WorldWideScience

Sample records for future reusable launch

  1. Future Launch Vehicle Structures - Expendable and Reusable Elements

    Science.gov (United States)

    Obersteiner, M. H.; Borriello, G.

    2002-01-01

    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the

  2. The Cost-Optimal Size of Future Reusable Launch Vehicles

    Science.gov (United States)

    Koelle, D. E.

    2000-07-01

    The paper answers the question, what is the optimum vehicle size — in terms of LEO payload capability — for a future reusable launch vehicle ? It is shown that there exists an optimum vehicle size that results in minimum specific transportation cost. The optimum vehicle size depends on the total annual cargo mass (LEO equivalent) enviseaged, which defines at the same time the optimum number of launches per year (LpA). Based on the TRANSCOST-Model algorithms a wide range of vehicle sizes — from 20 to 100 Mg payload in LEO, as well as launch rates — from 2 to 100 per year — have been investigated. It is shown in a design chart how much the vehicle size as well as the launch rate are influencing the specific transportation cost (in MYr/Mg and USS/kg). The comparison with actual ELVs (Expendable Launch Vehicles) and Semi-Reusable Vehicles (a combination of a reusable first stage with an expendable second stage) shows that there exists only one economic solution for an essential reduction of space transportation cost: the Fully Reusable Vehicle Concept, with rocket propulsion and vertical take-off. The Single-stage Configuration (SSTO) has the best economic potential; its feasibility is not only a matter of technology level but also of the vehicle size as such. Increasing the vehicle size (launch mass) reduces the technology requirements because the law of scale provides a better mass fraction and payload fraction — practically at no cost. The optimum vehicle design (after specification of the payload capability) requires a trade-off between lightweight (and more expensive) technology vs. more conventional (and cheaper) technology. It is shown that the the use of more conventional technology and accepting a somewhat larger vehicle is the more cost-effective and less risky approach.

  3. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  4. Reusable Military Launch Systems (RMLS)

    Science.gov (United States)

    2008-02-01

    shown in Figure 11. The second configuration is an axisymmetric, rocket-based combined cycle (RBCC) powered, SSTO vehicle, similar to the GTX...McCormick, D., and Sorensen, K., “Hyperion: An SSTO Vision Vehicle Concept Utilizing Rocket-Based Combined Cycle Propulsion”, AIAA paper 99-4944...there have been several failedattempts at the development of reusable rocket or air-breathing launch vehicle systems. Single-stage-to-orbit ( SSTO

  5. Reusable launch vehicle development research

    Science.gov (United States)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  6. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  7. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  8. Reusable launch vehicle facts and fantasies

    Science.gov (United States)

    Kaplan, Marshall H.

    2002-01-01

    Many people refuse to address many of the realities of reusable launch vehicle systems, technologies, operations and economics. Basic principles of physics, space flight operations, and business limitations are applied to the creation of a practical vision of future expectations. While reusable launcher concepts have been proposed for several decades, serious review of potential designs began in the mid-1990s, when NASA decided that a Space Shuttle replacement had to be pursued. A great deal of excitement and interest was quickly generated by the prospect of ``orders-of-magnitude'' reduction in launch costs. The potential for a vastly expanded space program motivated the entire space community. By the late-1990s, and after over one billion dollars were spent on the technology development and privately-funded concepts, it had become clear that there would be no new, near-term operational reusable vehicle. Many factors contributed to a very expensive and disappointing effort to create a new generation of launch vehicles. It began with overly optimistic projections of technology advancements and the belief that a greatly increased demand for satellite launches would be realized early in the 21st century. Contractors contributed to the perception of quickly reachable technology and business goals, thus, accelerating the enthusiasm and helping to create a ``gold rush'' euphoria. Cost, schedule and performance margins were all highly optimistic. Several entrepreneurs launched start up companies to take advantage of the excitement and the availability of investor capital. Millions were raised from private investors and venture capitalists, based on little more than flashy presentations and animations. Well over $500 million were raised by little-known start up groups to create reusable systems, which might complete for the coming market in launch services. By 1999, it was clear that market projections, made just two years earlier, were not going to be realized. Investors

  9. Bantam: A Systematic Approach to Reusable Launch Vehicle Technology Development

    Science.gov (United States)

    Griner, Carolyn; Lyles, Garry

    1999-01-01

    The Bantam technology project is focused on providing a low cost launch capability for very small (100 kilogram) NASA and University science payloads. The cost goal has been set at one million dollars per launch. The Bantam project, however, represents much more than a small payload launch capability. Bantam represents a unique, systematic approach to reusable launch vehicle technology development. This technology maturation approach will enable future highly reusable launch concepts in any payload class. These launch vehicle concepts of the future could deliver payloads for hundreds of dollars per pound, enabling dramatic growth in civil and commercial space enterprise. The National Aeronautics and Space Administration (NASA) has demonstrated a better, faster, and cheaper approach to science discovery in recent years. This approach is exemplified by the successful Mars Exploration Program lead by the Jet Propulsion Laboratory (JPL) for the NASA Space Science Enterprise. The Bantam project represents an approach to space transportation technology maturation that is very similar to the Mars Exploration Program. The NASA Advanced Space Transportation Program (ASTP) and Future X Pathfinder Program will combine to systematically mature reusable space transportation technology from low technology readiness to system level flight demonstration. New reusable space transportation capability will be demonstrated at a small (Bantam) scale approximately every two years. Each flight demonstration will build on the knowledge derived from the previous flight tests. The Bantam scale flight demonstrations will begin with the flights of the X-34. The X-34 will demonstrate reusable launch vehicle technologies including; flight regimes up to Mach 8 and 250,000 feet, autonomous flight operations, all weather operations, twenty-five flights in one year with a surge capability of two flights in less than twenty-four hours and safe abort. The Bantam project will build on this initial

  10. On the economics of staging for reusable launch vehicles

    Science.gov (United States)

    Griffin, Michael D.; Claybaugh, William R.

    1996-03-01

    There has been much recent discussion concerning possible replacement systems for the current U.S. fleet of launch vehicles, including both the shuttle and expendable vehicles. Attention has been focused upon the feasibility and potential benefits of reusable single-stage-to-orbit (SSTO) launch systems for future access to low Earth orbit (LEO). In this paper we assume the technical feasibility of such vehicles, as well as the benefits to be derived from system reusability. We then consider the benefits of launch vehicle staging from the perspective of economic advantage rather than performance necessity. Conditions are derived under which two-stage-to-orbit (TSTO) launch systems, utilizing SSTO-class vehicle technology, offer a relative economic advantage for access to LEO.

  11. Airframe Integration Trade Studies for a Reusable Launch Vehicle

    Science.gov (United States)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  12. Benefits of Government Incentives for Reusable Launch Vehicle Development

    Science.gov (United States)

    Shaw, Eric J.; Hamaker, Joseph W.; Prince, Frank A.

    1998-01-01

    Many exciting new opportunities in space, both government missions and business ventures, could be realized by a reduction in launch prices. Reusable launch vehicle (RLV) designs have the potential to lower launch costs dramatically from those of today's expendable and partially-expendable vehicles. Unfortunately, governments must budget to support existing launch capability, and so lack the resources necessary to completely fund development of new reusable systems. In addition, the new commercial space markets are too immature and uncertain to motivate the launch industry to undertake a project of this magnitude and risk. Low-cost launch vehicles will not be developed without a mature market to service; however, launch prices must be reduced in order for a commercial launch market to mature. This paper estimates and discusses the various benefits that may be reaped from government incentives for a commercial reusable launch vehicle program.

  13. Reusable launch vehicle model uncertainties impact analysis

    Science.gov (United States)

    Chen, Jiaye; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    Reusable launch vehicle(RLV) has the typical characteristics of complex aerodynamic shape and propulsion system coupling, and the flight environment is highly complicated and intensely changeable. So its model has large uncertainty, which makes the nominal system quite different from the real system. Therefore, studying the influences caused by the uncertainties on the stability of the control system is of great significance for the controller design. In order to improve the performance of RLV, this paper proposes the approach of analyzing the influence of the model uncertainties. According to the typical RLV, the coupling dynamic and kinematics models are built. Then different factors that cause uncertainties during building the model are analyzed and summed up. After that, the model uncertainties are expressed according to the additive uncertainty model. Choosing the uncertainties matrix's maximum singular values as the boundary model, and selecting the uncertainties matrix's norm to show t how much the uncertainty factors influence is on the stability of the control system . The simulation results illustrate that the inertial factors have the largest influence on the stability of the system, and it is necessary and important to take the model uncertainties into consideration before the designing the controller of this kind of aircraft( like RLV, etc).

  14. Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations

    Science.gov (United States)

    Hardy, Terry L.

    2005-12-01

    A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.

  15. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    Science.gov (United States)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  16. Lockheed Martin approach to a Reusable Launch Vehicle (RLV)

    Science.gov (United States)

    Elvin, John D.

    1996-03-01

    This paper discusses Lockheed Martin's perspective on the development of a cost effective Reusable Launch Vehicle (RLV). Critical to a successful Single Stage To Orbit (SSTO) program are; an economic development plan sensitive to fiscal constraints; a vehicle concept satisfying present and future US launch needs; and an operations concept commensurate with a market driven program. Participation in the economic plan by government, industry, and the commercial sector is a key element of integrating our development plan and funding profile. The RLV baseline concept design, development evolution and several critical trade studies illustrate the superior performance achieved by our innovative approach to the problem of SSTO. Findings from initial aerodynamic and aerothermodynamic wind tunnel tests and trajectory analyses on this concept confirm the superior characteristics of the lifting body shape combined with the Linear Aerospike rocket engine. This Aero Ballistic Rocket (ABR) concept captures the essence of The Skunk Works approach to SSTO RLV technology integration and system engineering. These programmatic and concept development topics chronicle the key elements to implementing an innovative market driven next generation RLV.

  17. Commercial aspects of semi-reusable launch systems

    Science.gov (United States)

    Obersteiner, M. H.; Müller, H.; Spies, H.

    2003-07-01

    This paper presents a business planning model for a commercial space launch system. The financing model is based on market analyses and projections combined with market capture models. An operations model is used to derive the annual cash income. Parametric cost modeling, development and production schedules are used for quantifying the annual expenditures, the internal rate of return, break even point of positive cash flow and the respective prices per launch. Alternative consortia structures, cash flow methods, capture rates and launch prices are used to examine the sensitivity of the model. Then the model is applied for a promising semi-reusable launcher concept, showing the general achievability of the commercial approach and the necessary pre-conditions.

  18. Conformal cryogenic tank trade study for reusable launch vehicles

    Science.gov (United States)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar™. Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  19. Macroeconomic Benefits of Low-Cost Reusable Launch Vehicles

    Science.gov (United States)

    Shaw, Eric J.; Greenberg, Joel

    1998-01-01

    The National Aeronautics and Space Administration (NASA) initiated its Reusable Launch Vehicle (RLV) Technology Program to provide information on the technical and commercial feasibility of single-stage to orbit (SSTO), fully-reusable launchers. Because RLVs would not depend on expendable hardware to achieve orbit, they could take better advantage of economies of scale than expendable launch vehicles (ELVs) that discard costly hardware on ascent. The X-33 experimental vehicle, a sub-orbital, 60%-scale prototype of Lockheed Martin's VentureStar SSTO RLV concept, is being built by Skunk Works for a 1999 first flight. If RLVs achieve prices to low-earth orbit of less than $1000 US per pound, they could hold promise for eliciting an elastic response from the launch services market. As opposed to the capture of existing market, this elastic market would represent new space-based industry businesses. These new opportunities would be created from the next tier of business concepts, such as space manufacturing and satellite servicing, that cannot earn a profit at today's launch prices but could when enabled by lower launch costs. New business creation contributes benefits to the US Government (USG) and the US economy through increases in tax revenues and employment. Assumptions about the costs and revenues of these new ventures, based on existing space-based and aeronautics sector businesses, can be used to estimate the macroeconomic benefits provided by new businesses. This paper examines these benefits and the flight prices and rates that may be required to enable these new space industries.

  20. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    Science.gov (United States)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  1. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    Science.gov (United States)

    Bond, W. H.; Yi, A. C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  2. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    Science.gov (United States)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  3. Support to X-33/Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    2000-01-01

    The Primary activities of Lee & Associates for the referenced Purchase Order has been in direct support of the X-33/Reusable Launch Vehicle Technology Program. An independent review to evaluate the X-33 liquid hydrogen fuel tank failure, which recently occurred after-test of the starboard tank has been provided. The purpose of the Investigation team was to assess the tank design modifications, provide an assessment of the testing approach used by MSFC (Marshall Space Flight Center) in determining the flight worthiness of the tank, assessing the structural integrity, and determining the cause of the failure of the tank. The approach taken to satisfy the objectives has been for Lee & Associates to provide the expertise of Mr. Frank Key and Mr. Wayne Burton who have relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. Mr. Key and Mr. Burton participated in the NASA established Failure Investigation Review Team to review the development and process data and to identify any design, testing or manufacturing weaknesses and potential problem areas. This approach worked well in satisfying the objectives and providing the Review Team with valuable information including the development of a Fault Tree. The detailed inputs were made orally in real time in the Review Team daily meetings. The results of the investigation were presented to the MSFC Center Director by the team on February 15, 2000. Attached are four charts taken from that presentation which includes 1) An executive summary, 2) The most probable cause, 3) Technology assessment, and 4) Technology Recommendations for Cryogenic tanks.

  4. Reusable launch vehicles, enabling technology for the development of advanced upper stages and payloads

    International Nuclear Information System (INIS)

    Metzger, John D.

    1998-01-01

    In the near future there will be classes of upper stages and payloads that will require initial operation at a high-earth orbit to reduce the probability of an inadvertent reentry that could result in a detrimental impact on humans and the biosphere. A nuclear propulsion system, such as was being developed under the Space Nuclear Thermal Propulsion (SNTP) Program, is an example of such a potential payload. This paper uses the results of a reusable launch vehicle (RLV) study to demonstrate the potential importance of a Reusable Launch Vehicle (RLV) to test and implement an advanced upper stage (AUS) or payload in a safe orbit and in a cost effective and reliable manner. The RLV is a horizontal takeoff and horizontal landing (HTHL), two-stage-to-orbit (TSTO) vehicle. The results of the study shows that an HTHL is cost effective because it implements airplane-like operation, infrastructure, and flight operations. The first stage of the TSTO is powered by Rocket-Based-Combined-Cycle (RBCC) engines, the second stage is powered by a LOX/LH rocket engine. The TSTO is used since it most effectively utilizes the capability of the RBCC engine. The analysis uses the NASA code POST (Program to Optimize Simulated Trajectories) to determine trajectories and weight in high-earth orbit for AUS/advanced payloads. Cost and reliability of an RLV versus current generation expandable launch vehicles are presented

  5. The Reusable Launch Vehicle Technology Program and the X-33 Advanced Technology Demonstrator

    Science.gov (United States)

    Cook, Stephen A.

    1995-01-01

    The goal of the Reusable Launch Vehicle (RLV) technology program is formulated, and the primary objectives of RLV are listed. RLV technology program implementation phases are outlined. X-33 advanced technology demonstrator is described. Program management is addressed.

  6. Weight Analysis of Two-Stage-To-Orbit Reusable Launch Vehicles for Military Applications

    National Research Council Canada - National Science Library

    Caldwell, Richard A

    2005-01-01

    In response to Department of Defense (DoD) requirements for responsive and low-cost space access, this design study provides an objective empty weight analysis of potential reusable launch vehicle (RLV) configurations...

  7. Cost Comparison Of Expendable, Hybrid and Reusable Launch Vehicles

    National Research Council Canada - National Science Library

    Gstattenbauer, Greg J

    2006-01-01

    .... This comparison was accomplished using top level mass and cost estimating relations (MERs, CERs). Mass estimating relationships were correlated to existing launch system data and ongoing launch system studies...

  8. Economics of small fully reusable launch systems (SSTO vs. TSTO)

    Science.gov (United States)

    Koelle, Dietrich E.

    1997-01-01

    The paper presents a design and cost comparison of an SSTO vehicle concept with two TSTO vehicle options. It is shown that the ballistic SSTO concept feasibility is NOT a subject of technology but of proper vehicle SIZING. This also allows to design for sufficient performance margin. The cost analysis has been performed with the TRANSCOST- Model, also using the "Standardized Cost per Flight" definition for the CpF comparison. The results show that a present-technology SSTO for LEO missions is about 30 % less expensive than any TSTO vehicle, based on Life-Cycle-Cost analysis, in addition to the inherent operational/ reliability advantages of a single-stage vehicle. In case of a commercial development and operation it is estimated that an SSTO vehicle with 400 Mg propellant mass can be flown for some 9 Million per mission (94/95) with 14 Mg payload to LEO, 7 Mg to the Space Station Orbit, or 2 Mg to a 200/800 km polar orbit. This means specific transportation cost of 650 /kg (300 $/lb), resp.3.2 MYr/Mg, to LEO which is 6 -10% of present expendable launch vehicles.

  9. An Entry Flight Controls Analysis for a Reusable Launch Vehicle

    Science.gov (United States)

    Calhoun, Philip

    2000-01-01

    The NASA Langley Research Center has been performing studies to address the feasibility of various single-stage to orbit concepts for use by NASA and the commercial launch industry to provide a lower cost access to space. Some work on the conceptual design of a typical lifting body concept vehicle, designated VentureStar(sup TM) has been conducted in cooperation with the Lockheed Martin Skunk Works. This paper will address the results of a preliminary flight controls assessment of this vehicle concept during the atmospheric entry phase of flight. The work includes control analysis from hypersonic flight at the atmospheric entry through supersonic speeds to final approach and landing at subsonic conditions. The requirements of the flight control effectors are determined over the full range of entry vehicle Mach number conditions. The analysis was performed for a typical maximum crossrange entry trajectory utilizing angle of attack to limit entry heating and providing for energy management, and bank angle to modulation of the lift vector to provide downrange and crossrange capability to fly the vehicle to a specified landing site. Sensitivity of the vehicle open and closed loop characteristics to CG location, control surface mixing strategy and wind gusts are included in the results. An alternative control surface mixing strategy utilizing a reverse aileron technique demonstrated a significant reduction in RCS torque and fuel required to perform bank maneuvers during entry. The results of the control analysis revealed challenges for an early vehicle configuration in the areas of hypersonic pitch trim and subsonic longitudinal controllability.

  10. Tracks for Eastern/Western European Future Launch Vehicles Cooperation

    Science.gov (United States)

    Eymar, Patrick; Bertschi, Markus

    2002-01-01

    exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 patrick.eymar@lanceurs.aeromatra.com 2

  11. High-Glass-Transition-Temperature Polyimides Developed for Reusable Launch Vehicle Applications

    Science.gov (United States)

    Chuang, Kathy; Ardent, Cory P.

    2002-01-01

    Polyimide composites have been traditionally used for high-temperature applications in aircraft engines at temperatures up to 550 F (288 C) for thousands of hours. However, as NASA shifts its focus toward the development of advanced reusable launch vehicles, there is an urgent need for lightweight polymer composites that can sustain 600 to 800 F (315 to 427 C) for short excursions (hundreds of hours). To meet critical vehicle weight targets, it is essential that one use lightweight, high-temperature polymer matrix composites in propulsion components such as turbopump housings, ducts, engine supports, and struts. Composite materials in reusable launch vehicle components will heat quickly during launch and reentry. Conventional composites, consisting of layers of fabric or fiber-reinforced lamina, would either blister or encounter catastrophic delamination under high heating rates above 300 C. This blistering and delamination are the result of a sudden volume expansion within the composite due to the release of absorbed moisture and gases generated by the degradation of the polymer matrix. Researchers at the NASA Glenn Research Center and the Boeing Company (Long Beach, CA) recently demonstrated a successful approach for preventing this delamination--the use of three-dimensional stitched composites fabricated by resin infusion.

  12. Global atmospheric response to emissions from a proposed reusable space launch system

    Science.gov (United States)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  13. A Modular, Reusable Latch and Decking System for Securing Payloads During Launch and Planetary Surface Transport

    Science.gov (United States)

    Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce D.; Mikulas, Martin M.

    2011-01-01

    Efficient handling of payloads destined for a planetary surface, such as the moon or mars, requires robust systems to secure the payloads during transport on the ground, in space and on the planetary surface. In addition, mechanisms to release the payloads need to be reliable to ensure successful transfer from one vehicle to another. An efficient payload handling strategy must also consider the devices available to support payload handling. Cranes used for overhead lifting are common to all phases of payload handling on Earth. Similarly, both recent and past studies have demonstrated that devices with comparable functionality will be needed to support lunar outpost operations. A first generation test-bed of a new high performance device that provides the capabilities of both a crane and a robotic manipulator, the Lunar Surface Manipulation System (LSMS), has been designed, built and field tested and is available for use in evaluating a system to secure payloads to transportation vehicles. A payload handling approach must address all phases of payload management including: ground transportation, launch, planetary transfer and installation in the final system. In addition, storage may be required during any phase of operations. Each of these phases requires the payload to be lifted and secured to a vehicle, transported, released and lifted in preparation for the next transportation or storage phase. A critical component of a successful payload handling approach is a latch and associated carrier system. The latch and carrier system should minimize requirements on the: payload, carrier support structure and payload handling devices as well as be able to accommodate a wide range of payload sizes. In addition, the latch should; be small and lightweight, support a method to apply preload, be reusable, integrate into a minimal set of hard-points and have manual interfaces to actuate the latch should a problem occur. A latching system which meets these requirements has been

  14. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  15. Permeability Testing of Impacted Composite Laminates for Use on Reusable Launch Vehicles

    Science.gov (United States)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite, and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented, and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a nonlinear fashion for almost all the specimens tested.

  16. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  17. Commercial suborbital reusable launch vehicles: ushering in a new era for turbopause exploration (Invited)

    Science.gov (United States)

    Smith, H. T.

    2013-12-01

    Multiple companies are in the process of developing commercial suborbital reusable launch vehicles (sRLV's). While these companies originally targeted space tourism as the primary customer base, it is rapidly becoming apparent that this dramatic increase in low cost access to space could provide revolutionary opportunities for scientific research, engineering/instrument development and STEM education. These burgeoning capabilities will offer unprecedented opportunities regarding access to space with frequent low-cost access to the region of space from the ground to the boundary of near-Earth space at ~100 km. In situ research of this region is difficult because it is too high for aircraft and balloons and yet too low for orbital satellites and spacecraft. However, this region is very significant because it represents the tenuous boundary of Earth's Atmosphere and Space. It contains a critical portion of the atmosphere where the regime transitions from collisional to non-collisional physics and includes complex charged and neutral particle interactions. These new launch vehicles are currently designed for manned and unmanned flights that reach altitudes up to 110 km for 5K-500K per flight with payload capacity exceeding 600 kg. Considering the much higher cost per flight for a sounding rocket with similar capabilities, high flight cadence, and guaranteed return of payload, commercial spacecraft has the potential to revolutionize access to near space. This unprecedented access to space allows participation at all levels of research, engineering, education and the public at large. For example, one can envision a model where students can conduct complete end to end projects where they design, build, fly and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Our community is only beginning to grasp the opportunities and impactions of these new capabilities but with operational flights anticipated in 2014, it is

  18. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase

    Science.gov (United States)

    Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin

    2018-02-01

    A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.

  19. Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique

    Directory of Open Access Journals (Sweden)

    Xiangdong LIU

    2017-08-01

    Full Text Available An autonomous approach and landing (A&L guidance law is presented in this paper for landing an unpowered reusable launch vehicle (RLV at the designated runway touchdown. Considering the full nonlinear point-mass dynamics, a guidance scheme is developed in three-dimensional space. In order to guarantee a successful A&L movement, the multiple sliding surfaces guidance (MSSG technique is applied to derive the closed-loop guidance law, which stems from higher order sliding mode control theory and has advantage in the finite time reaching property. The global stability of the proposed guidance approach is proved by the Lyapunov-based method. The designed guidance law can generate new trajectories on-line without any specific requirement on off-line analysis except for the information on the boundary conditions of the A&L phase and instantaneous states of the RLV. Therefore, the designed guidance law is flexible enough to target different touchdown points on the runway and is capable of dealing with large initial condition errors resulted from the previous flight phase. Finally, simulation results show the effectiveness of the proposed guidance law in different scenarios.

  20. Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique

    Science.gov (United States)

    Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.

  1. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  2. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    Science.gov (United States)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  3. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  4. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Science.gov (United States)

    2010-01-01

    ... writing, of the time and date of the intended launch and reentry or other landing on Earth of the RLV and..., including the vehicle, launch site, planned launch and reentry flight path, and intended landing sites...

  5. Highly reusable space transportation: Approaches for reducing ETO launch costs to $100 - $200 per pound of payload

    Science.gov (United States)

    Olds, John R.

    1995-01-01

    The Commercial Space Transportation Study (CSTS) suggests that considerable market expansion in earth-to-orbit transportation would take place if current launch prices could be reduced to around $400 per pound of payload. If these low prices can be achieved, annual payload delivered to low earth orbit (LEO) is predicted to reach 6.7 million pounds. The primary market growth will occur in communications, government missions, and civil transportation. By establishing a cost target of $100-$200 per pound of payload for a new launch system, the Highly Reusable Space Transportation (HRST) program has clearly set its sights on removing the current restriction on market growth imposed by today's high launch costs. In particular, achieving the goal of $100-$200 per pound of payload will require significant coordinated efforts in (1) marketing strategy development, (2) business planning, (3) system operational strategy, (4) vehicle technical design, and (5) vehicle maintenance strategy.

  6. Task 4 supporting technology. Part 2: Detailed test plan for thermal seals. Thermal seals evaluation, improvement and test. CAN8-1, Reusable Launch Vehicle (RLV), advanced technology demonstrator: X-33. Leading edge and seals thermal protection system technology demonstration

    Science.gov (United States)

    Hogenson, P. A.; Lu, Tina

    1995-01-01

    The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.

  7. SSTO RLVs: More Global Reach? A Study of the Use of Single Stage to Orbit Reusable Launch Vehicles as Airlift Platforms.

    Science.gov (United States)

    1996-11-01

    Orbit ( SSTO ) Reusable Launch Vehicles (RLVs) are currently under cooperative development by NASA, the Air Force, and the aerospace industry in the pursuit...exploit these rapid transit technologies to advance ’Global Reach for America.’ The SSTO RLV is a single stage rocket that will be completely reusable...investigated to assess the projected capabilities and costs of the SSTO system. This paper reviews the proposed capabilities of the SSTO system, discusses

  8. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Science.gov (United States)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  9. Autocommander: A Supervisory Controller for Integrated Guidance and Control for the 2nd Generation Reusable Launch Vehicle

    Science.gov (United States)

    Fisher, J. E.; Lawrence, D. A.; Zhu, J. J.; Jackson, Scott (Technical Monitor)

    2002-01-01

    This paper presents a hierarchical architecture for integrated guidance and control that achieves risk and cost reduction for NASA's 2d generation reusable launch vehicle (RLV). Guidance, attitude control, and control allocation subsystems that heretofore operated independently will now work cooperatively under the coordination of a top-level autocommander. In addition to delivering improved performance from a flight mechanics perspective, the autocommander is intended to provide an autonomous supervisory control capability for traditional mission management under nominal conditions, G&C reconfiguration in response to effector saturation, and abort mode decision-making upon vehicle malfunction. This high-level functionality is to be implemented through the development of a relational database that is populated with the broad range of vehicle and mission specific data and translated into a discrete event system model for analysis, simulation, and onboard implementation. A Stateflow Autocoder software tool that translates the database into the Stateflow component of a Matlab/Simulink simulation is also presented.

  10. Liquid Oxygen Propellant Densification Unit Ground Tested With a Large-Scale Flight-Weight Tank for the X-33 Reusable Launch Vehicle

    Science.gov (United States)

    Tomsik, Thomas M.

    2002-01-01

    Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.

  11. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    Science.gov (United States)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  12. Performance and technical feasibility comparison of reusable launch systems: A synthesis of the ESA winged launcher studies

    Science.gov (United States)

    Berry, W.; Grallert, H.

    1996-02-01

    The paper presents a synthesis of the performance and technical feasibility assessment of 7 reusable launcher types, comprising 13 different vehicles, studied by European Industry for ESA in the ESA Winged Launcher Study in the period January 1988 to May 1994. The vehicles comprised single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) vehicles, propelled by either air-breathing/rocket propulsion or entirely by rocket propulsion. The results showed that an SSTO vehicle of the HOTOL-type, propelled by subsonic combustion air-breathing/rocket engines could barely deliver the specified payload mass and was aerodynamically unstable; that a TSTO vehicle of the Saenger type, employing subsonic combustion airbreathing propulsion in its first stage and rocket propulsion in its second stage, could readily deliver the specified payload mass and was found to be technically feasible and versatile; that an SSTO vehicle of the NASP type, propelled by supersonic combustion airbreathing/rocket propulsion was able to deliver a reduced payload mass, was very complex and required very advanced technologies; that an air-launched rocket propelled vehicle of the Interim HOTOL type, although technically feasible, could deliver only a reduced payload mass, being constrained by the lifting capability of the carrier airplane; that three different, entirely rocket-propelled vehicles could deliver the specified payload mass, were technically feasible but required relatively advanced technologies.

  13. Technology Transfer External Metrics, Research, Success Stories, and Participation on Evaluation Team for the Reusable Launch Vehicle (RLV)

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    This research report is divided into four sections. The first section is related to participation on the team that evaluated the proposals for the X-33 project and the Reusable Launch Vehicle (RLV) during mid-May; prior to beginning the 1996 Summer Faculty Fellowship. The second section discusses the various meetings attended related to the technology evaluation process. The third section is related to various research and evaluation activities engaged in by this researcher. The final section discusses several success stories this researcher aided in preparing. Despite the fact that this researcher is not an engineer or science faculty, invaluable knowledge and experience have been gained at MSFC. Although related to the previous summer's research, the research has been new, varied, and challenging. This researcher was fortunate to have had maximum interaction with NASA colleague, David Cockrell. It would be a privilege and honor to continue a relationship with the Technology Transfer Office. In addition, we will attempt to aid in the establishment of a continuous formalized relationship between MSFC and Jacksonville State University. Dr. David Watts, Vice President for Academic Affairs, J.S.U., is interested in having the Technology Division cooperating with MSFC in sharing information and working tech transfer inquiries. The principal benefits gained by this researcher include the opportunity to conduct research in a non-academic, real world environment. In addition, the opportunity to be involved in aiding with the decision process for the choice of the next generation of space transportation system was a once in a lifetime experience. This researcher has gained enhanced respect and understanding of MSFC/NASA staff and facilities.

  14. Alternatives for Future U.S. Space-Launch Capabilities

    Science.gov (United States)

    2006-10-01

    directive issued on January 14, 2004—called the new Vision for Space Exploration (VSE)—set out goals for future exploration of the solar system using...of the solar system using manned spacecraft. Among those goals was a proposal to return humans to the moon no later than 2020. The ultimate goal...U.S. launch capacity exclude the Sea Launch system operated by Boeing in partnership with RSC- Energia (based in Moscow), Kvaerner ASA (based in Oslo

  15. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    Science.gov (United States)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  16. Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future

    Science.gov (United States)

    Cates, Grant R.

    2014-01-01

    The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.

  17. System driven technology selection for future European launch systems

    Science.gov (United States)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  18. A future data environment - reusability vs. citability and synchronisation vs. ingestion

    Science.gov (United States)

    Fleischer, D.

    2012-04-01

    During the last decades data managers dedicated their work to the pursuit for importable data. In the recent years this chase seams to come to an end while funding organisations assume that the approach of data publications with citable data sets will eliminate denial of scientists to commit their data. But is this true for all problems we are facing at the edge of a data avalanche and data intensive science? The concept of citable data is a logical consequence from the connection of points. Potential data providers in the past complained usually about the missing of a credit assignment for data providers and they still do. The selected way of DOI captured data sets is perfectly fitting into the credit system of publisher driven publications with countable citations. This system is well known by scientists for approximately 400 years now. Unfortunately, there is a double bind situation between citeability and reusability. While cooperation of publishers and data archives are coming into existence, it is necessary to get one question clear: "Is it really worth while in the twenty-first century to force data into the publication process of the seventeenth century?" Data publications enable easy citability, but do not support easy data reusability for future users. Additional problems occur in such an environment while taking into account the chances of collaborative data corrections in the institutional repository. The future with huge amounts of data connected with publications makes reconsideration towards a more integrated approach reasonable. In the past data archives were the only infrastructures taking care of long-term data retrievability and availability. Nevertheless, they were never a part of the scientific process from data creation, analysis, interpretation and publication. Data archives were regarded as isolated islands in the sea of scientific data. Accordingly scientists considered data publications like a stumbling stone in their daily routines and

  19. Improved Re-Configurable Sliding Mode Controller for Reusable Launch Vehicle of Second Generation Addressing Aerodynamic Surface Failures and Thrust Deficiencies

    Science.gov (United States)

    Shtessel, Yuri B.

    2002-01-01

    In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.

  20. Motivation for Air-Launch: Past, Present, and Future

    Science.gov (United States)

    Kelly, John W.; Rogers, Charles E.; Brierly, Gregory T.; Martin, J Campbell; Murphy, Marshall G.

    2017-01-01

    Air-launch is defined as two or more air-vehicles joined and working together, that eventually separate in flight, and that have a combined performance greater than the sum of the individual parts. The use of the air-launch concept has taken many forms across civil, commercial, and military contexts throughout the history of aviation. Air-launch techniques have been applied for entertainment, movement of materiel and personnel, efficient execution of aeronautical research, increasing aircraft range, and enabling flexible and efficient launch of space vehicles. For each air-launch application identified in the paper, the motivation for that application is discussed.

  1. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    Science.gov (United States)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  2. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    Science.gov (United States)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  3. A qualitative understanding of the effects of reusable sanitary pads and puberty education: implications for future research and practice.

    Science.gov (United States)

    Hennegan, Julie; Dolan, Catherine; Steinfield, Laurel; Montgomery, Paul

    2017-06-27

    The management of menstruation has come to the fore as a barrier to girls' education attainment in low income contexts. Interventions have been proposed and piloted, but the emerging nature of the field means limited evidence is available to understand their pathways of effect. This study describes and compares schoolgirls' experiences of menstruation in rural Uganda at the conclusion of a controlled trial of puberty education and sanitary pad provision to elucidate pathways of effect in the interventions. Semi-structured interviews were undertaken with schoolgirls who participated in the Menstruation and the Cycle of Poverty trial concurrent with the final set of quantitative surveys. A framework approach and cross-case analysis were employed to describe and compare the experiences of 27 menstruating girls across the four intervention conditions; education (n = 8), reusable sanitary pads (n = 8), education with reusable sanitary pads (n = 6), and control (n = 5). Themes included: menstrual hygiene, soiling, irritation and infection, physical experience, knowledge of menstruation, psychological, social and cultural factors, and support from others. Those receiving reusable pads experienced improvements in comfort and reliability. This translated into reduced fears around garment soiling and related school absenteeism. Other menstrual hygiene challenges of washing, drying and privacy remained prominent. Puberty education improved girls' confidence to discuss menstruation and prompted additional support from teachers and peers. Findings have important implications for the development and evaluation of future interventions. Results suggest the provision of menstrual absorbents addresses one core barrier to menstrual health, but that interventions addressing broader needs such as privacy may improve effectiveness. Puberty education sessions should increase attention to body awareness and include strategies to address a wider range of practical menstrual challenges

  4. Launching Markets for Stock Index Futures and Options: Case of Korea

    OpenAIRE

    Yu-Kyung Kim

    1998-01-01

    This paper discusses experiences on launching Korea’s first-ever regulated derivatives market, namely stock index futures, on May 3, 1996, and subsequent opening of a stock index options market on July 7, 1997. It illustrates what went on as the Korea Stock Exchange was making a decision on its opening and describes the current status of the derivatives market.

