described. The work being done on thermonuclear fusion reactor system to make it a practical system is surveyed. Research programs on laser and particle beam fusion are described. (M.G.B.)

  13. The future of energy use

    International Nuclear Information System (INIS)

    Lameiras, Fernando Soares

    1996-01-01

    Humanity will not face shortage of energy, but may face problems with its use, because every energy source has restrictions. Fossil fuels change the climate,nuclear energy increases the radioactivity and can be used to manufacture weapons, solar energy is very scattered, and geothermal energy is yet not well known. Delicate political issues emerge in this scenario. Due to the magnitude of energy used by many countries, isolated energy policies can disturb all planet. This may delay decisions and result in the lack of energy supply, hindering the development of many regions, or in conflict between countries. In this paper, some analyses and considerations are presented about the future of energy use, including some axiologic features. The role of nuclear energy is analysed, because, maybe, for the first time a energy source was target of axiologic issues that have affected the growth of its demand. These issues are yet to be internalized by other energy sources in the future. (author)

  14. Nuclear energy in Europe and the world

    International Nuclear Information System (INIS)

    Koenig, H.H.; Brown, Boveri und Cie A.G., Mannheim

    1982-01-01

    The author provides an account of opinions expressed at the 1982 Euratom Congress on the world's economical situation, public views on nuclear energy, the energy problem of the third world an on the development status of nuclear technology. (orig.) [de

  15. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalick, S.; Jansen, P.; Kessler, G.; Klumpp, P.

    1980-08-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  16. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.

    1980-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrides are coupled to the breeders. The results also indicate that from a resource standpaint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  17. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Jansen, P.; Kessler, G.; Klumpp, P.

    1981-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  18. Renewable Energies, Present & Future

    Institute of Scientific and Technical Information of China (English)

    X. S. Cai

    2005-01-01

    Fossil fuels are major cause of environmental destruction in pollutions. It has created much needed momentum for renewable energies, which are environmentally benign, generated locally, and can play a significant role in developing economy. As a sustainable energy sources, it can grow at a rapid pace to meet increasing demands for electricity in a cost-effective way.

  19. Energy for the future

    International Nuclear Information System (INIS)

    1982-01-01

    The history of electrical energy production in Ontario and the surge of energy needs; water, coal and nuclear power are discussed. A look at CRNL, NPD, Pickering A and Bruce B stations is presented. The fission process is explained as well

  20. The energy future to 2020

    International Nuclear Information System (INIS)

    Boy de la Tour, X.

    1999-01-01

    The energy future will continue for a long time to be dominated by fossil fuels, particularly oil and gas, which will still account for over half the energy supply in 202. Between now and then, the increasing share of the developing countries in he demand for energy will significantly alter energy geopolitics

  1. The Future of Energy

    International Nuclear Information System (INIS)

    Browne, John

    2006-01-01

    The idea of an energy crisis is fuelled by some legitimate concerns-security of supplies, climate change-and some groundless ones, be it the depletion of oil resources, the predatory nature of big oil companies, the link between energy prices and recession, or the role of the resources released by the producers. Many of these problems could be solved by a global market of increasing integration

  2. Energy in the Developing World

    Science.gov (United States)

    Gadgil, Ashok; Fridley, David; Zheng, Nina; Sosler, Andree; Kirchstetter, Thomas; Phadke, Amol

    2011-11-01

    The five billion persons at the lower economic levels are not only poor, but commonly use technologies that are less efficient and more polluting, wasting their money, hurting their health, polluting their cites, and increasing carbon dioxide in the atmosphere. Many first-world researchers, including the authors, are seeking to help these persons achieve a better life by collaborating on need-driven solutions to energy problems. Here we examine three specific examples of solutions to energy problems, and mitigation strategies in the developing world: (1) Energy Efficiency Standards and Labeling in China. Between 1990 and 2025, China will add 675 million new urban residents, all of whom expect housing, electricity, water, transportation, and other energy services. Policies and institutions must be rapidly set up to manage the anticipated rapid rise in household and commercial energy consumption. This process has progressed from legislating, and setting up oversight of minimum energy performance standards in 1989 (now on 30 products) to voluntary efficiency labels in 1999 (now on 40 products) and to mandatory energy labels in 2005 (now on 21 products). The savings from just the standards and labels in place by 2007 would result in cumulative savings of 1188 teraWatt—hours (TWh) between 2000-2020. By 2020, China would save 110 TWh/yr, or the equivalent of 12 gigaWatts (GW) of power operating continuously. (2) Fuel-efficient biomass cookstoves to reduce energy consumption and reduce pollution. Compared to traditional cooking methods in Darfur, the BDS cooks faster, reduces fuel requirement, and emits less carbon monoxide air pollution. A 2010 survey of 100 households showed that users reduced spending on fuelwood in North Darfur camps from 1/2 of household non-fuelwood budget to less than 1/4 of that budget. The survey showed that each 20 stove puts 330/year in the pocket of the women using the stove, worth 1600 over the stove-life of 5 years. Per capita income of

  3. World Energy Outlook 2011 Special Report: Energy for All

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    What impact will the return of high energy prices have on the fragile economic recovery? Will geopolitical unrest, price volatility and policy inaction defer investment in the oil sector and amplify risks to our energy security? What will renewed uncertainty surrounding the role of nuclear power mean for future energy and environmental trends? Is the gap between our climate actions and our climate goals becoming insurmountable? World Energy Outlook 2011 tackles these and other pressing questions. The latest data, policy developments, and the experience of another turbulent year are brought together to provide robust analysis and insight into global energy markets. WEO-2011 once again gives detailed energy demand and supply projections out to 2035, broken down by region, fuel, sector and scenario.

  4. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements about 75 percent of that required for ignition have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R and D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century. In addition, a network of international agreements have been concluded between these major parties and a number of smaller fusion programs, to cooperate on resolving a complete spectrum of fusion science and

  5. Nuclear energy - the future climate

    International Nuclear Information System (INIS)

    Ash, Eric Sir

    2000-01-01

    In June 1999, a report entitled Nuclear Energy-The Future Climate was published and was the result of a collaboration between the Royal Society and the Royal Academy of Engineering. The report was the work of a group of nine people, made up of scientists, engineers and an economist, whose purpose was to attempt a new and objective look at the total energy scene and specifically the future role of nuclear energy. This paper discusses the findings of that report. (author)

  6. Contemplating future energy options

    International Nuclear Information System (INIS)

    Pooley, D.

    2005-01-01

    All political parties in the UK accept that we should move away from our reliance on fossil fuels towards a much greater use of alternative energy technologies. Nuclear power is one of these but finds minimal support in the political spectrum. The article reviews the European Commission's Advisory Group on Energy submission to the EC's report entitled 'Key Tasks for European Energy R and D'. The 'strength and weaknesses' of the various 'alternative energy' systems (including nuclear power) are summarised and then the key R and D tasks which, if they are carried out successfully, should make the eight selected technologies significantly more attractive. However, the message here is clear enough: there are no easy options, only a range of very imperfect possibilities, despite what enthusiastic proponents of each may say. Nuclear fission is certainly one of the most attractive options available, but the industry needs to continue to strive to eliminate the possibility of significant off-site releases, whether caused by plant failure or by human error or intention, and to prove beyond reasonable doubt the safety of high-level radioactive waste disposal. (author)

  7. Status of geothermal energy amongst the world's energy sources

    International Nuclear Information System (INIS)

    Fridleifsson, I.B.

    2003-01-01

    The world primary energy consumption is about 400 EJ/year, mostly provided by fossil fuels (80%), The renewables collectively provide 14% of the primary energy, in the form of traditional biomass (10%), large (>10 MW) hydropower stations (2%), and the ''new renewables''(2%). Nuclear energy provides 6%. The World Energy Council expects the world primary energy consumption to have grown by 50-275% in 2050, depending on different scenarios. The renewable energy sources are expected to provide 20-40% of the primary energy in 2050 and 30-80% in 2100. The technical potential of the renewables is estimated at 7600 EJ/year, and thus certainly sufficiently large to meet future world energy requirements. Of the total electricity production from renewables of 2826 TWh in 1998, 92% came from hydropower, 5.5% from biomass, 1.6% from geothermal and 0.6% from wind. Solar electricity contributed 0.05% and tidal 0.02%. The electricity cost is 2-10 UScents/kWh for geothermal and hydro, 5-13 UScents/kWh for wind, 5-15 UScents/kWh for biomass, 25-125 UScents/kWh for solar photovoltaic and 12-18 UScents/kWh for solar thermal electricity. Biomass constitutes 93% of the total direct heat production from renewables, geothermal 5%, and solar heating 2%. Heat production from renewables is commercially competitive with conventional energy sources. Direct heat from biomass costs 1-5 UScents/kWh, geothermal 0.5-5 UScents/kWh, and solar heating 3-20 UScents/kWh. (author)

  8. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  9. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  10. Denmark`s energy futures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The stated aim of the document published by the Danish Ministry of Environment and Energy and the Danish Energy Agency is that it should form the basis for a broad public debate on the country`s future energy policy. The report has four main objectives: 1. To describe, with emphasis on the environment and the market, challenges that the energy sector will have to face in the future. 2. To illustrate the potentials for saving energy and for utilising energy sources and supply systems. 3. To present two scenarios of extreme developmental positions; the first where maximum effort is expended on increasing energy efficiency and the utilization of renewable energy and the second where no new initiative is taken and change occurs only when progress in available technology is exploited and 4. To raise a number of questions about our future way of living. Following the extensive summary, detailed information is given under the headings of: Challenges of the energy sector, Energy consumption and conservation, Energy consumption in the transport sector, Energy resources, Energy supply and production, Development scenario, and Elements of Strategy. The text is illustrated with maps, graphs and coloured photographs etc. (AB)

  11. Deciding the Future: Energy Policy Scenarios to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This WEC study is bottom-up regional view of our energy future focusing on policies to ensure energy sustainability. Experts from five regions and all energy domains worked together to produce four different scenarios to predict how differing levels of cooperation and government involvement would affect the energy future of the world.

  12. Nuclear energy, understand the future

    International Nuclear Information System (INIS)

    Bauquis, P.R.; Barre, B.

    2006-01-01

    In spite of its first use for military needs, the nuclear became a substitution energy, especially for the electric power production. For many scientist the nuclear seems to be the main part to the world energy supply in an economic growth context, provided the radioactive wastes problems is solved. From the military origins to the electric power generation, this book explains the technical economical and political aspects of the nuclear energy. (A.L.B.)

  13. World energy outlook 2007 -- China and India insights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-07

    World leaders have pledged to act to change the energy future. Some new policies are in place. But the trends in energy demand, imports, coal use and greenhouse gas emissions to 2030 in this year's World Energy Outlook are even worse than projected in WEO 2006. China and India are the emerging giants of the world economy. Their unprecedented pace of economic development will require ever more energy, but it will transform living standards for billions. There can be no question of asking them selectively to curb growth so as to solve problems which are global. So how is the transition to be achieved to a more secure, lower-carbon energy system? WEO 2007 provides the answers. With extensive statistics, projections in three scenarios, analysis and advice, it shows China, India and the rest of the world why we need to co-operate to change the energy future and how to do it.

  14. World energy outlook 2007 -- China and India insights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-07

    World leaders have pledged to act to change the energy future. Some new policies are in place. But the trends in energy demand, imports, coal use and greenhouse gas emissions to 2030 in this year's World Energy Outlook are even worse than projected in WEO 2006. China and India are the emerging giants of the world economy. Their unprecedented pace of economic development will require ever more energy, but it will transform living standards for billions. There can be no question of asking them selectively to curb growth so as to solve problems which are global. So how is the transition to be achieved to a more secure, lower-carbon energy system? WEO 2007 provides the answers. With extensive statistics, projections in three scenarios, analysis and advice, it shows China, India and the rest of the world why we need to co-operate to change the energy future and how to do it.

  15. The future of energy and climate

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  16. World energy needs and their impact on nuclear reactor development

    International Nuclear Information System (INIS)

    Foell, W.K.

    1977-01-01

    This presentation will place primary emphasis upon energy demand. The presentation will cover the following areas: energy reserves and resources; energy demand: past and future (mid-and long-term); industrialized regions of the world; developing countries: Mexico and Iran as examples; and potential impact on nuclear development

  17. Future of nuclear energy is promising

    International Nuclear Information System (INIS)

    Stritar, A.

    1999-01-01

    Paper is trying to clearly present the facts about World nuclear energy production in the past and in the future. The production has increased in last ten years for about 26% and will continue to grow. After next ten years we can expect between 12,5% and 25% higher production than this year. Therefore we, nuclear professionals, should not be pessimistic. We should strive not to use negative words in our communications between ourselves and especially to general public. Instead, we should proudly underline our achievements in the past and prospects for the future stressing all the benefits of this type of energy production.(author)

  18. The future of energy use

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.; O' Keefe, P.; Snape, C.

    1994-12-15

    An analysis of the use of different forms of energy and its environmental and social impacts. Giving an overview of the development of different forms of energy provision and patterns of supply and demand, this book shows how enduse applies to energy industries, how the environment and social costs of energy use have to be introduced into energy planning and accounting and the crucial role of efficiency. Case studies will include the transport and building sectors of industrial economies, the use of stoves and woodfuel and agroforestry planning in developing countries. It will then examine the different forms of energy - conventional, nuclear and renewable - concluding by setting out different energy futures and the policy requirements for sustainable futures. (author)

  19. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  20. The world's energy reserves. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I

    1982-01-01

    A review is given of the world's energy reserves and their production, prices for fuel today and in the future, expenditures for enterprises for the production of synthetic fuels (gasification of coal, liquefaction of coal, producing MeOH from coal). It is thought that the production of synthetic fuel in the 1980 to 1990 time frame will be profitable if the cost for the production of traditional fuels rises by at least 2 percent per year more rapidly than inflation and if the cost of natural gas approaches the cost of oil (converted for the produced energy). The cost of synthetic fuels from fuel shales is lower than from coal and fuel shales will apparently be the most probable raw material for the production of synthetic fuels even today.

  1. Future of energy managers groups

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, T.

    1979-07-01

    The objectives of the Energy Managers Groups, formed to provide a regular opportunity for industry and commerce to exchange views and experiences on energy conservation matters are discussed. Group procedure, liaison and cooperation, government support, and options for the future are discussed. (MCW)

  2. Energy and the future : Canada's role

    International Nuclear Information System (INIS)

    Raymont, M.

    2005-01-01

    The rise in global energy consumption is driven by economic growth, particularly in developing countries. It is expected that by 2030, the world population will consume 50 per cent more energy than today. This increase in global energy demand can no longer be met through the business as usual approach. Graphs depicting emerging energy demand in Asia were presented for nuclear energy, coal, natural gas, oil and renewables. The issue of how China can meet it's growing energy demand was discussed with reference to energy consumed by its industrial, agricultural, commercial, residential and transportation sectors. The author emphasized the uneven distribution of resources, where consuming areas do not coincide with producing areas. It is expected that traditional energy sources will still supply most of the world's energy need for the foreseeable future, but they will leave less of an environmental impact. The author suggested that renewable energy sources will also increase but will comprise less than 20 per cent of the world supply in 2050. The author also discussed the issue of greenhouse gas (GHG) emissions, Kyoto obligations and projections of what will happen with Kyoto post 2012. Canada's GHG record and recent environmental findings were also discussed with reference to Arctic ice coverage and the decline in average winter temperature. It was suggested that technology is the key to the energy shortage the environment and security. With declining conventional oil reserves, old nuclear technology and aging electric power technology, new technology must be used to address supply issues, distribution, interconversion, environmental impacts and risks. It was emphasized that since the energy sector is Canada's greatest economic driver, Canada should focus on energy technologies to build a more competitive energy sector. Huge export opportunities also exist for energy technologies. The role of industry and governments in achieving this goal was also discussed. figs

  3. Renewable energy shaping our future

    NARCIS (Netherlands)

    Zeiler, W.

    2010-01-01

    ISES, de International Solar Energy Society is een wereldwijde organisatie met ongeveer 4.000 Leden. Hoogtepunt van de ISES-activiteiten is steeds weer het tweejaarlijkse Solar World Congres waarin deskundigen hun ervaringen uitwisselen. Dit jaar werd de 29e conferentie in Johannesburg gehouden en

  4. Global perspectives on future nuclear energy utilisation

    International Nuclear Information System (INIS)

    Watts, G.L.

    1998-01-01

    This paper is presented as an overview of the nuclear sector from a global perspective. The aim is to show that nuclear power does have a future but that this will only be fully realised when the industry is able to demonstrate that it is part of the solution to the world's energy and environmental difficulties rather than part of the problem. The paper looks at the projected world energy demand as the population increases and countries develop, showing that nuclear power is required to meet this demand. In presenting nuclear power as a solution, the paper addresses the challenges facing us such as public confidence, environmental opposition, political issues and finance. It addresses the debate over reprocessing and direct disposal of irradiated nuclear fuel and looks at the competition from other fuels. The paper suggests how the industry might approach these issues such that nuclear power is indeed regarded globally as a solution to some of the worlds most pressing problems. (author)

  5. Nuclear energy, energy for the present and the future

    International Nuclear Information System (INIS)

    Arredondo S, C.

    2008-01-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  6. Geothermal energy in Croatia and the world until 2020

    International Nuclear Information System (INIS)

    Jelic, K.; Kevric, I.; Cubric, S.

    1996-01-01

    The use of geothermal energy in watering place, heating, the production of electric power, and for other purposes is increasing throughout the world. Over the past ten years, besides traditional production from natural thermal wells, this energy has also been produced in Croatia from geothermal wells discovered as a results of deep exploration drilling for hydrocarbons. This paper analyses the current state of geothermal energy both in the world and in Croatia, and makes projections about its immediate future. Energy potential data on the croatian part of the Panonian basin are given along with perspective locations for producing this ecologically acceptable and partially reusable energy. (author)

  7. Basic Science for a Secure Energy Future

    Science.gov (United States)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  8. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  9. The messages of the world energy outlook

    International Nuclear Information System (INIS)

    Cozzi, L.

    2001-01-01

    This article provides an overview of the International Energy Agency's 2000 edition of the World Energy Outlook, Global and regional energy demand, supply and CO 2 emissions to the year 2020 are discussed under the Reference Scenario assumption. Main challenges that actors of global energy scene will be asked to cope with in the next two decade are derived [it

  10. Energy for tomorrow's world. Acting now

    International Nuclear Information System (INIS)

    2000-01-01

    The statement 2000 of WEC (World Energy Council) is an extremely important document, committed to overcoming the energy shortage where it is found, pointing out, from one hand, the importance of quality and safety in the energy supply, and, from the other hand, the necessity of minimizing the impact of energy development on the environment and mankind health [it

  11. Toward an energy surety future.

    Energy Technology Data Exchange (ETDEWEB)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  12. World potential of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, B; Devin, B; Pharabod, F

    1991-07-01

    A comprehensive analysis, region by region, of the actually accessible renewable energies at a given horizon, is presented. The same methodology as the one employed to derive ``proven fossil energy reserves`` from ``energy resources`` is adopted, in which resources are defined by quantitative information on physical potential, while reserves take into account technical and economical accessibility. As renewable resources are fluctuating with time and are diluted in space and not readily transportable or storeable, it is necessary to consider the presence of populations or activities near enough to be able to profit by these diluted and volatile energies.

  13. Energy costs and society: the high price of future energy

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, A J

    1976-06-01

    Society will not be able to afford nonfossil fuel energy in the future without a major restructuring of industrial activity, involving a complete rethinking of the basis of our present social and economic establishment. This restructuring must be combined with the evident necessity of policies of population restriction and controls in the form of international allocation of the dwindling supply of raw materials, including fossil (and, in future, nonfossil) primary energy. Only by such means, and by adopting a very low-growth future, can some moderate degree of standard of living be expected to be perpetuated for at least a few generations in the industrialized countries, especially in the case of those that are major energy importers at present. This type of future will also be of more help to the third world than one involving the now impossible ideal of a spiraling energy growth rate. The society which, on an optimistic view, will emerge toward the end of the fossil fuel era, will be supplied with abundant, though efficiently applied, energy, and will survive with natural products and by economizing its recylced mineral resources. The approach to this goal will require political leadership, serious education of the public, and a real population policy, all on a world-wide scale. (Conclusions)

  14. Fusion: Energy for the future

    International Nuclear Information System (INIS)

    1991-05-01

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  15. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  16. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  17. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  18. Energy planning in the Arab world

    Energy Technology Data Exchange (ETDEWEB)

    Elshafei, A.N.

    1979-09-01

    Efficient use of energy is of interest to the energy-surplus regions as well as the energy-deficit regions. Similarly, concern about energy conservation is not confined to the industrially developed regions of the world. This article discusses energy planning from the Arab point of view. A framework for Arab energy modeling is first described. Then the application of a computer model - that of Mesarovic and Pestel - to Arab energy-planning needs is discussed and some of the results are presented. Finally, current priorities in Arab energy-modeling studies are outlined. The Appendix surveys some existing models which address regional and international energy problems.

  19. World Energy Prospects and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In recent years, demand for energy has surged. This unrelenting increase has helped fuel global economic growth but placed considerable pressure on suppliers buffeted by geopolitics, violent weather conditions and other potentially disruptive factors.

  20. Thorium Energy for the World

    CERN Document Server

    Revol, Jean-Pierre; Bourquin, Maurice; Kadi, Yacine; Lillestol, Egil; De Mestral, Jean-Christophe; Samec, Karel

    2016-01-01

    The Thorium Energy Conference (ThEC13) gathered some of the world’s leading experts on thorium technologies to review the possibility of destroying nuclear waste in the short term, and replacing the uranium fuel cycle in nuclear systems with the thorium fuel cycle in the long term. The latter would provide abundant, reliable and safe energy with no CO2 production, no air pollution, and minimal waste production. The participants, representatives of 30 countries, included Carlo Rubbia, Nobel Prize Laureate in physics and inventor of the Energy Amplifier; Jack Steinberger, Nobel Prize Laureate in physics; Hans Blix, former Director General of the International Atomic Energy Agency (IAEA); Rolf Heuer, Director General of CERN; Pascal Couchepin, former President of the Swiss Confederation; and Claude Haegi, President of the FEDRE, to name just a few. The ThEC13 proceedings are a source of reference on the use of thorium for energy generation. They offer detailed technical reviews of the status of thorium energy ...

  1. Nuclear energy in our future

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1988-01-01

    Nuclear energy for electricity generation will extend its market portion in Europe in the coming decades because: 1) its economic and/or environment-relevant advantages compared with the fossil energy sources are so explicit that the latter will no longer be competitive; 2) the improvements of the system engineering, which are presently being implemented and are to be expected in the future, will enhance the safety facilities to the extent that accident risk will cease to be a decisive factor; 3) energy-saving effects or the use of solar energy will not provide an appropriate large scale alternative for coal and/or nuclear energy; 4) the problems of radioactive waste disposal will be definitely solved within the foreseeable future. Considering all the technological systems available the light water reactor will continue to dominate. The change to the breeder reactor is not yet under discussion because of the medium-term guaranteed uranium supply. The use of nuclear technology in the heating market will depend for the moment on the availability and cost of oil and gas development. In principle nuclear energy can play an important role also in this sector

  2. Energy and development in the Third World

    International Nuclear Information System (INIS)

    Buchanan, J.

    1982-08-01

    The subject is discussed in chapters, entitled: introduction (general statement of Third World problems); the other energy crisis - firewood and dung (erosion of traditional sources); Third World energy policies (concentration on commercial sources; fossil fuels; a grassroots approach); why not nukes (arguments against use of nuclear power, on grounds of economics, politics, unreliability, radiation hazards, potential earthquake hazards, radioactive waste management, proliferation of nuclear weapons); appropriate energy for what sort of development (renewable energy sources; energy conservation); problems of economics, politics and the technological fix (the Reagan solution; the Brandt report: the transnational corporations; 'North' and 'South'; production for need); a way out of the crisis. (U.K.)

  3. French participation in the world energy council

    International Nuclear Information System (INIS)

    Carouge, Ch.; Roussely, F.; Francony, M.; Ailleret, F.; Bosseboeuf, D.; Moisan, F.; Villaron, Th.

    1999-01-01

    The Revue de l'Energie is presenting the most influential French interventions at the 17. Congress of the World Energy Council held in September 1998 in Houston, (USA). These represent only part of French participation in the congress since a total of 16 individuals from France took part in the various sessions. Their presentations cover very varied topics and are one of the things that testify to the interest that our energy industries have in the works and operations of the WEC. Some other figures also bear witness to this interest: 184 French congress members, which is one of the largest delegations after that of the United States, the host country of the congress; 11 technical presentation, covering a wide range of subjects: from the nuclear reactor of the future to the use of bagasse (cane trash) for the production of electricity, from the underground storage of natural gas to the production of extra-heavy crude petroleum. The technical exhibition associated to the Congress was a great success and there again the French presence was able to make its mark: five exhibitors were gathered in the France of 600 m 2 , the most sizeable non-American national area.But French participation in the work of the WEC is not limited to congresses. The French Energy Council [Conseil francais de l'Energie] is careful to ensure its presence both in the formal proceedings of the WEC and within the studies undertaken under its three-year programme. This active French presence is also essential in order to defend the official English-French bilingualism of the World Energy Council. In spite of the good will of the organizers and the support of the general secretary's office in London, the Houston Congress showed how difficult it was to maintain the use of the French language on English-speaking territory. This is a difficult task, one that has to be undertaken anew each time, but one that France and other French-speaking nations have decided to pursue to the end. (authors)

  4. Nuclear energy and its future

    International Nuclear Information System (INIS)

    Cook, D.J.

    1990-01-01

    The status of nuclear power in the world and its future are briefly discussed. It is shown that nuclear power capacity is increasing in the Asian and Pacific rim region and that new reactor designs, with the increased emphasis on safety and standardisation, could make nuclear power a more acceptable option in the future. The author also outlines the Australian Nuclear Science and Technology Organization wide range of skills and facilities which are bringing the benefits of nuclear science and technology to Australia. These include: the development of Synroc as an advanced second generation waste management; production of radiotracers for biomedical researches and environmental problems; application of gamma irradiation in industry and of ion beam analysis in biology, archaeology, semi-conductor and environmental science. 2 tabs

  5. World energy tendencies: social and environmental implications

    International Nuclear Information System (INIS)

    Pichs, Ramon

    2007-01-01

    The current world energy situation is the result of the combination of diverse economic, political, technological, social and environmental tendencies that conform a crisis panorama for the high price of the hydrocarbons and especially in the petroleum. Under the current conditions the necessity of a global energy restructuring is imposed that changes the current patterns of generation and energy consumption significantly

  6. The future of energy use

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.; O`Keefe, P.; Snape, C. [University of Northumbria, Newcastle upon Tyne (United Kingdom). Photovoltaics Application Centre

    1995-12-31

    The book gives a comprehensive analysis of the history and use of different forms of energy, their environmental and social impacts and, in particular, their economic costs and the future of their supply. It examines all the major forms of energy - conventional fuels such as oil and coal, nuclear power and alternative and renewable sources - and includes case studies on the transport and building sectors in the North and agroforestry and fuelwood problems in the South. The authors discuss the development of energy provision and patterns of supply and demand, and examine the use of end-use analyses. They look at the ways in which social and environmental costs should be introduced into energy planning and accounting, and emphasise the crucial role of efficiency to limit over-consumption. 91 refs., 100 figs., 62 tabs.

  7. Nuclear energy, future of ecology?

    International Nuclear Information System (INIS)

    Comby, B.

    1995-01-01

    This work can surprise; because it is said that nuclear energy is the only one that will allow to satisfy the energy needs of the planet by reducing the pollution. It gives answers on: Chernobyl accident, the existence of natural radioactivity, the comparison between natural radioactivity and medical, military and industrial irradiation, the pollution of our environment, the petroleum whom reserves are going to decrease, the advantages of the 'clever' nuclear and the disadvantages of the 'dustbin' nuclear, why some of ecologists are favourable to the nuclear, the effects of radiations on health, the foods irradiation, the wastes processing and the future of our planet. (N.C.)

  8. The future of nuclear energy

    International Nuclear Information System (INIS)

    Cockcroft, J.; Bhabha, H.J.; Goldschmidt, B.

    1959-01-01

    A public discussion on the future of nuclear energy was organized by the Director General of the International Atomic Energy Agency in Vienna on 22 September 1959 in conjunction with the third regular session of the Agency's General Conference. The three eminent scientists who participated in the discussion - Dr. Homi J. Bhabha of India, Sir John Cockcroft of the United Kingdom and Dr. Bertrand Goldschmidt of France - are members of the Agency's Scientific Advisory Committee. The Secretary of the Committee, Dr. Henry Seligman, Deputy Director General of IAEA, acted as moderator. The meeting was presided over by the Director General, Mr. Sterling Cole. The discussion began with opening statements by the three scientists surveying recent developments, current trends and future possibilities. After these general statements, they answered a number of questions from the audience. A record of the discussion, including the opening statements as well as the questions and answers, is contained in this special number of the IAEA Bulletin. (author)

  9. Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world

    NARCIS (Netherlands)

    Liberloo, M.; Calfapietra, C.; Lukac, M.; Godbold, D.; Luos, Z.B.; Polles, A.; Hoosbeek, M.R.; Kull, O.; Marek, M.; Rianes, Chr.; Rubino, M.; Taylors, G.; Scarascia-Mugnozza, G.; Ceulemans, R.

    2006-01-01

    The quickly rising atmospheric carbon dioxide (CO2)-levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar

  10. Coal, energy of the future

    International Nuclear Information System (INIS)

    Lepetit, V.; Guezel, J.Ch.

    2006-01-01

    Coal is no longer considered as a 'has been' energy source. The production and demand of coal is growing up everywhere in the world because it has some strategic and technological advantages with respect to other energy sources: cheap, abundant, available everywhere over the world, in particular in countries with no geopolitical problems, and it is independent of supplying infrastructures (pipelines, terminals). Its main drawback is its polluting impact (dusts, nitrogen and sulfur oxides, mercury and CO 2 ). The challenge is to develop clean and high efficiency coal technologies like supercritical steam power plants or combined cycle coal gasification plants with a 50% efficiency, and CO 2 capture and sequestration techniques (post-combustion, oxy-combustion, chemical loop, integrated gasification gas combined cycle (pre-combustion)). Germany, who will abandon nuclear energy by 2021, is massively investing in the construction of high efficiency coal- and lignite-fired power plants with pollution control systems (denitrification and desulfurization processes, dust precipitators). (J.S.)

