WorldWideScience

Sample records for future ocean increasingly

  1. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars Henrik

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation...

  2. The amplifying influence of increased ocean stratification on a future year without a summer.

    Fasullo, J T; Tomas, R; Stevenson, S; Otto-Bliesner, B; Brady, E; Wahl, E

    2017-10-31

    In 1816, the coldest summer of the past two centuries was observed over northeastern North America and western Europe. This so-called Year Without a Summer (YWAS) has been widely attributed to the 1815 eruption of Indonesia's Mt. Tambora and was concurrent with agricultural failures and famines worldwide. To understand the potential impacts of a similar future eruption, a thorough physical understanding of the YWAS is crucial. Climate model simulations of both the 1815 Tambora eruption and a hypothetical analogous future eruption are examined, the latter occurring in 2085 assuming a business-as-usual climate scenario. Here, we show that the 1815 eruption drove strong responses in both the ocean and cryosphere that were fundamental to driving the YWAS. Through modulation of ocean stratification and near-surface winds, global warming contributes to an amplified surface climate response. Limitations in using major volcanic eruptions as a constraint on cloud feedbacks are also found.

  3. The Ocean: Our Future

    Independent World Commission On The Oceans; Soares, Mario

    1998-09-01

    The Ocean, Our Future is the official report of the Independent World Commission on the Oceans, chaired by Mário Soares, former President of Portugal. Its aim is to summarize the very real problems affecting the ocean and its future management, and to provide imaginative solutions to these various and interlocking problems. The oceans have traditionally been taken for granted as a source of wealth, opportunity and abundance. Our growing understanding of the oceans has fundamentally changed this perception. We now know that in some areas, abundance is giving way to real scarcity, resulting in severe conflicts. Territorial disputes that threaten peace and security, disruptions to global climate, overfishing, habitat destruction, species extinction, indiscriminate trawling, pollution, the dumping of hazardous and toxic wastes, piracy, terrorism, illegal trafficking and the destruction of coastal communities are among the problems that today form an integral part of the unfolding drama of the oceans. Based on the deliberations, experience and input of more than 100 specialists from around the world, this timely volume provides a powerful overview of the state of our water world.

  4. Assessment of the possible future climatic impact of carbon dioxide increases based on a coupled one-dimensional atmospheric-oceanic model

    Hunt, B.G.; Wells, N.C.

    1979-01-01

    A radiative-convective equilibrium model of the atmosphere has been coupled with a mixed layer model of the ocean to investigate the response of this one-dimensional system to increasing carbon dioxide amounts in the atmosphere. For global mean conditions a surface temperature rise of about 2 0 K was obtained for a doubling of the carbon dioxide amount, in reasonable agreement with the commonly accepted results of Manabe and Wetherald. This temperature rise was essentially invariant with season and indicates that including a shallow (300 m) ocean slab in this problem does not basically alter previous assessments. While the mixed layer depth of the ocean was only very slightly changed by the temperature increase, which extended throughout the depth of the mixed layer, the impact of this increase on the overall behavior of the ocean warrants further study. A calculation was also made of the temporal variation of the sea surface temperature for three possible carbon dioxide growth rates starting from an initial carbon dioxide content of 300 ppm. This indicated that the thermal inertia of the slab ocean provides a time lag of 8 years in the sea surface temperature response compared to a land situation. This is not considered to be of great significance as regards the likely future climatic impact of carbon dioxide increase

  5. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  6. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

    Pacella, Stephen R.; Brown, Cheryl A.; Waldbusser, George G.; Labiosa, Rochelle G.; Hales, Burke

    2018-04-01

    The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765–2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat’s ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  7. Climate change feedbacks on future oceanic acidification

    McNeil, Ben I.; Matear, Richard J.

    2007-01-01

    Oceanic anthropogenic CO 2 uptake will decrease both the pH and the aragonite saturation state (Oarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Oarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO 2 -related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean warming feedback was found to dominate the climate change responses in the surface ocean. Although surface pH is projected to decrease relatively uniformly by about 0.3 by the year 2100, we find pH to be insensitive to climate change feedbacks, whereas Oarag is buffered by ∼15%. Ocean carbonate chemistry creates a situation whereby the direct pH changes due to ocean warming are almost cancelled by the pH changes associated with dissolved inorganic carbon concentrations changes via a reduction in CO 2 solubility from ocean warming. We show that the small climate change feedback on future surface ocean pH is independent to the amount of ocean warming. Our analysis therefore implies that future projections of surface ocean acidification only need to consider future atmospheric CO 2 levels, not climate change induced modifications in the ocean

  8. Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp . A

    Uthicke, S.; Liddy, M.; Nguyen, H. D.; Byrne, M.

    2014-09-01

    Increased atmospheric CO2 will have a twofold impact on future marine ecosystems, increasing global sea surface temperatures and uptake of CO2 (Ocean Acidification). Many experiments focus on the investigation of one of these stressors, but under realistic future climate predictions, these stressors may have interactive effects on individuals. Here, we investigate the effect of warming and acidification in combination. We test for interactive effects of potential near-future (2100) temperature (+2 to 3 °C) and pCO2 (~860-940 μAtm) levels on the physiology of the tropical echinoid Echinometra sp . A. The greatest reduction in growth was under simultaneous temperature and pH/ pCO2 stress (marginally significant temperature × pH/ pCO2 interaction). This was mirrored by the physiological data, with highest metabolic activity (measured as respiration and ammonium excretion) occurring at the increased temperature and pCO2 treatment, although this was not significant for excretion. The perivisceral coelomic fluid pH was ~7.5-7.6, as typical for echinoids, and showed no significant changes between treatments. Indicative of active calcification, internal magnesium and calcium concentrations were reduced compared to the external medium, but were not different between treatments. Gonad weight was lower at the higher temperature, and this difference was more distinct and statistically significant for males. The condition of the gonads assessed by histology declined in increased temperature and low pH treatments. The Echinometra grew in all treatments indicating active calcification of their magnesium calcite tests even as carbonate mineral saturation decreased. Our results indicate that the interactive temperature and pH effects are more important for adult echinoids than individual stressors. Although adult specimens grow and survive in near-future conditions, higher energy demands may influence gonad development and thus population maintenance.

  9. Climate change feedbacks on future oceanic acidification

    McNeil, Ben I.; Matear, Richard J.

    2011-01-01

    Oceanic anthropogenic CO2 uptake will decrease both the pH and the aragonite saturation state (Ωarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Ωarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO2-related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean ...

  10. Climate change impact on future ocean acidification

    McNeil, Ben

    2007-01-01

    Full text: Elevated atmospheric C02 levels and associated uptake by the ocean is changing its carbon chemistry, leading to an acidification. The implications of future ocean acidification on the marine ecosystem are unclear but seemingly detrimental particularly to those organisms and phytoplankton that secrete calcium carbonate (like corals). Here we present new results from the Australian CSIRO General Circulation Model that predicts the changing nature of oceanic carbon chemistry in response to future climate change feedbacks (circulation, temperature and biological). We will discuss the implications of future ocean acidification and the potential implications on Australia's marine ecosystems

  11. Short-term pain for long-term gain: seagrass communities increase short-term extremes and long-term offset of CO2 under future ocean acidification

    The impacts of ocean acidification in nearshore estuarine environments remain poorly characterized, despite these areas being some of the most ecologically, economically, and culturally important habitats in the global ocean. Here, we quantify how rising atmospheric CO2 from 1765...

  12. Arctic Ocean Paleoceanography and Future IODP Drilling

    Stein, Ruediger

    2015-04-01

    areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, such as the Lomonosov Ridge. These new detailed climate records spanning time intervals from the (late Cretaceous/)Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. During the Polarstern Expedition PS87 in August-September 2014, new site survey data including detailed multibeam bathymetry, multi-channel seismic and Parasound profiling as well as geological coring, were obtained on Lomonosov Ridge (Stein, 2015), being the basis for a more precise planning and update for a future IODP drilling campaign. Reference: Stein, R. (Ed.), 2015. Cruise Report of Polarstern Expedition PS87-2014 (Arctic Ocean/Lomonosov Ridge). Reps. Pol. Mar. Res., in press. Stein, R. , Weller, P. , Backman, J. , Brinkhuis, H., Moran, K. , Pälike, H., 2014. Cenozoic Arctic Ocean Climate History: Some highlights from the IODP Arctic Coring Expedition (ACEX). Developments in Marine Geology 7, Elsevier Amsterdam/New York, pp. 259-293.

  13. Historical and future trends in ocean climate and biogeochemistry

    Doney, Scott C.; Bopp, Laurent; Long, Matthew C.

    2014-01-01

    Changing atmospheric composition due to human activities, primarily carbon dioxide (CO 2 ) emissions from fossil fuel burning, is already impacting ocean circulation, biogeochemistry, and ecology, and model projections indicate that observed trends will continue or even accelerate over this century. Elevated atmospheric CO 2 alters Earth's radiative balance, leading to global-scale warming and climate change. The ocean stores the majority of resulting anomalous heat, which in turn drives other physical, chemical, and biological impacts. Sea surface warming and increased ocean vertical stratification are projected to reduce global-integrated primary production and export flux as well as to lower subsurface dissolved oxygen concentrations. Upper trophic levels will be affected both directly by warming and indirectly from changes in productivity and expanding low oxygen zones. The ocean also absorbs roughly one-quarter of present-day anthropogenic CO 2 emissions. The resulting changes in seawater chemistry, termed ocean acidification, include declining pH and saturation state for calcium carbon minerals that may have widespread impacts on many marine organisms. Climate warming will likely slow ocean CO 2 uptake but is not expected to significantly reduce upper ocean acidification. Improving the accuracy of future model projections requires better observational constraints on current rates of ocean change and a better understanding of the mechanisms controlling key physical and biogeochemical processes. (authors)

  14. The future of the oceans past.

    Jackson, Jeremy B C

    2010-11-27

    Major macroevolutionary events in the history of the oceans are linked to changes in oceanographic conditions and environments on regional to global scales. Even small changes in climate and productivity, such as those that occurred after the rise of the Isthmus of Panama, caused major changes in Caribbean coastal ecosystems and mass extinctions of major taxa. In contrast, massive influxes of carbon at the end of the Palaeocene caused intense global warming, ocean acidification, mass extinction throughout the deep sea and the worldwide disappearance of coral reefs. Today, overfishing, pollution and increases in greenhouse gases are causing comparably great changes to ocean environments and ecosystems. Some of these changes are potentially reversible on very short time scales, but warming and ocean acidification will intensify before they decline even with immediate reduction in emissions. There is an urgent need for immediate and decisive conservation action. Otherwise, another great mass extinction affecting all ocean ecosystems and comparable to the upheavals of the geological past appears inevitable.

  15. Satellite Ocean Biology: Past, Present, Future

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  16. Ocean OSSEs: recent developments and future challenges

    Kourafalou, V. H.

    2012-12-01

    Atmospheric OSSEs have had a much longer history of applications than OSSEs (and OSEs) in oceanography. Long standing challenges include the presence of coastlines and steep bathymetric changes, which require the superposition of a wide variety of space and time scales, leading to difficulties on ocean observation and prediction. For instance, remote sensing is critical for providing a quasi-synoptic oceanographic view, but the coverage is limited at the ocean surface. Conversely, in situ measurements are capable to monitor the entire water column, but at a single location and usually for a specific, short time. Despite these challenges, substantial progress has been made in recent years and international initiatives have provided successful OSSE/OSE examples and formed appropriate forums that helped define the future roadmap. These will be discussed, together with various challenges that require a community effort. Examples include: integrated (remote and in situ) observing system requirements for monitoring large scale and climatic changes, vs. short term variability that is particularly important on the regional and coastal spatial scales; satisfying the needs of both global and regional/coastal nature runs, from development to rigorous evaluation and under a clear definition of metrics; data assimilation in the presence of tides; estimation of real-time river discharges for Earth system modeling. An overview of oceanographic efforts that complement the standard OSSE methodology will also be given. These include ocean array design methods, such as representer-based analysis and adaptive sampling. Exciting new opportunities for both global and regional ocean OSSE/OSE studies have recently become possible with targeted periods of comprehensive data sets, such as the existing Gulf of Mexico observations from multiple sources in the aftermath of the DeepWater Horizon incident and the upcoming airborne AirSWOT, in preparation for the SWOT (Surface Water and Ocean

  17. Ocean Studies Board annual report 1989 and future plans

    1990-01-01

    The major activities of the Ocean Studies Board of the National Research Council for 1989 are reviewed. The following are discussed: the Navy Panel, the CO2 Panel, the Committee on the Ocean's Role in Global Change, the Committee on the Coastal Ocean, the Workshop on Issues of U.S. Marine Fisheries, and the Continental Margins Workshop Committee. Future plans are covered

  18. Oceanic ferromanganese deposits: Future resources and past-ocean recorders

    Banakar, V.K.; Nair, R.R.; Parthiban, G.; Pattan, J.N.

    decades following the Mero's publication witnessed global "Nodule Rush". The technological leaders of those years like US, Germany, Japan, France, New-Zealand, and USSR have conducted major scientific expeditions to the Central Pacific to map...-Mn-(Cu+Ni+Co) in ferromanganese deposits from the Central Indian Ocean (Source: Jauhari, 1987). OCEANIC FERROMANGANESE DEPOSITS 45 DISTRIBUTION The nodules occur invariably in almost all the deep-sea basins witnessing low sedimentation rates. But abundant ore grade deposits...

  19. Influencing a Vision for the Future Ocean

    Macko, S. A.

    2017-12-01

    The ocean is the major source of nutrition for billions of people, while employing millions of workers, and generating trillions of dollars for the world economy. Clearly, the ocean is central to human well-being. As vast as our ocean and its resources are, they are not infinite. And today the ocean is under tremendous pressure from human activity - including unsustainable and illegal fishing, marine pollution, and climate-related impacts. We have created a special January-term class that offered students exposure to the utilization of the oceans' resources through a mixture of in-class work and field experiences. The course addressed not only fundamentals of marine science, but also legalities and ethics on aspects of culturing and capturing marine animals, with an emphasis on aquaculture and sustainability for wild fisheries. We limited the course to a manageble number (18) with transport in 3 vans, and overnighting at convenient hotels near the sites. Various trips to locations where the ocean is being maricultured and/or marketed allowed students to explore both the extant ocean while complementing class activities with speakers dealing with fishery product distribution and aquaculture with laboratory experiences at UVa. Locations for field trips included the National Aquarium in Baltimore, Washington, Virginia Beach and Baltimore seafood markets, Virginia aquaculture facilities and the Virginia Aquarium in Virginia Beach.

  20. The future of the oceans past

    Schwerdtner Mánez, Kathleen; Holm, Poul; Blight, Louise

    2014-01-01

    Populations’’ project, this paper identifies the emerging research topics for future historical marine research. It elaborates on concepts and tools which are expected to play a major role in answering these questions, and identifies geographical regions which deserve future attention from marine...

  1. The future of naval ocean science research

    Orcutt, John A.; Brink, Kenneth

    The Ocean Studies Board (OSB) of the National Research Council reviewed the changing role of basic ocean science research in the Navy at a recent board meeting. The OSB was joined by Gerald Cann, assistant secretary of the Navy for research, development, and acquisition; Geoffrey Chesbrough, oceanographer of the Navy; Arthur Bisson, deputy assistant secretary of the Navy for antisubmarine warfare; Robert Winokur, technical director of the Office of the Oceanographer of the Navy; Bruce Robinson, director of the new science directorate at the Office of Naval Research (ONR); and Paul Gaffney, commanding officer of the Naval Research Laboratory (NRL). The past 2-3 years have brought great changes to the Navy's mission with the dissolution of the former Soviet Union and challenges presented by conflicts in newly independent states and developing nations. The new mission was recently enunciated in a white paper, “From the Sea: A New Direction for the Naval Service,” which is signed by the secretary of the Navy, the chief of naval operations, and the commandant of the Marine Corps. It departs from previous plans by proposing a heavier emphasis on amphibious operations and makes few statements about the traditional Navy mission of sea-lane control.

  2. Modelling the inorganic ocean carbon cycle under past and future climate change

    Ewan, T.L.

    2004-01-01

    This study used a coupled ocean-atmosphere-sea ice model with an inorganic carbon component to examine the inorganic ocean carbon cycle with particular reference to how climate feedback influences future uptake. In the last 150 years, the increase in atmosphere carbon dioxide (CO 2 ) concentrations have been higher than any time during the Earth's history. Although the oceans are the largest sink for carbon dioxide, it is not know how the ocean carbon cycle will respond to increasing anthropogenic carbon dioxide concentrations in the future. Climate feedbacks could potentially reduce further uptake of carbon by the ocean. In addition to examining past climate transitions, including both abrupt and glacial-interglacial climate transitions, this study also examined the sensitivity of the inorganic carbon cycle to increased atmospheric carbon dioxide. Atmospheric carbon dioxide levels were also projected under a range of global warming scenarios. Most simulations identified a transient weakening of the North Atlantic and increased sea surface temperatures (SST). These positive feedbacks act on the carbon system to reduce uptake. However, the ocean has the capacity to take up 65 to 75 per cent of the anthropogenic carbon dioxide increases. An analysis of climate feedback on future carbon uptake shows that oceans store 7 per cent more carbon when there are no climate feedbacks acting on the system. Sensitivity experiments using the Gent McWilliams parameterization for mixing associated with mesoscale eddies show a further 6 per cent increase in oceanic uptake. Inclusion of sea ice dynamics resulted in a 2 per cent difference in uptake. This study also examined changes in atmospheric carbon dioxide concentration that occur during abrupt climate change events. Changes in ocean circulation and carbon solubility cause significant increases in atmospheric carbon dioxide concentrations when melt water episodes are simulated in both hemispheres. The response of the carbon

  3. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety.

    Shi, Wei; Zhao, Xinguo; Han, Yu; Che, Zhumei; Chai, Xueliang; Liu, Guangxu

    2016-01-21

    To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd(2+)/Ca(2+) in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion.

  4. Potential Increasing Dominance of Heterotrophy in the Global Ocean

    Kvale, K.; Meissner, K. J.; Keller, D. P.

    2016-02-01

    Autotrophs are largely limited by resources in the modern ocean. However, standard metabolic theory suggests continued ocean warming could globally benefit heterotrophs, thereby reducing autotrophic nutrient limitation. The paleo record as well as modern observations offer evidence this has happened in the past and could happen again. Increasing dominance of heterotrophs would result in strong nutrient recycling in the upper ocean and high rates of net primary production (NPP), yet low carbon export to the deep ocean and sediments. We describe the transition towards such a state in the early 22nd century as a response to business-as-usual Representative Concentration Pathway forcing (RCP8.5) in an intermediate complexity Earth system model in three configurations: with and without an explicit calcifier phytoplankton class and calcite ballast model. In all models nutrient regeneration in the near surface becomes an increasingly important driver of primary production. The near-linear relationship between changes in NPP and global sea surface temperature (SST) found over the 21st century becomes exponential above a 2-4 °C global mean SST change. This transition to a more heterotrophic ocean agrees roughly with metabolic theory. Inclusion of small phytoplankton and calcifiers increase the model NPP:SST sensitivity because of their relatively higher nutrient affinity than general phytoplankton. Accounting for organic carbon "protected" from remineralization by carbonate ballast mitigates the exponential increase in NPP and provides an increasingly important pathway for deep carbon export with higher SST changes, despite simultaneous increasing carbonate dissolution rates due to ocean acidification.

  5. Back to the future: nostalgia increases optimism.

    Cheung, Wing-Yee; Wildschut, Tim; Sedikides, Constantine; Hepper, Erica G; Arndt, Jamie; Vingerhoets, Ad J J M

    2013-11-01

    This research examined the proposition that nostalgia is not simply a past-oriented emotion, but its scope extends into the future, and, in particular, a positive future. We adopted a convergent validation approach, using multiple methods to assess the relation between nostalgia and optimism. Study 1 tested whether nostalgic narratives entail traces of optimism; indeed, nostalgic (compared with ordinary) narratives contained more expressions of optimism. Study 2 manipulated nostalgia through the recollection of nostalgic (vs. ordinary) events, and showed that nostalgia boosts optimism. Study 3 demonstrated that the effect of nostalgia (induced with nomothetically relevant songs) on optimism is mediated by self-esteem. Finally, Study 4 established that nostalgia (induced with idiographically relevant lyrics) fosters social connectedness, which subsequently increases self-esteem, which then boosts optimism. The nostalgic experience is inherently optimistic and paints a subjectively rosier future.

  6. Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation

    Lubin, Dan; Arrigo, Kevin R.; van Dijken, Gert L.

    2004-05-01

    Satellite remote sensing of both surface solar ultraviolet radiation (UVR) and chlorophyll over two decades shows that biologically significant ultraviolet radiation increases began to occur over the Southern Ocean three years before the ozone ``hole'' was discovered. Beginning in October 1983, the most frequent occurrences of enhanced UVR over phytoplankton-rich waters occurred in the Weddell Sea and Indian Ocean sectors of the Southern Ocean, impacting 60% of the surface biomass by the late 1990s. These results suggest two reasons why more serious impacts to the base of the marine food web may not have been detected by field experiments: (1) the onset of UVR increases several years before dedicated field work began may have impacted the most sensitive organisms long before such damage could be detected, and (2) most biological field work has so far not taken place in Antarctic waters most extensively subjected to enhanced UVR.

  7. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  8. Calcium carbonate production response to future ocean warming and acidification

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  9. Benzo[a]pyrene exposure under future ocean acidification scenarios weakens the immune responses of blood clam, Tegillarca granosa.

    Su, Wenhao; Zha, Shanjie; Wang, Yichen; Shi, Wei; Xiao, Guoqiang; Chai, Xueliang; Wu, Hongxi; Liu, Guangxu

    2017-04-01

    Persistent organic pollutants (POPs) are known to converge into the ocean and accumulate in the sediment, posing great threats to marine organisms such as the sessile bottom burrowing bivalves. However, the immune toxicity of POPs, such as B[a]P, under future ocean acidification scenarios remains poorly understood to date. Therefore, in the present study, the impacts of B[a]P exposure on the immune responses of a bivalve species, Tegillarca granosa, under present and future ocean acidification scenarios were investigated. Results obtained revealed an increased immune toxicity of B[a]P under future ocean acidification scenarios in terms of reduced THC, altered haemocyte composition, and hampered phagocytosis, which may attribute to the synergetic effects of B[a]P and ocean acidification. In addition, the gene expressions of pathogen pattern recognition receptors (TLR1, TLR2, TLR4, TLR6), pathway mediators (TRAF6, TAK1, TAB2, IKKα and Myd88), and effectors (NF-ĸB) of the important immune related pathways were significantly down-regulated upon exposure to B[a]P under future ocean acidification scenarios. Results of the present study suggested an increased immune toxicity of B[a]P under future ocean acidification scenarios, which will significantly hamper the immune responses of T. granosa and subsequently render individuals more susceptible to pathogens challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ocean warming and acidification synergistically increase coral mortality

    Prada, F.; Caroselli, E.; Mengoli, S.; Brizi, L.; Fantazzini, P.; Capaccioni, B.; Pasquini, L.; Fabricius, K. E.; Dubinsky, Z.; Falini, G.; Goffredo, S.