  5. Reusable Boosters in a European-Russian Perspective

    Science.gov (United States)

    Deneu, François; Ramiandrasoa, Fabienne

    2002-01-01

    In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.

  6. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  7. Assessment of the Feasibility of Innovative Reusable Launchers

    Science.gov (United States)

    Chiesa, S.; Corpino, S.; Viola, N.

    The demand for getting access to space, in particular to Low Earth Orbit, is increasing and fully reusable launch vehicles (RLVs) are likely to play a key role in the development of future space activities. Up until now this kind of space systems has not been successfully carried out: in fact today only the Space Shuttle, which belongs to the old generation of launchers, is operative and furthermore it is not a fully reusable system. In the nineties many studies regarding advanced transatmospheric planes were started, but no one was accomplished because of the technological problems encountered and the high financial resources required with the corresponding industrial risk. One of the most promising project was the Lockheed Venture Star, which seemed to have serious chances to be carried out. Anyway, if this ever happens, it will take quite a long time thus the operative life of Space Shuttle will have to be extended for the International Space Station support. The purpose of the present work is to assess the feasibility of different kinds of advanced reusable launch vehicles to gain access to space and to meet the requirements of today space flight needs, which are mainly safety and affordability. Single stage to orbit (SSTO), two stage to orbit (TSTO) and the so called "one and a half" stage to orbit vehicles are here taken into account to highlight their advantages and disadvantages. The "one and a half" stage to orbit vehicle takes off and climbs to meet a tanker aircraft to be aerially refuelled and then, after disconnecting from the tanker, it flies to reach the orbit. In this case, apart from the space vehicle, also the tanker aircraft needs a dedicated study to examine the problems related to the refuelling at high subsonic speeds and at a height near the tropopause. Only winged vehicles which take off and land horizontally are considered but different architectural layouts and propulsive configurations are hypothesised. Unlike the Venture Star, which

  8. Technical and Economical Feasibility of SSTO and TSTO Launch Vehicles

    Science.gov (United States)

    Lerch, Jens

    This paper discusses whether it is more cost effective to launch to low earth orbit in one or two stages, assuming current or near future technologies. First the paper provides an overview of the current state of the launch market and the hurdles to introducing new launch vehicles capable of significantly lowering the cost of access to space and discusses possible routes to solve those problems. It is assumed that reducing the complexity of launchers by reducing the number of stages and engines, and introducing reusability will result in lower launch costs. A number of operational and historic launch vehicle stages capable of near single stage to orbit (SSTO) performance are presented and the necessary steps to modify them into an expendable SSTO launcher and an optimized two stage to orbit (TSTO) launcher are shown, through parametric analysis. Then a ballistic reentry and recovery system is added to show that reusable SSTO and TSTO vehicles are also within the current state of the art. The development and recurring costs of the SSTO and the TSTO systems are estimated and compared. This analysis shows whether it is more economical to develop and operate expendable or reusable SSTO or TSTO systems under different assumption for launch rate and initial investment.

  9. Reusable Agena study. Volume 2: Technical

    Science.gov (United States)

    Carter, W. K.; Piper, J. E.; Douglass, D. A.; Waller, E. W.; Hopkins, C. V.; Fitzgerald, E. T.; Sagawa, S. S.; Carter, S. A.; Jensen, H. L.

    1974-01-01

    The application of the existing Agena vehicle as a reusable upper stage for the space shuttle is discussed. The primary objective of the study is to define those changes to the Agena required for it to function in the reusable mode in the 100 percent capture of the NASA-DOD mission model. This 100 percent capture is achieved without use of kick motors or stages by simply increasing the Agena propellant load by using optional strap-on-tanks. The required shuttle support equipment, launch and flight operations techniques, development program, and cost package are also defined.

  10. EADS Roadmap for Launch Vehicles

    Science.gov (United States)

    Eymar, Patrick; Grimard, Max

    2002-01-01

    still think about the future, especially at industry level in order to make the most judicious choices in technologies, vehicle types as well as human resources and facilities specialization (especially after recent merger moves). and production as prime contractor, industrial architect or stage provider have taken benefit of this expertise and especially of all the studies ran under national funding and own financing on reusable vehicles and ground/flight demonstrators have analyzed several scenarios. VEHICLES/ASTRIUM SI strategy w.r.t. launch vehicles for the two next decades. Among the main inputs taken into account of course visions of the market evolutions have been considered, but also enlargement of international cooperations and governments requests and supports (e.g. with the influence of large international ventures). 1 patrick.eymar@lanceurs.aeromatra.com 2

  11. Reusable Component Services

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reusable Component Services (RCS) is a super-catalog of components, services, solutions and technologies that facilitates search, discovery and collaboration in...

  12. Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)

    Science.gov (United States)

    Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.

    2007-12-01

    The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.

  13. Conceptual Design of an APT Reusable Spaceplane

    Science.gov (United States)

    Corpino, S.; Viola, N.

    Safety characteristics. Several applications of this conceptual design methodology have been carried out in order to validate it. Here we will show one of the most challenging case studies: the APT73 spaceplane. Today the demand for getting access to space is increasing and fully reusable launch vehicles are likely to play a key role in future space activities, but up until now this kind of space system has not been successfully developed. The ideal reusable launcher should be a vehicle able to maintain physical integrity during its mission, to takeoff and land at any conventional airport, to be operated with a minimum maintenance effort and to guarantee an adequate safety level. Thanks to its flexibility it should be able to enter the desired orbital plane and to abort its mission any time in case of mishap. Moreover considerable cost reduction could be expected only by having extremely high launch rates comparable to today's aircraft fleets in the commercial airlines business. In our opinion the solution which better meets these specifications is the Aerial Propellant Transfer spaceplane concept, the so called "one stage and a half" space vehicle, which takes off and climbs to meet a tanker aircraft to be aerially re-fuelled and then, after disconnecting from the tanker, it flies to reach the orbit. The APT73 has been designed to reach the Low Earth Orbit to perform two kinds of mission: 1) to release payloads; 2) to be flown as crew return vehicle from the ISS. The concept has emerged from a set of preliminary choices established at the beginning of the project: Possible variants to the basic plan have been investigated and a trade off analysis has been carried out in order to obtain the optimum configuration. Listed below are the options that have been evaluated: This paper provides a technical description of the APT73 and illustrates the design challenges encountered in the development of the project.

  14. Reusability of coordination programs

    NARCIS (Netherlands)

    F. Arbab (Farhad); C.L. Blom (Kees); F.J. Burger (Freek); C.T.H. Everaars (Kees)

    1996-01-01

    textabstractIsolating computation and communication concerns into separate pure computation and pure coordination modules enhances modularity, understandability, and reusability of parallel and/or distributed software. This can be achieved by moving communication primitives (such as SendMessage and

  15. Economics of reusable facilities

    International Nuclear Information System (INIS)

    Antia, D.D.J.

    1992-01-01

    In this paper some of the different economic development strategies that can be used for reusable facilities in the UK, Norway, Netherlands and in some production sharing contracts are outlined. These strategies focus on an integrated decision analysis approach which considers development phasing, reservoir management, tax planning and where appropriate facility purchase, leasing, or sale and leaseback decisions

  16. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  17. 76 FR 52732 - Office of Commercial Space Transportation Notice of Intent To Publish Current and Future Launch...

    Science.gov (United States)

    2011-08-23

    ...\\ The AST website address is http://faa.gov/go/ast . The FAA proposes to post launch, reentry and site... website. Information including the launch area and the date and time of the launch is provided in publicly.... Notices to airmen that restrict air traffic during a reentry do not provide the nominal reentry points...

  18. Reusable platform concepts

    International Nuclear Information System (INIS)

    Gudmestad, O.T.; Sparby, B.K.; Stead, B.L.

    1993-01-01

    There is an increasing need to reduce costs of offshore production facilities in order to make development of offshore fields profitable. For small fields with short production time there is in particular a need to investigate ways to reduce costs. The idea of platform reuse is for such fields particularly attractive. This paper will review reusable platform concepts and will discuss their range of application. Particular emphasis will be placed on technical limitations. Traditional concepts as jackups and floating production facilities will be discussed by major attention will be given to newly developed ideas for reuse of steel jackets and concrete structures. It will be shown how the operator for several fields can obtain considerable savings by applying such reusable platform concepts

  19. Reusable radiation monitor

    International Nuclear Information System (INIS)

    Fanselow, D.L.; Ersfeld, D.A.

    1978-01-01

    An integrating, reusable device for monitoring exposure to actinic radiation is disclosed. The device comprises a substrate having deposited thereon at least one photochromic aziridine compound which is sealed in an oxygen barrier to stabilize the color developed by the aziridine compound in response to actinic radiation. The device includes a spectral response shaping filter to transmit only actinic radiation of the type being monitored. A color standard is also provided with which to compare the color developed by the aziridine compound

  20. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    Science.gov (United States)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  1. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  2. Integration of reusable systems

    CERN Document Server

    Rubin, Stuart

    2014-01-01

    Software reuse and integration has been described as the process of creating software systems from existing software rather than building software systems from scratch. Whereas reuse solely deals with the artifacts creation, integration focuses on how reusable artifacts interact with the already existing parts of the specified transformation. Currently, most reuse research focuses on creating and integrating adaptable components at development or at compile time. However, with the emergence of ubiquitous computing, reuse technologies that can support adaptation and reconfiguration of architectures and components at runtime are in demand. This edited book includes 15 high quality research papers written by experts in information reuse and integration to cover the most recent advances in the field. These papers are extended versions of the best papers which were presented at IEEE International Conference on Information Reuse and Integration and IEEE International Workshop on Formal Methods Integration, which wa...

  3. Authoring Systems Delivering Reusable Learning Objects

    Directory of Open Access Journals (Sweden)

    George Nicola Sammour

    2009-10-01

    Full Text Available A three layer e-learning course development model has been defined based on a conceptual model of learning content object. It starts by decomposing the learning content into small chunks which are initially placed in a hierarchic structure of units and blocks. The raw content components, being the atomic learning objects (ALO, were linked to the blocks and are structured in the database. We set forward a dynamic generation of LO's using re-usable e-learning raw materials or ALO’s In that view we need a LO authoring/ assembling system fitting the requirements of interoperability and reusability and starting from selecting the raw learning content from the learning materials content database. In practice authoring systems are used to develop e-learning courses. The company EDUWEST has developed an authoring system that is database based and will be SCORM compliant in the near future.

  4. Reliable, Reusable Cryotank, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcracking issues have significantly limited the reusability of state-of-the-art (SOA) composite cryotanks. While developers have made some progress addressing...

  5. Reusability Framework for Cloud Computing

    OpenAIRE

    Singh, Sukhpal; Singh, Rishideep

    2012-01-01

    Cloud based development is a challenging task for several software engineering projects, especially for those which needs development with reusability. Present time of cloud computing is allowing new professional models for using the software development. The expected upcoming trend of computing is assumed to be this cloud computing because of speed of application deployment, shorter time to market, and lower cost of operation. Until Cloud Co mputing Reusability Model is considered a fundamen...

  6. Viability of a Reusable In-Space Transportation System

    Science.gov (United States)

    Jefferies, Sharon A.; McCleskey, Carey M.; Nufer, Brian M.; Lepsch, Roger A.; Merrill, Raymond G.; North, David D.; Martin, John G.; Komar, David R.

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented.

  7. Cryogenic Composite Tank Fabrication for Reusable Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — XCOR has conducted extensive research and development, and material characterization analysis of a nonflammable, high-strength, lightweight thermoplastic...

  8. Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles

    Science.gov (United States)

    Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)

    2002-01-01

    The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.

  9. Quality Initiatives in the Commercial Development of Reusable Launch Vehicles

    Science.gov (United States)

    2015-03-01

    projected that if the cost-escalation proceeds at the same trends, the budget allotted for the EELV program will consume most of the $7.06 billion...became necessary. Furthermore, with the emergence of the industrial society came freedom of choice for the consumer . Manufacturers now had to compete... Toyota Production System (TPS) developed by the Toyota Motor Company, where the goal of the system was to increase production efficiency by reducing

  10. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  11. COSMOS Launch Services

    Science.gov (United States)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  12. Launch Services, a Proven Model

    Science.gov (United States)

    Trafton, W. C.; Simpson, J.

    2002-01-01

    From a commercial perspective, the ability to justify "leap frog" technology such as reusable systems has been difficult to justify because the estimated 5B to 10B investment is not supported in the current flat commercial market coupled with an oversupply of launch service suppliers. The market simply does not justify investment of that magnitude. Currently, next generation Expendable Launch Systems, including Boeing's Delta IV, Lockheed Martin's Atlas 5, Ariane V ESCA and RSC's H-IIA are being introduced into operations signifying that only upgrades to proven systems are planned to meet the changes in anticipated satellite demand (larger satellites, more lifetime, larger volumes, etc.) in the foreseeable future. We do not see a new fleet of ELVs emerging beyond that which is currently being introduced, only continuous upgrades of the fleet to meet the demands. To induce a radical change in the provision of launch services, a Multinational Government investment must be made and justified by World requirements. The commercial market alone cannot justify such an investment. And if an investment is made, we cannot afford to repeat previous mistakes by relying on one system such as shuttle for commercial deployment without having any back-up capability. Other issues that need to be considered are national science and security requirements, which to a large extent fuels the Japanese, Chinese, Indian, Former Soviet Union, European and United States space transportation entries. Additionally, this system must support or replace current Space Transportation Economies with across-the-board benefits. For the next 10 to 20 years, Multinational cooperation will be in the form of piecing together launch components and infrastructure to supplement existing launch systems and reducing the amount of non-recurring investment while meeting the future requirements of the End-User. Virtually all of the current systems have some form of multinational participation: Sea Launch

  13. Self-Healing Nanocomposites for Reusable Composite Cryotanks

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh

    2013-01-01

    Composite cryotanks, or composite overwrapped pressure vessels (COPVs), offer advantages over currently used aluminum-lithium cryotanks, particularly with respect to weight savings. Future NASA missions are expected to use COPVs in spaceflight propellant tanks to store fuels, oxidizers, and other liquids for launch and space exploration vehicles. However, reliability, reparability, and reusability of the COPVs are still being addressed, especially in cryogenic temperature applications; this has limited the adoption of COPVs in reusable vehicle designs. The major problem with composites is the inherent brittleness of the epoxy matrix, which is prone to microcrack formation, either from exposure to cryogenic conditions or from impact from different sources. If not prevented, the microcracks increase gas permeation and leakage. Accordingly, materials innovations are needed to mitigate microcrack damage, and prevent damage in the first place, in composite cryotanks. The self-healing technology being developed is capable of healing the microcracks through the use of a novel engineered nanocomposite, where a uniquely designed nanoparticle additive is incorporated into the epoxy matrix. In particular, this results in an enhancement in the burst pressure after cryogenic cycling of the nanocomposite COPVs, relative to the control COPVs. Incorporating a novel, self-healing, epoxy-based resin into the manufacture of COPVs allows repeatable self-healing of microcracks to be performed through the simple application of a low-temperature heat source. This permits COPVs to be reparable and reusable with a high degree of reliability, as microcracks will be remediated. The unique phase-separated morphology that was imparted during COPV manufacture allows for multiple self-healing cycles. Unlike single-target approaches where one material property is often improved at the expense of another, robustness has been introduced to a COPV by a combination of a modified resin and

  14. Design of launch systems using continuous improvement process

    Science.gov (United States)

    Brown, Richard W.

    1995-01-01

    The purpose of this paper is to identify a systematic process for improving ground operations for future launch systems. This approach is based on the Total Quality Management (TQM) continuous improvement process. While the continuous improvement process is normally identified with making incremental changes to an existing system, it can be used on new systems if they use past experience as a knowledge base. In the case of the Reusable Launch Vehicle (RLV), the Space Shuttle operations provide many lessons. The TQM methodology used for this paper will be borrowed from the United States Air Force 'Quality Air Force' Program. There is a general overview of the continuous improvement process, with concentration on the formulation phase. During this phase critical analyses are conducted to determine the strategy and goals for the remaining development process. These analyses include analyzing the mission from the customers point of view, developing an operations concept for the future, assessing current capabilities and determining the gap to be closed between current capabilities and future needs and requirements. A brief analyses of the RLV, relative to the Space Shuttle, will be used to illustrate the concept. Using the continuous improvement design concept has many advantages. These include a customer oriented process which will develop a more marketable product and a better integration of operations and systems during the design phase. But, the use of TQM techniques will require changes, including more discipline in the design process and more emphasis on data gathering for operational systems. The benefits will far outweigh the additional effort.

  15. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign

    Science.gov (United States)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.

    2016-01-01

    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  16. Future launcher demonstrator. Challenge and pathfinder

    Science.gov (United States)

    Kleinau, W.; Guerra, L.; Parkinson, R. C.; Lieberherr, J. F.

    1996-02-01

    For future and advanced launch vehicles emphasis is focused on single-stage-to-orbit (SSTO) concepts and on completely reusable versions with the goal to reduce the recurrent launch cost, to improve the mission success probability and also safety for the space transportation of economically attractive payloads into Low Earth Orbit. Both issues, the SSTO launcher and the low cost reusability are extremely challenging and cannot be proven by studies and on-ground tests alone. In-flight demonstration tests are required to verify the assumptions and the new technologies, and to justify the new launcher-and operations-concepts. Because a number of SSTO launch vehicles are currently under discussion in terms of configurations and concepts such as winged vehicles for vertical or horizontal launch and landing (from ground or a flying platform), or wingless vehicles for vertical take-off and landing, and also in terms of propulsion (pure rockets or a combination of air breathing and rocket engines), an experimental demonstrator vehicle appears necessary in order to serve as a pathfinder in this area of multiple challenges. A suborbital Reusable Rocket Launcher Demonstrator (RRLD) has been studied recently by a European industrial team for ESA. This is a multipurpose, evolutionary demonstrator, conceived around a modular approach of incremental improvements of subsystems and materials, to achieve a better propellant mass fraction i.e. a better performance, and specifically for the accomplishment of an incremental flight test programme. While the RRLD basic test programme will acquire knowledge about hypersonic flight, re-entry and landing of a cryogenic rocket propelled launcher — and the low cost reusability (short turnaround on ground) in the utilization programme beyond basic testing, the RRLD will serve as a test bed for generic testing of technologies required for the realization of an SSTO launcher. This paper will present the results of the European RRLD study which

  17. Russian aluminum-lithium alloys for advanced reusable spacecraft

    International Nuclear Information System (INIS)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO 2 ) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO 2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO 2 cryotank was successfully demonstrated in DC-XA flight tests

  18. The Launch Systems Operations Cost Model

    Science.gov (United States)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  19. Reusable Rapid Prototyped Blunt Impact Simulator

    Science.gov (United States)

    2016-08-01

    of a few weeks instead of the months it would have taken to prototype and pursue a conventionally manufactured solution. 3. Future Work In the...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Douglas A Petrick 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...impact area geometries were manufactured using selective laser sintering RP technology. These projectiles were launched with a compressed air cannon

  20. Formaldehyde in reusable protective gloves.

    Science.gov (United States)

    Pontén, Ann

    2006-05-01

    Due to the clinical findings in a single patient's case, formaldehyde was suspected to be present in clinically relevant levels in reusable protective gloves. Therefore, 9 types of gloves were investigated with the semi-quantitative chromotropic acid method. It was found that 6/9 gloves emitted some formaldehyde and that 4/9 gloves emitted > or =40 microg of formaldehyde. Most of the formaldehyde was found on the inside of the gloves. To get an indication of the clinical relevance, a comparison with a protective cream declared to contain the formaldehyde-releasing agent diazolidinyl urea was performed by comparing areas of gloves with areas of cream layers with thickness 1-2 mg/cm(2). It was found that the amounts of formaldehyde emitted from the gloves might be in the same range as emitted from a layer of cream.

  1. Reusable tamper-indicating security seal

    International Nuclear Information System (INIS)

    Ryan, M.J.

    1981-01-01

    A reusable tamper-indicating mechanical security seal for use in safeguarding nuclear material has been developed. The high-security seal displays an unpredictable, randomly selected, five-digit code each time it is used. This five digit code serves the same purpose that the serial number does for conventional non-reusable seals - a unique identifier for each use or application. The newly developed reusable seal is completely enclosed within a seamless, tamper-indicating, plastic jacket. The jacket is designed to reveal any attempts to penetrate, section or to chemically remove and replace with a counterfeit for surreptitious purposes

  2. Launch of Zoological Letters.

    Science.gov (United States)

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.

  3. Reusable coordinator modules for massively concurrent applications

    NARCIS (Netherlands)

    F. Arbab (Farhad); C.L. Blom (Kees); F.J. Burger (Freek); C.T.H. Everaars (Kees)

    1998-01-01

    htmlabstractIsolating computation and communication concerns into separate pure computation and pure coordination modules enhances modularity, understandability and reusability of parallel and/or distributed software. MANIFOLD is a pure coordination language that encourages this separation. We use

  4. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    Science.gov (United States)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  5. Reusable, tamper-indicating seal

    International Nuclear Information System (INIS)

    Ryan, M.J.

    1978-01-01

    A reusable, tamper-indicating seal is comprised of a drum confined within a fixed body and rotatable in one direction therewithin, the top of the drum constituting a tray carrying a large number of small balls of several different colors. The fixed body contains parallel holes for looping a seal wire therethrough. The base of the drums carries cams adapted to coact with cam followers to lock the wire within the seal at one angular position of the drum. A channel in the fixed body, visible from outside the seal, adjacent the tray constitutes a segregated location for a small plurality of the colored balls. A spring in the tray forces colored balls into the segregated location at one angular position of the drum, further rotation securing the balls in position and the wires in the seal. A wedge-shaped plough removes the balls from the segregated location, at a different angular position of the drum, the wire being unlocked at the same postion. A new pattern of colored balls will appear in the segregated location when the seal is relocked

  6. SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST

    Science.gov (United States)

    Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.

    2012-09-01

    The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.

  7. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  8. A Business Analysis of a SKYLON-based European Launch Service Operator

    Science.gov (United States)

    Hempsell, Mark; Aprea, Julio; Gallagher, Ben; Sadlier, Greg

    2016-04-01

    Between 2012 and 2014 an industrial consortium led by Reaction Engines conducted a feasibility study for the European Space Agency with the objective to explore the feasibility of SKYLON as the basis for a launcher that meets the requirements established for the Next Generation European Launcher. SKYLON is a fully reusable single stage to orbit launch system that is enabled by the unique performance characteristic of the Synergetic Air-Breathing Rocket Engine and is under active development. The purpose of the study which was called ;SKYLON-based European Launch Service Operator (S-ELSO); was to support ESA decision making on launch service strategy by exploring the potential implications of this new launch system on future European launch capability and the European industry that supports it. The study explored both a SKYLON operator (S-ELSO) and SKYLON manufacturer as separate business ventures. In keeping with previous studies, the only strategy that was found that kept the purchase price of the SKYLON low enough for a viable operator business was to follow an ;airline; business model where the manufacturer sells SKYLONs to other operators in addition to S-ELSO. With the assumptions made in the study it was found that the SKYLON manufacturer with a total production run of between 30 and 100 SKYLONs could expect an Internal Rate of Return of around 10%. This was judged too low for all the funding to come from commercial funding sources, but is sufficiently high for a Public Private Partnership. The S-ELSO business model showed that the Internal Rate of Return would be high enough to consider operating without public support (i.e. commercial in operation, irrespective of any public funding of development), even when the average launch price is lowered to match the lowest currently quoted price for expendable systems.

  9. Launch team training system

    Science.gov (United States)

    Webb, J. T.

    1988-01-01

    A new approach to the training, certification, recertification, and proficiency maintenance of the Shuttle launch team is proposed. Previous training approaches are first reviewed. Short term program goals include expanding current training methods, improving the existing simulation capability, and scheduling training exercises with the same priority as hardware tests. Long-term goals include developing user requirements which would take advantage of state-of-the-art tools and techniques. Training requirements for the different groups of people to be trained are identified, and future goals are outlined.

  10. Delayed reactions to reusable protective gloves.

    Science.gov (United States)

    Pontén, Ann; Dubnika, Inese

    2009-04-01

    The materials in plastic protective gloves are thought to cause less contact allergy than rubber gloves. Our aim was to estimate the frequency of delayed reactions to different types of reusable protective gloves among dermatitis patients. 2 x 2 cm pieces of polyvinyl chloride (PVC) gloves, nitrile gloves, and natural rubber latex (NRL) gloves were tested as is in consecutive dermatitis patients tested with the baseline series. Among 658 patients, 6 patients reacted to PVC gloves and 6 patients to the NRL gloves. None reacted to both these types of gloves. Five of six patients with reactions to rubber gloves reacted to thiuram mix in the baseline series. Delayed reactions to reusable PVC gloves may be as common as to reusable NRL gloves. In contrast to most reactions to the NRL glove, the reactions to the PVC glove had no obvious association with reactions to any allergen(s) in the baseline series.

  11. DEPONTO: A Reusable Dependability Domain Ontology

    Directory of Open Access Journals (Sweden)

    Teodora Sanislav

    2015-08-01

    Full Text Available This paper proposes a dependability reusable ontology for knowledge representation. The fundamental knowledge related to dependability follows its taxonomy. Thus, this paper gives an analysis of what is the dependability domain ontology andof its components.The dependability domain ontology plays an important role in ensuring the dependability of information systems by providing support for their diagnosis in case of faults, errors and failures.The proposed ontology is used as a dependability framework in two case study Cyber-Physical Systemswhich demonstrate its reusability within this category of systems.

  12. Technology development for metallic hot structures in aerodynamic control surfaces of reusable launchers

    NARCIS (Netherlands)

    Sudmeijer, K.J.; Wentzel, C.; Lefeber, B.M.; Kloosterman, A.

    2002-01-01

    In this paper a summary is presented of the technology development in the Netherlands focussed on the design and development of a metallic aerodynamic control surface for the future European reusable launcher. The applied materials are mainly Oxide Dispersion Strengthened (ODS) alloys produced by

  13. Learning Objects, Repositories, Sharing and Reusability

    Science.gov (United States)

    Koppi, Tony; Bogle, Lisa; Bogle, Mike

    2005-01-01

    The online Learning Resource Catalogue (LRC) Project has been part of an international consortium for several years and currently includes 25 institutions worldwide. The LRC Project has evolved for several pragmatic reasons into an academic network whereby members can identify and share reusable learning objects as well as collaborate in a number…

  14. Transforming existing content into reusable Learning Objects

    NARCIS (Netherlands)

    Doorten, Monique; Giesbers, Bas; Janssen, José; Daniels, Jan; Koper, Rob

    2003-01-01

    Please cite as: Doorten, M., Giesbers, B., Janssen, J., Daniëls, J, & Koper, E.J.R., (2004). Transforming existing content into reusable learning objects. In R. McGreal, Online Education using Learning Objects (pp. 116-127). London: RoutledgeFalmer.

  15. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and velocity...

  16. Importance Of Quality Control in Reducing System Risk, a Lesson Learned From The Shuttle and a Recommendation for Future Launch Vehicles

    Science.gov (United States)

    Safie, Fayssal M.; Messer, Bradley P.

    2006-01-01

    This paper presents lessons learned from the Space Shuttle return to flight experience and the importance of these lessons learned in the development of new the NASA Crew Launch Vehicle (CLV). Specifically, the paper discusses the relationship between process control and system risk, and the importance of process control in improving space vehicle flight safety. It uses the External Tank (ET) Thermal Protection System (TPS) experience and lessons learned from the redesign and process enhancement activities performed in preparation for Return to Flight after the Columbia accident. The paper also, discusses in some details, the Probabilistic engineering physics based risk assessment performed by the Shuttle program to evaluate the impact of TPS failure on system risk and the application of the methodology to the CLV.

  17. Operational Issues in the Development of a Cost-Effective Reusable LOX/LH2 Engine

    Science.gov (United States)

    Ballard, Richard O.

    2003-01-01

    The NASA Space Launch Initiative (SLI) was initiated in early 2001 to conduct technology development and to reduce the business and technical risk associated with developing the next-generation reusable launch system. In the field of main propulsion, two LOXLH2 rocket engine systems, the Pratt & Whitney / Aerojet Joint Venture (JV) COBRA and the Rocketdyne RS-83, were funded to develop a safe, economical, and reusable propulsion system. Given that a large-thrust reusable rocket engine program had not been started in the U.S. since 1971, with the Space Shuttle Main Engine (SSME), this provided an opportunity to build on the experience developed on the SSME system, while exploiting advances in technology that had occurred in the intervening 30 years. One facet of engine development that was identified as being especially vital in order to produce an optimal system was in the areas of operability and maintainability. In order to achieve the high levels of performance required by the Space Shuttle, the SSME system is highly complex with very tight tolerances and detailed requirements. Over the lifetime of the SSME program, the engine has required a high level of manpower to support the performance of inspections, maintenance (scheduled and unscheduled) and operations (prelaunch and post-flight). As a consequence, the labor- intensive needs of the SSME provide a significant impact to the overall cost efficiency of the Space Transportation System (STS). One of the strategic goals of the SLI is to reduce cost by requiring the engine(s) to be easier (Le. less expensive) to operate and maintain. The most effective means of accomplishing this goal is to infuse the operability and maintainability features into the engine design from the start. This paper discusses some of the operational issues relevant to a reusable LOx/LH2 main engine, and the means by which their impact is mitigated in the design phase.

  18. Air Force Reusable Booster System: A Quick-look, Design Focused Modeling and Cost Analysis Study

    Science.gov (United States)

    Zapata, Edgar

    2011-01-01

    This paper presents a method and an initial analysis of the costs of a reusable booster system (RBS) as envisioned by the US Department of Defense (DoD) and numerous initiatives that form the concept of Operationally Responsive Space (ORS). This paper leverages the knowledge gained from decades of experience with the semi-reusable NASA Space Shuttle to understand how the costs of a military next generation semi-reusable space transport might behave in the real world - and how it might be made as affordable as desired. The NASA Space Shuttle had a semi-expendable booster, that being the reusable Solid Rocket MotorslBoosters (SRMlSRB) and the expendable cryogenic External Tank (ET), with a reusable cargo and crew capable orbiter. This paper will explore DoD concepts that invert this architectural arrangement, using a reusable booster plane that flies back to base soon after launch, with the in-space elements of the launch system being the expendable portions. Cost estimating in the earliest stages of any potential, large scale program has limited usefulness. As a result, the emphasis here is on developing an approach, a structure, and the basic concepts that could continue to be matured as the program gains knowledge. Where cost estimates are provided, these results by necessity carry many caveats and assumptions, and this analysis becomes more about ways in which drivers of costs for diverse scenarios can be better understood. The paper is informed throughout with a design-for-cost philosophy whereby the design and technology features of the proposed RBS (who and what, the "architecture") are taken as linked at the hip to a desire to perform a certain mission (where and when), and together these inform the cost, responsiveness, performance and sustainability (how) of the system. Concepts for developing, acquiring, producing or operating the system will be shown for their inextricable relationship to the "architecture" of the system, and how these too relate to costs

  19. Reusable fuel test assembly for the FFTF

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1992-01-01

    A fuel test assembly that provides re-irradiation capability after interim discharge and reconstitution of the test pin bundle has been developed for use in the Fast Flux Test Facility (FFTF). This test vehicle permits irradiation test data to be obtained at multiple exposures on a few select test pins without the substantial expense of fabricating individual test assemblies as would otherwise be required. A variety of test pin types can be loaded in the reusable test assembly. A reusable test vehicle for irradiation testing in the FFTF has long been desired, but a number of obstacles previously prevented the implementation of such an experimental rig. The MFF-8A test assembly employs a 169-pin bundle using HT-9 alloy for duct and cladding material. The standard driver pins in the fuel bundle are sodium-bonded metal fuel (U-10 wt% Zr). Thirty-seven positions in the bundle are replaceable pin positions. Standard MFF-8A driver pins can be loaded in any test pin location to fill the bundle if necessary. Application of the MFF-8A reusable test assembly in the FFTF constitutes a considerable cost-saving measure with regard to irradiation testing. Only a few well-characterized test pins need be fabricated to conduct a test program rather than constructing entire test assemblies

  20. Iraq Radiosonde Launch Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Iraqi upper air records loaned to NCDC from the Air Force 14th Weather Squadron. Scanned notebooks containing upper air radiosonde launch records and data. Launches...

  1. Launching technological innovations

    DEFF Research Database (Denmark)

    Talke, Katrin; Salomo, Søren

    2009-01-01

    have received less attention. This study considers the interdependencies between strategic, internally and externally, directed tactical launch activities and investigates both direct and indirect performance effects. The analysis is based upon data from 113 technological innovations launched...

  2. Launch vehicle selection model

    Science.gov (United States)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  3. Effectiveness of Loan Guarantees versus Tax Incentives for Space Launch Ventures

    Science.gov (United States)

    Scottoline, S.; Coleman, R.

    1999-01-01

    Over the course of the past few years, several new and innovative fully or partiailly reusable launch vehicle designs have been initiated with the objective of reducing the cost of space transportation. These new designs are in various stages hardware development for technology and system demonstrators. The larger vehicles include the Lockheed Martin X-33 technology demonstrator for VentureStar and the Space Access launcher. The smaller launcher ventures include Kelly Space and Technology and Rotary Rocket Company. A common denominator between the new large and small commercial launch systems is the ability to obtain project financing and at an affordable cost. Both are having or will have great difficulty in obtaining financing in the capital markets because of the dollar amounts and the risk involved. The large established companies are pursuing multi-billion dollar developments which are a major challenge to finance because of the size and risk of the projects. The smaller start-up companies require less capital for their smaller systems, however, their lack of corporate financial muscle and launch vehicle track record results in a major challenge to obtain financing also because of high risk. On Wall Street, new launch system financing is a question of market, technical, organizational, legal/regulatory and financial risk. The current limit of acceptable financial risk for Space businesses on Wall Street are the telecommunications and broadcast satellite projects, of which many in number are projected for the future. Tbc recent problems with Iridium market and financial performance are casting a long shadow over new satellite project financing, making it increasingly difficult for the new satellite projects to obtain needed financing.