  11. IBM PC enhances the world's future

    Science.gov (United States)

    Cox, Jozelle

    1988-01-01

    Although the purpose of this research is to illustrate the importance of computers to the public, particularly the IBM PC, present examinations will include computers developed before the IBM PC was brought into use. IBM, as well as other computing facilities, began serving the public years ago, and is continuing to find ways to enhance the existence of man. With new developments in supercomputers like the Cray-2, and the recent advances in artificial intelligence programming, the human race is gaining knowledge at a rapid pace. All have benefited from the development of computers in the world; not only have they brought new assets to life, but have made life more and more of a challenge everyday.

  12. World offshore energy loss statistics

    International Nuclear Information System (INIS)

    Kaiser, Mark J.

    2007-01-01

    Offshore operations present a unique set of environmental conditions and adverse exposure not observed in a land environment taking place in a confined space in a hostile environment under the constant danger of catastrophe and loss. It is possible to engineer some risks to a very low threshold of probability, but losses and unforeseen events can never be entirely eliminated because of cost considerations, the human factor, and environmental uncertainty. Risk events occur infrequently but have the potential of generating large losses, as evident by the 2005 hurricane season in the Gulf of Mexico, which was the most destructive and costliest natural disaster in the history of offshore production. The purpose of this paper is to provide a statistical assessment of energy losses in offshore basins using the Willis Energy Loss database. A description of the loss categories and causes of property damage are provided, followed by a statistical assessment of damage and loss broken out by region, cause, and loss category for the time horizon 1970-2004. The impact of the 2004-2005 hurricane season in the Gulf of Mexico is summarized

  13. Development and supply of the world energy requirement

    International Nuclear Information System (INIS)

    Schulz, E.

    1981-01-01

    Recently published research reveals that the world energy requirement can and must grow more slowly than previously anticipated. In order to supply developing nations with the energy necessary for the expansion of their economies, energy saving and oil substitution assume greater significance in the industrialised countries such as the Federal Republic. Future fulfillment of the world energy requirement will be characterised by escalating costs for supply, especially for the current main energy carrier oil, on the one hand and by increased use of coal and nuclear energy as well unconventional fossils such as regenerative energies on the other. Nuclear energy and thus the electricity economy must play a key function in the future energy supply of industrial nations such as Federal Germany. Nuclear energy enables, both directly and indirectly, the substitution of oil in the heat market, supplies the process heat required for coal production and, due to the ease of storage or uranium, provides a hedge against fluctuations on the world energy market. (orig.) [de

  14. The world's nuclear future - built on material success

    Science.gov (United States)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  15. Energy data book. France in the world

    International Nuclear Information System (INIS)

    Catz, H.

    1999-01-01

    This memento about energy provides a series of tables with numerical data relative to energy resources and uses in France, in the European Union and in the rest of the world: energy consumption and demand (primary energy demand, consumption, and efficiency per region and per source; forecasting, CO 2 emissions, energy independence, supplies, uses and imports, demand scenarios, energy savings..), power production (production per geopolitical region, in OECD countries and in France; peak load demand, power consumption and generation in France; hydro-power and thermal plants in France; total capacity, forecasts and exports), nuclear power (production, forecasting, reactors population, characteristics of French PWRs, uranium needs and fuel cycle), energy resources (renewable energies, fossil fuels and uranium reserves and production), economic data (gross national product, economic and energy indicators, prices and cost estimations), energy units and conversion factors (counting, calorific value of coals, production costs, energy units). (J.S.)

  16. Key world energy statistics. 2004 edition

    International Nuclear Information System (INIS)

    2004-01-01

    Key World Energy Statistics from the IEA contains timely, clearly-presented data on the supply, transformation and consumption of all major energy sources. The IEA energy balances and statistics databases on CD-Rom provide annual historical energy data extracted from four IEA/OECD data bases: energy statistics and energy balances, which contain data for most of the OECD countries for the years 1960 to 2002 and energy statistics and balances for more than 100 non-OECD countries for the years 1971 to 2002. The CDs and/or hard-copies and PDFs can be purchased individually: Energy Balances of OECD Countries 2004; Energy Statistics of OECD Countries 2004; Energy Balances of Non OECD Countries 2004; Energy Statistics of Non-OECD Countries 2004

  17. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  18. The world energy consumption in 2005

    International Nuclear Information System (INIS)

    Lapillonne, B.

    2006-01-01

    Based on Enerdata 2005 data, this analysis presents the situation of the world energy consumption in 2005, the electric power consumption per region and production per source, the consumption increase for each energy source and the petroleum and gas consumption increase. (A.L.B.)

  19. Energy and the New World Order

    International Nuclear Information System (INIS)

    Sander, M.

    1997-01-01

    Two major trends determine energy demand and supply; population growth and economic growth. This type of analysis very often forgets political and military events, both global and regional. This paper presents the major events influencing energy during the cold war and after the break-up of the USSR in so called ''New World Order'' which have politically and military determined energy supply and demand or, better to say, its price. The main accent is on oil and such events as the OPEC oil embargo in 1973 and the Gulf War in 1991. The relationship between oil and the other forms of primary energy production (coal, nuclear energy) as well as with energy in traffic and transportation are presented. All options in the period that we like to designate with the expression ''New World Order'' one discussed. (author)

  20. To understand the new world of energy - Energy saving and energy efficiency: the world of energy 2.0

    International Nuclear Information System (INIS)

    Maestroni, Myriam; Chevalier, J.M.; Derdevet, Michel

    2013-01-01

    This bibliographical note contains the table of contents and a brief presentation of a book which proposes a general overview of the world of modern energy, focuses on the main associated political and climatic stakes and challenges. It also addresses the crucial issue of energy efficiency and energy savings which are the pillars of the current energy transition. The chapters address the world energy stakes and challenges, the emergence of a new energetic paradigm, the issues of energy efficiency and energy savings, the main sources of energy savings to be exploited and valorised, the situation in Europe and in the World regarding energy efficiency, the relationship between energy transition and local territories, the necessary continuous innovation

  1. Energy policy in a changing world

    International Nuclear Information System (INIS)

    Priddle, R.

    1997-01-01

    The outlook of world energy markets was described with a focus on the prospects for oil and gas supply and reserves. Implications of this outlook for energy policy-making were discussed. The three major projections of world primary energy demand were described. According to these projections world primary energy demand will grow steadily. Demand is expected to rise 46 per cent between now and 2010. Fossil-based fuels will account for almost 90 per cent of total primary energy demand in 2010 which is about the same share as today. A structural shift in the shares of different regions in world commercial energy demand is likely to occur, i.e. the OECD share of world energy demand will fall in favour of that of the developing regions. It was also projected that oil will remain the dominant fuel with a share of about 40 per cent in 2010. World gas demand was also projected to grow at an average annual rate of 3 per cent over the outlook period. The rising fossil fuel consumption implies rising greenhouse gas emissions. It was noted that by 2010, without active policy intervention to change the course of energy demand, the world energy-related carbon emissions could be almost 50 per cent greater than 1990 levels. It was suggested that the main role for governments should be to establish a framework to enable competitive energy markets to function efficiently while ensuring that energy security and environmental concerns are addressed. Emergency response measures should be maintained in relation to oil, and the implications of growing dependence on imports of oil and gas from remote and potentially insecure countries should be monitored. The role of government should also include regulation of the environmental consequences of energy supply and use at the local, regional and global level. Government should also regulate the natural monopoly elements of the grid-based industries. There is also a role for government in continuing to encourage research and development

  2. World energy prospects: to where trends lead?

    International Nuclear Information System (INIS)

    2005-01-01

    This conference was organized after the publication by the International Energy Agency (IEA) of the 2004 World Energy Outlook (WEO) study. The WEO study presented two projection scenarios, a tendentious one and an alternate one, but both unacceptable. Two presentations were given, followed by a debate with the participants. This document gathers the transparencies of the presentations and a summary of the presentations and of the debate. The first presentation by Fatih Birol, Chief Economist at the IEA, is entitled 'World Energy Outlook 2004'. It describes the two scenarios: Global Energy Trends and Strategic Challenges, Oil Markets, European Union Energy Outlook, An Alternative Policy Scenario, Summary and Conclusions. The conclusions are as follows: - On current policies, world energy needs will be almost 60% higher in 2030 than now; - Energy resources are more than adequate to meet demand until 2030 and well beyond; - But projected market trends raise serious concerns: increased vulnerability to supply disruptions, rising CO 2 emissions, huge energy-investment needs, persistent energy poverty; - More vigorous policies would save energy and reduce emissions significantly; - But a truly sustainable energy system will call for faster technology development and deployment; - Urgent and decisive government action is needed. The second presentation by Jean-Marie Chevalier (Paris 9 Dauphine Univ.) is entitled 'IEA Outlook 2004: some important innovations'. It analyzes the following points: the sustainability of demand projections, the role of nuclear energy and its possible re-launching, the key-role of energy efficiency, the access to energy of deprived people; the new articulation of powers: what are the remnants of a national energy policy, what is the European vision of energy: diversification, security of supplies, energy efficiency, abatement of greenhouse gas emissions; the need for a worldwide regulation. It presents also: the world energy environment: the

  3. Sustainable uranium energy - an optional future

    International Nuclear Information System (INIS)

    Meneley, D.

    2015-01-01

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more reasonable to expect

  4. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  5. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards

  6. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards the environment, energy and the use of resources

  7. Energy for the world economy of tomorrow. Energie fuer die Weltwirtschaft von morgen

    Energy Technology Data Exchange (ETDEWEB)

    Bennewitz, J

    1984-01-01

    Will the world's energy resources suffice to secure the world economy's supply in the face of the continuing growth of the world population. This question is answered. The development of the world population shows patterns which make possible an estimation of the future populations of industrial and developing countries. The rise of the primary energy carriers is described. An analysis of the reserves and resources concludes that, if energy policies remain unchanged, reserves will be exhausted by the middle of the next century. In this connection, the introduction of atomic energy according to present plans and the possibilities of energy sources which may be re-generated are considered. The availability of liquid energy carriers based on petroleum will probably become a decisive bottleneck for the world's energy supply before the end of this century. The danger of coming to an energy disaster in our life-time can be averted. Possibilities for securing the energy supply in the future are proposed. In this connection, the positive effects on unemployment are spelled out. The idea of 'World Energy Management' is discussed.

  8. World energy resources. International Geohydroscience and Energy Research Institute

    International Nuclear Information System (INIS)

    Brown, C.E.

    2002-01-01

    World Energy Resources is an explanatory energy survey of the countries and major regions of the world, their geographic and economic settings, and significant inter-relationships. This book attempts to combine several interacting energy themes that encompass a historical development, energy issues and forecasts, economic geography, environmental programs, and world energy use. The main thrust of this book -World Energy Resources - is based on principles of energy science, applied geology, geophysics, and other environmental sciences as they relate to the exploration, exploitation, and production of resources in this country and throughout the world. This work is an analysis of the United States (USA) and world oil, gas, coal, and alternative energy resources and their associated issues, forecasts, and related policy. This book could not have been attempted without a broad geological exposure and international geographic awareness. Much information is scattered among federal and state agencies, schools, and other institutions, and this book has attempted to combine some of the vast information base. This attempt can only skim the information surface at best, but its regional and topical coverage is broad in scope. Part I introduces conventional energy resources and their historical developments, and includes chapters 1 to 7. The basic concepts and supporting facts on energy sources are presented here for the general education of energy analysts, policy makers, and scientists that desire a brief review of advanced technologies and history. Part II includes chapters 8 to 14 and provides discussions of the renewable energy sources and the available alternative energy sources and technologies to oil, gas, coal, and nuclear sources. Part III includes chapters 15 to 20 and provides an analysis of United States energy markets and forecasts through the first quarter of the 21st century, while including some world energy data. Widely-used energy forecasting models are

  9. (Nuclear) energy policy in future

    International Nuclear Information System (INIS)

    1982-01-01

    With this report the German Federal Diet submits the final results of the opinion-forming and decision-making process concerning the recommendations made by the investigation committee 'Future Nuclear Energy Policy' in June 1980. By means of this report it is intended to point out to an interested public the difficult and time-consuming process of parliamentary decision-making. This report is also to be seen as the final opinion delivered on the recommendations made by the investigation committee. The recommendations were to continue to pursue the peaceful use of nuclear energy, the necessity and technical justifiability of which had basically been approved by all parliamentary groups. In view of the import of the subject and in recognition of the work done by the investigation committee, the German Parliament has thoroughly discussed the report and has reviewed the analyses and recommendations in conjunction with other political fields to be considered. One part of the recommendations was taken up almost unanimously. As far as the safety of nuclear installations is concerned, the investigation committee could not submit any new findings which would give reasons for modifying the hitherto positive assessment of the safety of nuclear installations. The recommendations of the investigation committee mainly referred to the decision-making process in the field of energy policy which will effect the next decade. What fundamental decisions are to be made until when was pointed out as well as the findings and experience to be made until then. (orig./HP) [de

  10. Energy [r]evolution - a sustainable world energy outlook

    NARCIS (Netherlands)

    Teske, S.; Muth, J.; Sawyer, S.; Pregger, T.; Simon, S.; Naegler, T.; O'Sullivan, M.; Schmid, S; Pagenkopf, J.; Frieske, B.; Graus, W.H.J.; Kermeli, K.; Zittel, W.; Rutovitz, J.; Harris, S.; Ackermann, T.; Ruwahata, R.; Martense, N.

    2012-01-01

    Energy [R]evolution 2012 provides a consistent fundamental pathway for how to protect our climate: getting the world from where we are now to where we need to be by phasing out fossil fuels and cutting CO2 emissions while ensuring energy security.The Energy [R]evolution Scenario has become a well

  11. Energy demand in the world of tomorrow

    International Nuclear Information System (INIS)

    Oehme, W.

    1979-01-01

    The ability to make use of energy has been one of the main incentives of human development - a matter of course which was never thought about until the availability of energy became uncertain. This explains why people feel deeply concerned when hearing or reacting the words 'energy' and 'future'. Formerly, these words had been connected with the hope for a better future - nowadays people are afraid that their present standard of living may turn out to be nothing but a stage of transition. (orig.) [de

  12. Wind energy in a global world

    DEFF Research Database (Denmark)

    Hjuler Jensen, Peter

    2007-01-01

    For the past 25 years there has been a dramatic development in the wind energy sector, with regard to the increase in overall utilisation of wind energy as well as technological development, the development of markets and expectations to the role of wind energy in the global electricity supply...... system. The purpose of this paper is to outline developments in the global capacity of wind energy this past quarter of a century, including technology, market aspects, scientific developments, testing and certification, formulation of standards and scenarios for the future development of wind energy...

  13. The role of nuclear power in meeting future energy demands

    International Nuclear Information System (INIS)

    Fuchs, K.

    1977-01-01

    Future energy demands and possibilities of meeting them are outlined. The current status and future developments of nuclear energetics all over the world and in the CMEA member states are discussed considering reactor safety, fission product releases, and thermal pollution of the environment

  14. Solar power engineering in the future world: A view from Russia

    International Nuclear Information System (INIS)

    Strebkov, D. S.

    2012-01-01

    The paper suggests an energy model for the future world based on solar power engineering and new Russian energy technologies. Chlorine-free solar silicon technologies, stationary concentrators, solar modules with service lives doubled up to 40 years, matrix solar elements with an efficiency factor of 20% at a concentration of 5-500, and resonance waveguide methods for transmitting energy for solar energy systems are considered. (author)

  15. Modified holographic dark energy in DGP brane world

    International Nuclear Information System (INIS)

    Liu, Dao-Jun; Wang, Hua; Yang, Bin

    2010-01-01

    In this Letter, the cosmological dynamics of a modified holographic dark energy which is derived from the UV/IR duality by considering the black hole mass in higher dimensions as UV cutoff, is investigated in Dvali-Gabadadze-Porrati (DGP) brane world model. We choose Hubble horizon and future event horizon as IR cutoff respectively. And the two branches of the DGP model are both taken into account. When Hubble horizon is considered as IR cutoff, the modified holographic dark energy (HDE) behaves like an effect dark energy that modification of gravity in pure DGP brane world model acts and it can drive the expansion of the universe speed up at late time in ε=-1 branch which in pure DGP model cannot undergo an accelerating phase. When future event horizon acts as IR cutoff, the equation of state parameter of the modified HDE can cross the phantom divide.

  16. Possible limitations to SSPS use due to distribution of world population and world energy consumption centers

    Energy Technology Data Exchange (ETDEWEB)

    Claverie, M.J.; Dupas, A.P.

    1980-09-01

    Satellite solar power stations, as envisioned now, would be very large energy systems from the point of view of power output (about 5 GW) and of land requirements (more than 400 sq km for a rectenna and the associated exclusion area). These size constraints could lead to limitations in the use of SSPS in significant parts of the world, due to three main incompatibilities: too high population density, insufficient density of electrical demand, and obligation for a single power station to provide less than about 20% of the total electrical demand in a given geographical zone to assure reliability. The extent of these three possible limitations was assessed, using a future world energy model developed previously. The rationale behind this model is to divide the world into 10 deg latitude by 10 deg longitude zones, in which future electrical demands (in 2000 and 2020/2025) are computed according to energetical previsions of the Case Western Reserve University (CWRU) and of the World Energy Conference (WEC). The results are world wide maps of electrical demand densities in 2000 and 2020/2025.

  17. Future prospects for renewable energy sources in a global frame

    International Nuclear Information System (INIS)

    Lund, P.

    1992-06-01

    The objective of this study has been to evaluate the possibilities of some new energy sources (solar, wind) in the future world energy supply. We intend to prepare future projections accounting for limitations in infrastructure, time and material inputs. One underlying assumption in the analyses is that new technologies will see an early market introduction in the near future which would continue up to year 2020. During these 30 years, there will still be technological developments leading to a much better manufacturability, mass production, and hence reduced costs. In year 2020, the industrial and economic infrastructure of new energy sources would be mature for a major penetration into the world energy market starting to substitute existing energy sources mainly for environmental reasons. This scenario will be suported by more factual information and data in the following chapters. Each new energy technology will be handled separately. (Quittner)

  18. Mahdi Elmandjra and the Future of the Muslim World

    Directory of Open Access Journals (Sweden)

    Wan Fariza Alyati Wan Zakaria

    2013-06-01

    Full Text Available The increasing problems and challenges facing the Muslims and the Muslim world nowadays have raised serious concern about the future of the Muslims and the Muslim World among many Muslim scholars. The post-Iranian Islamic Revolution in 1979 had always been seen as the landmark of the rising discourses over the future of Islam, Muslims and the Muslim world. Mahdi Elmandjra, a prominent sociologist and futurist, is one of the Muslim scholars who consistently discuss about the issue and urge the Muslims to take responsibility to create a better future in a systematic way and not to fall into the vicious cycle of misfortunes. This paper aims at discussing Elmandjra’s views on this issue and underscoring the contribution and significance of such discourse within contemporary development.

  19. A New World Energy Order is coming. Energy debate

    International Nuclear Information System (INIS)

    Odell, P.; Guillet, J.; Birol, F.; Kramer, M.; Van Gool, M.

    2007-01-01

    Peter Odell, Professor Emeritus of International Energy Studies of Erasmus University Rotterdam, Netherlands, recently wrote a remarkably succinct and provocative paper in which he described his vision of the new world energy order that is on the way in the form of eight propositions. The editors of this new magazine asked three experienced energy analysts as well as the CEO of a major energy company, the Dutch gas producer Gasunie, for a response

  20. Continuing growth for world energy consumption

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The World Energy Outlook of the global energy markets from 1971 to 2020, recently released by the International Energy Agency, is summarised. Covering demand, supply and energy prices, it provides an in-depth review of oil, gas, coal, biomass and power generation. With projections for all energy sectors, it offers a valuable insight into the development of the international energy business. The projections cover all world regions, including industrial and developing countries, and provide a comprehensive view of the main developments and issues affecting demand and supply on a global basis. The Outlook's projections have been derived from a 'reference scenario' that assumes global economic growth of more than 3% per annum, but a slowdown in population growth. Fossil-fuel prices are generally assumed to remain flat throughout the first decade of the projection period (to 2020), with oil and gas prices increasing after 2010 in response to the supply-side pressures. The scenario takes account of a range of major new policies and measures adopted in OECD countries, many of which relate to commitments under the Kyoto Protocol enacted or announced up to mid-2000. Despite the policies and measures in the OECD countries, energy-related carbon dioxide emissions will increase, averaging 2.1% per annum to 2020. This amounts to 60% increase between 1997 and 2020. Fast-growing developing countries heavily contributing to increase in carbon dioxide, as they do in global energy demand

  1. Energy for development in the real world

    International Nuclear Information System (INIS)

    Geel, P. van

    2005-01-01

    Developing countries have a right to economic growth. They need it to combat poverty. But growth is impossible without access to modern energy. If we are to do something about that, we must start with the basic needs of developing countries. At least one-third of humanity, most of whom live in rural areas in developing countries, do not have an adequate supply of energy to meet their daily needs, or for health care and education. This limited and unreliable energy supply is a direct obstacle to economic development. Millions of people spend a lot of time trying to gather enough firewood to survive. Companies cannot operate because of power cuts. Schools and hospitals cannot function properly. Energy is also needed to cool medicines, and to provide light so that children can do their homework in the evenings. The industrialised world must help developing countries to secure an energy supply. And more importantly, an energy supply that is sustainable

  2. World energy outlook in 2020 focusing on China's energy impacts on the world and Northeast Asia

    International Nuclear Information System (INIS)

    Komiyama, R.; Ito, K.; Li Zhidong

    2005-01-01

    This paper presents a consistent international energy projection developed by an integrated econometric model for the purpose of analysing China's energy impacts on the energy markets in the world and Northeast Asia to 2020. Vigorous economic growth, soaring electricity demand and progressive motorisation are going to expand the primary energy demand in China, which accounts for a large part of the world primary energy increase, eventually positioning China as an important player in the world energy market and in terms of CO 2 emissions. Focusing on Northeast Asia, considerable oil demand growth in China, which has only a limited oil production, would increase the regional reliance on Middle Eastern oil thereby underlining a serious energy security problem of oil importing countries in this region. It is becoming increasingly important for the energy issue to be addressed as one where all Northeast Asian countries have a common stake and can commit themselves. (author)

  3. Energy security in a competitive world

    International Nuclear Information System (INIS)

    Stevenson, M.G.

    1989-01-01

    The world is shrinking and becoming increasingly interconnected. Events in one part of the world quickly impact other parts of the world. Rising standards of living in developed countries, along with rapid communications and growing, mobile populations, go hand in hand with greater worldwide interconnectedness but at the same time are leading to a greater rate of resource depletion. Adequate and economical energy resources are one of the crucial factors in maintaining and increasing standards of living around the world, yet nonrenewable energy resources are being depleted. The international marketplace is also becoming more tightly interconnected and competitive. Increasing trade competition among nations may lead to greater economic efficiency and, on the whole, to improved living standards in successful countries, but competition also contributes to barriers against cooperation. International trade competition may be leading to a tendency for competing nations to become more parochial in technology research and development. The impact of growing populations and rising living standards on the world's environment is also increasing and becoming more pervasive. Solid waste disposal is an increasingly aggravating problem, and hazardous waste and toxic wastes are even more difficult to deal with. Acid rain, global climate change, ozone-layer depletion, stream and harbor pollution, and the resulting pollution of the oceans are all evidence of a highly interconnected world. It is easy to argue that solutions must be political, economic, and social. In large part this must be the case; but as technologists, we want to do all we can to give political, economic, and social forces the best opportunity to succeed. Technology will be part of the solution and not just part of the problem of securing adequate energy supplies with acceptable environmental impact. 2 refs

  4. Nuclear energy and the developing world

    International Nuclear Information System (INIS)

    Mustafa, A.

    1982-01-01

    The importance of cooperation between the developed and developing countries with regard to nuclear power is discussed. Moves towards global interdependence were strengthened when OAPEC was set up with proposals for cooperation and depletion of world reserves of gas and oil will encourage this. Developing countries will increasingly look to nuclear power to meet their energy needs, particularly in the light of depleting oil and gas reserves, their increasing cost and the possible 'greenhouse effect' produced by fossil fuels. International cooperation concerning uranium reserves, reprocessing and technology transfer may need World Bank funding. (U.K.)

  5. Energy futures project : backgrounder for consultation sessions

    International Nuclear Information System (INIS)

    Bhargava, A.

    2006-05-01

    The National Energy Board periodically publishes a long-term energy and demand report as part of an ongoing monitoring program. The next report is planned for release in 2007. This background document provided background information to ensure that consultation participants have a common understanding of key issues to be addressed during the cross-country consultations that have been planned before the release of the final version of the report. An outline of the proposed analytical approach was presented, as well as details of major assumptions and scenario storylines. Scenario themes included: economic, energy and environmental sustainability; a security-focused world shaped by war and civil strife; and strong global economic growth fueled by the rapid growth of the Chinese and Indian economies. A methodology overview was provided as well as a reference case. Issues related to energy supply included oil; natural gas liquids; natural gas; and electricity. Issues related to energy demand included the residential sector; the commercial sector; the industrial sector; and the transportation sector. Historical trends and forecasts were outlined using the macroeconomic variable of interest. Supply, demand, and supporting infrastructure across all energy forms within a North American and global context were considered. The impact of environmental management strategies were reviewed, as well as the role of the government in shaping policies. It was concluded that the purpose of the final report is to serve as a standard of references for parties interested in Canadian energy issues and trends as well as to inform decision makers of key risks and uncertainties facing the energy future.9 tabs., 1 fig

  6. World energy outlook. Energy efficiency policies in the World: what works and what does not

    International Nuclear Information System (INIS)

    2013-01-01

    Long considered simply as an 'option' in the OECD countries, energy efficiency is spreading, with notable progress in all major regions of the world. The experience gained by the OECD countries benefits so-called emerging countries, as demonstrated by the study of energy efficiency in the world conducted by ADEME for the World Energy Council. A relative international consensus is emerging. It sees energy efficiency as a beneficial strategy for each stakeholder: reducing dependence on energy imports, reducing emissions of greenhouse gas emissions related to energy, preserving the competitiveness of companies and household purchasing power, etc. This good news appears to be an illusion, however, with a general decrease in energy efficiency over the recent years. Regional disparities remain and new solutions must be found to take the reality of each country into account and thus move to the next level

  7. Mexico's energy dilemmas in an interdependent world

    International Nuclear Information System (INIS)

    Bauer, M.

    2008-01-01

    Mexico's energy system is overwhelmingly dependent on hydrocarbons. Although a significant producer of oil and gas, and a considerable exporter of crude oil, it is increasingly dependent on imports of oil products and natural gas for its internal energy demand. In a World where free trade is increasing the interdependence of the industrialized economies, Mexico's energy policy dilemma is basically between maintaining as much as possible its self sufficiency; or relying on imports, while generating oil revenues through exports to invest in developing a diversified economy. Energy demand projections to 2030 are carried out that exhibit the limitations of present available oil and gas proved reserves under past policies. Alternative energy policy scenarios are then examined. (authors)

  8. The energy future in France?

    International Nuclear Information System (INIS)

    Rebut, Paul Henri

    2013-01-01

    In this contribution, the author indicates figures for primary energy sources in France, outlines what is expected from a source of energy, and discusses the energy transformation efficiency. He addresses the case of electricity production and consumption, production costs for the different sources, nuclear energy, primary fluid mechanical energies, issue of intermittency and storage, photovoltaic, storage, subsidies and purchase obligation for EDF, fossil energies and carbon dioxide production. He questions the possibility of reduction of energy consumption, evokes and criticizes the French energy policy concerning electricity production, and possibilities of energy saving in housing and in transports, and by developing smart grids

  9. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  10. Proceedings of the 14. forum: Croatian Energy Day: Energy: Its reality and outlook - World - Europe - Croatia

    International Nuclear Information System (INIS)

    Granic, G.; Jelavic, B.

    2005-01-01

    This year the Croatian Energy Society is organizing its 14. Forum. For this occasion we chose the topic Energy perspectives today and tomorrow, World-Europe-Croatia, which in recent years is increasingly in the focus of interest not only of energy experts but of broad public as well. Namely, the end of the 20. and beginning of the 21st century saw the changes that, in many ways, influenced the energy market development. Views on the future and energy supply stability as they were in the era of divisions (free and communist world, developed and undeveloped world) must be substantially and urgently changed, because the geopolitical landscape of the world has been changing as well as development dynamics of countries and parts of continents. For Europe (Croatia included), which has deficit of primary energy sources and depends on energy import, reliability, availability security and economy of imported energy are key assumptions of sustainable economic and ecological development. The Forum shall discuss the following issues, which strongly influence or will influence the energy perspectives in the next 50 years: Reserves and potentials (size, geo-allocation of resources, transport possibilities, renewable sources); Technologies (exploitation, production, transport, distribution, consumption: appliances, consumers, and processes); Economic development and energy demand (development levels, richness and poverty, price of energy and social influence, energy efficiency); Environmental protection (Kyoto Protocol, legislation, economic capacities, nuclear energy); Energy trade liberalization (market development, restructuring, common legislation, privatization); Security of supply (local, European and global level); Population growth; Political changes and conflicts, military conflicts, terrorism. World Energy Council (WEC) initiated work on global study on energy development: Energy Scenario to 2050. The energy community around the world is equally interested in this study

  11. Primary energy: present status and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Thielheim, K O

    1982-01-01

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO/sub 2/ greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  12. Geo-economy of world energy supply and demand

    International Nuclear Information System (INIS)

    Gauthier, Jean-Michel

    2009-01-01

    For over 50 years now, the global primary energy demand structure has been based on fossil fuels for more than 80%. In 25 years, our energy needs will still be covered by an over 80% fossil energy mix according to the reference scenario of most energy agencies. Over this period of time, the economics of energy will be radically altered as a result of a long term sustained global demand of energy and a growing constraint on some hydrocarbon production, conventional oil in particular. The oil production profile on currently operated oil fields, essentially in the OECD, will further decline or require significantly increasing investments. Non conventional oil sources are already proving to be even more capital-intensive. In the face of dwindling reserves in the old OECD hydrocarbon basins, the only resource-rich region in the world with low extraction costs and available swing supply capacities is the Middle East. Tomorrow's oil industry and markets will therefore represent a risk concentrated around a single region in the world, whilst the global gas industry will face a risk concentrated around two regions in the world, including Russia and the Middle East. Massive investments in energy infrastructures will be necessary to bring gas from these two sources to the remote markets in Asia, Europe or the US. The era of cheap energy is definitely gone. Far from being an obsolete fuel, coal is and will remain the most abundant, competitive and favoured source of energy for power generation across the world. CO_2 emissions from coal use are coal's only handicap. The vision of our energy future is in front of us: the environment will be filthy, energy will be costly and geopolitical tensions between producers and consumers will be strong

  13. Nuclear energy and the modern world

    International Nuclear Information System (INIS)

    1971-01-01

    The International Atomic Energy Agency is an autonomous organization within the United Nations system, with its headquarters in Vienna, Austria. Its objectives, as defined in its Statute, are to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world', and to 'ensure, so far as it is able, that assistance provided by it or at its request or under its supervision or control is not used in such a way as to further any military purpose'. This issue of the Bulletin contains a series of articles describing some of the ways in which the Agency works to fulfil its role. (author)

  14. Necessity of nuclear energy in energetic world context

    International Nuclear Information System (INIS)

    Lopez Rodriguez, M.