    2017-01-01

    Organisms that accumulate calcium carbonate structures are particularly vulnerable to ocean warming (OW) and ocean acidification (OA), potentially reducing the socioeconomic benefits of ecosystems reliant on these taxa. Since rising atmospheric CO2 is responsible for global warming and increasing ocean acidity, to correctly predict how OW and OA will affect marine organisms, their possible interactive effects must be assessed. Here we investigate, in the field, the combined temperature (range: 16-26 °C) and acidification (range: pHTS 8.1-7.4) effects on mortality and growth of Mediterranean coral species transplanted, in different seasonal periods, along a natural pH gradient generated by a CO2 vent. We show a synergistic adverse effect on mortality rates (up to 60%), for solitary and colonial, symbiotic and asymbiotic corals, suggesting that high seawater temperatures may have increased their metabolic rates which, in conjunction with decreasing pH, could have led to rapid deterioration of cellular processes and performance. The net calcification rate of the symbiotic species was not affected by decreasing pH, regardless of temperature, while in the two asymbiotic species it was negatively affected by increasing acidification and temperature, suggesting that symbiotic corals may be more tolerant to increasing warming and acidifying conditions compared to asymbiotic ones.

  11. Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica

    Condron, Alan [Univ. of Massachusetts, Amherst, MA (United States); Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA (United States)

    2017-09-30

    The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS show the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.

  12. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    Paulina Kaniewska

    Full Text Available Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5 decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  13. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  14. Climate change and the oceans--what does the future hold?

    Bijma, Jelle; Pörtner, Hans-O; Yesson, Chris; Rogers, Alex D

    2013-09-30

    The ocean has been shielding the earth from the worst effects of rapid climate change by absorbing excess carbon dioxide from the atmosphere. This absorption of CO2 is driving the ocean along the pH gradient towards more acidic conditions. At the same time ocean warming is having pronounced impacts on the composition, structure and functions of marine ecosystems. Warming, freshening (in some areas) and associated stratification are driving a trend in ocean deoxygenation, which is being enhanced in parts of the coastal zone by upwelling of hypoxic deep water. The combined impact of warming, acidification and deoxygenation are already having a dramatic effect on the flora and fauna of the oceans with significant changes in distribution of populations, and decline of sensitive species. In many cases, the impacts of warming, acidification and deoxygenation are increased by the effects of other human impacts, such as pollution, eutrophication and overfishing. The interactive effects of this deadly trio mirrors similar events in the Earth's past, which were often coupled with extinctions of major species' groups. Here we review the observed impacts and, using past episodes in the Earth's history, set out what the future may hold if carbon emissions and climate change are not significantly reduced with more or less immediate effect. Copyright © 2013. Published by Elsevier Ltd.

  15. Back to the future : Nostalgia increases optimism

    Cheung, W.-Y.; Wildschut, T.; Sedikides, C.; Hepper, E.G.; Arndt, J.; Vingerhoets, A.J.J.M.

    2013-01-01

    This research examined the proposition that nostalgia is not simply a past-oriented emotion, but its scope extends into the future, and, in particular, a positive future. We adopted a convergent validation approach, using multiple methods to assess the relation between nostalgia and optimism. Study

  16. Current and Future Decadal Trends in the Oceanic Carbon Uptake Are Dominated by Internal Variability

    Li, Hongmei; Ilyina, Tatiana

    2018-01-01

    We investigate the internal decadal variability of the ocean carbon uptake using 100 ensemble simulations based on the Max Planck Institute Earth system model (MPI-ESM). We find that on decadal time scales, internal variability (ensemble spread) is as large as the forced temporal variability (ensemble mean), and the largest internal variability is found in major carbon sink regions, that is, the 50-65°S band of the Southern Ocean, the North Pacific, and the North Atlantic. The MPI-ESM ensemble produces both positive and negative 10 year trends in the ocean carbon uptake in agreement with observational estimates. Negative decadal trends are projected to occur in the future under RCP4.5 scenario. Due to the large internal variability, the Southern Ocean and the North Pacific require the most ensemble members (more than 53 and 46, respectively) to reproduce the forced decadal trends. This number increases up to 79 in future decades as CO2 emission trajectory changes.

  17. The Ocean: Source of Nutrition for the Future. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 305. [Project COAST].

    Delaware Univ., Newark. Coll. of Education.

    The question of future sources of food is posed with increasing frequency as the amount of arable land per person decreases with population growth. The role of the ocean as a food supplier is currently being explored. This learning experience is designed for secondary school students. It is divided into four major areas: (1) an overview, (2)…

  18. Increase in acidifying water in the western Arctic Ocean

    Qi, Di; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Zhong, Wenli; Feely, Richard A.; Anderson, Leif G.; Sun, Heng; Chen, Jianfang; Chen, Min; Zhan, Liyang; Zhang, Yuanhui; Cai, Wei-Jun

    2017-02-01

    The uptake of anthropogenic CO2 by the ocean decreases seawater pH and carbonate mineral aragonite saturation state (Ωarag), a process known as Ocean Acidification (OA). This can be detrimental to marine organisms and ecosystems. The Arctic Ocean is particularly sensitive to climate change and aragonite is expected to become undersaturated (Ωarag Pacific Winter Water transport, driven by an anomalous circulation pattern and sea-ice retreat, is primarily responsible for the expansion, although local carbon recycling and anthropogenic CO2 uptake have also contributed. These results indicate more rapid acidification is occurring in the Arctic Ocean than the Pacific and Atlantic oceans, with the western Arctic Ocean the first open-ocean region with large-scale expansion of `acidified’ water directly observed in the upper water column.

  19. Ocean Bottom Seismometers technology: current state and future outlook

    Ilinskiy, Dmitry; Ganzha, Oleg

    2016-04-01

    The beginning of 2000s was marked by a significant progress in the development and use of self-pop-up sea-bottom seismic recorders (Ocean Bottom Seismometers). In Russia it was a novel solution developed by the Russian Academy of Sciences Experimental Design Bureau of Oceanological Engineering. This recorder and its clones have been widely used not only for the Earth crust studies, but also for investigations of sub-basalt structures and gas hydrate exploration. And what has happened over the last 10 years? Let us look closely at the second generation of ocean bottom stations developed by Geonodal Solutions (GNS) as an illustration of the next step forward in the sea-bottom acquisition technology. First of all, hardware components have changed dramatically. The electronic components became much smaller, accordingly, the power consumption and electronic self-noise were dropped down significantly. This enabled development of compact station 330 mm in diameter instead of previous 450mm. The weight fell by half, while the autonomy increased up to 90 days due to both decreased energy consumption and increased capacity of the batteries. The dynamic range of recorded seismic data has expended as a result of decreased set noise and the application of 24-bit A/D converters. The instruments dimensions have been reduced, power consumption decreased, clock accuracy was significantly improved. At the same time, development of advanced time reference algorithms enabled to retain instrument accuracy around 1 ms during all the autonomous recording period. The high-speed wireless data transfer technology offered a chance to develop "maintenance-free" station throughout its operation time. The station can be re-used at the different sea bottom locations without unsealing of the deep-water container for data download, battery re-charge, clock synchronization. This noticeably reduces the labor efforts of the personnel working with the stations. This is critically important in field

  20. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-12-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral

  1. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content

    Caldeira, Ken; Rau, Greg H.; Duffy, Philip B.

    Prior to changes introduced by man, production of radiocarbon (14C) in the stratosphere nearly balanced the flux of 14C from the atmosphere to the ocean and land biosphere, which in turn nearly balanced radioactive decay in these 14C reservoirs. This balance has been altered by land-use changes, fossil-fuel burning, and atmospheric nuclear detonations. Here, we use a model of the global carbon cycle to quantify these radiocarbon fluxes and make predictions about their magnitude in the future. Atmospheric nuclear detonations increased atmospheric 14C content by about 80% by the mid-1960's. Since that time, the 14C content of the atmosphere has been diminishing as this bomb radiocarbon has been entering the oceans and terrestrial biosphere. However, we predict that atmospheric 14C content will reach a minimum and start to increase within the next few years if fossil-fuel burning continues according to a “business-as-usual” scenario, even though fossil fuels are devoid of 14C. This will happen because fossil-fuel carbon diminishes the net flux of 14C from the atmosphere to the oceans and land biosphere, forcing 14C to accumulate in the atmosphere. Furthermore, the net flux of both bomb and natural 14C into the ocean are predicted to continue to slow and then, in the middle of the next century, to reverse, so that there will be a net flux of 14C from the ocean to the atmosphere. The predicted reversal of net 14C fluxes into the ocean is a further example of human impacts on the global carbon cycle.

  2. Economic effects of ocean acidification: Publication patterns and directions for future research.

    Falkenberg, Laura J; Tubb, Adeline

    2017-09-01

    Human societies derive economic benefit from marine systems, yet these benefits may be modified as humans drive environmental change. Here, we conducted the first systematic review of literature on the potential economic effects of ocean acidification. We identified that while there is a growing literature discussing this topic, assessments of the direction and magnitude of anticipated economic change remain limited. The few assessments which have been conducted indicate largely negative economic effects of ocean acidification. Insights are, however, limited as the scope of the studies remains restricted. We propose that understanding of this topic will benefit from using standard approaches (e.g. timescales and emissions scenarios) to consider an increasing range of species/habitats and ecosystem services over a range of spatial scales. The resulting understanding could inform decisions such that we maintain, or enhance, economic services obtained from future marine environments.

  3. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.

    Ballantyne, A P; Alden, C B; Miller, J B; Tans, P P; White, J W C

    2012-08-02

    One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.

  4. The Baltic Sea as a time machine for the future coastal ocean

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are diff......Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...... are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history...... of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess...

  5. OceanSITES format and Ocean Observatory Output harmonisation: past, present and future

    Pagnani, Maureen; Galbraith, Nan; Diggs, Stephen; Lankhorst, Matthias; Hidas, Marton; Lampitt, Richard

    2015-04-01

    The Global Ocean Observing System (GOOS) initiative was launched in 1991, and was the first step in creating a global view of ocean observations. In 1999 oceanographers at the OceanObs conference envisioned a 'global system of eulerian observatories' which evolved into the OceanSITES project. OceanSITES has been generously supported by individual oceanographic institutes and agencies across the globe, as well as by the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology (under JCOMMOPS). The project is directed by the needs of research scientists, but has a strong data management component, with an international team developing content standards, metadata specifications, and NetCDF templates for many types of in situ oceanographic data. The OceanSITES NetCDF format specification is intended as a robust data exchange and archive format specifically for time-series observatory data from the deep ocean. First released in February 2006, it has evolved to build on and extend internationally recognised standards such as the Climate and Forecast (CF) standard, BODC vocabularies, ISO formats and vocabularies, and in version 1.3, released in 2014, ACDD (Attribute Convention for Dataset Discovery). The success of the OceanSITES format has inspired other observational groups, such as autonomous vehicles and ships of opportunity, to also use the format and today it is fulfilling the original concept of providing a coherent set of data from eurerian observatories. Data in the OceanSITES format is served by 2 Global Data Assembly Centres (GDACs), one at Coriolis, in France, at ftp://ftp.ifremer.fr/ifremer/oceansites/ and one at the US NDBC, at ftp://data.ndbc.noaa.gov/data/oceansites/. These two centres serve over 26,800 OceanSITES format data files from 93 moorings. The use of standardised and controlled features enables the files held at the OceanSITES GDACs to be electronically discoverable and ensures the widest access to the data. The Ocean

  6. AFSC/RACE/SAP/Swiney: Effects of ocean acidification and increased temperatures on juvenile red king crab

    National Oceanic and Atmospheric Administration, Department of Commerce — Multiple stressor studies are needed to better understand the effects of oceanic changes on marine organisms. To determine the effects of near-future ocean...

  7. NOAA's Role in Sustaining Global Ocean Observations: Future Plans for OAR's Ocean Observing and Monitoring Division

    Todd, James; Legler, David; Piotrowicz, Stephen; Raymond, Megan; Smith, Emily; Tedesco, Kathy; Thurston, Sidney

    2017-04-01

    The Ocean Observing and Monitoring Division (OOMD, formerly the Climate Observation Division) of the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office provides long-term, high-quality global observations, climate information and products for researchers, forecasters, assessments and other users of environmental information. In this context, OOMD-supported activities serve a foundational role in an enterprise that aims to advance 1) scientific understanding, 2) monitoring and prediction of climate and 3) understanding of potential impacts to enable a climate resilient society. Leveraging approximately 50% of the Global Ocean Observing System, OOMD employs an internationally-coordinated, multi-institution global strategy that brings together data from multiple platforms including surface drifting buoys, Argo profiling floats, flux/transport moorings (RAMA, PIRATA, OceanSITES), GLOSS tide gauges, SOOP-XBT and SOOP-CO2, ocean gliders and repeat hydrographic sections (GO-SHIP). OOMD also engages in outreach, education and capacity development activities to deliver training on the social-economic applications of ocean data. This presentation will highlight recent activities and plans for 2017 and beyond.

  8. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  9. Impact of Idealized Stratospheric Aerosol Injection on the Future Ocean and Land Carbon Cycles

    Tjiputra, J.; Lauvset, S.

    2017-12-01

    Using a state-of-the-art Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In one of the scenarios, the model able to project future warming below 2 degree toward 2100, despite greatier warming persists in the high latitudes. When SAI is terminated in 2100, a rapid global warming of 0.35 K yr-1 (as compared to 0.05 K yr-1 under RCP8.5) is simulated in the subsequent 10 years, and the global mean temperature rapidly returns to levels close to the reference state. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. Despite inducing little impact on surface acidification, in the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area. Since the deep ocean provides vital ecosystem function and services, e.g., fish stocks, this accelerated changes

  10. Recommendations on Future Science and Engineering Studies for Ocean Color

    Mannino, Antonio

    2015-01-01

    The Ocean Health Index measured Ecological Integrity as the relative condition of assessed species in a given location. This was calculated as the weighted sum of the International Union for Conservation of Natures (IUCN) assessments of species. Weights used were based on the level of extinction risk following Butchart et al.2007: EX (extinct) 0.0, CR (critically endangered) 0.2, EN (endangered) 0.5, VU (vulnerable) 0.7, NT (not threatened) 0.9, and LC (least concern) 0.99. For primarily coastal goals, the spatial average of these per pixel scores was based on a 3nmi buffer; for goals derived from all ocean waters, the spatial average was computed for the entire EEZ.

  11. Future Oceans: Meeting the Challenges of Securing Aquatic Food Resources

    Dieckmann, U.

    2012-01-01

    Seafood is the primary source of animal protein for more than one billion people. Many economies and communities, in particular those in developing nations and coastal regions, depend on fisheries. Whereas the dire effects of overfishing on open-access ocean fisheries are already recognized, impacts of catches on freshwater systems are still underestimated. IIASA’s fisheries research elucidates how to secure and expand aquatic food resources, emphasizing three topical challenges. First, impro...

  12. Mid-ocean ridges, InRidge and the future

    Iyer, S.D.; Mukhopadhyay, R.; Drolia, R.K.; Ray, Dwijesh

    , Germany, 1995, pp. 200. 11. Rona, P. A. and S cott, S. D., A special issue on sea - floor hydro thermal mineralization: new perspectives. Econ . Geol ., 1993, 88 , 1935 ? 1976. 12. Lalou, C., Brichet, E. and Hekinian, R., Age dating of sulfide.... and Zimmer, M., Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner . Dep ., 1998, 33 , 302 ? 309. 27. Halbach, M., Halbach, P. and Lu ders, V., Sulfide - impregnated and pure silica precipitates of hydrothermal origin...

  13. Sensitivity of global ocean biogeochemical dynamics to ecosystem structure in a future climate

    Manizza, Manfredi; Buitenhuis, Erik T.; Le Quéré, Corinne

    2010-07-01

    Terrestrial and oceanic ecosystem components of the Earth System models (ESMs) are key to predict the future behavior of the global carbon cycle. Ocean ecosystem models represent low complexity compared to terrestrial ecosystem models. In this study we use two ocean biogeochemical models based on the explicit representation of multiple planktonic functional types. We impose to the models the same future physical perturbation and compare the response of ecosystem dynamics, export production (EP) and ocean carbon uptake (OCU) to the same physical changes. Models comparison shows that: (1) EP changes directly translate into changes of OCU on decadal time scale, (2) the representation of ecosystem structure plays a pivotal role at linking OCU and EP, (3) OCU is highly sensitive to representation of ecosystem in the Equatorial Pacific and Southern Oceans.

  14. Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach

    Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar

    2013-12-01

    Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.

  15. Increased particle flux to the deep ocean related to monsoons

    Nair, R.R.; Ittekkot, V.; Manganini, S.J.; Ramaswamy, V.; Haake, B.; Degens, E.T.; Desai, B.N.; Honjo, S.

    . To assess the impact of monsoon-driven processes on the downward particle flux variations in the open ocean we deployed three moored arrays consisting of six time-series sediment traps at selected locations in the western, central and eastern parts...

  16. Engaging Ocean Grads As Interdisciplinary Professional Problem Solvers: Why Preparing Our Future Ocean Leaders Means Inspiring Them to Look Beyond Their Academic Learning.

    Good, L. H.; Erickson, A.

    2016-02-01

    Academic learning and research experiences alone cannot prepare our emerging ocean leaders to take on the challenges facing our oceans. Developing solutions that incorporate environmental and ocean sciences necessitates an interdisciplinary approach, requiring emerging leaders to be able to work in collaborative knowledge to action systems, rather than on micro-discipline islands. Professional and informal learning experiences can enhance graduate marine education by helping learners gain the communication, collaboration, and innovative problem-solving skills necessary for them to interact with peers at the interface of science and policy. These rich experiences can also provide case-based and hands-on opportunities for graduate learners to explore real-world examples of ocean science, policy, and management in action. However, academic programs are often limited in their capacity to offer such experiences as a part of a traditional curriculum. Rather than expecting learners to rely on their academic training, one approach is to encourage and support graduates to seek professional development beyond their university's walls, and think more holistically about their learning as it relates to their career interests. During this session we discuss current thinking around the professional learning needs of emerging ocean leaders, what this means for academic epistemologies, and examine initial evaluation outcomes from activities in our cross-campus consortium model in Monterey Bay, California. This innovative model includes seven regional academic institutions working together to develop an interdisciplinary ocean community and increase access to professional development opportunities to better prepare regional ocean-interested graduate students and early career researchers as future leaders.

  17. Response of ocean acidification to a gradual increase and decrease of atmospheric CO2

    Cao, Long; Zhang, Han; Zheng, Meidi; Wang, Shuangjing

    2014-01-01

    We perform coupled climate–carbon cycle model simulations to examine changes in ocean acidity in response to idealized change of atmospheric CO 2 . Atmospheric CO 2 increases at a rate of 1% per year to four times its pre-industrial level of 280 ppm and then decreases at the same rate to the pre-industrial level. Our simulations show that changes in surface ocean chemistry largely follow changes in atmospheric CO 2 . However, changes in deep ocean chemistry in general lag behind the change in atmospheric CO 2 because of the long time scale associated with the penetration of excess CO 2 into the deep ocean. In our simulations with the effect of climate change, when atmospheric CO 2 reaches four times its pre-industrial level, global mean aragonite saturation horizon (ASH) shoals from the pre-industrial value of 1288 to 143 m. When atmospheric CO 2 returns from the peak value of 1120 ppm to pre-industrial level, ASH is 630 m, which is approximately the value of ASH when atmospheric CO 2 first increases to 719 ppm. At pre-industrial CO 2 9% deep-sea cold-water corals are surrounded by seawater that is undersaturated with aragonite. When atmospheric CO 2 reaches 1120 ppm, 73% cold-water coral locations are surrounded by seawater with aragonite undersaturation, and when atmospheric CO 2 returns to the pre-industrial level, 18% cold-water coral locations are surrounded by seawater with aragonite undersaturation. Our analysis indicates the difficulty for some marine ecosystems to recover to their natural chemical habitats even if atmospheric CO 2 content can be lowered in the future. (paper)

  18. Increasing efficiency of CO2 uptake by combined land-ocean sink

    van Marle, M.; van Wees, D.; Houghton, R. A.; Nassikas, A.; van der Werf, G.

    2017-12-01

    Carbon-climate feedbacks are one of the key uncertainties in predicting future climate change. Such a feedback could originate from carbon sinks losing their efficiency, for example due to saturation of the CO2 fertilization effect or ocean warming. An indirect approach to estimate how the combined land and ocean sink responds to climate change and growing fossil fuel emissions is based on assessing the trends in the airborne fraction of CO2 emissions from fossil fuel and land use change. One key limitation with this approach has been the large uncertainty in quantifying land use change emissions. We have re-assessed those emissions in a more data-driven approach by combining estimates coming from a bookkeeping model with visibility-based land use change emissions available for the Arc of Deforestation and Equatorial Asia, two key regions with large land use change emissions. The advantage of the visibility-based dataset is that the emissions are observation-based and this dataset provides more detailed information about interannual variability than previous estimates. Based on our estimates we provide evidence that land use and land cover change emissions have increased more rapidly than previously thought, implying that the airborne fraction has decreased since the start of CO2 measurements in 1959. This finding is surprising because it means that the combined land and ocean sink has become more efficient while the opposite is expected.

  19. Youth Science Ambassadors: Connecting Indigenous communities with Ocean Networks Canada tools to inspire future ocean scientists and marine resource managers

    Pelz, M.; Hoeberechts, M.; Hale, C.; McLean, M. A.

    2017-12-01

    This presentation describes Ocean Networks Canada's (ONC) Youth Science Ambassador Program. The Youth Science Ambassadors are a growing network of youth in Canadian coastal communities whose role is to connect ocean science, ONC data, and Indigenous knowledge. By directly employing Indigenous youth in communities in which ONC operates monitoring equipment, ONC aims to encourage wider participation and interest in ocean science and exploration. Further, the Youth Science Ambassadors act as role models and mentors to other local youth by highlighting connections between Indigenous and local knowledge and current marine science efforts. Ocean Networks Canada, an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories as well as community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. Youth Science Ambassadors are part of the Learning and Engagement team whose role includes engaging Indigenous communities and schools in ocean science through ONC's K-12 Ocean Sense education program. All of the data collected by ONC are freely available over the Internet for non-profit use, including disaster planning, community-based decision making, and education. The Youth Science Ambassadors support collaboration with Indigenous communities and schools by facilitating educational programming, encouraging participation in ocean data collection and analysis, and fostering interest in ocean science. In addition, the Youth Science Ambassadors support community collaboration in decision-making for instrument deployment locations and identify ways in which ONC can help to address any areas of concern raised by the community. This

  20. Investigating the Impact of Past and Future CO2 Emissions on the Distribution of Radiocarbon in the Ocean

    Khatiwala, S.; Payne, S.; Graven, H. D.; Heimbach, P.