  4. Nuclear lobby group launches television ad campaign

    International Nuclear Information System (INIS)

    1992-01-01

    Nuclear power is the green wave of the future, according to a television advertising campaign launched by Canada's nuclear industry and designed to help counter the anti-nuclear messages delivered by groups such as Green peace and Energy Probe

  5. Reusable Reentry Satellite (RRS): Propulsion system trade study

    Science.gov (United States)

    1990-01-01

    The purpose of the Reusable Reentry Satellite (RRS) Propulsion System Trade Study described in this summary report was to investigate various propulsion options available for incorporation on the RRS and to select the option best suited for RRS application. The design requirements for the RRS propulsion system were driven by the total impulse requirements necessary to operate within the performance envelope specified in the RRS System Requirements Documents. These requirements were incorporated within the Design Reference Missions (DRM's) identified for use in this and other subsystem trade studies. This study investigated the following propulsion systems: solid rocket, monopropellant, bipropellant (monomethyl hydrazine and nitrogen tetroxide or MMH/NTO), dual-mode bipropellant (hydrazine and nitrogen tetroxide or N2H4/NTO), liquid oxygen and liquid hydrogen (LO2/LH2), and an advanced design propulsion system using SDI-developed components. A liquid monopropellant blowdown propulsion system was found to be best suited for meeting the RRS requirements and is recommended as the baseline system. This system was chosen because it is the simplest of all investigated, has the fewest components, and is the most cost effective. The monopropellant system meets all RRS performance requirements and has the capability to provide a very accurate deorbit burn which minimizes reentry dispersions. In addition, no new hardware qualification is required for a monopropellant system. Although the bipropellant systems offered some weight savings capability for missions requiring large deorbit velocities, the advantage of a lower mass system only applies if the total vehicle design can be reduced to allow a cheaper launch vehicle to be used. At the time of this trade study, the overall RRS weight budget and launch vehicle selection were not being driven by the propulsion system selection. Thus, the added cost and complexity of more advanced systems did not warrant application.

  6. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture

    Science.gov (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble

    2015-01-01

    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  7. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    Science.gov (United States)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  8. A literature review on business process modelling: new frontiers of reusability

    Science.gov (United States)

    Aldin, Laden; de Cesare, Sergio

    2011-08-01

    Business process modelling (BPM) has become fundamental for modern enterprises due to the increasing rate of organisational change. As a consequence, business processes need to be continuously (re-)designed as well as subsequently aligned with the corresponding enterprise information systems. One major problem associated with the design of business processes is reusability. Reuse of business process models has the potential of increasing the efficiency and effectiveness of BPM. This article critically surveys the existing literature on the problem of BPM reusability and more specifically on that State-of-the-Art research that can provide or suggest the 'elements' required for the development of a methodology aimed at discovering reusable conceptual artefacts in the form of patterns. The article initially clarifies the definitions of business process and business process model; then, it sets out to explore the previous research conducted in areas that have an impact on reusability in BPM. The article concludes by distilling directions for future research towards the development of apatterns-based approach to BPM; an approach that brings together the contributions made by the research community in the areas of process mining and discovery, declarative approaches and ontologies.

  9. Specific Space Transportation Costs to GEO - Past, Present and Future

    Science.gov (United States)

    Koelle, Dietrich E.

    2002-01-01

    The largest share of space missions is going to the Geosynchronous Orbit (GEO); they have the highest commercial importance. The paper first shows the historic trend of specific transportation costs to GEO from 1963 to 2002. It started out with more than 500 000 /kg(2002-value) and has come down to 36 000 /kg. This reduction looks impressive, however, the reason is NOT improved technology or new techniques but solely the growth of GEO payloads`unit mass. The first GEO satellite in 1963 did have a mass of 36 kg mass (BoL) . This has grown to a weight of 1600 kg (average of all GEO satellites) in the year 2000. Mass in GEO after injection is used here instead of GTO mass since the GTO mass depends on the launch site latitude. The specific cost reduction is only due to the "law-of-scale", valid in the whole transportation business: the larger the payload, the lower the specific transportation cost. The paper shows the actual prices of launch services to GTO by the major launch vehicles. Finally the potential GEO transportation costs of future launch systems are evaluated. What is the potential reduction of specific transportation costs if reusable elements are introduced in future systems ? Examples show that cost reductions up to 75 % seem achievable - compared to actual costs - but only with launch systems optimized according to modern principles of cost engineering. 1. 53rd International Astronautical Congress, World Space Congress Houston 2. First Submission 3. Specific Space Transportation Costs to GEO - Past, Present and Future 4. KOELLE, D.E. 5. IAA.1.1 Launch Vehicles' Cost Engineering and Economic Competitiveness 6. D.E. Koelle; A.E. Goldstein 7. One overhead projector and screen 8. Word file attached 9. KOELLE I have approval to attend the Congress. I am not willing to present this paper at the IAC Public Outreach Program.

  10. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Science.gov (United States)

    2010-01-01

    ... applicable, and reentry or descent flight, and concludes upon landing on Earth of the RLV. (b) Acceptable... reentry or descent of the vehicle through landing, including its three-sigma dispersion. [Docket No. FAA...

  11. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    Science.gov (United States)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  12. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  13. Triggered lightning risk assessment for reusable launch vehicles at four regional spaceports

    Science.gov (United States)

    2010-04-30

    The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation, in assessing the risks involved with triggered li...

  14. 14 CFR 431.43 - Reusable launch vehicle mission operational requirements and restrictions.

    Science.gov (United States)

    2010-01-01

    ... vehicle poses risk to public health and safety and the safety of property in excess of acceptable flight... energy; and (4) Vehicle safety operations personnel shall adhere to the following work and rest standards: (i) A maximum 12-hour work shift with at least 8 hours of rest after 12 hours of work, preceding...

  15. Methodology for Evaluating Quality and Reusability of Learning Objects

    Science.gov (United States)

    Kurilovas, Eugenijus; Bireniene, Virginija; Serikoviene, Silvija

    2011-01-01

    The aim of the paper is to present the scientific model and several methods for the expert evaluation of quality of learning objects (LOs) paying especial attention to LOs reusability level. The activities of eQNet Quality Network for a European Learning Resource Exchange (LRE) aimed to improve reusability of LOs of European Schoolnet's LRE…

  16. Foreign launch competition growing

    Science.gov (United States)

    Brodsky, R. F.; Wolfe, M. G.; Pryke, I. W.

    1986-07-01

    A survey is given of progress made by other nations in providing or preparing to provide satellite launch services. The European Space Agency has four generations of Ariane vehicles, with a fifth recently approved; a second launch facility in French Guiana that has become operational has raised the possible Ariane launch rate to 10 per year, although a May failure of an Ariane 2 put launches on hold. The French Hermes spaceplane and the British HOTOL are discussed. Under the auspices of the Italian National Space Plane, the Iris orbital transfer vehicle is developed and China's Long March vehicles and the Soviet Protons and SL-4 vehicles are discussed; the Soviets moreover are apparently developing not only a Saturn V-class heavy lift vehicle with a 150,000-kg capacity (about five times the largest U.S. capacity) but also a space shuttle and a spaceplane. Four Japanese launch vehicles and some vehicles in an Indian program are also ready to provide launch services. In this new, tough market for launch services, the customers barely outnumber the suppliers. The competition develops just as the Challenger and Titan disasters place the U.S. at a disadvantage and underline the hard work ahead to recoup its heretofore leading position in launch services.

  17. Performance Efficient Launch Vehicle Recovery and Reuse

    Science.gov (United States)

    Reed, John G.; Ragab, Mohamed M.; Cheatwood, F. McNeil; Hughes, Stephen J.; Dinonno, J.; Bodkin, R.; Lowry, Allen; Brierly, Gregory T.; Kelly, John W.

    2016-01-01

    For decades, economic reuse of launch vehicles has been an elusive goal. Recent attempts at demonstrating elements of launch vehicle recovery for reuse have invigorated a debate over the merits of different approaches. The parameter most often used to assess the cost of access to space is dollars-per-kilogram to orbit. When comparing reusable vs. expendable launch vehicles, that ratio has been shown to be most sensitive to the performance lost as a result of enabling the reusability. This paper will briefly review the historical background and results of recent attempts to recover launch vehicle assets for reuse. The business case for reuse will be reviewed, with emphasis on the performance expended to recover those assets, and the practicality of the most ambitious reuse concept, namely propulsive return to the launch site. In 2015, United Launch Alliance (ULA) announced its Sensible, Modular, Autonomous Return Technology (SMART) reuse plan for recovery of the booster module for its new Vulcan launch vehicle. That plan employs a non-propulsive approach where atmospheric entry, descent and landing (EDL) technologies are utilized. Elements of such a system have a wide variety of applications, from recovery of launch vehicle elements in suborbital trajectories all the way to human space exploration. This paper will include an update on ULA's booster module recovery approach, which relies on Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and Mid-Air Retrieval (MAR) technologies, including its concept of operations (ConOps). The HIAD design, as well as parafoil staging and MAR concepts, will be discussed. Recent HIAD development activities and near term plans including scalability, next generation materials for the inflatable structure and heat shield, and gas generator inflation systems will be provided. MAR topics will include the ConOps for recovery, helicopter selection and staging, and the state of the art of parachute recovery systems using large parafoils

  18. The Development of Reusable Luggage Tag with the Internet of Things for Mobile Tracking and Environmental Sustainability

    Directory of Open Access Journals (Sweden)

    Eugene Y. C. Wong

    2016-12-01

    Full Text Available With more than two billion passengers worldwide travelling by air each year, vast amounts of lost luggage and disposable paper adhesive luggage tags are pushing the aviation industry to improve luggage tracking and reduce the one-off adhesive luggage paper tags. This paper reviews the current application of Radio Frequency Identification (RFID in the luggage handling system and proposes the Internet of Things’ (IoT development of the reusable luggage tag to facilitate aviation luggage handling, the tracking process and environmental conservation. A framework of IoT and its RFID components for the proposed reusable tag are presented. An integrated cyber-physical system, including a database management system and mobile app, for the reusable luggage tag is developed. Future studies will enhance the methodology of integrating the retail system, luggage tag, airport check-in counter, luggage handling system, aircraft, and the destination airport through the use of the tag, readers, antenna, and mobile devices.

  19. Reusable Rocket Engine Turbopump Health Management System

    Science.gov (United States)

    Surko, Pamela

    1994-01-01

    A health monitoring expert system software architecture has been developed to support condition-based health monitoring of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has been completed, and produces an analysis and an organized graphical presentation of the data with important effects highlighted. The overall expert system architecture has been developed and documented so that expert modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability, and open system interfaces so that it may be used to analyze other engines as well.

  20. Futures

    DEFF Research Database (Denmark)

    Pedersen, Michael Haldrup

    2017-01-01

    Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores the potenti......Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores...... the potentials of speculative thinking in relation to design and social and cultural studies, arguing that both offer valuable insights for creating a speculative space for new emergent criticalities challenging current assumptions of the relations between power and design. It does so by tracing out discussions...... of ‘futurity’ and ‘futuring’ in design as well as social and cultural studies. Firstly, by discussing futurist and speculative approaches in design thinking; secondly by engaging with ideas of scenario thinking and utopianism in current social and cultural studies; and thirdly by showing how the articulation...

  1. Reaction Control Engine for Space Launch Initiative

    Science.gov (United States)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  2. Genomic Data Commons launches

    Science.gov (United States)

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  3. Big Bang launch

    CERN Multimedia

    2008-01-01

    Physicists from the University, along with scientists and engineers around the world, watched with fevered anticipation as the world's biggest scientific experiment was launched in September. (1/1 page)

  4. Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  5. Silica sulfuric acid: a versatile and reusable heterogeneous catalyst ...

    African Journals Online (AJOL)

    ... and reusable heterogeneous catalyst for the synthesis of N-acyl carbamates and ... All the reactions were done at room temperature and the N-acyl carbamates ... This method is attractive and is in a close agreement with green chemistry.

  6. Utilizing Provenance in Reusable Research Objects

    Directory of Open Access Journals (Sweden)

    Zhihao Yuan

    2018-03-01

    Full Text Available Science is conducted collaboratively, often requiring the sharing of knowledge about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs or Digital Object Identifiers (DOIs. An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. Computational provenance is often the key to enable such reuse. In this paper, we show how reusable research objects can utilize provenance to correctly repeat a previous reference execution, to construct a subset of a research object for partial reuse, and to reuse existing contents of a research object for modified reuse. We describe two methods to summarize provenance that aid in understanding the contents and past executions of a research object. The first method obtains a process-view by collapsing low-level system information, and the second method obtains a summary graph by grouping related nodes and edges with the goal to obtain a graph view similar to application workflow. Through detailed experiments, we show the efficacy and efficiency of our algorithms.

  7. Overview of GX launch services by GALEX

    Science.gov (United States)

    Sato, Koji; Kondou, Yoshirou

    2006-07-01

    Galaxy Express Corporation (GALEX) is a launch service company in Japan to develop a medium size rocket, GX rocket and to provide commercial launch services for medium/small low Earth orbit (LEO) and Sun synchronous orbit (SSO) payloads with a future potential for small geo-stationary transfer orbit (GTO). It is GALEX's view that small/medium LEO/SSO payloads compose of medium scaled but stable launch market due to the nature of the missions. GX rocket is a two-stage rocket of well flight proven liquid oxygen (LOX)/kerosene booster and LOX/liquid natural gas (LNG) upper stage. This LOX/LNG propulsion under development by Japan's Aerospace Exploration Agency (JAXA), is robust with comparable performance as other propulsions and have future potential for wider application such as exploration programs. GX rocket is being developed through a joint work between the industries and GX rocket is applying a business oriented approach in order to realize competitive launch services for which well flight proven hardware and necessary new technology are to be introduced as much as possible. It is GALEX's goal to offer “Easy Access to Space”, a highly reliable and user-friendly launch services with a competitive price. GX commercial launch will start in Japanese fiscal year (JFY) 2007 2008.

  8. Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, D. R.; Phelps, W. J.

    2011-01-01

    The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.

  9. FAA's Implementation of the Commercial Space Launch Amendments Act of 2004- The Experimental Permit

    Science.gov (United States)

    Repcheck, J. Randall

    2005-12-01

    A number of entrepreneurs are committed to the goal of developing and operating reusable launch vehicles for private human space travel. In order to promote this emerging industry, and to create a clear legal, regulatory, and safety regime, the United States (U.S.) Congress passed the Commercial Space Launch Amendments Act of 2004 (CSLAA). Signed on December 23, 2004 by U.S. President George W. Bush, the CSLAA makes the Federal Aviation Administration (FAA) responsible for regulating human spaceflight. The CSLAA, among other things, establishes an experimental permit regime for developmental reusable suborbital rockets. This paper describes the FAA's approach in developing guidelines for obtaining and maintaining an experimental permit, and describes the core safety elements of those guidelines.

  10. Low-cost management aspects for developing, producing and operating future space transportation systems

    Science.gov (United States)

    Goehlich, Robert A.; Rücker, Udo

    2005-01-01

    It is believed that a potential means for further significant reduction of the recurrent launch cost, which results also in a stimulation of launch rates of small satellites, is to make the launcher reusable, to increase its reliability and to make it suitable for new markets such as mass space tourism. Therefore, not only launching small satellites with expendable rockets on non-regular flights but also with reusable rockets on regular flights should be considered for the long term. However, developing, producing and operating reusable rockets require a fundamental change in the current "business as usual" philosophy. Under current conditions, it might not be possible to develop, to produce or to operate a reusable vehicle fleet economically. The favorite philosophy is based on "smart business" processes adapted by the authors using cost engineering techniques. In the following paper, major strategies for reducing costs are discussed, which are applied for a representative program proposal.

  11. NanoLaunch

    Science.gov (United States)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  12. Is It Worth It? - the Economics of Reusable Space Transportation

    Science.gov (United States)

    Webb, Richard

    2016-01-01

    Over the past several decades billions of dollars have been invested by governments and private companies in the pursuit of lower cost access to space through earth-to-orbit (ETO) space transportation systems. Much of that investment has been focused on the development and operation of various forms of reusable transportation systems. From the Space Shuttle to current efforts by private commercial companies, the overarching belief of those making such investments has been that reusing system elements will be cheaper than utilizing expendable systems that involve throwing away costly engines, avionics, and other hardware with each flight. However, the view that reusable systems are ultimately a "better" approach to providing ETO transportation is not held universally by major stakeholders within the space transportation industry. While the technical feasibility of at least some degree of reusability has been demonstrated, there continues to be a sometimes lively debate over the merits and drawbacks of reusable versus expendable systems from an economic perspective. In summary, is it worth it? Based on our many years of direct involvement with the business aspects of several expendable and reusable transportation systems, it appears to us that much of the discussion surrounding reusability is hindered by a failure to clearly define and understand the financial and other metrics by which the financial "goodness" of a reusable or expandable approach is measured. As stakeholders, the different users and suppliers of space transportation have a varied set of criteria for determining the relative economic viability of alternative strategies, including reusability. Many different metrics have been used to measure the affordability of space transportation, such as dollars per payload pound (kilogram) to orbit, cost per flight, life cycle cost, net present value/internal rate of return, and many others. This paper will examine the key considerations that influence

  13. Dynamic Reusable Workflows for Ocean Science

    Directory of Open Access Journals (Sweden)

    Richard P. Signell

    2016-10-01

    Full Text Available Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog searches and data access now make it possible to create catalog-driven workflows that automate—end-to-end—data search, analysis, and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused, and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS which automates the skill assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC Catalog Service for the Web (CSW, then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enter the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased

  14. Dynamic reusable workflows for ocean science

    Science.gov (United States)

    Signell, Richard; Fernandez, Filipe; Wilcox, Kyle

    2016-01-01

    Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog search and data access make it now possible to create catalog-driven workflows that automate — end-to-end — data search, analysis and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS) which automates the skill-assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC) Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enters the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased use of dynamic

  15. New Approaches in Reusable Booster System Life Cycle Cost Modeling

    Science.gov (United States)

    Zapata, Edgar

    2013-01-01

    This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model

  16. A Low-Cost Launch Assistance System for Orbital Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Oleg Nizhnik

    2012-01-01

    Full Text Available The author reviews the state of art of nonrocket launch assistance systems (LASs for spaceflight focusing on air launch options. The author proposes an alternative technologically feasible LAS based on a combination of approaches: air launch, high-altitude balloon, and tethered LAS. Proposed LAS can be implemented with the existing off-the-shelf hardware delivering 7 kg to low-earth orbit for the 5200 USD per kg. Proposed design can deliver larger reduction in price and larger orbital payloads with the future advances in the aerostats, ropes, electrical motors, and terrestrial power networks.

  17. Space Logistics: Launch Capabilities

    Science.gov (United States)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  18. Space Shuttle Endeavour launch

    Science.gov (United States)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  19. Putting Reusability First: A Paradigm Switch in Remote Laboratories Engineering

    Directory of Open Access Journals (Sweden)

    Romain Vérot

    2009-02-01

    Full Text Available In this paper, we present a new devices brought online thanks to our Collaborative Remote Laboratories framework. Whereas previous devices integrated in our remote laboratory belongs to the domain of electronics, such as Vector Network Analyzers, the devices at the concern in this paper are, on one hand, an antenna workbench, and on the other, an homemade switching device, which embeds several electronic components. Because the middleware and framework for our environment were designed to be reusable, we wanted to put it to the test by integrating new and different devices in our Online Engineering catalog. After presenting the devices to be put online, we will expose the software development efforts required in regards to the reusability of the solution. As a consequence, the expose work and results tend to make the Online Engineering software architects to think reusability first, breaking with the current trends to implement Remote Labs one after the other, without much reusability, apart the capitalized experience. In this, we defend a paradigm switch in our current engineering approaches for Remote Laboratories implementations: Reusability should be thought first.

  20. On the Concepts of Usability and Reusability of Learning Objects

    Directory of Open Access Journals (Sweden)

    Miguel-Angel Sicilia

    2003-10-01

    Full Text Available “Reusable learning objects” oriented towards increasing their potential reusability are required to satisfy concerns about their granularity and their independence of concrete contexts of use. Such requirements also entail that the definition of learning object “usability,” and the techniques required to carry out their “usability evaluation” must be substantially different from those commonly used to characterize and evaluate the usability of conventional educational applications. In this article, a specific characterization of the concept of learning object usability is discussed, which places emphasis on “reusability,” the key property of learning objects residing in repositories. The concept of learning object reusability is described as the possibility and adequacy for the object to be usable in prospective educational settings, so that usability and reusability are considered two interrelated – and in many cases conflicting – properties of learning objects. Following the proposed characterization of two characteristics or properties of learning objects, a method to evaluate usability of specific learning objects will be presented.

  1. Launch Control Network Engineer

    Science.gov (United States)

    Medeiros, Samantha

    2017-01-01

    The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.

  2. Improving Conceptual Design for Launch Vehicles

    Science.gov (United States)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  3. Design options for advanced manned launch systems

    Science.gov (United States)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  4. Ares V: Game Changer for National Security Launch

    Science.gov (United States)

    Sumrall, Phil; Morris, Bruce

    2009-01-01

    NASA is designing the Ares V cargo launch vehicle to vastly expand exploration of the Moon begun in the Apollo program and enable the exploration of Mars and beyond. As the largest launcher in history, Ares V also represents a national asset offering unprecedented opportunities for new science, national security, and commercial missions of unmatched size and scope. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping-stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study (ESAS), NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V consists of a Core Stage, two Reusable Solid Rocket Boosters (RSRBs), Earth Departure Stage (EDS), and a payload shroud. For lunar missions, the shroud would cover the Lunar Surface Access Module (LSAM). The Ares V Core Stage is 33 feet in diameter and 212 feet in length, making it the largest rocket stage ever built. It is the same diameter as the Saturn V first stage, the S-IC. However, its length is about the same as the combined length of the Saturn V first and second stages. The Core Stage uses a cluster of five Pratt & Whitney Rocketdyne RS-68B rocket engines, each supplying about 700,000 pounds of thrust

  5. Design, Fabrication, and Initial Operation of a Reusable Irradiation Facility

    International Nuclear Information System (INIS)

    Heatherly, D.W.; Thoms, K.R.; Siman-Tov, I.I.; Hurst, M.T.

    1999-01-01

    A Heavy-Section Steel Irradiation (HSSI) Program project, funded by the US Nuclear Regulatory Commission, was initiated at Oak Ridge National Laboratory to develop reusable materials irradiation facilities in which metallurgical specimens of reactor pressure vessel steels could be irradiated. As a consequence, two new, identical, reusable materials irradiation facilities have been designed, fabricated, installed, and are now operating at the Ford Nuclear Reactor at the University of Michigan. The facilities are referred to as the HSSI-IAR facilities with the individual facilities being designated as IAR-1 and IAR-2. This new and unique facility design requires no cutting or grinding operations to retrieve irradiated specimens, all capsule hardware is totally reusable, and materials transported from site to site are limited to specimens only. At the time of this letter report, the facilities have operated successfully for approximately 2500 effective full-power hours

  6. Space Launch System (SLS) Mission Planner's Guide

    Science.gov (United States)

    Smith, David Alan

    2017-01-01

    The purpose of this Space Launch System (SLS) Mission Planner's Guide (MPG) is to provide future payload developers/users with sufficient insight to support preliminary SLS mission planning. Consequently, this SLS MPG is not intended to be a payload requirements document; rather, it organizes and details SLS interfaces/accommodations in a manner similar to that of current Expendable Launch Vehicle (ELV) user guides to support early feasibility assessment. Like ELV Programs, once approved to fly on SLS, specific payload requirements will be defined in unique documentation.

  7. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif

    2016-10-20

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a reusable portion including wireless electronics. The one or more sensors can be secured to a flexible substrate and can be printed by non-contact printing on the substrate. The disposable portion can be removably coupled to the one or more sensors. The device can include one or more sensors for wireless monitoring of a wound, a wound dressing, a body fluid exuded by the wound and/or wearer health.

  8. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  9. Launching Garbage-Bag Balloons.

    Science.gov (United States)

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  10. Expendable launch vehicle studies

    Science.gov (United States)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to

  11. Evolution of the Florida Launch Site Architecture: Embracing Multiple Customers, Enhancing Launch Opportunities

    Science.gov (United States)

    Colloredo, Scott; Gray, James A.

    2011-01-01

    The impending conclusion of the Space Shuttle Program and the Constellation Program cancellation unveiled in the FY2011 President's budget created a large void for human spaceflight capability and specifically launch activity from the Florida launch Site (FlS). This void created an opportunity to re-architect the launch site to be more accommodating to the future NASA heavy lift and commercial space industry. The goal is to evolve the heritage capabilities into a more affordable and flexible launch complex. This case study will discuss the FlS architecture evolution from the trade studies to select primary launch site locations for future customers, to improving infrastructure; promoting environmental remediation/compliance; improving offline processing, manufacturing, & recovery; developing range interface and control services with the US Air Force, and developing modernization efforts for the launch Pad, Vehicle Assembly Building, Mobile launcher, and supporting infrastructure. The architecture studies will steer how to best invest limited modernization funding from initiatives like the 21 st elSe and other potential funding.

  12. Evolved Expendable Launch Vehicle (EELV)

    Science.gov (United States)

    2015-12-15

    FY13+ Phase I Buy Contractor: United Launch Services, LLC Contractor Location: 9501 East Panorama Circle Centennial , CO 80112 Contract Number...Contract Name: FY13+ Phase I Buy Contractor: United Launch Services, LLC Contractor Location: 9501 East Panorama Circle Centennial , CO 80112 Contract...FY12 EELV Launch Services (ELS5) Contractor: United Launch Services, LLC. Contractor Location: 9501 East Panorama Circle Centennial , CO 80112

  13. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    Science.gov (United States)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  14. Balloon launching station, Mildura, Victoria

    International Nuclear Information System (INIS)

    The Mildura Balloon Launching Station was established in 1960 by the Department of Supply (now the Department of Manufacturing Industry) on behalf of the United States Atomic Energy Commission (USAEC) to determine the content of radioactive material in the upper atmosphere over Australia. The Station location and layout, staffing, balloon launching equipment, launching, tracking and recovery are described. (R.L.)

  15. New Product Launching Ideas

    Science.gov (United States)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  16. Rationales for the Lightning Launch Commit Criteria

    Science.gov (United States)

    Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.

    2016-01-01

    Since natural and triggered lightning are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the Lightning Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural lightning or triggering a lightning flash during launch from a Federal Range. NASA and DoD utilize the Lightning Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed Lightning Flight Commit Criteria in G417.

  17. Bacterial contamination of re-usable laryngoscope blades during the ...

    African Journals Online (AJOL)

    We aimed to assess the level of microbial contamination of re-usable laryngoscope blades at a public hospital in South Africa. Setting. The theatre complex of a secondary-level public hospital in Johannesburg. Methods. Blades from two different theatres were sampled twice daily, using a standardised technique, over a ...

  18. A reusable multi-agent architecture for active intelligent websites

    NARCIS (Netherlands)

    Jonker, C.M.; Lam, R.A.; Treur, J.

    In this paper a reusable multi-agent architecture for intelligent Websites is presented and illustrated for an electronic department store. The architecture has been designed and implemented using the compositional design method for multi-agent systems DESIRE. The agents within this architecture are

  19. Research Data Reusability: Conceptual Foundations, Barriers and Enabling Technologies

    Directory of Open Access Journals (Sweden)

    Costantino Thanos

    2017-01-01

    Full Text Available High-throughput scientific instruments are generating massive amounts of data. Today, one of the main challenges faced by researchers is to make the best use of the world’s growing wealth of data. Data (reusability is becoming a distinct characteristic of modern scientific practice. By data (reusability, we mean the ease of using data for legitimate scientific research by one or more communities of research (consumer communities that is produced by other communities of research (producer communities. Data (reusability allows the reanalysis of evidence, reproduction and verification of results, minimizing duplication of effort, and building on the work of others. It has four main dimensions: policy, legal, economic and technological. The paper addresses the technological dimension of data reusability. The conceptual foundations of data reuse as well as the barriers that hamper data reuse are presented and discussed. The data publication process is proposed as a bridge between the data author and user and the relevant technologies enabling this process are presented.

  20. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif; Farooqui, Muhammad Fahad

    2016-01-01

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a

  1. Hospital information system: reusability, designing, modelling, recommendations for implementing.

    Science.gov (United States)

    Huet, B

    1998-01-01

    The aims of this paper are to precise some essential conditions for building reuse models for hospital information systems (HIS) and to present an application for hospital clinical laboratories. Reusability is a general trend in software, however reuse can involve a more or less part of design, classes, programs; consequently, a project involving reusability must be precisely defined. In the introduction it is seen trends in software, the stakes of reuse models for HIS and the special use case constituted with a HIS. The main three parts of this paper are: 1) Designing a reuse model (which objects are common to several information systems?) 2) A reuse model for hospital clinical laboratories (a genspec object model is presented for all laboratories: biochemistry, bacteriology, parasitology, pharmacology, ...) 3) Recommendations for generating plug-compatible software components (a reuse model can be implemented as a framework, concrete factors that increase reusability are presented). In conclusion reusability is a subtle exercise of which project must be previously and carefully defined.

  2. Towards a reusable architecture for message exchange in pervasive healthcare

    NARCIS (Netherlands)

    Cardoso de Moraes, J.L.; Lopes de Souza, Wanderley; Ferreira Pires, Luis; do Prado, Antonio Francisco; Hammoudi, S.; Maciaszek, L.A.; Cordeiro, J.; Dietz, J.L.G.

    The main objective of this paper is to present a reusable architecture for message exchange in pervasive healthcare environments meant to be generally applicable to different applications in the healthcare domain. This architecture has been designed by integrating different concepts and technologies

  3. Architectures Toward Reusable Science Data Systems

    Science.gov (United States)

    Moses, John

    2015-01-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAAs Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience we expect to find architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.

  4. LHCb launches new website

    CERN Multimedia

    2008-01-01

    A new public website for the LHCb experiment was launched last Friday to coincide with CERN’s Open Day weekend. Designed to provide accessible information on all aspects of the experiment, the website contains images and key facts about the LHCb detector, its design and installation and the international team behind the project. "LHCb is going to be one of the most important b-physics experiments in the world when it starts taking data later this year", explains Roger Forty, the experiment’s deputy spokesperson. "We hope the website will be a valuable resource, enabling people to learn about this fascinating area of research." The new website can be found at: http://cern.ch/lhcb-public

  5. Payload Launch Lock Mechanism

    Science.gov (United States)

    Young, Ken (Inventor); Hindle, Timothy (Inventor)

    2014-01-01

    A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.

  6. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    Science.gov (United States)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  7. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  8. Technology Innovations from NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  9. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    Science.gov (United States)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  10. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use. PMID:22399929

  11. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2010-05-01

    Full Text Available During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  12. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  13. APME launches common method

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A common approach for carrying out ecological balances for commodity thermoplastics is due to be launched by the Association of Plastics Manufacturers in Europe (APME; Brussels) and its affiliate, The European Centre for Plastics in the Environment (PWMI) this week. The methodology report is the latest stage of a program started in 1990 that aims to describe all operations up to the production of polymer powder or granules at the plant gate. Information gathered will be made freely available to companies considering the use of polymers. An industry task force, headed by PWMI executive director Vince Matthews, has gathered information on the plastics production processes from oil to granule, and an independent panel of specialists, chaired by Ian Boustead of the U.K.'s Open University, devised the methodology and analysis. The methodology report stresses the need to define the system being analyzed and discusses how complex chemical processes can be analyzed in terms of consumption of fuels, energy, and raw materials, as well as solid, liquid, and gaseous emissions

  14. AMS ready for launch

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 29 April, the Alpha Magnetic Spectrometer (AMS) will complete its long expedition to the International Space Station on board the space shuttle Endeavour. The Endeavour is set to lift off from NASA’s Kennedy Space Station at 15:47 EST (21:47 CET).   Samuel Ting, principal investigator for the AMS project, and Rolf Heuer, CERN Director-General, visit the Kennedy Space Centre before the AMS launch.  Courtesy of NASA and Kennedy Space Center. AMS is a CERN recognised experiment, created by an internal collaboration of 56 institutes. It will be the first large magnetic spectrometer to be used in space, and has been designed to function as an external module on the ISS. AMS will measure cosmic rays without atmospheric interference, allowing researchers on the ground to continue their search for dark matter and antimatter in the Universe. Data collected by AMS will be analysed in CERN’s new AMS Control Centre in Building 946 (due for completion in June 2011). The End...

  15. Peer Review of Launch Environments

    Science.gov (United States)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  16. Reusable Xerogel Containing Quantum Dots with High Fluorescence Retention

    Directory of Open Access Journals (Sweden)

    Xiang-Yong Liang

    2018-03-01

    Full Text Available Although various analytical methods have been established based on quantum dots (QDs, most were conducted in solution, which is inadequate for storage/transportation and rapid analysis. Moreover, the potential environmental problems caused by abandoned QDs cannot be ignored. In this paper, a reusable xerogel containing CdTe with strong emission is established by introducing host–guest interactions between QDs and polymer matrix. This xerogel shows high QDs loading capacity without decrease or redshift in fluorescence (the maximum of loading is 50 wt % of the final xerogel, which benefits from the steric hindrance of β-cyclodextrin (βCD molecules. Host–guest interactions immobilize QDs firmly, resulting in the excellent fluorescence retention of the xerogel. The good detecting performance and reusability mean this xerogel could be employed as a versatile analysis platform (for quantitative and qualitative analyses. In addition, the xerogel can be self-healed by the aid of water.

  17. Decomposition of business process models into reusable sub-diagrams

    Directory of Open Access Journals (Sweden)

    Wiśniewski Piotr

    2017-01-01

    Full Text Available In this paper, an approach to automatic decomposition of business process models is proposed. According to our method, an existing BPMN diagram is disassembled into reusable parts containing the desired number of elements. Such elements and structure can work as design patterns and be validated by a user in terms of correctness. In the next step, these component models are categorised considering their parameters such as resources used, as well as input and output data. The classified components may be considered a repository of reusable parts, that can be further applied in the design of new models. The proposed technique may play a significant role in facilitating the business process redesign procedure, which is of a great importance regarding engineering and industrial applications.

  18. Futures Brokerages Face uncertain Future

    Institute of Scientific and Technical Information of China (English)

    WANG PEI

    2006-01-01

    @@ 2005 was a quiet year for China's futures market.After four new trading products, including cotton, fuel oil and corn, were launched on the market in 2004, the development of the market seemed to stagnate. The trade value of the futures market totaled 13.4 trillion yuan (US$ 1.67 trillion) in 2005, down 8.5 percent year-on-year. Although the decrease is quite small and the trade value was still the second highest in the market's history, the majority of futures brokerage firms were running in the red. In some areas, up to 80 percent of futures companies made losses.

  19. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems

    Science.gov (United States)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.

    2006-01-01

    begins in 2008. Comprehensive reviews of engineering data and business assessments by both internal and independent reviewers serve as decision gates to ensure that systems can fully meet customer and stakeholder requirements. This paper provides the current CLV and CaLV configuration designs and gives examples of the progress being made during the first year of this significant effort. Safe, reliable, cost-effective space transportation systems are a foundational piece of America s future in space and the next step in realizing the plan for revitalizing lunar capabilities on the passageway to the human exploration of Mars. While building on legacy knowledge and heritage hardware for risk reduction, NASA will apply lessons learned from developing these new launch vehicles to the growth path for future missions. The elements for mission success and continued U.S. leadership in space have been assembled over the past year. As NASA designs and develops these two new systems over the next dozen years, visible progress, such as that reported in this paper, may sustain the national will to stay the course across political administrations and weather the inevitable trials that will be experienced during this challenging endeavor.