    1981-01-01

    Different opinions on nuclear energy make the middle citizen feel confounded and wonder hundreds of questions to wwhich an easy reply is not found. May be if nuclear energy is really necessary, the first of these questions, without noticing that necessity is a vague concept with a double interpretation. To some, those support a total change in the actual society into more primitive situations, the energy pattern the world has chosen -both the East and West models- is annoying, and they consider a pattern based on ''soft energies''to be the solution to the social scheme they imagined. To others, those who think on an economic, industrial and social development in the countries, it should be based on a strong energy pattern, which could supply what the world needs more and more, nuclear energy is, at least nowadays, an unavoidable necessity and an inevitable option. The document shown has been prepared on the conclusions of the most recent works on the subject, and it is deduced from all of them what everybody considers to be the future energy demand for the year 2000 and its distribution into energy sources, nuclear energy includes. The two basic parameters for tAe valuation of this demand are the increasing of population and gross national product. Available energy resources are mentioned on the document and, mainly, the nuclear capacity of each country. (author) [es

  15. Global energy context: future scenarios

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    After a brief analysis of the history of global energy consumption, this paper discusses a plausible scenario of energy needs and related carbon emissions for the rest of the century. The global outlook and the probable evolution of several factors that impact on energy policy considerations - even on the local scale - demonstrate the great complexity and planetary dimension of the problems, as well as the almost certain sterility of out-of-context domestic energy-policy measures [it

  16. Future industrialization of the world and the necessity of nuclear power; how limited are resources?

    International Nuclear Information System (INIS)

    Jovanovic, J.

    1996-01-01

    Will the future world be forever divided into an industrial, developed and 'rich' on one side, and primitive, undeveloped, and poor on the other? Is an industrial, affluent and sustainable world of 10-15 billion people owning 5-10 billion cars physically possible to exist. Can the world have enough food, minerals and energy to support such a widespread affluence in a sustainable manner? In previous papers i have argued that even without any major breakthroughs in science and technology, an industrialized, sustainable and affluent world can be created within the next half century, but only if breeder nuclear power is widely used throughout the world. In this paper i elaborate on the question of future availability of some basic natural resources. 18 refs. 3 figs. 1 tabs

  17. Energy consumption: Past, present, future

    Science.gov (United States)

    1973-01-01

    The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.

  18. World's energy appetite may crave nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Anderson, T.D.

    1996-01-01

    As scientists come to agree that global warming is a real phenomenon, it may be time to jumpstart the stalled nuclear industry. World population is expected to double by the end of the 21st century, and the lion's share of growth will be in developing nations. open-quotes More people and more economic activity will require more energy,close quotes say William Fulkerson, a senior fellow at the Joint Institute for Energy and the Environment in Knoxville, Tennessee, and Truman D. Anderson, formerly director of planning at Oak Ridge National Laboratory. There are only three viable options to fossil fuel plants, the authors say: nuclear fission, nuclear fusion, and such renewable energy sources as solar and wind. The advantages of nuclear energy are well known, the authors say. open-quotes It emits no greenhouse gases, and potentially it can be expanded almost without limit anywhere in the world, providing the controversies that surround it can be resolved.close quotes However, to garner public acceptance, a new generation of supersafe nuclear reactors, invulnerable to terrorism and conversion to weapons, will need to be developed, the authors say

  19. IEA World Energy Outlook 2011—A comment

    International Nuclear Information System (INIS)

    Khatib, Hisham

    2012-01-01

    There are increasing numbers of annual and periodical energy studies that look into future energy demand and sustainability issues. Among these the World Energy Outlook stands out as the most important futuristic energy study and analysis. The 2011 Outlook is in four parts and gives a full update of energy demand and supply projections to 2035. It analyses the possible evolution of energy markets under three scenarios. The core scenarios rest on common assumptions about macroeconomic conditions and population growth, while their assumptions about government policy differ. This year's Outlook offers an in-depth analysis of prospects for energy supply and use in Russia. It also provides an expanded assessment of the prospects for coal. It reviewed the future of nuclear energy after Fukushima, as well as the strategic challenges of energy poverty. Last it dealt with the important aspect of energy subsidies. In spite of its extensiveness and in depth analysis some of the Outlook assumptions and conclusions need careful analysis and review.

  20. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  1. Sustainable Energy Future - Nordic Perspective

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    This invited paper first outlines the methodologies applied in analysing the energy savings potentials, as applied to a Nordic and a European case study. Afterwards are shown results for how a high quality of life can be achieved with an energy consumption only a small fraction of the present in ...... in Europe. The energy policy in Denmark since 1973 is outlined, including the activities and the roles of NGOs. Finally are described some of the difficulties of implementing energy saving policies, especially in combination with increasing liberalization of the energy market....

  2. East Germany's future energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Tjon, F; Zuehlke, R [Technische Univ. Berlin (Germany, F.R.). FG Energie und Rohstoffwirtschaft

    1991-01-01

    Since unification, the former German Democratic Republic has had to face major changes, one of which concerns the energy supply system. A secure energy supply system is an absolute requirement for the political and economical development of this Republic. Its former strategy of 'autarkical' energy supply until the end of 1989 was one of the factors which led to an economic downfall. This essay gives an overview of the major structural changes to the economy which have occurred since unification. First, the former energy situation is described and the status quo analyzed. Then, efforts in reorganizing the present energy supply system are outlined. Finally, new perspectives and strategies are described. The aspects taken into consideration include: energy price deregulation; European fossil fuel marketing trends; investments for the build up of an efficient energy supply system; and the creation of surcharges for environmental pollution abatement, in particular, the reduction of carbon and sulfur dioxide emissions.

  3. The World Power Conference and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    The possibility that emerged after the last World War that useful power could be produced from nuclear fission led to optimistic estimates that nuclear power would prove to be the solution to the world's energy problems. The possible advantages of nuclear methods of power production compared with conventional means are discussed at the World Power Conference. The 1962 Conference with its theme 'The Changing Pattern of Power' will undoubtedly attract great interest in a world where the change-over from conventional to nuclear fuels for power production has started in some countries and is being actively examined in others. It is generally being realized that even though a country may possess indigenous supplies of uranium or thorium minerals, the building up of a nuclear industry i s a long and expensive process and the alternative of depending on countries more advanced in nuclear technology for the supply of materials, skill and know-how is costly in foreign exchange and international prestige. Many of the industrialized countries, still possessing supplies of conventional fuels, are preparing for the day when their reserves will become depleted and are embarking on training schemes to ensure a continuing supply of engineers and scientists skilled in nuclear arts

  4. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  5. Canada's energy future : 2008 workshop summary

    International Nuclear Information System (INIS)

    2008-01-01

    The National Energy Board hosted this Energy Futures Workshop as a follow-up to its report entitled Canada's Energy Future: Reference Case and Scenarios to 2030, which focused on emerging trends in energy supply and demand. Various energy futures that may be available to Canadians up to the year 2030 were examined. This workshop addressed issues regarding the growing demand for energy, the adequacy of future energy supplies, and related issues of greenhouse gas emissions, emerging technologies, energy infrastructure and energy exports. The workshop was attended by 18 experts who presented their diverse views on long-term energy issues. The sessions of the workshop focused on external and key geopolitical issues that will influence Canadian energy markets; the adoption of alternative and emerging sources of energy; outlook for Canadian oil supply, including oil sands development, reservoir quality, and financial, environmental and technological issues; issues in electricity generation and transmission; gas market dynamics; and carbon dioxide capture and storage and the associated benefits and challenges. There was general consensus that global and Canadian energy markets will remain in a state of flux. Crude oil prices are likely to remain high and volatile. The combination of maturing energy resource basins and geopolitical tensions has created uncertainty about future availability and access to global energy resources. 2 figs., 3 appendices

  6. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  7. Energy sources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, J.L.; Cloutier, R.J. (eds.)

    1977-04-01

    The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

  8. Japan, world leader of photovoltaic energy

    International Nuclear Information System (INIS)

    Strasser, F.

    2006-01-01

    Since the beginning of the 1970's, the potentialities of photovoltaic energy has been recognized by the Japanese government which has sustained this technology in two ways. First, by the financing of R and D programs, and second, by giving subsidies to citizens for the installation of solar panels. Today, Japan is the world leader of photovoltaic energy, both for the installed power and for the production of solar cells. In 2003, the International Energy Agency was reporting 1.809 GW of worldwide installed capacity among which 48% was in Japan (0.86 GW) with respect to 0.4 GW in Germany, 0.275 GW in the USA and only 20 MW in France. This capacity would have exceeded 1.1 GW at the end of 2004. Half of the solar modules are manufactured in Japan. The ministry of economy, trade and industry (METI) has fixed ambitious goals for 2010: the overall new energy sources much represent 3% of the primary energy (with respect to 1% today) and the installed capacity must reach 4.8 GW. The road-map of the New Energy and Industrial Technology Development Organisation (NEDO) foresees 100 GW by 2030. (J.S.)

  9. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  10. Renewable energy outlook in Iran and World's energy structure

    International Nuclear Information System (INIS)

    Azarm, D.; Adl, M.

    2001-01-01

    Limited fossil fuel resources and environmental impact of energy production technologies causing Global Warming have encouraged wide spread used of renewable energies. This article reviews the characteristics of renewable energy sources as well as their status within IR of Iran and pro-countries. According to the mentioned Information and Status, currently 22% of world electricity is produced through conversion of various renewable energies and expected to grow even further. This trend has been a main factor in reduction of end-used renewable energy prices. Consideration of social and environmental costs of fossil fuel use will help to reveal compatibility of renewable energies. Utilization of renewable energy potentials apart from proven environmental advantages and job creation effects may conserve country's conventional fossil fuel resources. In general, growth of renewable energy in a country is direct result of existing energy policies with respect to increasing the share of clean energies in the energy basket. Nevertheless in Iran yearly demand hikes for energy and considering the fact the fossil fuel reservoirs are limited, utilization of renewable energy potentials is inevitable

  11. Nuclear energy: basics, present, future

    Directory of Open Access Journals (Sweden)

    Ricotti M. E

    2013-06-01

    Full Text Available The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  12. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  13. The Economics of America's Energy Future.

    Science.gov (United States)

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  14. Biomass energy: its important and future trends

    International Nuclear Information System (INIS)

    Rao, P.S.

    1997-01-01

    The development of photo-biological energy conversion systems has long-term implication from the energy, wood fibre and chemical points etc. Power generation through biomass combustion and gasification has proved to be very successful venture. The energy needs of the people in the remote, rural and even urban areas of the country can be met economically by the energy from the renewable source such as biomass. The biomass energy is full of opportunities, and future trends are emerging towards renewable energy

  15. I want to know future energy

    International Nuclear Information System (INIS)

    Lee, Eun Cheol

    2009-04-01

    This book introduces future energy. These are the contents ; sun light which is infinite energy, hydrogen has siblings, good point of nuclear fusion, hydrogen fueled vehicle and imaginative power, application of infinite solar energy, who discovers hydrogen, sunlight generation which can make electricity from sunlight, people against wind power generation, making energy from sea, generation using wave power, making electricity from temperature differential of sea, what is bio energy, the reason that bio energy rare uses and bio fuel that people make.

  16. Risoe energy report 7. Future low carbon energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2008-10-15

    This Risoe Energy Report, the seventh of a series that began in 2002, takes as its point of reference the recommendations of the Intergovernmental Panel on Climate Change (IPCC) in 2007. The IPCC states that if anticipated climate change is to remain in the order of 2 to 3 degrees centigrades over the next century, the world's CO{sub 2} emissions would have to peak within the next 10-15 years and ultimately be reduced to approximately 50% of their present level by the middle of the century. The IPCC states further that this would be possible, provided that serious action is taken now. The different regions and countries of the world are in various states of development, and hence have different starting points for contributing to these reductions in CO{sub 2} emissions. This report presents state-of-the-art and development perspectives for energy supply technologies, new energy systems, end-use energy efficiency improvements and new policy measures. It also includes estimates of the CO{sub 2} reduction potentials for different technologies. The technologies are characterized with regard to their ability to contribute either to ensuring a peak in CO{sub 2} emissions within 10-15 years, or to long-term CO{sub 2} reductions. The report outlines the current and likely future composition of energy systems in Denmark, and examines three groups of countries: i) Europe and the other OECD member nations; ii) large and rapidly growing developing economies, notably India and China; iii) typical least developed countries, such as many African nations. The report emphasises how future energy developments and systems might be composed in these three country groupings, and to what extent the different technologies might contribute. The report addresses the need for research and demonstration together with market incentives, and policy measures with focus on initiatives that can promote the development towards CO{sub 2} reductions. Specifically, the report identifies system

  17. World Sustainable Energy Days Next 2014

    CERN Document Server

    Egger, Christiane

    2015-01-01

    These conference proceedings contain contributions to one of Europe’s largest annual conferences on energy efficiency and renewable energy. From two main fields – biomass and energy efficiency in buildings – contributions offer an insight into the research work and the scientific findings and developments of young researchers from all over the world. The papers were selected by a high-level scientific committee for oral presentation. They also communicate results, trends and opinions that will concern and influence the world’s energy experts and policy makers over the next decades. The conference was held from 26-27 February 2014. The conference The conference is organized by the Energy Agency of Upper Austria (OÖ Energiesparverband) and held in Wels annually in February or March. It attracts more than 700 experts from over 50 countries every year. The Editors Christiane Egger is the deputy managing director of the OÖ Energiesparverband and the Manager of the Ökoenergie-Cluster, a network of 160 co...

  18. The Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Alonso, A.

    2005-01-01

    Current nuclear energy represents 23.5% of the total electrical power available within the OECD countries. This is the energy offering the lowest costs to generate, it does not emit greenhouse-effect fumes nor does it contribute to global warming, however, it does generate radioactive and toxic waste which society perceives as an unacceptable risk. For this reason the development of new nuclear installation in Europe is at a stand still or moving backward. Truthful information and social participation in decisions is the best way to achieve the eradication of the social phobia produced by this energy source. (Author)

  19. Asia energy outlook to 2030: Impacts of energy outlook in China and India on the world

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, R.

    2007-07-01

    This paper presents an international energy outlook, focusing on an analysis of energy impacts of Asia, particularly China and India, on the world energy markets to 2030. Based on vigorous economic growth, soaring electricity demand and progressive motorisation in China and India, Asia's primary energy demand is expected to double, eventually positioning Asia as the largest energy-consuming region with largest CO{sub 2} emissions in the world. This paper also discusses energy security challenges for Asia, in particular East Asian region, where steady oil demand growth will lead to increasing dependency on imported oil from Middle East and sea lane security in the Malacca Strait. Furthermore, this paper explores various future scenarios for Asia including 'Technological Advanced Scenario' to highlight the differences in possible energy futures in Asia and its implication to the global energy market. In Technological Advanced Scenario, which assumes the stepped-up implementation of energy and environmental policies in Asian countries, Asia's primary energy demand in 2030 is expected to be 15%, or 943 Mtoe, lower than the Reference Scenario. The paper concludes that successful implementation of such an energy strategy will decrease the energy demand and greatly mitigate the growth of CO{sub 2} emissions from the energy sector. (auth)

  20. Nuclear energy of the future, solar energy of the future: some convergencies

    International Nuclear Information System (INIS)

    Flamant, G.

    2006-01-01

    Most medium- and long-term energy scenarios foresee the joint development of renewable and nuclear energies. In other words, the energy sources must be as various as possible. Among the renewable energy sources, the solar energy presents the highest development potential, even if today the biomass and wind energies are quantitatively more developed. In France, the solar power generation is ensured by photovoltaic systems. However, the thermodynamical conversion of solar energy (using concentrating systems) represents an enormous potential at the world scale and several projects of solar plants are in progress in Spain and in the USA. The advantages of this solution are numerous: high efficiency of thermodynamic cycles, possibility of heat storage and hybridization (solar/fuels), strong potential of innovation. Moreover, the solar concentrators allow to reach temperatures higher than 1000 deg. C and thus allow to foresee efficient thermochemical cycles for hydrogen generation. The future solar plants will have to be efficient, reliable and will have to be able to meet the energy demand. In order to reach high thermodynamic cycle efficiencies, it is necessary to increase the temperature of the hot source and to design combined cycles. These considerations are common to the communities of researchers and engineers of both the solar thermal and nuclear industries. Therefore, the future development of generation 4 nuclear power plants and of generation 3 solar plants are conditioned by the resolution of similar problems, like the coolants (molten salts and gases), the materials (metals and ceramics), the heat transfers (hydrogen generation), and the qualification of systems (how solar concentrators can help to perform qualification tests of nuclear materials). Short communication. (J.S.)

  1. Energy [R]evolution 2008-a sustainable world energy perspective

    International Nuclear Information System (INIS)

    Krewitt, Wolfram; Teske, Sven; Simon, Sonja; Pregger, Thomas; Graus, Wina; Blomen, Eliane; Schmid, Stephan; Schaefer, Oliver

    2009-01-01

    The Energy [R]evolution 2008 scenario is an update of the Energy [R]evolution scenario published in 2007. It takes up recent trends in global socio-economic developments, and analyses to which extent they affect chances for achieving global climate protection targets. The main target is to reduce global CO 2 emissions to 10 Gt per year in 2050, thus limiting global average temperature increase to 2 deg. C and preventing dangerous anthropogenic interference with the climate system. A review of sector and region specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding energy supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The Energy [R]evolution scenario shows that renewable energy can provide more than half of the world's energy needs by 2050. Developing countries can virtually stabilise their CO 2 emissions, whilst at the same time increasing energy consumption through economic growth. OECD countries will be able to reduce their emissions by up to 80%.

  2. The future of the international energy market

    International Nuclear Information System (INIS)

    Said, A.

    1980-01-01

    Are we heading for a world energy cisis. There is not really a need or a disastrous culmination of the world energy supply situation to occur because, globally speakng, a large reservoir of energy resources is available. The problem rather lies in the structure of consumption in the industrialized countries, which is bound to lead to difficulties of supply soon, if the consumption of energy continues to rise. Changes in structure must be effected both on the supply and on the demand sides. (orig.) [de

  3. Nuclear energy, energy of the future or bad solution?

    International Nuclear Information System (INIS)

    2003-01-01

    The document presents the speeches of the debate on the nuclear energy solution for the future, presented during the meeting of the 6 may in Rennes, in the framework of the National Debate on the energies. The debate concerns the risks assessment and control, the solutions for the radioactive wastes, the foreign examples and the future of the nuclear energy. (A.L.B.)

  4. Nuclear energy in the future

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1994-01-01

    Nuclear energy plays a major role in the French economy because of the lack of fossil fuels on the French territory. About 75% of the French electric power is of nuclear origin. This paper gives an analysis of the French public attitude about nuclear energy and the methods used by the nuclear industrialists to better the electro-nuclear image. Communication, advertising and transparency are the best attitudes for a suitable public information and are necessary to reduce the public anxiety after the Chernobyl accident. Television advertising, magazines and organized visits of nuclear installations have allowed to explain the interest of nuclear energy in the environmental reduction of pollutants. However, public information must include the topic about nuclear wastes to remain credible. (J.S.)

  5. Sectorial survey: energy in the world

    International Nuclear Information System (INIS)

    Mons, L.

    2001-06-01

    After 3 years of quasi-stagnation, the consumption of primary energy started again in the year 2000 with a +2.1% of growth. Petroleum remains the first energy source consumed in the world, in front of coal which is closely followed by natural gas. The increase of oil prices all along the year 2000 up to the beginning of 2001 has had serious impacts on natural gas prices. In this context, the energy actors have had an offensive behaviour based on the acquisition of market shares in the areas in progress of deregulation. The historical actors of the gas back-end sector have had to face both the offensive of the oil companies on the one hand and of the electric utilities on the other hand. In this changing competition environment the 2000 financial year has been felt differently by the oil, natural gas and electric companies. This study makes a clear and detailed status of the oil, gas, coal, electricity and nuclear markets situation through the economical analysis of 8 companies of the energy sector. (J.S.)

  6. Alleviating energy poverty for the world's poor

    International Nuclear Information System (INIS)

    Sagar, Ambuj D.

    2005-01-01

    Improving energy services for poor households in developing countries remains one of the most pressing challenges facing the development community. The dependence of these households on traditional forms of energy leads to significant health impacts as well as other major disbenefits, yet there has been little progress in meeting this challenge. This viewpoint argues for an 'energy-poverty alleviation' fund to help provide modern energy services to these households. It also proposes an approach through which to create such a fund, namely by introducing an incremental levy on petroleum. Notably, this scheme does not need a global agreement since a levy could be introduced by major oil-exporting countries. The implementation of this mechanism would result in a climate-friendly outcome (even before taking into account the elimination of products of incomplete combustion resulting from the traditional household use of biomass-based fuels) while providing immense socio-economic benefits to the world's poor. Such an approach would allow significant progress on the sustainable development front while reducing global greenhouse gas emissions, and therefore is very much consistent with the United Nations Framework Convention on Climate Change

  7. Our global energy future and the role of nuclear energy

    International Nuclear Information System (INIS)

    Foster, J.S.

    1991-01-01

    An extension in the use of energy, on even a fairly moderate basis, will, for several decades at least, require the use of all our present energy sources at rates that are a natural extension of historical rates, trending toward maximum practicable exploitation for all but nuclear energy. Regardless of what happens with the fossil hydrocarbons nuclear energy will play a major role in the supply of energy. When the fossil hydrocarbons have run their course nuclear and possibly some solar energy, through the media of electricity, hydrogen and synthetic hydrocarbons, will provide the bulk of the world's controlled energy and in sufficient quantity to provide ample energy for all. The burning question, however, is what will happen in the next few decades. There is a wonderful opportunity for nuclear energy, as the world requirement for energy, and particularly electrical energy, grows

  8. Thorium: An energy source for the world of tomorrow ?

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    To meet the tremendous world energy needs, systematic R&D has to be pursued to replace fossil fuels. The ThEC13 conference organized by iThEC at CERN last October has shown that thorium is seriously considered by developing countries as a key element of their energy strategy. Developed countries are also starting to move in the same direction. How thorium could make nuclear energy (based on thorium) acceptable to society will be discussed. Thorium can be used both to produce energy and to destroy nuclear waste. As thorium is not fissile, one elegant option is to use an accelerator, in so-called “Accelerator Driven Systems (ADS)”, as suggested by Carlo Rubbia. CERN’s important contributions to R&D on thorium related issues will be mentioned as well as the main areas where CERN could contribute to this field in the future.

  9. Comparison of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate...... Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy...

  10. Nuclear energy has a future

    International Nuclear Information System (INIS)

    Sorin, F.

    2012-01-01

    Nuclear energy appears to be a main asset to France in the context of the worldwide economic slump. Nuclear power provides a cheap electricity that spares the buying power of households and increases the competitiveness of French enterprises. Nuclear industry with major companies like EDF, AREVA and CEA and 450 small and medium-sized enterprises, represents a core resistant to industrial decline. Nuclear industry is a good provider of work and globally it represents 2% of all the jobs in France. Concerning the trade balance, nuclear power plays twice; first by exporting equipment and services for a value of 7 billions euros a year and secondly by sparing the cost of energy imports that would be necessary if nuclear power was not here which is estimated to 20 billions euros a year. (A.C.)

  11. Leverage effect in energy futures

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2014-01-01

    Roč. 45, č. 1 (2014), s. 1-9 ISSN 0140-9883 R&D Projects: GA ČR(CZ) GP14-11402P Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : energy commodities * leverage effect * volatility * long-term memory Subject RIV: AH - Economics Impact factor: 2.708, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433531.pdf

  12. The World energy outlook in 2020: a presentation of the World energy outlook 2000

    International Nuclear Information System (INIS)

    Cattier, F.

    2000-01-01

    In November 2000, the International Energy Agency published the new edition of the 'World Energy Outlook'. This work presents forecasts from the energy sector for the next 20 years. It describes changes in the supply and demand of energy as well as their consequences in terms of CO 2 emissions. The forecasts emerging are: continued growth in energy consumption and the associated carbon emissions; the ever preponderant role of fossil fuels, the importance of the developing countries in the global energy situation, the key role of the electrical sector and transport in changes in energy consumption and carbon emissions; the increased dependency of OECD and Asian countries; as well as the necessity of implementing additional policies and measures to reach the objectives detailed in the Kyoto Protocol. (author)

  13. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T B; Nakicenovic, N; Patwardhan, A; Gomez-Echeverri, L [eds.

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  14. THE FUTURE OF GEOTHERMAL ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  15. World Energy Outlook Special Report 2012: Iraq Energy Outlook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Iraq is already the world’s third largest oil exporter. It has the resources and intention to increase its oil production vastly. Contracts are already in place. Will Iraq’s ambitions be realised? And what would the implications be for Iraq’s economy and for world oil markets? The obstacles are formidable: political, logistical, legal, regulatory, financial, lack of security and sufficient skilled labour. One example: in 2011 grid electricity could meet only 55% of demand. The International Energy Agency has studied these issues with the support and close cooperation of the government of Iraq and many other leading officials, commentators, industry representatives and international experts. This special report, in the World Energy Outlook series, presents the findings.

  16. World Energy Resources and New Technologies

    Science.gov (United States)

    Szmyd, Janusz S.

    2016-01-01

    reinforce energy security is presented, with it being assumed that these new high-efficiency technologies are capable of being applied globally in the near future.

  17. Solar energy solutions for an environmentally sustainable world

    International Nuclear Information System (INIS)

    Morozov, A.I.; Pustovitov, V.D.

    1992-01-01

    The United Nations Conference of Environment and Development has focused the world's attention on the complex relationship between the environment and economic development. The essence of this relationship, and the emerging theme of UNCED, is the concept of sustainability. Sustainable economic development improves quality of life and raises standards of living by using the Earth's resources in a way that ensures that they are continually renewed, and will continue to support future generations. This is the subject of this report. While energy resources are essential to economic development, the authors current patterns of energy use are not sustainable. Reliance on fossil fuels, nuclear energy, and large-scale hydroelectric projects has contributed to serious environmental problems, including atmospheric pollution, loss of land productivity, loss of biological diversity, ocean and fresh water pollution, and hazardous waste generation. Thus, if they are to achieve sustainability in their patterns of energy consumption, it is imperative that they bring about a rapid and widespread transition to the utilization of environmentally sound energy sources and technologies. Solar energy technologies are environmentally sound, socially beneficial, and economically practical. They have been proven in a wide variety of applications around the world. The barriers to the widespread implementation of solar technologies are no longer technical, but rather social, economic, and political. These barriers can and must be removed

  18. Oil and the world energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Almost half of the needs for primary in the world are covered by oil. The rapid growth in oil prices because of the 1973 oil crisis caused a growth in prices for other source of energy as well, primarily coal and natural gas. The sale price of 1 m/sup 3/ of oil in 1973 equalled--$18.87, and later $31.45. In recent years, the cost of 1 m/sup 3/ of oil reached $188.69, and by the end of the century, according to forecasts, should reach $628.98. The cost of extracting 1 m/sup 3/ of oil in the Near East equals $1.57, and in the North Sea $44.03-75.48. The cost of producing 1 m/sup 3/ of synthetic oil from bitumenous sands equals $94.35-157.25, and from fuel shales $94.35-122.14. The explored oil reserves at the end of 1979 were, in million T: in the OPEC countries 58, 265, including 22, 261 in Saudi Arabia, and 25, 539 in the rest of the world. Oil extraction in 1979 was, in million T: in the OPEC countries 1574 (100%), including 510 (32.4%) in Saudi Arabia, 175 ((11.1%) in Iraq, 145 (9.2%) in Iran, 130 (8.2%) in Kuwait, 125 (7.9%) in Venezuela, 114 (7.2%) in Nigeria, 101 (6.4%) in Libya, 88 (5.6%) in the United Arab Emirates, other OPEC countries 186 (11.8%), in the other countries of the world 1550 (100%), including the United States 479 (30.9%), 108 (7.0%) in The Chinese People's Republic, 86 (5.5%) in Canada, 80 (5.2%) in Mexico, 79 (5.1%) in Great Britain, 28 (1.8%) in Arab Republic of Egypt, 18 (1.2%) in Norway, and 86 (5.5%) in other countries.

  19. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  20. U. S. Fusion Energy Future

    International Nuclear Information System (INIS)

    Schmidt, John A.; Jassby, Dan; Larson, Scott; Pueyo, Maria; Rutherford, Paul H.

    2000-01-01

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems

  1. Man and energy: Reality versus utopia. Swiss National Committee in the World Energy Council: Report on the 16th world energy congress in Tokyo in 1995

    International Nuclear Information System (INIS)

    Fritsch, B.

    1996-01-01

    The future of our environmental and energy problems will be decided next century in today's developing countries, particularly in the large agglomerations of the Third World. It is unlikely that fossil fuels will to any great degree be replaced by renewable energy sources and/or nuclear energy. The excellent efficiency of thermal power plants now achieved in the industrial countries should as fast as possible also be realised in the developing countries, and the process of electrification there should be accelerated. The greatest obstacle to a rapid worldwide spread of efficient energy systems are the political imponderabilities in many developing countries. (orig.) [de

  2. World Energy Prospects and Stakes. A New Paradigm

    International Nuclear Information System (INIS)

    Laponche, Bernard; DEVERNOIS, Nils

    2008-01-01

    To pursue the present path in the development of energy systems would lead to growing insecurity of supply and an unacceptable increase in greenhouse gas emissions. Both climate change (and other environmental hazards) and security of supply would rapidly become formidable obstacles for peace and development if energy consumption follows such an 'impossible path'. Energy security and environmental constraints converge to offer mankind both a challenge and opportunity: to invent a new model compatible with sustainable development, in order to 'meet the needs of the present without compromising the ability of future generations to meet their own needs'. Energy efficiency comes first, because it presents the largest potential, it is applicable to all sectors of activities in all countries and because it is a pre-requisite to slow down the depletion rate of fossil fuel resources and to ensure a rational and significant increase of the share of renewable energy sources in total energy requirements. An energy efficiency strategy is not a slight adjustment to an energy supply policy but a new concept of economic policy which takes into account the costs of environmental degradation, growing energy insecurity and the medium and long term trend of increasing energy costs. Industrialised countries can and must reduce their total energy consumption. Most developing countries must increase their energy consumption for their economic development, but they can reach this objective with much lower growth than industrialised countries in the past by applying energy efficiency strategies. At world level, priority should be given to energy efficiency in the Transport sector, literally tied to oil products, and to electricity consumption in the household and service sectors since electricity production is a voracious and expensive consumer of natural resources. (author)

  3. World Energy Prospects and Stakes. A New Paradigm

    International Nuclear Information System (INIS)

    Laponche, B.