    2015-12-01

    The ocean is a significant sink for carbon dioxide from fossil fuel burning, absorbing roughly a third of human CO2 emitted over the industrial period. This has implications not only for climate but also for the chemical and isotopic composition of the ocean. Human activities have increased the ocean radiocarbon content through nuclear bomb tests in the 1950s-60s, which released a large amount of radiocarbon (14C) into the atmosphere, but fossil fuel emissions are decreasing the radiocarbon content through the release of 14C-depleted CO2. Here, we use the ECCO-v4 ocean state estimate to examine the changing nature of the air-sea flux of radiocarbon and its spatial distribution in the ocean in response to past and future CO2 emissions, the latter taken from the the Representative Concentration Pathway (RCP) database used in IPCC simulations. In line with previous studies we find that the large air-sea gradient of 14C induced by nuclear bomb testing led to rapid accumulation of radiocarbon in the surface ocean. Surface fluxes of 14C have considerably weakened over the past several decades and in some areas 14C is being returned to the atmosphere. As fossil fuel emissions continue to reduce the atmospheric 14C/C ratio (Δ14C), in most RCP scenarios the total ocean 14C inventory starts decreasing by 2030. With strong emissions, the Δ14C of surface waters is driven to increasingly negative values and in RCP 8.5 by 2100 much of the surface ocean has apparent radiocarbon ages in excess of 2000 years, with subtropical gyres more depleted in 14C than the Southern Ocean. Surface waters become significantly more negative in Δ14C than underlying waters. As a result, turning conventional tracer oceanography on its head, recently ventilated waters are characterized by more negative Δ14C values. Similar patterns can be expected for CFCs in the ocean as atmospheric concentrations decrease over the next several decades. Our results have a number of implications, notably for

  1. Breaking the Ice: Strategies for Future European Research in the Polar Oceans - The AURORA BOREALIS Concept

    Lembke-Jene, L.; Biebow, N.; Wolff-Boenisch, B.; Thiede, J.; European Research Icebreaker Consortium

    2011-12-01

    Research vessels dedicated to work in polar ice-covered waters have only rarely been built. Their history began with Fritjof Nansen's FRAM, which he used for his famous first crossing of the Arctic Ocean 1893-1896. She served as example for the first generation of polar research vessels, at their time being modern instruments planned with foresight. Ice breaker technology has developed substantially since then. However, it took almost 80 years until this technical advance also reached polar research, when the Russian AKADEMIK FEDEROV, the German POLARSTERN, the Swedish ODEN and the USCG Cutter HEALY were built. All of these house modern laboratories, are ice-breakers capable to move into the deep-Arctic during the summer time and represent the second generation of dedicated polar research vessels. Still, the increasing demand in polar marine research capacities by societies that call for action to better understand climate change, especially in the high latitudes is not matched by adequate facilities and resources. Today, no icebreaker platform exists that is permanently available to the international science community for year-round expeditions into the central Arctic Ocean or heavily ice-infested waters of the polar Southern Ocean around Antarctica. The AURORA BOREALIS concept plans for a heavy research icebreaker, which will enable polar scientists around the world to launch international research expeditions into the central Arctic Ocean and the Antarctic continental shelf seas autonomously during all seasons of the year. The European Research Icebreaker Consortium - AURORA BOREALIS (ERICON-AB) was established in 2008 to plan the scientific, governance, financial, and legal frameworks needed for the construction and operation of this first multi-nationally owned and operated research icebreaker and polar scientific drilling platform. By collaborating together and sharing common infrastructures it is envisioned that European nations make a major contribution to

  2. Mission Specific Platforms: Past achievements and future developments in European led ocean research drilling.

    Cotterill, Carol; McInroy, David; Stevenson, Alan

    2013-04-01

    Ocean Discovery Programme in October 2013. Key successes encompass technological development, operational procedures in sensitive areas and research into palaeoclimate and shoreline responses to sea level change amongst others. Increased operational flexibility in the new programme only serves to make the future an exciting one for ocean drilling in Europe.

  3. Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Erik Olsen

    2018-03-01

    Full Text Available Ecosystem-based management (EBM of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass, while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups. Changing fishing pressure (doubling or halving had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks to taking into account competing

  4. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities

    E. Litchman

    2006-01-01

    Full Text Available Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (diatoms, coccolithophores and prasinophytes, nutrients (nitrate, ammonium, phosphate, silicate and iron, light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. We test the model at two contrasting sites in the modern ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE and subarctic North Pacific (ocean station Papa, OSP. The model successfully predicts general patterns of community composition and succession at both sites: In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. We then use the model to predict community reorganization under different global change scenarios: a later onset and extended duration of stratification, with shallower mixed layer depths due to increased greenhouse gas concentrations; increase in deep water nitrogen; decrease in deep water phosphorus and increase or decrease in iron concentration. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced acceptable modern day outcomes and the

  5. The Baltic Sea as a time machine for the future coastal ocean

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...... transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches...... of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess...

  6. The Baltic Sea as a time machine for the future coastal ocean

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure....... This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.......Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...

  7. Ocean Acidification Causes Increased Calcium Carbonate Turnover during Larval Shell Formation

    Frieder, C.; Pan, F.; Applebaum, S.; Manahan, D. T.

    2016-02-01

    Mollusca is a major taxon for studies of the evolution and mechanisms of calcification. Under current and future ocean change scenarios, decreases in shell size have been observed in many molluscan species during early development. The mechanistic basis for these decreases are of significant interest. In this study, Pacific oyster larvae (Crassostrea gigas) reared at aragonite undersaturation (Ω > 1). Coupling radioisotope tracer assays with mineral mass measurements allowed calculation of calcification budgets for first shell formation in veliger stage larvae. Three primary mechanisms (in order of increasing effect) contributed to the change in shell mass at undersaturation: delayed onset of calcification, increased dissolution rates, and decreased net calcification rates. The observation of dissolution indicates turnover of the newly formed shell, and physicochemical constraints of undersaturation provide a mechanistic basis for decreased calcification.

  8. Ocean acidification increases fatty acids levels of larval fish.

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    Scherner, Fernando; Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; E Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the

  10. Effects of a future warmer ocean on the coexisting copepods Calanus finmarchicus and C. glacialis in Disko Bay, Western Greenland

    Kjellerup, Sanne; Dünweber, Michael; Swalethorp, Rasmus

    2012-01-01

    The effects of temperature and food was examined for Calanus finmarchicus and C. glacialis during 3 phases of the phytoplankton spring bloom in Disko Bay, western Greenland. The 2 species were collected during pre-bloom, bloom, and post-bloom and exposed to temperatures from 0 to 10°C, combined...... production. Our results suggest that a future warmer ocean will reduce the advantage of early spawning by C. glacialis and that C. finmarchicus will become increasingly prevalent...

  11. Sponge biomass and bioerosion rates increase under ocean warming and acidification.

    Fang, James K H; Mello-Athayde, Matheus A; Schönberg, Christine H L; Kline, David I; Hoegh-Guldberg, Ove; Dove, Sophie

    2013-12-01

    The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2 ) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre-industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre-industrial scenario, and decreased towards the two future scenarios with sponge replicates under the 'business-as-usual' CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future. © 2013 John Wiley & Sons Ltd.

  12. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    McNeil, Ben I.; Sasse, Tristan P.

    2016-01-01

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean ‘CO2 hotspots’ evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for

  13. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.

  14. More losers than winners in a century of future Southern Ocean seafloor warming

    Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.

    2017-10-01

    The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.

  15. Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession

    Flynn, Kevin J.; Darren, Clark R.; Mitra, Aditee

    2015-01-01

    Human activity causes ocean acidification (OA) though the dissolution of anthropogenically generated CO2 into seawater, and eutrophication through the addition of inorganic nutrients. Eutrophication increases the phytoplankton biomass that can be supported during a bloom, and the resultant uptake...

  16. Quantifying the influence of CO2 seasonality on future ocean acidification

    Sasse, T. P.; McNeil, B. I.; Matear, R. J.; Lenton, A.

    2015-04-01

    Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem - from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.

  17. Design of a Push-Broom Multi-Beam Radiometer for Future Ocean Observations

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2015-01-01

    The design of a push-broom multi-beam radiometer for future ocean observations is described. The radiometer provides a sensitivity one order of magnitude higher than a traditional conical scanning radiometer, and has the big advantage of being fully stationary relative to the satellite platform...

  18. Increasing Capacity for Stewardship of Oceans and Coasts: Findings of the National Research Council Report

    Roberts, S. J.; Feeley, M. H.

    2008-05-01

    inappropriate evaluation procedures; and, lack of a coordinated and strategic approach among donors. A New Framework Improving ocean stewardship and ending the fragmentation of current capacity building programs will require a new, broadly adopted framework for capacity building that emphasizes cooperation, sustainability, and knowledge transfer within and among communities. The report identifies four specific features of capacity building that would increase the effectiveness and efficiency of future programs: 1. Regional action plans based on periodic program assessments to guide investments in capacity and set realistic milestones and performance measures. 2. Long-term support to establish self-sustaining programs. Sustained capacity building programs require a diversity of sources and coordinated investments from local, regional, and international donors. 3. Development of leadership and political will. One of the most commonly cited reasons for failure and lack of progress in ocean and coastal governance initiatives is lack of political will. One strategy for strengthening support is to identify, develop, mentor, and reward leaders. 4. Establishment of networks and mechanisms for regional collaboration. Networks bring together those working in the same or similar ecosystems with comparable management or governance challenges to share information, pool resources, and learn from one another. The report also recommends the establishment of regional centers to encourage and support collaboration among neighboring countries.

  19. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing?

    Jessica R Ward

    2004-04-01

    Full Text Available Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish, invertebrates (corals, crustaceans, echinoderms, and plants (seagrasses. Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter "disease" in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups. Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  20. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  1. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  2. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.

    Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri

    2011-01-01

    1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics

  3. Future Projection of Ocean Wave Climate: Analysis of SST Impacts on Wave Climate Changes in the Western North Pacific

    Shimura, Tomoya; Mori, Nobuhito; Mase, Hajime

    2015-01-01

    Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of...

  4. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    Couce, Elena M; Ridgwell, Andy J; Hendy, Erica

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world’s tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches...

  5. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator.

    Hammill, Edd; Johnson, Ellery; Atwood, Trisha B; Harianto, Januar; Hinchliffe, Charles; Calosi, Piero; Byrne, Maria

    2018-01-01

    The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO 2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO 2 370 μatm) or end-of-the-century OA (pCO 2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective. © 2017 John Wiley & Sons

  6. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua.

    Dahlke, Flemming T; Leo, Elettra; Mark, Felix C; Pörtner, Hans-Otto; Bickmeyer, Ulf; Frickenhaus, Stephan; Storch, Daniela

    2017-04-01

    Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO 2 -driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO 2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO 2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid-base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3-6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO 2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO 2 and mitochondrial capacities. Elevated PCO 2 stimulated MO 2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO 2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO 2 . Increased MO 2 in response to elevated PCO 2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO 2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO 2 conditions and suggest that acclimation to elevated PCO 2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification

  7. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback

    T. M. Lenton

    2007-07-01

    Full Text Available Plankton manipulation experiments exhibit a wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi apparently not representative of calcification generally. We assess the implications of this observational uncertainty by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response to ocean acidification. We predict that a substantial reduction in marine carbonate production is possible in the future, with enhanced ocean CO2 sequestration across the model ensemble driving a 4–13% reduction in the year 3000 atmospheric fossil fuel CO2 burden. Concurrent changes in ocean circulation and surface temperatures in the model contribute about one third to the increase in CO2 uptake. We find that uncertainty in the predicted strength of CO2-calcification feedback seems to be dominated by the assumption as to which species of calcifier contribute most to carbonate production in the open ocean.

  8. Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain

    Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.

    2016-07-01

    , independent of the SRES scenario. The export of carbon to the atmosphere increases as well, with an average of about 30 %. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9 % (SRES A1B) or increase by about 9.1 % (SRES A2). Such changes in the terrigenous-riverine system could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean. Changes in riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean lead to changes in the supply of organic material that acts as a food source in the Atlantic. On larger scales the increased outgassing of CO2 could turn the Amazon basin from a sink of carbon to a considerable source. Therefore, we propose that the coupling of terrestrial and riverine carbon budgets should be included in subsequent analysis of the future regional carbon budget.

  9. Linking the oceans to public health: current efforts and future directions.

    Kite-Powell, Hauke L; Fleming, Lora E; Backer, Lorraine C; Faustman, Elaine M; Hoagland, Porter; Tsuchiya, Ami; Younglove, Lisa R; Wilcox, Bruce A; Gast, Rebecca J

    2008-11-07

    We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research.We find that:* There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health."* The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases.* The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.

  10. Educational futures and increase in female enrolment in private ...

    This increased interest in educational and professional training of the girl child in higher institutions of learning bespoke a silent revolution that will impact the structure and coloration of the labour market and the working class in the nearest future. Using secondary data from the archives of the University, supplemented with ...

  11. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)

    1992-01-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.

  12. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    Koblinsky, C.J.; Gaspar, P.; Lagerloef, G.

    1992-03-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments

  13. Quantifying and predicting historical and future patterns of carbon fluxes from the North American Continent to Ocean

    Tian, H.; Zhang, B.; Xu, R.; Yang, J.; Yao, Y.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Najjar, R. G.; Friedrichs, M. A. M.; Hofmann, E. E.

    2017-12-01

    Carbon export through river channels to coastal waters is a fundamental component of the global carbon cycle. Changes in the terrestrial environment, both natural (e.g., climatic change, enriched CO2 concentration, and elevated ozone concentration) and anthropogenic (e.g, deforestation, cropland expansion, and urbanization) have greatly altered carbon production, stocks, decomposition, movement and export from land to river and ocean systems. However, the magnitude and spatiotemporal patterns of lateral carbon fluxes from land to oceans and the underlying mechanisms responsible for these fluxes remain far from certain. Here we applied a process-based land model with explicit representation of carbon processes in stream and rivers (Dynamic Land Ecosystem Model: DLEM 2.0) to examine how changes in climate, land use, atmospheric CO2, and nitrogen deposition have affected the carbon fluxes from North American continent to Ocean during 1980-2015. Our simulated results indicated that terrestrial carbon export shows substantially spatial and temporal variability. Of the five sub-regions (Arctic coast, Pacific coast, Gulf of Mexico, Atlantic coast, and Great lakes), the Arctic sub-region provides the highest DOC flux, whereas the Gulf of Mexico sub-region provided the highest DIC flux. However, terrestrial carbon export to the arctic oceans showed increasing trends for both DOC and DIC, whereas DOC and DIC export to the Gulf of Mexico decreased in the recent decades. Future pattern of riverine carbon fluxes would be largely dependent on the climate change and land use scenarios.

  14. Preliminary results on ocean dynamics from Skylab and their implications for future spacecraft

    Hayes, J.; Pierson, W. J.; Cardone, V. J.

    1975-01-01

    The instrument aboard Skylab designated S193 - a combined passive and active microwave radar system acting as a radiometer, scatterometer, and altimeter - is used to measure the surface vector wind speeds in the planetary boundary layer over the oceans. Preliminary results corroborate the hypothesis that sea surface winds in the planetary boundary layer can be determined from satellite data. Future spacecraft plans for measuring a geoid with an accuracy up to 10 cm are discussed.

  15. Past and future ice age initiation: the role of an intrinsic deep-ocean millennial oscillation

    Johnson, R. G.

    2014-05-01

    This paper offers three interdependent contributions to studies of climate variation: (1) the recognition and analysis of an intrinsic millennial oceanic oscillation that affects both Northern and Southern high latitude climates, (2) The recognition of an oceanographic switch to ice-free seas west of Greenland that explains the initiation of the Last Ice Age, and (3) an analysis of the effect of increasing salinity in the seas east of Greenland that suggests the possibility of the initiation of an ice age threshold climate in the near future. In the first contribution the millennial oscillation in the flow of the North Atlantic Drift reported by Bond et al. (1997) is proposed to be part of a 1500 yr intrinsic deep ocean oscillation. This oscillation involves the exchange of North Atlantic intermediate-level deep water (NADW) formed in the seas east of Greenland with Antarctic Bottom Water formed in a shallow-water zone at the edge of the Antarctic continent. The concept of NADW formation is already well known, with details of the sinking water flowing out of the Greenland Sea observed by Smethie et al. (2000) using chlorofluorocarbon tracers. The concept of Antarctic Bottom Water formation is also already well established. However, its modulation by the changing fraction of NADW in the Southern Ocean, which I infer from the analysis of Weyl (1968), has not been previously discussed. The modulated lower-salinity Antarctic Bottom Water that reaches the northern North Atlantic then provides negative feedback for the cyclic variation of NADW formation as proposed here. This causes the 1500 yr bipolar oscillation. The feedback suggests the possible sinusoidal character of the proposed oscillation model. The model is consistent with the cooling of the Little Ice Age (Lamb, 1972, 1995), and it also correctly predicts NASA's observation of today's record maximum area of winter sea ice on the Southern Ocean and the present observed record low rate of Antarctic Bottom Water

  16. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  17. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  18. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period.

    Erbacher, J; Huber, B T; Norris, R D; Markey, M

    2001-01-18

    Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction. Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (approximately 46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.

  19. Current practice and future prospects for social data in coastal and ocean planning.

    Le Cornu, Elodie; Kittinger, John N; Koehn, J Zachary; Finkbeiner, Elena M; Crowder, Larry B

    2014-08-01

    Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well-established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation-oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social-ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision-support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem-based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes. © 2014 Society for Conservation Biology.

  20. Biogeochemical-Argo: achievements, challenges for the future and potential synergies with other components of ocean observation systems

    Claustre, Hervé; Johnson, Ken

    2017-04-01

    The recently launched Biogeochemical-Argo (BGC-Argo) program aims at developing a global network of biogeochemical sensors on Argo profiling floats for acquiring long-term high-quality time-series of oceanic properties. BGC-Argo is in particular poised to address a number of challenges in ocean science (e.g. hypoxia, carbon uptake, ocean acidification, biological-carbon pump and phytoplankton communities), topics that are difficult, if not impossible, to address with our present observing assets. Presently six variables are considered as core BGC-Argo variables (O2, NO3, pH, Chla, suspended particles and downwelling irradiance). Historically, BGC-Argo has been initiated through small-scale "showcase" projects progressively scaling up into regional case studies essentially addressing key biological pump-related questions in specific regions (e.g. sub-tropical gyres, North Atlantic, Southern Ocean). Now BGC-Argo is transitioning towards a global and sustained observation system thanks to progressive international coordination of national contributions and to increasingly mature and efficient data management and distribution systems. In this presentation, we will highlight a variety of results derived from BGC-Argo observations and encompassing a wide range of topics related to ocean biogeochemistry. Challenges for the future and long-term sustainability of the system will be addressed in particular with respect to maintaining a high-quality and interoperable dataset over long-term. Part of this can be achieved through a tight interaction with programs (e.g. GOSHIP) and their historical databases, which should constitute a corner stone to assess data quality. Example on the interplay between BGC-Argo and GlodapV2 databases will be particularly exemplified in this context. Furthermore, we will illustrate the potential synergies between synoptically measured surface satellite-quantities and their vertically resolved (BGC-Argo) counterparts into the development of 3D

  1. Odor tracking in sharks is reduced under future ocean acidification conditions.

    Dixson, Danielle L; Jennings, Ashley R; Atema, Jelle; Munday, Philip L

    2015-04-01

    Recent studies show that ocean acidification impairs sensory functions and alters the behavior of teleost fishes. If sharks and other elasmobranchs are similarly affected, this could have significant consequences for marine ecosystems globally. Here, we show that projected future CO2 levels impair odor tracking behavior of the smooth dogfish (Mustelus canis). Adult M. canis were held for 5 days in a current-day control (405 ± 26 μatm) and mid (741 ± 22 μatm) or high CO2 (1064 ± 17 μatm) treatments consistent with the projections for the year 2100 on a 'business as usual' scenario. Both control and mid CO2 -treated individuals maintained normal odor tracking behavior, whereas high CO2 -treated sharks significantly avoided the odor cues indicative of food. Control sharks spent >60% of their time in the water stream containing the food stimulus, but this value fell below 15% in high CO2 -treated sharks. In addition, sharks treated under mid and high CO2 conditions reduced attack behavior compared to the control individuals. Our findings show that shark feeding could be affected by changes in seawater chemistry projected for the end of this century. Understanding the effects of ocean acidification on critical behaviors, such as prey tracking in large predators, can help determine the potential impacts of future ocean acidification on ecosystem function. © 2014 John Wiley & Sons Ltd.

  2. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming.

    Ramsby, Blake D; Hoogenboom, Mia O; Smith, Hillary A; Whalan, Steve; Webster, Nicole S

    2018-05-29

    Coral reefs face many stressors associated with global climate change, including increasing sea surface temperature and ocean acidification. Excavating sponges, such as Cliona spp., are expected to break down reef substrata more quickly as seawater becomes more acidic. However, increased bioerosion requires that Cliona spp. maintain physiological performance and health under continuing ocean warming. In this study, we exposed C. orientalis to temperature increments increasing from 23 to 32 °C. At 32 °C, or 3 °C above the maximum monthly mean (MMM) temperature, sponges bleached and the photosynthetic capacity of Symbiodinium was compromised, consistent with sympatric corals. Cliona orientalis demonstrated little capacity to recover from thermal stress, remaining bleached with reduced Symbiodinium density and energy reserves after one month at reduced temperature. In comparison, C. orientalis was not observed to bleach during the 2017 coral bleaching event on the Great Barrier Reef, when temperatures did not reach the 32 °C threshold. While C. orientalis can withstand current temperature extremes (<3 °C above MMM) under laboratory and natural conditions, this species would not survive ocean temperatures projected for 2100 without acclimatisation or adaptation (≥3 °C above MMM). Hence, as ocean temperatures increase above local thermal thresholds, C. orientalis will have a negligible impact on reef erosion.

  3. Increased rainfall volume from future convective storms in the US

    Prein, Andreas F.; Liu, Changhai; Ikeda, Kyoko; Trier, Stanley B.; Rasmussen, Roy M.; Holland, Greg J.; Clark, Martyn P.

    2017-12-01

    Mesoscale convective system (MCS)-organized convective storms with a size of 100 km have increased in frequency and intensity in the USA over the past 35 years1, causing fatalities and economic losses2. However, their poor representation in traditional climate models hampers the understanding of their change in the future3. Here, a North American-scale convection-permitting model which is able to realistically simulate MSCs4 is used to investigate their change by the end-of-century under RCP8.5 (ref. 5). A storm-tracking algorithm6 indicates that intense summertime MCS frequency will more than triple in North America. Furthermore, the combined effect of a 15-40% increase in maximum precipitation rates and a significant spreading of regions impacted by heavy precipitation results in up to 80% increases in the total MCS precipitation volume, focussed in a 40 km radius around the storm centre. These typically neglected increases substantially raise future flood risk. Current investments in long-lived infrastructures, such as flood protection and water management systems, need to take these changes into account to improve climate-adaptation practices.

  4. Increased risk of a shutdown of ocean convection posed by warm North Atlantic summers

    Oltmanns, Marilena; Karstensen, Johannes; Fischer, Jürgen

    2018-04-01

    A shutdown of ocean convection in the subpolar North Atlantic, triggered by enhanced melting over Greenland, is regarded as a potential transition point into a fundamentally different climate regime1-3. Noting that a key uncertainty for future convection resides in the relative importance of melting in summer and atmospheric forcing in winter, we investigate the extent to which summer conditions constrain convection with a comprehensive dataset, including hydrographic records that are over a decade in length from the convection regions. We find that warm and fresh summers, characterized by increased sea surface temperatures, freshwater concentrations and melting, are accompanied by reduced heat and buoyancy losses in winter, which entail a longer persistence of the freshwater near the surface and contribute to delaying convection. By shortening the time span for the convective freshwater export, the identified seasonal dynamics introduce a potentially critical threshold that is crossed when substantial amounts of freshwater from one summer are carried over into the next and accumulate. Warm and fresh summers in the Irminger Sea are followed by particularly short convection periods. We estimate that in the winter 2010-2011, after the warmest and freshest Irminger Sea summer on our record, 40% of the surface freshwater was retained.