  20. New reusable elastomer electrodes for assessing body composition

    International Nuclear Information System (INIS)

    Moreno, M-V; Chaset, L; Bittner, P A; Barthod, C; Passard, M

    2013-01-01

    The development of telemedicine requires finding solutions of reusable electrodes for use in patients' homes. The objective of this study is to evaluate the relevance of reusable elastomer electrodes for measuring body composition. We measured a population of healthy Caucasian (n = 17). A measurement was made with a reference device, the Xitron®, associated with AgCl Gel electrodes (Gel) and another measurement with a multifrequency impedancemeter Z-Metrix® associated with reusable elastomer electrodes (Elast). We obtained a low variability with an average error of repeatability of 0.39% for Re and 0.32% for Rinf. There is a non significantly difference (P T-test > 0.1) about 200 ml between extracellular water Ve measured with Gel and Elast in supine and in standing position. For total body water Vt, we note a non significantly difference (P T-test > 0.1) about 100 ml and 2.2 1 respectively in supine and standing position. The results give low dispersion, with R 2 superior to 0.90, with a 1.5% maximal error between Gel and Elast on Ve in standing position. It looks possible, taking a few precautions, using elastomer electrodes for assessing body composition.

  1. Magnetic Launch Assist Demonstration Test

    Science.gov (United States)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  2. Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, Dennis R.; Phelps, Willie J.

    2011-01-01

    The Reusable Solid Rocket Motor represents the largest solid rocket motor ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor (RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate from the vehicle and are recovered and refurbished. The size of the motor and the need for high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was needed to limit structural loads during ascent. The motor design evolved through several block upgrades to increase performance and to increase safety and reliability. A major redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant improvements in the joint sealing systems were added. Design improvements continued throughout the Program via block changes with a number of innovations including development of low temperature o-ring materials and incorporation of a unique carbon fiber rope thermal barrier material. Recovery of the motors and post flight inspection improved understanding of hardware performance, and led to key design improvements. Because of the multidecade program duration material obsolescence was addressed, and requalification of materials and vendors was sometimes needed. Thermal protection systems and ablatives were used to protect the motor cases and nozzle structures. Significant understanding of design and manufacturing features of the ablatives was developed during the program resulting in optimization of design features and processing parameters. The project advanced technology in eliminating ozone-depleting materials in manufacturing processes and the development of an asbestos-free case insulation. Manufacturing processes for the large motor components were unique and safety in the manufacturing environment was a special concern. Transportation and handling approaches were also needed for the large

  3. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  4. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  5. A CORBA BASED ARCHITECTURE FOR ACCESSING REUSABLE SOFTWARE COMPONENTS ON THE WEB.

    Directory of Open Access Journals (Sweden)

    R. Cenk ERDUR

    2003-01-01

    Full Text Available In a very near future, as a result of the continious growth of Internet and advances in networking technologies, Internet will become the common software repository for people and organizations who employ component based reuse approach in their software development life cycles. In order to use the reusable components such as source codes, analysis, designs, design patterns during new software development processes, environments that support the identification of the components over Internet are needed. Basic elements of such an environment are the coordinator programs which deliver user requests to appropriate component libraries, user interfaces for querying, and programs that wrap the component libraries. First, a CORBA based architecture is proposed for such an environment. Then, an alternative architecture that is based on the Java 2 platform technologies is given for the same environment. Finally, the two architectures are compared.

  6. Characterizing and Modeling the Cost of Rework in a Library of Reusable Software Components

    Science.gov (United States)

    Basili, Victor R.; Condon, Steven E.; ElEmam, Khaled; Hendrick, Robert B.; Melo, Walcelio

    1997-01-01

    In this paper we characterize and model the cost of rework in a Component Factory (CF) organization. A CF is responsible for developing and packaging reusable software components. Data was collected on corrective maintenance activities for the Generalized Support Software reuse asset library located at the Flight Dynamics Division of NASA's GSFC. We then constructed a predictive model of the cost of rework using the C4.5 system for generating a logical classification model. The predictor variables for the model are measures of internal software product attributes. The model demonstrates good prediction accuracy, and can be used by managers to allocate resources for corrective maintenance activities. Furthermore, we used the model to generate proscriptive coding guidelines to improve programming, practices so that the cost of rework can be reduced in the future. The general approach we have used is applicable to other environments.

  7. The Ares I-1 Flight Test--Paving the Road for the Ares I Crew Launch Vehicle

    Science.gov (United States)

    Davis, Stephan R.; Tinker, Michael L.; Tuma, Meg

    2007-01-01

    of two new launch vehicle systems. The Ares I-1 flight test vehicle (FTV) will incorporate a mix of flight and mockup hardware, reflecting a configuration similar in mass, weight, and shape (outer mold line or OML) to the operational vehicle. It will be powered by a four-segment reusable solid rocket booster (RSRB), which is currently in Shuttle inventory, and will be modified to include a fifth, inert segment that makes it approximately the same size and weight as the five segment RSRB, which will be available for the second flight test in 2012. The Ares I-1 vehicle configuration is shown. Each test flight has specific objectives appropriate to the design analysis cycle in progress. The Ares I-1 demonstration test, slated for April 2009, gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack, understand how to control its roll during flight, and other characterize the severe stage separation environment that the upper stage will experience during future operational flights. NASA also will begin the process of modifying the launch infrastructure and fine-tuning ground and mission operational scenarios, as NASA transitions from the Shuttle to the Ares/Orion system.

  8. A Discrete-Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Post-Landing Operations

    National Research Council Canada - National Science Library

    Martindale, Michael

    2006-01-01

    The purpose of this research was to develop a discrete-event computer simulation model of the post-landing vehicle recoveoperations to allow the Air Force Research Laboratory, Air Vehicles Directorate...

  9. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    Science.gov (United States)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this three-foot-long model at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43

  10. Hewitt launches Research Councils UK

    CERN Multimedia

    2002-01-01

    "Trade and Industry Secretary Patricia Hewitt today launched 'Research Councils UK' - a new strategic partnership that will champion research in science, engineering and technology across the UK" (1 page).

  11. Aerodynamic Problems of Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Kyong Chol Chou

    1984-09-01

    Full Text Available The airflow along the surface of a launch vehicle together with vase flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  12. Magnetic Launch Assist Experimental Track

    Science.gov (United States)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  13. CubeSat Launch Initiative

    Science.gov (United States)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  14. National Security Space Launch Report

    Science.gov (United States)

    2006-01-01

    Company Clayton Mowry, President, Arianespace Inc., North American—“Launch Solutions” Elon Musk , CEO and CTO, Space Exploration Technologies (SpaceX...technologies to the NASA Exploration Initiative (“…Moon, Mars and Beyond.”).1 EELV Technology Needs The Atlas V and Delta IV vehicles incorporate current... Mars and other destinations.” 46 National Security Space Launch Report Figure 6.1 U.S. Government Liquid Propulsion Rocket Investment, 1991–2005

  15. Reusable Rack Interface Controller Common Software for Various Science Research Racks on the International Space Station

    Science.gov (United States)

    Lu, George C.

    2003-01-01

    The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall

  16. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits.

    Science.gov (United States)

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2016-08-22

    Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter-gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Making the Case for Reusable Booster Systems: The Operations Perspective

    Science.gov (United States)

    Zapata, Edgar

    2012-01-01

    Presentation to the Aeronautics Space Engineering Board National Research Council Reusable Booster System: Review and Assessment Committee. Addresses: the criteria and assumptions used in the formulation of current RBS plans; the methodologies used in the current cost estimates for RBS; the modeling methodology used to frame the business case for an RBS capability including: the data used in the analysis, the models' robustness if new data become available, and the impact of unclassified government data that was previously unavailable and which will be supplied by the USAF; the technical maturity of key elements critical to RBS implementation and the ability of current technology development plans to meet technical readiness milestones.

  18. CLARAty: Challenges and Steps Toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Richard Madison

    2008-11-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  19. CLARAty: Challenges and Steps toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Issa A.D. Nesnas

    2006-03-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  20. A reusable suture anchor for arthroscopy psychomotor skills training.

    Science.gov (United States)

    Tillett, Edward D; Rogers, Rainie; Nyland, John

    2003-03-01

    For residents to adequately develop the early arthroscopy psychomotor skills required to better learn how to manage the improvisational situations they will encounter during actual patient cases, they need to experience sufficient practice repetitions within a contextually relevant environment. Unfortunately, the cost of suture anchors can be a practice repetition-limiting factor in learning arthroscopic knot-tying techniques. We describe a technique for creating inexpensive reusable suture anchors and provide an example of their application to repair the anterior glenoid labrum during an arthroscopy psychomotor skills laboratory training session.

  1. NASA's Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  2. Reusable LH2 tank technology demonstration through ground test

    Science.gov (United States)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  3. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    Science.gov (United States)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  4. Reusable Software Usability Specifications for mHealth Applications.

    Science.gov (United States)

    Cruz Zapata, Belén; Fernández-Alemán, José Luis; Toval, Ambrosio; Idri, Ali

    2018-01-25

    One of the key factors for the adoption of mobile technologies, and in particular of mobile health applications, is usability. A usable application will be easier to use and understand by users, and will improve user's interaction with it. This paper proposes a software requirements catalog for usable mobile health applications, which can be used for the development of new applications, or the evaluation of existing ones. The catalog is based on the main identified sources in literature on usability and mobile health applications. Our catalog was organized according to the ISO/IEC/IEEE 29148:2011 standard and follows the SIREN methodology to create reusable catalogs. The applicability of the catalog was verified by the creation of an audit method, which was used to perform the evaluation of a real app, S Health, application created by Samsung Electronics Co. The usability requirements catalog, along with the audit method, identified several usability flaws on the evaluated app, which scored 83%. Some flaws were detected in the app related to the navigation pattern. Some more issues related to the startup experience, empty screens or writing style were also found. The way a user navigates through an application improves or deteriorates user's experience with the application. We proposed a reusable usability catalog and an audit method. This proposal was used to evaluate a mobile health application. An audit report was created with the usability issues identified on the evaluated application.

  5. A Quality Function Deployment Method Applied to Highly Reusable Space Transportation

    Science.gov (United States)

    Zapata, Edgar

    2016-01-01

    This paper will describe a Quality Function Deployment (QFD) currently in work the goal of which is to add definition and insight to the development of long term Highly Reusable Space Transportation (HRST). The objective here is twofold. First, to describe the process, the actual QFD experience as applies to the HRST study. Second, to describe the preliminary results of this process, in particular the assessment of possible directions for future pursuit such as promising candidate technologies or approaches that may finally open the space frontier. The iterative and synergistic nature of QFD provides opportunities in the process for the discovery of what is key in so far as it is useful, what is not, and what is merely true. Key observations on the QFD process will be presented. The importance of a customer definition as well as the similarity of the process of developing a technology portfolio to product development will be shown. Also, the relation of identified cost and operating drivers to future space vehicle designs that are robust to an uncertain future will be discussed. The results in particular of this HRST evaluation will be preliminary given the somewhat long term (or perhaps not?) nature of the task being considered.

  6. A quality function deployment method applied to highly reusable space transportation

    Science.gov (United States)

    Zapata, Edgar

    1997-01-01

    This paper will describe a Quality Function Deployment (QFD) currently in work the goal of which is to add definition and insight to the development of long term Highly Reusable Space Transportation (HRST). The objective here is twofold. First, to describe the process, the actual QFD experience as applies to the HRST study. Second, to describe the preliminary results of this process, in particular the assessment of possible directions for future pursuit such as promising candidate technologies or approaches that may finally open the space frontier. The iterative and synergistic nature of QFD provides opportunities in the process for the discovery of what is key in so far as it is useful, what is not, and what is merely true. Key observations on the QFD process will be presented. The importance of a customer definition as well as the similarity of the process of developing a technology portfolio to product development will be shown. Also, the relation of identified cost and operating drivers to future space vehicle designs that are robust to an uncertain future will be discussed. The results in particular of this HRST evaluation will be preliminary given the somewhat long term (or perhaps not?) nature of the task being considered.

  7. Study on Alternative Cargo Launch Options from the Lunar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl A. Blomberg; Zamir A. Zulkefli; Spencer W. Rich; Steven D. Howe

    2013-07-01

    In the future, there will be a need for constant cargo launches from Earth to Mars in order to build, and then sustain, a Martian base. Currently, chemical rockets are used for space launches. These are expensive and heavy due to the amount of necessary propellant. Nuclear thermal rockets (NTRs) are the next step in rocket design. Another alternative is to create a launcher on the lunar surface that uses magnetic levitation to launch cargo to Mars in order to minimize the amount of necessary propellant per mission. This paper investigates using nuclear power for six different cargo launching alternatives, as well as the orbital mechanics involved in launching cargo to a Martian base from the moon. Each alternative is compared to the other alternative launchers, as well as compared to using an NTR instead. This comparison is done on the basis of mass that must be shipped from Earth, the amount of necessary propellant, and the number of equivalent NTR launches. Of the options, a lunar coil launcher had a ship mass that is 12.7% less than the next best option and 17 NTR equivalent launches, making it the best of the presented six options.

  8. Launch Pad in a Box

    Science.gov (United States)

    Mantovani, James; Tamasy, Gabor; Mueller, Rob; Townsend, Van; Sampson, Jeff; Lane, Mike

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests

  9. Gun Launch System: efficient and low-cost means of research and real-time monitoring

    Science.gov (United States)

    Degtyarev, Alexander; Ventskovsky, Oleg; Korostelev, Oleg; Yakovenko, Peter; Kanevsky, Valery; Tselinko, Alexander

    2005-08-01

    The Gun Launch System with a reusable sub-orbital launch vehicle as a central element is proposed by a consortium of several Ukrainian high-tech companies as an effective, fast-response and low-cost means of research and real-time monitoring. The system is described in details, with the emphasis on its most important advantages. Multiple applications of the system are presented, including ones for the purposes of microgravity research; chemical, bacteriological and radiation monitoring and research of atmosphere and ionosphere; operational monitoring of natural and man-made disasters, as well as for some other areas of great practical interest. The current level of the system development is given, and the way ahead towards full system's implementation is prescribed.

  10. RAGE Reusable Game Software Components and Their Integration into Serious Game Engines

    NARCIS (Netherlands)

    Van der Vegt, Wim; Nyamsuren, Enkhbold; Westera, Wim

    2016-01-01

    This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software

  11. Launch Window Trade Analysis for the James Webb Space Telescope

    Science.gov (United States)

    Yu, Wayne H.; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  12. Oxidatively Stable Flexible Aerogel Composites for Reusable TPS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s Next Generation Launch Vehicle Technology Program has an interest in robust TPS materials with the highest level of thermal performance at the lowest possible...

  13. Optimization of a Future RLV Business Case using Multiple Strategic Market Prices

    Science.gov (United States)

    Charania, A.; Olds, J. R.

    2002-01-01

    There is a lack of depth in the current paradigm of conceptual level economic models used to evaluate the value and viability of future capital projects such as a commercial reusable launch vehicle (RLV). Current modeling methods assume a single price is charged to all customers, public or private, in order to optimize the economic metrics of interest. This assumption may not be valid given the different utility functions for space services of public and private entities. The government's requirements are generally more inflexible than its commercial counterparts. A government's launch schedules are much more rigid, choices of international launch services restricted, and launch specifications generally more stringent as well as numerous. These requirements generally make the government's demand curve more inelastic. Subsequently, a launch vehicle provider will charge a higher price (launch price per kg) to the government and may obtain a higher level of financial profit compared to an equivalent a commercial payload. This profit is not a sufficient condition to enable RLV development by itself but can help in making the financial situation slightly better. An RLV can potentially address multiple payload markets; each market has a different price elasticity of demand for both the commercial and government customer. Thus, a more resilient examination of the economic landscape requires optimization of multiple prices in which each price affects a different demand curve. Such an examination is performed here using the Cost and Business Analysis Module (CABAM), an MS-Excel spreadsheet-based model that attempts to couple both the demand and supply for space transportation services in the future. The demand takes the form of market assumptions (both near-term and far-term) and the supply comes from user-defined vehicles that are placed into the model. CABAM represents RLV projects as commercial endeavors with the possibility to model the effects of government

  14. VEGA, a small launch vehicle

    Science.gov (United States)

    Duret, François; Fabrizi, Antonio

    1999-09-01

    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  15. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  16. Business Intelligence Modeling in Launch Operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce

  17. Business intelligence modeling in launch operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined

  18. What If Annotations Were Reusable: A Preliminary Discussion

    Science.gov (United States)

    Manouselis, Nikos; Vuorikari, Riina

    This paper discusses the rationale for the representation of user feedback in a structured and reusable format so that it can be reused by different recommender systems. We emphasize how information about the context can be included in such a representation. This work-in-progress takes place in the context of two large European initiatives that set up collections of digital educational resources in distributed repositories to serve the needs of different user communities, and to collect user feedback such as ratings, bookmarks and tags related to the resources. The overall aim is to facilitate the exchange and reuse of their data sets in order to support recommendation of appropriate resources to the end users.

  19. Casting metal microstructures from a flexible and reusable mold

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2009-01-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10–100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool

  20. A reusable OSL-film for 2D radiotherapy dosimetry

    Science.gov (United States)

    Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt

    2017-11-01

    Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film’s reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after ‘beam on’ or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities  ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min-1) over the 20 min measured, and limited angular dependence  ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film’s measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after

  1. A Reusable Software Architecture for Small Satellite AOCS Systems

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Laursen, Karl Kaas

    2006-01-01

    This paper concerns the software architecture called Sophy, which is an abbreviation for Simulation, Observation, and Planning in HYbrid systems. We present a framework that allows execution of hybrid dynamical systems in an on-line distributed computing environment, which includes interaction...... with both hardware and on-board software. Some of the key issues addressed by the framework are automatic translation of mathematical specifications of hybrid systems into executable software entities, management of execution of coupled models in a parallel distributed environment, as well as interaction...... with external components, hardware and/or software, through generic interfaces. Sophy is primarily intended as a tool for development of model based reusable software for the control and autonomous functions of satellites and/or satellite clusters....

  2. Reusable rocket engine preventive maintenance scheduling using genetic algorithm

    International Nuclear Information System (INIS)

    Chen, Tao; Li, Jiawen; Jin, Ping; Cai, Guobiao

    2013-01-01

    This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management

  3. Reusable locking tube in a reconstitutable fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1987-01-01

    This patent describes a reconstitutable fuel assembly including a top nozzle with an adapter plate having an interior wall forming at least one passageway, at least one guide thimble with an upper end portion, and an attaching structure having an outer socket formed by a circumferential groove defined in the adapter plate passageway wall and opening into the passageway and an inner socket formed by a circumferential bulge and at least one longitudinal slot defined in the upper end portion of the guide thimble. The circumferential bulge is capable of seating within the circumferential groove, an improved reusable tube for releasably locking the inner socket of the guide thimble upper end portion in locking engagement within the outer socket of the adapter plate passageway when the circumferential bulge is seated within the circumferential groove. The reusable tube comprises: (a) an elongated hollow tubular body capable of insertion within the adapter plate passageway and guide thimble upper end portion to a locking position therein such that the circumferential bulge of the inner socket is maintained seated in the locking engagement with the circumferential groove of the outer socket; and (b) at least a pair of dimples performed on the exterior of the tubular body prior to insertion of the body in the guide thimble upper end portion and to the locking position, the dimples being performed and configured to increase the thickness of the tubular body in relation to the remainder of the tubular body. The dimples are substantially resisting resilient yielding in relation to the remainder of the tubular body

  4. Improving learning of anatomy with reusable learning objects

    Directory of Open Access Journals (Sweden)

    P Rad

    2015-12-01

    Full Text Available Introduction: The use of modern educational technologies is useful for learning, durability, sociability, and upgrading professionalism. The aim of this study was evaluating the effect of reusable learning objects on improving learning of anatomy. Methods: This was a quasi-experimental study. Fourteen (reusable learning objects RLO from different parts of anatomy of human body including thorax, abdomen, and pelvis were prepared for medical student in Yasuj University of Medical Sciences in 2009. The length of the time for RLO was between 11-22 min. Because their capacities were low, so they were easy to use with cell phone or MP4. These materials were available to the students before the classes. The mean scores of students in anatomy of human body group were compared to the medical students who were not used this method and entered the university in 2008. A questionnaire was designed by the researcher to evaluate the effect of RLO and on, content, interest and motivation, participation, preparation and attitude. Result: The mean scores of anatomy of human body of medical student who were entered the university in 2009 have been increased compare to the students in 2008, but this difference was not significant. Based on the questionnaire data, it was shown that the RLO had a positive effect on improving learning anatomy of human body (75.5% and the effective relationship (60.6%. The students were interested in using RLO (74.6%, some students (54.2% believed that this method should be replaced by lecture. Conclusion: The use of RLO could promote interests and effective communication among the students and led to increasing self-learning motivation.

  5. Structural Weight Estimation for Launch Vehicles

    Science.gov (United States)

    Cerro, Jeff; Martinovic, Zoran; Su, Philip; Eldred, Lloyd

    2002-01-01

    This paper describes some of the work in progress to develop automated structural weight estimation procedures within the Vehicle Analysis Branch (VAB) of the NASA Langley Research Center. One task of the VAB is to perform system studies at the conceptual and early preliminary design stages on launch vehicles and in-space transportation systems. Some examples of these studies for Earth to Orbit (ETO) systems are the Future Space Transportation System [1], Orbit On Demand Vehicle [2], Venture Star [3], and the Personnel Rescue Vehicle[4]. Structural weight calculation for launch vehicle studies can exist on several levels of fidelity. Typically historically based weight equations are used in a vehicle sizing program. Many of the studies in the vehicle analysis branch have been enhanced in terms of structural weight fraction prediction by utilizing some level of off-line structural analysis to incorporate material property, load intensity, and configuration effects which may not be captured by the historical weight equations. Modification of Mass Estimating Relationships (MER's) to assess design and technology impacts on vehicle performance are necessary to prioritize design and technology development decisions. Modern CAD/CAE software, ever increasing computational power and platform independent computer programming languages such as JAVA provide new means to create greater depth of analysis tools which can be included into the conceptual design phase of launch vehicle development. Commercial framework computing environments provide easy to program techniques which coordinate and implement the flow of data in a distributed heterogeneous computing environment. It is the intent of this paper to present a process in development at NASA LaRC for enhanced structural weight estimation using this state of the art computational power.

  6. Vertical Launch System Loadout Planner

    Science.gov (United States)

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this

  7. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  8. The CERN & Society programme launches its newsletter

    CERN Multimedia

    Matteo Castoldi

    2016-01-01

    The newsletter will be issued quarterly. Sign up to remain informed about the latest initiatives of the CERN & Society programme!    The CERN & Society programme encompasses projects in the areas of education and outreach, innovation and knowledge exchange, and culture and creativity that spread the CERN spirit of scientific curiosity for the inspiration and benefit of society. The programme is funded primarily by the CERN & Society Foundation, a charitable foundation established by CERN and supported by individuals, trusts, organisations and commercial companies. The projects are inspired or enabled by CERN but lie outside of the Laboratory’s specific research mandate. We especially want to help young talent from around the world to flourish in the future. The programme is now launching its newsletter, which will be issued quarterly. Everybody who wants to be informed about CERN & Society’s activities, stay up-to-date with its latest in...

  9. Launch of the "MICE Procurement" website for your future events

    CERN Multimedia

    The MICE Office team

    2014-01-01

    The number of MICE (Meeting, Incentive, Conference and Event) requests is on the increase and our hotel offer is constantly being developed.   The MICE Office has decided to create a dedicated website in order to offer the best possible service to its users. This site is accessible from the FP webpage (MICE Procurement) using your NICE login. It gives you access to the list of the establishments which have a contract with CERN, grouped by geographic area/star rating, and all related information. The establishments listed on this website can accommodate your local events, organised by CERN or in partnership with an institution. They were selected following a market survey and as a result of a price enquiry in accordance with CERN's Purchasing Rules. We offer a number of standard packages, but we will try to respond to any specific requirements. On the same site you can also access a longer list of hotels (also accessible via the GS website) for which prices and conditions have been nego...

  10. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  11. A Reusable Framework for Regional Climate Model Evaluation

    Science.gov (United States)

    Hart, A. F.; Goodale, C. E.; Mattmann, C. A.; Lean, P.; Kim, J.; Zimdars, P.; Waliser, D. E.; Crichton, D. J.

    2011-12-01

    utilizing large volumes of observational data for model evaluation research. We feel that the RCMES is particularly appealing in that it represents a principled, reusable architectural approach rather than a one-off technological implementation. In fact, early RCMES prototypes have already utilized a variety of implementation technologies in an effort to address different performance and scalability concerns. This has been greatly facilitated by the fact that, at the architectural level, the RCMES is fundamentally domain agnostic. Strictly separating the data model from the implementation has enabled us to create a reusable architecture that we believe can be modified and configured to suit the demands of researchers in other domains.

  12. Investigation of Reusable Crucibles on Uranium Casting by Injection Method

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock

    2014-01-01

    Slurry applied coatings must be recoated after every batch. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel. Plasma-sprayed coating can provide a crucible with a denser, more durable, coating layer, compared with the more friable coating layer formed by slurry-coating. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense from the heat applied by the plasma. Although the protective layer is more difficult in a dense coating than in a porous coating, the increased coating density is advantageous because it should not require frequent recoating or U-Zr melt penetration. In this study, we used a Vacuum Plasma Spray (VPS) method, which is suitable to prevent oxidization and has a number of advantages such as low defect density and excellent adhesion of the coating layer, to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel. After coatings, interaction studies between molten U-Zr alloys and the plasma sprayed coatings were also carried out. We summarized the results of the coating methods. All coated samples maintained good coating integrity in a U-Zr melt, but most of the coating method samples did not maintain integrity in the U-Zr-RE melt because of the cracks or microcracks of the coating layer, presumably formed from the thermal expansion difference. Only the TaC(100)-Y 2 O 3 (100) DL VPS coated rod survived the 2 cycles dipping test of U-Zr-RE melt. This is likely caused by good adhesion of the TaC coating onto the niobium rod and the chemical inertness of Y 2 O 3 coating material in the U-Zr-RE melt. Based on the results from the interactions with U-10Zr and U-10Zr-5RE melt, TaC(100)-Y 2 O 3 (100) plasma-sprayed coating methods have been applied to real graphite crucibles

  13. A Reusable Component for Communication and Data Synchronization in Mobile Distributed Interactive Applications

    Directory of Open Access Journals (Sweden)

    Abdul Malik Khan

    2010-10-01

    Full Text Available In Distributed Interactive Applications (DIA such as multiplayer games, where many participants are involved in a same game session and communicate through a network, they may have an inconsistent view of the virtual world because of the communication delays across the network. This issue becomes even more challenging when communicating through a cellular network while executing the DIA client on a mobile terminal. Consistency maintenance algorithms may be used to obtain a uniform view of the virtual world. These algorithms are very complex and hard to program and therefore, the implementation and the future evolution of the application logic code become difficult. To solve this problem, we propose an approach where the consistency concerns are handled separately by a distributed component called a Synchronization Medium, which is responsible for the communication management as well as the consistency maintenance. We present the detailed architecture of the Synchronization Medium and the generic interfaces it offers to DIAs. We evaluate our approach both qualitatively and quantitatively. We first demonstrate that the Synchronization Medium is a reusable component through the development of two game applications, a car racing game and a space war game. A performance evaluation then shows that the overhead introduced by the Synchronization Medium remains acceptable.

  14. The Role of Reusable Learning Objects in Occupational Therapy Entry-Level Education

    Directory of Open Access Journals (Sweden)

    Bryan M. Gee

    2014-10-01

    Full Text Available Out of early research, Cisco Systems (1999 have built an impressive foundation that advocates for reusable learning objects (RLOs. As the need for online methods for delivering both formal and informal educational content has increased, the prospect of greater influence through carefully constructed RLOs has grown. RLOs are any digital resource that can be used and reused to enhance online learning. RLOs typically are small, discrete, self-contained digital objects that may be sequenced, combined, and used within a variety of instructional activities. RLOs have been implemented in nursing, pharmacy, and physician assistant programs. However, there is a lack of literature regarding RLOs in occupational therapy education. An attitudinal survey was administered to occupational therapy students after they had used an RLO focused on goal writing. Student preferences toward RLO content, instructional design, and eLearning were generally positive. Nearly three-quarters of the students who responded to the survey indicated that the RLO presented was beneficial. All respondents noted that they would use the RLO for future occupational therapy courses. It is argued that incorporating RLOs offers a cost-effective, efficient learning tool, and also adds credibility to the given curriculum program as being innovative with instructing occupational-therapy related concepts.

  15. Educational Modelling Language and Learning Design: new challenges for instructional re-usability and personalized learning

    NARCIS (Netherlands)

    Hummel, Hans; Manderveld, Jocelyn; Tattersall, Colin; Koper, Rob

    2003-01-01

    Published: Hummel, H. G. K., Manderveld, J. M., Tattersall, C.,& Koper, E. J. R. (2004). Educational Modelling Language: new challenges for instructional re-usability and personalized learning. International Journal of Learning Technology, 1, 1, 110-111.

  16. Intelligent, reusable software for plug and play space avionics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space processing and hardening technologies and products e.g (Proton 200K), to research and develop reusable software...

  17. REUSABILITY OF BOND ELUT CERTIFY COLUMNS FOR THE EXTRACTION OF DRUGS FROM PLASMA

    NARCIS (Netherlands)

    CHEN, XH; FRANKE, JP; WIJSBEEK, J; DEZEEUW, RA

    1993-01-01

    The reusability of Bond Elut Certify columns for the extraction of toxicologically relevant drugs from plasma has been evaluated. Pentobarbital, hexobarbital, mepivacaine, trimipramine and clonazepam were selected as test drugs to represent various classes of drugs. The columns were regenerated

  18. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observ...

  19. A Reusable, Oxidizer-Cooled, Hybrid Aerospike Rocket Motor for Flight Test, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use the refrigerant capabilities of nitrous oxide (N2O) to provide the cooling required for reusable operation of an aerospike nozzle...

  20. Reusable Nanocomposite Membranes for the Selective Recovery of Nutrients in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Through the STTR program, NanoSonic and Virginia Tech will create low-cost, reusable membranes that selectively capture and recycle nutrients (e.g., N, P, K) from...

  1. A Proposed Criterion for Launch Ramp Availability

    National Research Council Canada - National Science Library

    Dalzell, J

    2003-01-01

    The project under which the present report was produced has as an objective the development of methods for the evaluation and comparison of stem-launch and side-launch systems for small boat deployment from USCG cutters...

  2. Launch of Apollo 8 lunar orbit mission

    Science.gov (United States)

    1968-01-01

    The Apollo 8 (Spacecraft 103/Saturn 503) space vehicle launched from Pad A, Launch Complex 39, Kennedy Space Center, at 7:51 a.m., December 21, 1968. In this view there is water in the foreground and seagulls.

  3. Smart Sensors for Launch Vehicles

    Science.gov (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-12-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  4. GRYPHON: Air launched space booster

    Science.gov (United States)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  5. Launch Environmental Test for KITSAT-3 FM

    Directory of Open Access Journals (Sweden)

    Sang-Hyun Lee

    1999-06-01

    Full Text Available The satellite experiences the severe launch environment such as vibration, acceleration, shock, and acoustics induced by rocket. Therefore, the satellite should be designed and manufactured to endure such severe launch environments. In this paper, we describe the structure of the KITSAT-3 FM(Flight Model and the processes and results of the launch environmental test to ensure the reliability during launch period.

  6. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  7. Launch Opportunities for Jupiter Missions Using the Gravity Assist

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-06-01

    Full Text Available Interplanetary trajectories using the gravity assists are studied for future Korean interplanetary missions. Verifications of the developed softwares and results were performed by comparing data from ESA's Mars Express mission and previous results. Among the Jupiter exploration mission scenarios, multi-planet gravity assist mission to Jupiter (Earth-Mars-Earth-Jupiter Gravity Assist, EMEJGA trajectory requires minimum launch energy (C3 of 29.231 km2/s2 with 4.6 years flight times. Others, such as direct mission and single-planet(Mars gravity assist mission, requires launch energy (C3 of 75.656 km^2/s^2 with 2.98 years flight times and 63.590 km2/s2 with 2.33 years flight times, respectively. These results show that the planetary gravity assists can reduce launch energy, while EMEJGA trajectory requires the longer flight time than the other missions.

  8. Response of Launch Pad Structures to Random Acoustic Excitation

    Directory of Open Access Journals (Sweden)

    Ravi N. Margasahayam

    1994-01-01

    Full Text Available The design of launch pad structures, particularly those having a large area-to-mass ratio, is governed by launch-induced acoustics, a relatively short transient with random pressure amplitudes having a non-Gaussian distribution. The factors influencing the acoustic excitation and resulting structural responses are numerous and cannot be predicted precisely. Two solutions (probabilistic and deterministic for the random vibration problem are presented in this article from the standpoint of their applicability to predict the response of ground structures exposed to rocket noise. Deficiencies of the probabilistic method, especially to predict response in the low-frequency range of launch transients (below 20 Hz, prompted the development of the deterministic analysis. The relationship between the two solutions is clarified for future implementation in a finite element method (FEM code.

  9. Opportunities for Launch Site Integrated System Health Engineering and Management

    Science.gov (United States)

    Waterman, Robert D.; Langwost, Patricia E.; Waterman, Susan J.

    2005-01-01

    The launch site processing flow involves operations such as functional verification, preflight servicing and launch. These operations often include hazards that must be controlled to protect human life and critical space hardware assets. Existing command and control capabilities are limited to simple limit checking durig automated monitoring. Contingency actions are highly dependent on human recognition, decision making, and execution. Many opportunities for Integrated System Health Engineering and Management (ISHEM) exist throughout the processing flow. This paper will present the current human-centered approach to health management as performed today for the shuttle and space station programs. In addition, it will address some of the more critical ISHEM needs, and provide recommendations for future implementation of ISHEM at the launch site.

  10. Mobile Authoring of Open Educational Resources as Reusable Learning Objects

    Directory of Open Access Journals (Sweden)

    Dr Kinshuk

    2013-06-01

    Full Text Available E-learning technologies have allowed authoring and playback of standardized reusable learning objects (RLO for several years. Effective mobile learning requires similar functionality at both design time and runtime. Mobile devices can play RLO using applications like SMILE, mobile access to a learning management system (LMS, or other systems which deploy content to mobile learners (Castillo & Ayala, 2008; Chu, Hwang, & Tseng, 2010; Hsu & Chen, 2010; Nakabayashi, 2009; Zualkernan, Nikkhah, & Al-Sabah, 2009. However, implementations which author content in a mobile context do not typically permit reuse across multiple contexts due to a lack of standardization. Standards based (IMS and SCORM authoring implementations exist for non-mobile platforms (Gonzalez-Barbone & Anido-Rifon, 2008; Griffiths, Beauvoir, Liber, & Barrett-Baxendale, 2009; Téllez, 2010; Yang, Chiu, Tsai, & Wu, 2004. However, this paradigm precludes capturing learning where and when it occurs. Consequently, RLO authored for e-learning lack learner generated content, especially with timely, relevant, and location aware examples.