    2008-01-01

    To pursue the present path in the development of energy systems would lead to growing insecurity of supply and an unacceptable increase in greenhouse gas emissions. Both climate change (and other environmental hazards) and security of supply would rapidly become formidable obstacles for peace and development if energy consumption follows such an 'impossible path'. Energy security and environmental constraints converge to offer mankind both a challenge and opportunity: to invent a new model compatible with sustainable development, in order to 'meet the needs of the present without compromising the ability of future generations to meet their own needs'. Energy efficiency comes first, because it presents the largest potential, it is applicable to all sectors of activities in all countries and because it is a pre-requisite to slow down the depletion rate of fossil fuel resources and to ensure a rational and significant increase of the share of renewable energy sources in total energy requirements. An energy efficiency strategy is not a slight adjustment to an energy supply policy but a new concept of economic policy which takes into account the costs of environmental degradation, growing energy insecurity and the medium and long term trend of increasing energy costs. Industrialized countries can and must reduce their total energy consumption. Most developing countries must increase their energy consumption for their economic development, but they can reach this objective with much lower growth than industrialized countries in the past by applying energy efficiency strategies. At world level, priority should be given to energy efficiency in the Transport sector, literally tied to oil products, and to electricity consumption in the household and service sectors since electricity production is a voracious and expensive consumer of natural resources. (authors)

  4. A Carbon-Free Energy Future

    Science.gov (United States)

    Linden, H. R.; Singer, S. F.

    2001-12-01

    It is generally agreed that hydrogen is an ideal energy source, both for transportation and for the generation of electric power. Through the use of fuel cells, hydrogen becomes a high-efficiency carbon-free power source for electromotive transport; with the help of regenerative braking, cars should be able to reach triple the current mileage. Many have visualized a distributed electric supply network with decentralized generation based on fuel cells. Fuel cells can provide high generation efficiencies by overcoming the fundamental thermodynamic limitation imposed by the Carnot cycle. Further, by using the heat energy of the high-temperature fuel cell in co-generation, one can achieve total thermal efficiencies approaching 100 percent, as compared to present-day average power-plant efficiencies of around 35 percent. In addition to reducing CO2 emissions, distributed generation based on fuel cells also eliminates the tremendous release of waste heat into the environment, the need for cooling water, and related limitations on siting. Manufacture of hydrogen remains a key problem, but there are many technical solutions that come into play whenever the cost equations permit . One can visualize both central and local hydrogen production. Initially, reforming of abundant natural gas into mixtures of 80% H2 and 20% CO2 provides a relatively low-emission source of hydrogen. Conventional fossil-fuel plants and nuclear plants can become hydrogen factories using both high-temperature topping cycles and electrolysis of water. Hydro-electric plants can manufacture hydrogen by electrolysis. Later, photovoltaic and wind farms could be set up at favorable locations around the world as hydrogen factories. If perfected, photovoltaic hydrogen production through catalysis would use solar photons most efficiently . For both wind and PV, hydrogen production solves some crucial problems: intermittency of wind and of solar radiation, storage of energy, and use of locations that are not

  5. The future of nuclear energy in Europe

    International Nuclear Information System (INIS)

    Polie, P.

    1996-01-01

    An overview of current situation and future trends in nuclear energy production in Europe is made. Main factors characterizing differences in atomic policy of each particular European country are discussed. They are: readiness of the governments to implement a long-term energy policy; technical, economical and energy aspects; public opinion. Future development of new power plants is connected with overproduction of electricity, safety operation of present NPP, reduction of CO 2 emissions and public opinion. The energy policy of the European Union is also discussed and the necessity of transparency in industrial strategy of the governments is outlined

  6. World Energy Outlook 2004. The new report of the International Energy Agency; World Energy Outlook 2004. Le nouveau rapport de l'Agence Internationale de l'Energie

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-12-01

    Here is given the complete text of the summary of the World Energy Outlook report of the International Energy Agency. This report includes an alternative scenario which gives the image of an energy future more efficient and more respectful of the environment than those of the reference scenario. (O.M.)

  7. Sources, availability and costs of future energy

    International Nuclear Information System (INIS)

    Hart, R.G.

    1977-08-01

    An attempt is made to put the future energy scene in perspective by quantitatively examining energy resources, energy utilization and energy costs. Available data on resources show that conventional oil and gas are in short supply and that alternative energy sources are going to have to replace oil and gas in the not too distant future. Cost/applications assessments indicate that a mix of energy sources are likely to best meet our energy needs of the future. Hydro, nuclear and coal are all practical alternatives for meeting electrical needs and electricity is a practical alternative for space heating. Coal appears to be the most practical alternative for meeting much of the industrial energy need and frontier oil or oil from the tar sands appear to be the most practical alternatives for meeting the transportation need. Solar energy shows promise of meeting some of the space heating load in Canada if economical energy storage systems can be developed. The general conclusion is that the basic energy problem is energy conversion. (author)

  8. Costly waiting for the future gas energy

    International Nuclear Information System (INIS)

    1999-01-01

    The article discusses solutions while waiting for the pollution free gas power plant and points out that Norway will have to import Danish power from coal and Swedish nuclear energy for a long time yet. Various future scenarios are mentioned

  9. World Energy Data System (WENDS). Volume V. International organization data

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The World Energy Data System contains organized data on those countries and international organizations that may have critical impact on the world energy scene. WENDS has acquired and organized information on the following energy-related organizations: Asian Development Bank; European Economic Community; Inter-American Development Bank; International Atomic Energy Agency; International Energy Agency; Nuclear Energy Agency; United Nations; and World Bank. Within each organizational grouping most of the following topics are addressed: organization background, government background, energy background (energy policy and objectives), energy research and development activities, and international activities.

  10. The future of wind energy

    International Nuclear Information System (INIS)

    Koughnett, K. Van

    2003-01-01

    This presentation provided a brief history of wind power through the ages, and culminated with a look at installed capacity in 2002. Vision Quest has been in the wind power business since 1980, and the first turbines were installed in 1997. The company operates 40 per cent of Canada's wind capacity. Vision Quest became part of TransAlta in December 2002, the largest non-regulated electric generation and marketing company in Canada. The reasons for investing in wind power were briefly reviewed. The author then examined the physics of wind power and wind energy resources. The key resource issues were identified as being resource availability and constancy, which is similar to oil and gas exploration. Utility scale turbines were described. The pros and cons of larger turbines were compared, and it was shown that larger turbines offer better economics, a higher capacity factor and fewer turbines to permit. Manufacturers are focused on larger machines for offshore. The various permitting authorities and their areas of responsibility were listed, from municipal, provincial and federal levels. The key drivers are: wind speed, installed cost of equipment, revenue, operating expense, and financial expense. Project risks include: power purchase agreements, technology risk, financial risk, construction risk, regulation, operating risks, dependence on third parties, and reliance on advisors. Some of the challenges facing Vision Quest are being early, permitting, electric grid interconnection, openness of markets, market supply, demand forces, and getting capital costs down. tabs., figs

  11. World Energy Data System (WENDS). Volume VI. International agreement profiles

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The World Energy Data System contains organized data on those countries and international organizations that may have critical impact on world energy. The international agreement profiles in WENDS are all energy-related and are organized by energy technology. These are: coal; conservation; fusion; geothermal; nuclear fission; oil, gas, and shale; solar, wind, and ocean thermal; and other (cooperation in electrical power equipment acquisition, energy, energy research, etc.). The agreement profiles are accessible by energy technology and alphabetically by country.

  12. Opportunities and challenges for a sustainable energy future.

    Science.gov (United States)

    Chu, Steven; Majumdar, Arun

    2012-08-16

    Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

  13. Energy markets and European Integration: The World Energy Council role

    International Nuclear Information System (INIS)

    Murray, J.

    2002-01-01

    Energy market reform brings many benefits. Central and East Europe's challenge is to establish such markets when, at list in the case of electricity, the established market economies are still wrestling with how to apply competitive principles to this market. Design challenges include the natural monopoly elements within the electricity supply chain and the fact that it is, in practical terms, as essential social service. There is no one single model suitable to all markets at all stages of development. At the same time, there is a need for sustainable energy pricing, which means prices should cover all costs, with transparent and time-limited subsidies bringing the afford ability gap. Cross-border integration extends the benefits available from market reform by overcoming constraints at the national level and by broadening the geographical limits of a market. The World Energy Council works with its Central and East European members to analyse, understand and meet these challenges. (author)

  14. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  15. The Future of Education into a Digital World

    Directory of Open Access Journals (Sweden)

    Viorica Jelev

    2015-12-01

    Full Text Available The article investigate the role of communication in the digital age, between consumers and business and seeks to render highlighting changes within the Romanian society in the last 26 years, with the effects occurred in people's behavior, but also the changes of university education at the discipline I teach, Merchandising and International Marketing, with impact on the delivery of new information to the students of the Faculty of Economic Sciences, within Spiru Haret University. We live in an era where everything seems to change and evolve almost overnight. ”The world economic order went through a tectonic transformation, accompanied by, and in part caused by, groundbreaking advances in science and technology and the rise of globalization” . New industries start to develop, while others are on their last legs or already extinct in a world of advanced, emerging, and developing countries. As a result, lots of jobs from years past aren’t as relevant today as they once were, and many no longer exist. Therefore it’s easy to predict that eventually, today’s jobs will evolve into something completely different. And some will become obsolete. And it is those changes that lead to multiple consequences, affecting many other fields, one being education. We need a broad, flexible and motivating education that recognizes the different talents of all children and delivers excellence for everyone. Studying methods and curricula from the 20th century may no longer be relevant in the constantly evolving and changing world of the 21st century, in preparing you for your future job. And in order to maximize your chances of having a successful career in the field of your choice, you have to constantly adapt and evolve. Creative education involves a balance between teaching knowledge and skills, and encouraging innovation. New branches of industries will appear, and potential employers and employees will need to acquire new skills and abilities. And it is

  16. Development and future perspective of nuclear power plants. Current status and future prospect of world nuclear power plants

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2013-01-01

    Fukushima Daiichi NPS accidents occurred on 11 March 2011 brought about great effects on nuclear development not only in Japan but also in the world. In Japan restart of operation of periodically inspected nuclear power plants (NPPs) could not be allowed except Oi NPPs two units and most parties except Liberal Democratic Party (LDP) pledged to possibly phasing out nuclear power at House of Councillors election in July and public opinion was mostly against nuclear power after the accident. LDP clearly stated that, with the inauguration of new government last December, Japan would not pursuing the policy of the prior government of possibly phasing out nuclear power by the 2030s, but would instead make a 'zero-base' review of energy policy. Germany decided to close eight reactors immediately and remaining nine by the end of 2022. For many countries, nuclear power would play an important role in achieving energy security and sustainable development goals. In 2011 NPPs 6 units started operation with 2 units under construction, and in 2012 NPPs 3 units started operation with 7 units under construction. At present there are now over 400 NPPs operating in 31 countries and world trend seemed nuclear development was continued and number of countries newly deploying NPPs was increasing as much as eighteen. This article presented current status and future prospect of world NPPs in details. Japan would like to share its experiences and information obtained from the accident with the world and also promote NPPs overseas to meet the world's expectations. (T. Tanaka)

  17. Present and future of flat panel detectors in the world

    International Nuclear Information System (INIS)

    Inamura, Kiyonari

    2002-01-01

    Present status of development of flat panel detectors and their clinical application in the world have been surveyed, and future trends are also explored especially in the field of material researches and methods of manufacturing. Also the importance of role of medical physicists on user side is described because characteristic physics measurement of a detector assembly is unavoidable and essential in quality assurance in clinical routine and acceptance test in hospitals. Even though physics measurements and clinical evaluations on flat panel detectors have shown remarkable progress and advances in these several years, future problems of cost down in manufacturing and quality assurance to prevent individual differences between detector assemblies must be resolved. Results of evaluation in mammography, chest radiography, fluoroscopy for cardiovascular examination, bone tumor examination and radiotherapy application indicate that flat panel detectors are future promising materials. Their systematic operation is contributing to heighten accuracy of image examinations and preciseness of radiation therapy. Encouragement to medical physicists relevant to flat panel detectors is also raised in this paper. (author)

  18. World Bank support for renewable energy - the ASTAE experience

    International Nuclear Information System (INIS)

    Schaeffer, L.

    1999-01-01

    Historically, the World Bank has helped finance the generation, transmission and distribution of electricity as well as improvements in supply-side energy efficiency. The World Bank's ability to mainstream renewable energy technologies in developing countries is enhanced by the Global Energy Facility (GEF), the World Bank Solar Initiative (and the nascent Solar Development Corporation), the International Finance Corporation and the Asia Alternative Energy Unit (ASTAE). (orig./RHM)

  19. World Bank support for renewable energy - the ASTAE experience

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, L. [World Bank, Washington, DC (United States). Asia Alternative Energy Unit

    1999-07-01

    Historically, the World Bank has helped finance the generation, transmission and distribution of electricity as well as improvements in supply-side energy efficiency. The World Bank's ability to mainstream renewable energy technologies in developing countries is enhanced by the Global Energy Facility (GEF), the World Bank Solar Initiative (and the nascent Solar Development Corporation), the International Finance Corporation and the Asia Alternative Energy Unit (ASTAE). (orig./RHM)

  20. Reflections on the world energy situation

    International Nuclear Information System (INIS)

    Brand, B.

    1978-01-01

    After explaining the terms 'useful energy', 'primary energy' and 'end energy' this popular article gives a survey of the available potential and the utilisation of the primary energy sources (coal, petroleum, natural gas, oil shales and oil sands, nuclear energy, solar energy, geophysical processes, chemical-biological processes) as well as of the tendencies and consequences for the energy demand. (GG) [de

  1. World Future Mapping and Scenarios for the 21st Century

    Directory of Open Access Journals (Sweden)

    Vareikis Egidijus

    2015-12-01

    Full Text Available The aim of this text is to describe the methods of future studies, its possibilities and limitations, as well as to make some predictions about the real picture of the development of the 21st century. However, the planning is still not very reliable, and far from a “road map” framework. Thus, future studies are still balancing between science and scientific/artistic fiction. The set of methods of future investigation permits one to compose a few or even up to dozens of medium term or long term scenarios of the world’s future. There are a few well-proven laws of social and economic development as well as some partially predictable phenomena in the area of environment, biology, human ethic, etc. No future planning is secure from unpredictable phenomena – “black swans” – and their impact, nor secure from “political decisions” that destroy natural developments in society. So no one scenario can pretend to be absolutely right. The most frequent future scenarios are based on the wish to implement a copy of an existing “happy nation”, to fight undesirable trends, and create some kind of “dream society” while stimulating positives and inhibiting negative trends. The final version of a scenario depends also upon the “human factors”, e.g. knowledge, stereotypes of thinking, as well as the wishes of those who are financing the project. Generally they are “happy end” projects. This makes scenarios rather useless. Only the independent experts that present more realistic and reliable scenarios can help in the planning of medium term and long term futures. Currently many scenarios foresee the so-called American or European way of development, which is in fact the continuation of the existing world order. There is a growing number of publications about the emergence of China (and Russia as a great power as well as possibilities of a New Caliphate, New Messiah or new Orwellian style regimes.

  2. Towards a sustainable future of energy

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, Fidel

    1999-01-01

    The only form of having a future energy insurance is to find a road environmentally sustainable to take place and to use the energy. Their production and non alone use should be compatible with the environmental priorities of the society but rather they should be organized in such a way that they have a social consent, under the principle that so that there is economic development an economic and sure energy supply it should exist

  3. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  4. The nuclear energy: understand the future

    International Nuclear Information System (INIS)

    Barre, B.

    2007-01-01

    The nuclear appears for many scientists as the main contribution to the world energy supply in the context of a normal development, with a management of radioactive wastes in such a way that they create no hazard for the human and the environment. From the military origins to the electric power application, this book explains the technical, economical and political aspects of the nuclear energy, the challenges and the promises. (A.L.B.)

  5. Current and future industrial energy service characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  6. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-11

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle\\'s hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

  7. Present status on world alternative energy developments to oil

    International Nuclear Information System (INIS)

    Reddington, J.

    1980-01-01

    The IEA was established about five years ago in the OECD immediately after the oil crisis, and 20 countries have participated in it. Progress was observed in the control of the expansion of energy demand. The energy utilization in IEA member countries became efficient due to the contribution of new technologies, and owing to the improvement of productivity, the growth of energy consumption was less than 1% despite the GDP grew at the yearly rate of 2.5%. The expansion of the utilization of natural gas and coal is promising, but the projects of nuclear power generation are behind schedule. The short term prospect in petroleum market is discussed, and the price of crude oil tends to be stabilized. ''The prospect of energy in the world by 2000'' will be published by the IEA in the latter half of 1980. The scale of the development of nuclear power generation was reduced because the prediction of the rate of power generation growth was changed from 5.2% to 3.1%. The effect of new energy technologies on future energy market has been studied by the support of 15 countries, and it was recommended to give financial aid to heat pumps, coal liquefaction and the efficient recovery of oil and natural gas. Also the techniques for operating existing facilities under strict environment and safety regulations have been studied. (Kako, I.)

  8. Proceedings of World Renewable Energy Congress '99

    International Nuclear Information System (INIS)

    Kamaruzzaman Sopian; Mohd Yusof Othman; Baharuddin Yatim

    2000-01-01

    The congress discussed the following subjects, 1. The role of renewable energy in the next millenium; 2. Challenges in the commercialization of renewable energy; 3. The role and agenda for renewable energy towards sustainable development. Topics covered in the technical session were biomass conversion; solar thermal technologies and systems; solar photovoltaic s; renewable energy economics, financing and policy; renewable energy education; climate and the environment; energy and architecture; energy management; wind and hydro technologies and systems; hydrogen and fuel cell

  9. Future Oil and Gas Resources of the World: A Coming Supply Crisis?

    Science.gov (United States)

    Ahlbrandt, T. S.

    2002-05-01

    estimates. While petroleum resources in the world appear to be significant, certain countries such as the U.S. may run into import deficits particularly oil imports from Mexico and natural gas from Canada. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as Stanford, Massachusetts Institute of Technology and others have also used the estimates in global climate models. Many of these models using the USGS estimates, converge on potential oil shortfalls in 2036-2040. A transition to increased use of natural gas is expected, but gas in turn may experience similar supply concerns in the 2050-2060 time frame. A coal bridge-to-the-future model as well a realistic view of non-renewable resources in the future will be discussed. Non-conventional oil and gas are quite common in the petroleum provinces of the world and represent a significant resource yet to be fully studied and developed. Seventeen non-conventional AU, including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences, have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits are also underway. Digital products from the World Energy Project may be downloaded at (http://energy.cr.usgs.gov/energy/WorldEnergy/WEnergy.html).

  10. Perspectives of nuclear energy in the view of the World Energy Council

    International Nuclear Information System (INIS)

    Doucet, G.

    2003-01-01

    Since 1930, the World Energy Council (WEC) has been closely involved in problems associated with the use of nuclear power. At the meeting then held by the WEC Executive Committee in Berlin, Albert Einstein drew the attention of power utilities to this new source of energy. In addition to optimized use, technical progress, and waste management, the WEC regards aspects of safety, proliferation, and sustainability of nuclear power as matters of special importance. In the energy scenarios elaborated by the WEC since the 1980s, nuclear power plays one of the leading roles in the future energy mix. The sustainable management of energy resources, worldwide climate protection, but also equal access to energy for all people, require the use of nuclear power and the furtherance of its options. Moreover, the use of nuclear power in the industrialized countries helps to stabilize energy prices worldwide. This is in the interest especially of developing countries, for which low-cost, accessible energy sources are vital factors. The electricity supply crisis in California in 2001 has shown the continuity of supply to be one of the factors important in the deregulation of energy markets. Bottlenecks in electricity supply because of a lack of acceptance of electricity generation are problems affecting the future of industrialized countries. For instance, the increasing digitization of every-day life demands reliable power supply. In its studies of all available energy sources the WEC found no alternative to nuclear power. Factors of importance in the future development and use of nuclear power are public acceptance and the ability, and willingness, to take decisions in economic issues. Waste management, proliferation, safety, and research and development are other priorities. As a source of power protecting the climate, stabilizing costs, and offering a considerable potential, nuclear power is compatible with the objectives of sustainable development for the world of tomorrow

  11. The future energy situation in the Netherlands

    International Nuclear Information System (INIS)

    1980-01-01

    This book is the result of a study into the future energy situation in the Netherlands, performed by the electricity companies in the country. The first five chapters sketch the framework within which energy policy is currently forced to operate. Further technical and physical conditions are considered in the following six chapters, including environmental and safety aspects. A prognosis for energy demand in the Netherlands until the end of the century is presented and five different scenarios are discussed, as means of supplying this demand. Nuclear energy is one of the sources considered throughout the text. (C.F.)

  12. International nuclear energy law - present and future

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1988-01-01

    International nuclear energy law, as discussed in this article, is the law relating to the global, peaceful uses of nuclear science and technology. The position of nuclear law in the wide realm of law itself as well as the present status of nuclear legislation is assessed. This article also covers the development of international nuclear energy law, from the first nuclear law - the New Zealand Atomic Energy Act of 1945-, the present and the future. National and international organizations concerned with nuclear energy and their contribribution to nuclear law are reviewed

  13. Energy in a changing world. Inaugural lecture

    International Nuclear Information System (INIS)

    Van der Linde, C.

    2005-01-01

    In her lecture she emphasised that the expectation of the United States and the European Union after 1989 was 'strong globalisation' with increased integration of countries in international markets and multilateral organisations. In this system the US is mores-setter and the European Union its most important supporter. This expectation has only partially become reality. Different countries with different motivations have shun away from full integration and have at the same time shown economic successes, most notable China and to a lesser extent Russia since 2000. The result is a form of 'weak globalisation' that might become the most dominant trend for the future, threatening the mores of the market system. Many producing countries of oil and natural gas seem to opt for 'weak globalisation'. This has consequences for security of supply policies of consumer states. Especially countries that count on the international energy markets to deliver supplies, including most of the EU member states, have to critically review current policies. At this moment the EU is not tooled out for these developments and, as yet, incapable of collectively finding an answer to weak globalisation. [nl

  14. Growing America's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  15. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  16. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1999-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  17. The Japanese energy sector: Current situation, and future paths

    International Nuclear Information System (INIS)

    Takase, Kae; Suzuki, Tatsujiro

    2011-01-01

    As the world's third leading economy and a major importer of fuels, the choice of future energy paths and policies that Japan makes in the next few years will have a significant influence on the energy security of the world as a whole, and of the Northeast Asia region in particular. In this article we describe the current status of and recent trends in the Japanese energy sector, including energy demand and supply by fuel and by sector. We then discuss the current energy policy situation in Japan, focusing on policies related to climate change targets, renewable energy development and deployment, liberalization of energy markets, and the evolution of the Japanese nuclear power sector. The final section of the article presents the structure of the Japan LEAP (long-range energy alternatives planning software system) dataset, describes several alternative energy paths for Japan - with an emphasis on alternative paths for nuclear power development and GHG emission abatement - and touches upon key current issues of energy policy facing Japan, as reflected in the modeling inputs and results.

  18. The Japanese energy sector: Current situation, and future paths

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Kae, E-mail: kae@gdl.jp [Governance Design Laboratory, Inc., 2301 City Tower Bashamichi 5-71 Onoe-cho, Naka-ku, Yokohama, Kanagawa 231-0015 (Japan); Suzuki, Tatsujiro [University of Tokyo, Graduate School of Public Policy, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0081 (Japan)

    2011-11-15

    As the world's third leading economy and a major importer of fuels, the choice of future energy paths and policies that Japan makes in the next few years will have a significant influence on the energy security of the world as a whole, and of the Northeast Asia region in particular. In this article we describe the current status of and recent trends in the Japanese energy sector, including energy demand and supply by fuel and by sector. We then discuss the current energy policy situation in Japan, focusing on policies related to climate change targets, renewable energy development and deployment, liberalization of energy markets, and the evolution of the Japanese nuclear power sector. The final section of the article presents the structure of the Japan LEAP (long-range energy alternatives planning software system) dataset, describes several alternative energy paths for Japan - with an emphasis on alternative paths for nuclear power development and GHG emission abatement - and touches upon key current issues of energy policy facing Japan, as reflected in the modeling inputs and results.

  19. New challenges in energy future of Lithuania

    International Nuclear Information System (INIS)

    Gylys, J.; Ziedelis, S.; Adomavicius, A.

    2004-01-01

    Lithuania is a relatively small country with the population of 3,5 mln, disproportionately powerful energy industry and low energy consumption. Installed electricity generating capacities are more than 6 GW, but total power demand is less than 2 GW. Lithuania with average electricity consumption about 2900 kWh per person occupies one of the last places in Europe. Nuclear is the main source of electric energy in Lithuania: it covers 60 - 86% of total electricity production. Comparing consumption of all primary energy sources in all branches of economy nuclear covers about one third (32 - 37%) of the whole alongside with oil (31 - 33%) and natural gas (30 - 31%). At Ignalina NPP Lithuania are operating two the RBMK-1500 type reactors - the most advanced version of the former Soviet Union channel type reactor design series. The designed electrical power of RBMK-1500 reactor (1500 MW) is the biggest in the world for the single unit. The first unit of INPP was put into operation by the end of 1983 and the second unit in 1987. After Chernobyl accident the maximal allowed electrical power of each reactor at INPP was reduced to 1350 MW. The initial RBMK-1500 design at Ignalina NPP at the present time is substantially improved. More than 200 million US dollars of western countries support were spent, and numerous safety features were implemented. Nowadays both Lithuanian and foreign experts agree, that the safety level of Ignalina NPP is very similar to the western type NPP's of the same age. During accession process, one of the main EU requirements to energy sector of Lithuania was to close both reactors of Ignalina NPP, which were decided to be unsafe in principle. Despite all efforts of Lithuanian specialists and negotiators shutdown of the 1st reactor of INPP is foreseen at the end of 2004 and shutdown of the 2nd reactor is foreseen at the end of 2009. Closure of Ignalina NPP will decrease maximal power generating capacity to 2641 MW in 2010 and will cause a complex of

  20. World energy up to the year 2020. Pt.1

    International Nuclear Information System (INIS)

    Gomez Alonso, M.

    1980-01-01

    A large report by the Conservation Commission of the World Energy Conference (''World Energy: looking ahead to 2020'') has been summarized, with some emphasis on the reference made to Spain. In this first part, orojections of primary energy demand are made for the whole world and its three main economic regions, taking into account the rising prices of energy and the possibilities of conservation. An average growth of 3% per year in world energy demand is estimated for the next decades. Also the projections for potential energy supply around the world are described, arising from the resources and reserves of the different energy sources, both conventional and unconventional, revewable and non-renewable. (auth.)

  1. The energy future: cards on the table

    International Nuclear Information System (INIS)

    Chevalier, Jean-Marie; Derdevet, Michel; Geoffron, Patrice

    2012-01-01

    Since the Fukushima accident, energy policies have been revisited in many nuclearized countries. The energy debate is complex and must encompass several levels of reflection: an international level marked by the energy/climate equation, and by energy resources economy and geopolitics; a European level because we have made the commitment to build a common electricity and gas energy market; a national level where some strategic priorities can be put forward by governments and populations; a local level where energy-related experiments are more and more frequent. Thus, energy choices cannot be made within the single national and governmental frame any longer. At the international scale, it has become urgent to develop low-carbon energy systems. In the framework of the inevitable implementation of a responsible energy policy, the authors examine the main qualities that energy industries should develop: a safe, real-price and environmentally-friendly energy. These qualities must fit with a European framework capable to use complementarities in a perspective of competitiveness, environmental liability and short-, medium- and long-term security of supplies. All new opportunities for companies, in France and abroad, will develop in this framework as well. The energy future question has become essential and must be dealt beyond the national frame and in close relation with the climate question

  2. Renewable marine energies, resources for the future

    International Nuclear Information System (INIS)

    Le Lidec, Frederic

    2012-01-01

    The need for alternative sources of energy has never been more urgent than it is today. At the very time International Energy Agency estimates that demand will increase 30% by 2030, fossil fuels (oil, gas and coal) are beginning to dwindle, as the need to counter global warming imposes limits on CO 2 emissions. In this context, DCNS has entered a new field of innovation and development: ocean energy. Having included marine renewable energy as an intrinsic part of its strategic growth plan, DCNS is the only industrial company in the world to invest in all four key technologies in this sector: - the tidal energy generated using underwater turbines known as 'tidal turbines',' which convert the energy of marine tidal streams into electricity; - the ocean thermal energy conversion (OTEC) technology that exploits the difference of temperature between the warm surface water of tropical oceans and the cold water found in the ocean depths to generate electrical power 24 hours a day, 35 days a year; - the offshore wind energy generated by offshore floating wind turbines; - the wave energy technology which operates on the principle of recovering energy from the ocean swell. With 400 years of expertise in shipbuilding and its in-depth understanding of the marine environment, DCNS is committed to playing a major role in the development of this new ocean industry. (author)

  3. Challenges to a climate stabilizing energy future

    International Nuclear Information System (INIS)

    Green, C.; Dilmaghani, M.; Baksi, S.