  5. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L.

    Clara L Mackenzie

    Full Text Available Increases in atmospheric carbon dioxide are leading to physical changes in marine environments including parallel decreases in ocean pH and increases in seawater temperature. This study examined the impacts of a six month exposure to combined decreased pH and increased temperature on the immune response and disease status in the blue mussel, Mytilus edulis L. Results provide the first confirmation that exposure to future acidification and warming conditions via aquarium-based simulation may have parallel implications for bivalve health. Collectively, the data suggests that temperature more than pH may be the key driver affecting immune response in M. edulis. Data also suggests that both increases in temperature and/or lowered pH conditions may lead to changes in parasite abundance and diversity, pathological conditions, and bacterial incidence in M. edulis. These results have implications for future management of shellfish under a predicted climate change scenario and future sustainability of shellfisheries. Examination of the combined effects of two stressors over an extended exposure period provides key preliminary data and thus, this work represents a unique and vital contribution to current research efforts towards a collective understanding of expected near-future impacts of climate change on marine environments.

  6. Engaging the Applications Community of the future Surface Water and Ocean Topography (SWOT) Mission

    Srinivasan, M.; Andral, A.; Dejus, M.; Hossain, F.; Peterson, C.; Beighley, E.; Pavelsky, T.; Chao, Y.; Doorn, B.; Bronner, E.; Houpert, L.

    2015-04-01

    NASA and the French space agency, CNES, with contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UKSA) are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies. The proposed Surface Water and Ocean Topography (SWOT) mission will have the capability to make observations of surface water (lakes, rivers, wetland) heights and measurements of ocean surface topography with unprecedented spatial coverage, temporal sampling, and spatial resolution compared to existing technologies. These data will be useful for monitoring the hydrologic cycle, flooding, and characterizing human impacts on a changing environment. The applied science community is a key element in the success of the SWOT mission, demonstrating the high value of the science and data products in addressing societal issues and needs. The SWOT applications framework includes a working group made up of applications specialists, SWOT science team members, academics and SWOT Project members to promote applications research and engage a broad community of potential SWOT data users. A defined plan and a guide describing a program to engage early adopters in using proxies for SWOT data, including sophisticated ocean and hydrology simulators, an airborne analogue for SWOT (AirSWOT), and existing satellite datasets, are cornerstones for the program. A user survey is in development and the first user workshop was held in 2015, with annual workshops planned. The anticipated science and engineering advances that SWOT will provide can be transformed into valuable services to decision makers and civic organizations focused on addressing global disaster risk reduction initiatives and potential science-based mitigation activities for water resources challenges of the future. With the surface water measurements anticipated from SWOT, a broad range of applications can inform inland and coastal managers and marine operators of

  7. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  8. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export

    Oschlies, Andreas; Schulz, Kai G.; Riebesell, Ulf; Schmittner, Andreas

    2008-12-01

    The primary impacts of anthropogenic CO2 emissions on marine biogeochemical cycles predicted so far include ocean acidification, global warming induced shifts in biogeographical provinces, and a possible negative feedback on atmospheric CO2 levels by CO2-fertilized biological production. Here we report a new potentially significant impact on the oxygen-minimum zones of the tropical oceans. Using a model of global climate, ocean circulation, and biogeochemical cycling, we extrapolate mesocosm-derived experimental findings of a pCO2-sensitive increase in biotic carbon-to-nitrogen drawdown to the global ocean. For a simulation run from the onset of the industrial revolution until A.D. 2100 under a "business-as-usual" scenario for anthropogenic CO2 emissions, our model predicts a negative feedback on atmospheric CO2 levels, which amounts to 34 Gt C by the end of this century. While this represents a small alteration of the anthropogenic perturbation of the carbon cycle, the model results reveal a dramatic 50% increase in the suboxic water volume by the end of this century in response to the respiration of excess organic carbon formed at higher CO2 levels. This is a significant expansion of the marine "dead zones" with severe implications not only for all higher life forms but also for oxygen-sensitive nutrient recycling and, hence, for oceanic nutrient inventories.

  9. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  10. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives

    Klingbeil, Knut; Lemarié, Florian; Debreu, Laurent; Burchard, Hans

    2018-05-01

    The state of the art of the numerics of hydrostatic structured-grid coastal ocean models is reviewed here. First, some fundamental differences in the hydrodynamics of the coastal ocean, such as the large surface elevation variation compared to the mean water depth, are contrasted against large scale ocean dynamics. Then the hydrodynamic equations as they are used in coastal ocean models as well as in large scale ocean models are presented, including parameterisations for turbulent transports. As steps towards discretisation, coordinate transformations and spatial discretisations based on a finite-volume approach are discussed with focus on the specific requirements for coastal ocean models. As in large scale ocean models, splitting of internal and external modes is essential also for coastal ocean models, but specific care is needed when drying & flooding of intertidal flats is included. As one obvious characteristic of coastal ocean models, open boundaries occur and need to be treated in a way that correct model forcing from outside is transmitted to the model domain without reflecting waves from the inside. Here, also new developments in two-way nesting are presented. Single processes such as internal inertia-gravity waves, advection and turbulence closure models are discussed with focus on the coastal scales. Some overview on existing hydrostatic structured-grid coastal ocean models is given, including their extensions towards non-hydrostatic models. Finally, an outlook on future perspectives is made.

  11. How can present and future satellite missions support scientific studies that address ocean acidification?

    Salisbury, Joseph; Vandemark, Douglas; Jonsson, Bror; Balch, William; Chakraborty, Sumit; Lohrenz, Steven; Chapron, Bertrand; Hales, Burke; Mannino, Antonio; Mathis, Jeremy T.; Reul, Nicolas; Signorini, Sergio; Wanninkhof, Rik; Yates, Kimberly K.

    2016-01-01

    Space-based observations offer unique capabilities for studying spatial and temporal dynamics of the upper ocean inorganic carbon cycle and, in turn, supporting research tied to ocean acidification (OA). Satellite sensors measuring sea surface temperature, color, salinity, wind, waves, currents, and sea level enable a fuller understanding of a range of physical, chemical, and biological phenomena that drive regional OA dynamics as well as the potentially varied impacts of carbon cycle change on a broad range of ecosystems. Here, we update and expand on previous work that addresses the benefits of space-based assets for OA and carbonate system studies. Carbonate chemistry and the key processes controlling surface ocean OA variability are reviewed. Synthesis of present satellite data streams and their utility in this arena are discussed, as are opportunities on the horizon for using new satellite sensors with increased spectral, temporal, and/or spatial resolution. We outline applications that include the ability to track the biochemically dynamic nature of water masses, to map coral reefs at higher resolution, to discern functional phytoplankton groups and their relationships to acid perturbations, and to track processes that contribute to acid variation near the land-ocean interface.

  12. Long-term decline in krill stock and increase in salps within the Southern Ocean.

    Atkinson, Angus; Siegel, Volker; Pakhomov, Evgeny; Rothery, Peter

    2004-11-04

    Antarctic krill (Euphausia superba) and salps (mainly Salpa thompsoni) are major grazers in the Southern Ocean, and krill support commercial fisheries. Their density distributions have been described in the period 1926-51, while recent localized studies suggest short-term changes. To examine spatial and temporal changes over larger scales, we have combined all available scientific net sampling data from 1926 to 2003. This database shows that the productive southwest Atlantic sector contains >50% of Southern Ocean krill stocks, but here their density has declined since the 1970s. Spatially, within their habitat, summer krill density correlates positively with chlorophyll concentrations. Temporally, within the southwest Atlantic, summer krill densities correlate positively with sea-ice extent the previous winter. Summer food and the extent of winter sea ice are thus key factors in the high krill densities observed in the southwest Atlantic Ocean. Krill need the summer phytoplankton blooms of this sector, where winters of extensive sea ice mean plentiful winter food from ice algae, promoting larval recruitment and replenishing the stock. Salps, by contrast, occupy the extensive lower-productivity regions of the Southern Ocean and tolerate warmer water than krill. As krill densities decreased last century, salps appear to have increased in the southern part of their range. These changes have had profound effects within the Southern Ocean food web.

  13. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

    Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.

    2016-06-01

    Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change

  14. Meeting report: Ocean ‘omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013)

    Gilbert, Jack A; Dick, Gregory J.; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R. M.

    2014-01-01

    The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography. PMID:25197495

  15. Meeting report: Ocean 'omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013).

    Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F

    2014-06-15

    The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.

  16. Increasing Awareness of Sustainable Water Management for Future Civil Engineers

    Ilic, Suzana; Karleusa, Barbara; Deluka-Tibljas, Aleksandra

    2010-05-01

    There are more than 1.2 billion people around the world that do not have access to drinking water. While there are plans under the United Nations Millennium Development Goals to halve this number by 2015, there are a number of regions that will be exposed to water scarcity in the coming future. Providing sufficient water for future development is a great challenge for planners and designers of water supply systems. In order to design sustainable water supplies for the future, it is important to learn how people consume water and how water consumption can be reduced. The education of future civil engineers should take into account not only technical aspects of the water supply but also the accompanying social and economical issues, and appreciated the strengths and weaknesses of traditional solutions. The Faculty of Civil Engineering, at the University of Rijeka, has begun incorporating a series of activities that engage undergraduate students and the local community to develop a mutual understanding of the future needs for sustainable management. We present one of the activities, collaboration with the Lancaster Environment Centre at Lancaster University in the UK through the field course Water and environmental management in Mediterranean context. The course, which is designed for the Lancaster University geography students, features a combination of field trips and visits to provide an understanding of the socio-economic and environmental context of water management in two counties (Istra and Primorsko-Goranska). Students from Lancaster visit the Croatian water authority and a regional water company, where they learn about current management practices and problems in managing water supplies and demand through the year. They make their own observations of current management practices in the field and learn about water consumption from the end users. One day field visit to a village in the area that is still not connected to the main water supply system is

  17. Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Erik Olsen; Isaac C. Kaplan; Cameron Ainsworth; Gavin Fay; Sarah Gaichas; Robert Gamble; Raphael Girardin; Cecilie H. Eide; Thomas F. Ihde; Hem Nalini Morzaria-Luna; Hem Nalini Morzaria-Luna; Hem Nalini Morzaria-Luna; Kelli F. Johnson; Marie Savina-Rolland; Howard Townsend

    2018-01-01

    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the glo...

  18. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W.; Riebesell, Ulf; Gao, Kunshan

    2015-01-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  19. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    Jin, Peng

    2015-10-27

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  20. Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    Ellis, Robert P; Urbina, Mauricio A; Wilson, Rod W

    2017-06-01

    Exponentially rising CO 2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO 2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO 2 projected for end of this century (e.g. 800-1000 μatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO 2 levels that far exceed end-of-century climate change projections (sometimes >10 000 μatm) long before the term 'ocean acidification' was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of 'control' CO 2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO 2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO 2 . We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross-disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO 2 on future aquatic ecosystems and the sustainability of fish and shellfish

  1. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: A multi-model linear feedback analysis

    Roy Tilla; Bopp Laurent; Gehlen Marion; Schneider Birgitt; Cadule Patricia; Frölicher Thomas; Segschneider Jochen; Tijputra Jerry; Heinze Christoph; Joos Fortunat

    2011-01-01

    The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here the future oceanic CO2 uptake is simulated using an ensemble of coupled climate–carbon cycle models. The models are driven by CO2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high emission scenario. A linear feedback analysis successfully sep...

  2. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models

    Steiner, N. S.; Christian, J. R.; Six, K. D.; Yamamoto, A.; Yamamoto-Kawai, M.

    2014-01-01

    Six Earth system models that include an interactive carbon cycle and have contributed results to the 5th Coupled Model Intercomparison Project (CMIP5) are evaluated with respect to Arctic Ocean acidification. Projections under Representative Concentration Pathways (RCPs) 8.5 and 4.5 consistently show reductions in the bidecadal mean surface pH from about 8.1 in 1986-2005 to 7.7/7.9 by 2066-2085 in the Canada Basin, closely linked to reductions in the calcium carbonate saturation state ΩA,C from about 1.4 (2.0) to 0.7 (1.0) for aragonite (calcite) for RCP8.5. The large but opposite effects of dilution and biological drawdown of DIC and dilution of alkalinity lead to a small seasonal amplitude change in Ω, as well as intermodel differences in the timing and sign of the summer minimum. The Canada Basin shows a characteristic layering in Ω: affected by ice melt and inflowing Pacific water, shallow undersaturated layers form at the surface and subsurface, creating a shallow saturation horizon which expands from the surface downward. This is in addition to the globally observed deep saturation horizon which is continuously expanding upward with increasing CO2 uptake. The Eurasian Basin becomes undersaturated much later than the rest of the Arctic. These CMIP5 model results strengthen earlier findings, although large intermodel differences remain: Below 200 m ΩA varies by up to 1.0 in the Canada Basin and the deep saturation horizon varies from 2000 to 4000 m among the models. Differences of projected acidification changes are primarily related to sea ice retreat and responses of wind mixing and stratification.

  4. Factors behind increasing ocean use: the IPAT equation and the marine environment

    Hegland, Troels Jacob

    2018-01-01

    to the need for specific management and governance intended to protect the marine environment. With reference to a few, selected examples related to fishing, which is one of the main anthropogenic stressors of the marine environment, it is illustrated how increasing ocean use—and associated pressure...... on the marine environment—can be seen as rooted in a combination of increasing population and human development. In doing so, the chapter departs from the IPAT equation, which is a classic way to explain changes in the environmental impacts of human activities as a product of three factors: population...

  5. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean

    Johansen, J.L.

    2015-09-08

    Increased ocean temperature due to climate change is raising metabolic demands and energy requirements of marine ectotherms. If productivity of marine systems and fisheries are to persist, individual species must compensate for this demand through increasing energy acquisition or decreasing energy expenditure. Here we reveal that the most important coral reef fishery species in the Indo-west Pacific, the large predatory coral trout Plectropomus leopardus (Serranidae), can behaviourally adjust food intake to maintain body-condition under elevated temperatures, and acclimate over time to consume larger meals. However, these increased energetic demands are unlikely to be met by adequate production at lower trophic levels, as smaller prey species are often the first to decline in response to climate-induced loss of live coral and structural complexity. Consequently, ubiquitous increases in energy consumption due to climate change will increase top-down competition for a dwindling biomass of prey, potentially distorting entire food webs and associated fisheries.

  6. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean

    Johansen, J.L.; Pratchett, M.S.; Messmer, V.; Coker, Darren James; Tobin, A.J.; Hoey, A.S.

    2015-01-01

    Increased ocean temperature due to climate change is raising metabolic demands and energy requirements of marine ectotherms. If productivity of marine systems and fisheries are to persist, individual species must compensate for this demand through increasing energy acquisition or decreasing energy expenditure. Here we reveal that the most important coral reef fishery species in the Indo-west Pacific, the large predatory coral trout Plectropomus leopardus (Serranidae), can behaviourally adjust food intake to maintain body-condition under elevated temperatures, and acclimate over time to consume larger meals. However, these increased energetic demands are unlikely to be met by adequate production at lower trophic levels, as smaller prey species are often the first to decline in response to climate-induced loss of live coral and structural complexity. Consequently, ubiquitous increases in energy consumption due to climate change will increase top-down competition for a dwindling biomass of prey, potentially distorting entire food webs and associated fisheries.

  7. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles

    Tjiputra, J. F.; Grini, A.; Lee, H.

    2016-01-01

    Using an Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In the aggressive scenario, the model projects a cooling trend toward 2100 despite warming that persists in the high latitudes. Following SAI termination in 2100, a rapid global warming of 0.35 K yr-1 is simulated in the subsequent 10 years, and the global mean temperature returns to levels close to the reference state, though roughly 0.5 K cooler. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. In the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area.

  8. Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress

    Wang, Jie; Russell, Bayden D.; Ding, Meng-Wen; Dong, Yun-Wei

    2018-05-01

    Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the

  9. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails.

    Sanford, Eric; Gaylord, Brian; Hettinger, Annaliese; Lenz, Elizabeth A; Meyer, Kirstin; Hill, Tessa M

    2014-03-07

    There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO₂, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO₂ experienced a 20% increase in drilling predation. When presented alongside control oysters in a choice experiment, 48% more high-CO₂ oysters were consumed. The invasive snails were tolerant of elevated CO₂ with no change in feeding behaviour. Oysters raised under acidified conditions did not have thinner shells, but were 29-40% smaller than control oysters, and these smaller individuals were consumed at disproportionately greater rates. Reduction in prey size is a common response to environmental stress that may drive increasing per capita effects of stress-tolerant invasive predators.

  10. Responses of calcification of massive and encrusting corals to past, present, and near-future ocean carbon dioxide concentrations

    Iguchi, Akira; Kumagai, Naoki H.; Nakamura, Takashi; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2014-01-01

    Highlights: • Growth rates of two corals in the acidified seawater were evaluated. • Highest growth rates were observed in pre-industrial pCO 2 level. • The growth rates also decreased in the near-future ocean acidification level. • The growth responses were affected by variations of parameters of carbon chemistry. • Bayesian modeling approach was effective for the inference of the best model. - Abstract: In this study, we report the acidification impact mimicking the pre-industrial, the present, and near-future oceans on calcification of two coral species (Porites australiensis, Isopora palifera) by using precise pCO 2 control system which can produce acidified seawater under stable pCO 2 values with low variations. In the analyses, we performed Bayesian modeling approaches incorporating the variations of pCO 2 and compared the results between our modeling approach and classical statistical one. The results showed highest calcification rates in pre-industrial pCO 2 level and gradual decreases of calcification in the near-future ocean acidification level, which suggests that ongoing and near-future ocean acidification would negatively impact coral calcification. In addition, it was expected that the variations of parameters of carbon chemistry may affect the inference of the best model on calcification responses to these parameters between Bayesian modeling approach and classical statistical one even under stable pCO 2 values with low variations

  11. Impact of realistic future ice sheet discharge on the Atlantic ocean

    van den Berk, Jelle

    2015-04-01

    Royal Netherlands Meteorological Institute, De Bilt, The Netherlands A high-end scenario of polar ice loss from the Greenland and Antarctic ice sheet is presented with separate projections for different mass-loss sites up to the year 2100. The resultant freshwater forcing is applied to a global climate model and the effects on sea-level rise are discussed. The simulations show strong sea level rise on the Antarctic continental shelves. To separate the effects of atmospheric warming and melt water we then ran four simulations. One without either forcing, one with both and two with one of each separately. Melt water leads to a slight additional depression of the Atlantic overturning circulation, but a strong decrease remains absent. The bulk of the strength reduction is due to higher atmospheric temperatures which inhibits deep water formation in the North Atlantic. The melt water freshens the upper layers of the ocean, but does not strongly impact buoyancy. The balance between North Atlantic Deep Water and Antarctic Bottom Water must then remain relatively unaffected. Only applying the melt water forcing to the Northern Hemisphere does not lead to a stronger effect. We conclude that the meltwater scenario only impacts the overturning circulation superficially because the deeper ocean is not affected. Transport through Bering Strait and across the zonal section at the latitude of Cape Agulhas is increased by increased atmospheric temperatures and adds some inertia to these transports. Reversing the atmospheric forcing bears this out when the transport then further increases. The freshwater, however, mitigates this inertia somewhat.

  12. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean

    Zeenatul Basher

    2016-02-01

    Full Text Available Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.

  13. Historical baselines and the future of shell calcification for a foundation species in a changing ocean

    Pfister, Catherine A.; Roy, Kaustuv; Wootton, Timothy J.; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Tom; Sanford, Eric

    2016-01-01

    Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds..

  14. Coral resistance to ocean acidification linked to increased calcium at the site of calcification.

    DeCarlo, T M; Comeau, S; Cornwall, C E; McCulloch, M T

    2018-05-16

    Ocean acidification threatens the persistence of biogenic calcium carbonate (CaCO 3 ) production on coral reefs. However, some coral genera show resistance to declines in seawater pH, potentially achieved by modulating the chemistry of the fluid where calcification occurs. We use two novel geochemical techniques based on boron systematics and Raman spectroscopy, which together provide the first constraints on the sensitivity of coral calcifying fluid calcium concentrations ([Formula: see text]) to changing seawater pH. In response to simulated end-of-century pH conditions, Pocillopora damicornis increased [Formula: see text] to as much as 25% above that of seawater and maintained constant calcification rates. Conversely, Acropora youngei displayed less control over [Formula: see text], and its calcification rates strongly declined at lower seawater pH. Although the role of [Formula: see text] in driving calcification has often been neglected, increasing [Formula: see text] may be a key mechanism enabling more resistant corals to cope with ocean acidification and continue to build CaCO 3 skeletons in a high-CO 2 world. © 2018 The Author(s).

  15. Increased oil recovery: secondary and tertiary. Application and future prospect

    Whiting, R L

    1978-01-01

    Oil is initially produced using the nature reservoir pressure present, in a process called primary oil recovery. Secondary recovery uses artificial means to increase the natural reservoir pressure; tertiary, or enhanced oil recovery, uses a number of methods to enhance the flow characteristics of the oil. The scope for such techniques to increase the yield from oil fields in the US is estimated; the practicality of their application is shown to be particularly dependent upon pricing, taxation, and other existing policies. 16 references.

  16. Increasing global crop harvest frequency: recent trends and future directions

    Ray, Deepak K; Foley, Jonathan A

    2013-01-01

    The world’s agricultural systems face the challenge of meeting the rising demands from population growth, changing dietary preferences, and expanding biofuel use. Previous studies have put forward strategies for meeting this growing demand by increasing global crop production, either expanding the area under cultivation or intensifying the crop yields of our existing agricultural lands. However, another possible means for increasing global crop production has received less attention: increasing the frequency of global cropland harvested each year. Historically, many of the world’s croplands were left fallow, or had failed harvests, each year, foregoing opportunities for delivering crop production. Furthermore, many regions, particularly in the tropics, may be capable of multiple harvests per year, often more than are harvested today. Here we analyze a global compilation of agricultural statistics to show how the world’s harvested cropland has changed. Between 2000 and 2011, harvested land area grew roughly 4 times faster than total standing cropland area. Using a metric of cropland harvest frequency (CHF)—the ratio of land harvested each year to the total standing cropland—and its recent trends, we identify countries that harvest their croplands more frequently, and those that have the potential to increase their cropland harvest frequency. We suggest that a possible ‘harvest gap’ may exist in many countries that represents an opportunity to increase crop production on existing agricultural lands. However, increasing the harvest frequency of existing croplands could have significant environmental and social impacts, which need careful evaluation. (letter)

  17. Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus

    Blake L. Spady

    2014-10-01

    Full Text Available Carbon dioxide (CO2 levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19–25% and increased movement (number of line-crosses by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.

  18. Contrasting physiological responses to future ocean acidification among Arctic copepod populations

    Thor, Peter; Bailey, Allison; Dupont, Sam

    2018-01-01

    Widespread ocean acidification (OA) is modifying the chemistry of the global ocean, and the Arctic is recognised as the region where the changes will progress at the fastest rate. Moreover, Arctic species show lower capacity for cellular homeostasis and acid-base regulation rendering them...