  11. Orbiting Depot and Reusable Lander for Lunar Transportation

    Science.gov (United States)

    Petro, Andrew

    2009-01-01

    A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.

  12. Simple and reusable picoinjector for liquid delivery via nanofluidics approach

    KAUST Repository

    Li, Shunbo; Cao, Wenbin; Hui, Yu Sanna; Wen, Weijia

    2014-01-01

    Precise control of sample volume is one of the most important functions in lab-on-a-chip (LOC) systems, especially for chemical and biological reactions. The common approach used for liquid delivery involves the employment of capillaries and microstructures for generating a droplet which has a volume in the nanoliter or picoliter range. Here, we report a novel approach for constructing a picoinjector which is based on well-controlled electroosmotic (EO) flow to electrokinetically drive sample solutions. This picoinjector comprises an array of interconnected nanochannels for liquid delivery. Such technique for liquid delivery has the advantages of well-controlled sample volume and reusable nanofluidic chip, and it was reported for the first time. In the study of the pumping process for this picoinjector, the EO flow rate was determined by the intensity of the fluorescent probe. The influence of ion concentration in electrolyte solutions over the EO flow rate was also investigated and discussed. The application of this EO-driven picoinjector for chemical reactions was demonstrated by the reaction between Fluo-4 and calcium chloride with the reaction cycle controlled by the applied square waves of different duty cycles. The precision of our device can reach down to picoliter per second, which is much smaller than that of most existing technologies. This new approach, thus, opens further possibilities of adopting nanofluidics for well-controlled chemical reactions with particular applications in nanoparticle synthesis, bimolecular synthesis, drug delivery, and diagnostic testing.

  13. RAGE Architecture for Reusable Serious Gaming Technology Components

    Directory of Open Access Journals (Sweden)

    Wim van der Vegt

    2016-01-01

    Full Text Available For seizing the potential of serious games, the RAGE project—funded by the Horizon-2020 Programme of the European Commission—will make available an interoperable set of advanced technology components (software assets that support game studios at serious game development. This paper describes the overall software architecture and design conditions that are needed for the easy integration and reuse of such software assets in existing game platforms. Based on the component-based software engineering paradigm the RAGE architecture takes into account the portability of assets to different operating systems, different programming languages, and different game engines. It avoids dependencies on external software frameworks and minimises code that may hinder integration with game engine code. Furthermore it relies on a limited set of standard software patterns and well-established coding practices. The RAGE architecture has been successfully validated by implementing and testing basic software assets in four major programming languages (C#, C++, Java, and TypeScript/JavaScript, resp.. Demonstrator implementation of asset integration with an existing game engine was created and validated. The presented RAGE architecture paves the way for large scale development and application of cross-engine reusable software assets for enhancing the quality and diversity of serious gaming.

  14. Note: reliable and reusable ultrahigh vacuum optical viewports.

    Science.gov (United States)

    Arora, P; Sen Gupta, A

    2012-04-01

    We report a simple technique for the realization of ultrahigh vacuum optical viewports. The technique relies on using specially designed thin copper knife-edges and using a thin layer of Vacseal(®) on tip of the knife-edges between the optical flat and the ConFlat(®) (CF) flange. The design of the windows is such that it gives uniform pressure on the flat without breaking it. The assembled window is a complete unit, which can be mounted directly onto a CF flange of the vacuum chamber. It can be removed and reused without breaking the window seal. The design is reliable as more than a dozen such windows have survived several bake out and cooling cycles and have been leak tested up to 10(-11) Torr l/s level with a commercial Helium leak detector. The advantages of this technique are ease of assembly and leak proof sealing that survives multiple temperature cycling making the windows reliable and reusable. © 2012 American Institute of Physics

  15. A microfabricated gecko-inspired controllable and reusable dry adhesive

    International Nuclear Information System (INIS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-01-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ′) of 8–16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ′, along with a large shear force of ∼78 kPa, approaching the 88–226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry. (paper)

  16. Space shuttle orbit maneuvering engine reusable thrust chamber program

    Science.gov (United States)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  17. Reusable self-healing hydrogels realized via in situ polymerization.

    Science.gov (United States)

    Vivek, Balachandran; Prasad, Edamana

    2015-04-09

    In this work, a self-healing hydrogel has been prepared using in situ polymerization of acrylic acid and acrylamide in the presence of glycogen. The hydrogel was characterized using NMR, SEM, FT-IR, rheology, and dynamic light scattering (DLS) studies. The developed hydrogel exhibits self-healing properties at neutral pH, high swelling ability, high elasticity, and excellent mechanical strength. The hydrogel exhibits modulus values (G', G″) as high as 10(6) Pa and shows an exceptionally high degree of swelling ratio (∼3.5 × 10(3)). Further, the polymer based hydrogel adsorbs toxic metal ions (Cd(2+), Pb(2+), and Hg(2+)) and organic dyes (methylene blue and methyl orange) from contaminated water with remarkable efficiency (90-98%). The mechanistic analysis indicated the presence of pseudo-second-order reaction kinetics. The reusability of the hydrogel has been demonstrated by repeating the adsorption-desorption process over five cycles with identical results in the adsorption efficiency.

  18. Simple and reusable picoinjector for liquid delivery via nanofluidics approach

    KAUST Repository

    Li, Shunbo

    2014-03-25

    Precise control of sample volume is one of the most important functions in lab-on-a-chip (LOC) systems, especially for chemical and biological reactions. The common approach used for liquid delivery involves the employment of capillaries and microstructures for generating a droplet which has a volume in the nanoliter or picoliter range. Here, we report a novel approach for constructing a picoinjector which is based on well-controlled electroosmotic (EO) flow to electrokinetically drive sample solutions. This picoinjector comprises an array of interconnected nanochannels for liquid delivery. Such technique for liquid delivery has the advantages of well-controlled sample volume and reusable nanofluidic chip, and it was reported for the first time. In the study of the pumping process for this picoinjector, the EO flow rate was determined by the intensity of the fluorescent probe. The influence of ion concentration in electrolyte solutions over the EO flow rate was also investigated and discussed. The application of this EO-driven picoinjector for chemical reactions was demonstrated by the reaction between Fluo-4 and calcium chloride with the reaction cycle controlled by the applied square waves of different duty cycles. The precision of our device can reach down to picoliter per second, which is much smaller than that of most existing technologies. This new approach, thus, opens further possibilities of adopting nanofluidics for well-controlled chemical reactions with particular applications in nanoparticle synthesis, bimolecular synthesis, drug delivery, and diagnostic testing.

  19. Reusable High Aspect Ratio 3-D Nickel Shadow Mask

    Science.gov (United States)

    Shandhi, M.M.H.; Leber, M.; Hogan, A.; Warren, D.J.; Bhandari, R.; Negi, S.

    2017-01-01

    Shadow Mask technology has been used over the years for resistless patterning and to pattern on unconventional surfaces, fragile substrate and biomaterial. In this work, we are presenting a novel method to fabricate high aspect ratio (15:1) three-dimensional (3D) Nickel (Ni) shadow mask with vertical pattern length and width of 1.2 mm and 40 μm respectively. The Ni shadow mask is 1.5 mm tall and 100 μm wide at the base. The aspect ratio of the shadow mask is 15. Ni shadow mask is mechanically robust and hence easy to handle. It is also reusable and used to pattern the sidewalls of unconventional and complex 3D geometries such as microneedles or neural electrodes (such as the Utah array). The standard Utah array has 100 active sites at the tip of the shaft. Using the proposed high aspect ratio Ni shadow mask, the Utah array can accommodate 300 active sites, 200 of which will be along and around the shaft. The robust Ni shadow mask is fabricated using laser patterning and electroplating techniques. The use of Ni 3D shadow mask will lower the fabrication cost, complexity and time for patterning out-of-plane structures. PMID:29056835

  20. A microfabricated gecko-inspired controllable and reusable dry adhesive

    Science.gov (United States)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  1. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  2. STS-91 Launch of Discovery from Launch Pad 39-A

    Science.gov (United States)

    1998-01-01

    Searing the early evening sky with its near sun-like rocket exhaust, the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir.

  3. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  4. Intelligent launch and range operations virtual testbed (ILRO-VTB)

    Science.gov (United States)

    Bardina, Jorge; Rajkumar, Thirumalainambi

    2003-09-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  5. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  6. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site location review-launch site boundary. 420.21 Section 420.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... travels given a worst-case launch vehicle failure in the launch area. An applicant must clearly and...

  7. CERN & Society launches donation portal

    CERN Multimedia

    Cian O'Luanaigh

    2014-01-01

    The CERN & Society programme brings together projects in the areas of education and outreach, innovation and knowledge exchange, and culture and arts, that spread the CERN spirit of scientific curiosity for the inspiration and benefit of society. Today, CERN & Society is launching its "giving" website – a portal to allow donors to contribute to various projects and forge new relationships with CERN.   "The CERN & Society initiative in its embryonic form began almost three years ago, with the feeling that the laboratory could play a bigger role for the benefit of society," says Matteo Castoldi, Head of the CERN Development Office, who, with his team, is seeking supporters and ambassadors for the CERN & Society initiative. "The concept is not completely new – in some sense it is embedded in CERN’s DNA, as the laboratory helps society by creating knowledge and new technologies – but we would like to d...

  8. Differences in alarm events between disposable and reusable electrocardiography lead wires.

    Science.gov (United States)

    Albert, Nancy M; Murray, Terri; Bena, James F; Slifcak, Ellen; Roach, Joel D; Spence, Jackie; Burkle, Alicia

    2015-01-01

    Disposable electrocardiographic lead wires (ECG-LWs) may not be as durable as reusable ones. To examine differences in alarm events between disposable and reusable ECG-LWs. Two cardiac telemetry units were randomized to reusable ECG-LWs, and 2 units alternated between disposable and reusable ECG-LWs for 4 months. A remote monitoring team, blinded to ECG-LW type, assessed frequency and type of alarm events by using total counts and rates per 100 patient days. Event rates were compared by using generalized linear mixed-effect models for differences and noninferiority between wire types. In 1611 patients and 9385.5 patient days of ECG monitoring, patient characteristics were similar between groups. Rates of alarms for no telemetry, leads fail, or leads off were lower in disposable ECG-LWs (adjusted relative risk [95% CI], 0.71 [0.53-0.96]; noninferiority P < .001; superiority P = .03) and monitoring (artifact) alarms were significantly noninferior (adjusted relative risk [95% CI]: 0.88, [0.62-1.24], P = .02; superiority P = .44). No between-group differences existed in false or true crisis alarms. Disposable ECG-LWs were noninferior to reusable ECG-LWs for all false-alarm events (N [rate per 100 patient days], disposable 2029 [79.1] vs reusable 6673 [97.9]; adjusted relative risk [95% CI]: 0.81 [0.63-1.06], P = .002; superiority P = .12.) Disposable ECG-LWs with patented push-button design had superior performance in reducing alarms created by no telemetry, leads fail, or leads off and significant noninferiority in all false-alarm rates compared with reusable ECG-LWs. Fewer ECG alarms may save nurses time, decrease alarm fatigue, and improve patient safety. ©2015 American Association of Critical-Care Nurses.

  9. Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures

    Science.gov (United States)

    Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara

    2017-01-01

    Human missions to Mars, particularly to the Martian surface, are grand endeavors that place extensive demands on ground infrastructure, launch capabilities, and mission systems. The interplay of capabilities and limitations among these areas can have significant impacts on the costs and ability to conduct Mars missions and campaigns. From a mission and campaign perspective, decisions that affect element designs, including those based on launch vehicle and ground considerations, can create effects that ripple through all phases of the mission and have significant impact on the overall campaign. These effects result in impacts to element designs and performance, launch and surface manifesting, and mission operations. In current Evolvable Mars Campaign concepts, the NASA Space Launch System (SLS) is the primary launch vehicle for delivering crew and payloads to cis-lunar space. SLS is currently developing an 8.4m diameter cargo fairing, with a planned upgrade to a 10m diameter fairing in the future. Fairing diameter is a driving factor that impacts many aspects of system design, vehicle performance, and operational concepts. It creates a ripple effect that influences all aspects of a Mars mission, including: element designs, grounds operations, launch vehicle design, payload packaging on the lander, launch vehicle adapter design to meet structural launch requirements, control and thermal protection during entry and descent at Mars, landing stability, and surface operations. Analyses have been performed in each of these areas to assess and, where possible, quantify the impacts of fairing diameter selection on all aspects of a Mars mission. Several potential impacts of launch fairing diameter selection are identified in each of these areas, along with changes to system designs that result. Solutions for addressing these impacts generally result in increased systems mass and propellant needs, which can further exacerbate packaging and flight challenges. This paper

  10. Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems

    Science.gov (United States)

    Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.

    1998-01-01

    A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.

  11. High Altitude Launch for a Practical SSTO

    Science.gov (United States)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  12. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  13. Comparative life cycle assessment of disposable and reusable laryngeal mask airways.

    Science.gov (United States)

    Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi

    2012-05-01

    Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG

  14. Application of statistical distribution theory to launch-on-time for space construction logistic support

    Science.gov (United States)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  15. Trends in the commercial launch services industry

    Science.gov (United States)

    Haase, Ethan E.

    2001-02-01

    The market for space launch services has undergone significant development in the last two decades and is poised to change even further. With the introduction of new players in the market, and the development of new vehicles by existing providers, competition has increased. At the same time, customer payloads have been changing as satellites grow in size and capability. Amidst these changes, launch delays have become a concern in the industry, and launch service providers have developed different solutions to avoid delays and satisfy customer needs. This analysis discusses these trends in the launch services market and their drivers. Focus is given to the market for medium, intermediate, and heavy launch services which generally includes launches of GEO communication satellites, large government payloads, and NGSO constellations. .

  16. Microservices in Web Objects Enabled IoT Environment for Enhancing Reusability.

    Science.gov (United States)

    Jarwar, Muhammad Aslam; Kibria, Muhammad Golam; Ali, Sajjad; Chong, Ilyoung

    2018-01-26

    In the ubiquitous Internet of Things (IoT) environment, reusing objects instead of creating new one has become important in academics and industries. The situation becomes complex due to the availability of a huge number of connected IoT objects, and each individual service creates a new object instead of reusing the existing one to fulfill a requirement. A well-standard mechanism not only improves the reusability of objects but also improves service modularity and extensibility, and reduces cost. Web Objects enabled IoT environment applies the principle of reusability of objects in multiple IoT application domains through central objects repository and microservices. To reuse objects with microservices and to maintain a relationship with them, this study presents an architecture of Web of Objects platform. In the case of a similar request for an object, the already instantiated object that exists in the same or from other domain can be reused. Reuse of objects through microservices avoids duplications, and reduces time to search and instantiate them from their registries. Further, this article presents an algorithm for microservices and related objects discovery that considers the reusability of objects through the central objects repository. To support the reusability of objects, the necessary algorithm for objects matching is also presented. To realize the reusability of objects in Web Objects enabled IoT environment, a prototype has been designed and implemented based on a use case scenario. Finally, the results of the prototype have been analyzed and discussed to validate the proposed approach.

  17. Using reusable learning objects (rlos) in injection skills teaching: Evaluations from multiple user types.

    Science.gov (United States)

    Williams, Julia; O'Connor, Mórna; Windle, Richard; Wharrad, Heather J

    2015-12-01

    Clinical skills are a critical component of pre-registration nurse education in the United Kingdom, yet there is widespread concern about the clinical skills displayed by newly-qualified nurses. Novel means of supporting clinical skills education are required to address this. A package of Reusable Learning Objects (RLOs) was developed to supplement pre-registration teaching on the clinical skill of administering injection medication. RLOs are electronic resources addressing a single learning objective whose interactivity facilitates learning. This article evaluates a package of five injection RLOs across three studies: (1) questionnaires administered to pre-registration nursing students at University of Nottingham (UoN) (n=46) evaluating the RLO package as a whole; (2) individual RLOs evaluated in online questionnaires by educators and students from UoN; from other national and international institutions; and healthcare professionals (n=265); (3) qualitative evaluation of the RLO package by UoN injection skills tutors (n=6). Data from all studies were assessed for (1) access to, (2) usefulness, (3) impact and (4) integration of the RLOs. Study one found that pre-registration nursing students rate the RLO package highly across all categories, particularly underscoring the value of their self-test elements. Study two found high ratings in online assessments of individual RLOs by multiple users. The global reach is particularly encouraging here. Tutors reported insufficient levels of student-RLO access, which might be explained by the timing of their student exposure. Tutors integrate RLOs into teaching and agree on their use as teaching supplements, not substitutes for face-to-face education. This evaluation encompasses the first years postpackage release. Encouraging data on evaluative categories in this early review suggest that future evaluations are warranted to track progress as the package is adopted and evaluated more widely. Copyright © 2015 Elsevier Ltd

  18. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    Science.gov (United States)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  19. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    Science.gov (United States)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  20. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    International Nuclear Information System (INIS)

    Yoo, Haneul; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Cho, Young Tak; Chen, Xing; Hong, Seunghun; Lee, Dong Jun; Park, Jae Yeol

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species. (paper)

  1. An Automatic Indicator of the Reusability of Learning Objects Based on Metadata That Satisfies Completeness Criteria

    Science.gov (United States)

    Sanz-Rodríguez, Javier; Margaritopoulos, Merkourios; Margaritopoulos, Thomas; Dodero, Juan Manuel; Sánchez-Alonso, Salvador; Manitsaris, Athanasios

    The search for learning objects in open repositories is currently a tedious task, owing to the vast amount of resources available and the fact that most of them do not have associated ratings to help users make a choice. In order to tackle this problem, we propose a reusability indicator, which can be calculated automatically using the metadata that describes the objects, allowing us to select those materials most likely to be reused. In order for this reusability indicator to be applied, metadata records must reach a certain amount of completeness, guaranteeing that the material is adequately described. This reusability indicator is tested in two studies on the Merlot and eLera repositories, and results obtained offer evidence to support their effectiveness.

  2. Game Changing: NASA's Space Launch System and Science Mission Design

    Science.gov (United States)

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  3. Completion of Launch Director Console Project and Other Support Work

    Science.gov (United States)

    Steinrock, Joshua G.

    2018-01-01

    There were four projects that I was a part of working on during the spring semester of 2018. This included the completion of the Launch Director Console (LDC) project and the completion and submission of a Concept of Operations (ConOps) document for the Record and Playback System (RPS) at the Launch Control Center (LCC), as well as supporting the implementation of a unit in RPS known as the CDP (Communication Data Processor). Also included was my support and mentorship of a High School robotics team that is sponsored by Kennedy Space Center. The LDC project is an innovative workstation to be used by the launch director for the future Space Launch System program. I worked on the fabrication and assembly of the final console. The ConOps on RPS is a technical document for which I produced supporting information and notes. All of this was done in the support of the IT Project Management Office (IT-F). The CDP is a subsystem that will eventually be installed in and operated by RPS.

  4. Modular and Reusable Power System Design for the BRRISON Balloon Telescope

    Science.gov (United States)

    Truesdale, Nicholas A.

    High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall

  5. Reusable single-port access device shortens operative time and reduces operative costs.

    Science.gov (United States)

    Shussman, Noam; Kedar, Asaf; Elazary, Ram; Abu Gazala, Mahmoud; Rivkind, Avraham I; Mintz, Yoav

    2014-06-01

    In recent years, single-port laparoscopy (SPL) has become an attractive approach for performing surgical procedures. The pitfalls of this approach are technical and financial. Financial concerns are due to the increased cost of dedicated devices and prolonged operating room time. Our aim was to calculate the cost of SPL using a reusable port and instruments in order to evaluate the cost difference between this approach to SPL using the available disposable ports and standard laparoscopy. We performed 22 laparoscopic procedures via the SPL approach using a reusable single-port access system and reusable laparoscopic instruments. These included 17 cholecystectomies and five other procedures. Operative time, postoperative length of stay (LOS) and complications were prospectively recorded and were compared with similar data from our SPL database. Student's t test was used for statistical analysis. SPL was successfully performed in all cases. Mean operative time for cholecystectomy was 72 min (range 40-116). Postoperative LOS was not changed from our standard protocols and was 1.1 days for cholecystectomy. The postoperative course was within normal limits for all patients and perioperative morbidity was recorded. Both operative time and length of hospital stay were shorter for the 17 patients who underwent cholecystectomy using a reusable port than for the matched previous 17 SPL cholecystectomies we performed (p cost difference. Operating with a reusable port ended up with an average cost savings of US$388 compared with using disposable ports, and US$240 compared with standard laparoscopy. Single-port laparoscopic surgery is a technically challenging and expensive surgical approach. Financial concerns among others have been advocated against this approach; however, we demonstrate herein that using a reusable port and instruments reduces operative time and overall operative costs, even beyond the cost of standard laparoscopy.

  6. Developing a Toolset Supporting the Construction of Reusable Components for Embedded Control Systems

    DEFF Research Database (Denmark)

    Guan, Wei; Sierszecki, Krzysztof; Angelov, Christo K.

    2010-01-01

    Reusing software components for embedded control applications enhances product quality and reduces time to market when appropriate (formal) methodologies and supporting toolsets are available. That is why industrial companies are interested in developing trusted, in-house reusable components for ...... on open-source technology, in accordance with industrial requirements, as well as the approach used to engineer a toolset supporting component development for embedded control applications.......Reusing software components for embedded control applications enhances product quality and reduces time to market when appropriate (formal) methodologies and supporting toolsets are available. That is why industrial companies are interested in developing trusted, in-house reusable components...

  7. 14 CFR 417.111 - Launch plans.

    Science.gov (United States)

    2010-01-01

    ... classification and compatibility group as defined by part 420 of this chapter. (3) A graphic depiction of the... authorities, including the Federal Communications Commission. (g) Flight termination system electronic piece... for launch personnel control, handling of intruders, communications and coordination with launch...

  8. Pigeons' Discrimination of Michotte's Launching Effect

    Science.gov (United States)

    Young, Michael E.; Beckmann, Joshua S.; Wasserman, Edward A.

    2006-01-01

    We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal,…

  9. An Overview of Advanced Concepts for Launch

    Science.gov (United States)

    2012-02-09

    Weekly Launches” -Inspect & Rebuild. • SSTO -LOx/LH2: ms < 10% -Advanced Structure/Tank. -Aerospike. -Sensitive Design Space. Reusable... SSTO do not guarantee $ savings. 18 0 50 100 150 200 250 300 0 5000 10000 15000 20000 25000 La un ch C os t ( $ M ill io n) Payload to 185km...Higher reaction temp. •Higher specific impulse. •Less fuel. •More payload or smaller vehicle. •Fewer stages  SSTO . E/mmH = 138MJ/kg H2/mH = 3

  10. Ceremony celebrates 50 years of rocket launches

    Science.gov (United States)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  11. International Launch Vehicle Selection for Interplanetary Travel

    Science.gov (United States)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  12. Recommended Screening Practices for Launch Collision Aviodance

    Science.gov (United States)

    Beaver, Brian A.; Hametz, Mark E.; Ollivierre, Jarmaine C.; Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    The objective of this document is to assess the value of launch collision avoidance (COLA) practices and provide recommendations regarding its implementation for NASA robotic missions. The scope of this effort is limited to launch COLA screens against catalog objects that are either spacecraft or debris. No modifications to manned safety COLA practices are considered in this effort. An assessment of the value of launch COLA can be broken down into two fundamental questions: 1) Does collision during launch represent a significant risk to either the payload being launched or the space environment? 2) Can launch collision mitigation be performed in a manner that provides meaningful risk reduction at an acceptable level of operational impact? While it has been possible to piece together partial answers to these questions for some time, the first attempt to comprehensively address them is documented in reference (a), Launch COLA Operations: an Examination of Data Products, Procedures, and Thresholds, Revision A. This report is the product of an extensive study that addressed fundamental technical questions surrounding launch collision avoidance analysis and practice. The results provided in reference (a) will be cited throughout this document as these two questions are addressed. The premise of this assessment is that in order to conclude that launch COLA is a value-added activity, the answer to both of these questions must be affirmative. A "no" answer to either of these questions points toward the conclusion that launch COLA provides little or no risk mitigation benefit. The remainder of this assessment will focus on addressing these two questions.

  13. Space Launch System Vibration Analysis Support

    Science.gov (United States)

    Johnson, Katie

    2016-01-01

    The ultimate goal for my efforts during this internship was to help prepare for the Space Launch System (SLS) integrated modal test (IMT) with Rodney Rocha. In 2018, the Structural Engineering Loads and Dynamics Team will have 10 days to perform the IMT on the SLS Integrated Launch Vehicle. After that 10 day period, we will have about two months to analyze the test data and determine whether the integrated vehicle modes/frequencies are adequate for launching the vehicle. Because of the time constraints, NASA must have newly developed post-test analysis methods proven well and with technical confidence before testing. NASA civil servants along with help from rotational interns are working with novel techniques developed and applied external to Johnson Space Center (JSC) to uncover issues in applying this technique to much larger scales than ever before. We intend to use modal decoupling methods to separate the entangled vibrations coming from the SLS and its support structure during the IMT. This new approach is still under development. The primary goal of my internship was to learn the basics of structural dynamics and physical vibrations. I was able to accomplish this by working on two experimental test set ups, the Simple Beam and TAURUS-T, and by doing some light analytical and post-processing work. Within the Simple Beam project, my role involves changing the data acquisition system, reconfiguration of the test set up, transducer calibration, data collection, data file recovery, and post-processing analysis. Within the TAURUS-T project, my duties included cataloging and removing the 30+ triaxial accelerometers, coordinating the removal of the structure from the current rolling cart to a sturdy billet for further testing, preparing the accelerometers for remounting, accurately calibrating, mounting, and mapping of all accelerometer channels, and some testing. Hammer and shaker tests will be performed to easily visualize mode shapes at low frequencies. Short

  14. Design for Safety - The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  15. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    Science.gov (United States)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  16. Air-Breathing Launch Vehicle Technology Being Developed

    Science.gov (United States)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  17. Magnetic Launch Assist System Demonstration Test

    Science.gov (United States)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  18. Tabletop Experimental Track for Magnetic Launch Assist

    Science.gov (United States)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  19. Facility arrangements and the environmental performance of disposable and reusable cups

    NARCIS (Netherlands)

    Potting, José; Harst-Wintraecken, van der Eugenie

    2015-01-01

    Purpose: This paper integrates two complementary life cycle assessment (LCA) studies with the aim to advice facility managers on the sustainable use of cups, either disposable or reusable. Study 1 compares three disposable cups, i.e., made from fossil-based polystyrene (PS), biobased and

  20. Sound absorption of low-temperature reusable surface insulation candidate materials

    Science.gov (United States)

    Johnston, J. D.

    1974-01-01

    Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.

  1. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    Science.gov (United States)

    Tawie, R.; Lee, H. K.

    2011-08-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.

  2. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    International Nuclear Information System (INIS)

    Tawie, R; Lee, H K

    2011-01-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials

  3. Nano-Fe 3 O 4 /O 2 : Green, Magnetic and Reusable Catalytic ...

    African Journals Online (AJOL)

    , efficient, heterogeneous and reusable catalytic system for the synthesis of benzimidazoles via the reactions of o-phenylenediamine (1 eq) with aryl aldehydes (1 eq) in excellentyields (85–97 %) and short reaction times (30–100 min) with a ...

  4. A Diagnostic Approach to Increase Reusable Dinnerware Selection in a Cafeteria

    Science.gov (United States)

    Manuel, Jennifer C.; Sunseri, Mary Anne; Olson, Ryan; Scolari, Miranda

    2007-01-01

    The current project tested a diagnostic approach to selecting interventions to increase patron selection of reusable dinnerware in a cafeteria. An assessment survey, completed by a sample of 43 patrons, suggested that the primary causes of wasteful behavior were (a) environmental arrangement of dinnerware options and (b) competing motivational…

  5. Simple and reusable fibre-to-chip interconnect with adjustable coupling eficiency

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Parriaux, Olivier M.; Kley, Ernst-Bernhard

    1997-01-01

    A simple, efficient and reusable fiber-to-chip interconnect is presented. The interconnect is based on a V-groove (wet- chemically etched) in silicon, combined with a loose-mode Si3N4-channel waveguide. The loose-mode waveguide is adiabatically tapered to the integrated optical (sensor) circuitry.

  6. Examining the Use of Web-Based Reusable Learning Objects by Animal and Veterinary Nursing Students

    Science.gov (United States)

    Chapman-Waterhouse, Emily; Silva-Fletcher, Ayona; Whittlestone, Kim David

    2016-01-01

    This intervention study examined the interaction of animal and veterinary nursing students with reusable learning objects (RLO) in the context of preparing for summative assessment. Data was collected from 199 undergraduates using quantitative and qualitative methods. Students accessed RLO via personal devices in order to reinforce taught…

  7. Silica Sulfuric Acid: An Eco-Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Bahareh Sadeghi

    2013-01-01

    Full Text Available Silica sulfuric acid (SiO2-OSO3H as an eco-friendly, readily available, and reusable catalyst is applied to benzimidazole derivatives synthesis under reflux in ethanol. The procedure is very simple and the products are isolated with an easy workup in good-to-excellent yields.

  8. Experiences with Reusable E-Learning Objects: From Theory to Practice.

    Science.gov (United States)

    Muzio, Jeanette A.; Heins, Tanya; Mundell, Roger

    2002-01-01

    Explains reusable electronic learning objects (ELOs) that are stored in a database and discusses the practical application of creating and reusing ELOs at Royal Roads University (Canada). Highlights include ELOs and the instructional design of online courses; and examples of using templates to develop interactive ELOs. (Author/LRW)

  9. Comment on 'Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers'

    International Nuclear Information System (INIS)

    Gao Fei; Guo Fenzhuo; Wen Qiaoyan; Zhu Fuchen

    2005-01-01

    In a recent paper [S. Bagherinezhad and V. Karimipour, Phys. Rev. A 67, 044302 (2003)], a quantum secret sharing protocol based on reusable Greenberger-Horne-Zeilinger states was proposed. However, in this Comment, it is shown that this protocol is insecure if Eve employs a special strategy to attack

  10. Launch Processing System. [for Space Shuttle

    Science.gov (United States)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  11. Diagram of Saturn V Launch Vehicle

    Science.gov (United States)

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  12. A Comparison of Propulsion Concepts for SSTO Reusable Launchers

    Science.gov (United States)

    Varvill, R.; Bond, A.

    This paper discusses the relevant selection criteria for a single stage to orbit (SSTO) propulsion system and then reviews the characteristics of the typical engine types proposed for this role against these criteria. The engine types considered include Hydrogen/Oxygen (H2/O2) rockets, Scramjets, Turbojets, Turborockets and Liquid Air Cycle Engines. In the authors opinion none of the above engines are able to meet all the necessary criteria for an SSTO propulsion system simultaneously. However by selecting appropriate features from each it is possible to synthesise a new class of engines which are specifically optimised for the SSTO role. The resulting engines employ precooling of the airstream and a high internal pressure ratio to enable a relatively conventional high pressure rocket combustion chamber to be utilised in both airbreathing and rocket modes. This results in a significant mass saving with installation advantages which by careful design of the cycle thermodynamics enables the full potential of airbreathing to be realised. The SABRE engine which powers the SKYLON launch vehicle is an example of one of these so called `Precooled hybrid airbreathing rocket engines' and the concep- tual reasoning which leads to its main design parameters are described in the paper.

  13. Clinical outcomes and costs of reusable and single-use flexible ureterorenoscopes: a prospective cohort study.

    Science.gov (United States)

    Mager, R; Kurosch, M; Höfner, T; Frees, S; Haferkamp, A; Neisius, A

    2018-01-22

    The purpose of this study is to analyze clinical outcomes and costs of single-use flexible ureterorenoscopes in comparison with reusable flexible ureterorenoscopes in a tertiary referral center. Prospectively, 68 flexible ureterorenoscopies utilizing reusable (Flex-X2S, Flex-X C , Karl Storz) and 68 applying single-use flexible ureterorenoscopes (LithoVue, Boston Scientific) were collected. Clinical outcome parameters such as overall success rate, complication rates according to Clavien-Dindo, operation time and radiation exposure time were measured. Cost analysis was based on purchase costs and recurrent costs for repair and reprocessing divided by number of procedures. In each group 68 procedures were available for evaluation. In 91% of reusable and 88% of single-use ureterorenoscopies stone disease was treated with a mean stone burden of 101 ± 226 and 90 ± 244 mm 2 and lower pole involvement in 47 and 41%, respectively (p > 0.05). Comparing clinical outcomes of reusable vs. single-use instruments revealed no significant difference for overall success rates (81 vs. 87%), stone-free rates (82 vs. 85%), operation time (76.2 ± 46.8 vs. 76.8 ± 40.2 min), radiation exposure time (3.83 ± 3.15 vs. 3.93 ± 4.43 min) and complication rates (7 vs. 17%) (p > 0.05). A wide range of repair and purchase costs resulted in total to $1212-$1743 per procedure for reusable ureterorenoscopy whereas price of single-use ureterorenoscopy was $1300-$3180 per procedure. The current work provided evidence for equal clinical effectiveness of reusable and single-use flexible ureterorenoscopes. Partially overlapping ranges of costs for single-use and reusable scopes stress the importance to precisely know the expenses and caseload when negotiating purchase prices, repair prices and warranty conditions.

  14. Approximate Pressure Distribution in an Accelerating Launch-Vehicle Fuel Tank

    Science.gov (United States)

    Nemeth, Michael P.

    2010-01-01

    A detailed derivation of the equations governing the pressure in a generic liquid-fuel launch vehicle tank subjected to uniformly accelerated motion is presented. The equations obtained are then for the Space Shuttle Superlightweight Liquid-Oxygen Tank at approximately 70 seconds into flight. This generic derivation is applicable to any fuel tank in the form of a surface of revolution and should be useful in the design of future launch vehicles

  15. Microservices in Web Objects Enabled IoT Environment for Enhancing Reusability

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Jarwar

    2018-01-01

    Full Text Available In the ubiquitous Internet of Things (IoT environment, reusing objects instead of creating new one has become important in academics and industries. The situation becomes complex due to the availability of a huge number of connected IoT objects, and each individual service creates a new object instead of reusing the existing one to fulfill a requirement. A well-standard mechanism not only improves the reusability of objects but also improves service modularity and extensibility, and reduces cost. Web Objects enabled IoT environment applies the principle of reusability of objects in multiple IoT application domains through central objects repository and microservices. To reuse objects with microservices and to maintain a relationship with them, this study presents an architecture of Web of Objects platform. In the case of a similar request for an object, the already instantiated object that exists in the same or from other domain can be reused. Reuse of objects through microservices avoids duplications, and reduces time to search and instantiate them from their registries. Further, this article presents an algorithm for microservices and related objects discovery that considers the reusability of objects through the central objects repository. To support the reusability of objects, the necessary algorithm for objects matching is also presented. To realize the reusability of objects in Web Objects enabled IoT environment, a prototype has been designed and implemented based on a use case scenario. Finally, the results of the prototype have been analyzed and discussed to validate the proposed approach.