    2007-01-01

    The paper surveys the major challenges to stabilizing the atmospheric CO 2 concentration. Climate change, and policies to deal with it, is viewed as an energy problem. The energy problem stems from the fact that no combination of carbon-free energies is currently capable of displacing fossil fuels as the main sources of the world's base load energy requirements. The paper provides rough estimates of the amount of carbon-free energy required to stabilize climate, the potential contribution of 'conventional' carbon-free energies, the contribution of renewable energies, and the size of an 'advanced energy technology gap'. The findings indicate that stabilizing CO 2 concentration will require a long-term commitment to research, develop, and eventually deploy new energy sources and technologies including hydrogen. The paper suggests that the role of technology is what makes stabilizing CO 2 concentration economically feasible. In this respect energy technology and economics are complementary, with advances in the former requiring something more than a reliance on market-based instruments, such as carbon taxes and emission permits. The analysis has implications for the credibility of commitments to target climate change-related factors such as CO 2 emissions.(author)

  4. Challenges to a climate stabilizing energy future

    International Nuclear Information System (INIS)

    Green, Chris; Baksi, Soham; Dilmaghani, Maryam

    2007-01-01

    The paper surveys the major challenges to stabilizing the atmospheric CO 2 concentration. Climate change, and policies to deal with it, is viewed as an energy problem. The energy problem stems from the fact that no combination of carbon-free energies is currently capable of displacing fossil fuels as the main sources of the world's base load energy requirements. The paper provides rough estimates of the amount of carbon-free energy required to stabilize climate, the potential contribution of 'conventional' carbon-free energies, the contribution of renewable energies, and the size of an 'advanced energy technology gap'. The findings indicate that stabilizing CO 2 concentration will require a long-term commitment to research, develop, and eventually deploy new energy sources and technologies including hydrogen. The paper suggests that the role of technology is what makes stabilizing CO 2 concentration economically feasible. In this respect energy technology and economics are complementary, with advances in the former requiring something more than a reliance on market-based instruments, such as carbon taxes and emission permits. The analysis has implications for the credibility of commitments to target climate change-related factors such as CO 2 emissions

  5. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  6. Finnish energy technologies for the future

    International Nuclear Information System (INIS)

    2007-01-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  7. Energy landscapes in a crowded world

    NARCIS (Netherlands)

    Pasqualetti, Martin; Stremke, Sven

    2018-01-01

    One of the main drivers of landscape transformation has been our demand for energy. We refer to the results of such transformations as "energy landscapes". This paper examines the definition of energy landscapes within a conceptual framework, proposes a classification of energy landscapes, and

  8. Alternative futures for world cereal and meat consumption.

    Science.gov (United States)

    Rosegrant, M W; Leach, N; Gerpacio, R V

    1999-05-01

    Fundamental changes in the global structure of food demand will lead to an extraordinary increase in the importance of developing countries in global food markets. Economic growth in developing countries is changing consumption patterns, with slower growth (and in many countries actual declines) in per capita food consumption of grains and rapidly growing per capita and total meat consumption, combined with induced growth in cereal feed consumption. The present paper examines the hypothesis, suggested by some researchers, that high-meat diets in developed countries limit improvement in food security in developing countries. These analysts argue that reduced meat consumption in developed countries would release cereals from livestock feed to food for poorer populations, thus improving food security in developing countries. Using the International Food Policy Research Institute (Washington, DC, USA) global food projections model, the international model for policy analysis of agricultural commodities and trade (see Rosegrant et al. 1995), we first analyse the implications for future global cereal and meat supply and demand resulting from changes in global income, population growth and other structural changes, then simulate alternative scenarios to examine the effect of large reductions in meat consumption in developed countries on food consumption and food security in developing countries. The paper shows that while the long-term prospects for food supply, demand and trade indicate a strengthening of world cereal and livestock markets, the improvement in food security in the developing world will be slow, and changes in the dietary patterns in developed countries are not an effective route to improvement in food security in developing countries.

  9. World oil and gas resources-future production realities

    International Nuclear Information System (INIS)

    Masters, C.D.; Root, D.H.; Attanasi, E.D.

    1990-01-01

    Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question

  10. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  11. Energy efficiency and human activity: Past trends, future prospects

    International Nuclear Information System (INIS)

    Schipper, L.; Meyers, S.; Howarth, R.B.; Steiner, R.

    1992-01-01

    This book, sponsored by the Stockholm Environmental Institute (SEI), presents a detailed analysis of changes in world energy use over the past twenty years. It considers the future prospects of energy demand, and discusses ways of restraining growth in consumption in order to meet environmental and economic development goals. Based on a decade of research by the authors and their colleagues at Lawrence Berkeley Laboratory in collaboration with the SEI, it presents information on energy use and the forces shaping it in the industrial, developing, and formerly planned economies. Looking separately at industry, passenger travel, freight transport, and the residential and service sectors, the authors describe the impact on energy use of growth in activity, structural change, and change in energy intensities, and discuss the role of energy prices and energy conservation policies in the industrial countries and the former Soviet Union. The book presents an overview of the potential for improving energy efficiency, and discusses the policies that could help realize the potential. While calling for strong action by governments and the private sector, the authors stress the importance of considering the full range of factors that will shape realization of the energy efficiency potential around the world

  12. Political electricity: What future for nuclear energy

    International Nuclear Information System (INIS)

    Price, T.

    1993-01-01

    Political Electricity first reviews the history of nuclear power development in nine countries (USA, France, Japan, UK, West Germany, Sweden, Italy, Switzerland, Australia). Second the book analyses major issues shaping the future of the industry: nuclear power economincs, nuclear hazards, alternative energy economics, and greenhouse gas constraints

  13. The Hurst exponent in energy futures prices

    Science.gov (United States)

    Serletis, Apostolos; Rosenberg, Aryeh Adam

    2007-07-01

    This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.

  14. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  15. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  16. Hydrogen, an energy carrier with a future

    International Nuclear Information System (INIS)

    Zimmer, K.H.

    1975-01-01

    The inefficient use, associated with pollutants, of the fossil energy carriers coal, crude oil and natural gas, will deplete resources, if the energy demand increases exponentially, in the not-too-distant future. That is the reason why the hydrogen-energy concept gains in importance. This requires drastic changes in structure in a lot of technological fields. This task is only to be mastered if there is cooperation between all special fields, in order to facilitate the economical production, distribution and utilization of hydrogen. (orig.) [de

  17. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  18. Can renewable energy power the future?

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Honnery, Damon

    2016-01-01

    Fossil fuels face resource depletion, supply security, and climate change problems; renewable energy (RE) may offer the best prospects for their long-term replacement. However, RE sources differ in many important ways from fossil fuels, particularly in that they are energy flows rather than stocks. The most important RE sources, wind and solar energy, are also intermittent, necessitating major energy storage as these sources increase their share of total energy supply. We show that estimates for the technical potential of RE vary by two orders of magnitude, and argue that values at the lower end of the range must be seriously considered, both because their energy return on energy invested falls, and environmental costs rise, with cumulative output. Finally, most future RE output will be electric, necessitating radical reconfiguration of existing grids to function with intermittent RE. - Highlights: •Published estimates for renewable energy (RE) technical potential vary 100-fold. •Intermittent wind and solar energy dominate total RE potential. •We argue it is unlikely that RE can meet existing global energy use. •The need to maintain ecosystem services will reduce global RE potential. •The need for storage of intermittent RE will further reduce net RE potential.

  19. Renewable Energy Generation in India: Present Scenario and Future Prospects

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Singh, Bharat; Østergaard, Jacob

    2009-01-01

    The development of Renewable Energy Sources (RES) is necessary for the sustainable development of any country due to depleting fossil fuel level, climbing fossil fuel prices across the world and more recently pressure for reduction emission level. In India, several schemes and policies are launched...... by the government to support the use of RES to achieve energy security and self-sufficiency. This paper discusses the present scenario and future prospects of RES in India. Various schemes such as financial assistance, tax holiday etc for promoting RESs development and utilization are also discussed. The present...

  20. Energy for the future. New solutions - made in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Today we are once again in the middle of a new industrial and energy technology revolution. From a technology point of view, it is even a huge positive, as it opens up new markets for new and more energy and natural efficient solutions. Under this aspect, the paper under considerations consists of the following contributions: (a) From grassroots movement to political power; (b) Constructive experimentation; (c) Degrees for a green future (German universities offer a wide variety of courses in renewable energy); (d) Climbing the green career ladder (Diverse career opportunities in the renewable energy sector); (e) Natural power plants: Energy you can count on (German researchers successfully focus on the sun's energy); (f) Concentrated energy from the ocean (Dynamic development of wind energy in Germany); (g) Powerful waves and extraordinary treasures (German water experts are in demand all over the world); (h) Designer diesel and deep heat (Germany leads the fields in biofuels); (i) Sending the right signals (Climate protection as an opportunity for change); (k) Car today, bike tomorrow (Environmental psychologist Ellen Matthies); (l) The secret lies under the Bonnet (Hybrid technology paves the way for ''clean'' buses and trains); (m) Pioneering the ''silent'' car (Researchers put their foot on the accelerator for electromobility); (n) The school of the future (Students at RWTH Aachen University design an energy project for the classroom).

  1. Energy for the future. New solutions - made in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Today we are once again in the middle of a new industrial and energy technology revolution. From a technology point of view, it is even a huge positive, as it opens up new markets for new and more energy and natural efficient solutions. Under this aspect, the paper under considerations consists of the following contributions: (a) From grassroots movement to political power; (b) Constructive experimentation; (c) Degrees for a green future (German universities offer a wide variety of courses in renewable energy); (d) Climbing the green career ladder (Diverse career opportunities in the renewable energy sector); (e) Natural power plants: Energy you can count on (German researchers successfully focus on the sun's energy); (f) Concentrated energy from the ocean (Dynamic development of wind energy in Germany); (g) Powerful waves and extraordinary treasures (German water experts are in demand all over the world); (h) Designer diesel and deep heat (Germany leads the fields in biofuels); (i) Sending the right signals (Climate protection as an opportunity for change); (k) Car today, bike tomorrow (Environmental psychologist Ellen Matthies); (l) The secret lies under the Bonnet (Hybrid technology paves the way for ''clean'' buses and trains); (m) Pioneering the ''silent'' car (Researchers put their foot on the accelerator for electromobility); (n) The school of the future (Students at RWTH Aachen University design an energy project for the classroom).

  2. Geopolitics of energy in a transition world

    International Nuclear Information System (INIS)

    Giraud, A.

    1995-01-01

    Here is a study about worldwide energy forecasting from an economic analysis of our days, in developed countries, and with a forecasting about energy demand in developing countries. Nuclear power, petroleum, natural gas, coal are studied. The problem of environment protection which help some energy like gas or be prejudicial to some other like coal is evoked. The most important question is about the formidable energy demand for south-east Asia countries and how it will be answered. 13 figs

  3. Creating a sustainable energy future for Australia

    International Nuclear Information System (INIS)

    Sonneborn, C.L.

    1995-01-01

    A joint industry approach is needed to put in place a sustainable energy system that is economically and technologically feasible. The industry sectors involved must include the renewable energy industry, energy efficiency industry and the natural gas industry. Conventional forecasts of energy futures make far less use of these industries than is economically and technically feasible. Existing forecasts make the trade off between acceptable levels of economic growth, limitation of greenhouse gases and dependence on coal and oil appear more difficult than they actually are and overlook the benefits of sustainable energy industry development. This paper outlines how national gains from carefully targeted action can exceed national losses while substantially reducing greenhouse gases and creating jobs at zero or negative costs. (author). 3 figs., 27 refs

  4. Energy Efficiency Policies around the World: Review and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    Since 1992 the World Energy Council (WEC) and ADEME (Agency for Environment and Energy Efficiency, France) have been collaborating on a joint project ''Energy Efficiency Policies and Indicators'' with technical assistance by ENERDATA (France). The latest report presents and evaluates energy efficiency policies in nearly 70 countries around the world, with a specific focus on five policy measures: mandatory energy audits, ESCO's, energy incentives for cars, energy efficiency obligations for utilities, and 'packages of measures' for solar water heaters. The report describes the implemented measures and identifies those proven most effective.

  5. Technology utilization and energy efficiency: Lessons learned and future prospects

    International Nuclear Information System (INIS)

    Rosenberg, N.

    1992-01-01

    The concept of energy efficiency within the context of economic and environmental policy making is quite complex. Relatively poor economic performance ratings can weaken the validity of some energy supply systems which tend to reduce energy inputs for specific volumes of output, but don't minimize total cost per unit product; and industry is often slow to adopt new technologies, even those proven to reduce total costs. In this paper, the problems connected with growth in energy requirements in relation to product are first examined within the context of world economic performance history. Three key elements are shown to explain the differences in energy intensity and consumption typology among various countries, i.e., availability of energy sources, prices and government policies. Reference is made to the the role of recent energy prices and policies in the United States whose industrialization has been directly connected with the vast availability of some energy sources. In delineating possible future energy scenarios, the paper cites the strong influence of long term capital investment on the timing of the introduction of energy efficient technologies into industrial process schemes. It illustrates the necessity for flexibility in new energy strategies which are to take advantage the opportunities offered by a wide range of alternative energy sources now being made available through technological innovation

  6. Prospects for the world nuclear energy market

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    Over the last few years projections of nuclear power generating capacity growth for the next two decades have progressively decreased. Dwindling load growth, increasing load lead time, costs of delays and high cost inflation, industrial recession, and fuel cycle delays are discussed as the main causes of the setback. The state of the fuel cycle business in the world market is examined and data are presented and discussed for predicted world supply and demand. Nuclear plans and fuel policies and requirements are then examined for individual countries.

  7. The future of nuclear energy (group 17)

    International Nuclear Information System (INIS)

    Moncomble, J.E.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the perspective of nuclear energy in France. Nuclear energy is an important element to assure the stability of the energy supply of the country. Uranium purchases appear to be safe for being diversified and the price of the nuclear fuel contributes to only 20% of the price of the kWh compared to 40% for natural gas. Today the competitiveness of nuclear energy is assured but technological progress concerning gas turbines might challenge it in the years to come. Sustainable development implies not only abundant energy for all but also a preserved environment for the generations to come. The development of nuclear energy is hampered by the lack of satisfactory answers to the problem of fuel back-end cycle and more generally to the issue of radioactive wastes. On the other hand nuclear energy presents serious assets concerning the preservation of environment: nuclear energy as a whole from the uranium ore mining to the production of electricity emits very few atmospheric pollutants and greenhouse effect gases, and requires little room for its installations. The composition of the future energy mix will depend greatly on opinions and assumptions made about the reserves of fossil fuels, technological perspectives and the perception by the public of industrial risks (environmental damage, nuclear accidents...). (A.C.)

  8. Coal and nuclear power: Illinois' energy future

    International Nuclear Information System (INIS)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations

  9. Renewable energy: power for a sustainable future

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2001-01-01

    By the end of the 21 century, according to United National projections, the number of people on the earth is likely to have approximately doubled. How can a world of 10 to 12 billion people be provided with adequate supplies of energy, cleanly, safely and substantially? There is a growing consensus that renewable energy sources will be a very important part of the answer. The growing interest in 'renewables' has been prompted in part, by increasing concern over the pollution, resource depletion and possible climate change implications of our continuing use of conventional fossil and nuclear fuels. But recent technological developments have also improved the cost-effectiveness of many of the renewables, making their economic prospects look increasingly attractive. It describes the achievements and progress made in hydropower, biomass conversion, geothermal, solar thermal technology, wind energy conversion and the increasing usage of photovoltaics. It is evident that global warming is setting in and is going to change the climate as well as the terrain of many countries unless drastic measures are taken. The Kyoto meeting emphasised the importance of limiting CO 2 emissions and to abide by some form of agreement to reduce emissions. Present study concludes that renewable energy penetration into the energy market is much faster than was expected in recent years and by 2030, 15-20 percent of our prime energy will be met by renewable energy. (Author)

  10. Future energy options for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z P

    1982-05-01

    An educated guess is made of the energy demand in developing countries well into the next century in order to estimate the possible role of new and renewable sources in meeting this demand. The world is roughly divided into industrialized (IND) and developing (LDC) countries. A plot of energy demand in both parts shows a possible structure of mixed energy to meet LDC demand, but there is a gap between demand and supply from conventional sources in LDCs that has to be met by new and renewable sources. When the demand for specific energy forms is projected, as much as two thirds of the final energy needed from new sources should be based on centralized-electricity and liquid-fuels technologies. Solar and geothermal energy must compete with nuclear and thermonuclear breeders, while solar prospects for chemical fuel supply in LDCs lacking adequate coal reserves seems promising. There is a large gap in research and development (R and D) spending on new energy between the two parts, which means that LDCs will have inappropriate technology at a high price. An increase in R and D spending on a regional basis should target funds to appropriate options. 6 references, 7 figures.

  11. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  12. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  13. Energy for Tomorrow's World - Acting Now

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    WEC, with over 75 years of history, is concentrating on study and research about production and utilization of sustainable energy and regional and technology program for the maximum benefit of human beings. WEC is a global multi energy organization with supports from private companies, public corporations, governments, academics and famous people in around one hundred countries. The activities of WEC include major energy production and consumption market. 18 figs., 17 tabs.

  14. 2010 World bio-energy conference

    International Nuclear Information System (INIS)

    2010-01-01

    After having evoked the bio-energy price awarded to a Brazilian for his works on the use of eucalyptus as energy source, this report proposes a synthesis of the highlights of the conference: discussions about sustainability, bio-energies as an opportunity for developing countries, the success of bio-energies in Sweden, and more particularly some technological advances in the field of biofuels: a bio-LPG by Biofuel-solution AB, catalysis, bio-diesel from different products in a Swedish farm, a second generation ethanol by the Danish company Inbicon, a large scale methanization in Goteborg, a bio-refinery concept in Sweden, bio-gases

  15. Long-term strategies in world energy supply

    International Nuclear Information System (INIS)

    Haefele, W.

    1980-01-01

    The International Institute for Applied Systems Analysis of Laxenburg, Austria has carried out a comprehensive systems analysis in which the problems of the long-term world energy supply are treated first qualitatively and then quantiatively. The results of this five-year study have been published in a book entitled 'Energy in a Finite World: a Global Energy Systems Analysis.' This summary of the book indicates that the world's energy supply in the next fifty years will not be limited by resources, but the rates at which new technologies will be built up. (orig.) [de

  16. Towards a sound nuclear energy future

    International Nuclear Information System (INIS)

    Syrota, J.

    1998-01-01

    Operators of the world's nuclear plants have compiled an impressive record of improvement over the past several years. This success is due to many factors, one of which is an unprecedented level of information exchange. The Chernobyl accident in 1986, which led to the formation of World Association of Nuclear Operators (WANO), underscored the need for nuclear utilities worldwide to exchange information and cooperate in a way that transcends cultural, language and political boundaries. While the world's nuclear operators have achieved significant improvements in nuclear safety and reliability, it is an unfortunate reality that the memories of the accidents at Three Mile Island and even Chernobyl fade over time. Complacency can be the natural result of progress and success. If nuclear power is to continue to play a significant role in the world's energy mix, the positive trends of performance improvement must be sustained and enhanced - and that can best be achieved through continued mutual cooperation, and the will to avoid a natural trend toward complacency. (author)

  17. Risoe energy report 8. The intelligent energy system infrastructure for the future

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2009-09-15

    This report is volume 8 in a series started in 2002, and will take its point of reference in the need for the development of a highly flexible and intelligent energy system infrastructure which facilitates substantial higher amounts of renewable energy than today's energy systems. This intelligent and flexible infrastructure is a prerequisite in achieving the goals set up by IPCC in 2007 on CO{sub 2} reductions as well as ensuring the future security of energy supply in all regions of the world. The report presents a generic approach for future infrastructure issues on local, regional and global scale with focus on the energy system. The report is based on chapters and updates from Risoe Energy Report 1 - 7, as well as input from contributors to the DTU Climate Change Technology workshops and available international literature and reports. (author)

  18. World Energy Council 15th Congress

    International Nuclear Information System (INIS)

    Consejo Mundial de la Energia.

    1992-01-01

    All energetic aspects collected within the main topic 'Energy and life' are gathered in 14 volumes. Environmental questions were devoted special attention because of public concern. The congress resolved to promote clean technologies and renewable energies with less environmental impact but without forgetting profitability. Experts in energetic topics attended the Congress

  19. Vision of future energy networks - Final report; Vision of future energy networks - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.

    2008-07-01

    In the framework of the project 'Vision of Future Networks', models and methods have been developed that enable a greenfield approach for energy systems with multiple energy carriers. Applying a greenfield approach means that no existing infrastructure is taken into account when designing the energy system, i.e. the system is virtually put up on a green field. The developed models refer to the impacts of energy storage on power systems with stochastic generation, to the integrated modelling and optimization of multi-carrier energy systems, to reliability considerations of future energy systems as well as to possibilities of combined transmission of multiple energy carriers. Key concepts, which have been developed in the framework of this project, are the Energy Hub (for the conversion and storage of energy) and the Energy Interconnector (for energy transmission). By means of these concepts, it is possible to design structures for future energy systems being able to cope with the growing requirements regarding energy supply. (author)

  20. The strictest energy requirements in the world

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jensen, Jens Stissing

    2013-01-01

    50 years of progressively strengthened energy requirements in the Danish building code appear to be a success, as the energy consumption has remained constant despite an increase in the total area in requirement of heating. This article however argues that the building code mechanism is heavily...... influenced by path dependent regime structuration processes, and that the mechanism constitutes a barrier to more radical developments within low energy housing. Few and poorly organized frontrunner activities within low energy housing have accordingly taken place in a Danish context during the past decades....... Finally it is proposed that the current development within the energy system provides opportunities for cultivating an improved transitional awareness and for carrying out experimental activities that may challenge the path dependencies of prevailing regime structuration processes....

  1. Materials aspects of world energy needs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Plenary session papers presented by participants from both developed and developing countries contributed to the information base on materials and energy outlook, international cooperation, economic aspects, and environmental considerations and established the theme for the subsequent workshop sessions. Workshops on ten major aspects of materials-energy interrelationships provided the opportunity of open and informal discussion of critical issues in each area and the development of reasonable consensus on problems and potential solutions. A separate abstract for each of the 10 plenary-session papers, the 10 workshop reports, and the 4 selected papers will appear in Energy Research Abstracts (ERA) and Energy Abstracts for Policy Analysis (EAPA). The brief issue summaries (preprints) will appear individually (total of 75) only in the DOE Energy Data Base.

  2. Bio energy: Bio energy in the Energy System of the Future

    International Nuclear Information System (INIS)

    Finden, Per; Soerensen, Heidi; Wilhelmsen, Gunnar

    2001-01-01

    This is Chapter 7, the final chapter, of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Factors leading to changes in the energy systems, (2) The energy systems of the future, globally, (3) The future energy system in Norway and (4) Norwegian energy policy at the crossroads

  3. Energy independence versus world market; Independance energetique versus marche mondial

    Energy Technology Data Exchange (ETDEWEB)

    Noel, P

    2003-07-01

    The geo-policy is the unity of the rules and political actions coming from taking into account the problem of the national energy demands facing the world energy market. The aim of this paper is to show that these actions are confronted to two paradigms of public policy. One is the research of the energy policy, the other is the effort of building and safety of the world market. (A.L.B.)

  4. Integrating hydrogen into Canada's energy future

    International Nuclear Information System (INIS)

    Rivard, P.

    2006-01-01

    This presentation outlines the steps in integrating of hydrogen into Canada's energy future. Canada's hydrogen and fuel cell investment is primarily driven by two government commitments - climate change commitments and innovation leadership commitments. Canada's leading hydrogen and fuel cell industry is viewed as a long-term player in meeting the above commitments. A hydrogen and fuel cell national strategy is being jointly developed to create 'Win-Wins' with industry

  5. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  6. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  7. Alberta's clean energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper deals with the future of clean energy in Alberta. With the present economic growth of the oil sands industry in Alberta, it is expected that there will be very considerable increases in job opportunities and GDP in both Canada and US. The challenges include high-energy demand and reduction of the carbon footprint. Alberta has adopted certain approaches to developing renewable and alternate forms of energy as well as to increasing the efficiency of present energy use and raising environmental consciousness in energy production. Three areas where the effects of clean energy will be felt are energy systems, climate change, and regional impacts, for instance on land, water, and wildlife. Alberta's regulatory process is shown by means of a flow chart. Aspects of oil sands environmental management include greenhouse gas targets, air quality assurance, and water quality monitoring, among others. Steps taken by Alberta to monitor and improve air quality and water management are listed. In conclusion, the paper notes that significant amounts of money are being pumped into research and development for greenhouse gas and water management projects.

  8. World Energy Outlook 2007 Special Report: Focus on Energy Poverty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Energy poverty affects many Indians and is an important issue for the Indian government. The number of households with access to electricity has risen over the past couple of decades, but access is still far from universal and the availability of modern cooking fuels and technologies is still limited, especially in rural areas. We use an energy development index, based on access to electricity and cleaner cooking fuels and on overall electricity generation per capita, to emphasise the disparity in energy poverty across India and relative to other developing countries. There are still some 412 million people without access to electricity in India. In all three WEO scenarios, the number of people without access declines, but it falls much faster in the High Growth Scenario. In that scenario, all households in India have access to electricity in 2030. In the Reference Scenario, the electrification rate in 2030 in India is 96% but nearly 60 million people in rural areas will still lack access. At an investment cost of $41 per person, it would cost some $17 billion to connect all those without electricity today to the central grid. But gridbased electrification is often not available to remote villages and households, because of the high cost of expanding the network. Diesel generators, mini-hydro, wind turbines, biomass gasifiers and photovoltaics, or a combination of these, could be more economic. The number of people relying on fuelwood and dung for cooking and heating declines from 668 million in 2005 to 395 million in 2030 in the High Growth Scenario, 77 million fewer people than in the Reference Scenario. About 22% of the population would still rely on these fuels in India in 2030, even with higher growth. According to the World Health Organization, the use of fuelwood and dung for cooking and heating causes over 400 000 premature deaths in India annually, mostly women and children. The concentration of particulate matter in the air in Indian households using

  9. Main tendencies meeting future energy demands

    International Nuclear Information System (INIS)

    Flach, G.; Riesner, W.; Ufer, D.

    1989-09-01

    The economic development in the German Democratic Republic within the preceding 10 years has proved that future stable economic growth of about 4 to 4.5% per annum is only achievable by ways including methods of saving resources. This requires due to the close interdependences between the social development and the level of the development in the energy sector long-term growth rates of the national income of 4 to 4.5% per annum at primary energy growth rates of less than 1% per annum. It comprises three main tendencies: 1. Organization of a system with scientific-technical, technological, economic structural-political and educational measures ensuring in the long term less increase of the energy demand while keeping the economic growth at a constant level. 2. The long-term moderate extension and modernization of the GDR's energy basis is characterized by continuing use of the indigenous brown coal resources for the existing power plant capacities and for district heating. 3. The use of modern and safe nuclear power technologies defines a new and in future more and more important element of the energy basis. Currently about 10% of electricity in the GDR are covered by nuclear energy, in 2000 it will be one third, after 2000 the growth process will continue. The experience shows: If conditions of deepened scientific consideration of all technological processes and the use of modern diagnosis and computer technologies as well as permanent improvement of the safety-technological components and equipment are guaranteed an increasing use of such systems for the production of electricity and heat is socially acceptable. Ensuring a high level of education and technical training of everyone employed in the nuclear energy industry, strict safety restrictions and independent governmental control of these restrictions are important preconditions for the further development in this field. 3 refs, 5 tabs

  10. Risoe energy report 10. Energy for smart cities in an urbanised world

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L [eds.

    2011-11-15

    This Risoe Energy Report is the tenth in a series which began in 2002. Volume 10 takes as its point of reference the rapid urbanisation of the world. UN population statistics show that global population is expected to surpass 9 billion by 2050, and nearly 6.3 billion people will be living in urban areas. Urban regions will thus absorb most of the world's population increase in the next four decades while drawing in some of the rural population as well: by 2050 there will be 600 million fewer people in rural areas. The large cities and megacities created by this rapid urbanisation contribute to climate change, and in turn are affected by its consequences. For these and other reasons we need a new approach to what cities should do to become more liveable, economically successful, and environmentally responsible. Megacities of the future need to be smart cities: that is, energy-efficient, consumer-focused and technologydriven. This cannot be achieved simply by improving existing technologies. Instead we need a new smart approach based on smart solutions. With this background the report addresses energy related issues for smart cities, including energy infrastructure, onsite energy production, transport, economy, sustainability, housing, living and governance, including incentives and barriers influencing smart energy for smart cities. (LN)

  11. Risoe energy report 10. Energy for smart cities in an urbanised world

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2011-11-15

    This Risoe Energy Report is the tenth in a series which began in 2002. Volume 10 takes as its point of reference the rapid urbanisation of the world. UN population statistics show that global population is expected to surpass 9 billion by 2050, and nearly 6.3 billion people will be living in urban areas. Urban regions will thus absorb most of the world's population increase in the next four decades while drawing in some of the rural population as well: by 2050 there will be 600 million fewer people in rural areas. The large cities and megacities created by this rapid urbanisation contribute to climate change, and in turn are affected by its consequences. For these and other reasons we need a new approach to what cities should do to become more liveable, economically successful, and environmentally responsible. Megacities of the future need to be smart cities: that is, energy-efficient, consumer-focused and technologydriven. This cannot be achieved simply by improving existing technologies. Instead we need a new smart approach based on smart solutions. With this background the report addresses energy related issues for smart cities, including energy infrastructure, onsite energy production, transport, economy, sustainability, housing, living and governance, including incentives and barriers influencing smart energy for smart cities. (LN)

  12. World Energy Needs and Offshore Potential of hydro energy and pump storage

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2008-09-01

    In 2008, 6,5 Billion people have an overall income of 50.000 Billion US $, use 10 Billion oil equivalent of primary energy, partly through 15.000 TWh of electric power. Most is used by 1 Billion people from industrialized countries, with 10.000 KWh/ year per capita at a cost of 10 cents per KWh, i.e. 1.000 $/year, 3 % of their income close to 30.000 $ per year. In the second half of the Century, we may hope that 10 Billion people will reach this average income per capita; with a better energetic efficiency but a larger share of it through electricity. The world Electricity needs may well be multiplied by 5 along the century. It is possible at a reasonable cost to transport electricity along thousands of Km but this is used only now for 1 %. It is possible to store electricity after generation (pumped storage plants between 2 lakes) but it is used now for only 1 %; energy storage is usually before electricity generation (fuel storage or lakes). But these two possibilities of storage of electricity after generation and long distance transport are the key of the future utilization of renewable energies. The key problem of wind and solar electricity is the intermittent supply and the relevant need of storage along 1 or 2 days. Without storage, wind and solar energies may be used one third of time and should be associated with much more fossil fuel power for two thirds. As fossil fuel power will be limited, wind and solar should be very limited. 2) With storage, wind and solar energies may be used over 80 % of time, much more than fossil fuel. For 10.000 TWh/year of wind energy, a 2 days storage requires a 55 TWh/storage. For 30.000 TWh/year of sun energy, a 16 hours storage requires a 55 TWh/storage. As some storage may be common and as there may be storage is some solar plants, the total storage need may be 80 to 100 TWh. It may be between two lakes: - Possibly 10 to 20 TWh between 2 onshore lakes, as for 2 TWh now (100 GW x 20 hours) - Possibly 10 to 20 TWh from

  13. The energy challenges in the 21. century according to the World Energy Council (WEC)

    International Nuclear Information System (INIS)

    Ailleret, F.