  19. What Happens to Bio-degradables in the Ocean? Due to the increasing amount of plastic that ends up in the ocean there is much alarm about it killing sea life from ingestion and changing chemical properties of the ocean. But what really happens t these products in the ocean, and how do they affect the ocean.

    Lavoie, A.

    2016-12-01

    What Happens to Bio-degradables in the Ocean? Due to the increasing amount of plastic that ends up in the ocean there is much alarm about it killing sea life from entanglement and ingestion and changing chemical properties of the ocean. Our society is trying to take action by purchasing and using materials that claim to be biodegradable. But how long do these materials take to degrade in ocean water and do they actually change the water composition? Answering these questions will determine if one should invest in these materials as an alternative to plastic.

  20. Increased costs to US pavement infrastructure from future temperature rise

    Underwood, B. Shane; Guido, Zack; Gudipudi, Padmini; Feinberg, Yarden

    2017-10-01

    Roadway design aims to maximize functionality, safety, and longevity. The materials used for construction, however, are often selected on the assumption of a stationary climate. Anthropogenic climate change may therefore result in rapid infrastructure failure and, consequently, increased maintenance costs, particularly for paved roads where temperature is a key determinant for material selection. Here, we examine the economic costs of projected temperature changes on asphalt roads across the contiguous United States using an ensemble of 19 global climate models forced with RCP 4.5 and 8.5 scenarios. Over the past 20 years, stationary assumptions have resulted in incorrect material selection for 35% of 799 observed locations. With warming temperatures, maintaining the standard practice for material selection is estimated to add approximately US$13.6, US$19.0 and US$21.8 billion to pavement costs by 2010, 2040 and 2070 under RCP4.5, respectively, increasing to US$14.5, US$26.3 and US$35.8 for RCP8.5. These costs will disproportionately affect local municipalities that have fewer resources to mitigate impacts. Failing to update engineering standards of practice in light of climate change therefore significantly threatens pavement infrastructure in the United States.

  1. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Omar, Abdirahman M.

    2003-01-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally, changes

  2. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Omar, Abdirahman M.

    2003-07-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  3. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean

    Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke

    2015-08-01

    Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.

  4. Disturbance Hydrology: Preparing for an Increasingly Disturbed Future

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-12-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre and postdisturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  5. Selenium deficiency risk predicted to increase under future climate change.

    Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E

    2017-03-14

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.

  6. Disturbance hydrology: Preparing for an increasingly disturbed future

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-01-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre- and post-disturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  7. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  8. The future of the oceans past: towards a global marine historical research initiative.

    Schwerdtner Máñez, Kathleen; Holm, Poul; Blight, Louise; Coll, Marta; MacDiarmid, Alison; Ojaveer, Henn; Poulsen, Bo; Tull, Malcolm

    2014-01-01

    Historical research is playing an increasingly important role in marine sciences. Historical data are also used in policy making and marine resource management, and have helped to address the issue of shifting baselines for numerous species and ecosystems. Although many important research questions still remain unanswered, tremendous developments in conceptual and methodological approaches are expected to contribute to a comprehensive understanding of the global history of human interactions with life in the seas. Based on our experiences and knowledge from the "History of Marine Animal Populations" project, this paper identifies the emerging research topics for future historical marine research. It elaborates on concepts and tools which are expected to play a major role in answering these questions, and identifies geographical regions which deserve future attention from marine environmental historians and historical ecologists.

  9. Increase in dimethylsulfide (DMS emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification.

    Nathalie eGypens

    2014-04-01

    Full Text Available Available information from manipulative experiments suggested that the emission of dimethylsulfide (DMS would decrease in response to the accumulation of anthropogenic CO2 in the ocean (ocean acidification. However, in coastal environments, the carbonate chemistry of surface waters was also strongly modified by eutrophication and related changes in biological activity (increased primary production and change in phytoplankton dominance during the last 50 years. Here, we tested the hypothesis that DMS emissions in marine coastal environments also strongly responded to eutrophication in addition to ocean acidification at decadal timescales. We used the R-MIRO-BIOGAS model in the eutrophied Southern Bight of the North Sea characterized by intense blooms of Phaeocystis that are high producers of dimethylsulfoniopropionate (DMSP, the precursor of DMS. We showed that, for the period from 1951 to 2007, eutrophication actually led to an increase of DMS emissions much stronger than the response of DMS emissions to ocean acidification.

  10. Simulations of future climate with a coupled atmosphere-ocean general circulation model

    Stendel, M.; Schmith, T.; Hesselbjerg Christensen, J.

    2001-01-01

    A coupled atmosphere/ocean general circulation model to study the time-dependent climate response to changing concentrations of greenhouse gases, chlorofluorocarbons and aerosols according to the new IPCC SRES scenarios A2 and B2 has been used. The results of these experiments are compared to an unforced 300-year control experiment. The changes in the last three decades of the scenario simulations (2071-2100) are furthermore compared to the simulation of present-day climate (1961-1990). In accordance with previous experiments we find that greenhouse warming is reduced when aerosol effects are considered. Sulfur emissions, however, are lower than in the IS92a scenario. Consequently, the greenhouse warming effect, which leads to a bigger temperature increase than in the GSDIO experiment can outweigh the aerosol cooling effect. The result shows that there still are serious difficulties and uncertainties in this type of model simulation. Those are partially due to oversimplifications in the model, concerning the radiative properties of aerosols in particular, and therefore the indirect aerosol effect. Another inherent problem, however, is the uncertainty in the scenarios themselves. This is the case for short-lived substances with an inhomogeneous spatial and temporal distribution, such as aerosols. Therefore, on a decadal horizon, changes in the emissions of those substance can exert a significant effect on anthropogenic climate change. (LN)

  11. Unlocking the Treasures of the Ocean: Current Assessment and Future Perspectives of Seafloor Resources (C.F Gauss Lecture)

    Jegen, Marion

    2016-04-01

    Oceans cover 70% of the Earth's surface, and there is reason to believe that the wealth of mineral and carbon resources on the seafloor is similar to deposits on land. While off-shore energy resources such as oil and gas are nowadays regarded as conventional, energy resources in form of methane hydrates and seafloor mineral deposits are yet unconventional and at best marginally economic. However, taking into account global population growth, geopolitics and technological development (both in terms of increasing industrialization and possibility to explore and mine seafloor resources), these resources might play a more fundamental role in the future. Resource assessment and understanding of the geological formation process of resources are topics in marine geosciences with broad relevance to society. The lecture presents an overview of the geophysical exploration of the seafloor and its resource potential. Starting from the link of physical parameter anomalies associated with resources, I will explore marine technological developments on how to sense them remotely from the seafloor. Also the question will be addressed of how well we can actually quantify the amount of resources from geophysical data. The process will be illustrated based on theoretical work as well as case studies from around the world.

  12. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    Annamalai, H. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  13. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean

    J. L. Ramage

    2018-03-01

    Full Text Available Retrogressive thaw slumps (RTSs are among the most active thermokarst landforms in the Arctic and deliver a large amount of material to the Arctic Ocean. However, their contribution to the organic carbon (OC budget is unknown. We provide the first estimate of the contribution of RTSs to the nearshore OC budget of the Yukon Coast, Canada, and describe the evolution of coastal RTSs between 1952 and 2011 in this area. We (1 describe the evolution of RTSs between 1952 and 2011; (2 calculate the volume of eroded material and stocks of OC mobilized through slumping, including soil organic carbon (SOC and dissolved organic carbon (DOC; and (3 estimate the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied spline interpolation on an airborne lidar dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73 % increase in the number of RTSs and 14 % areal expansion between 1952 and 2011. In the study area, RTSs displaced at least 16.6×106 m3 of material, 53 % of which was ice, and mobilized 145.9×106 kg of OC. Between 1972 and 2011, 49 RTSs displaced 8.6×103 m3 yr−1 of material, adding 0.6 % to the OC flux released by coastal retreat along the Yukon Coast. Our results show that the contribution of RTSs to the nearshore OC budget is non-negligible and should be included when estimating the quantity of OC released from the Arctic coast to the ocean.

  14. Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction

    Turney, Chris S.M.; Fogwill, Christopher J.; Palmer, Jonathan G.; Van Sebille, Erik; Thomas, Zoë; McGlone, Matt; Richardson, Sarah; Wilmshurst, Janet M.; Fenwick, Pavla; Zunz, Violette; Goosse, Hugues; Wilson, Kerry Jayne; Carter, Lionel; Lipson, Mathew; Jones, Richard T.; Harsch, Melanie; Clark, Graeme; Marzinelli, Ezequiel; Rogers, Tracey; Rainsley, Eleanor; Ciasto, Laura; Waterman, Stephanie; Thomas, Elizabeth R.; Visbeck, Martin

    2017-01-01

    Occupying about 14% of the world's surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our

  15. Turf algal epiphytes metabolically induce local pH increase, with implications for underlying coralline algae under ocean acidification

    Short, J.A.; Pedersen, Ole; Kendrick, G.A.

    2015-01-01

    The presence of epiphytic turf algae may modify the effects of ocean acidification on coralline algal calcification rates by altering seawater chemistry within the diffusive boundary layer (DBL) above coralline algal crusts. We used microelectrodes to measure the effects of turf algal epiphytes...... on seawater pH and the partial pressure of oxygen (pO2) within the DBL at the surface of Hydrolithoideae coralline algal crusts under ambient (36 Pa) CO2 and an ocean acidification scenario with elevated CO2 (200 Pa). Turf algae significantly increased the mean diel amplitude of pH and pO2, and this effect...... was more pronounced under elevated CO2. We suggest that increases in seawater CO2 under ocean acidification conditions may drive an increase in the abundance of epiphytic turf algae, consequently modifying the chemistry within the DBL. Thus, the effect of epiphytic turf algae on microscale pH is striking...

  16. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta)

    Rautenberger, Ralf; Fernández, Pamela A; Strittmatter, Martina; Heesch, Svenja; Cornwall, Christopher E; Hurd, Catriona L; Roleda, Michael Y

    2015-01-01

    Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated dehydration and alter the stable carbon isotope (δ13C) signatures toward more CO2 use to support higher growth rate. At pHT 9.0 where CO2(aq) is Ulva found putative light-dependent transporters to which the remaining NPS can be attributed. The shift in δ13C signatures from –22‰ toward –10‰ under saturating light but not under elevated CO2(aq) suggest preference and substantial use to support photosynthesis and growth. U. rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms. PMID:25750714

  17. Trichodesmium’s strategies to alleviate phosphorus limitation in the future acidified oceans.

    Spungin, Dina; Berman-Frank, Ilana; Levitan, Orly

    2014-06-01

    Global warming may exacerbate inorganic nutrient limitation, including phosphorus (P), in the surface waters of tropical oceans that are home to extensive blooms of the marine diazotrophic cyanobacterium, Trichodesmium. We examined the combined effects of P limitation and pCO(2), forecast under ocean acidification scenarios, on Trichodesmium erythraeum IMS101 cultures. We measured nitrogen acquisition,glutamine synthetase activity, C uptake rates, intracellular Adenosine Triphosphate (ATP) concentration and the pool sizes of related key proteins. Here, we present data supporting the idea that cellular energy re-allocation enables the higher growth and N(2) fixation rates detected in Trichodesmium cultured under high pCO(2). This is reflected in altered protein abundance and metabolic pools. Also modified are particulate organic carbon and nitrogen production rates,enzymatic activities, and cellular ATP concentrations. We suggest that adjusting these cellular pathways to changing environmental conditions enables Trichodesmium to compensate for low P availability and to thrive in acidified oceans. Moreover, elevated pCO(2) could provide Trichodesmium with a competitive dominance that would extend its niche, particularly in P-limited regions of the tropical and subtropical oceans.

  18. Report on Workshop "Planning of Future Science in the Polar Ocean Study with Cooperation among Study Groups"

    Mitsuo Fukuchi

    2001-03-01

    Full Text Available A workshop on "Planning of Future Science in the Polar Ocean Study with Cooperation among Study Groups" was held on November 1,2000,at the National Institute of Polar Research with 21 participants. In this workshop, a plan to charter a research vessel other than "Shirase" was introduced and a science plan using the chartered research vessel by 43rd Japanese Antarctic Research Expedition was discussed. This study is going to be conducted in the sea ice area around 140-150°E in mid-summer (February 2002, when biological production becomes active in the Antarctic Ocean. Oceanographic observations using "Shirase" are difficult to conduct in this season since she supports a wide range of summer operations around Syowa Station. The relationships between biological production and greenhouse effect gas production and the vertical transport of organic materials from the surface to deep ocean will be the focus of this study. At this stage, one deputy leader and three members of JARE, and 25-26 other scientists including graduate students and foreign scientists, will participate in the field observations using the chartered vessel. The members of JARE will conduct a project science program of the VI Phase of JARE, while the other participants will do part of the science program "Antarctic Ocean in Earth System". Since further observations for several years after the summer of 2002 will be required to understand the role of the Antarctic Ocean in global climate change, we have applied for a Grant-in-Aid for Scientific Research for the next project, which will start from 2001,to the Ministry of Education, Science, Sports and Culture of Japan. The proposal was discussed in detail in this workshop.

  19. Increasing trend of `Break-Monsoon` conditions over India — Role of ocean–atmosphere processes in the Indian Ocean

    RameshKumar, M.R.; Krishnan, R.; Sankar, S.; Unnikrishnan, A.S.; Pai, D.S.

    integrated moisture transport; the findings also point to the role of sea surface temperature (SST) warming trend (0.015 degrees C year sup(-1)) in the tropical eastern Indian Ocean (IO) in inducing anomalous changes favorable for the increased propensity...

  20. Small scale currents and ocean wave heights: from today's models to future satellite observations with CFOSAT and SKIM

    Ardhuin, Fabrice; Gille, Sarah; Menemenlis, Dimitris; Rocha, Cesar; Rascle, Nicolas; Gula, Jonathan; Chapron, Bertrand

    2017-04-01

    Tidal currents and large oceanic currents, such as the Agulhas, Gulf Stream and Kuroshio, are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of ocean currents at scales of 10 km or less have revealed the ubiquitous presence of fronts and filaments. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations at 10 km. This current-induced variability creates gradients in wave heights that were previously overlooked and are relevant for extreme wave heights and remote sensing. The spectrum of significant wave heights is found to be of the order of 70⟨Hs ⟩2/(g2⟨Tm0,-1⟩2) times the current spectrum, where ⟨Hs ⟩ is the spatially-averaged significant wave height, ⟨Tm0,-1⟩ is the average energy period, and g is the gravity acceleration. This small scale variability is consistent with Jason-3 and SARAL along-track variability. We will discuss how future satellite mission with wave spectrometers can help observe these wave-current interactions. CFOSAT is due for launch in 2018, and SKIM is a proposal for ESA Earth Explorer 9.

  1. Climate and oceanic fisheries: recent observations and projections and future needs

    Salinger, M.J.; Bell, Johan D.; Evans, Karen

    2013-01-01

    Several lines of evidence show that climatic variation and global warming can have a major effect on fisheries production and replenishment. To prevent overfishing and rebuild overfished stocks under changing and uncertain environmental conditions, new research partnerships between fisheries scie...... scientists and climate change experts are required. The International Workshop on Climate and Oceanic Fisheries held in Rarotonga, Cook Islands, 3–5......Several lines of evidence show that climatic variation and global warming can have a major effect on fisheries production and replenishment. To prevent overfishing and rebuild overfished stocks under changing and uncertain environmental conditions, new research partnerships between fisheries...

  2. Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming

    Fu, Weiwei; Primeau, Francois; Keith Moore, J.; Lindsay, Keith; Randerson, James T.

    2018-04-01

    Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century. Here we show that this increasing hypoxia trend reverses in the tropics after 2100 in the Community Earth System Model forced by atmospheric CO2 from the Representative Concentration Pathway 8.5 and Extended Concentration Pathway 8.5. In tropical intermediate waters between 200 and 1,000 m, the model predicts a steady decline of O2 and an expansion of oxygen minimum zones (OMZs) during the 21st century. By 2150, however, the trend reverses with oxygen concentration increasing and OMZ volume shrinking through 2300. A novel five-box model approach in conjunction with output from the full Earth system model is used to separate the contributions of biological and physical processes to the trends in tropical oxygen. The tropical O2 recovery is caused mainly by reductions in tropical biological export, coupled with a modest increase in ventilation after 2200. The time-evolving oxygen distribution impacts marine nitrogen cycling, with potentially important climate feedbacks.

  3. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in

  4. Ocean deoxygenation in a warming world.

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas

    2010-01-01

    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  5. The highest global concentrations and increased abundance of oceanic plastic debris in the North Pacific: Evidence from seabirds

    Robards, Martin D.; Gould, Patrick J.; Coe, James M.; Rogers, Donald B.

    1997-01-01

    Plastic pollution has risen dramatically with an increase in production of plastic resin during the past few decades. Plastic production in the United States increased from 2.9 million tons in I960 to 47.9 million tons in 1985 (Society of the Plastics Industry 1986). This has been paralleled by a significant increase in the concentration of plastic particles in oceanic surface waters of the North Pacific from the 1970s to the late 1980s (Day and Shaw 1987; Day et al. 1990a). Research during the past few decades has indicated two major interactions between marine life and oceanic plastic: entanglement and ingestion (Laist 1987). Studies in the last decade have documented the prevalence of plastic in the diets of many seabird species in the North Pacific and the need for further monitoring of those species and groups that ingest the most plastic (Day et al. 1985).

  6. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish.

    Miller, G M; Kroon, F J; Metcalfe, S; Mundayi, P L

    2015-04-01

    Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures (28.5°C [+0.0°C], 30.0°C [-1.5°C] and 31.5°C [+3.0°C]) cross-factored with three CO2 levels (a current-day control [417 µatm] and moderate [644 µatm] and high [1134 µatm]) treatments consistent with the range of CO2 projections for the year 2100. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length, and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17β-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated. CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or Co2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17β-estradiol concentrations, suggesting that declines in reproduction with

  7. Development of Ocean Acidification Flow-Thru Experimental Raceway Units (OAFTERU): Simulating the Future Reefs in the Keys Today

    Hall, E. R.; Vaughan, D.; Crosby, M. P.

    2011-12-01

    Ocean acidification, a consequence of anthropogenic CO2 production due to fossil fuel combustion, deforestation, and cement production, has been referred to as "the other CO2 problem" and is receiving much attention in marine science and public policy communities. Critical needs that have been identified by top climate change and marine scientists include using projected pCO2 (partial pressure of CO2 in seawater) levels in manipulative experiments to determine physiological indices of ecologically important species, such as corals. Coral reefs were one of the first ecosystems to be documented as susceptible to ocean acidification. The Florida Keys reef system has already experienced a long-term deterioration, resulting in increased calls for large scale coral reef ecosystem restoration of these critical resources. It has also been speculated that this decline in reef ecosystem health may be exacerbated by increasing atmospheric CO2 levels with resulting ocean acidification. Therefore, reef resilience to ocean acidification and the potential for successful restoration of these systems under forecasted long-term modified pH conditions in the Florida Keys is of great concern. Many studies for testing effects of ocean acidification on corals have already been established and tested. However, many employ pH modification experimental designs that include addition of acid to seawater which may not mimic conditions of climate change induced ocean acidification. It would be beneficial to develop and maintain an ocean acidification testing system more representative of climate change induced changes, and specific to organisms and ecosystems indigenous to the Florida Keys reef tract. The Mote Marine Laboratory research facility in Summerland Key, FL has an established deep well from which its supply of seawater is obtained. This unique source of seawater is 80 feet deep, "fossil" marine water. It is pumped from the on-site aquifer aerated to reduce H2S and ammonia, and passed

  8. Global Ocean Evaporation Increases Since 1960 in Climate Reanalyses: How Accurate Are They?

    Robertson, Franklin R.; Roberts, Jason B.; Bosilovich, Michael G.

    2016-01-01

    AGCMs w/ Specified SSTs (AMIPs) GEOS-5, ERA-20CM Ensembles Incorporate best historical estimates of SST, sea ice, radiative forcing Atmospheric "weather noise" is inconsistent with specified SST. Instantaneous Sfc fluxes can be wrong sign (e.g. Indian Ocean Monsoon, high latitude oceans). Averaging over ensemble members helps isolate SST-forced signal. Reduced Observational Reanalyses: NOAA 20CR V2C, ERA-20C, JRA-55C Incorporate observed Sfc Press (20CR), Marine Winds (ERA-20C) and rawinsondes (JRA-55C) to recover much of true synoptic or weather w/o shock of new sat obs. Comprehensive Reanalyses (MERRA-2) Full suite of observational constraints- both conventional and remote sensing. But... substantial uncertainties owing to evolving satellite observing system. Multi-source Statistically Blended OAFlux, LargeYeager Blend reanalysis, satellite, and ocean buoy information. While climatological biases are removed, non-physical trends or variations in components remain. Satellite Retrievals GSSTF3, SeaFlux, HOAPS3... Global coverage. Retrieved near sfc wind speed, & humidity used with SST to drive accurate bulk aerodynamic flux estimates. Satellite inter-calibration, spacecraft pointing variations crucial. Short record ( late 1987-present). In situ Measurements ICOADS, IVAD, Res Cruises VOS and buoys offer direct measurements. Sparse data coverage (esp south of 30S. Changes in measurement techniques (e.g. shipboard anemometer height).

  9. Conclusions: The Future of Shark Management and Conservation in the Northeast Pacific Ocean.

    Lowry, Dayv

    Human interactions with sharks in the Northeast Pacific Ocean (NEP) have occurred for millennia but were largely limited to nearshore encounters as target and nontarget catch in fisheries. The arrival of Spanish explorers in the mid-1500s, followed by subsequent waves of explorers and colonizers from Europe and Russia, did little to change this relationship, until the mid-1800s. As technological advances conferred the ability to exploit marine fish further offshore and in deeper water, substantial fisheries developed and many of these encountered, and sometimes directly targeted, sharks. As these fisheries rose and fell with market demands and fluctuations in the abundance of target species, the collective consciousness of the nations fishing this region came to realize that adequate management plans with clear policy guidance rooted in conservation were crucial to sustaining both biodiversity and abundance of marine resources. With explicitly defined management regions governed by scientifically informed bodies that consider both societal and ecological needs, systems have been in place to manage and conserve marine species, including sharks, for over four decades now in the NEP. While policy evolution has largely limited directed fishing pressure as a threat for most shark species, bycatch is still a concern. Additionally, habitat degradation and destruction, ocean acidification, and global climate change are anticipated to fundamentally alter the ecosystems sharks are an integral part of in coming decades and centuries. Adequate conservation and management of sharks in the NEP, and around the world, moving into this period of uncertainty will rely upon comprehensive, integrated management of the ecosystem rooted in international coordination and cooperation. Far from being an unattainable goal, steps are being made each day to 'move the needle' in this direction-for the benefit of all. © 2017 Elsevier Ltd All rights reserved.