  16. Visits Service Launches New Seminar Series

    CERN Multimedia

    2001-01-01

    The CERN Visits Service is launching a new series of seminars for guides, and they are open to everyone. The series kicks off next week with a talk by Konrad Elsener on the CERN neutrinos to Gran Sasso, CNGS, project.

  17. Air Launch from a Towed Glider

    Data.gov (United States)

    National Aeronautics and Space Administration — This research effort is exploring the concept of launching a rocket from a glider that is towed by an aircraft. The idea is to build a relatively inexpensive...

  18. The Expendable Launch Vehicle Commercialization Act

    Science.gov (United States)

    The Department of Transportation will serve as the lead agency in the transfer of Expendable Launch Vehicles (ELV) to the private sector. The roles of the FAA, Coast Guard and materials Transportation Bureau were discussed.

  19. Minimum Cost Nanosatellite Launch System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Delta Velocity Corporation proposes the development of a very low cost, highly responsive nanosat launch system. We propose to develop an integrated propulsion...

  20. Carbon Nanotube Infused Launch Vehicle Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — For the past 5 years Orbital ATK has been investing in, prototyping, and testing carbon nanotube infused composite structures to evaluate their impact on launch...

  1. Launching PPARC's five year strategy programme

    CERN Document Server

    2003-01-01

    "Over one hundred delegates from Parliament, Whitehall and Industry attended a reception on Tuesday night (25 November) to mark the launch the Particle Physics and Astronomy Research Council's (PPARC) Five Year Plan" (1 page).

  2. STS-114: Discovery Launch Readiness Press Conference

    Science.gov (United States)

    2005-01-01

    Michael Griffin, NASA Administrator; Wayne Hale, Space Shuttle Deputy Program Manager; Mike Wetmore, Director of Shuttle Processing; and 1st Lieutenant Mindy Chavez, Launch Weather Officer-United States Air Force 45th Weather Squadron are in attendance for this STS-114 Discovery launch readiness press conference. The discussion begins with Wayne Hale bringing to the table a low level sensor device for everyone to view. He talks in detail about all of the extensive tests that were performed on these sensors and the completion of these ambient tests. Chavez presents her weather forecast for the launch day of July 26th 2005. Michael Griffin and Wayne Hale answer questions from the news media pertaining to the sensors and launch readiness. The video ends with footage of Pilot Jim Kelly and Commander Eileen Collins conducting test flights in a Shuttle Training Aircraft (STA) that simulates Space Shuttle landing.

  3. National Launch System comparative economic analysis

    Science.gov (United States)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  4. Metric Tracking of Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it...

  5. Tyura Tam Space Launch Facility, Kazakhstan, CIS

    Science.gov (United States)

    1992-01-01

    Located in Kazakhstan on the Syr Darya River, the Tyura Tam Cosmodrome has been the launch site for 72 cosmonaut crews. The landing runway of the Buran space shuttle can be seen in the left center. Further to the right, near the center is the launch site for the Soyuz. The mission control center is located 1,300 miles away near Moscow. In the lower right, is the city of Leninsk, seen as a dark region next to the river.

  6. Former astronaut Armstrong witnesses STS-83 launch

    Science.gov (United States)

    1997-01-01

    Apollo l1 Commander Neil A. Armstrong and his wife, Carol, were among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 at the Banana Creek VIP Viewing Site at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission.

  7. Progress Towards a 2012 Landsat Launch

    Science.gov (United States)

    Irons, Jim; Sabelhaus, Phil; Masek, Jeff; Cook, Bruce; Dabney, Phil; Loveland, Tom

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is on schedule for a December 2012 launch date. The mission is being managed by an interagency partnership between NASA and the U.S. Geological Survey (USGS). NASA leads the development and launch of the satellite observatory while leads ground system development. USGS will assume responsibility for operating the satellite and for collecting, archiving, and distributing the LDCM data following launch. When launched the satellite will carry two sensors into orbit. The Operational Land Imager (OLI) will collect data for nine shortwave spectral bands with a spatial resolution of 30 m (with a 15 m panchromatic band). The Thermal Infrared Sensor (TIRS) will coincidently collect data for two thermal infrared bands with a spatial resolution of 100 m. The OLI is fully assembled and tested and has been shipped by it?s manufacturer, Ball Aerospace and Technology Corporation, to the Orbital Sciences Corporation (Orbital) facility where it is being integrated onto the LDCM spacecraft. Pre-launch testing indicates that OLI will meet all performance specification with margin. TIRS is in development at the NASA Goddard Space Flight Center (GSFC) and is in final testing before shipping to the Orbital facility in January, 2012. The ground data processing system is in development at the USGS Earth Resources Observation and Science (EROS) Center. The presentation will describe the LDCM satellite system, provide the status of system development, and present prelaunch performance data for OLI and TIRS. The USGS has committed to renaming the satellite as Landsat 8 following launch.

  8. Cost analysis of single-use (Ambu® aScope™) and reusable bronchoscopes in the ICU.

    Science.gov (United States)

    Perbet, S; Blanquet, M; Mourgues, C; Delmas, J; Bertran, S; Longère, B; Boïko-Alaux, V; Chennell, P; Bazin, J-E; Constantin, J-M

    2017-12-01

    Flexible optical bronchoscopes are essential for management of airways in ICU, but the conventional reusable flexible scopes have three major drawbacks: high cost of repairs, need for decontamination, and possible transmission of infectious agents. The main objective of this study was to measure the cost of bronchoalveolar lavage (BAL) and percutaneous tracheostomy (PT) using reusable bronchoscopes and single-use bronchoscopes in an ICU of an university hospital. The secondary objective was to compare the satisfaction of healthcare professionals with reusable and single-use bronchoscopes. The study was performed between August 2009 and July 2014 in a 16-bed ICU. All BAL and PT procedures were performed by experienced healthcare professionals. Cost analysis was performed considering ICU and hospital organization. Healthcare professional satisfaction with single-use and reusable scopes was determined based on eight factors. Sensitivity analysis was performed by applying discount rates (0, 3, and 5%) and by simulation of six situations based on different assumptions. At a discount rate of 3%, the costs per BAL for the two reusable scopes were 188.86€ (scope 1) and 185.94€ (scope 2), and the costs per PT for the reusable scope 1 and scope 2 and single-use scopes were 1613.84€, 410.24€, and 204.49€, respectively. The cost per procedure for the reusable scopes depended on the number of procedures performed, maintenance costs, and decontamination costs. Healthcare professionals were more satisfied with the third-generation single-use Ambu ® aScope™. The cost per procedure for the single-use scope was not superior to that for reusable scopes. The choice of single-use or reusable bronchoscopes in an ICU should consider the frequency of procedures and the number of bronchoscopes needed.

  9. Launch vehicle design and GNC sizing with ASTOS

    Science.gov (United States)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2018-03-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  10. NASP - Enabling new space launch options

    Science.gov (United States)

    Froning, David; Gaubatz, William; Mathews, George

    1990-10-01

    Successful NASP developments in the United States are bringing about the possibility of effective, fully reusable vehicles for transport of people and cargo between earth and space. These developments include: extension of airbreathing propulsion to a much higher speed; densification of propellants for greater energy per unit volume of mass; structures with much greater strength-to-weight at high temperatures; computational advancements that enable more optimal design and integration of airframes, engines and controls; and advances in avionics, robotics, artificial intelligence and automation that enable accomplishment of earth-to-orbit (ETO) operations with much less manpower support and cost. This paper describes the relative magnitude of improvement that these developments may provide.

  11. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  12. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  13. Achieving a Launch on Demand Capability

    Science.gov (United States)

    Greenberg, Joel S.

    2002-01-01

    The ability to place payloads [satellites] into orbit as and when required, often referred to as launch on demand, continues to be an elusive and yet largely unfulfilled goal. But what is the value of achieving launch on demand [LOD], and what metrics are appropriate? Achievement of a desired level of LOD capability must consider transportation system thruput, alternative transportation systems that comprise the transportation architecture, transportation demand, reliability and failure recovery characteristics of the alternatives, schedule guarantees, launch delays, payload integration schedules, procurement policies, and other factors. Measures of LOD capability should relate to the objective of the transportation architecture: the placement of payloads into orbit as and when required. Launch on demand capability must be defined in probabilistic terms such as the probability of not incurring a delay in excess of T when it is determined that it is necessary to place a payload into orbit. Three specific aspects of launch on demand are considered: [1] the ability to recover from adversity [i.e., a launch failure] and to keep up with the steady-state demand for placing satellites into orbit [this has been referred to as operability and resiliency], [2] the ability to respond to the requirement to launch a satellite when the need arises unexpectedly either because of an unexpected [random] on-orbit satellite failure that requires replacement or because of the sudden recognition of an unanticipated requirement, and [3] the ability to recover from adversity [i.e., a launch failure] during the placement of a constellation into orbit. The objective of this paper is to outline a formal approach for analyzing alternative transportation architectures in terms of their ability to provide a LOD capability. The economic aspect of LOD is developed by establishing a relationship between scheduling and the elimination of on-orbit spares while achieving the desired level of on

  14. Low-Cost Launch Systems for the Dual-Launch Concept

    National Research Council Canada - National Science Library

    Pearson, Jerone; Zukauskas, Wally; Weeks, Thomas; Cass, Stein; Stytz, Martin

    2000-01-01

    .... Performing fewer engine tests, designing structures with lower structural margins, parallel processing, eliminating payload clean room requirements and extensive testing before launch, horizontal...

  15. Space Launch System Ascent Flight Control Design

    Science.gov (United States)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  16. Quality function deployment in launch operations

    Science.gov (United States)

    Portanova, P. L.; Tomei, E. J., Jr.

    1990-11-01

    The goal of the Advanced Launch System (ALS) is a more efficient launch capability that provides a highly reliable and operable system at substantially lower cost than current launch systems. Total Quality Management (TQM) principles are being emphasized throughout the ALS program. A continuous improvement philosophy is directed toward satisfying users' and customer's requirements in terms of quality, performance, schedule, and cost. Quality Function Deployment (QFD) is interpreted as the voice of the customer (or user), and it is an important planning tool in translating these requirements throughout the whole process of design, development, manufacture, and operations. This report explores the application of QFD methodology to launch operations, including the modification and addition of events (operations planning) in the engineering development cycle, and presents an informal status of study results to date. QFD is a technique for systematically analyzing the customer's (Space Command) perceptions of what constitutes a highly reliable and operable system and functionally breaking down those attributes to identify the critical characteristics that determine an efficient launch system capability. In applying the principle of QFD, a series of matrices or charts are developed with emphasis on the one commonly known as the House of Quality (because of its roof-like format), which identifies and translates the most critical information.

  17. Reusable Electronics and Adaptable Communication as Implemented in the Odin Modular Robot

    DEFF Research Database (Denmark)

    Garcia, Ricardo Franco Mendoza; Lyder, Andreas; Christensen, David Johan

    2009-01-01

    This paper describes the electronics and communication system of Odin, a novel heterogeneous modular robot made of links and joints. The electronics is divided into two printed circuit boards: a General board with reusable components and a Specific board with non-reusable components. While...... electrical signals. The implementations of actuator and power links show that splitting the electronics into General and Specific boards allows rapid development of different types of modules, and an analysis of performance indicates that the communication system is simple, fast and flexible....... As the electronic design reuses approx. 50% of components between two different types of modules, we find it convenient for heterogeneous modular robots where production costs demand a small set of parts. In addition, as the features of the communication system are desirable in modular robots, we think...

  18. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  19. Reusable Areas of Clinically Used Ventilators Carry Low Numbers of Aerobic Bacteria

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Gonzalez

    2014-12-01

    Full Text Available Ventilator associated pneumonia (VAP remains a serious problem for critically ill patients. We swabbed nine reusable areas on 20 clinically-used ventilators from a VA Hospital shortly after they had been removed from patients and identified bacterial isolates. No bacteria were isolated from most of the samples and of the samples that did grow bacteria, the majority of those had fewer than 10 colonies. The bacteria that were isolated were primarily non-pathogenic Gram-positive skin flora. Of the 20 ventilators swabbed, only one cultured bacteria associated with nosocomial infections: methicillin-resistant S.aureus. The most commonly contaminated areas were those most likely to be touched by healthcare professionals: the power button and the screen. The areas in closest proximity to the patients, the inspiratory and expiratory ports were the least often contaminated areas. Overall, very few bacteria were transferred to the reusable areas of the ventilators following clinical use.

  20. Reusable Areas of Clinically Used Ventilators Carry Low Numbers of Aerobic Bacteria

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Gonzalez

    2014-10-01

    Full Text Available Ventilator associated pneumonia (VAP remains a serious problem for critically ill patients. We swabbed nine reusable areas on 20 clinically-used ventilators from a VA Hospital shortly after they had been removed from patients and identified bacterial isolates. No bacteria were isolated from most of the samples and of the samples that did grow bacteria, the majority of those had fewer than 10 colonies. The bacteria that were isolated were primarily non-pathogenic Gram-positive skin flora. Of the 20 ventilators swabbed, only one cultured bacteria associated with nosocomial infections: methicillin-resistant S.aureus. The most commonly contaminated areas were those most likely to be touched by healthcare professionals: the power button and the screen. The areas in closest proximity to the patients, the inspiratory and expiratory ports were the least often contaminated areas. Overall, very few bacteria were transferred to the reusable areas of the ventilators following clinical use.

  1. Reusability Performance of Zinc Oxide Nanoparticles for Photocatalytic Degradation of POME

    Science.gov (United States)

    Zarifah Zainuri, Nur; Hanis Hayati Hairom, Nur; Abu Bakar Sidik, Dilaelyana; Misdan, Nurasyikin; Yusof, Norhaniza; Wahab Mohammad, Abdul

    2018-03-01

    Performance and reusability of different zinc oxide nanoparticles (ZnO-PVP and ZnO-PEG) for photocatalytic degradation of palm-mill oil effluent (POME) has been studied. The nanoparticles properties were characterised with fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM results show that ZnO-PEG nanoparticles exhibit the smaller size than ZnO-PVP with less agglomeration. It was found that ZnO-PEG shows better effectiveness than ZnO-PVP in reducing turbidity, colour and increasing the dissolved oxygen (DO). By using two types of reusability methods: (a) oven drying (b) hot water rinsing, the oven drying method portrayed the most efficient route for POME treatment. This research would be a solution to the palm oil industry for photocatalyst recovering as well as reduction of the chemical usage in order to meet the development of advanced and greener technologies.

  2. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    Directory of Open Access Journals (Sweden)

    Héctor Herrero

    2017-05-01

    Full Text Available This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  3. Space Shuttle Atlantis is on Launch Pad 39B

    Science.gov (United States)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis arrives on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11- day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.

  4. Sentinel-1A - Launching the first satellite and launching the operational Copernicus programme

    Science.gov (United States)

    Aschbacher, Josef; Milagro Perez, Maria Pilar

    2014-05-01

    The first Copernicus satellite, Sentinel-1A, is prepared for launch in April 2014. It will provide continuous, systematic and highly reliable radar images of the Earth. Sentinel-1B will follow around 18 months later to increase observation frequency and establish an operational system. Sentinel-1 is designed to work in a pre-programmed conflict-free operation mode ensuring the reliability required by operational services and creating a consistent long-term data archive for applications based on long time series. This mission will ensure the continuation and improvement of SAR operational services and applications addressing primarily medium- to high-resolution applications through a main mode of operation that features both a wide swath (250 km) and high geometric (5 × 20 m) and radiometric resolution, allowing imaging of global landmasses, coastal zones, sea ice, polar areas, and shipping routes at high resolution. The Sentinel-1 main operational mode (Interferometric Wide Swath) will allow to have a complete coverage of the Earth in 6 days in the operational configuration when the two Sentinel-1 spacecraft will be in orbit simultaneously. High priority areas like Europe, Canada and some shipping routes will be covered almost daily. This high global observation frequency is unprecedented and cannot be reached with any other current radar mission. Envisat, for example, which was the 'workhorse' in this domain up to April 2012, reached global coverage every 35 days. Sentinel-1 data products will be made available systematically and free of charge to all users including institutional users, the general public, scientific and commercial users. The transition of the Copernicus programme from the development to operational phase will take place at about the same time when the first Sentinel-1 satellite will be launched. During the operational phase, funding of the programme will come from the European Union Multiannual Financial Framework (MFF) for the years 2014

  5. Data as a service a framework for providing reusable enterprise data services

    CERN Document Server

    Sarkar, Pushpak

    2015-01-01

    Data as a Service shows how organizations can leverage "data as a service" by providing real-life case studies on the various and innovative architectures and related patterns. Comprehensive approach to introducing data as a service in any organization. A re-usable and flexible SOA based architecture framework. Roadmap to introduce 'big data as a service' for potential clients. Presents a thorough description of each component in the DaaS reference architecture so readers can implement solutions.

  6. Humidifiers for oxygen therapy: what risk for reusable and disposable devices?

    Science.gov (United States)

    La Fauci, V; Costa, G B; Facciolà, A; Conti, A; Riso, R; Squeri, R

    2017-06-01

    Nosocomial pneumonia accounts for the vast majority of healthcare-associated infections (HAI). Although numerous medical devices have been discussed as potential vehicles for microorganisms, very little is known about the role played by oxygen humidifiers as potential sources of nosocomial pathogens. The purpose of this research was to evaluate the safety of the reuse of humidifiers by analysing the rate of microbial contamination in reusable and disposable oxygen humidifiers used during therapy, and then discuss their potential role in the transmission of respiratory pathogens. Water samples from reusable and disposable oxygen humidifiers were collected from different wards of the University Hospital of Messina, Italy, where nosocomial pneumonia has a higher incidence rate due to the "critical" clinical conditions of inpatients. In particular, we monitored the Internal Medicine and Pulmonology wards for the medical area; the General Surgery and Thoracic and Cardiovascular Surgery wards for the surgical area and the Intensive Care Unit and Neonatal Intensive Care Unit for the emergency area. The samples were always collected after a period of 5 days from initial use for both types of humidifiers. Samples were processed using standard bacteriological techniques and microbial colonies were identified using manual and automated methods. High rates of microbial contamination were observed in samples from reusable oxygen humidifiers employed in medical (83%), surgical (77%) and emergency (50%) areas. The most relevant pathogens were Pseudomonas aeruginosa, amongst the Gram-negative bacteria, and Staphylococcus aureus, amongst the Gram-positive bacteria. Other pathogens were detected in lower percentage. The disposable oxygen humidifier samples showed no contamination. This research presents evidence of the high rate and type of microbial contamination of reusable humidifiers employed for oxygen therapy. These devices may thus be involved in the transmission of potential

  7. Developing Reusable and Reconfigurable Real-Time Software using Aspects and Components

    OpenAIRE

    Tešanović, Aleksandra

    2006-01-01

    Our main focus in this thesis is on providing guidelines, methods, and tools for design, configuration, and analysis of configurable and reusable real-time software, developed using a combination of aspect-oriented and component-based software development. Specifically, we define a reconfigurable real-time component model (RTCOM) that describes how a real-time component, supporting aspects and enforcing information hiding, could efficiently be designed and implemented. In this context, we out...

  8. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    International Nuclear Information System (INIS)

    Sabourin, D; Snakenborg, D; Dufva, M

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observation. The interconnection block method is scalable, flexible and supports high interconnection density. The average pressure limit of the interconnection block was near 5.5 bar and all individual results were well above the 2 bar threshold considered applicable to most microfluidic applications

  9. U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report

    Science.gov (United States)

    1996-01-01

    U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...

  10. Soyuz Spacecraft Transported to Launch Pad

    Science.gov (United States)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  11. Control of the launch of attosecond pulses

    International Nuclear Information System (INIS)

    Cao Wei; Lu Peixiang; Lan Pengfei; Wang Xinlin; Li Yuhua

    2007-01-01

    We propose an approach to steer the launch of attosecond (as) pulses with a high precision. We numerically demonstrate that by adding a weak second-harmonic (SH) field to the fundamental beam the ionization and recollision process of the electron will be perturbed, which can induce a variation of the emission time of high harmonics. Through modifying the relative intensity of the SH and fundamental fields, the launch of as pulses can be manipulated with a resolution less than 40 as. This will show significant potential for ultrafast optics

  12. The Standard Deviation of Launch Vehicle Environments

    Science.gov (United States)

    Yunis, Isam

    2005-01-01

    Statistical analysis is used in the development of the launch vehicle environments of acoustics, vibrations, and shock. The standard deviation of these environments is critical to accurate statistical extrema. However, often very little data exists to define the standard deviation and it is better to use a typical standard deviation than one derived from a few measurements. This paper uses Space Shuttle and expendable launch vehicle flight data to define a typical standard deviation for acoustics and vibrations. The results suggest that 3dB is a conservative and reasonable standard deviation for the source environment and the payload environment.

  13. Autonomous system for launch vehicle range safety

    Science.gov (United States)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  14. Launch Pad Escape System Design (Human Spaceflight)

    Science.gov (United States)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  15. Materials in NASA's Space Launch System: The Stuff Dreams are Made of

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  16. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection.

    Science.gov (United States)

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Jesse, Katrin; von Baum, Heike; Ostermeyer, Christiane

    2014-01-21

    Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice.

  17. Sustaining Human Presence on Mars Using ISRU and a Reusable Lander

    Science.gov (United States)

    Arney, Dale C.; Jones, Christopher A.; Klovstad, Jordan J.; Komar, D.R.; Earle, Kevin; Moses, Robert; Shyface, Hilary R.

    2015-01-01

    This paper presents an analysis of the impact of ISRU (In-Site Resource Utilization), reusability, and automation on sustaining a human presence on Mars, requiring a transition from Earth dependence to Earth independence. The study analyzes the surface and transportation architectures and compared campaigns that revealed the importance of ISRU and reusability. A reusable Mars lander, Hercules, eliminates the need to deliver a new descent and ascent stage with each cargo and crew delivery to Mars, reducing the mass delivered from Earth. As part of an evolvable transportation architecture, this investment is key to enabling continuous human presence on Mars. The extensive use of ISRU reduces the logistics supply chain from Earth in order to support population growth at Mars. Reliable and autonomous systems, in conjunction with robotics, are required to enable ISRU architectures as systems must operate and maintain themselves while the crew is not present. A comparison of Mars campaigns is presented to show the impact of adding these investments and their ability to contribute to sustaining a human presence on Mars.

  18. NASA rocket launches student project into space

    OpenAIRE

    Crumbley, Liz

    2005-01-01

    A project that began in 2002 will culminate at sunrise on Tuesday, March 15, when a team of Virginia Tech engineering students watch a payload section they designed lift off aboard a sounding rocket from a launch pad at NASA's Wallops Island Flight Facility and travel 59 miles into space.

  19. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv; Self, Timothy A.

    2007-01-01

    The Ares launch vehicles team, managed by the Ares Projects Office (APO) at NASA Marshall Space Flight Center, has completed the Ares I Crew Launch Vehicle System Requirements Review and System Definition Review and early design work for the Ares V Cargo Launch Vehicle. This paper provides examples of how Lean Manufacturing, Kaizen events, and Six Sigma practices are helping APO deliver a new space transportation capability on time and within budget, while still meeting stringent technical requirements. For example, Lean philosophies have been applied to numerous process definition efforts and existing process improvement activities, including the Ares I-X test flight Certificate of Flight Readiness (CoFR) process, risk management process, and review board organization and processes. Ares executives learned Lean practices firsthand, making the team "smart buyers" during proposal reviews and instilling the team with a sense of what is meant by "value-added" activities. Since the goal of the APO is to field launch vehicles at a reasonable cost and on an ambitious schedule, adopting Lean philosophies and practices will be crucial to the Ares Project's long-term SUCCESS.

  20. Commercial launch systems: A risky investment?

    Science.gov (United States)

    Dupnick, Edwin; Skratt, John

    1996-03-01

    A myriad of evolutionary paths connect the current state of government-dominated space launch operations to true commercial access to space. Every potential path requires the investment of private capital sufficient to fund the commercial venture with a perceived risk/return ratio acceptable to the investors. What is the private sector willing to invest? Does government participation reduce financial risk? How viable is a commercial launch system without government participation and support? We examine the interplay between various forms of government participation in commercial launch system development, alternative launch system designs, life cycle cost estimates, and typical industry risk aversion levels. The boundaries of this n-dimensional envelope are examined with an ECON-developed business financial model which provides for the parametric assessment and interaction of SSTO design variables (including various operational scenarios with financial variables including debt/equity assumptions, and commercial enterprise burden rates on various functions. We overlay this structure with observations from previous ECON research which characterize financial risk aversion levels for selected industrial sectors in terms of acceptable initial lump-sum investments, cumulative investments, probability of failure, payback periods, and ROI. The financial model allows the construction of parametric tradeoffs based on ranges of variables which can be said to actually encompass the ``true'' cost of operations and determine what level of ``true'' costs can be tolerated by private capitalization.

  1. SMAP Post-launch Field Campaign Planning

    Science.gov (United States)

    The SMAP post-launch Cal/Val activities are intended both to assess the quality of the mission products and to support analyses that lead to their improvement. A suite of complementary methodologies will be employed that will result in a robust global assessment. Much of the work will occur in the C...

  2. Landsat Data Continuity Mission - Launch Fever

    Science.gov (United States)

    Irons, James R.; Loveland, Thomas R.; Markham, Brian L.; Masek, Jeffrey G.; Cook, Bruce; Dwyer, John L.

    2012-01-01

    The year 2013 will be an exciting period for those that study the Earth land surface from space, particularly those that observe and characterize land cover, land use, and the change of cover and use over time. Two new satellite observatories will be launched next year that will enhance capabilities for observing the global land surface. The United States plans to launch the Landsat Data Continuity Mission (LDCM) in January. That event will be followed later in the year by the European Space Agency (ESA) launch of the first Sentinel 2 satellite. Considered together, the two satellites will increase the frequency of opportunities for viewing the land surface at a scale where human impact and influence can be differentiated from natural change. Data from the two satellites will provide images for similar spectral bands and for comparable spatial resolutions with rigorous attention to calibration that will facilitate cross comparisons. This presentation will provide an overview of the LDCM satellite system and report its readiness for the January launch.

  3. Lunar landing and launch facilities and operations

    Science.gov (United States)

    1988-01-01

    A preliminary design of a lunar landing and launch facility for a Phase 3 lunar base is formulated. A single multipurpose vehicle for the lunar module is assumed. Three traffic levels are envisioned: 6, 12, and 24 landings/launches per year. The facility is broken down into nine major design items. A conceptual description of each of these items is included. Preliminary sizes, capacities, and/or other relevant design data for some of these items are obtained. A quonset hut tent-like structure constructed of aluminum rods and aluminized mylar panels is proposed. This structure is used to provide a constant thermal environment for the lunar modules. A structural design and thermal analysis is presented. Two independent designs for a bridge crane to unload/load heavy cargo from the lunar module are included. Preliminary investigations into cryogenic propellant storage and handling, landing/launch guidance and control, and lunar module maintenance requirements are performed. Also, an initial study into advanced concepts for application to Phase 4 or 5 lunar bases has been completed in a report on capturing, condensing, and recycling the exhaust plume from a lunar launch.

  4. Launch and Recovery System Literature Review

    Science.gov (United States)

    2010-12-01

    water. Goldie [21] suggests a sled or cart recovery system for use with UAV’s on the Littoral Combatant Ship (LCS) and other small deck navy ships...21. Goldie , J., “A Recovery System for Unmanned Aerial Vehicles (UAVs) Aboard LCS and other Small-Deck Navy Ships,” ASNE Launch and Recovery of

  5. Air loads on solar panels during launch

    NARCIS (Netherlands)

    Beltman, W.M.; van der Hoogt, Peter; Spiering, R.M.E.J.; Tijdeman, H.

    1996-01-01

    The dynamical behaviour of solar panels during launch is significantly affected by the thin layers of air trapped between the panels. For narrow gaps the air manifests itself not only as a considerable added mass, but its viscosity can result in a substantial amount of damping. A model has been

  6. Launching a world-class joint venture.

    Science.gov (United States)

    Bamford, James; Ernst, David; Fubini, David G

    2004-02-01

    More than 5,000 joint ventures, and many more contractual alliances, have been launched worldwide in the past five years. Companies are realizing that JVs and alliances can be lucrative vehicles for developing new products, moving into new markets, and increasing revenues. The problem is, the success rate for JVs and alliances is on a par with that for mergers and acquisitions--which is to say not very good. The authors, all McKinsey consultants, argue that JV success remains elusive for most companies because they don't pay enough attention to launch planning and execution. Most companies are highly disciplined about integrating the companies they target through M&A, but they rarely commit sufficient resources to launching similarly sized joint ventures or alliances. As a result, the parent companies experience strategic conflicts, governance gridlock, and missed operational synergies. Often, they walk away from the deal. The launch phase begins with the parent companies' signing of a memorandum of understanding and continues through the first 100 days of the JV or alliance's operation. During this period, it's critical for the parents to convene a team dedicated to exposing inherent tensions early. Specifically, the launch team must tackle four basic challenges. First, build and maintain strategic alignment across the separate corporate entities, each of which has its own goals, market pressures, and shareholders. Second, create a shared governance system for the two parent companies. Third, manage the economic interdependencies between the corporate parents and the JV. And fourth, build a cohesive, high-performing organization (the JV or alliance)--not a simple task, since most managers come from, will want to return to, and may even hold simultaneous positions in the parent companies. Using real-world examples, the authors offer their suggestions for meeting these challenges.

  7. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    Science.gov (United States)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  8. Using the iBook in medical education and healthcare settings--the iBook as a reusable learning object; a report of the author's experience using iBooks Author software.

    Science.gov (United States)

    Payne, Karl Fb; Goodson, Alexander Mc; Tahim, Arpan; Wharrad, Heather J; Fan, Kathleen

    2012-12-01

    The recently launched iBooks 2 from Apple has created a new genre of 'interactive multimedia eBook'. This article aims to dscribe the benefit of the iBook in a medical education and healthcare setting. We discuss the attributes of an iBook as compared with the requirements of the conventional web-based Reusable Learning Object. The structure and user interface within an iBook is highlighted, and the iBook-creating software iBooks Author is discussed in detail. A report of personal experience developing and distributing an iBook for junior trainees in oral and maxillofacial surgery is provided, with discussion of the limitations of this approach and the need for further evidence-based studies.

  9. Management Challenges of Launching Multiple Payloads for Multiple Customers

    OpenAIRE

    Callen, Dave

    1999-01-01

    Orbital has provided launch services for multiple satellites as a means to provide greater economy for access to space. These include satellites from NASA, 000, commercial companies, universities, and foreign governments. While satellite customers view shared launches as a means to achieve reduced launch costs, this approach adds many complexities that a traditional launch service provider does not have to address for a dedicated launch. This paper will discuss some of the challenges associat...

  10. EUROLAUNCH - a cooperation between DLR, German Aerospace Center and SSC, Swedish Space Corporation in sounding rocket launches

    Science.gov (United States)

    Kemi, S.; Turner, P.; Norberg, O.

    Sounding rocket and balloon launches have been conducted since more than 30 years at ESRANGE - the European Sounding Rocket Launching Range of SSC, the Swedish Space Corporation of Kiruna in North-Sweden. MORABA - the Mobile Rocket Base of DLR German Aerospace Center at München-Oberpfaffenhofen, Germany, has planned and implemented sounding rocket and balloon launches on occasions throughout the globe during more than 30 years. An evolutionary step of sounding rocket launches is undertaken with the creation of EuroLaunch. EuroLaunch has recently been formed by SSC, the Swedish Space Corporation, and DLR, the German Aerospace Center. With EuroLaunch the long-lasting co-operation of the two complementary technical centers ESRANGE and MORABA is being enhanced and intensified, and this co-operation may also be the start of a future European Network of Center for sounding rockets. The comprehensive competence within the scope of the Network of Centers in Europa will be presented. The consolidation of competencies and work distribution among the partners shall be detailed. The managerial structure of EuroLaunch and the embedding in the mother organizations SSC and DLR respectively will be explained. The newly organized EuroLaunch is expected to provide improved services to experimenters in Europe and worldwide with improved competence, capability and efficiency.

  11. Hail Disrometer Array for Launch Systems Support

    Science.gov (United States)

    Lane, John E.; Sharp, David W.; Kasparis, Takis C.; Doesken, Nolan J.

    2008-01-01

    Prior to launch, the space shuttle might be described as a very large thermos bottle containing substantial quantities of cryogenic fuels. Because thermal insulation is a critical design requirement, the external wall of the launch vehicle fuel tank is covered with an insulating foam layer. This foam is fragile and can be damaged by very minor impacts, such as that from small- to medium-size hail, which may go unnoticed. In May 1999, hail damage to the top of the External Tank (ET) of STS-96 required a rollback from the launch pad to the Vehicle Assembly Building (VAB) for repair of the insulating foam. Because of the potential for hail damage to the ET while exposed to the weather, a vigilant hail sentry system using impact transducers was developed as a hail damage warning system and to record and quantify hail events. The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA and University Affiliated Spaceport Technology Development Contract (USTDC) Physics Labs, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain. Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University were and continue to be active in testing duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle (see Figure 1), was deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusual hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a

  12. The design of a kerosene turbopump for a South African commercial launch vehicle

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2012-08-01

    Full Text Available A South African turbopump design capability would be critical to any future indigenous commercial launch capacity. This paper describes the initial work being done at the University of KwaZulu-Natal (UKZN) to design a kerosene turbopump for a...

  13. System Engineering Processes at Kennedy Space Center for Development of the SLS and Orion Launch Systems

    Science.gov (United States)

    Schafer, Eric J.

    2012-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems developed at the Kennedy Space Center Engineering Directorate follow a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Paper describes this process and gives an example of where the process has been applied.

  14. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  15. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    different methods is provided. Recent advancements and applications of SOFI systems on future launch vehicles and spacecraft are also addressed.

  16. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    methods is provided. Recent advancements and applications of SOFI systems on future launch vehicles and spacecraft are also addressed.

  17. Schoolgirls' experience and appraisal of menstrual absorbents in rural Uganda: a cross-sectional evaluation of reusable sanitary pads.