    2000-01-01

    The World Energy Council (WEC) published a study in 1993 concerning energy for the future. The predictions made at that time are still valid, and the decision was made to complete the document by explaining the lines of action to be followed for the future. The time frame selected was 2020, with a larger horizon extending to the first half of the century. Some assumptions were modified. The first one concerned the expected world population in 2020. It is now expected to reach 8 billion in 2050 versus the 10 billion previously predicted, with the bulk of the increases being felt in urban areas. Economic growth was slower than expected during the past ten years and is now expected to continue at 3 per cent expansion per annum, with increasing inequities between North and South in developed countries. The protection of the environment is gaining momentum, from local concerns such as air pollution and the control of urban, industrial, and agricultural pollution, to regional concerns like acid rains to global concerns about climate changes. The WEC elaborated on the energy challenges by grouping them into three categories: accessibility, availability, and acceptability. Accessibility means supplying an additional 2 billion people with commercial energy in the world by 2020. All energy resources will be called upon. It also represents an economic challenge. Availability is concerned with continuity and quality of the energy supplied. Once again, all resources will be required, with necessary diversification of sources and supply lines. Renewable energies might be part of the solution, but the costs inherent to their exploitation imposes constraints. Acceptability is related to the use of certain technologies for the production of energy, like nuclear technology for the production of electricity. In the case of fossil fuels, natural gas is the number one choice for a number of applications. Individual transportation needs will continue to rely primarily on petroleum. Coal

  14. Energy: What About the Future? Easy Energy Reader, Book IV.

    Science.gov (United States)

    Information Planning Associates, Inc., Rockville, MD.

    Four articles about future energy technologies and problems comprise this collection of readings intended for the junior high school language arts curriculum. Each entry has been scored for readability according to the Gunning Fog Index. By referring to these ratings, a teacher can provide students with increasingly more challenging reading…

  15. World Energy Outlook - 2050: Policy Options

    Energy Technology Data Exchange (ETDEWEB)

    Ghouri, Salman Saif

    2007-07-01

    The paper analyzes the historical trends, resource distribution and forecasts the regional total primary energy consumption (TPEC) to 2050. The purpose is to provide a most probable path so that appropriate policies can be made to enhance/slowdown the energy consumption without hampering economic growth. Global TPEC is most likely to reach 763-1259 Quadrillion Btu (QBtu) to 2050 with reference case trending between and stood at 978 QBtu. By 2050 the equation of TPEC is expected to be tilted in favor of developing countries when their share is increased from 47 percent in 2003 to 59 percent. Asia developing region becomes the largest consumer of TPEC; however on per capita basis it remains the lowest after Africa. The forecast gives some guidance to policy makers. Which policy measures should be taken to ensure availability of predicted level of energy resources? How should we mobilize sizeable investment to increase the expected production/capacity/logistic both in the producing and consuming countries? Simultaneously, what strategic measures should be taken: to improve energy efficiency/conservation, development/promotion of renewable sources of energies and check population growth to downward shift the probable TPEC path without compromising economic growth, productivity and quality of life? (auth)

  16. The energy future and the chemical fuels

    International Nuclear Information System (INIS)

    Bockris, J.O'M.

    1976-01-01

    An account is first given of the origin of present chemical fuels, with particular reference to the lastingness of coal. Methods of estimation of these fuels are discussed and the greenhouse effect arising from the burning of coal is described. Consideration is then given to methods available for extending the uses of chemical fuels, including interfacing them with new inexhaustible, clean energy sources. Finally, accounts are given of the Hydrogen Economy and of the production of chemical fuels from wind energy in massive wind belts. The paper includes references to the part that nuclear power was expected to play in future energy policy. Problems of breeder reactor development and the safety and management of plutonium and radioactive wastes are discussed. (author)

  17. The energy challenge of a post-fossil world: Seasonal energy storage

    International Nuclear Information System (INIS)

    Forsberg, C.

    2009-01-01

    Fossil fuels are an energy source and an energy storage system. The demand for electricity and heat varies daily, weekly, and seasonally with seasonal variations often varying by a factor of two or more. The variable demand is met by fossil fuels because 1) fossil fuels are inexpensive to store in coal piles, oil tanks, and underground natural gas storage facilities and 2) the capital cost of the equipment to burn fossil fuels and convert the energy to heat or electricity is small relative to the cost of the fossil fuels. Concerns about climate change may limit the conventional use of fossil fuels. The alternative low-carbon energy production systems (nuclear, fossil fuels with carbon dioxide sequestration, wind, and solar) are capital-intensive energy sources with low operating costs. To obtain favorable economics these technologies must operate at full capacity; but, their output does not match energy demand. We have energy alternatives to fossil fuels but no replacements for the energy storage capabilities or fossil fuels. Proposed strategies and technologies to address the grand storage challenge (including seasonal storage of electricity) are described. The options suggest a nuclear-renewable future to address seasonal energy storage needs in a low-carbon world.

  18. Future Energy Grid. Migration paths into the energy Internet; Future Energy Grid. Migrationspfade ins Internet der Energie

    Energy Technology Data Exchange (ETDEWEB)

    Appelrath, Hans-Juergen [Oldenburg Univ. (Germany); Kagermann, Henning [acatech - Deutsche Akademie der Technikwissenschaften, Berlin (Germany). Hauptstadtbuero; Mayer, Christoph (eds.) [OFFIS e.V., Oldenburg (Germany)

    2012-07-01

    The present study describes the migration path that must be taken up to the year 2030 in pursuit of the Future Energy Grid. For this purpose it has explored what possible future scenarios must be taken into account along the migration path. The following key factors were identified in preparation of drawing up scenarios: expansion of the electrical infrastructure; system-wide availability of an information and communication technology infrastructure; flexibilisation of consumption; energy mix; new services and products; final consumer costs; and standardisation and political framework conditions. These eight key factors were combined with each other in different variants to give three consistent scenarios for the year 2030.

  19. The energy future of Central Europe; Slovakia

    International Nuclear Information System (INIS)

    Lejon, E.

    1996-01-01

    In this part of the book author deals with the energy future of Central Europe. The energy strategy, structure of energy supplies in Austria, Slovakia, the Czech Republic, Hungary and Bavaria, as well as restructuralization of the energy sources are analysed. From the ecological perspective, the Gabcikovo-Nagymaros Project (GNP) represents a very clear example, since the Project could play a very important role as a part of the strategy to reject nuclear energy , the same strategy that was clearly declared by the Austrian government, as well as for a transportation strategy based more on railroads and navigation. The GNP could serve as an impulse promoting further and more close Central European cooperation in renewable energy sources. It could assist in harmonization of the interest in the sphere of transportation policies of Switzerland, Bavaria, Austria, Slovakia, and Hungary. Such a community oriented towards common interests would definitely be of enormous importance for the development of transportation in Central Europe. Geothermal potential of Slovakia and other Central European states are presented. Surveys conducted in Slovakia show that it is possible to reduce pollution in specific areas by substituting fossil energy sources with geothermal heating a total reduction of pollution by 39,000 tons annually, out of which 159 tons represent the annual reduction of sulfur dioxide pollution. The reduction per GWh of geothermal heat in the particular cities was calculated to be about 527 tons of carbon dioxide and 2.1 ton of sulfur dioxide. Other opportunities for renewable energy in Slovakia, as well as potential of energy savings are estimated

  20. The future of nuclear energy in the enlarged European Union

    International Nuclear Information System (INIS)

    Comsa, Olivia; Mingiuc, C.; Paraschiva, M.V.

    2002-01-01

    should determine which, if any, of the technologies and designs will succeed - and which will not. If new plants are to be built, greater Public acceptance might be realised if they meet the same high level of safety standards throughout the Union. Here the Commission has a very important role to play together with the nuclear regulators and the industry. Greater transparency, better communication and more involvement by the Public in the decision making process - coupled with political will have to address, rather than avoid, the issues - will create the basis for the future of nuclear energy in Europe and elsewhere in the world. (authors)

  1. Energy and climate: the essential world cooperation

    International Nuclear Information System (INIS)

    Lesourne, J.

    2008-01-01

    Considering the double challenge of energy supply for economic development and of greenhouse gas emission management to struggle against climate change, the author identifies what can be done at different levels: between governments and households (in terms of energy costs, public transport development, information and education), between governments and firms (in terms of standards, network leakage reductions, intellectual property on new technologies), and between governments. He identifies the related objectives for the European Union, the United States of America, Japan, Russia, China, India, Brazil, the Middle-East, and Sub-Saharan Africa

  2. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  3. Future of energy and nuclear energy in Japan

    International Nuclear Information System (INIS)

    Kaya, Yoichi

    2004-01-01

    Recently, the Government of Japan announced macroflame of GDP growth rate, crude oil cost, population, economic actions and demand of energy from the present to 2030. On the view point of decrease of population, economy is not affected by it and labor shortage will be supplied by advanced technologies. Accordingly, many economists expect increase of GNP and economy. However, energy demand will increase until 2020 and then decrease. Four new atomic power plants to be building will operate until 2010 and six plants will be constructed until 2030. Discharge of CO 2 will increase until 2020 and then decrease depends on energy demand. The outlook of nuclear energy contains two important assumptions, 85% of rate of operation and 60 year of operation time. The fuel cycle is very important in the world. (S.Y.)

  4. The situation of the nuclear energy in the world

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1996-12-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  5. Future Industrialization of the World and the Necessity of Nuclear Power, Part II: How Limited are Resources?

    International Nuclear Information System (INIS)

    Jovanovich, Jovan V.

    1997-01-01

    Will the future world be forever divided into an industrial, developed and 'rich' on one side, and the primitive, undeveloped, and poor on the other? Is an industrial, affluent and sustainable world of 10-15 billion people owning 5-10 billion cars physically possible to exist? Can the world have enough food, minerals and energy to support such a widespread affluence in a sustainable manner? In previous papers I have argued that even without any major breakthroughs in science and technology, an industrialized, sustainable and affluent world can be created within the next half a century to a century, but only if breeder nuclear power is widely used throughout the world. In this paper I elaborate on the question of future availability of some basic natural resources. (author)

  6. 16th World energy congress - No all clear signal; 16. Weltenergiekongress: Keine Entwarnung

    Energy Technology Data Exchange (ETDEWEB)

    Brabeck, A.

    1995-11-07

    The future organisation of the global energy supply was the central theme of the 16th Congress of the World Energy Council, which was held from 8 to 13 October 1995 in Tokyo. Under the basic theme ``Energy for our common world - what will the future ask for us`` ecological and development policy aspects were also included in the discussion of energy policy. Because of these relationships and the importance of the subject also for the future of the German mining industry Glueckauf is reproducing below two publications issued in connection with the World Energy Conference. (orig.) [Deutsch] Die zukuenftige Gestaltung der globalen Energieversorgung war Kernthema des 16. Kongresses des Weltenergierates, der vom 8. bis 13. Oktober 1995 in Tokio stattfand. Unter dem Leitmotiv ``Energy for our common world - what will the future ask of us`` wurden gerade auch oekologische und entwicklungspolitische Aspekte in die energiepolitische Diskussion einbezogen. Aufgrund dieser Zusammenhaenge und der Bedeutung dieser Thematik auch fuer die Zukunft der deutschen Bergbauindustrie, gibt GLUeCKAUF nachfolgend zwei Veroeffentlichungen zur Weltenergiekonferenz im Wortlaut wieder: Zum einen eine Presseinformation des Deutschen Nationalen Komitees des Weltenergierates vom 12. Oktober 1995 mit dem Titel ``Fortschritte; aber noch keine Entwarnung`` und zum anderen ein Statement von Dipl.-Kfm. Guenter Meyhoefer, Vorstandsvorsitzender des Eschweiler Bergwerks-Vereins AG, Herzogenrath, Generalbevollmaechtigter der Ruhrkohle AG, Essen, und Vizepraesident des Gesamtverbands des deutschen Steinkohlenbergbaus, Essen. (orig.)

  7. Building up of an energy world in 2050

    International Nuclear Information System (INIS)

    Bouneau, S.; David, S.; Meplan, O.

    2009-01-01

    The present work is the result of a reflection regarding the 2050 energy landscape at the world scale. It is not a prospective work but the construction of a 2050 energy mix, based on global data and hypotheses which are fully explained (energy consumption, world allocation, CO 2 emissions). The results allow us to bring out pertinent trends and quantitative information on energy needs and energy sources situated in the different large economic regions of the world in 2050. The goal of the present study is to build a representation of the world energy demand taking into account in a simple but realistic way all the relevant parameters on which it depends: population, total energy consumption, climate constraint, potential of available energy sources, appropriateness of these sources to the needs. The aim of this study is not to predict the evolution of theses parameters from today to 2050, but to choose or define their values in 2050 and then to be able to describe the resulting energy world. The initial assumptions for 2050 are a human population of 9 billions, a total energy consumption limited to 20- Gtoe/y, and a cut by a factor 2 of the CO 2 emissions which requires a fossil fuel consumption with CO 2 emissions limited to 4.2 Gtoe/y. The proposed method to describe the world energy demand in 2050 is based on simple hypotheses, which are detailed and argued. This method leads to a quantitative view on a world energy mix constrained by a total energy production of 20 Gtoe/y and the reduction by half of CO 2 emissions. This work shows that a '20 Gtoe/y' scenario requires a reduction of the energy consumption of the rich populations, without insuring a significant increase of the energy consumption of the poorest. The construction of the energy mix in 2050 demonstrates that it is necessary to deploy all new energy sources at their maximum level of potential: renewable energies, CO 2 mitigation and nuclear power. These results can provide an order of magnitude of

  8. An overview of energy consumption of the globalized world economy

    International Nuclear Information System (INIS)

    Chen, Z.M.; Chen, G.Q.

    2011-01-01

    For the globalized world economy with intensive international trade, an overview of energy consumption is presented by an embodied energy analysis to track both direct and indirect energy uses based on a systems input-output simulation. In 2004, the total amounts of energy embodied in household consumption, government consumption, and investment are 7749, 874, and 2009 Mtoe (million tons of oil equivalent), respectively. The United States is shown as the world's biggest embodied energy importer (683 Mtoe) and embodied energy surplus receiver (290 Mtoe), in contrast to China as the biggest exporter (662 Mtoe) and deficit receiver (274 Mtoe). Energy embodied in consumption per capita varies from 0.05 (Uganda) to 19.54 toe (Rest of North America). Based on a forecast for 2005-2035, China is to replace the United States as the world's leading embodied energy consumer in 2027, when its per capita energy consumption will be one quarter of that of the United States. - Highlights: → We present an overview of global energy profile in terms of embodied energy. → The US and China are top embodied energy consumers as well as traders in 2004. → Equality issue is studied by analyzing per capita embodied energy consumption. → The US remains to be the leading energy consumer until replaced by China in 2027.

  9. Backwardation in energy futures markets: Metalgesellschaft revisited

    International Nuclear Information System (INIS)

    Charupat, N.; Deaves, R.

    2003-01-01

    Energy supply contracts negotiated by the US Subsidiary of Metalgesellschaft Refining and Marketing (MGRM), which were the subject of much subsequent debate, are re-examined. The contracts were hedged by the US Subsidiary barrel-for-barrel using short-dated energy derivatives. When the hedge program experienced difficulties, the derivatives positions were promptly liquidated by the parent company. Revisiting the MGRM contracts also provides the opportunity to explore the latest evidence on backwardation in energy markets. Accordingly, the paper discusses first the theoretical reasons for backwardation, followed by an empirical examination using the MGRM data available at the time of the hedge program in 1992 and a second set of data that became available in 2000. By using a more up-to-date data set covering a longer time period and by controlling the time series properties of the data, the authors expect to provide more reliable empirical evidence on the behaviour of energy futures prices. Results based on the 1992 data suggest that the strategy employed by MGRM could be expected to be profitable while the risks are relatively low. However, analysis based on the 2000 data shows lower, although still significant profits, but higher risks. The final conclusion was that the likelihood of problems similar to those faced by MGRM in 1992 are twice as high with the updated 2000 data, suggesting that the risk-return pattern of the stack-and-roll hedging strategy using short-dated energy future contracts to hedge long-tem contracts is less appealing now than when MGRM implemented its hedging program in 1992. 24 refs., 3 tabs., 6 figs

  10. Energy in Latin America: Present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The primary focus of this paper is on the analysis of the current situation of energy production and consumption in the region as a whole, to examine the determinants of energy supply and demand growth, and to forecast the future growth of energy production, consumption, and balances. Since the growth of oil demand in Latin American countries themselves began to accelerate in the early 1990s, the lack of investment and development and the consequence shrinking base of Latin America's energy exports may pose serious challenges to North America, where dependence on the Middle Eastern oil and gas is growing. This paper attempts to present different scenarios and strategies to tackle the problem of Latin America's future net energy supply. [Spanish] El enfoque principal de este articulo es sobre la base de la situacion actual de la produccion y consumo de energia en la region como un todo, para examinar las determinantes del suministro de energia y el crecimiento de la demanda y la prediccion del crecimiento futuro de la produccion de energia, consumo y balances. Desde el crecimiento de la demanda del petroleo, en los paises latinoamericanos, ellos mismos empezaron a acelerar a principios de los 90s, la falta de inversion y desarrollo y la consecuencia del encogimiento de la base de las exportaciones de energia de Latinoamerica podrian imponer serios retos a Norte America, en donde la dependencia del petroleo y del gas del Medio-Oeste esta creciendo. Este articulo intenta presentar diferentes escenarios y estrategias para atacar el problema del suministro neto de energia de Latinoamerica.

  11. Energy in Latin America: Present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The primary focus of this paper is on the analysis of the current situation of energy production and consumption in the region as a whole, to examine the determinants of energy supply and demand growth, and to forecast the future growth of energy production, consumption, and balances. Since the growth of oil demand in Latin American countries themselves began to accelerate in the early 1990s, the lack of investment and development and the consequence shrinking base of Latin America's energy exports may pose serious challenges to North America, where dependence on the Middle Eastern oil and gas is growing. This paper attempts to present different scenarios and strategies to tackle the problem of Latin America's future net energy supply. [Spanish] El enfoque principal de este articulo es sobre la base de la situacion actual de la produccion y consumo de energia en la region como un todo, para examinar las determinantes del suministro de energia y el crecimiento de la demanda y la prediccion del crecimiento futuro de la produccion de energia, consumo y balances. Desde el crecimiento de la demanda del petroleo, en los paises latinoamericanos, ellos mismos empezaron a acelerar a principios de los 90s, la falta de inversion y desarrollo y la consecuencia del encogimiento de la base de las exportaciones de energia de Latinoamerica podrian imponer serios retos a Norte America, en donde la dependencia del petroleo y del gas del Medio-Oeste esta creciendo. Este articulo intenta presentar diferentes escenarios y estrategias para atacar el problema del suministro neto de energia de Latinoamerica.

  12. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  13. The World-Wide Web past present and future, and its application to medicine

    CERN Document Server

    Sendall, D M

    1997-01-01

    The World-Wide Web was first developed as a tool for collaboration in the high energy physics community. From there it spread rapidly to other fields, and grew to its present impressive size. As an easy way to access information, it has been a great success, and a huge number of medical applications have taken advantage of it. But there is another side to the Web, its potential as a tool for collaboration between people. Medical examples include telemedicine and teaching. New technical developments offer still greater potential in medical and other fields. This paper gives some background to the early development of the World-Wide Web, a brief overview of its present state with some examples relevant to medicine, and a look at the future.

  14. EnerFuture: Long Term Energy Scenarios 'Understanding our energy future'. Key graphs and analysis, Enerdata - Global Energy Forecasting

    International Nuclear Information System (INIS)

    2011-01-01

    Enerdata analyses 4 future energy scenarios accounting for 2 economic growth assumptions combined with 2 alternative carbon emission mitigation policies. In this study, a series of analyses supported by graphs assess the energy consumption and intensity forecasts in emerging and developed markets. In particular, one analysis is dedicated to energies competition, including gas, coal and renewable energies. (authors)

  15. Fossil fuels in a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  16. The world energy consumption in 2001. Statistical yearbook ENERDATA 2002

    International Nuclear Information System (INIS)

    2002-01-01

    Statistical data on the world energy consumption are given to illustrate the following situation in 2001: the deceleration of the world economic growth and the high prices of oil slowed down the progression of the energy consumption: 0,7 % in 2001; stagnation of the gas and oil consumption and strong progression for coal and electricity in 2001; the deceleration for gas marks a strong inflection compared to the past trends. (A.L.B.)

  17. Future high energy colliders. Formal report

    International Nuclear Information System (INIS)

    Parsa, Z.

    1996-01-01

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on Future High Energy Colliders, October 21-25, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  18. Unit root behavior in energy futures prices

    OpenAIRE

    Serletis, Apostolos

    1992-01-01

    This paper re-examines the empirical evidence for random walk type behavior in energy futures prices. In doing so, tests for unit roots in the univariate time-series representation of the daily crude oil, heating oil, and unleaded gasoline series are performed using recent state-of-the-art methodology. The results show that the unit root hypothesis can be rejected if allowance is made for the possibility of a one-time break in the intercept and the slope of the trend function at an unknown po...

  19. Dark energy: Recent observations and future prospects

    International Nuclear Information System (INIS)

    Perlmutter, Saul

    2003-01-01

    Dark energy presents us with a challenging puzzle: understanding the new element of physics evident in the acceleration of the expansion of the universe. Type Ia supernovae first detected this acceleration and have been instrumental in breaking the matter dominated universe paradigm, measuring the current acceleration of the expansion, and probing back to the decelerating phase. To further study the nature of dark energy requires understanding of systematic errors entering into any cosmological probe. Type Ia supernovae provide simple, transparent tracers of the expansion history of the universe, and the sources of systematic uncertainties in the supernova measurement have been identified. We briefly review the progress to date and examine the promise of future surveys with large numbers of supernovae and well bounded systematics

  20. Future energy mix - also without nuclear power?

    International Nuclear Information System (INIS)

    George, C.

    2005-01-01

    The considerable rises in the price of oil in the months of October and November 2004 assigned topical importance to the 'Future Energy Mix - also without Nuclear Power?' meeting of young nuclear engineers and students with experts from politics, industry, and research at the YOUNG GENERATION event organized at the Biblis nuclear power station on November 4-6, 2004. Specialized presentations were made about these topics: The Biblis Nuclear Power Plant Site. The Effects of Deregulation on the Electricity Market Emission Trading - a Combination of Economy and Ecology? Energy Mix for the 21 st Century. The event was completed by a round-table discussion among leading experts, and a presentation of perspectives in university education in areas encompassing power technology. (orig.)

  1. World energy, technology and climate policy outlook 2030. WETO 2030

    International Nuclear Information System (INIS)

    2003-01-01

    Starting from a set of clear key assumptions on economic activity, population and hydrocarbon resources, WETO describes in detail scenarios for the evolution of World and European energy systems, power generation technologies and impacts of climate change policy in the main world regions or countries.It presents a coherent framework to analyse the energy, technology and environment trends and issues over the period to 2030, focusing on Europe in a world context. Three of the key results of this work are: (1) in a Reference scenario, i.e.if no strong specific policy initiatives and measures are taken, world CO2 emissions are expected to double in 2030 and, with a share of 90%, fossil fuels will continue to dominate the energy system; (2) the great majority of the increase in oil production will come from OPEC countries and the EU will rely predominantly on natural gas imported from the CIS; and (3) as the largest growing energy demand and CO2 emissions originate from developing countries (mainly China and India), Europe will have to intensify its co-operation, particularly in terms of transfer of technologies. The analysis of long-term scenarios and a particular attention to the energy world context, is an important element for efficient energy, technology and environment policies towards a sustainable world

  2. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  3. Detroit, 22-27 September 1974: Report on ninth world energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-07-01

    The acceleration of world demand for energy during the last forty years has led to a projection of future needs far in excess of present capacity, and one which threatens exhaustion of today's conventional sources at some future time. Coupled with this premise is the realization of two inter-related facts: inadequate, uneconomic sources of energy cripple a man, his nation, and his world and lead to insecurity, famine and ignorance; on the other hand, excessive, uncontrolled use of energy sources leads to wastage of resources, pollution and human misery that likewise respects no national boundaries. These dominating concerns led to the selection of the main theme of the Ninth World Energy Conference - 'The Economic and Environmental Challenges of Future Energy Requirements'. This theme was broadly broken down into six main categories: energy needs, sources of energy, energy conversion and utilization, conservation of energy, economics and environmental considerations. A total of 229 formal papers were considered by the several thousand participants who represented more than 60 countries and a number of international organizations at the Conference.

  4. Detroit, 22-27 September 1974: Report on ninth world energy conference

    International Nuclear Information System (INIS)

    1974-01-01

    The acceleration of world demand for energy during the last forty years has led to a projection of future needs far in excess of present capacity, and one which threatens exhaustion of today's conventional sources at some future time. Coupled with this premise is the realization of two inter-related facts: inadequate, uneconomic sources of energy cripple a man, his nation, and his world and lead to insecurity, famine and ignorance; on the other hand, excessive, uncontrolled use of energy sources leads to wastage of resources, pollution and human misery that likewise respects no national boundaries. These dominating concerns led to the selection of the main theme of the Ninth World Energy Conference - 'The Economic and Environmental Challenges of Future Energy Requirements'. This theme was broadly broken down into six main categories: energy needs, sources of energy, energy conversion and utilization, conservation of energy, economics and environmental considerations. A total of 229 formal papers were considered by the several thousand participants who represented more than 60 countries and a number of international organizations at the Conference

  5. Renewable energy sources - the opportunity for a safer future

    International Nuclear Information System (INIS)

    Prodrom, Andrei; Federenciuc, Dumitru; Ignat, Vasile; Dobre, Paul

    2004-01-01

    The researches have shown that the potential of renewable energy sources is huge as they can in principle meet many times the world's energy demand. Renewable energy sources such as biomass, wind, solar, hydropower and geothermal can provide energy services based on the use of local available resources. Starting from this fact, a transition to renewable-based energy systems is looking increasingly likely as their costs have dropped while the price of oil and gas continue to fluctuate. In the past 30 years, the sales of solar and wind energy systems continued to increase because the capital and electricity production costs decreased simultaneously with the performance enhancement. It is becoming clear that future growth in the energy sector will be primarily in the renewable energy systems and to some extent natural gas-based systems and not in conventional oil and coal sources. It is also important to have governmental assistance and popular support in developing these alternate energy sources, that among others, reduce local and global atmospheric emissions, provide commercially attractive options, particularly in developing countries and rural areas and create the transition to the energy sector of the future. This paper tries to approach the renewable energy sources currently analyzed by the experts, emphasizing their strengths and weaknesses. The conventional energy sources based on oil, coal and natural gas have proven to be highly effective drivers of economic progress but at the same time damaging to the environment and human health. Furthermore they tend to be cyclical in nature, due to the effects of oligopoly in production and distribution. These traditional fossil fuel-based energy sources are facing increasing pressure on environmental issues, among these the future reduction of greenhouse gas specified in the Kyoto Protocol. Renewable energy sources currently supply between 15 - 20% of world's total energy demand. This supply is dominated by biomass

  6. Rational expectations, risk and efficiency in energy futures markets

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos (Calgary Univ., AB (CA). Dept. of Economics)

    1991-04-01

    Conditional on the hypothesis that energy futures markets are efficient or rational, this paper uses Fama's regression approach to measure the information in energy futures prices about future spot prices and time varying premiums. The paper finds that the premium and expected future spot price components of energy futures prices are negatively correlated and that most of the variation in futures prices is variation in expected premiums. (author).

  7. Solar energy utilizing technology for future cities

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  8. The future of nuclear energy in Europe

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Are concerns about global warming of the Earth's atmosphere going to rekindle interest in nuclear power and in building new nuclear power plants in Europe? As a consequence of the discussions about the climate, the use of nuclear power as an important energy source is currently being re-evaluated, finds Dr. Wolf-J. Schmidt-Kuester, Secretary General of FORATOM, the European Atomic Forum, headquartered in Brussels. In his article, he argues that a renaissance of nuclear power will be possible also in Europe once politics supports resuming an unbiased discussion of all topics associated with the energy problem. Europe must face two problems in the energy sector for which solutions must be found: the growing dependence on fossil energy resources, and the need to curb greenhouse gas emissions, especially those of carbon dioxide. Nuclear power is already making a sizable contribution towards the solution of these problems, but its future potential has hardly been tapped. Public acceptance of nuclear power shows that the intention to opt out of the peaceful uses of nuclear power is not based on an identical attitude of the public, but is motivated politically, finding only little public support, as in the cases of Sweden and Germany. (orig.) [de

  9. Coalbed methane: Clean energy for the world

    Science.gov (United States)

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  10. Peak Oil, threat or energy worlds' phantasm?

    International Nuclear Information System (INIS)

    Favennec, Jean-Pierre

    2011-01-01

    The concept of Peak Oil is based on the work of King Hubbert, a petroleum geologist who worked for Shell in the USA in the 1960's. Based on the fact that discoveries in America reached a maximum in the 1930's, he announced that American production would reach a maximum in 1969, which did actually occur. Geologists members of the Association for the Study of Peak Oil have extrapolated this result to a worldwide scale and, since oil discoveries reached a peak in the 1960's, argued that production will peak in the very near future. It is clear that hydrocarbon reserves are finite and therefore exhaustible. But little is known regarding the level of ultimate (i.e. total existing) reserves. There are probably very large reserves of non conventional oil in addition to the reserves of conventional oil. An increasing number of specialists put maximum production at less than 100 Mb/d more for geopolitical than physical reasons. Attainable peak production will probably vary from year to year and will depend on how crude oil prices develop

  11. Oil and the world economy: some possible futures.

    Science.gov (United States)

    Kumhof, Michael; Muir, Dirk

    2014-01-13

    This paper, using a six-region dynamic stochastic general equilibrium model of the world economy, assesses the output and current account implications of permanent oil supply shocks hitting the world economy. For modest-sized shocks and conventional production technologies, the effects are modest. But for larger shocks, for elasticities of substitution that decline as oil usage is reduced to a minimum, and for production functions in which oil acts as a critical enabler of technologies, output growth could drop significantly. Also, oil prices could become so high that smooth adjustment, as assumed in the model, may become very difficult.

  12. The future of marine renewable energies. Summary of the Ifremer Futures study on marine renewable energies to 2030

    International Nuclear Information System (INIS)

    Lacroix, D.; Paillard, M.