  10. Thermal Niche Tracking and Future Distribution of Atlantic Mackerel Spawning in response to Ocean Warming

    Antoine eBruge

    2016-06-01

    Full Text Available North-east Atlantic mackerel spawning distribution has shifted northward in the last three decades probably in response to global sea warming. Yet, uncertainties subsist regarding on the shift rate, causalities, and how this species will respond to future conditions. Using egg surveys, we explored the influence of temperature change on mackerel’s spawning distribution (western and southern spawning components of the stock between 1992 and 2013, and projected how it may change under future climate change scenarios. We developed three generalized additive models: (i a spatiotemporal model to reconstruct the spawning distribution for the north-east Atlantic stock over the period 1992-2013, to estimate the rate of shift; (ii a thermal habitat model to assess if spawning mackerel have tracked their thermal spawning-niche; and (iii a niche-based model to project future spawning distribution under two predicted climate change scenarios. Our findings showed that mackerel spawning activity has shifted northward at a rate of 15.9 ± 0.9 km/decade between 1992 and 2013. Similarly, using the thermal habitat model, we detected a northward shift of the thermal spawning-niche. This indicates that mackerel has spawned at higher latitudes to partially tracking their thermal spawning-niche, at a rate of 28.0 ± 9.0 km/°C of sea warming. Under future scenarios (mid and end of the century, the extrapolation of the niche-based model to coupled hydroclimatic and biogeochemical models indicates that centre of gravity of mackerel spawning distribution is expected to shift westward (32 to 117 km and northward (0.5 to 328 km, but with high variability according to scenarios and time frames. The future of the overall egg production in the area is uncertain (change from -9.3% to 12%. With the aim to allow the fishing industry to anticipate the future distribution of mackerel shoals during the spawning period, future research should focus on reducing uncertainty in

  11. INCREASING SAVING BEHAVIOR THROUGH AGE-PROGRESSED RENDERINGS OF THE FUTURE SELF

    HERSHFIELD, HAL E.; GOLDSTEIN, DANIEL G.; SHARPE, WILLIAM F.; FOX, JESSE; YEYKELIS, LEO; CARSTENSEN, LAURA L.; BAILENSON, JEREMY N.

    2014-01-01

    Many people fail to save what they need to for retirement (Munnell, Webb, and Golub-Sass 2009). Research on excessive discounting of the future suggests that removing the lure of immediate rewards by pre-committing to decisions, or elaborating the value of future rewards can both make decisions more future-oriented. In this article, we explore a third and complementary route, one that deals not with present and future rewards, but with present and future selves. In line with thinkers who have suggested that people may fail, through a lack of belief or imagination, to identify with their future selves (Parfit 1971; Schelling 1984), we propose that allowing people to interact with age-progressed renderings of themselves will cause them to allocate more resources toward the future. In four studies, participants interacted with realistic computer renderings of their future selves using immersive virtual reality hardware and interactive decision aids. In all cases, those who interacted with virtual future selves exhibited an increased tendency to accept later monetary rewards over immediate ones. PMID:24634544

  12. INCREASING SAVING BEHAVIOR THROUGH AGE-PROGRESSED RENDERINGS OF THE FUTURE SELF.

    Hershfield, Hal E; Goldstein, Daniel G; Sharpe, William F; Fox, Jesse; Yeykelis, Leo; Carstensen, Laura L; Bailenson, Jeremy N

    2011-11-01

    Many people fail to save what they need to for retirement (Munnell, Webb, and Golub-Sass 2009). Research on excessive discounting of the future suggests that removing the lure of immediate rewards by pre-committing to decisions, or elaborating the value of future rewards can both make decisions more future-oriented. In this article, we explore a third and complementary route, one that deals not with present and future rewards, but with present and future selves. In line with thinkers who have suggested that people may fail, through a lack of belief or imagination, to identify with their future selves (Parfit 1971; Schelling 1984), we propose that allowing people to interact with age-progressed renderings of themselves will cause them to allocate more resources toward the future. In four studies, participants interacted with realistic computer renderings of their future selves using immersive virtual reality hardware and interactive decision aids. In all cases, those who interacted with virtual future selves exhibited an increased tendency to accept later monetary rewards over immediate ones.

  13. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  14. LIFETIME AND SPECTRAL EVOLUTION OF A MAGMA OCEAN WITH A STEAM ATMOSPHERE: ITS DETECTABILITY BY FUTURE DIRECT IMAGING

    Hamano, Keiko; Kawahara, Hajime; Abe, Yutaka [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Onishi, Masanori [Department of Earth and Planetary Sciences, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Hashimoto, George L., E-mail: keiko@eps.s.u-tokyo.ac.jp [Department of Earth Sciences, Okayama University, 3-1-1 Tsushima-Naka, Kita, Okayama, 700-8530 (Japan)

    2015-06-20

    We present the thermal evolution and emergent spectra of solidifying terrestrial planets along with the formation of steam atmospheres. The lifetime of a magma ocean and its spectra through a steam atmosphere depends on the orbital distance of the planet from the host star. For a Type I planet, which is formed beyond a certain critical distance from the host star, the thermal emission declines on a timescale shorter than approximately 10{sup 6} years. Therefore, young stars should be targets when searching for molten planets in this orbital region. In contrast, a Type II planet, which is formed inside the critical distance, will emit significant thermal radiation from near-infrared atmospheric windows during the entire lifetime of the magma ocean. The K{sub s} and L bands will be favorable for future direct imaging because the planet-to-star contrasts of these bands are higher than approximately 10{sup −7}–10{sup −8}. Our model predicts that, in the Type II orbital region, molten planets would be present over the main sequence of the G-type host star if the initial bulk content of water exceeds approximately 1 wt%. In visible atmospheric windows, the contrasts of the thermal emission drop below 10{sup −10} in less than 10{sup 5} years, whereas those of the reflected light remain 10{sup −10} for both types of planets. Since the contrast level is comparable to those of reflected light from Earth-sized planets in the habitable zone, the visible reflected light from molten planets also provides a promising target for direct imaging with future ground- and space-based telescopes.

  15. Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere-ocean regional climate models

    Dubois, C.; Somot, S.; Deque, M.; Sevault, F. [CNRM-GAME, Meteo-France, CNRS, Toulouse (France); Calmanti, S.; Carillo, A.; Dell' Aquilla, A.; Sannino, G. [ENEA, Rome (Italy); Elizalde, A.; Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Gualdi, S.; Oddo, P.; Scoccimarro, E. [INGV, Bologna (Italy); L' Heveder, B.; Li, L. [Laboratoire de Meteorologie Dynamique, Paris (France)

    2012-10-15

    Within the CIRCE project ''Climate change and Impact Research: the Mediterranean Environment'', an ensemble of high resolution coupled atmosphere-ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950-2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021-2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961-1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021-2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961-1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing

  16. Increasing costs due to ocean acidification drives phytoplankton to be more heavily calcified: optimal growth strategy of coccolithophores.

    Takahiro Irie

    Full Text Available Ocean acidification is potentially one of the greatest threats to marine ecosystems and global carbon cycling. Amongst calcifying organisms, coccolithophores have received special attention because their calcite precipitation plays a significant role in alkalinity flux to the deep ocean (i.e., inorganic carbon pump. Currently, empirical effort is devoted to evaluating the plastic responses to acidification, but evolutionary considerations are missing from this approach. We thus constructed an optimality model to evaluate the evolutionary response of coccolithophorid life history, assuming that their exoskeleton (coccolith serves to reduce the instantaneous mortality rates. Our model predicted that natural selection favors constructing more heavily calcified exoskeleton in response to increased acidification-driven costs. This counter-intuitive response occurs because the fitness benefit of choosing a better-defended, slower growth strategy in more acidic conditions, outweighs that of accelerating the cell cycle, as this occurs by producing less calcified exoskeleton. Contrary to the widely held belief, the evolutionarily optimized population can precipitate larger amounts of CaCO(3 during the bloom in more acidified seawater, depending on parameter values. These findings suggest that ocean acidification may enhance the calcification rates of marine organisms as an adaptive response, possibly accompanied by higher carbon fixation ability. Our theory also provides a compelling explanation for the multispecific fossil time-series record from ∼200 years ago to present, in which mean coccolith size has increased along with rising atmospheric CO(2 concentration.

  17. Fiscal 1992 survey report. Promotion of coal importing base buildup (How ocean freight system should be in the future); 1992 nendo kaigaitan yunyu kiban seibi sokushin chosa. Kongo no gaiko yuso taisei no arikata ni tsuite

    NONE

    1993-03-01

    When a general view is taken of coal chains that connect overseas coal suppliers to Japan's end users, it is found that no survey has ever been made to sufficiently explain marine transportation of coal. It is now expected that the gap between supply of and demand for shipping tonnage will widen thanks to a sharp increase supposed to emerge in the demand for overseas coal in the future and that a scarcity of tonnage will impede stable space securing for coal and economically viable coal transportation. Such being the case, this project aims to investigate the ocean freight systems to serve between overseas coal shipping ports and Japan's coal receiving bases and the current states and problems of cargo facilities in Japan, to study how to build up a shipping space securing system which will properly deal with an increase in the import of steam coal from abroad, and to contribute to the formation of measures for enabling smooth transportation of coal from overseas. The survey conducted for this purpose covers the present conditions of Japan's ocean freight systems and of its coal receiving bases, present conditions of transportation by oceangoing ships in the Pacific basin, compilation of a list of oceangoing ships, prediction of ocean freight transportation and supply of transportation service, prediction of ocean freight cost in the future, and putting in an easy-to-review order the tasks to be accomplished for the enhancement of coal transportation by oceangoing ships. (NEDO)

  18. Fiscal 1992 survey report. Promotion of coal importing base buildup (How ocean freight system should be in the future); 1992 nendo kaigaitan yunyu kiban seibi sokushin chosa. Kongo no gaiko yuso taisei no arikata ni tsuite

    NONE

    1993-03-01

    When a general view is taken of coal chains that connect overseas coal suppliers to Japan's end users, it is found that no survey has ever been made to sufficiently explain marine transportation of coal. It is now expected that the gap between supply of and demand for shipping tonnage will widen thanks to a sharp increase supposed to emerge in the demand for overseas coal in the future and that a scarcity of tonnage will impede stable space securing for coal and economically viable coal transportation. Such being the case, this project aims to investigate the ocean freight systems to serve between overseas coal shipping ports and Japan's coal receiving bases and the current states and problems of cargo facilities in Japan, to study how to build up a shipping space securing system which will properly deal with an increase in the import of steam coal from abroad, and to contribute to the formation of measures for enabling smooth transportation of coal from overseas. The survey conducted for this purpose covers the present conditions of Japan's ocean freight systems and of its coal receiving bases, present conditions of transportation by oceangoing ships in the Pacific basin, compilation of a list of oceangoing ships, prediction of ocean freight transportation and supply of transportation service, prediction of ocean freight cost in the future, and putting in an easy-to-review order the tasks to be accomplished for the enhancement of coal transportation by oceangoing ships. (NEDO)

  19. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    Singh, H. A. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rasch, P. J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rose, B. E. J. [Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany NY USA

    2017-10-18

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  20. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.

    Bintanja, R; Selten, F M

    2014-05-22

    Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation.

  1. Integrated assessment of future land use in Brazil under increasing demand for bioenergy

    Verstegen, Judith; van der Hilst, Floortje; Karssenberg, Derek; Faaij, André

    2014-01-01

    Environmental impacts of a future increase in demand for bioenergydepend on the magnitude, location and pattern of the direct and indirectland use change of energy cropland expansion. Here we aim at 1)projecting the spatiotemporal pattern of sugar cane expansion and theeffect on other land uses in

  2. Ensuring America's Future by Increasing Latino College Completion: Latino College Completion in 50 States. Executive Summary

    Santiago, Deborah; Soliz, Megan

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. This initiative included the release of a benchmarking guide for projections of degree attainment disaggregated by race/ethnicity that offered multiple metrics to track…

  3. Adaptive false memory: Imagining future scenarios increases false memories in the DRM paradigm.

    Dewhurst, Stephen A; Anderson, Rachel J; Grace, Lydia; van Esch, Lotte

    2016-10-01

    Previous research has shown that rating words for their relevance to a future scenario enhances memory for those words. The current study investigated the effect of future thinking on false memory using the Deese/Roediger-McDermott (DRM) procedure. In Experiment 1, participants rated words from 6 DRM lists for relevance to a past or future event (with or without planning) or in terms of pleasantness. In a surprise recall test, levels of correct recall did not vary between the rating tasks, but the future rating conditions led to significantly higher levels of false recall than the past and pleasantness conditions did. Experiment 2 found that future rating led to higher levels of false recognition than did past and pleasantness ratings but did not affect correct recognition. The effect in false recognition was, however, eliminated when DRM items were presented in random order. Participants in Experiment 3 were presented with both DRM lists and lists of unrelated words. Future rating increased levels of false recognition for DRM lures but did not affect correct recognition for DRM or unrelated lists. The findings are discussed in terms of the view that false memories can be associated with adaptive memory functions.

  4. Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate.

    Erica K Towle

    Full Text Available Global climate change threatens coral growth and reef ecosystem health via ocean warming and ocean acidification (OA. Whereas the negative impacts of these stressors are increasingly well-documented, studies identifying pathways to resilience are still poorly understood. Heterotrophy has been shown to help corals experiencing decreases in growth due to either thermal or OA stress; however, the mechanism by which it mitigates these decreases remains unclear. This study tested the ability of coral heterotrophy to mitigate reductions in growth due to climate change stress in the critically endangered Caribbean coral Acropora cervicornis via changes in feeding rate and lipid content. Corals were either fed or unfed and exposed to elevated temperature (30°C, enriched pCO2 (800 ppm, or both (30°C/800 ppm as compared to a control (26°C/390 ppm for 8 weeks. Feeding rate and lipid content both increased in corals experiencing OA vs. present-day conditions, and were significantly correlated. Fed corals were able to maintain ambient growth rates at both elevated temperature and elevated CO2, while unfed corals experienced significant decreases in growth with respect to fed conspecifics. Our results show for the first time that a threatened coral species can buffer OA-reduced calcification by increasing feeding rates and lipid content.

  5. Future climate

    La Croce, A.

    1991-01-01

    According to George Woodwell, founder of the Woods Hole Research Center, due the combustion of fossil fuels, deforestation and accelerated respiration, the net annual increase of carbon, in the form of carbon dioxide, to the 750 billion tonnes already present in the earth's atmosphere, is in the order of 3 to 5 billion tonnes. Around the world, scientists, investigating the probable effects of this increase on the earth's future climate, are now formulating coupled air and ocean current models which take account of water temperature and salinity dependent carbon dioxide exchange mechanisms acting between the atmosphere and deep layers of ocean waters

  6. Impacts of Near-Future Ocean Acidification and Warming on the Shell Mechanical and Geochemical Properties of Gastropods from Intertidal to Subtidal Zones.

    Leung, Jonathan Y S; Connell, Sean D; Nagelkerken, Ivan; Russell, Bayden D

    2017-11-07

    Many marine organisms produce calcareous shells as the key structure for defense, but the functionality of shells may be compromised by ocean acidification and warming. Nevertheless, calcifying organisms may adaptively modify their shell properties in response to these impacts. Here, we examined how reduced pH and elevated temperature affect shell mechanical and geochemical properties of common grazing gastropods from intertidal to subtidal zones. Given the greater environmental fluctuations in the intertidal zone, we hypothesized that intertidal gastropods would exhibit more plastic responses in shell properties than subtidal gastropods. Overall, three out of five subtidal gastropods produced softer shells at elevated temperature, while intertidal gastropods maintained their shell hardness at both elevated pCO 2 (i.e., reduced pH) and temperature. Regardless of pH and temperature, degree of crystallization was maintained (except one subtidal gastropod) and carbonate polymorph remained unchanged in all tested species. One intertidal gastropod produced less soluble shells (e.g., higher calcite/aragonite) in response to reduced pH. In contrast, subtidal gastropods produced only aragonite which has higher solubility than calcite. Overall, subtidal gastropods are expected to be more susceptible than intertidal gastropods to shell dissolution and physical damage under future seawater conditions. The increased vulnerability to shell dissolution and predation could have serious repercussions for their survival and ecological contributions in the future subtidal environment.

  7. Can hydrographic data provide evidence that the rate of oceanic uptake of anthropogenic CO2 is increasing?

    William Carlisle Thacker

    Full Text Available Predictions of the rate of accumulation of anthropogenic carbon dioxide in the Pacific Ocean near 32°S and 150°W based on the P16 surveys of 1991 and 2005 and on the P06 surveys of 1992 and 2003 underestimate the amount found in the P06 survey of 2009-2010, suggesting an increasing uptake rate. Assuming the accumulation rate to be constant over the two decades, analyses using all five surveys lead to upward revision of the rates based only on the first four. On the other hand, accumulation rates estimated for 2003-2010 are significantly greater than those for 1991-2003, again suggesting an increasing uptake rate. In addressing this question it is important to acknowledge the limitations of the repeat hydrography and consequent uncertainties of estimated accumulation rates.

  8. The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity.

    Ou, Guanyong; Wang, Hong; Si, Ranran; Guan, Wanchun

    2017-09-01

    Due to global climate change, marine phytoplankton will likely experience low pH (ocean acidification), high temperatures and high irradiance in the future. Here, this work report the results of a batch culture experiment conducted to study the interactive effects of elevated CO 2 , increased temperature and high irradiance on the harmful dinoflagellate Akashiwo sanguinea, isolated at Dongtou Island, Eastern China Sea. The A. sanguinea cells were acclimated in high CO 2 condition for about three months before testing the responses of cells to a full factorial matrix experimentation during a 7-day period. This study measured the variation in physiological parameters and hemolytic activity in 8 treatments, representing full factorial combinations of 2 levels each of exposure to CO 2 (400 and 1000μatm), temperature (20 and 28°C) and irradiance (50 and 200μmol photons m -2 s -1 ). Sustained growth of A. sanguinea occurred in all treatments, but high CO 2 (HC) stimulated faster growth than low CO 2 (LC). The pigments (chlorophyll a and carotenoid) decreased in all HC treatments. The quantum yield (F v /F m ) declined slightly in all high-temperature (HT) treatments. High irradiance (HL) induced the accumulation of ultraviolet-absorbing compounds (UV abc ) irrespective of temperature and CO 2 . The hemolytic activity in the LC treatments, however, declined when exposed to HT and HL, but HC alleviated the adverse effects of HT and HL on hemolytic activity. All HC and HL conditions and the combinations of high temperature*high light (HTHL) and high CO 2 *high temperature*high light (HCHTHL) positively affected the growth in comparison to the low CO 2 *low temperature*low light (LCLTLL) treatment. High temperature (HT), high light (HL) and a combination of HT*HL, however, negatively impacted hemolytic activity. CO 2 was the main factor that affected the growth and hemolytic activity. There were no significant interactive effects of CO 2 *temperature*irradiance on growth

  9. Thermal power plant operating regimes in future British power systems with increasing variable renewable penetration

    Edmunds, Ray; Davies, Lloyd; Deane, Paul; Pourkashanian, Mohamed

    2015-01-01

    Highlights: • This work investigates thermal power operating regimes in future power systems. • Gas plants have low utilisation in the scenarios considered. • Ramping intensity increases for gas plants and pumped storage. • Coal plants frequently operate at minimum stable levels and start-ups increase. • Grid emission intensity and total emission production remains substantial. - Abstract: This work investigates the operational requirements of thermal power plants in a number of potential future British power systems with increasing variable renewable penetration. The PLEXOS Integrated Energy Model has been used to develop the market models, with PLEXOS employing mixed integer programming to solve the unit commitment and economic dispatch problem, subject to a number of constraints. Initially, a model of the British power system was developed and validated. Subsequently, a 2020 test model was developed to analyse a number of future system structures with differing fuel and carbon prices and generation mixes. The study has found that in three of the four scenarios considered, the utilisation of gas power plants will be relatively low, but remains fundamental to the security of supply. Also, gas plants will be subject to more intense ramping. The findings have consequent implications for energy policy as expensive government interventions may be required to prevent early decommissioning of gas capacity, should the prevailing market conditions not guarantee revenue adequacy.

  10. Futures

    Pedersen, Michael Haldrup

    2017-01-01

    Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores the potenti......Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores...... the potentials of speculative thinking in relation to design and social and cultural studies, arguing that both offer valuable insights for creating a speculative space for new emergent criticalities challenging current assumptions of the relations between power and design. It does so by tracing out discussions...... of ‘futurity’ and ‘futuring’ in design as well as social and cultural studies. Firstly, by discussing futurist and speculative approaches in design thinking; secondly by engaging with ideas of scenario thinking and utopianism in current social and cultural studies; and thirdly by showing how the articulation...

  11. The future of the nurse shortage: will wage increases close the gap?

    Spetz, Joanne; Given, Ruth

    2003-01-01

    In recent years the U.S. media have been reporting a shortage of registered nurses (RNs). In theory, labor-market shortages are self-correcting; wage increases will bring labor markets into equilibrium, and policy intervention is not necessary. In this paper we develop a simple forecasting model and ask the question: How high must RN wages rise in the future to end the RN shortage? We find that inflation-adjusted wages must increase 3.2-3.8 percent per year between 2002 and 2016, with wages cumulatively rising up to 69 percent, to end the shortage. Total RN expenditures would more than double by 2016.

  12. Promising high monetary rewards for future task performance increases intermediate task performance.

    Claire M Zedelius

    Full Text Available In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly. Results showed that high (vs. low rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.

  13. Promising high monetary rewards for future task performance increases intermediate task performance.

    Zedelius, Claire M; Veling, Harm; Bijleveld, Erik; Aarts, Henk

    2012-01-01

    In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.

  14. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations

    Wahl, M.; Schneider Covachã , S.; Saderne, Vincent; Hiebenthal, C.; Mü ller, J. D.; Pansch, C.; Sawall, Y.

    2017-01-01

    Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.

  15. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations

    Wahl, M.

    2017-06-26

    Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.

  16. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO/sub 2/ during the past decades

    Revelle, R; Suess, H E

    1957-01-01

    From a comparison of C/sup 14//C/sup 12/ and C/sup 13//C/sup 12/ ratios in wood and in marine material and from a slight decrease of the C/sup 14/ concentration in terrestrial plants over the past 50 years it can be concluded that the average lifetime of a CO/sub 2/ molecule in the atmosphere before it is dissolved into the sea is of the order of 10 years. This means that most of the CO/sub 2/ released by artificial fuel combustion since the beginning of the industrial revolution must have been absorbed by the oceans. The increase of atmospheric CO/sub 2/ from this cause is at present small but may become significant during future decades of industrial fuel combustion continues to rise exponentially. Present data on the total amount of CO/sub 2/ in the atmosphere, on the rates and mechanisms of exchange, and on possible fluctuations in terrestrial and marine organic carbon, are inadequate for accurate measurement of future changes in atmospheric CO/sub 2/. An opportunity exists during the international geophysical year to obtain much of the necessary information.

  17. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish.