    Science.gov (United States)

    Hennegan, Julie; Dolan, Catherine; Wu, Maryalice; Scott, Linda; Montgomery, Paul

    2016-12-07

    Governments, multinational organisations, and charities have commenced the distribution of sanitary products to address current deficits in girls' menstrual management. The few effectiveness studies conducted have focused on health and education outcomes but have failed to provide quantitative assessment of girls' preferences, experiences of absorbents, and comfort. Objectives of the study were, first, to quantitatively describe girls' experiences with, and ratings of reliability and acceptability of different menstrual absorbents. Second, to compare ratings of freely-provided reusable pads (AFRIpads) to other existing methods of menstrual management. Finally, to assess differences in self-reported freedom of activity during menses according to menstrual absorbent. Cross-sectional, secondary analysis of data from the final survey of a controlled trial of reusable sanitary padand puberty education provision was undertaken. Participants were 205 menstruating schoolgirls from eight schools in rural Uganda. 72 girls who reported using the intervention-provided reusable pads were compared to those using existing improvised methods (predominately new or old cloth). Schoolgirls using reusable pads provided significantly higher ratings of perceived absorbent reliability across activities, less difficulties changing absorbents, and less disgust with cleaning absorbents. There were no significant differences in reports of outside garment soiling (OR 1.00 95%CI 0.51-1.99), or odour (0.84 95%CI 0.40-1.74) during the last menstrual period. When girls were asked if menstruation caused them to miss daily activities there were no differences between those using reusable pads and those using other existing methods. However, when asked about activities avoided during menstruation, those using reusable pads participated less in physical sports, working in the field, fetching water, and cooking. Reusable pads were rated favourably. This translated into some benefits for self

  18. The worldwide growth of launch vehicle technology and services : Quarterly Launch Report : special report

    Science.gov (United States)

    1997-01-01

    This report will discuss primarily those vehicles being introduced by the newly emerging space nations. India, Israel, and Brazil are all trying to turn launch vehicle assets into profitable businesses. In this effort, they have found the technologic...

  19. NASA's Launch Propulsion Systems Technology Roadmap

    Science.gov (United States)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  20. A perfect launch viewed across Banana Creek

    Science.gov (United States)

    2000-01-01

    Billows of smoke and steam surround Space Shuttle Discovery as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  1. Resonant mode controllers for launch vehicle applications

    Science.gov (United States)

    Schreiner, Ken E.; Roth, Mary Ellen

    1992-01-01

    Electro-mechanical actuator (EMA) systems are currently being investigated for the National Launch System (NLS) as a replacement for hydraulic actuators due to the large amount of manpower and support hardware required to maintain the hydraulic systems. EMA systems in weight sensitive applications, such as launch vehicles, have been limited to around 5 hp due to system size, controller efficiency, thermal management, and battery size. Presented here are design and test data for an EMA system that competes favorably in weight and is superior in maintainability to the hydraulic system. An EMA system uses dc power provided by a high energy density bipolar lithium thionyl chloride battery, with power conversion performed by low loss resonant topologies, and a high efficiency induction motor controlled with a high performance field oriented controller to drive a linear actuator.

  2. National Security Space Launch at a Crossroads

    Science.gov (United States)

    2016-05-13

    appropriations measure expire (i.e., at the start of FY2017). Rocket Engines: Goods or Services37 In the Commercial Space Act of 1998 (CSA),38...procured from commercial sources or whether the government may independently develop and manufacture rocket engines. The resolution to this question may...Space Act of 1998 ...) the DoD procures commercial launch services rather than rockets or engines used in those services.”43 Notably, the view

  3. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv, N.; Self, Timothy A.

    2008-01-01

    This viewgraph presentation describes test strategies and lean philisophies and practices that are applied to Ares Launch Vehicles. The topics include: 1) Testing strategy; 2) Lean Practices in Ares I-X; 3) Lean Practices Applied to Ares I-X Schedule; 4) Lean Event Results; 5) Lean, Six Sigma, and Kaizen Practices in the Ares Projects Office; 6) Lean and Kaizen Success Stories; and 7) Ares Six Sigma Practices.

  4. Textile materials trading center formally launched online

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Textile materials trading center was formally launched online in Wuxi City,Jiangsu Province. This is the first third-party electronic trading platform for spot trading in China textile materials professional market. The project will strive to build the most influential textile materials trading center of East China,the whole country and even the whole world China textile materials trading center will be

  5. Nuclear safety review requirements for launch approval

    International Nuclear Information System (INIS)

    Sholtis, J.A. Jr.; Winchester, R.O.

    1992-01-01

    Use of nuclear power systems in space requires approval which is preceded by extensive safety analysis and review. This careful study allows an informed risk-benefit decision at the highest level of our government. This paper describes the process as it has historically been applied to U.S. isotopic power systems. The Ulysses mission, launched in October 1990, is used to illustrate the process. Expected variations to deal with reactor-power systems are explained

  6. NASA's Space Launch System Takes Shape

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  7. Launching platforms for user-generated content

    OpenAIRE

    Batista, Guilherme Luís Caroço

    2015-01-01

    Field lab: Entrepreneurial and innovative ventures This paper intends to discuss and absorb the Best Practices employed by successful User- Generated Content (UGC)1 platforms and constitute a guide on how to launch a platform without having a cyclical lack of content and users. Research shows that companies have resorted to integration with mature UGC platforms, and providing content by themselves, in an initial state. I conclude that integration possibilities should be explore...

  8. Testing Strategies and Methodologies for the Max Launch Abort System

    Science.gov (United States)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  9. Space Launch System Complex Decision-Making Process

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman,Stuart

    2012-01-01

    The Space Shuttle program has ended and elements of the Constellation Program have either been cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. From Fall 2010 until Spring 2011, an SLS decision-making framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper focuses on the various steps and methods of this process (rather than specific data) that allowed for competing concepts to be compared across a variety of launch vehicle metrics in support of the successful completion of the SLS Mission Concept Review (MCR) milestone.

  10. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  11. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    Science.gov (United States)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  12. Globe hosts launch of new processor

    CERN Multimedia

    2006-01-01

    Launch of the quadecore processor chip at the Globe. On 14 November, in a series of major media events around the world, the chip-maker Intel launched its new 'quadcore' processor. For the regions of Europe, the Middle East and Africa, the day-long launch event took place in CERN's Globe of Science and Innovation, with over 30 journalists in attendance, coming from as far away as Johannesburg and Dubai. CERN was a significant choice for the event: the first tests of this new generation of processor in Europe had been made at CERN over the preceding months, as part of CERN openlab, a research partnership with leading IT companies such as Intel, HP and Oracle. The event also provided the opportunity for the journalists to visit ATLAS and the CERN Computer Centre. The strategy of putting multiple processor cores on the same chip, which has been pursued by Intel and other chip-makers in the last few years, represents an important departure from the more traditional improvements in the sheer speed of such chips. ...

  13. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  14. Modelling informally collected quantities of bulky waste and reusable items in Austria

    International Nuclear Information System (INIS)

    Ramusch, R.; Pertl, A.; Scherhaufer, S.; Schmied, E.; Obersteiner, G.

    2015-01-01

    Highlights: • Informal collectors from Hungary collect bulky waste and reusable items in Austria. • Two methodologies were applied to estimate the informally collected quantities. • Both approaches lead to an estimation of roughly 100,000 t p.a. informally collected. • The formal Austrian system collects 72 kg/cap/yr of bulky waste, WEE & scrap metal. • Informal collection amounts to approx. 12 kg/cap/yr. - Abstract: Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector

  15. Software Atom: An approach towards software components structuring to improve reusability

    Directory of Open Access Journals (Sweden)

    Muhammad Hussain Mughal

    2017-12-01

    Full Text Available Diversity of application domain compelled to design sustainable classification scheme for significantly amassing software repository. The atomic reusable software components are articulated to improve the software component reusability in volatile industry.  Numerous approaches of software classification have been proposed over past decades. Each approach has some limitations related to coupling and cohesion. In this paper, we proposed a novel approach by constituting the software based on radical functionalities to improve software reusability. We analyze the element's semantics in Periodic Table used in chemistry to design our classification approach, and present this approach using tree-based classification to curtail software repository search space complexity and further refined based on semantic search techniques. We developed a Global unique Identifier (GUID for indexing the functions and related components. We have exploited the correlation between chemistry element and software elements to simulate one to one mapping between them. Our approach is inspired from sustainability chemical periodic table. We have proposed software periodic table (SPT representing atomic software components extracted from real application software. Based on SPT classified repository tree parsing & extraction to enable the user to program their software by customizing the ingredients of software requirements. The classified repository of software ingredients assist user to exploits their requirements to software engineer and enable requirement engineer to develop a rapid large-scale prototype with great essence. Furthermore, we would predict the usability of the categorized repository based on feedback of users.  The continuous evolution of that proposed repository will be fine-tuned based on utilization and SPT would be gradually optimized by ant colony optimization techniques. Succinctly would provoke automating the software development process.

  16. Modelling informally collected quantities of bulky waste and reusable items in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Ramusch, R., E-mail: roland.ramusch@boku.ac.at; Pertl, A.; Scherhaufer, S.; Schmied, E.; Obersteiner, G.

    2015-10-15

    Highlights: • Informal collectors from Hungary collect bulky waste and reusable items in Austria. • Two methodologies were applied to estimate the informally collected quantities. • Both approaches lead to an estimation of roughly 100,000 t p.a. informally collected. • The formal Austrian system collects 72 kg/cap/yr of bulky waste, WEE & scrap metal. • Informal collection amounts to approx. 12 kg/cap/yr. - Abstract: Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector.

  17. CryoSat: ready to launch (again)

    Science.gov (United States)

    Francis, R.; Wingham, D.; Cullen, R.

    2009-12-01

    Over the last ten years the relationship between climate change and the cryosphere has become increasingly important. Evidence of change in the polar regions is widespread, and the subject of public discussion. During this same ten years ESA has been preparing its CryoSat mission, specifically designed to provide measurements to determine the overall change in the mass balance of all of the ice caps and of change in the volume of sea-ice (rather than simply its extent). In fact the mission was ready for launch in October 2005, but a failure in the launch vehicle led to a loss of the satellite some 6 minutes after launch. The determination to rebuild the satellite and complete the mission was widespread in the relevant scientific, industrial and political entities, and the decision to redirect financial resources to the rebuild was sealed with a scientific report confirming that the mission was even more important in 2005 than at its original selection in 1999. The evolution of the cryosphere since then has emphasised that conclusion. In order to make a meaningful measurement of the secular change of the surface legation of ice caps and the thickness of sea-ice, the accuracy required has been specified as about half of the variation expected due to natural variability, over reasonable scales for the surfaces concerned. The selected technique is radar altimetry. Previous altimeter missions have pioneered the method: the CryoSat instrument has been modified to provide the enhanced capabilities needed to significantly extend the spatial coverage of these earlier missions. Thus the radar includes a synthetic aperture mode which enables the along-track resolution to be improved to about 250 m. This will will allow detection of leads in sea-ice which are narrower than those detected hitherto, so that operation deeper into pack-ice can be achieved with a consequent reduction in errors due to omission. Altimetry over the steep edges of ice caps is hampered by the irregular

  18. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  19. Environmental considerations in the selection of isolation gowns: A life cycle assessment of reusable and disposable alternatives.

    Science.gov (United States)

    Vozzola, Eric; Overcash, Michael; Griffing, Evan

    2018-04-11

    Isolation gowns serve a critical role in infection control by protecting healthcare workers, visitors, and patients from the transfer of microorganisms and body fluids. The decision of whether to use a reusable or disposable garment system is a selection process based on factors including sustainability, barrier effectiveness, cost, and comfort. Environmental sustainability is increasingly being used in the decision-making process. Life cycle assessment is the most comprehensive and widely used tool used to evaluate environmental performance. The environmental impacts of market-representative reusable and disposable isolation gown systems were compared using standard life cycle assessment procedures. The basis of comparison was 1,000 isolation gown uses in a healthcare setting. The scope included the manufacture, use, and end-of-life stages of the gown systems. At the healthcare facility, compared to the disposable gown system, the reusable gown system showed a 28% reduction in energy consumption, a 30% reduction in greenhouse gas emissions, a 41% reduction in blue water consumption, and a 93% reduction in solid waste generation. Selecting reusable garment systems may result in significant environmental benefits compared to selecting disposable garment systems. By selecting reusable isolation gowns, healthcare facilities can add these quantitative benefits directly to their sustainability scorecards. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Scalable and reusable emulator for evaluating the performance of SS7 networks

    Science.gov (United States)

    Lazar, Aurel A.; Tseng, Kent H.; Lim, Koon Seng; Choe, Winston

    1994-04-01

    A scalable and reusable emulator was designed and implemented for studying the behavior of SS7 networks. The emulator design was largely based on public domain software. It was developed on top of an environment supported by PVM, the Parallel Virtual Machine, and managed by OSIMIS-the OSI Management Information Service platform. The emulator runs on top of a commercially available ATM LAN interconnecting engineering workstations. As a case study for evaluating the emulator, the behavior of the Singapore National SS7 Network under fault and unbalanced loading conditions was investigated.

  1. Reusable frame greenhouse that saves money and erection time and reduces waste generation

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Ott, D.T.

    1977-01-01

    An improved greenhouse design has been proposed and tested for use at the Hanford Engineering Development Laboratory for containing radioactive materials during decontamination, maintenance, and remodeling operations in nuclear facilities. The advantages of the greenhouse design include a reusable frame that is free standing and self-supporting and a plastic enclosure that is easily erected and attached to the frame. Manpower requirements appear to be about half that of the conventional greenhouse, the construction costs are approximately 20 to 40% lower, and the waste generated from the greenhouse is approximately 60% lower

  2. DOOCS patterns, reusable software components for FPGA based RF GUN field controller

    International Nuclear Information System (INIS)

    Pucyk, P.

    2006-01-01

    Modern accelerator technology combines software and hardware solutions to provide distributed, high efficiency digital systems for High Energy Physics experiments. Providing flexible, maintainable software is crucial for ensuring high availability of the whole system. In order to fulfil all these requirements, appropriate design and development techniques have to be used. Software patterns are well known solution for common programming issues, providing proven development paradigms, which can help to avoid many design issues. DOOCS patterns introduces new concepts of reusable software components for control system algorithms development and implementation in DOOCS framework. Chosen patterns have been described and usage examples have been presented in this paper. (orig.)

  3. DOOCS patterns, reusable software components for FPGA based RF GUN field controller

    Energy Technology Data Exchange (ETDEWEB)

    Pucyk, P. [Institute of Electronic Systems, Warsaw (Poland)

    2006-07-01

    Modern accelerator technology combines software and hardware solutions to provide distributed, high efficiency digital systems for High Energy Physics experiments. Providing flexible, maintainable software is crucial for ensuring high availability of the whole system. In order to fulfil all these requirements, appropriate design and development techniques have to be used. Software patterns are well known solution for common programming issues, providing proven development paradigms, which can help to avoid many design issues. DOOCS patterns introduces new concepts of reusable software components for control system algorithms development and implementation in DOOCS framework. Chosen patterns have been described and usage examples have been presented in this paper. (orig.)

  4. Low cost fabrication and assembly process for re-usable 3D polydimethylsiloxane (PDMS) microfluidic networks

    CSIR Research Space (South Africa)

    Land, K

    2011-09-01

    Full Text Available and assembly process for re-usable 3D polydimethylsiloxane (PDMS) microfluidic networks Kevin J. Land, Mesuli B. Mbanjwa, Klariska Govindasamy, and Jan G. Korvink Citation: Biomicrofluidics 5, 036502 (2011); doi: 10.1063/1.3641859 View online: http... polydimethylsiloxane (PDMS) microfluidic networks Kevin J. Land,1,2,a) Mesuli B. Mbanjwa,1,3 Klariska Govindasamy,1 and Jan G. Korvink2,4 1Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa 2University of Freiburg, Department...

  5. Designing a reusable system based on nanodiamonds for biochemical determination of urea.

    Science.gov (United States)

    Ronzhin, N O; Baron, A V; Bondar, V S; Gitelson, I I

    2015-01-01

    A reusable system including urease covalently bound to the surface of modified nanodiamonds (MNDs) has been developed for the multiple determination of urea. The immobilized enzyme exhibits functional activity and catalyzes the hydrolysis of urea to yield ammonia. The presence of ammonia is confirmed by the formation of a colored product after the addition of chemical reagents. It was shown that the MNDs-urease complex can function in a wide range of temperatures and pH as well as in deionized water. The complex provides a linear yield of the product at low analyte concentrations and allows the multiple determination of urea in vitro.

  6. Ares Launch Vehicles Overview: Space Access Society

    Science.gov (United States)

    Cook, Steve

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  7. Northern Eurasia Future Initiative (NEFI)

    DEFF Research Database (Denmark)

    Groisman, Pavel; Shugart, Herman; Kicklighter, David

    2017-01-01

    . The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better...

  8. Launch marketing communications planning guide : case: service industry franchise chain X

    OpenAIRE

    Kivinummi, Rosanna

    2016-01-01

    The thesis content and scope is built around the needs of the franchise chain X which had over 50 stores in Finland and a few stores in Europe and North America in late 2015. The internalization of the chain created new challenges for the launch marketing planning. The launch activities play always a crucial role in the future success of a store but are even more important for a franchise chain as the success or failure of one shop affects the image of the whole chain. The target of the thesi...

  9. NASA Crew and Cargo Launch Vehicle Development Approach Builds on Lessons from Past and Present Missions

    Science.gov (United States)

    Dumbacher, Daniel L.

    2006-01-01

    The United States (US) Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with new space transportation systems for missions to the Moon, Mars, and beyond. The Crew Exploration Vehicle (CEV) that the new human-rated Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station (ISS) Toward the end of the next decade, a heavy-lift Cargo Launch Vehicle (CaLV) will deliver the Earth Departure Stage (EDS) carrying the Lunar Surface Access Module (LSAM) to low-Earth orbit (LEO), where it will rendezvous with the CEV launched on the CLV and return astronauts to the Moon for the first time in over 30 years. This paper outlines how NASA is building these new space transportation systems on a foundation of legacy technical and management knowledge, using extensive experience gained from past and ongoing launch vehicle programs to maximize its design and development approach, with the objective of reducing total life cycle costs through operational efficiencies such as hardware commonality. For example, the CLV in-line configuration is composed of a 5-segment Reusable Solid Rocket Booster (RSRB), which is an upgrade of the current Space Shuttle 4- segment RSRB, and a new upper stage powered by the liquid oxygen/liquid hydrogen (LOX/LH2) J-2X engine, which is an evolution of the J-2 engine that powered the Apollo Program s Saturn V second and third stages in the 1960s and 1970s. The CaLV configuration consists of a propulsion system composed of two 5-segment RSRBs and a 33- foot core stage that will provide the LOX/LED needed for five commercially available RS-68 main engines. The J-2X also will power the EDS. The Exploration Launch Projects, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design

  10. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network.

    Science.gov (United States)

    Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan

    2017-07-12

    Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.

  11. Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes.

    Science.gov (United States)

    Sherman, Jodi D; Raibley, Lewis A; Eckelman, Matthew J

    2018-01-09

    Traditional medical device procurement criteria include efficacy and safety, ease of use and handling, and procurement costs. However, little information is available about life cycle environmental impacts of the production, use, and disposal of medical devices, or about costs incurred after purchase. Reusable and disposable laryngoscopes are of current interest to anesthesiologists. Facing mounting pressure to quickly meet or exceed conflicting infection prevention guidelines and oversight body recommendations, many institutions may be electively switching to single-use disposable (SUD) rigid laryngoscopes or overcleaning reusables, potentially increasing both costs and waste generation. This study provides quantitative comparisons of environmental impacts and total cost of ownership among laryngoscope options, which can aid procurement decision making to benefit facilities and public health. We describe cradle-to-grave life cycle assessment (LCA) and life cycle costing (LCC) methods and apply these to reusable and SUD metal and plastic laryngoscope handles and tongue blade alternatives at Yale-New Haven Hospital (YNHH). The US Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) life cycle impact assessment method was used to model environmental impacts of greenhouse gases and other pollutant emissions. The SUD plastic handle generates an estimated 16-18 times more life cycle carbon dioxide equivalents (CO2-eq) than traditional low-level disinfection of the reusable steel handle. The SUD plastic tongue blade generates an estimated 5-6 times more CO2-eq than the reusable steel blade treated with high-level disinfection. SUD metal components generated much higher emissions than all alternatives. Both the SUD handle and SUD blade increased life cycle costs compared to the various reusable cleaning scenarios at YNHH. When extrapolated over 1 year (60,000 intubations), estimated costs increased

  12. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  13. Mary Tyler Moore Helps Launch NIH MedlinePlus Magazine

    Science.gov (United States)

    ... Issues Mary Tyler Moore Helps Launch NIH MedlinePlus Magazine Past Issues / Winter 2007 Table of Contents For ... Javascript on. Among those attending the NIH MedlinePlus magazine launch on Capitol Hill were (l-r) NIH ...

  14. Status of NASA's Space Launch System

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing

  15. Launching fast waves in large devices

    International Nuclear Information System (INIS)

    Jacquinot, J.; Bhatnagar, V.P.; Kaye, A.; Brown, T.

    1994-01-01

    Design features of JET A2-antennae including that of remote location of ceramic are outlined. These antennae are being installed in preparation for the new divertor phase of JET that will commence in 1994. The experience of antenna design gained at JET is carried forward to present an outline in blanket/shield design of an antenna for launching fast waves in ITER for heating and current drive. Further, a new wide band antenna the so called 'violin antenna' is presented that features high plasma coupling resistance in selected bands in the 20-85 MHz frequency range. (author)

  16. Combline antennas for launching traveling fast waves

    International Nuclear Information System (INIS)

    Moeller, C.P.; Gould, R.W.; Phelps, D.A.; Pinsker, R.I.

    1994-01-01

    The combline structure shows promise for launching traveling fast magnetosonic waves with adjustable n parallel (3 ≤ n parallel ≤ 6) for current drive. In this paper, the dispersion and damping properties of the combline antenna with and without a Faraday shield are given. The addition of a Faraday shield which eliminates the electrostatic coupling between current straps as well as between the straps and plasma offers the advantage of eliminating the need for the lumped capacitors which are otherwise required with this structure. The results of vacuum dispersion and damping measurements on a low power model antenna are also given. (author)

  17. NASA to launch second business communications satellite

    Science.gov (United States)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  18. White certificate: how to launch the system?

    International Nuclear Information System (INIS)

    2005-01-01

    White certificates are a supple and suitable economical system for the quest of diffuse energy saving. It relies on the energy distribution networks and is complementary to other existing system (fiscality, regulation, etc). It is an open system, based on a market logics in order to make energy savings where they are the less costly. This document gathers the synthesis of the conference about white certificates, held in Paris in October 2005, the presentations (transparencies) given by J. Percebois (Creden) about the French system of energy savings and by P. Guyonnet (ATEE) about the way to launch the system of white certificates. The debate with the audience is also reported. (J.S.)

  19. Launching a Two-sided Platform

    OpenAIRE

    Solheim, Magnus Tovsen; Tovsen, Ole Kristoffer Solheim

    2017-01-01

    Two-sided platforms, such as Airbnb, Uber and eBay, have all revolutionized their industries. Despite having colossal potential, they are very difficult to launch. This is due to what s referred to as network effects, which imply that the value of the platform becomes larger as more people use it. Network effects lead to a chicken-or-egg-problem , where it is difficult to convince sellers to join if there are no buyers and vice versa, in addition to the need to reach a critical mass of users...

  20. Space Shuttle Orbiter Endeavour STS-47 Launch

    Science.gov (United States)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Orbiter Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke on September 12, 1992. The primary payload for the plarned seven-day flight was the Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  1. Fabrication and Optimization of Stable, Optically Transparent, and Reusable pH-Responsive Silk Membranes

    Directory of Open Access Journals (Sweden)

    Andreas Toytziaridis

    2016-11-01

    Full Text Available The fabrication of silk-based membranes that are stable, optically transparent and reusable is yet to be achieved. To address this bottleneck we have developed a method to produce transparent chromogenic silk patches that are optically responsive to pH. The patches were produced by blending regenerated silk fibroin (RSF, Laponite RD (nano clay and the organic dyes neutral red and Thionine acetate. The Laponite RD played a central role in the patch mechanical integrity and prevention of dye leaching. The process was optimized using a factorial design to maximize the patch response to pH by UV absorbance and fluorescence emission. New patches of the optimized protocol, made from solutions containing 125 μM neutral red or 250 μM of Thionine and 15 mg/mL silk, were further tested for operational stability over several cycles of pH altering. Stability, performance, and reusability were achieved over the tested cycles. The approach could be extended to other reporting molecules or enzymes able to bind to Laponite.

  2. Modelling informally collected quantities of bulky waste and reusable items in Austria.

    Science.gov (United States)

    Ramusch, R; Pertl, A; Scherhaufer, S; Schmied, E; Obersteiner, G

    2015-10-01

    Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effective reprocessing of reusable dispensers for surface disinfection tissues – the devil is in the details

    Science.gov (United States)

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Ostermeyer, Christiane

    2014-01-01

    Background: It has recently been reported that reusable dispensers for surface disinfection tissues may be contaminated, especially with adapted Achromobacter species 3, when products based on surface-active ingredients are used. Fresh solution may quickly become recontaminated if dispensers are not processed adequately. Methods: We evaluated the abilities of six manual and three automatic processes for processing contaminated dispensers to prevent recolonisation of a freshly-prepared disinfectant solution (Mikrobac forte 0.5%). Dispensers were left at room temperature for 28 days. Samples of the disinfectant solution were taken every 7 days and assessed quantitatively for bacterial contamination. Results: All automatic procedures prevented recolonisation of the disinfectant solution when a temperature of 60–70°C was ensured for at least 5 min, with or without the addition of chemical cleaning agents. Manual procedures prevented recontamination of the disinfectant solution when rinsing with hot water or a thorough cleaning step was performed before treating all surfaces with an alcohol-based disinfectant or an oxygen-releaser. Other cleaning and disinfection procedures, including the use of an alcohol-based disinfectant, did not prevent recolonisation. Conclusions: These results indicate that not all processes are effective for processing reusable dispensers for surface-disinfectant tissues, and that a high temperature during the cleaning step or use of a biofilm-active cleaning agent are essential. PMID:24653973

  4. Effective reprocessing of reusable dispensers for surface disinfection tissues – the devil is in the details

    Directory of Open Access Journals (Sweden)

    Kampf, Günter

    2014-03-01

    Full Text Available [english] Background: It has recently been reported that reusable dispensers for surface disinfection tissues may be contaminated, especially with adapted , when products based on surface-active ingredients are used. Fresh solution may quickly become recontaminated if dispensers are not processed adequately. Methods: We evaluated the abilities of six manual and three automatic processes for processing contaminated dispensers to prevent recolonisation of a freshly-prepared disinfectant solution (Mikrobac forte 0.5%. Dispensers were left at room temperature for 28 days. Samples of the disinfectant solution were taken every 7 days and assessed quantitatively for bacterial contamination. Results: All automatic procedures prevented recolonisation of the disinfectant solution when a temperature of 60–70°C was ensured for at least 5 min, with or without the addition of chemical cleaning agents. Manual procedures prevented recontamination of the disinfectant solution when rinsing with hot water or a thorough cleaning step was performed before treating all surfaces with an alcohol-based disinfectant or an oxygen-releaser. Other cleaning and disinfection procedures, including the use of an alcohol-based disinfectant, did not prevent recolonisation.Conclusions: These results indicate that not all processes are effective for processing reusable dispensers for surface-disinfectant tissues, and that a high temperature during the cleaning step or use of a biofilm-active cleaning agent are essential.

  5. Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.

    Science.gov (United States)

    Musen, M A

    1998-01-01

    When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.

  6. Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor.

    Science.gov (United States)

    Liu, Lanhua; Zhou, Xiaohong; Lu, Yun; Shan, Didi; Xu, Bi; He, Miao; Shi, Hanchang; Qian, Yi

    2017-11-15

    The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of screening xenoestrogens. We reported an estrogen receptor (ER)-based reusable fiber biosensor for facile screening estrogenic compounds in environment. The bioassay is based on the competition of xenoestrogens with 17β-estradiol (E 2 ) for binding to the recombinant receptor of human estrogen receptor α (hERα) protein, leaving E 2 free to bind to fluorophore-labeled anti-E 2 monoclonal antibody. Unbound anti-E 2 antibody then binds to the immobilized E 2 -protein conjugate on the fiber surface, and is detected by fluorescence emission induced by evanescent field. As expected, the stronger estrogenic activity of xenoestrogen would result in the weaker fluorescent signal. Three estrogen-agonist compounds, diethylstilbestrol (DES), 4-n-nonylphenol (NP) and 4-n-octylphenol (OP), were chosen as a paradigm for validation of this assay. The rank order of estrogenic potency determined by this biosensor was DES>OP>NP, which were consistent with the published results in numerous studies. Moreover, the E 2 -protein conjugate modified optical fiber was robust enough for over 300 sensing cycles with the signal recoveries ranging from 90% to 100%. In conclusion, the biosensor is reusable, reliable, portable and amenable to on-line operation, providing a facile, efficient and economical alternative to screen potential xenoestrogens in environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. RPD: Reusable Pseudo-Id Distribution for a Secure and Privacy Preserving VANET

    Directory of Open Access Journals (Sweden)

    Sulaiman Ashraph

    2013-08-01

    Full Text Available In any VANET, security and privacy are the two fundamental issues. Obtaining efficient security in vehicular communication is essential without compromising privacy-preserving mechanisms. Designing a suitable protocol for VANET by having these two issues in mind is challenging because efficiency, unlinkablity and traceability are the three qualities having contradictions between them. In this paper, we introduce an efficient Reusable Pseudo-id Distribution (RPD scheme. The Trusted Authority (TA designating the Road Side Units (RSUs to generate n reusable pseudo ids and distribute them to the On Board Units (OBUs on request characterizes the proposed protocol. RSUs issue the aggregated hashes of all its valid pseudo-ids along with a symmetric shared key and a particular pseudo-id to each vehicle that enters into its coverage range. Through this the certificates attached to the messages can be eliminated and thus resulting in a significantly reduced packet size. The same anonymous keys can then be re-distributed by the RSUs episodically to other vehicles. We analyze the proposed protocol extensively to demonstrate its merits and efficiency.

  8. GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules

    Science.gov (United States)

    Sarrion-Perdigones, Alejandro; Falconi, Erica Elvira; Zandalinas, Sara I.; Juárez, Paloma; Fernández-del-Carmen, Asun; Granell, Antonio; Orzaez, Diego

    2011-01-01

    Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. PMID:21750718

  9. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    Science.gov (United States)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  10. NASA's Space Launch System: Deep-Space Delivery for Smallsats

    Science.gov (United States)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    distributed cooperative exploration system. Small landers will enable multi-point exploration, which is complimentary with large-scale human exploration. Once on the lunar surface, the OMOTENASHI spacecraft will observe the radiation and soil environments of the lunar surface by active radiation measurements and soil shear measurements. Following EM-1, Space Launch System will evolve to the more-powerful Block 1B configuration, which uses a new Exploration Upper Stage to increase the vehicle's LEO payload capability from 70 t to 105 t. With that transition, the Orion Stage Adapter, which will carry the secondary payloads on EM-1, will be phased out, and a new Universal Stage Adapter will be introduced, creating opportunities for flying larger secondary payloads. This paper will provide a brief status of SLS progress toward first launch; an overview of smallsat accommodations, integration, and operations on EM-1; information about the specific payloads flying on that launch; and a discussion of future accommodations and opportunities for secondary payloads on SLS for Exploration Mission-2 and beyond.

  11. Quality and safety aspects of reusable plastic food packaging materials : a European study to underpin future legislation

    NARCIS (Netherlands)

    Jetten, J.; Kruijf, N. de; Castle, L.

    1999-01-01

    The objective of this study was to develop a comprehensive package of quality assurance criteria for use by industry and regulatory authorities for ensuring the quality and safety-in-use (sensory, microbiological and chemical) of reused plastics for food packaging. The study included thermal

  12. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    Science.gov (United States)

    Bonometti, Joseph; Frame, Kyle L.; Dankanich, John W.

    2005-01-01

    Two transportation architecture changes are presented at either end of a conventional two-stage rocket flight: 1) Air launch using a large, conventional, pod hauler design (i.e., Crossbow)ans 2) Momentum exchange tether (i.e., an in-space asset like MXER). Air launch has ana analytically justified cost reduction of approx. 10%, but its intangible benefits suggest real-world operations cost reductions much higher: 1) Inherent launch safety; 2) Mission Risk Reduction; 3) Favorable payload/rocket limitations; and 4) Leveraging the aircraft for other uses (military transport, commercial cargo, public outreach activities, etc.)

  13. Popular NREL-Developed Transportation Mobile App Launches on Android

    Science.gov (United States)

    Platform | News | NREL Popular NREL-Developed Transportation Mobile App Launches on Android Platform Popular NREL-Developed Transportation Mobile App Launches on Android Platform May 23, 2017 More since the new Android version of the Alternative Fueling Station Locator App launched last week. The U.S

  14. The launch of new-look Chishango.

    Science.gov (United States)

    Chavasse, D

    2002-09-01

    PSI/Malawi is a local affiliate of the non-profit NGO, Population Services International, which operates in over 50 countries worldwide. PSI/Malawi's mission is to "improve and sustain the health of all Malawians through cost-effective social marketing of needed and affordable health products". In this context, social marketing involves using a range of media channels to create demand for branded health products which are sold at subsidised prices through a wide range of distribution outlets (e.g. wholesalers/retailers, institutions, NGOs, the workplace, etc.). Chishango is PSI/Malawi's condom brand which was launched in 1994 to provide sexually active Malawians with an affordable means of protecting themselves and their partners from HIV transmission. In 2001, research indicated that the brand needed a 'face lift' to improve its relevance to modern Malawians and therefore lead to an increase in consistent condom use resulting in a further reduction in HIV transmission. The newly packaged and positioned Chishango was launched on the 13th May 2002. The speech below was given by the Resident Director of PSI/Malawi, Dr Desmond Chavasse at the relaunch of Chishango.

  15. Next Generation Launch Technology Program Lessons Learned

    Science.gov (United States)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  16. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.

  17. Launched electrons in plasma opening switches

    International Nuclear Information System (INIS)

    Mendel, C.W. Jr.; Rochau, G.E.; Sweeney, M.A.; McDaniel, D.H.; Quintenz, J.P.; Savage, M.E.; Lindman, E.L.; Kindel, J.M.

    1989-01-01

    Plasma opening switches have provided a means to improve the characteristics of super-power pulse generators. Recent advances involving plasma control with fast and slow magnetic fields have made these switches more versatile, allowing for improved switch uniformity, triggering, and opening current levels that are set by the level of auxiliary fields. Such switches necessarily involve breaks in the translational symmetry of the transmission line geometry and therefore affect the electron flow characteristics of the line. These symmetry breaks are the result of high electric field regions caused by plasma conductors remaining in the transmission line, ion beams crossing the line, or auxilliary magnetic field regions. Symmetry breaks cause the canonical momentum of the electrons to change, thereby moving them away from the cathode. Additional electrons are pulled from the cathode into the magnetically insulated flow, resulting in an excess of electron flow over that expected for the voltage and line current downstream of the switch. We call these electrons ''launched electrons''. Unless they are recaptured at the cathode or else are fed into the load and used beneficially, they cause a large power loss downstream. This paper will show examples of SuperMite and PBFA II data showing these losses, explain the tools we are using to study them, and discuss the mechanisms we will employ to mitigate the problem. The losses will be reduced primarily by reducing the amount of launched electron flow. 7 refs., 9 figs

  18. NTR-Enhanced Lunar-Base Supply using Existing Launch Fleet Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Emily Colvin; Paul G. Cummings

    2009-06-01

    During the summer of 2006, students at the Center for Space Nuclear Research sought to augment the current NASA lunar exploration architecture with a nuclear thermal rocket (NTR). An additional study investigated the possible use of an NTR with existing launch vehicles to provide 21 metric tons of supplies to the lunar surface in support of a lunar outpost. Current cost estimates show that the complete mission cost for an NTR-enhanced assembly of Delta-IV and Atlas V vehicles may cost 47-86% more than the estimated Ares V launch cost of $1.5B; however, development costs for the current NASA architecture have not been assessed. The additional cost of coordinating the rendezvous of four to six launch vehicles with an in-orbit assembly facility also needs more thorough analysis and review. Future trends in launch vehicle use will also significantly impact the results from this comparison. The utility of multiple launch vehicles allows for the development of a more robust and lower risk exploration architecture.