    2008-01-01

    The challenge posed by climate change and the predicted scarcity of fossil fuels is so great that energy questions are increasingly in the headlines. There has, in this context, been an increasing promotion of renewable energies, as is attested by France and the EU's stated objective of producing 20% of consumed energy from renewable sources by 2020. Among the different renewable energies, the ocean represents an immense reserve (tidal and tidal-stream energy, wave and wind power, marine biomass etc.) and a genuine asset for those countries like France which have the good fortune to have many seaboards (both at home and overseas). In order to gauge the potential of marine renewable energies, Ifremer began an enormous foresight exercise in March 2007 examining scenarios to the year 2030 in partnership with the main actors in the maritime world and with methodological support from Futuribles. Denis Lacroix and Michel Paillard, who were members of the steering committee of that study, present the broad outlines of this foresight exercise and the possible prospects for marine renewable energies. After reviewing the various forms of marine energy, they set out the methods followed and the range of possible scenarios selected, together with the potential of the different technologies associated with marine renewable energies. They then show the extent to which these energies could contribute to the French energy supply to 2030, before developing a ''normative'' scenario that can serve as a strategic axis for French energy policy so far as marine renewable energies are concerned (on the basis of a contribution of around 3% to the French energy mix in 2020). (author)

  13. World nonrenewable conventional energy resources as of December 31, 1982

    International Nuclear Information System (INIS)

    Parent, J.D.

    1984-01-01

    Energy analysts present year-end 1982 estimates for world proved reserves, remaining recoverable resources, annual production rates, and cumulative production of the non-renewable convectional energy resources: coal, natural gas, crude oil, natural gas liquids, bitumens, shale oil, and uranium oxide. Life indices for world fossil fuels are also given for several annual growth rates. The world's proved and currently recoverable natural gas reserves amount to 2649-3250 trillion CF; the estimated total remaining recoverable is 6693-7462 TCF. In 1982, 54 TCF of gas was produced for a cumulative production of 1320 TCF (not counting vented or flared gas)

  14. The energy innovation network : fuelling an integrated energy future

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2005-07-01

    Global primary energy demand is expected to increase by 1.7 per cent annually from 2000 to 2030, reaching an annual level of 15.3 billion tonnes of oil equivalent. Fossil fuels are expected to supply over 90 per cent of global incremental energy demand through 2030, while gas consumption is estimated to double between 2000 and 2030 due to its cost competitiveness, high availability and environmental advantages. Oil will remain the largest fuel source with demand increasing by 1.6 per cent annually. In order to tap the vast Canadian resource potential, innovative new technologies are needed to unlock the remaining conventional oil and gas reserves. It was argued that no single source of energy will be sufficient to meet world or Canadian demand. Therefore, there is also a need for a collaborative initiative to facilitate a long-term effort to implement an integrated energy innovation strategy. The Energy Innovation Network (EnergyINet) was created help industry, governments, and the research community address the challenges of ensuring an abundant supply of environmentally responsible energy. Given the right technologies, bitumen, coal, and coalbed methane have hundreds of years of production remaining. Production of those reserves depends on finding effective solutions to production costs, cost and availability of feedstocks needed to produce higher valued products, market limitations, and land, water, air, and greenhouse gas issues. The main challenge is to finance the development of such technologies into reliable, large-scale commercial applications. It was concluded that Canada's ability to maintain competitive energy supplies from conventional and non-conventional energy systems will be severely limited as the need to protect the environment, reduce greenhouse gas emissions, and conserve water moves higher on the public agenda. 13 refs.

  15. Nuclear energy's future: lifting the regulatory cloud

    International Nuclear Information System (INIS)

    Walske, C.

    1983-01-01

    Nuclear energy provides 13% of US and 10% of world electricity, with an exemplary safety record and less insult to the environment than any other power source. Walske argues that nuclear power is 15% cheaper than coal despite the high capital and regulatory costs, but regulatory delays in the construction and licensing periods have increased 70% to 10 to 14 years, more than twice the lead time in France and Japan. The long lead time exaggerates the difficulty in forecasting demand, and allows interruptions for fundamental design changes after construction has begun. Walske outlines new legislation for site pre-approval, plant standardization, combined construction and operating licenses, and hybrid procedures for public hearings that would make regulation less uncertain

  16. Ethics and the future of nuclear energy

    International Nuclear Information System (INIS)

    Alonso, A.

    2000-01-01

    In democratic societies the future of nuclear energy should be considered as a strategic issue for the country and it should therefore be rationally discussed from every angle, including the moral aspects; within their own political parties, politicians should be leading such discussions. The potentialities of nuclear technology to comply with and respect the human rights, including those of future generations, need to-be evaluated. The social obligation of increasing the well-being of the civil society through the availability of sufficient and reliable electrical energy should be considered a primary condition. The risks associated to nuclear power plants and related activities must be recognized and the nature and functions of regulatory organizations discussed, mainly their independence of judgement. A set of ethical principles regarding communications need to be in place to assure democratic decisions. All concerned parties should participate with the best of the intentions. The human rights of the third generation, those related to the environment, should be given the needed attention, to prevent that the vanguards of the new revolutionary movement of ecologists produce unnecessary victims within the nuclear power plants

  17. Energy [R]evolution 2010-a sustainable world energy outlook

    NARCIS (Netherlands)

    Teske, S.; Pregger, T.; Simon, S.; Naegler, T.; Graus, W.H.J.; Lins, C.

    2011-01-01

    The Energy [R]evolution 2010 scenario is an update of the Energy [R]evolution scenarios published in 2007 and 2008. It takes up recent trends in global energy demand and production and analyses to which extent this affects chances for achieving climate protection targets. The main target is to

  18. The Future of World Englishes in Language Testing

    Science.gov (United States)

    Brown, James Dean

    2014-01-01

    This article begins by defining "world Englishes" (WEs) and the related paradigm of inner-, outer-, and expanding-circle English(es). The discussion then turns to the central concerns of the WEs and language testing (LT) communities with regard to how English tests can best be constructed to include various WEs by discussing (a) what…

  19. Solar energy in progress and future research trends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Zekai [Istanbul Technical Univ., Dept. of Meteorology, Istanbul (Turkey)

    2004-07-01

    Extensive fossil fuel consumption in almost all human activities led to some undesirable phenomena such as atmospheric and environmental pollutions, which have not been experienced before in known human history. Consequently, global warming, greenhouse affect, climate change, ozone layer depletion and acid rain terminologies started to appear in the literature frequently. Since 1970, it has been understood scientifically by experiments and researches that these phenomena are closely related to fossil fuel uses because they emit greenhouse gases such as carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) which hinder the long wave terrestrial radiation to escape into space, and consequently, the earth troposphere becomes warmer. In order to avoid further impacts of these phenomena, the two concentrative alternatives are either to improve the fossil fuel quality with reductions in their harmful emissions into the atmosphere or more significantly to replace fossil fuel usage as much as possible with environmentally friendly, clean and renewable energy sources. Among these sources, solar energy comes at the top of the list due to its abundance, and more evenly distribution in nature than any other renewable energy types such as wind, geothermal, hydro, wave and tidal energies. It must be the main and common purpose of humanity to sustain environment for the betterment of future generations with sustainable energy developments. On the other hand, the known limits of fossil fuels compel the societies of the world in the long run to work jointly for their gradual replacement by renewable energy alternatives rather than the quality improvement of fossil sources. Solar radiation is an integral part of different renewable energy resources. It is the main and continuous input variable from practically inexhaustible sun. Solar energy is expected to play a very significant role in the future especially in developing countries, but it has also potential prospects for developed

  20. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  1. Multifactor valuation models of energy futures and options on futures

    Science.gov (United States)

    Bertus, Mark J.

    The intent of this dissertation is to investigate continuous time pricing models for commodity derivative contracts that consider mean reversion. The motivation for pricing commodity futures and option on futures contracts leads to improved practical risk management techniques in markets where uncertainty is increasing. In the dissertation closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian motions are developed for futures contracts. These solutions are obtained through risk neutral pricing methods that yield tractable expressions for futures prices, which are linear in the state variables, hence making them attractive for estimation. These functions, however, are expressed in terms of latent variables (i.e. spot prices, convenience yield) which complicate the estimation of the futures pricing equation. To address this complication a discussion on Dynamic factor analysis is given. This procedure documents latent variables using a Kalman filter and illustrations show how this technique may be used for the analysis. In addition, to the futures contracts closed form solutions for two option models are obtained. Solutions to the one- and two-factor models are tailored solutions of the Black-Scholes pricing model. Furthermore, since these contracts are written on the futures contracts, they too are influenced by the same underlying parameters of the state variables used to price the futures contracts. To conclude, the analysis finishes with an investigation of commodity futures options that incorporate random discrete jumps.

  2. Energy mix of the future will be a mosaic

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    2000-10-01

    It is generally acknowledged that while hydrocarbons will remain the leading sources of fuel around the world there is, nevertheless, a growing belief that the world's energy mix is rapidly diversifying. As a result, or as a sign of this diversification, many of the large oil companies are investing large sums of money to investigate and market alternative energy sources. Underlying this activity is the belief that these research and development efforts are key to helping the companies achieve their goal of continuous improvement in environmental performance. Examples are PanCanadian and TransCanada Pipelines diversifying into clean electricity generation facilities fuelled by natural gas; Petro Canada's growing interest in biofuels; Royal Dutch Shell's aggressive incursion into solar power manufacture and installation; BPSolarex's drive to become the largest manufacturer and marketer of solar technology, and Calgary-based Suncor's drive to become a leader in alternative and renewable energy sources by earmarking $100 million for investments in producing fuel from biomass, conversion of waste to energy, capture of carbon dioxide, solar and wind power. Most of these efforts are driven by consumer demand for cleaner sources of energy and increasing global pressure to meet greenhouse gas emission targets established at the 1997 Kyoto Summit. Development of innovative new energy technologies are the key to achieving significant breakthroughs according to the Energy Technologies Futures (ETF) project of Natural Resources Canada. ETF has developed four scenarios that predict Canada's energy mix 30 to 50 years from now and the degree to which new energy technologies will be adopted. The scenarios cover a range of possible outcomes, depending on how the three pillars of sustainable development - economy, society and environment - are balanced by industry and governments. The most promising is called 'Come Together' where industry and

  3. Energy mix of the future will be a mosaic

    International Nuclear Information System (INIS)

    Chandler, G.

    2000-01-01

    Research into alternative energy sources is being undertaken by several of the large petroleum companies, including PanCanadian Petroleum, PetroCanada, Royal Dutch Shell, BP and Suncor Energy, an indication of the anticipated importance of renewables in the energy mix of the future. Clean electricity generation facilities fuelled by natural gas is one of the areas of interest to PanCanadian Petroleum and TransCanada Pipelines, while PetroCanada is diversifying into biofuels. Worldwide, Royal Dutch Shell has proclaimed renewables as one of its core businesses, budgeting US$500 million for renewable energy research over the next five years. BPSolarex, a subsidiary of British Petroleum, is well on the way to becoming the world's largest manufacturer and marketer of solar technology, while Suncor Energy of Calgary earmarked $100 million over the next five years to research in producing fuel from biomass, conversion of waste to energy, capture of carbon dioxide, and solar and wind power. The driving force behind these efforts is the significant global pressure to reduce greenhouse gas emissions and to meet the commitments undertaken at the 1997 Kyoto Climate Change Conference. Equally important is the recognition of the finite character of conventional energy sources, and the the various scenarios designed by diverse organizations to show the impact of new energy technologies on how people live and work, and how people, goods and resources move. For example, the scenarios developed by the Energy Technologies Futures Program of Natural Resources Canada are designed to provoke discussion of strategic directions and to challenge current thinking about energy consumption, efficiency and conservation. These scenarios identifiy a range of possible outcomes, depending on industry and government efforts to balance the pillars of sustainable development, i. e. the economy, society and the environment. Industry is taking an increasing interest in these projections as shown by the

  4. Energy mix of the future will be a mosaic

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    2000-06-30

    Research into alternative energy sources is being undertaken by several of the large petroleum companies, including PanCanadian Petroleum, PetroCanada, Royal Dutch Shell, BP and Suncor Energy, an indication of the anticipated importance of renewables in the energy mix of the future. Clean electricity generation facilities fuelled by natural gas is one of the areas of interest to PanCanadian Petroleum and TransCanada Pipelines, while PetroCanada is diversifying into biofuels. Worldwide, Royal Dutch Shell has proclaimed renewables as one of its core businesses, budgeting US$500 million for renewable energy research over the next five years. BPSolarex, a subsidiary of British Petroleum, is well on the way to becoming the world's largest manufacturer and marketer of solar technology, while Suncor Energy of Calgary earmarked $100 million over the next five years to research in producing fuel from biomass, conversion of waste to energy, capture of carbon dioxide, and solar and wind power. The driving force behind these efforts is the significant global pressure to reduce greenhouse gas emissions and to meet the commitments undertaken at the 1997 Kyoto Climate Change Conference. Equally important is the recognition of the finite character of conventional energy sources, and the the various scenarios designed by diverse organizations to show the impact of new energy technologies on how people live and work, and how people, goods and resources move. For example, the scenarios developed by the Energy Technologies Futures Program of Natural Resources Canada are designed to provoke discussion of strategic directions and to challenge current thinking about energy consumption, efficiency and conservation. These scenarios identifiy a range of possible outcomes, depending on industry and government efforts to balance the pillars of sustainable development, i. e. the economy, society and the environment. Industry is taking an increasing interest in these projections as shown

  5. Future directions for nuclear energy policy according to the changing circumstances surrounding energy resources

    International Nuclear Information System (INIS)

    Lee, Chang Ki

    2007-01-01

    Since the industrial revolution, the consumption of energy resources throughout the world has increased in geometrical progression, depleting the reserves of the fossil fuels including petroleum. It is predicted that the known reserves of the petroleum and the natural gas will be exhausted within 40 and 60 years, respectively. Massive consumption of energy resources has aggravated the quality of air and water, with the result that environmental pollution of the world has reached a critical stage Emission of green house gases such as carbon dioxide has caused global warming and climate change, endangering the sustainability of the life. Mainland China and East Asian countries pursuing rapid economic growth are expected to confront a shortage of energy in the near future, leading them to face difficulties in achieving expected economic growth

  6. Search for a bridge to the energy future: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Saluja, S.S. (ed.)

    1986-01-01

    The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

  7. World in transition 3 towards sustainable energy systems

    CERN Document Server

    2014-01-01

    'The publication of World in Transition: Towards Sustainable Energy Systems is timely indeed. The World Summit on Sustainable Development gave great prominence to this challenge, but failed to agree on a quantitative, time-bound target for the introduction of renewable energy sources. The German Advisory Council on Global Change (WBGU) has now produced a report with a global focus, which is essential in view of the global impacts of climate change. The report provides a convincing long-term analysis, which is also essential. Global energy policies have to take a long-term perspective, over the

  8. Brave New Worlds? The Once and Future Information Ethics

    DEFF Research Database (Denmark)

    Ess, Charles

    2010-01-01

    in both Western and Eastern countries, and correlative shifts from the communication technologies of literacy and print to a “secondary orality.” These consequences in turn imply that current and future information ethics should focus on developing a global but pluralistic virtue ethics - one that may......I highlight several aspects of current and future developments of the internet, in order to draw from these in turn specific consequences of particular significance for the ongoing development and expansion of information ethics. These consequences include changing conceptions of self and privacy...

  9. The future of energy security in the 21st Century

    Science.gov (United States)

    Gupta, Rajan

    2006-10-01

    Energy is essential for modern life and is a critical resource that we take for granted. Economies and security of nations depend on reliable and cost-effective access. As the world transitions from conventional oil and natural gas to nuclear, renewables, and unconventional sources we are increasingly confronted by many unsettling questions. Will there be enough cheap oil and gas for preserve the standard of living in the developed world and allow the industrializing world to develop? Will renewable sources provide a significant fraction of our energy needs in the near future? Is global warming already happening as a result of our consumption of fossil fuels? If there is a resource crunch before new sources come on line, will there be conflict or global cooperation? This talk will attempt to answer these questions by examining the global oil and gas resources, geopolitics, and key science and technology issues that need to be addressed by the global community with cooperation and a sense of urgency.

  10. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  11. Telehealth in the developing world: current status and future prospects

    Directory of Open Access Journals (Sweden)

    Scott RE

    2015-02-01

    Full Text Available Richard E Scott,1,2 Maurice Mars11Department of TeleHealth, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa; 2NT Consulting - Global e-Health Inc., Calgary, AB, CanadaAbstract: In a setting of constant change and confusing terminology, telehealth continues to gain ground in both developed and developing countries within the overarching milieu of e-health. Evidence shows telehealth has been used in essentially all countries of the world, but is embedded in few. Uses and needs of telehealth vary between the developed and developing world; the latter struggles with both communicable diseases and noncommunicable diseases, and with very few resources. Common clinical applications include teleconsultation, telecardiology (transmission of ECGs, teleradiology, and teledermatology. Many telehealth projects exist throughout Latin America and the Caribbean, Asia, and Africa, but there is little published evidence and only isolated examples of sustained programs, although several sustained humanitarian networks exist. Application of mobile solutions (m-health is on the rise in many developing countries. Telehealth is still not integrated into existing health care systems globally. Reasons vary: lack of proven large-scale operations, poor evidence base, inadequate implementation, lack of attention to the “soft side” of implementation (readiness, change management, and many others. For the developing world, reasons can be more pragmatic, including limited resources, unreliable power, poor connectivity, and high cost for the poverty stricken – those most in need. Telehealth is poised to improve health and health care in the developing world, driven by both altruistic and profit motives. But to have the desired effect, telehealth must address very specific and evidence-based health “needs” of each facility, region, or country; the shortage of health workers and specialist services; and the required skills upgrading and training

  12. Summary of the World Energy Investment Outlook 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The current edition of the World Energy Investment Outlook published by the International Energy Agency (IEA) focuses on the foreseeable worldwide investment requirement in the energy sector. The study lists these conclusions, among others: -Total investments of U.S. dollar 16,000 billion worldwide are needed for the energy supply infrastructure over the period 2001 to 2030. They are necessary to add to the power supply capacities and to replace existing power systems and power supply systems. - The financial resources available worldwide are sufficient, basically, to finance the energy investments forecast in the study. The framework conditions necessary for this purpose must be established. - The world energy resources are sufficient to meet the projected demand. Mobilizing the investments depends on the ability of the energy sector to hold its own in the competition for capital with other sectors of the economy. - Energy investments will be dominated by the electricity sector. This sector is likely to absorb nearly U.S. dollar 10,000 billion, or 60% of the total investment. - The developing countries, where energy generation and consumption are going to increase at the fastest rate, will take nearly half of the energy investment worldwide. - A major share of these energy investments is needed to keep up the present level of supply. - The largest share of investments into fossil sources of energy will be spent on extraction costs, exploration included, with different shares applying to the different sources of energy. (orig.) [de

  13. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  14. The Future Revisited: Can Global Learning Still Save the World?

    Science.gov (United States)

    Van Hook, Steven R.

    2018-01-01

    This article provides a twelve-year review of my "OJDLA" article ("Online Journal of Distance Learning Administration," University of West Georgia) on the future of global learning, and updates related to issues such as societal need, technologies, course design, administration affairs, faculty support, and student service.

  15. Russian energy imperialism: the world mapped along the gas pipelines

    OpenAIRE

    Baločkaitė, Rasa

    2012-01-01

    Energy imperialism refers to the use of natural resources for political purposes, i.e. weaponization of energy. At the state level, it means specific institutional structure, as the state building is predetermined by oil led developments. At the international level, it means international nets of energy dependency, centered around the mother state possessing oil, gas and other natural resources. In a paradox way, the so called Western world (Western Europe and North America) becomes increasin...

  16. Electricity generation in the world and Ukraine: Current status and future developments

    Directory of Open Access Journals (Sweden)

    Alexander Zvorykin

    2017-11-01

    Full Text Available Electricity generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electricity can be generated from: 1 non-renewable energy sources such as coal, natural gas, oil, and nuclear; and 2 renewable energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. However, the major energy sources for electricity generation in the world are: 1 thermal power – primarily using coal (~40% and secondarily natural gas (~23%; 2 “large” hydro power plants (~17% and 3 nuclear power from various reactor designs (~11%. The rest of the energy sources for electricity generation is from using oil (~4% and renewable sources such as biomass, wind, geothermal and solar (~5%, which have just visible impact in selected countries. In addition, energy sources, such as wind and solar, and some others, like tidal and wave-power, are intermittent from depending on Mother Nature. And cannot be used alone for industrial electricity generation. Nuclear power in Ukraine is the most important source of electricity generation in the country. Currently, Ukrainian Nuclear Power Plants (NPPs generate about 45.5% of the total electricity followed with coal generation ‒ 38%, gas generation 9.6% and the rest is based on renewable sources, mainly on hydro power plants – 5.9%. Nuclear-power industry is based on four NPPs (15 Pressurized Water Reactors (PWRs including the largest one in Europe ‒ Zaporizhzhya NPP with about 6,000 MWel gross installed capacity. Two of these 15 reactors have been built and put into operation in 70-s, ten in 80-s, one in 90-s and just two in 2004. Therefore, based on an analysis of the world power reactors in terms of their maximum years of operation (currently, the oldest reactors are ~45-year old several projections have been made for future of the nuclear-power industry

  17. Double or quits?: The global future of civil nuclear energy

    International Nuclear Information System (INIS)

    Beck, Peter; Grimston, Malcolm

    2004-01-01

    Among the many disputes in the field of energy, in many countries none appear to be as acrimonious as those surrounding nuclear power. Its supporters are confident that nuclear power will have an important long-term future on the global energy scene, while its critics are equally confident that its days are numbered and that it was only developed to provide a political fig-leaf for a nuclear weapons programme. Both sides believe the other to be thoroughly biased or stupid and there is little constructive debate between them. As the disputes rage, especially over such issues as the management of nuclear waste, the economics and safety of nuclear power compared with other sources of electricity, the possible links with nuclear weapons and the attitude of the public towards the industry, decision-making is either paralysed or dominated by those who shout loudest. As a result, governments, industry and the financial sector have in recent years found it increasingly difficult to develop policy in this field. Deciding about future energy developments requires balanced and trustworthy information about issues such as the relative environmental effects of different options, the safety of installations, economics and the availability of resources. This is of particular importance now because world energy use is expected to continue to grow significantly during this century, particularly in less developed countries. In the same period, global emissions of greenhouse gases, especially carbon dioxide, will have to be severely curbed. To meet both these requirements may well involve a step change away from being able to meet growing energy needs by depending on an ever increasing supply of carboniferous fossil fuel. To address this situation, the Royal Institute of International Affairs undertook a two-year research project, aimed at providing information from the standpoint of an organization with no vested interest in either the pro or the anti camp, but close connections to

  18. New Science for a Secure and Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  19. Third-world development: urbanizing for the future.

    Science.gov (United States)

    Mcilwaine, C

    1997-01-01

    This article reviews some issues reflected in the 1996 UN Habitat II agenda and recent research on urbanization. The themes of the 1996 Habitat conference were urban development, urban poverty, and governance, civil society, and social capital. It is expected that over 50% of total world population will live in cities in the year 2000. Cities are viewed both as engines of economic growth and centers of severe economic, environmental, and social problems. There is some disagreement about whether cities are rational economic structures or what the World Bank's urban agenda is and its relationship with macroeconomic policy. Discussions of global urban issues are criticized for their neglect of issues of equity and poverty, cultural diversity, and identity and representation. Habitat II also stressed urban sustainability. There is growing recognition that urban management involves more than the "Brown Agenda" of environmental and physical aspects of urban growth. Recent studies identify how politics and power affect people's access to basic urban services. Urban economic activity can also contribute to environmental problems. Urban growth affects the provision of health services. Although there is not a consensus on the role of cities in expanding economic and social development and the best management practices, there is sufficient evidence to indicate that urban processes are varied throughout the developing world. The links between urban and rural areas differentiate cities and expose the need to understand the role of intermediate urban areas surrounding and between larger cities. Poverty has become increasingly urbanized, but the extent of poverty is unknown. Habitat II was an unprecedented effort to engage nongovernment groups, local government staff, trade unions, and the private sector and to emphasize community participation. Networks of trust and reciprocity are key to solving poverty, inequality, and disempowerment problems.

  20. World-wide termination of nuclear energy application

    International Nuclear Information System (INIS)

    Quirin, W.

    1991-01-01

    It is easy to require the widely discussed termination of nuclear energy application, but it is hardly possible to realise it, unless one is prepared to accept enormous economic and ecological problems. The article investigates, whether the other energy carriers or energy saving methods, respectively, would be in a position to replace the nuclear energy. Thereby the aspects of securing the supply and its economy are of considerable importance. The author describes furthermore the effects of terminating nuclear energy on the growing world population and the economy of trading countries. Ecological problems that may also be aggravated are dealt with, too. (orig.) [de

  1. Preparing Indico for the Future and the World

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presentation will focus on showing what we expect to be Indico's evolution over the next couple of years as the tool of choice for collaboration in HEP, not only feature-wise, but also in terms of technology and service. It will demonstrate how Indico went from a niche conference organization application to being CERN's own event organization tool and later to a collaboration platform that is used in over 100 other institutions world wide, and how we intend to bring it to a whole new level - that of a global service available to the scientific community as a whole.

  2. Science for Today's Energy Challenges: Accelerating Progress for a Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    With a growing population and energy demand in the world, there is a pressing need for research to create secure and accessible energy options with greatly reduced emissions of greenhouse gases. While we work to deploy the clean and efficient technologies that we already have--which will be urgent for the coming decades--we must also work to develop the science for the technologies of the future. This brochure gives examples of some of the most promising developments, and it provides 'snapshots' of cutting edge work of scientists in the field. The areas of greatest promise include biochemistry, nanotechnology, supraconductivity, electrophysics and computing. There are many others.

  3. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    Billfalk, Lennart; Haegermark, Harald

    2009-03-01

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO 2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments

  4. Future of the Book? Challenge of the Digital World

    Science.gov (United States)

    Pledger, Pat

    2010-01-01

    In the last ten years there has been much speculation about the role of e-books and e-book readers. This paper will look at the impact of e-book readers on publishing and reading, the types of e-book readers, their advantages and disadvantages. Some ideas for future e-books and e-book readers and their use in the library and classroom will be…

  5. Big questions cloud Iraq's future role in world oil market

    International Nuclear Information System (INIS)

    Tippee, B.

    1992-01-01

    This paper reports that Iraq raises questions for the world oil market beyond those frequently asked about when and under what circumstances it will resume exports. Two wars since 1981 have obscured encouraging results from a 20 year exploration program that were only beginning to come to light when Iraq invaded Kuwait in August 1990. Those results indicate the country might someday be able to produce much more than the 3.2 million b/d it was flowing before a United Nations embargo blocked exports. If exploratory potential is anywhere near what officials asserted in the late 1980s, and if Iraq eventually turns hospitable to international capital, the country could become a world class opportunity for oil companies as well as an exporter with productive capacity approaching that of Saudi Arabia. But political conditions can change quickly. Under a new, secular regime, Iraq might welcome non-Iraqi oil companies and capital as essential to economic recovery. It's a prospect that warrants a new industry look at what the country has revealed about its geology and exploration history

  6. The Future of the World Economy is an Integrated World Economic Structure

    Directory of Open Access Journals (Sweden)

    Sergey Yurievich Glazyev

    2018-03-01

    Full Text Available Global changes in the modern world cannot be adequately described on the basis of neoliberal thinking and require a new approach. It can be formed on the basis of the cyclical-wave characterization of the development of mankind. The hypothesis about the wave-like development of the world economy with a certain cyclicity lies at the heart of thisresearch. The authors determined the economic basis of the formation, development and change of these waves (technological ways and technical revolutions. These changes reflect in the cyclical fluctuations of the world economy.The mechanism of these fluctuations is described by the theory of “large cycles of the economic conjuncture” by N. Kondratiev. The authors propose a methodology and methodological tools for analyzing and forecasting cyclic-wave processes in the economic development. The study has concluded that it is the regularities of K-cycles that allow one to correctly assess the ongoing processes in the world economy, to forecast possible variants of their development. The authors came to the conclusion that the development of the world economic structure is necessarily accompanied by a cyclical shift in the instruments of capital accumulation (material and financial expansion. These processes are reflected in the periodic replacement of scientific paradigms of economic development and management. The state always takes an active part in the phase of the dominance of productive capital, and the ideological paradigm is of a directing nature. While in the phase of domination of financial capital the liberal paradigm becomes dominant. We have substantiated the thesis about the transition from the American to the Asian systemic cycle of capital accumulation, which would inevitably lead in the middle of the 21st century to the shift of the center of the world economy from the West to the East. The paper concludes that the world is facing a change from the Monopolistic world economic structure to

  7. Towards a fossil free energy future. The next energy transition

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Greber, L.; Hall, J.; Bartels, C.; Bernow, S.; Hansen, E.; Raskin, P.; Von Hippel, D. (Stockholm Environment Institute, Boston, MA (United States))

    1993-04-01

    The report provides technical analysis and documentation as input to the Greenpeace project 'Towards a fossil free energy future'. It presents a main scenario and several variants for reducing greenhouse gas emissions, and the technical methods and assumptions used to develop them. The goal is to investigate the technical, economic and policy feasibility to phasing out fossil fuels over the next century as part of a strategy to avert unacceptably high levels or rates of global warming. 209 refs., 42 figs., 27 tabs.

  8. EnerFuture Energy Scenarios to 2035 'Understanding our Energy Future'. Key graphs and analysis, Enerdata - Global Energy Forecasting - February 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The EnerFuture service provides projections to 2035 of energy supply and demand across the world, powered by the POLES model, to help you with what to expect in the energy industry in the mid-term. Our energy forecasting team have developed three key energy scenarios (Balance, Emergence and Renaissance) to illustrate possible futures. Balance scenario: Balance provides an outlook of the energy system up to 2035 based on current policies and trends. Sustained growth of China and other emerging countries is a powerful driver of global energy demand, but confirmed energy policy commitments in several regions play a key role in controlling the pace of growth. However, non-coordinated policies result in soaring CO_2 emissions across the world and energy prices rise. Emergence scenario: This scenario explores the implications of more stringent climate policies, with more ambitious efforts on energy efficiency, initiatives to phase out fossil fuel subsidies and a real emergence of renewable technologies. Europe goes beyond its -20% targets by 2020, and the OECD and emerging countries meet their Copenhagen objectives. Following this, a new green deal is launched to reduce world emissions by a factor of 2 by 2050. Renaissance scenario: With strong efforts in the exploitation and production of unconventional oil and gas resources, the world encounters a fossil fuels renaissance with the appearance of new key actors and ultimately new geopolitical configurations changing the energy independence of several countries. For climate efforts, this new paradigm leads to progressively weaker policies. Further analysis and key findings are available here: - Increasing economic activity and wealth drives energy consumption, in a balance between energy prices and innovation; - As Non-OECD exceeds OECD oil demand, massive financial flows underlie the shifts in global oil trade; - Optimistic resource assumptions and moderate production costs would lead to an oil production Renaissance

  9. The energy in the world; L'energie dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M.; Comby, B. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2001-12-01

    In the future the energy demand will double and the electric power demand will treble. In this framework and after a presentation of the energy price and the energy needs, the authors propose actions domains. (A.L.B.)