    Johansen, J L; Messmer, V; Coker, D J; Hoey, A S; Pratchett, M S

    2014-04-01

    Large-bodied fish are critical for sustaining coral reef fisheries, but little is known about the vulnerability of these fish to global warming. This study examined the effects of elevated temperatures on the movement and activity patterns of the common coral trout Plectropomus leopardus (Serranidae), which is an important fishery species in tropical Australia and throughout the Indo West-Pacific. Adult fish were collected from two locations on Australia's Great Barrier Reef (23°S and 14°S) and maintained at one of four temperatures (24, 27, 30, 33 °C). Following >4 weeks acclimation, the spontaneous swimming speeds and activity patterns of individuals were recorded over a period of 12 days. At 24-27 °C, spontaneous swimming speeds of common coral trout were 0.43-0.45 body lengths per second (bls(-1)), but dropped sharply to 0.29 bls(-1) at 30 °C and 0.25 bls(-1) at 33 °C. Concurrently, individuals spent 9.3-10.6% of their time resting motionless on the bottom at 24-27 °C, but this behaviour increased to 14.0% at 30 °C and 20.0% of the time at 33 °C (mean ± SE). The impact of temperature was greatest for smaller individuals (55 cm TL) were first affected by 30 °C and 33 °C, respectively. Importantly, there was some indication that populations can adapt to elevated temperature if presented with adequate time, as the high-latitude population decreased significantly in swimming speeds at both 30 °C and 33 °C, while the low-latitude population only showed significant reductions at 33 °C. Given that movement and activity patterns of large mobile species are directly related to prey encounter rates, ability to capture prey and avoid predators, any reductions in activity patterns are likely to reduce overall foraging and energy intake, limit the energy available for growth and reproduction, and affect the fitness and survival of individuals and populations. © 2013 John Wiley & Sons Ltd.

  18. Climate change in the sea: the implications of increasing the carbon dioxide inputs to the surface ocean

    Pfister, Cathy [University of Chicago

    2012-12-23

    The oceans are estimated to be absorbing one-third of the fossil fuel carbon released into the atmosphere, a process that is expected to change ocean carbon chemistry. I will present data from the Washington coast showing ocean pH declines and changes to the shell chemistry of bivalves. I will discuss implications of carbon cycle changes for marine species, including insights from a coastal area where I have worked for more than 24 years. I will summarize what we know to date about this process of “ocean acidification”.

  19. Water quality under increased biofuel production and future climate change and uncertainty

    Demissie, Y. K.; Yan, E.

    2015-12-01

    Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.

  20. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification

    Braeckman, U.; Van Colen, C.; Guilini, K.; Van Gansbeke, D.; Soetaert, K.; Vincx, M.; Vanaverbeke, J.

    2014-01-01

    Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable

  1. The Once and Future North Atlantic: How the Mid-Pliocene Warm Period Can Increase Stakeholder Preparedness in a Warming World

    Jacobs, P.; de Mutsert, K.

    2013-12-01

    Paleoclimatic reconstructions, particularly from periods that may serve as an analog to the present and future greenhouse-driven warming, are increasingly being used to validate climate models as well as to provide constraints on broad impacts such as global temperature and sea level change. However, paleoclimatic data remains under-utilized in decision-making processes by stakeholders, who typically rely on scenarios produced by computer models or naive extrapolation of present trends. We hope to increase the information available to stakeholders by incorporating paleoclimatic data from the mid-Pliocene Warm Period (mPWP, ~3ma) into a fisheries model of the North Atlantic. North Atlantic fisheries are economically important and are expected to be sensitive to climatic change. State of the art climate models remain unable to realistically simulate the North Atlantic, both over the observational record as well as during times in the geologic past such as the mPWP. Given that the mPWP shares many of the same boundary conditions as those likely to be seen in the near future, we seek to answer the question 'What if the climate of the future looks more like the climate of the past?' relative to what state of the art computer models currently project. To that end we have created a suite of future North Atlantic Ocean scenarios using output from the CMIP3 and CMIP5 modeling experiments, as well as the PRISM group's Mid-Pliocene ocean reconstruction. We use these scenarios to drive an ecosystem-based fisheries model using the Ecopath with Ecosim (EwE) software to identify differences between the scenarios as the North Atlantic Ocean changes through time. Additionally, we examine the spatial component of these differences by using the Ecospace module of EwE. Whereas the Ecosim realizations are intended to capture the dynamic response to changing oceanographic parameters (SST, SSS, DO) over time, the Ecospace experiments are intended to explore the impact of different

  2. How to meet the increasing demands of water, food and energy in the future?

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water

  3. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly

  4. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Rory L Hodd

    Full Text Available Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1 oceanic montane bryophytes and vascular plants; 2 species belonging to different montane plant communities; 3 species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need

  5. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans

    Ryan, J. G.; Singer, J.

    2013-12-01

    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted

  6. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    Wood, Robert [University of Washington; Bretherton, Chris [University of Washington; McFarquhar, Greg [University of Illinois - Urbana; Protat, Alain [Bureau of Meteorology - Melbourne; Quinn, Patricia [NOAA PMEL; Siems, Steven [Monash Univ., Melbourne, VIC (Australia); Jakob, Christian [Monash Univ., Melbourne, VIC (Australia); Alexander, Simon [Australian Antarctic Division; Weller, Bob [Woods Hole Oceanographic Institute

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  7. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  8. Past and future drivers of increased erosion risk in the northern Gulf of Mexico

    Wahl, T.; Plant, N. G.

    2014-12-01

    We use hourly observations of water levels from two tide gauges and wave data from three buoys to assess their relative contribution to past and potential future changes in the erosion risk for Dauphin Island, a barrier island located off the coastline of Alabama. Topographic information (i.e. beach slopes and dune toe and crest heights) is obtained from the most recent lidar survey conducted in the area in July 2013. Water levels and wave parameters (i.e. significant wave height and peak period) from the two tide gauges and three wave buoys are merged into single records spanning the period from 1981 to 2013. The Stockdon et al. (2006) run-up model is used to estimate the 2% exceedance values of wave run-up maxima, which are then combined with the observed water levels at the representative tide gauge site to obtain total water levels (TWLs). With this information we assess the relative contribution of geocentric sea level rise, vertical land-movement, and long-term changes in the wave parameters to the observed increase in erosion risk. The latter is approximated using the concept of impact hours per year (IHPY; Ruggiero 2013) at dune toe and dune crest elevation thresholds derived from the lidar data. Wahl et al. (2014) recently discovered a significant increase in the amplitude of the seasonal sea level cycle in the Gulf of Mexico. Here, we explore the potential of these changes, and similar developments in the seasonal cycle of the wave data and corresponding IHPY, to affect coastal erosion. Such intra-annual signals with longer-term variations have not been included in most earlier studies in favour of analysing the effects of annually averaged long-term trends. Finally, scenarios of potential future changes of all relevant parameters are used to explore their relative contribution to further increase in the coastal erosion risk over the next few decades.

  9. Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America

    Yue, X.; Strada, S.; Unger, N.

    2017-12-01

    Biomass burning is an important source of tropospheric ozone (O3) and aerosols, which can affect vegetation photosynthesis through stomatal uptake (for O3) and light scattering and meteorological variations (for aerosols). Climate change will significantly increase wildfire activity in boreal North America by the midcentury, while little is known about the impacts of enhanced emissions on the terrestrial carbon budget. Here, combining site-level and satellite observations and a carbon-chemistry-climate model, we estimate the impacts of fire emitted O3 and aerosols on net primary productivity (NPP) over boreal North America. Fire emissions are calculated based on an ensemble projection from 13 climate models. In the present day, wildfire enhances surface O3 by 2 ppbv (7%) and aerosol optical depth (AOD) at 550 nm by 0.03 (26%) in the summer. By midcentury, boreal area burned is predicted to increase by 66%, contributing more O3 (13%) and aerosols (37%). Fire O3 causes negligible impacts on NPP because ambient O3 concentration is far below the damaging thresholds. Fire aerosols reduce surface solar radiation but enhance atmospheric absorption, resulting in enhanced air stability and intensified regional drought. The domain of this drying is confined to the North in the present day, but extends southward by 2050 due to increased fire emissions. Consequently, wildfire aerosols enhance NPP by 72 Tg C yr-1 in the present day but decrease NPP by 118 Tg C yr-1 in the future, mainly because of the soil moisture perturbations. Our results suggest that future wildfire may accelerate boreal carbon loss, not only through direct emissions, but also through the biophysical impacts of fire aerosols.

  10. Molecular and Microbial Mechanisms Increasing Soil C Storage Under Future Rates of Anthropogenic N Deposition

    Zak, Donald R. [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-11-17

    A growing body of evidence reveals that anthropogenic N deposition can reduce the microbial decay of plant detritus and increase soil C storage across a wide range of terrestrial ecosystems. This aspect of global change has the potential to constrain the accumulation of anthropogenic CO2 in the Earth’s atmosphere, and hence slow the pace of climate warming. The molecular and microbial mechanisms underlying this biogeochemical response are not understood, and they are not a component of any coupled climate-biogeochemical model estimating ecosystem C storage, and hence, the future climate of an N-enriched Earth. Here, we report the use of genomic-enabled approaches to identify the molecular underpinnings of the microbial mechanisms leading to greater soil C storage in response to anthropogenic N deposition, thereby enabling us to better anticipate changes in soil C storage.

  11. Impact of future price increase on ordering policies for deteriorating items under quadratic demand

    Nita H. Shah

    2016-06-01

    Full Text Available When a supplier announces a price increase at a certain time in the future, for each retailer it is important to choose whether to purchase supplementary stock to take benefit of the current lower price or procure at a new price. This article focuses on the possible effects of price increase on a retailer’s replenishment strategy for constant deterioration of items. Here, quadratic demand is debated; which is appropriate for the products for which demand increases initially and subsequently it starts to decrease with the new version of the substitute. We discuss two scenarios in this study: (I when the special order time coincides with the retailer’s replenishment time and (II when the special order time falls during the retailer’s sales period. We determine an optimal ordering policy for each case by maximizing total cost savings between special and regular orders during the depletion time of the special order quantity. Scenarios are established and illustrated with numerical examples. Through, sensitivity analysis important inventory parameters are classified. Graphical results, in two and three dimensions, are exhibited with supervisory decision.

  12. Synergy between land use and climate change increases future fire risk in Amazon forests

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  13. Potential increase in floods in California's Sierra Nevada under future climate projections

    Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.

    2011-01-01

    California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p models, while under the third scenario, GFDL CM2. 1, frequencies remain constant or decline slightly, owing to an overall drying trend. These increases appear to derive jointly from increases in heavy precipitation amount, storm frequencies, and days with more precipitation falling as rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science+Business Media B.V.

  14. Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America

    X. Yue

    2017-11-01

    Full Text Available Biomass burning is an important source of tropospheric ozone (O3 and aerosols. These air pollutants can affect vegetation photosynthesis through stomatal uptake (for O3 and light scattering and absorption (for aerosols. Wildfire area burned is projected to increase significantly in boreal North America by the mid-century, while little is known about the impacts of enhanced emissions on the terrestrial carbon budget. Here, combining site-level and satellite observations and a carbon–chemistry–climate model, we estimate the impacts of fire emitted O3 and aerosols on net primary productivity (NPP over boreal North America. Fire emissions are calculated based on an ensemble projection from 13 climate models. In the present day, wildfire enhances surface O3 by 2 ppbv (7 % and aerosol optical depth (AOD at 550 nm by 0.03 (26 % in the summer. By mid-century, area burned is predicted to increase by 66 % in boreal North America, contributing more O3 (13 % and aerosols (37 %. Fire O3 causes negligible impacts on NPP because ambient O3 concentration (with fire contributions is below the damage threshold of 40 ppbv for 90 % summer days. Fire aerosols reduce surface solar radiation but enhance atmospheric absorption, resulting in enhanced air stability and intensified regional drought. The domain of this drying is confined to the north in the present day but extends southward by 2050 due to increased fire emissions. Consequently, wildfire aerosols enhance NPP by 72 Tg C yr−1 in the present day but decrease NPP by 118 Tg C yr−1 in the future, mainly because of the soil moisture perturbations. Our results suggest that future wildfire may accelerate boreal carbon loss, not only through direct emissions increasing from 68 Tg C yr−1 at present day to 130 Tg C yr−1 by mid-century but also through the biophysical impacts of fire aerosols.

  15. Nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    2002-01-01

    A central goal of sustainable development is to maintain or increase the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and, when safely handled, has little impact on ecosystems. Energy is essential for sustainable development. With continuing population and economic growth, and increasing needs in the developing world, substantially greater energy demand is a given, even taking into account continuing and accelerated energy efficiency and intensity improvements. Today, nuclear power is mostly utilized in industrialized countries that have the necessary technological, institutional and financial resources. Many of the industrialized countries that are able and willing to use nuclear power are also large energy consumers. Nuclear power currently generates 16% of the world's electricity. It produces virtually no sulfur dioxide, particulates, nitrogen oxides, volatile organic compounds or greenhouse gases. Globally, nuclear power currently avoids approximately 600 million tonnes of carbon emissions annually, about the same as hydropower. The 600 MtC avoided by nuclear power equals 8% of current global greenhouse gases emissions. In the OECD countries, nuclear power has for 35 years accounted for most of the reduction in the carbon intensity per unit of delivered energy. Existing operating nuclear power plants (NPPs) for which initial capital investments are largely depreciated are also often the most cost-effective way to reduce carbon emissions from electricity generation. In fact in the United States in 2000, NPPs were the most cost-effective way to generate electricity, irrespective of avoided carbon emissions. In other countries the advantages of existing nuclear generating stations are also increasingly recognized. Interest

  16. The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation

    Duarte, J.C.; Schellart, W.P.; Rosas, F.M.

    2016-01-01

    Subduction initiation is a cornerstone in the edifice of plate tectonics. It marks the turning point of the Earth's Wilson cycles and ultimately the supercycles as well. In this paper, we explore the consequences of subduction zone invasion in the Atlantic Ocean, following recent discoveries at the

  17. Recent rapid increases in the demand for city gas in manufacturing industries and future developments

    Kusano, Shigero

    1992-01-01

    City gas companies in Japan are experiencing an expansion in demand for gas in all manufacturing industries. The reason for this is, first and foremost, external, in that the first and second oil crises and the recent Gulf War have placed the oil market in a state of flux. That is to say, supply and demand in the oil products market is unstable while the stability of city gas, which is the main raw material for LNG, is being highly appraised. Another external reason is related to a subject much in the news recently the world over - the environment. City gas is highly regarded for its minimum environmental impact. Domestic reasons for the expansion include the fact that with the increase in use of city gas in manufacturing industries, the end user is beginning to recognize the various special qualities that city gas possesses. The expansion is also due in part to the unrelenting efforts in sales by the gas producers themselves. This report focuses on the expansion in demand in city gas over the past ten years from the point of view of Tokyo Gas as a producer that has been party to the increased sales of city gas in manufacturing industries for over 10 years giving views on the reasons for the increase. Graphic reports of the actual situation of the industry at meetings such as these are rare and therefore although this is slightly different from the main theme, I would like to proceed with the debate in the hope that this will be beneficial in the expansion of future gas demand in countries all over the world

  18. Synergy between land use and climate change increases future fire risk in Amazon forests

    Y. Le Page

    2017-12-01

    Full Text Available Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  19. Slightly increased BMI at young age is a risk factor for future hypertension in Japanese men.

    Yuki Someya

    Full Text Available Hypertension is developed easily in Asian adults with normal body mass index (BMI (~23 kg/m2, compared with other ethnicities with similar BMI. This study tested the hypothesis that slightly increased BMI at young age is a risk factor for future hypertension in Japanese men by historical cohort study.The study participants were 636 male alumni of the physical education school. They had available data on their physical examination at college age and follow-up investigation between 2007 and 2011. The participants were categorized into six categories: BMI at college age of <20.0 kg/m2, 20.0-21.0kg/m2, 21.0-22.0kg/m2, 22.0-23.0kg/m2, 23.0-24.0kg/m2, and ≥24.0kg/m2, and the incidence of hypertension was compared.This study covered 27-year follow-up period (interquartile range: IQR: 23-31 which included 17,059 person-years of observation. Subjects were 22 (22-22 years old at graduated college, and 49 (45-53 years old at first follow-up investigation. During the period, 120 men developed hypertension. The prevalence rates of hypertension for lowest to highest BMI categories were 9.4%, 14.6%, 16.1%, 17.5%, 30.3%, and 29.3%, respectively (p<0.001 for trend, and their hazard ratios were 1.00 (reference, 1.80 (95%CI: 0.65-4.94, 2.17 (0.83-5.64, 2.29 (0.89-5.92, 3.60 (1.37-9.47 and 4.72 (1.78-12.48, respectively (p<0.001 for trend. This trend was similar after adjustment for age, year of graduation, smoking, current exercise status and current dietary intake.Slightly increased BMI at young age is a risk factor for future hypertension in Japanese men.

  20. Ocean Acidification

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  1. Impacts of Ocean Acidification

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)

    2009-08-15

    There is growing scientific evidence that, as a result of increasing anthropogenic carbon dioxide (CO{sub 2}) emissions, absorption of CO{sub 2} by the oceans has already noticeably increased the average oceanic acidity from pre-industrial levels. This global threat requires a global response. According to the Intergovernmental Panel on Climate Change (IPCC), continuing CO{sub 2} emissions in line with current trends could make the oceans up to 150% more acidic by 2100 than they were at the beginning of the Anthropocene. Acidification decreases the ability of the ocean to absorb additional atmospheric CO{sub 2}, which implies that future CO{sub 2} emissions are likely to lead to more rapid global warming. Ocean acidification is also problematic because of its negative effects on marine ecosystems, especially marine calcifying organisms, and marine resources and services upon which human societies largely depend such as energy, water, and fisheries. For example, it is predicted that by 2100 around 70% of all cold-water corals, especially those in the higher latitudes, will live in waters undersaturated in carbonate due to ocean acidification. Recent research indicates that ocean acidification might also result in increasing levels of jellyfish in some marine ecosystems. Aside from direct effects, ocean acidification together with other global change-induced impacts such as marine and coastal pollution and the introduction of invasive alien species are likely to result in more fragile marine ecosystems, making them more vulnerable to other environmental impacts resulting from, for example, coastal deforestation and widescale fisheries. The Marine Board-ESF Position Paper on the Impacts of Climate Change on the European Marine and Coastal Environment - Ecosystems indicated that presenting ocean acidification issues to policy makers is a key issue and challenge. Indeed, as the consequences of ocean acidification are expected to emerge rapidly and drastically, but are

  2. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?

    Collard, Marie; De Ridder, Chantal; David, Bruno; Dehairs, Frank; Dubois, Philippe

    2015-02-01

    Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global

  3. Oceans of opportunity or rough seas? What does the future hold for developments in European marine policy?

    Potts, Tavis; O'Higgins, Tim; Hastings, Emily

    2012-12-13

    The management of European seas is undergoing a process of major reform. In the past, oceans and coastal policy has traditionally evolved in a fragmented and uncoordinated manner, developed by different sector-based agencies and arms of government with competing aims and objectives. Recently, the call for integrated and ecosystem-based approaches has driven the conceptualization of a new approach. At the scale of Europe through the Integrated Maritime Policy and Marine Strategy Framework Directive and in national jurisdictions such as the Marine and Coastal Access Act in the United Kingdom, ecosystem-based planning is becoming the norm. There are major challenges to this process and this paper explores, in particular, the opportunities inherent in building truly integrated approaches that cross different sectors of activity, integrate across scales, incorporate public involvement and build a sense of oceans citizenship.

  4. Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica

    Hendriks, Iris E.

    2017-02-15

    We evaluated the photosynthetic performance of Posidonia oceanica during short-term laboratory exposures to ambient and elevated temperatures (24–25°C and 29–30°C) warming and pCO2 (380, 750 and 1000ppm pCO2) under normal and low light conditions (200 and 40μmol photons m−2s−1 respectively). Plant growth was measured at the low light regime and showed a negative response to warming. Light was a critical factor for photosynthetic performance, although we found no evidence of compensation of photosynthetic quantum efficiency in high light. Relative Electron Rate Transport (rETRmax) was higher in plants incubated in high light, but not affected by pCO2 or temperature. The saturation irradiance (Ik) was negatively affected by temperature. We conclude that elevated CO2 does not enhance photosynthetic activity and growth, in the short term for P. oceanica, while temperature has a direct negative effect on growth. Low light availability also negatively affected photosynthetic performance during the short experimental period examined here. Therefore increasing concentrations of CO2 may not compensate for predicted future conditions of warmer water and higher turbidity for seagrass meadows.

  5. Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica

    Hendriks, Iris E.; Olsen, Ylva S.; Duarte, Carlos M.

    2017-01-01

    We evaluated the photosynthetic performance of Posidonia oceanica during short-term laboratory exposures to ambient and elevated temperatures (24–25°C and 29–30°C) warming and pCO2 (380, 750 and 1000ppm pCO2) under normal and low light conditions (200 and 40μmol photons m−2s−1 respectively). Plant growth was measured at the low light regime and showed a negative response to warming. Light was a critical factor for photosynthetic performance, although we found no evidence of compensation of photosynthetic quantum efficiency in high light. Relative Electron Rate Transport (rETRmax) was higher in plants incubated in high light, but not affected by pCO2 or temperature. The saturation irradiance (Ik) was negatively affected by temperature. We conclude that elevated CO2 does not enhance photosynthetic activity and growth, in the short term for P. oceanica, while temperature has a direct negative effect on growth. Low light availability also negatively affected photosynthetic performance during the short experimental period examined here. Therefore increasing concentrations of CO2 may not compensate for predicted future conditions of warmer water and higher turbidity for seagrass meadows.

  6. Enhanced deep ocean ventilation and oxygenation with global warming

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  7. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  8. Oceans Past

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  9. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    Gormley, Kate S G; Porter, Joanne S; Bell, Michael C; Hull, Angela D; Sanderson, William G

    2013-01-01

    The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  10. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    Kate S G Gormley

    Full Text Available The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer. The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009 and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100. A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  11. Where there's a will: can highlighting future youth-targeted marketing increase support for soda taxes?

    Roh, Sungjong; Schuldt, Jonathon P

    2014-12-01

    Amid concern about high rates of obesity and related diseases, the marketing of nutritionally poor foods to young people by the food industry has come under heavy criticism by public health advocates, who cite decades of youth-targeted marketing in arguing for reforms. In light of recent evidence that the same event evokes stronger emotional reactions when it occurs in the future versus the past, highlighting youth-targeted marketing that has yet to occur may evoke stronger reactions to such practices, and perhaps, greater support for related health policy initiatives. In a between-subjects experiment, Web participants (N = 285) read that a major soda company had already launched (past condition) or was planning to launch (future condition) an advertising campaign targeting children. Measures included support for a soda tax and affective responses to the company's actions. Greater support for the soda tax was observed in the future condition than in the past condition. Moreover, participants in the future condition reported heightened negative emotions about the company's actions, which mediated the observed effect on soda tax support. The same action undertaken by the food industry (here, marketing soda to children) may evoke stronger negative emotions and greater support for a health policy initiative when it is framed prospectively rather than retrospectively.

  12. Future climate warming increases Greenland ice sheet surface mass balance variability

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.; Price, S.