  19. NTR-Enhanced Lunar-Base Supply using Existing Launch Fleet Capabilities

    International Nuclear Information System (INIS)

    Bess, John D.; Colvin, Emily; Cummings, Paul G.

    2009-01-01

    During the summer of 2006, students at the Center for Space Nuclear Research sought to augment the current NASA lunar exploration architecture with a nuclear thermal rocket (NTR). An additional study investigated the possible use of an NTR with existing launch vehicles to provide 21 metric tons of supplies to the lunar surface in support of a lunar outpost. Current cost estimates show that the complete mission cost for an NTR-enhanced assembly of Delta-IV and Atlas V vehicles may cost 47-86% more than the estimated Ares V launch cost of $1.5B; however, development costs for the current NASA architecture have not been assessed. The additional cost of coordinating the rendezvous of four to six launch vehicles with an in-orbit assembly facility also needs more thorough analysis and review. Future trends in launch vehicle use will also significantly impact the results from this comparison. The utility of multiple launch vehicles allows for the development of a more robust and lower risk exploration architecture

  20. 76 FR 33139 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles

    Science.gov (United States)

    2011-06-08

    ... or near an electrified environment in or near a cloud. These changes will increase launch... sending the comment (or signing the comment for an association, business, labor union, etc.). You may... Confidential Business Information Do not file in the docket information that you consider to be proprietary or...

  1. NASA's Space Launch System: Affordability for Sustainability

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  2. A Shuttle Derived Vehicle launch system

    Science.gov (United States)

    Tewell, J. R.; Buell, D. N.; Ewing, E. S.

    1982-01-01

    This paper describes a Shuttle Derived Vehicle (SDV) launch system presently being studied for the NASA by Martin Marietta Aerospace which capitalizes on existing Shuttle hardware elements to provide increased accommodations for payload weight, payload volume, or both. The SDV configuration utilizes the existing solid rocket boosters, external tank and the Space Shuttle main engines but replaces the manned orbiter with an unmanned, remotely controlled cargo carrier. This cargo carrier substitution more than doubles the performance capability of the orbiter system and is realistically achievable for minimal cost. The advantages of the SDV are presented in terms of performance and economics. Based on these considerations, it is concluded that an unmanned SDV offers a most attractive complement to the present Space Transportation System.

  3. Launch of technical training courses for programmers

    CERN Multimedia

    2015-01-01

    This autumn, two new technical training courses have been launched for scientists and engineers at CERN who undertake programming tasks, particularly in C and C++. Both courses are taught by Andrzej Nowak, an expert in next-generation and cutting-edge computing technology research.   The training courses are organised in cooperation with CERN openlab and are sponsored by the CERN IT department – there is only a nominal registration fee of 50 CHF. This is an opportunity not to be missed! Computer architecture and hardware-software interaction (2 days, 26-27 October) The architecture course offers a comprehensive overview of current topics in computer architecture and their consequences for the programmer, from the basic Von Neumann schema to its modern-day expansions. Understanding hardware-software interaction allows the programmer to make better use of all features of available computer hardware and compilers. Specific architectural ...

  4. Immobilization in polyvinyl alcohol hydrogel enhances yeast storage stability and reusability of recombinant laccase-producing S-cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Herkommerová, Klára; Zemančíková, Jana; Sychrová, Hana; Antošová, Zuzana

    2018-01-01

    Roč. 40, č. 2 (2018), s. 405-411 ISSN 0141-5492 R&D Projects: GA TA ČR(CZ) TA01011461 Institutional support: RVO:67985823 Keywords : immobilization * laccase * LentiKats * polyvinyl alcohol hydrogel * reusability * storage stability * yeasts Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Industrial biotechnology Impact factor: 1.730, year: 2016

  5. Reusability of coded data in the primary care electronic medical record : A dynamic cohort study concerning cancer diagnoses

    NARCIS (Netherlands)

    Sollie, Annet; Sijmons, Rolf H.; Helsper, Charles W.; Numans, Mattijs E.

    Objectives: To assess quality and reusability of coded cancer diagnoses in routine primary care data. To identify factors that influence data quality and areas for improvement. Methods: A dynamic cohort study in a Dutch network database containing 250,000 anonymized electronic medical records (EMRs)

  6. Support interoperability and reusability of emerging forms of assessment: Some issues on integrating IMS LD with IMS QTI

    NARCIS (Netherlands)

    Miao, Yongwu; Boon, Jo; Van der Klink, Marcel; Sloep, Peter; Koper, Rob

    2009-01-01

    Miao, Y., Boon, J., Van der Klink, M., Sloep, P. B., & Koper, R. (2011). Support interoperability and reusability of emerging forms of assessment: Some issues on integrating IMS LD with IMS QTI. In F. Lazarinis, S. Green, & E. Pearson (Eds.), E-Learning Standards and Interoperability: Frameworks

  7. Zirconyl (IV Nitrate as Efficient and Reusable Solid Lewis Acid Catalyst for the Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Pratapsinha B. Gorepatil

    2013-01-01

    Full Text Available The present paper introduces a simple and efficient method for the synthesis of substituted benzimidazoles by heterocyclization of different o-phenylenediamines and substituted aromatic carboxylic acid/aldehyde in the presence of zirconyl nitrate as catalyst in ethanol under reflux, which produced excellent yield of corresponding benzimidazoles in a short reaction time with reusability of catalyst.

  8. The future bias in marketing : a longitudinal approach

    OpenAIRE

    Omland, Anne Line Holck

    2011-01-01

    This study set out to explore consumer responses to pre-launch advertising, i.e. the advertising of products prior to launch. According to the construal level theory (CLT) people’s representation of future objects and events change with temporal distance. Drawing inferences from CLT to marketing, consumers’ attraction towards forthcoming products is explained. Further, using theory on consumer judgments the effects of pre-launch advertising is explored over time. A longitudi...

  9. What do you mean you can't sterilize it? The reusable medical device matrix.

    Science.gov (United States)

    Stephens, Anne; Assang, AnnMarie

    2010-12-01

    Health Canada recommends that hospitals should have procedures in place to ensure Reusable Medical Devices (RMD) are cleaned, disinfected and sterilized according to the manufacturer's instructions. For the purpose of this paper, reusable medical devices will be referred to as RMDs and include all instrumentation and devices that the Central Processing Department (CPD) resterilizes for use in the hospital. Patient safety in surgery begins in CPD. Manufacturer recommendations for the decontamination and sterilization of surgical instrumentation are of utmost importance to Operating Room (OR) and CPD staff. With recommendations that are unclear, nonspecific or unattainable there was a need to define what it means institutionally to meet standards and provide safe patient care while continuing to support the advancement of surgical technology. The purpose of this paper is to describe the challenges faced by one multisite organization (The University Health Network) in managing the sterilization of surgical instrumentation. The development of The Guidance Matrix by the network's inter-professional Reusable Medical Device (RMD) Committee, will be discussed along with information about the elements of this tool and an illustration of how it is used. The key benefits of The Guidance Matrix, including how its use has facilitated transparent decision-making, communication and collaboration regarding sterilization issues across the sites, will be described. Sterilization processes in Central Processing Departments (CPD) include chemical indicators, dated load indicators, and tamperproof locks and filters. The lack of an indicator of sterilization can be a frustrating experience for an OR Nurse. But do we really understand the critical importance of all these indicators? The foundation of sterilizing reusable medical devices (RMDs) begins with proper processes, standards and subsequent scientific validation from the vendors. According to AORN, patient safety is vital and it

  10. UUI: Reusable Spatial Data Services in Unified User Interface at NASA GES DISC

    Science.gov (United States)

    Petrenko, Maksym; Hegde, Mahabaleshwa; Bryant, Keith; Pham, Long B.

    2016-01-01

    Unified User Interface (UUI) is a next-generation operational data access tool that has been developed at Goddard Earth Sciences Data and Information Services Center(GES DISC) to provide a simple, unified, and intuitive one-stop shop experience for the key data services available at GES DISC, including subsetting (Simple Subset Wizard -SSW), granule file search (Mirador), plotting (Giovanni), and other legacy spatial data services. UUI has been built based on a flexible infrastructure of reusable web services self-contained building blocks that can easily be plugged into spatial applications, including third-party clients or services, to easily enable new functionality as new datasets and services become available. In this presentation, we will discuss our experience in designing UUI services based on open industry standards. We will also explain how the resulting framework can be used for a rapid development, deployment, and integration of spatial data services, facilitating efficient access and dissemination of spatial data sets.

  11. A design for a reusable water-based spacecraft known as the spacecoach

    CERN Document Server

    McConnell, Brian

    2016-01-01

     Based on components already in existence, this manual details a reference design for an interplanetary spacecraft that is simple, durable, fully reusable and comprised mostly of water. Using such an accessible material leads to a spacecraft architecture that is radically simpler, safer and cheaper than conventional capsule based designs. If developed, the potential affordability of the design will substantially open all of the inner solar system to human exploration. A spacecraft that is comprised mostly of water will be much more like a living cell or a terrarium than a conventional rocket and capsule design. It will use water for many purposes before it is superheated in electric engines for propulsion, purposes which include radiation shielding, heat management, basic life support, crew consumption and comfort. The authors coined the term "spacecoaches" to describe them, as an allusion to the Prairie Schooners of the Old West, which were simple, rugged, and could live off the land.

  12. UUI: Reusable Spatial Data Services in Unified User Interface at NASA GES DISC

    Science.gov (United States)

    Petrenko, M.; Hegde, M.; Bryant, K.; Pham, L.

    2016-12-01

    Unified User Interface (UUI) is a next-generation operational data access tool that has been developed at Goddard Earth Sciences Data and Information Services Center (GES DISC) to provide a simple, unified, and intuitive one-stop shop experience for the key data services available at GES DISC, including subsetting (Simple Subset Wizard - SSW), granule file search (Mirador), plotting (Giovanni), and other legacy spatial data services. UUI has been built based on a flexible infrastructure of reusable web services - self-contained building blocks that can easily be plugged into spatial applications, including third-party clients or services, to easily enable new functionality as new datasets and services become available. In this presentation, we will discuss our experience in designing UUI services based on open industry standards. We will also explain how the resulting framework can be used for a rapid development, deployment, and integration of spatial data services, facilitating efficient access and dissemination of spatial data sets.

  13. Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance Environment

    Directory of Open Access Journals (Sweden)

    Andrea Lani

    2006-01-01

    Full Text Available Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical models and numerical methods that have arisen in the development of COOLFluiD, an environment for PDE solvers. Particular attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the application of two design patterns, Perspective and Method-Command-Strategy, that support extensibility and run-time flexibility in the implementation of physical models and generic numerical algorithms respectively.

  14. Scalable and reusable micro-bubble removal method to flatten large-area 2D materials

    Science.gov (United States)

    Pham, Phi H. Q.; Quach, Nhi V.; Li, Jinfeng; Burke, Peter J.

    2018-04-01

    Bubbles generated during electro-delamination and chemical etch during large-area two-dimensional (2D) material transfer has been shown to cause rippling, and consequently, results in tears and wrinkles in the transferred film. Here, we demonstrate a scalable and reusable method to remove surface adhered micro-bubbles by using hydrophobic surfaces modified by self-assembled monolayers (SAMs). Bubble removal allows the 2D film to flatten out and prevents the formation of defects. Electrical characterization was used to verify improved transfer quality and was confirmed by increased field-effect mobility and decreased sheet resistance. Raman spectroscopy was also used to validate enhanced electrical quality following transfer. The bubble removal method can be applied to an assortment of 2D materials using diverse hydrophobic SAM variants. Our studies can be integrated into large scale applications and will lead to improved large-area 2D electronics in general.

  15. PDBe: towards reusable data delivery infrastructure at protein data bank in Europe

    Science.gov (United States)

    Alhroub, Younes; Anyango, Stephen; Armstrong, David R; Berrisford, John M; Clark, Alice R; Conroy, Matthew J; Dana, Jose M; Gupta, Deepti; Gutmanas, Aleksandras; Haslam, Pauline; Mak, Lora; Mukhopadhyay, Abhik; Nadzirin, Nurul; Paysan-Lafosse, Typhaine; Sehnal, David; Sen, Sanchayita; Smart, Oliver S; Varadi, Mihaly; Kleywegt, Gerard J

    2018-01-01

    Abstract The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API. PMID:29126160

  16. Managing Complexity in Activity Specifications by Separation of Concerns and Reusability

    Directory of Open Access Journals (Sweden)

    Peter Forbrig

    2016-10-01

    Full Text Available The specification of activities of the different stakeholders is an important activity for software development. Currently, a lot of specification languages like task models, activity diagrams, state charts, and business specifications are used to document the results of the analysis of the domain in most projects. The paper discusses the aspect of reusability by considering generic submodels. This approach increases the quality of models. Additionally, the separation of concerns of cooperation and individual work by subject-oriented specifications is discussed. It will be demonstrated how task models can be used to support subject-oriented specification by so called team models and role models in a more precise way than S-BPM specifications. More precise restrictions on instances of roles can be specified.

  17. OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation.

    Science.gov (United States)

    Eastman, Peter; Friedrichs, Mark S; Chodera, John D; Radmer, Randall J; Bruns, Christopher M; Ku, Joy P; Beauchamp, Kyle A; Lane, Thomas J; Wang, Lee-Ping; Shukla, Diwakar; Tye, Tony; Houston, Mike; Stich, Timo; Klein, Christoph; Shirts, Michael R; Pande, Vijay S

    2013-01-08

    OpenMM is a software toolkit for performing molecular simulations on a range of high performance computing architectures. It is based on a layered architecture: the lower layers function as a reusable library that can be invoked by any application, while the upper layers form a complete environment for running molecular simulations. The library API hides all hardware-specific dependencies and optimizations from the users and developers of simulation programs: they can be run without modification on any hardware on which the API has been implemented. The current implementations of OpenMM include support for graphics processing units using the OpenCL and CUDA frameworks. In addition, OpenMM was designed to be extensible, so new hardware architectures can be accommodated and new functionality (e.g., energy terms and integrators) can be easily added.

  18. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    Science.gov (United States)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  19. A simple ligand-binding assay for thyroxine-binding globulin on reusable Sephadex columns

    International Nuclear Information System (INIS)

    Bastomsky, C.H.; Kalloo, H.; Frenkel-Leith, D.B.; McGill Univ., Montreal, Quebec

    1977-01-01

    A method for the assay of thyroxine-binding globulin on reusable Sephadex G-25 columns is described. It depends upon elution by diluted iodothyronine-free serum of protein-bound [ 125 I]thyroxine from the columns under conditions where binding to thyroxine-binding prealbumin and albumin are abolished. It is simple, rapid and precise, and permits determinations inlarge numbers of samples. Values (mg/l; mean +- S.D.) were: normals 31.6+-5.4, hyperthyroid 28.3+-4.8, hypothyroid 40.6+-7.5, oral contraceptives 40.1+-6.8, pregnant 50.3+-5.4, cirrhotics 20.7+-4.3. Concentrations were reduced in serum heated at 56degC, while the uptake of [ 125 I]triiodothyronine was increased. There was a significant negative correlation between thyroxine-binding globulin concentration and triiodothyronine uptake in the heated serum samples and in euthyroid subjects

  20. BioJS DAGViewer: A reusable JavaScript component for displaying directed graphs.

    Science.gov (United States)

    Kalderimis, Alexis; Stepan, Radek; Sullivan, Julie; Lyne, Rachel; Lyne, Michael; Micklem, Gos

    2014-01-01

    The DAGViewer BioJS component is a reusable JavaScript component made available as part of the BioJS project and intended to be used to display graphs of structured data, with a particular emphasis on Directed Acyclic Graphs (DAGs). It enables users to embed representations of graphs of data, such as ontologies or phylogenetic trees, in hyper-text documents (HTML). This component is generic, since it is capable (given the appropriate configuration) of displaying any kind of data that is organised as a graph. The features of this component which are useful for examining and filtering large and complex graphs are described. http://github.com/alexkalderimis/dag-viewer-biojs; http://github.com/biojs/biojs; http://dx.doi.org/10.5281/zenodo.8303.

  1. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    Science.gov (United States)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  2. Template-guided interstitial implants: Cs-137 reusable sources as a substitute for Ir-192

    International Nuclear Information System (INIS)

    Williamson, J.F.; Seminoff, T.

    1987-01-01

    Template-guided implantation of rigid steel or plastic guide needles for afterloading of radioactive sources is widely used in the treatment of gynecologic, rectal, and urologic malignant neoplasms. Iridium-192 is used almost universally, despite the high cost per implant, due to its short half-life and limited need for a flexible, trimmable source. A reusable afterloading system containing cesium-137 was developed. Each source has an effective active length of 6.8 cm and is encapsulated at the distal end of a 21-cm-long stainless steel tube. The sources can be afterloaded into the same plastic guide needles normally used for Ir-192 ribbons. Physical and dosimetric aspects of these sources are compared with those of Ir-192, and radiation protection and cost effectiveness are also discussed

  3. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle

    Science.gov (United States)

    Qu, Feng; Sun, Di; Zuo, Guang

    2018-06-01

    With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.

  4. A Reusable Software Copy Protection Using Hash Result and Asymetrical Encryption

    Directory of Open Access Journals (Sweden)

    Aswin Wibisurya

    2014-12-01

    Full Text Available Desktop application is one of the most popular types of application being used in computer due to the one time install simplicity and the quick accessibility from the moment the computer being turned on. Limitation of the copy and usage of desktop applications has long been an important issue to application providers. For security concerns, software copy protection is usually integrated with the application. However, developers seek to reuse the copy protection component of the software. This paper proposes an approach of reusable software copy protection which consists of a certificate validator on the client computer and a certificate generator on the server. The certificate validator integrity is protected using hashing result while all communications are encrypted using asymmetrical encryption to ensure the security of this approach.

  5. eXframe: reusable framework for storage, analysis and visualization of genomics experiments

    Directory of Open Access Journals (Sweden)

    Sinha Amit U

    2011-11-01

    Full Text Available Abstract Background Genome-wide experiments are routinely conducted to measure gene expression, DNA-protein interactions and epigenetic status. Structured metadata for these experiments is imperative for a complete understanding of experimental conditions, to enable consistent data processing and to allow retrieval, comparison, and integration of experimental results. Even though several repositories have been developed for genomics data, only a few provide annotation of samples and assays using controlled vocabularies. Moreover, many of them are tailored for a single type of technology or measurement and do not support the integration of multiple data types. Results We have developed eXframe - a reusable web-based framework for genomics experiments that provides 1 the ability to publish structured data compliant with accepted standards 2 support for multiple data types including microarrays and next generation sequencing 3 query, analysis and visualization integration tools (enabled by consistent processing of the raw data and annotation of samples and is available as open-source software. We present two case studies where this software is currently being used to build repositories of genomics experiments - one contains data from hematopoietic stem cells and another from Parkinson's disease patients. Conclusion The web-based framework eXframe offers structured annotation of experiments as well as uniform processing and storage of molecular data from microarray and next generation sequencing platforms. The framework allows users to query and integrate information across species, technologies, measurement types and experimental conditions. Our framework is reusable and freely modifiable - other groups or institutions can deploy their own custom web-based repositories based on this software. It is interoperable with the most important data formats in this domain. We hope that other groups will not only use eXframe, but also contribute their own

  6. Reusable Software and Open Data Incorporate Ecological Understanding To Optimize Agriculture and Improveme Crops.

    Science.gov (United States)

    LeBauer, D.

    2015-12-01

    Humans need a secure and sustainable food supply, and science can help. We have an opportunity to transform agriculture by combining knowledge of organisms and ecosystems to engineer ecosystems that sustainably produce food, fuel, and other services. The challenge is that the information we have. Measurements, theories, and laws found in publications, notebooks, measurements, software, and human brains are difficult to combine. We homogenize, encode, and automate the synthesis of data and mechanistic understanding in a way that links understanding at different scales and across domains. This allows extrapolation, prediction, and assessment. Reusable components allow automated construction of new knowledge that can be used to assess, predict, and optimize agro-ecosystems. Developing reusable software and open-access databases is hard, and examples will illustrate how we use the Predictive Ecosystem Analyzer (PEcAn, pecanproject.org), the Biofuel Ecophysiological Traits and Yields database (BETYdb, betydb.org), and ecophysiological crop models to predict crop yield, decide which crops to plant, and which traits can be selected for the next generation of data driven crop improvement. A next step is to automate the use of sensors mounted on robots, drones, and tractors to assess plants in the field. The TERRA Reference Phenotyping Platform (TERRA-Ref, terraref.github.io) will provide an open access database and computing platform on which researchers can use and develop tools that use sensor data to assess and manage agricultural and other terrestrial ecosystems. TERRA-Ref will adopt existing standards and develop modular software components and common interfaces, in collaboration with researchers from iPlant, NEON, AgMIP, USDA, rOpenSci, ARPA-E, many scientists and industry partners. Our goal is to advance science by enabling efficient use, reuse, exchange, and creation of knowledge.

  7. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Renu; Hong, Seongkyeol [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Jang, Jaesung, E-mail: jjang@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2015-01-01

    Highlights: • Immobilized proteins were removed using carbon dioxide aerosols. • We observed high removal efficiencies due to the aerosol treatment. • We confirmed the removal with FTIR and X-ray photoelectron spectroscopy. • This CO{sub 2} aerosol treatment did not undermine re-functionalization. • This technique is a fast and damage-free method to reuse a sensor surface. - Abstract: Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO{sub 2}) aerosols (a mixture of solid and gaseous CO{sub 2}), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL{sup −1}) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO{sub 2} aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors.

  8. Application of Ceramic Bond Coating for Reusable Melting Crucible of Metallic Fuel Slugs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Song, Hoon; Ko, Young-Mo; Park, Jeong-Yong; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ki-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel slugs of the driver fuel assembly have been fabricated by injection casting of the fuel alloys under a vacuum state or an inert atmosphere. Traditionally, metal fuel such as a U-Zr alloy system for SFR has been melted in slurry-coated graphite crucibles and cast in slurry-coated quartz tube molds to prevent melt/material interactions. Reactive coatings and porous coatings can be a source of melt contaminations, and fuel losses, respectively. Ceramic Y{sub 2}O{sub 3}, TiC, and TaC coating materials showed no penetration in the protective layer after a melt dipping test. However, the ceramic coating materials showed separations in the coating interface between the substrate and coating layer, or between the coating layer and fuel melt after the dipping test. All plasma-spray coated methods maintained a sound coating state after a dipping test with U-10wt.%Zr melt. A single coating Y{sub 2}O{sub 3}(150) layer and double coating layer of TaC(50)-Y{sub 2}O{sub 3}(100), showed a sound state or little penetration in the protective layer after a dipping test with U-10wt.%Zr-5wt.%RE melt. Injection casting experiments of U-10wt.%Zr and U-10wt.%Zr-5wt.%RE fuel slugs have been performed to investigate the feasibility of a reusable crucible of the metal fuel slugs. U–10wt.%Zr and U–10wt.%Zr–5wt.%RE fuel slugs have been soundly fabricated without significant interactions of the graphite crucibles. Thus, the ceramic plasma-spray coatings are thought to be promising candidate coating methods for a reusable graphite crucible to fabricate metal fuel slugs.

  9. Defining the Costs of Reusable Flexible Ureteroscope Reprocessing Using Time-Driven Activity-Based Costing.

    Science.gov (United States)

    Isaacson, Dylan; Ahmad, Tessnim; Metzler, Ian; Tzou, David T; Taguchi, Kazumi; Usawachintachit, Manint; Zetumer, Samuel; Sherer, Benjamin; Stoller, Marshall; Chi, Thomas

    2017-10-01

    Careful decontamination and sterilization of reusable flexible ureteroscopes used in ureterorenoscopy cases prevent the spread of infectious pathogens to patients and technicians. However, inefficient reprocessing and unavailability of ureteroscopes sent out for repair can contribute to expensive operating room (OR) delays. Time-driven activity-based costing (TDABC) was applied to describe the time and costs involved in reprocessing. Direct observation and timing were performed for all steps in reprocessing of reusable flexible ureteroscopes following operative procedures. Estimated times needed for each step by which damaged ureteroscopes identified during reprocessing are sent for repair were characterized through interviews with purchasing analyst staff. Process maps were created for reprocessing and repair detailing individual step times and their variances. Cost data for labor and disposables used were applied to calculate per minute and average step costs. Ten ureteroscopes were followed through reprocessing. Process mapping for ureteroscope reprocessing averaged 229.0 ± 74.4 minutes, whereas sending a ureteroscope for repair required an estimated 143 minutes per repair. Most steps demonstrated low variance between timed observations. Ureteroscope drying was the longest and highest variance step at 126.5 ± 55.7 minutes and was highly dependent on manual air flushing through the ureteroscope working channel and ureteroscope positioning in the drying cabinet. Total costs for reprocessing totaled $96.13 per episode, including the cost of labor and disposable items. Utilizing TDABC delineates the full spectrum of costs associated with ureteroscope reprocessing and identifies areas for process improvement to drive value-based care. At our institution, ureteroscope drying was one clearly identified target area. Implementing training in ureteroscope drying technique could save up to 2 hours per reprocessing event, potentially preventing expensive OR delays.

  10. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya; Kyoungjin An, Alicia; Guo, Jiaxin; Lee, Eui-Jong; Usman Farid, Muhammad; Jeong, Sanghyun

    2016-01-01

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  11. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya

    2016-12-05

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  12. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors

    International Nuclear Information System (INIS)

    Singh, Renu; Hong, Seongkyeol; Jang, Jaesung

    2015-01-01

    Highlights: • Immobilized proteins were removed using carbon dioxide aerosols. • We observed high removal efficiencies due to the aerosol treatment. • We confirmed the removal with FTIR and X-ray photoelectron spectroscopy. • This CO 2 aerosol treatment did not undermine re-functionalization. • This technique is a fast and damage-free method to reuse a sensor surface. - Abstract: Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO 2 ) aerosols (a mixture of solid and gaseous CO 2 ), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL −1 ) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO 2 aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors

  13. Cost comparison of re-usable and single-use fibrescopes in a large English teaching hospital.

    Science.gov (United States)

    McCahon, R A; Whynes, D K

    2015-06-01

    A number of studies in the U.S.A. and mainland Europe have described the costs of fibreoptic tracheal intubation. However, no such data from the UK appear available. We performed a cost assessment of fibreoptic intubation, using re-usable (various devices from Olympus, Acutronic and Karl Storz) and single-use (Ambu aScope) fibrescopes, at the Queens Medical Centre, Nottingham, U.K., between 1 January 2009 and 31 March 2014. The total annual cost of fibreoptic intubation with re-usable fibrescopes was £46,385. Based on 141 fibreoptic intubations per year, this equated to £329 per use, an average dominated by repair/maintenance costs (43%) and capital depreciation costs (42%). In comparison, the total annual cost of using single-use fibrescopes for the same work would have been around £200 per use. The analysis enabled us to develop a generic model, wherein we were able to describe the relationship between total cost of use vs number of uses for a fibrescope. An 'isopleth' was identified for this relationship: a line that joined all the points where the cost of re-usable vs single-use fibrescopes was equal. It appears cheaper to use single-use fibrescopes at up to 200 fibreoptic intubations per year (a range commensurate with normal practice) even when the repair rate for re-usable fibrescopes is low. Any centre, knowing its fibrescope use and repair rate, can plot its data similarly to help ascertain which of the re-usable or single-use fibrescope represents better value. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  14. Carbon Footprint in Flexible Ureteroscopy: A Comparative Study on the Environmental Impact of Reusable and Single-Use Ureteroscopes.

    Science.gov (United States)

    Davis, Niall F; McGrath, Shannon; Quinlan, Mark; Jack, Gregory; Lawrentschuk, Nathan; Bolton, Damien M

    2018-03-01

    There are no comparative assessments on the environmental impact of endourologic instruments. We evaluated and compared the environmental impact of single-use flexible ureteroscopes with reusable flexible ureteroscopes. An analysis of the typical life cycle of the LithoVue™ (Boston Scientific) single-use digital flexible ureteroscope and Olympus Flexible Video Ureteroscope (URV-F) was performed. To measure the carbon footprint, data were obtained on manufacturing of single-use and reusable flexible ureteroscopes and from typical uses obtained with a reusable scope, including repairs, replacement instruments, and ultimate disposal of both ureteroscopes. The solid waste generated (kg) and energy consumed (kWh) during each case were quantified and converted into their equivalent mass of carbon dioxide (kg of CO 2 ) released. Flexible ureteroscopic raw materials composed of plastic (90%), steel (4%), electronics (4%), and rubber (2%). The manufacturing cost of a flexible ureteroscope was 11.49 kg of CO 2 per 1 kg of ureteroscope. The weight of the single-use LithoVue and URV-F flexible ureteroscope was 0.3 and 1 kg, respectively. The total carbon footprint of the lifecycle assessment of the LithoVue was 4.43 kg of CO 2 per endourologic case. The total carbon footprint of the lifecycle of the reusable ureteroscope was 4.47 kg of CO 2 per case. The environmental impacts of the reusable flexible ureteroscope and the single-use flexible ureteroscope are comparable. Urologists should be aware that the typical life cycle of urologic instruments is a concerning source of environmental emissions.

  15. Development and application of a model for the analysis of trades between space launch system operations and acquisition costs

    Science.gov (United States)

    Nix, Michael B.

    2005-12-01

    Early design decisions in the development of space launch systems determine the costs to acquire and operate launch systems. Some sources indicate that as much as 90% of life cycle costs are fixed by the end of the critical design review phase. System characteristics determined by these early decisions are major factors in the acquisition cost of flight hardware elements and facilities and influence operations costs through the amount of maintenance and support labor required to sustain system function. Operations costs are also dependent on post-development management decisions regarding how much labor will be deployed to meet requirements of market demand and ownership profit. The ability to perform early trade-offs between these costs is vital to the development of systems that have the necessary capacity to provide service and are profitable to operate. An Excel-based prototype model was developed for making early analyses of trade-offs between the costs to operate a space launch system and to acquire the necessary assets to meet a given set of operational requirements. The model, integrating input from existing models and adding missing capability, allows the user to make such trade-offs across a range of operations concepts (required flight rates, staffing levels, shifts per workday, workdays per week and per year, unreliability, wearout and depot maintenance) and the number, type and capability of assets (flight hardware elements, processing and supporting facilities and infrastructure). The costs and capabilities of hypothetical launch systems can be modeled as a function of interrelated turnaround times and labor resource levels, and asset loss and retirement. The number of flight components and facilities required can be calculated and the operations and acquisition costs compared for a specified scenario. Findings, based on the analysis of a hypothetical two stage to orbit, reusable, unmanned launch system, indicate that the model is suitable for the

  16. Investigation of Advanced Propellants to Enable Single Stage to Orbit Launch Vehicles

    Science.gov (United States)

    2006-10-30

    ERS-PAS-2006-205) 13. SUPPLEMENTARY NOTES Graduate work for California State University, Fresno 14. ABSTRACT Single-Stage-To-Orbit ( SSTO ...and maintained. Despite well-funded development efforts, no SSTO vehicles have been fielded to date. Existing chemical rocket and vehicle...technologies do not enable feasible SSTO designs. In the future, new propellants with advanced properties could enable SSTO launch vehicles. A parametric

  17. System Engineering Processes at Kennedy Space Center for Development of SLS and Orion Launch Systems

    Science.gov (United States)

    Schafer, Eric; Stambolian, Damon; Henderson, Gena

    2013-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems are developed at the Kennedy Space Center Engineering Directorate. The Engineering Directorate at Kennedy Space Center follows a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Presentation describes this process with examples of where the process has been applied.

  18. Disarmament: preserving heritage, re-launching enterprise. The quarrel between ancients and moderns

    International Nuclear Information System (INIS)

    Dahan, P.

    2004-01-01

    The occurrence of new threats and the progress of proliferation of weapons of mass destruction raises several questions about the future of multilateral disarmament and the about all these treaties which have built up the architecture of the international security. This article analyzes the possibilities of preserving this heritage through the search of a better efficiency of existing means and the re-launching of the disarmament and non-proliferation enterprises thanks to the search for a relevance goal. (J.S.)

  19. Europe looks forward to COROT launch

    Science.gov (United States)

    2006-12-01

    While CNES is completing preparations for the launch from Baikonur/Kazakhstan, ESA and a large number of European scientists involved in the mission are eagerly awaiting this event and the first scientific results to come through. What is COROT? COROT stands for ‘Convection Rotation and planetary Transits’. The name describes the mission’s scientific goals. ‘Convection and rotation’ refer to the satellite’s capability to probe stellar interiors, studying the acoustic waves that ripple across the surface of stars, a technique called asteroseismology. ‘Transit’ refers to the technique whereby the presence of a planet orbiting a star can be inferred from the dimming starlight caused when the planet passes in front of it. To achieve its twin scientific objectives, COROT will monitor some 120,000 stars with its 30-centimetre telescope. COROT will lead a bold new search for planets around other stars. In the decade since the first discovery in 1995 of an exoplanet (51 Pegasi b), more than 200 other such planets outside our solar system have been detected using ground-based observatories. The COROT space telescope promises to find many more during its two-and-a-half-year mission, expanding the frontiers of our knowledge towards ever-smaller planets. Many of the planets COROT will detect are expected to be 'hot Jupiters', gaseous worlds. An unknown percentage of those detected are expected to be rocky planets, maybe just a few times larger than the Earth (or smaller, even). If COROT finds such planets, they will constitute a new class of planet altogether. While it is looking at a star, COROT will also be able to detect 'starquakes', acoustic waves generated deep inside a star that send ripples across its surface, altering its brightness. The exact nature of the ripples allows astronomers to calculate the star's precise mass, age and chemical composition. COROT’s European dimension The COROT mission was first proposed by CNES back in 1996. A call for

  20. Energy futures

    International Nuclear Information System (INIS)

    Treat, J.E.

    1990-01-01

    This book provides fifteen of the futures industry's leading authorities with broader background in both theory and practice of energy futures trading in this updated text. The authors review the history of the futures market and the fundamentals of trading, hedging, and technical analysis; then they update you with the newest trends in energy futures trading - natural gas futures, options, regulations, and new information services. The appendices outline examples of possible contracts and their construction