  10. Atlas of world energies. Which choices for tomorrow?

    International Nuclear Information System (INIS)

    Barre, Bertrand; Merenne-Schoumaker, Bernadette; Bailly, Anne

    2015-01-01

    This book proposes maps and graphics to present and describe the complexity of energy stakes in the 21. century. It addresses various issues related to energy consumption (growth and inequity, a very contrasted energy consumption with respect to resources, energy and development, an always more expensive energy, the major issue of climate change, energy-related pollutions, waste management, risk prevention), the main conventional energies (sources, vectors and networks, electricity and storage, crude oil, natural gas, coal, nuclear and fissile materials, non conventional hydrocarbons, future technologies, the possibility of clean conventional energies), renewable energies at the heart of energy transition (biomass, hydraulic energy, wind energy, solar energies, other renewable resources, the viability of renewable energies), the energy geopolitics (trades, tensions and power games, the main energy actors, the Middle East, Russia and USA as the three main producers, EU, China and India as different consumers, sub-Saharan Africa), and the time for action (to increase energy efficiency and sobriety, to diversify resources and supplies, transports and mobility, land and city planning, modes of consumption, to reduce inequities)

  11. Future Transportation with Smart Grids and Sustainable Energy

    Directory of Open Access Journals (Sweden)

    Gustav R. Grob

    2009-10-01

    Full Text Available Transportation is facing fundamental change due to the rapid depletion of fossil fuels, environmental and health problems, the growing world population, rising standards of living with more individual mobility and the globalization of trade with its increasing international transport volume. To cope with these serious problems benign, renewable energy systems and much more efficient drives must be multiplied as rapidly as possible to replace the polluting combustion engines with their much too low efficiency and high fuel logistics cost. Consequently the vehicles of the future must be non-polluting and super-efficient, i.e. electric. The energy supply must come via smart grids from clean energy sources not affecting the health, climate and biosphere. It is shown how this transition to the clean, sustainable energy age is possible, feasible and why it is urgent. The important role of international ISO, IEC and ITU standards and the need for better legislation by means of the Global Energy Charter for Sustainable Development are also highlighted.

  12. The future of nuclear energy in Europe

    International Nuclear Information System (INIS)

    Lauvergeon, A.

    2000-01-01

    More than 430 nuclear power plants are in operation in 33 countries worldwide. In 1999, they generated nearly 2.4 billion kilowatthours, thus meeting approximately one fifth of the world population's electricity requirement. Every third nuclear power plant is located in a member country of the European Union. These 145 plants generated an aggregate 826 billion kilowatthours last year. This corresponds to almost one third of the entire electricity generation in Europe. The special future requirements facing individual countries and power utilities not only ecologically, as a consequence of the Kyoto Protocol, but also economically, as a consequence of the deregulation of the European electricity market, make the intention of Germany to dispense with the use of nuclear power incomprehensible to the French point of view. Germany must pay special attention to fulfilling its international treaties and bilateral contracts, as Anne Lauvergeon, CEO of Cogema, explained in her presentation at the Bonn KTG conference. This applied in particular to the back end of the fuel cycle. In this respect, the head of Cogema argues that the waste and spent fuel management pathway must be chosen freely by the operator of a nuclear power plant. Within the safety requirements applying equally to all operators, the operator may freely decide under economic aspects whether he wants to recycle his spent fuel or dispose of it as waste. Only when this freedom of choice is guaranteed and used will it be ensured that the economically and technically best solution will win the day in the competition of systems. (orig.) [de

  13. World trends in wind energy. A focus per country. Analysis

    International Nuclear Information System (INIS)

    Kane, Mamadou

    2016-01-01

    A set of articles highlights and comments various trends related to the development of wind energy in 2015. More specifically, the articles outline that 2015 has been a record year for wind energy in the World (an increase of 63.900 MW in installed power), that wind energy covers 11.4 per cent of energy demand in Europe, that the wind energy sector is still in a very good health in the USA (more megawatts have been installed during the last quarter of 2015 than during the whole 2014 year and perspectives seem promising in terms of installed power, share of energy, costs and prices), that Denmark holds the world record of wind energy consumption in 2015 (42.1 per cent of its energy consumption in 2015), that Mauritania could be the engine of the wind energy sector in western Africa (a first important wind farm has been installed in 2012, followed by others with a higher production, and a 100 MW project), that Scotland awarded a 53 MW project to Siemens (using the Siemens G2 platform), and that Kenya signed a partnership with a Chinese company for a 102 MW project. The last article outlines that renewable energies appear to be resilient in front of the oil crisis

  14. The great transformation of global energy supply. Central messages of the world energy congress; Die Grosse Transformation der Weltenergieversorgung. Zentrale Botschaften des World Energy Congress

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Hans-Wilhelm [World Energy Council, London (United Kingdom). World Energy Resources

    2016-12-15

    The 23rd World Energy Congress, held in Istanbul from October 9 to 13, 2016, brought together some 4500 delegates from around the world. It is the world's largest international energy conference held every three years by the World Energy Council in changing world regions. The congress was a unique opportunity to present a comprehensive view of current and long-term global energy issues. [German] Der 23. Weltenergie-Kongress, veranstaltet vom 9. bis 13.10.2016 in Istanbul, brachte etwa 4500 Delegierte aus der ganzen Welt zusammen. Es ist die weltweit groesste internationale Energiekonferenz, die alle drei Jahre vom World Energy Council in wechselnden Weltregionen ausgerichtet wird. Mit dem Kongress wurde die einzigartige Gelegenheit wahrgenommen, einen umfassenden Blick sowohl auf die aktuellen als auch auf die langfristig global relevanten Energiethemen zu richten.

  15. The role of electricity in the world energy mix

    International Nuclear Information System (INIS)

    Multon, Bernard

    2015-10-01

    As energy has become the engine of development and electricity some kind of ideal energy, the author first comments the trends and levels of energy demand and world electricity production, and then the geographical distribution of electricity production per primary sources (geothermal, wind, biomass, solar, hydraulic, marine, non renewable wastes, nuclear, and fossil). He also comments the evolutions of energy production by these different sources and the production of some important countries during the last decade. Figures illustrate the cases of Europe, China, USA and France (shares of different sources in the production)

  16. Renewable: A key component of our global energy future

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  17. Changing the world with hydrogen and nuclear: From past successes to shaping the future

    International Nuclear Information System (INIS)

    Carre, F.

    2010-01-01

    This presentation reviews the past history of hydrogen and nuclear energy, while considering how they had been important forever, how they have been used to change the world when they were discovered and understood, and how they will likely shape our future to face specific challenges of the 21. century. Content: 1 - hydrogen and nuclear reactions at the origin of the universe: the universe and supernovae, the sun, the blue planet, the evolution of man; 2 - understanding and first uses of hydrogen: the discovery of hydrogen, hydrogen balloons, airships or dirigibles, the discovery of the electrolysis and the fuel cell, Jules Vernes; 3 - development of nuclear over the 20. century: pioneers of nuclear energy, Fermi reactor, EBR-1; 4 - development of hydrogen over the 20. century, expanding uses of hydrogen over the second half of the 20. century; 5 - four major endeavours gathering hydrogen and nuclear: light water reactors, naval reactors, nuclear rockets, controlled fusion, the PNP-500 project; 6 - stakes in hydrogen and nuclear production in the 21. century: energy challenge for the 21. century, peaking of fossil fuel production, renaissance of nuclear energy, changes in transportation model, hydrogen market, technologies for nuclear hydrogen production, carbon taxes, the path forward: international demonstrations towards industrialisation, a new generation of scientists for our dreams come true

  18. Energy financing in today's world - a banker's viewpoint

    International Nuclear Information System (INIS)

    Mackrell, Ian

    1991-01-01

    If the world runs on energy, the energy industry runs on finance. Supplying the industry's huge appetite for funds -on the scale and in the form required - has always posed a major challenge to the international banking community. But in some respects that challenge is greater today than it has ever been, not only because of the industry's escalating requirements but also because of the way bank's attitudes have been changing in the recent past. One reason for this is the rapidly evolving scene within the energy business in response to the harsher competitive conditions and the greater uncertainties of tomorrow. However, the other major factor is that banking itself has been undergoing significant change as a result of severe pressures and constraints, both internal and external. Some of the key global trends and issues affecting energy financing in today's world are considered here. (author)

  19. Energy financing in today's world - a banker's viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Mackrell, Ian [Barclays Bank plc, London (GB)

    1991-07-01

    If the world runs on energy, the energy industry runs on finance. Supplying the industry's huge appetite for funds -on the scale and in the form required - has always posed a major challenge to the international banking community. But in some respects that challenge is greater today than it has ever been, not only because of the industry's escalating requirements but also because of the way bank's attitudes have been changing in the recent past. One reason for this is the rapidly evolving scene within the energy business in response to the harsher competitive conditions and the greater uncertainties of tomorrow. However, the other major factor is that banking itself has been undergoing significant change as a result of severe pressures and constraints, both internal and external. Some of the key global trends and issues affecting energy financing in today's world are considered here. (author).

  20. The world energy demand in 2005: confirmed increase in energy consumptions, despite soaring crude oil prices

    International Nuclear Information System (INIS)

    Chateau, Bertrand

    2006-01-01

    The world energy demand growth remains strong: 2004 experienced the highest growth since 19987, and brent prices had moderate impact in 2005: Very strong rise of energy consumptions despite high oil prices, Economic situation still favorable, Evolutions principally due to China. 2005 world energy consumption: 11,4 Gtoe: Asia accounts for 35% of the world energy consumption, China's weight (15%) continues to increase by one point every year (+5 points since 2000). Asia increases its pressure on the world energy growth in 2005: China accounts for almost half of the world energy consumption increase in 2005, the whole Asia accounts for 70%; The European consumption growth represents less than 5% of China's Growth; The American energy consumption decreases for the first time. 2005 world consumption by energy: With an increasing market share by 0,7 points, coal penetration increases; The oil market has lost 0,4 point, with an accelerating relative decrease; The relative weight of gas remains stable, with 21%. Energy efficiency and energy intensity of GDP: Slow-down of the world energy intensity decrease since 2001, whereas the economic growth is faster, due to changes in trends in China (increase in the recent years). Increase less sharp in China in 2005 (price effect). Energy intensity trends of GDP: Fast decrease in CIS since the recovery of the economic growth; Slow-down of the decrease in EU since 2000 and recovery in 2005 whereas the decrease has accelerated in the USA. Since 2000, the energy consumption increases less rapidly than the GDP almost everywhere, except for the Middle East. Projections until 2020: China and India could represent one third of the world energy growth, the whole of Asia more than 50%; Growth prospects for energy demand are low in the EU and CIS; America would account for 20% of the world energy growth (8% USA); In the rest of the world, high growth in Africa and in the Middle East. Gas could cover more than 40% of the world energy

  1. A review and future prospects of renewable energy in the global energy system

    Institute of Scientific and Technical Information of China (English)

    D Yogi GOSWAMI; John & Naida Ramil Professor; Co-Director

    2008-01-01

    Global energy consumption in the last half century has rapidly increased and is expected to continue to grow over the next 50 years, however, with significant differences. The past increase was stimulated by relatively "cheap" fossil fuels and increased rates of industrialization in North America, Europe and Japan; yet while energy consumption in these countries continues to increase, additional factors make the picture for the next 50 years more complex. These additional complicating factors include China and India's rapid increase in energy use as they represent about a third of the world's population; the expected depletion of oil resources in the near future; and, the effect of human activities on global climate change. On the positive side, the renewable energy (RE) technologies of wind, bio-fuels, solar thermal and photovoltaics (PV) are finally showing maturity and the ultimate promise of cost competitiveness.

  2. Spillover effects in energy futures markets

    International Nuclear Information System (INIS)

    Lin, S.X.; Tamvakis, M.N.

    2001-01-01

    Price discovery in crude oil and refined oil products has been extensively undertaken in organised futures markets for over a decade now. There are two dominant such markets today: the first one in the New York Mercantile Exchange; and the second in London's International Petroleum Exchange. With the demise of OPEC as the leading price setter for crude and products, NYMEX light sweet crude and Brent crude have usurped the role of benchmark grades for price setting. To date considerable work has been done to scrutinise the degree to which these two markets price efficiently, but little with regard to the way the two markets interact. Participants in these markets move with relative ease from one market to the other and usually take positions in both of them. It is of interest, therefore, to investigate the information transmission mechanism by looking at spillover effects and, perhaps, identify which market is the true price leader. This paper is a first attempt to look at such a problem in the energy market, although similar studies have been done on stock market indices. It is found that substantial spillover effects do exist when both markets are trading simultaneously, although IPE morning prices seem to be considerably affected by the close of the previous day on NYMEX

  3. Energy and the World Summit on Sustainable Development: what next?

    International Nuclear Information System (INIS)

    Spalding-Fecher, Randall; Winkler, Harald; Mwakasonda, Stanford

    2005-01-01

    Given the importance of energy issues to sustainable development, energy was a priority issue at the World Summit on Sustainable Development in August 2002. The objective of this paper is to examine the outcomes of the Summit on energy, and to assess them against proposals to address the lack of access to modern energy and the need to move toward a cleaner energy system. We find that lack of political leadership from key countries prevented agreement not only on targets for renewable energy, but also on a programme to promote access. The achievements of the Summit were limited to enabling activities such as capacity building and technology transfer, rather than substantive agreements. While WSSD put energy higher on the agenda than before, no institutional home or programme to take the issues forward has emerged. This therefore remains a critical challenge to be addressed. Achieving this broad goal will require building a coalition to promote cleaner energy, and committing resources to programme for energy access. Based on analysis of proposals and the negotiations, we propose several key areas where progress is still possible and necessary, including: shifting more international public and private energy financing toward access investments and cleaner energy investments, advancing regional approaches to access and renewable energy targets, and a range of mechanisms to strengthen institutional capacity for integrating energy and sustainable development

  4. A new energy future for South Africa: The political ecology of South African renewable energy

    International Nuclear Information System (INIS)

    Krupa, Joel; Burch, Sarah

    2011-01-01

    Renewable energy remains a contested topic in South Africa. This paper argues that South Africa can build on the momentum surrounding its introduction of a feed-in tariff by enacting policies that may, if given adequate funding and political effort, allow the country to be a world leader in renewable energy. Given a variety of renewable energy policy options for moving forward, a majority of stakeholders consulted in this study strongly prefer the development of a renewable energy manufacturing cluster, in which government develops coordinated policy mechanisms that attract renewable energy manufacturers, over three other policies suggested by the authors. Interviews with key informants that play critical roles in this decision-making process suggest that there are reasons to remain cautiously optimistic about the country's renewable energy future while cognizant of the challenges that must still be overcome. Opportunities for a low carbon renewable energy transition in South Africa include the prevalence of broad stakeholder consultation, facilitated by civil society, and an innovative policy development context. Significant impediments also exist, however, and include pervasive social issues such as poverty and political inertia, along with the ongoing difficulties facing renewable energy technologies in reaching grid parity with inexpensive and abundant South African coal. - Highlights: → Numerous opportunities exist for a low carbon energy transition in South Africa. → Stakeholders in study prefer development of a renewable energy manufacturing cluster. → Significant impediments still exist, including grid parity, poverty, and inequality.

  5. A new energy future for South Africa: The political ecology of South African renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, Joel, E-mail: jkrupa@mstar-ca.com [University of Oxford, South Parks Road, Oxford OX1 3QY (United Kingdom); Burch, Sarah [University of Oxford, South Parks Road, Oxford OX1 3QY (United Kingdom)

    2011-10-15

    Renewable energy remains a contested topic in South Africa. This paper argues that South Africa can build on the momentum surrounding its introduction of a feed-in tariff by enacting policies that may, if given adequate funding and political effort, allow the country to be a world leader in renewable energy. Given a variety of renewable energy policy options for moving forward, a majority of stakeholders consulted in this study strongly prefer the development of a renewable energy manufacturing cluster, in which government develops coordinated policy mechanisms that attract renewable energy manufacturers, over three other policies suggested by the authors. Interviews with key informants that play critical roles in this decision-making process suggest that there are reasons to remain cautiously optimistic about the country's renewable energy future while cognizant of the challenges that must still be overcome. Opportunities for a low carbon renewable energy transition in South Africa include the prevalence of broad stakeholder consultation, facilitated by civil society, and an innovative policy development context. Significant impediments also exist, however, and include pervasive social issues such as poverty and political inertia, along with the ongoing difficulties facing renewable energy technologies in reaching grid parity with inexpensive and abundant South African coal. - Highlights: > Numerous opportunities exist for a low carbon energy transition in South Africa. > Stakeholders in study prefer development of a renewable energy manufacturing cluster. > Significant impediments still exist, including grid parity, poverty, and inequality.

  6. Geopolitics of energy in 2017 in the world

    International Nuclear Information System (INIS)

    Romain Chicheportiche

    2017-10-01

    Whereas geopolitical stakes related to energy have a very important influence on national energy policies throughout the world, this publication proposes a set of discussions of these issues by considering different regions of the World. It starts with Europe with comments on a controversial report published by a French public agency on the German Energiewende, comments on the British policy of support to electric vehicles, on the example of El Hierro in the Canaries Islands, on the building up of new wind energy projects in Germany without any public subsidy, on the good position of European manufacturers on the world wind turbine market, and on the new gas pipe connecting Russia to Crimea. The next set of articles addresses the American continent with comments on the surprising backward step of Brazil on renewable energy projects, on Trump's policy in favour of hydrocarbons, on the tension between the USA and North Korea, and on the emerging trend noticed in Latin America with technologically neutral tenders (with no discrimination between energy sources). The third part concerns Asia with comments on the OPEC strategy, on the blacklisting of Qatar, on the resuming of oil deliveries by Saudi Arabia to Egypt, on the authorisation given by Iran to many oil companies, and on the renewable production in China which is smaller than expected. The last part deals with Africa with comments on the increased presence of Total in Senegal, and on the development of wind energy in Kenya (the largest fleet in Africa)

  7. Outlook for world nuclear power generation and long-term energy supply and demand situations

    International Nuclear Information System (INIS)

    Matsuo, Yuhji

    2012-01-01

    In this article, the author presents a long-term outlook for the world's nuclear generating capacity, taking into account the nuclear policy changes after Fukushima Daiichi nuclear power plant accident. World primary energy demand will grow from 11.2 billion tons of oil equivalent (toe) in 2009 to 17.3 billion toe in 2035. Along with this rapid increase in global energy consumption, the world's nuclear generating capacity will grow from 392 GW in 2010 to 484 GW in 2020 and 574 GW in 2035 in the 'Reference scenario'. Even in the 'Low nuclear scenario', where the maximum impact of Fukushima accident to the nuclear policies of each government is assumed, it will continue to grow in the future, exceeding 500 GW in 2035. In particular, Asian countries such as China and India will lead the growth both in the energy demand and in the nuclear power capacity. Therefore, it is essential to better ensure the safety of nuclear power generation. It is important for technologically developed countries, including Japan, to make active contributions to the establishment of a global nuclear safety control system. On the other hand, energy security and global warming will continue to be major issues, which will make it indispensable to make the best effort to save energy and expand renewable energy utilization. Japan is competitive in energy-saving and environmental conservation technologies, thus further development and utilization of there technologies should be a key option of Japan's growth growth strategy in the future. (author)

  8. World energy, technology and climate policy outlook 2030 - WETO

    International Nuclear Information System (INIS)

    2003-01-01

    WETO describes in detail scenarios for the evolution of World and European energy systems, power generation technologies and impacts of climate change policy in the main world regions or countries. It presents a coherent framework to analyse the energy, technology and environment trends and issues over the period to 2030, focusing on Europe in a world context. The document highlights three key topics. First, in a Reference scenario, i.e. if no strong specific policy initiatives and measures are taken, world CO 2 emissions are expected to double in 2030 and, with a share of 90%, fossil fuels will continue to dominate the energy system. Secondly, the great majority of the increase in oil production will come from OPEC countries and the EU will rely predominantly on natural gas imported from the CIS. Lastly, as the largest growing energy demand and CO 2 emissions originate from developing countries (mainly China and India), Europe will have to intensify its co-operation, particularly in terms of transfer of technologies. (A.L.B.)

  9. The development of energy in the twenty first century in the world and in Japan

    International Nuclear Information System (INIS)

    Fujime, Kazuya

    1995-01-01

    Humankind will go into the 21st century in five years. People tend to talk about the end of this century and don't talk much about what will happen on the earth and in the field of energy in the 21st century because the economic, politics and social affairs in the future after 2000 are uncertain and cloudy in the world and in Japan. Japan is facing serious difficulties of economic deflation which might continue at least for more five years. She is also facing political and social turmoil such as a strong distrust in the political issues particularly in the behaviors of political people and Aum crazy murders. However I would like to adventure to make the clear outlook up to 2010 of energy problems in the world and Japan. People will face the serious unsuitability in the energy supply security in the world, in the Asian countries and in Japan. (author)

  10. Total energy system in the future

    International Nuclear Information System (INIS)

    Hijikata, K.

    1994-01-01

    The possibility of improving the thermal efficiency of energy systems from an exergy point of view is discussed. In total energy systems, we should employ multi-pass recycling consisting of thermal and chemical energies. The recycling system is supported by electrical energy, which is provided by a renewable energy source or by excess commercial electric power. This total energy system should be considered not only in one country, but all around the globe. (author). 6 figs., 4 tabs., 8 refs

  11. Risoe energy report 4: The future energy system - distributed production and use

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L.

    2005-10-01

    The world is facing major challenges in providing energy services to meet the future needs of the developed world and the growing needs of developing countries. These challenges are exacerbated by the need to provide energy services with due respect to economic growth, sustainability and security of supply. Today, the world's energy system is based mainly on oil, gas and coal, which together supply around 80% of our primary energy. Only around 0.5% of primary energy comes from renewable sources such as wind, solar and geothermal. Despite the rapid development of new energy technologies, the world will continue to depend on fossil fuels for several decades to come - and global primary energy demand is forecasted to grow by 60% between 2002 and 2030. The expected post Kyoto targets call for significant CO{sub 2} reductions, increasing the demand to decouple the energy and transport systems from fossil fuels. There is a strong need for closer links between electricity, heat and other energy carriers, including links to the transport sector. On a national scale Denmark has three main characteristics. Firstly, it has a diverse and distributed energy system based on the power grid, the district heating grid and the natural gas grid. Secondly, renewable energy, especially wind power, plays an increasingly important role in the Danish energy system. Thirdly, Denmark's geographical location allows it to act as a buffer between the energy systems of the European continent and the Nordic countries. Energy systems can be made more robust by decentralising both power generation and control. Distributed generation (DG) is characterised by a variety of energy production technologies integrated into the electricity supply system, and the ability of different segments of the grid to operate autonomously. The use of a more distributed power generation system would be an important element in the protection of the consumers against power interruptions and blackouts, whether

  12. Risoe energy report 4: The future energy system - distributed production and use

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2005-10-01

    The world is facing major challenges in providing energy services to meet the future needs of the developed world and the growing needs of developing countries. These challenges are exacerbated by the need to provide energy services with due respect to economic growth, sustainability and security of supply. Today, the world's energy system is based mainly on oil, gas and coal, which together supply around 80% of our primary energy. Only around 0.5% of primary energy comes from renewable sources such as wind, solar and geothermal. Despite the rapid development of new energy technologies, the world will continue to depend on fossil fuels for several decades to come - and global primary energy demand is forecasted to grow by 60% between 2002 and 2030. The expected post Kyoto targets call for significant CO 2 reductions, increasing the demand to decouple the energy and transport systems from fossil fuels. There is a strong need for closer links between electricity, heat and other energy carriers, including links to the transport sector. On a national scale Denmark has three main characteristics. Firstly, it has a diverse and distributed energy system based on the power grid, the district heating grid and the natural gas grid. Secondly, renewable energy, especially wind power, plays an increasingly important role in the Danish energy system. Thirdly, Denmark's geographical location allows it to act as a buffer between the energy systems of the European continent and the Nordic countries. Energy systems can be made more robust by decentralising both power generation and control. Distributed generation (DG) is characterised by a variety of energy production technologies integrated into the electricity supply system, and the ability of different segments of the grid to operate autonomously. The use of a more distributed power generation system would be an important element in the protection of the consumers against power interruptions and blackouts, whether caused by

  13. World energy outlook 2006: the International energy Agency (I.E.A.) report

    International Nuclear Information System (INIS)

    Sorin, F.

    2006-01-01

    Between the increasing of energy consumption and then, increasing of carbon dioxide emissions, and the decreasing of hydrocarbon reserves it is urgent to find others energy supplies strategies. The nuclear energy is able to bring a determining contribution to the solution of the world energy problem. (N.C.)

  14. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  15. The future of nuclear power: A world-wide perspective

    Science.gov (United States)

    Aktar, Ismail

    This study analyzes the future of commercial nuclear electric generation worldwide using the Environmental Kuznets Curve (EKC) concept. The Tobit panel data estimation technique is applied to analyze the data between 1980 and 1998 for 105 countries. EKC assumes that low-income countries increase their nuclear reliance in total electric production whereas high-income countries decrease their nuclear reliance. Hence, we expect that high-income countries should shut down existing nuclear reactors and/or not build any new ones. We encounter two reasons for shutdowns: economic or political/environmental concerns. To distinguish these two effects, reasons for shut down are also investigated by using the Hazard Model technique. Hence, the load factor of a reactor is used as an approximation for economic reason to shut down the reactor. If a shut downed reactor had high load factor, this could be attributable to political/environmental concern or else economic concern. The only countries with nuclear power are considered in this model. The two data sets are created. In the first data set, the single entry for each reactor is created as of 1998 whereas in the second data set, the multiple entries are created for each reactor beginning from 1980 to 1998. The dependent variable takes 1 if operational or zero if shut downed. The empirical findings provide strong evidence for EKC relationship for commercial nuclear electric generation. Furthermore, higher natural resources suggest alternative electric generation methods rather than nuclear power. Economic index as an institutional variable suggests higher the economic freedom, lower the nuclear electric generation as expected. This model does not support the idea to cut the carbon dioxide emission via increasing nuclear share. The Hazard Model findings suggest that higher the load factor is, less likely the reactor will shut down. However, if it is still permanently closed downed, then this could be attributable to political

  16. After Globalization Future Security in a Technology Rich World

    Energy Technology Data Exchange (ETDEWEB)

    Gilmartin,T J

    2001-08-17

    Over the course of the year 2000, five workshops were conducted by the Center for Global Security Research at the Lawrence Livermore National Laboratory on threats to international security in the 2015 to 2020 timeframe due to the global availability of advanced technology. These workshops focused on threats that are enabled by nuclear, missile, and space technology; military technology; information technology; bio technology; and geo systems technology. The participants included US national leaders and experts from the Department of Energy National Laboratories; the Department of Defense: Army, Navy, Air Force, Office of the Secretary of Defense, Defense Threat Reduction Agency, and Defense Advanced Research Projects Agency; the Department of State, NASA, Congressional technical staff, the intelligence community, universities and university study centers, think tanks, consultants on security issues, and private industry. For each workshop the process of analysis involved identification and prioritization of the participants' perceived most severe threat scenarios (worst nightmares), discussion of the technologies which enabled those threats, and ranking of the technologies' threat potentials. The threats ranged from local/regional to global, from intentional to unintended to natural, from merely economic to massively destructive, and from individual and group to state actions. We were not concerned in this exercise with defining responses to the threats, although our assessment of each threat's severity included consideration of the ease or difficulty with which it might be executed or countered. At the concluding review, we brought the various workshops' participants together, added senior participant/reviewers with broad experience and national responsibility, and discussed the workshop findings to determine what is most certain or uncertain, and what might be needed to resolve our uncertainties. This paper summarizes the consenses and

  17. Financial crises and the outlook for the world energy economy

    International Nuclear Information System (INIS)

    Scanlan, Tony

    1999-01-01

    With respect to world energy, two subjects are preoccupying energy economists. They are (1) how will production of oil and gas hold up with the lowest oil prices since 1945 and (2) are the recessions in Asia, parts of Latin America and the CIS rendering futile any attempts to balance the energy markets? The fundamental question asked is: What kind of market are we in? The paper is structured to provide answers or discuss the following sub-questions. (i) does the energy market operate by the same rules as the global economy; (ii) what lessons can be learned from disconnection of the oil market problems of 1973 and the collapse of the tanker market and (iii) how should the markets be regulated. A detailed analysis of world energy growth in the second half of this century and how it may develop in the next 20 years is given. Special attention is paid to the role of the Asia/Pacific market, the strength of the world economic system, the impact of privatisation in Russia and possible turbulence in share markets. (UK)

  18. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  19. The energy world in 2002. Statistical yearbook ENERDATA 2003

    International Nuclear Information System (INIS)

    2003-01-01

    This document summarizes the world energy key data for 2002 (total energy consumption and per gross domestic product unit, petroleum, gas, coal and lignite, and electric power consumptions, CO 2 emissions). Data are grouped according to five main areas (Africa and Middle East, America, Asia and Pacific area, Western Europe, Eastern Europe and ex-USSR). The data show a restart of the world energy consumption (1.4% in 2002 with respect to 0.5% in 2001) despite a relatively low economic growth (1.6% with respect to 2.6% for the previous decade, as an average), a strong growth of the electricity and coal consumption, a restart of the gas consumption and a stagnation of the petroleum consumption. (J.S.)

  20. Renewable sources of energy in Africa: status of development and future contribution to the energy mix

    International Nuclear Information System (INIS)

    Mwanza, P.N.; Pashkov, Y.V.

    1995-01-01

    Renewable sources of energy in Africa are widely regarded as alternatives to fossil fuels. Being an abundant indigenous reserve, they offer considerable savings of foreign exchange. Also, they are usually regarded as environmentally friendly and thus do not contribute significantly to the greenhouse effect. However, present contributions of renewable energy to the African energy supply remain negligible despite substantial claims often made about the potential scope for renewable energy forms. This paper is based on a comprehensive study undertaken by the United Nations Economic Commission for Africa in 1993-94. The assessment of renewable energy contributions to the energy mix has been made based on data obtained from African countries. A formula reflecting new and renewable sources of energy (NRSE) utilisation was developed and an attempt was made to delineate some zones with identical patterns of utilisation. Some of the difficulties encountered in the dissemination of NRSE and incentives introduced by African countries are also discussed. The conclusion is that African countries acknowledge the role of NRSE technologies in the development of future world energy systems. Yet the probability of NRSE assuming a greater share in energy supplies within the next two decades in Africa is doubtful. (author) 3 tabs., 1 fig., 7 refs