    2014-01-01

    The integrated surface mass balance (SMB) of the Greenland ice sheet (GrIS) has large interannual variability. Long-term future changes to this variability will affect GrIS dynamics, freshwater fluxes, regional oceanography, and detection of changes in ice volume trends. Here we analyze a simulated

  13. Ocean carbon uptake and storage

    Tilbrook, Bronte

    2007-01-01

    Full text: The ocean contains about 95% of the carbon in the atmosphere, ocean and land biosphere system, and is of fundamental importance in regulating atmospheric carbon dioxide concentrations. In the 1990s an international research effort involving Australia was established to determine the uptake and storage of anthropogenic C02 for all major ocean basins. The research showed that about 118 of the 244 + 20 billion tons of the anthropogenic carbon emitted through fossil fuel burning and cement production has been stored in the ocean since preindustrial times, thus helping reduce the rate of increase in atmospheric C02. The research also showed the terrestrial biosphere has been a small net source of C02 (39 ± 28 billion tons carbon) to the atmosphere over the same period. About 60% of the total ocean inventory of the anthropogenic C02 was found in the Southern Hemisphere, with most in the 30 0 S to 50 0 S latitude band. This mid-latitude band is where surface waters are subducted as Mode and Intermediate waters, which is a major pathway controlling ocean C02 uptake. High storage (23% of the total) also occurs in the North Atlantic, associated with deep water formation in that basin. The ocean uptake and storage is expected to increase in the coming decades as atmospheric C02 concentrations rise. However, a number of feedback mechanisms associated with surface warming, changes in circulation, and biological effects are likely to impact on the uptake capacity. The accumulation or storage-of the C02 in the ocean is also the major driver of ocean acidification with potential to disrupt marine ecosystems. This talk will describe the current understanding of the ocean C02 uptake and storage and a new international research strategy to detect how the ocean uptake and storage will evolve on interannual through decadal scales. Understanding the ocean response to increasing atmospheric C02 will be a key element in managing future C02 increases and establishing

  14. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies

    Matteo Rinaldi

    2010-01-01

    Full Text Available One of the most important natural aerosol systems at the global level is marine aerosol that comprises both organic and inorganic components of primary and secondary origin. The present paper reviews some new results on primary and secondary organic marine aerosol, achieved during the EU project MAP (Marine Aerosol Production, comparing them with those reported in the recent literature. Marine aerosol samples collected at the coastal site of Mace Head, Ireland, show a chemical composition trend that is influenced by the oceanic biological activity cycle, in agreement with other observations. Laboratory experiments show that sea-spray aerosol from biologically active sea water can be highly enriched in organics, and the authors highlight the need for further studies on the atmospheric fate of such primary organics. With regard to the secondary fraction of organic aerosol, the average chemical composition and molecular tracer (methanesulfonic-acid, amines distribution could be successfully characterized by adopting a multitechnique analytical approach.

  15. Increased Visceral Adipose Tissue Is an Independent Predictor for Future Development of Atherogenic Dyslipidemia.

    Hwang, You-Cheol; Fujimoto, Wilfred Y; Hayashi, Tomoshige; Kahn, Steven E; Leonetti, Donna L; Boyko, Edward J

    2016-02-01

    Atherogenic dyslipidemia is frequently observed in persons with a greater amount of visceral adipose tissue (VAT). However, it is still uncertain whether VAT is independently associated with the future development of atherogenic dyslipidemia. The aim of this study was to determine whether baseline and changes in VAT and subcutaneous adipose tissue (SAT) are associated with future development of atherogenic dyslipidemia independent of baseline lipid levels and standard anthropometric indices. Community-based prospective cohort study with 5 years of follow-up. A total of 452 Japanese Americans (240 men, 212 women), aged 34-75 years were assessed at baseline and after 5 years of follow-up. Abdominal fat areas were measured by computed tomography. Atherogenic dyslipidemia was defined as one or more abnormalities in high-density lipoprotein (HDL) cholesterol, triglycerides, or non-HDL cholesterol levels. Baseline VAT and change in VAT over 5 years were independently associated with log-transformed HDL cholesterol, log-transformed triglyceride, and non-HDL cholesterol after 5 years (standardized β = -0.126, 0.277, and 0.066 for baseline VAT, respectively, and -0.095, 0.223, and 0.090 for change in VAT, respectively). However, baseline and change in SAT were not associated with any future atherogenic lipid level. In multivariate logistic regression analysis, incremental change in VAT (odds ratio [95% confidence interval], 1.73 [1.20-2.48]; P = .003), triglycerides (4.01 [1.72-9.33]; P = .001), HDL cholesterol (0.32 [0.18-0.58]; P dyslipidemia independent of age, sex, diastolic blood pressure, homeostasis model assessment insulin resistance, body mass index (BMI), change in BMI, SAT, and baseline atherogenic lipid levels. Baseline and change in VAT were independent predictors for future development of atherogenic dyslipidemia. However, BMI, waist circumference, and SAT were not associated with future development of atherogenic dyslipidemia.

  16. Synergy between land use and climate change increases future risk in Amazon forests

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Pereira, José Miguel Cardoso; Hurtt, George; Asrar, Ghassem

    2017-01-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest’s future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climatedriven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and ...

  17. The IAEA, nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    2001-01-01

    In the framework of one of the fundamental objectives of the IAEA mandate to enhance the contribution of nuclear technologies towards meeting the needs of Member States, the present status, all the aspects, and the future of nuclear power are reviewed. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and when safely handled has little impact on ecosystems. This means that it could meet the central goal of sustainable development, considering that it covers maintaining or increasing the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems

  18. Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean

    Nobuhito Mori

    2016-03-01

    Full Text Available Tropical cyclones generate severe hazards in the middle latitudes. A brief review and applications of dynamical and statistical downscaling of tropical cyclone (TC are described targeting extreme storm surge and storm wave hazard assessment. First, a review of the current understanding of the changes in the characteristics of TCs in the past and in the future is shown. Then, a review and ongoing research about impact assessment of tropical cyclones both dynamical downscaling and statistical model are described for Typhoon Vera in 1959 and Typhoon Haiyan in 2013. Finally, several examples of impact assessment of storm surge and extreme wave changes are presented. Changes in both TC intensity and track are linked to future changes in extreme storm surge and wave climate in middle latitude.

  19. Complex response of white pines to past environmental variability increases understanding of future vulnerability.

    Virginia Iglesias

    Full Text Available Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests that winter conditions and biotic interactions have been critical limiting variables for high-elevation conifers in the past and will likely be so in the future. This long-term perspective offers insights on species responses to a broader range of climate and associated ecosystem changes than can be observed at present and should be part of resource management and conservation planning for the future.

  20. Increased Topical Generic Prices by Manufacturers: An Isolated Trend or Worrisome Future?

    Bhatt, Mehul D; Bhatt, Birju D; Dorrian, James T; McLellan, Beth N

    2018-03-12

    There is limited data regarding generic medication prices. Recent studies have shown price changes at the retail level, but much is not known about the pharmaceutical supply chain or price changes at the manufacturer level. We sought to examine the extent of price changes for topical generic medications. A comprehensive review of average wholesale prices (AWP) and manufacturers of topical generics and available corresponding branded medications was conducted for 2005 and 2016. A total of 51 topical chemical entities were examined. Between 2005 and 2016, the AWP of topical generics increased by 273% and the AWP of topical branded increased by 379%. The topical generic with the most price change increased by 2529%. Eight of the top twenty topical generics with the highest increase in AWP also had an increase in the number of manufacturers. These findings are not generalizable to medications used in other areas of medicine CONCLUSIONS: Topical generic prices are rapidly increasing at the manufacturer level. Copyright © 2018. Published by Elsevier Inc.

  1. Placing Antismoking Graphic Warning Posters at Retail Point-of-Sale Locations Increases Some Adolescents' Susceptibility to Future Smoking.

    Shadel, William G; Martino, Steven C; Setodji, Claude; Dunbar, Michael; Kusuke, Daniela; Lanna, Serafina; Meyer, Amanda

    2017-12-13

    This experiment tested whether introducing graphic antitobacco posters at point-of-sale (POS) had any effect on adolescents' susceptibility to future cigarette smoking and whether these effects were moderated by adolescents' baseline risk of cigarette smoking. The study was conducted in the RAND StoreLab, a life-sized replica of a convenience store that was developed to experimentally evaluate how changing aspects of tobacco advertising displays in retail POS environments influence tobacco use risk and behavior during simulated shopping experiences. In this study, 441 adolescents were randomized to one of the four conditions in a 2 (graphic antismoking poster placed near the tobacco power wall: no, yes) × 2 (graphic antismoking poster placed near the cash register: no, yes) experimental design. The outcome of interest was susceptibility to future cigarette smoking. The addition of antismoking posters at POS led to a significant increase in future smoking susceptibility among those adolescents who already were at high risk for smoking in the future (p posters had no impact on committed never smokers, regardless of poster location; never smokers' susceptibility to future smoking was uniformly low across experimental conditions. Introducing graphic antismoking posters at POS may have the unintended effect of further increasing cigarette smoking susceptibility among adolescents already at risk. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Do E-cigarettes induce weight changes and increase cardiometabolic risk? A signal for the future.

    Verhaegen, A; Van Gaal, L

    2017-10-01

    The prevalence of non-cigarette tobacco use in electronic cigarettes, also called vaping, is rapidly increasing, especially in adolescents and young adults, due to attractive marketing techniques promoting them as healthier alternatives to conventional tobacco cigarettes. Although smoking is associated with weight loss, it increases insulin resistance and attributes to other features of the metabolic syndrome, increasing the cardiometabolic risk profile. Whether vaping has the same deleterious effects on metabolic parameters as regular cigarette smoke has not yet been studied thoroughly in humans. However, animal model experiments attribute comparable effects of e-cigarette smoking, even without nicotine exposure, on weight and metabolic parameters as compared to smoking cigarettes. In this review paper, we want to give an overview of published data on the effects on weight and cardiometabolic parameters of e-cigarette use and formulate some mechanistic hypotheses. © 2017 World Obesity Federation.

  3. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    Kershaw, Stephen; Crasquin, Sylvie; Li, Yue; Collin, Pierre-Yves; Forel, Marie-Béatrice

    2012-01-01

    Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO2, raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1) problems with evidence for ocean acidification preserved in sedimentary rocks, wh...

  4. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    Kershaw , Stephen; Crasquin , Sylvie; Li , Yue; Collin , Pierre-Yves; Forel , Marie-Béatrice

    2012-01-01

    International audience; Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO 2 , raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1) problems with evidence for ocean acidification preserve...

  5. Historic and future increase in the global land area affected by monthly heat extremes

    Coumou, Dim; Robinson, Alexander

    2013-01-01

    Climatic warming of about 0.5 ° C in the global mean since the 1970s has strongly increased the occurrence-probability of heat extremes on monthly to seasonal time scales. For the 21st century, climate models predict more substantial warming. Here we show that the multi-model mean of the CMIP5

  6. Future Warming Increases Global Maize Yield Variability with Implications for Food Markets

    Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.

    2017-12-01

    If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable

  7. Effects of long-term exposure to ocean acidification conditions on future southern Tanner crab (Chionoecetes bairdi) fisheries management from model studies (NCEI Accession 0157642)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains model output data to understand the effect of ocean acidification on southern Tanner Crab. Maximum sustainable yield (MSY), maximum...

  8. Ocean acidification in a geoengineering context

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  9. Historic and future increase in the global land area affected by monthly heat extremes

    Coumou, Dim; Robinson, Alexander

    2013-01-01

    Climatic warming of about 0.5 ° C in the global mean since the 1970s has strongly increased the occurrence-probability of heat extremes on monthly to seasonal time scales. For the 21st century, climate models predict more substantial warming. Here we show that the multi-model mean of the CMIP5 (Coupled Model Intercomparison Project) climate models accurately reproduces the evolution over time and spatial patterns of the historically observed increase in monthly heat extremes. For the near-term (i.e., by 2040), the models predict a robust, several-fold increase in the frequency of such heat extremes, irrespective of the emission scenario. However, mitigation can strongly reduce the number of heat extremes by the second half of the 21st century. Unmitigated climate change causes most (>50%) continental regions to move to a new climatic regime with the coldest summer months by the end of the century substantially hotter than the hottest experienced today. We show that the land fraction experiencing extreme heat as a function of global mean temperature follows a simple cumulative distribution function, which depends only on natural variability and the level of spatial heterogeneity in the warming. (letter)

  10. The Future Impact of Healthcare Services Digitalization on Health Workforce: The Increasing Role of Medical Informatics.

    Lapão, Luís Velez

    2016-01-01

    The digital revolution is gradually transforming our society. What about the effects of digitalization and Internet of Things in healthcare? Among researchers two ideas are dominating, opposing each other. These arguments will be explored and analyzed. A mix-method approach combining literature review with the results from a focus group on eHealth impact on employment is used. Several experts from the WHO and from Health Professional Associations contributed for this analysis. Depending on the type of service it will entail reductions or more need of healthcare workers, yet whatever the scenario medical informatics will play an increasing role.

  11. Increasing Competitiveness for an Otolaryngology Residency: Where We Are and Concerns about the Future.

    Kaplan, Alyson B; Riedy, Katherine N; Grundfast, Kenneth M

    2015-11-01

    For graduating medical students, securing a residency in otolaryngology-head and neck surgery has become exceedingly difficult. This commentary explores the ways that applicants and residency programs are reacting to the increasing competitiveness in applying to, interviewing for, and matching to an otolaryngology residency. The commonly held perceptions of applicants are compared to perspectives held by residency program directors and resident selection committees. Unintended consequences of the growing trend for medical students to add a research year to their curriculum are presented. Some cautions and suggestions about how to improve the application and selection process are offered. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  12. Trans-oceanic transport of {sup 137}Cs from the Fukushima nuclear accident and impact of hypothetical Fukushima-like events of future nuclear plants in Southern China

    Wai, Ka-Ming, E-mail: bhkmwai@cityu.edu.hk [Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI (United States); Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China); Yu, Peter K.N. [Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China)

    2015-03-01

    A Lagrangian model was adopted to assess the potential impact of {sup 137}Cs released from hypothetical Fukushima-like accidents occurring on three potential nuclear power plant sites in Southern China in the near future (planned within 10 years) in four different seasons. The maximum surface (0–500 m) {sup 137}Cs air concentrations would be reached 10 Bq m{sup −3} near the source, comparable to the Fukushima case. In January, Southeast Asian countries would be mostly affected by the radioactive plume due to the effects of winter monsoon. In April, the impact would be mainly on Southern and Northern China. Debris of radioactive plume (∼ 1 mBq m{sup −3}) would carry out long-range transport to North America. The area of influence would be the smallest in July due to the frequent and intense wet removal events by trough of low pressure and tropical cyclone. The maximum worst-case areas of influence were 2382000, 2327000, 517000 and 1395000 km{sup 2} in January, April, July and October, respectively. Prior to the above calculations, the model was employed to simulate the trans-oceanic transport of {sup 137}Cs from the Fukushima nuclear accident. Observed and modeled {sup 137}Cs concentrations were comparable. Sensitivity runs were performed to optimize the wet scavenging parameterization. The adoption of higher-resolution (1° × 1°) meteorological fields improved the prediction. The computed large-scale plume transport pattern over the Pacific Ocean was compared with that reported in the literature. - Highlights: • A Lagrangian model was used to predict the dispersion of {sup 137}Cs from plant accident. • Observed and modeled {sup 137}Cs concentrations were comparable for the Fukushima accident. • The maximum surface concentrations could reach 10 Bq m{sup −3} for the hypothetical case. • The hypothetical radiative plumes could impact E/SE Asia and N. America.

  13. Oceanic influence on extreme rainfall trends in the north central coast of Venezuela: present and future climate assessments

    Lelys Guenni

    2013-10-01

    Full Text Available Extreme events are an important part of climate variability and their intensity and persistence are often modulated by large scale climatic patterns which might act as forcing drivers affecting their probability of occurrence. When the North Tropical Atlantic (NTA and the Equatorial Pacific (Ni\\~no 3 region sea surface temperature (SST anomalies are of opposite signs and the first one is positive while the second one is negative, the rainfall response is stronger in the northern coast of Venezuela as well as in the Pacific coast of Central America during the Nov-Feb period. The difference between these two SST anomaly time series (NTA-Ni\\~no3 is used in this analysis and it is called the Atlantic-Pacific Index or API. By fitting a dynamic generalized extreme value (GEV model to station based daily rainfall at different locations and to the Xie and Arkin dataset for the Vargas state, we found the API index to be an adequate index to explain the probabilistic nature of rainfall extremes in the northern Venezuelan coast for the months Nov-Feb. Dependence between the Atlantic-Pacific index and the probabilistic behavior of extreme rainfall was also explored for simulations from two global coupled General Circulation Models for the 20th century climate (20C3M experiment and the 21st century climate (SRES A2 experiment: the Echam5 model and the HadCM3 model. A significant dependence of extreme rainfall on the Atlantic-Pacific index is well described by the GEV dynamic model for the Echam5 20C3M experiment model outputs. When looking at future climates under the SRES A2 experiment, the dependence of extreme rainfall from the API index is still significant for the middle part of the 21st century (2046-2064, while this dependence fades off for the latest part of the century (2081-2099

  14. President's message: Dues increase will help build the foundation for AGU's future success

    McPhaden, Michael J.

    2012-09-01

    The world is a very different place than it was 43 years ago. In 1969, Jimi Hendrix rocked the legendary Woodstock music festival, Neil Armstrong took the first steps on the Moon, and U.S. drivers paid an average of 35 cents a gallon for gas. Today, digital music files have replaced vinyl records, NASA's Curiosity rover is transmitting data and imagery from the surface of Mars, and a growing number of cars run on alternative fuels. In the same way, 43 years ago AGU was a very different organization. Membership hovered around 10,000, and the Fall Meeting was still in its infancy. Today, AGU's membership has increased to more than 61,000, Fall Meeting attendance has topped 20,000, and an entire generation of geoscientists who weren't even born in 1969 now comprises 28% of our current membership.

  15. The future in the telematics applications as support for increased safety

    Alica KALAŠOVÁ

    2012-01-01

    Full Text Available Traffic is a key-factor in modern economics. Despite of this, there is a continual conflict between mobility satisfaction and increased delay. Nowadays, many specialists are trying to find out the reasons why some traffic events occur. ITS are systems which help to make efficient use of road and urban communication network, using information, communication and directing technologies. They make basic conditions for high quality communication and information society that we are approaching also in our country.We have to remember that, according to current statistics 93% of traffic accidents are caused by human error. Assistance systems are the main challenge. They are based on communication (data exchange not only among vehicles themselves but also vehicles and infrastructure. These so called Intelligent Assistance Systems promise great benefits in the sphere of efficiency of transport systems and road safety. These benefits include mainly increase in the capacity of the road network congestion and pollution reduction, shorter and more predictable driving time, improving traffic safety for all participants of road traffic, lower operational costs of vehicles, better organization and management of road network.In this paper, I first review all the available techniques for communication between various vehicles among themselves and with the infrastructure. The aim of this is to have a complete overview of all the possible communication techniques that the world of electronics and telecommunications has proposed in the last years that can be applied for accomplishing the task of enabling vehicles to communicate and interact with other vehicles as well as with the infrastructure.

  16. Increasing Social Awareness and Professional Collaboration in Architectural Education Towards a Sustainable and Disaster - Free Future

    Cengiz Özmen

    2013-12-01

    Full Text Available The aim of this study is to explore ways of increasing the social and professional awareness of students of architecture to educate a new generation of architects who are familiar with the concepts of social responsibility, professional collaboration , sustainable development and disaster mitigation. Turkey experiences a rapid social change due to the urban regeneration, population movements, environmental changes, new technologies and professional diversification. These phenomenon affect all aspects o f life. This study explores the possibilities for applying new methods of teaching in schools of architecture to train a generation of architects who will be in tune with this new, ever - changing socio - cultural environment in Turkey. A study lasting one edu cational term of 14 weeks was conducted on a group of 15 second year students of architecture. A structural design course which previously had a purely theoretical and mathematical approcah to the subject matter was altered to contain background informatio n regarding social context such as the photos, videos and narratives of earthquake affected areas of Turkey. This was done to introduce the students with the reality of the built environment and professional life in Turkey. Additionally small - scale applied projects were given as semester tasks to the students where they can experience a scaled but realistic application of the theoretical knowledge into reality. These two approaches were supplemented with theoretical knowledge to prepare the students for pro fessional life in a realistic manner. A sudden increase in student attention and participation to the course was observed both in matters concrening the professional application and social context of their architectural projects. These findings were consis tent with a previous study conducted by the author. The findings of this experimental application have resulted in a revision of the educational curriculum concerning the structural

  17. Ocean energies

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  18. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios.

    Gao, Guang; Clare, Anthony S; Rose, Craig; Caldwell, Gary S

    2017-01-15

    The incidence and severity of extraordinary macroalgae blooms (green tides) are increasing. Here, climate change (ocean warming and acidification) impacts on life history and biochemical responses of a causative green tide species, Ulva rigida, were investigated under combinations of pH (7.95, 7.55, corresponding to lower and higher pCO 2 ), temperature (14, 18°C) and nitrate availability (6 and 150μmolL -1 ). The higher temperature accelerated the onset and magnitude of gamete settlement. Any two factor combination promoted germination and accelerated growth in young plants. The higher temperature increased reproduction, which increased further in combination with elevated pCO 2 or nitrate. Reproductive success was highest (64.4±5.1%) when the upper limits of all three variables were combined. Biochemically, more protein and lipid but less carbohydrate were synthesized under higher temperature and nitrate conditions. These results suggest that climate change may cause more severe green tides, particularly when eutrophication cannot be effectively controlled. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Future climate change drives increases in forest fires and summertime OC concentrations in the Western U.S.

    Spracklen, D. V.; Logan, J. A.; Mickley, L. J.; Park, R. J.; Flannigan, M. D.; Westerling, A. L.

    2006-12-01

    Increased forest fire activity in the Western United States appears to be driven by increasing spring and summer temperatures. Here we make a first estimate of how climate-driven changes in fire activity will influence summertime organic carbon (OC) concentrations in the Western US. We use output from a general circulation model (GCM) combined with area burned regressions to predict how area burned will change between present day and 2050. Calculated area burned is used to create future emission estimates for the Western U.S. and we use a global chemical transport model (CTM) to predict future changes in OC concentrations. Stepwise linear regression is used to determine the best relationships between observed area burned for 1980- 2004 and variables chosen from temperature, relative humidity, wind speed, rainfall and drought indices from the Candaian Fire Weather Index Model. Best predictors are ecosytem dependent but typically include mean summer temperature and mean drought code. In forest ecosystems of the Western U.S. our regressions explain 50-60% of the variance in annual area burned. Between 2000 and 2050 increases in temperature and reductions in precipitation, as predicted by the GISS GCM, cause mean area burned in the western U.S. to increase by 30-55%. We use the GEOS-Chem CTM to show that these increased emissions result in an increase in summertime western U.S. OC concentrations by 55% over current concentrations. Our results show that the predicted increase in future wild fires will have important consequences for western US air quality and visibility.

  20. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels, supplement to: Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan (2015): Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 6, 8714

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan

    2016-01-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  1. Geoengineering Downwelling Ocean Currents. A Cost Assessment

    Zhou, S.; Flynn, P.C.

    2005-01-01

    Downwelling ocean currents carry carbon into the deep ocean (the solubility pump), and play a role in controlling the level of atmospheric carbon. The formation of North Atlantic Deep Water (NADW) also releases heat to the atmosphere, which is a contributor to a mild climate in Europe. One possible response to the increase in anthropogenic carbon in the atmosphere and to the possible weakening of the NADW is modification of downwelling ocean currents, by an increase in carbon concentration or volume. This study assesses the costs of seven possible methods of modifying downwelling currents, including using existing industrial techniques for exchange of heat between water and air. Increasing carbon concentration in downwelling currents is not practical due to the high degree of saturation of high latitude surface water. Two of the methods for increasing the volume of downwelling currents were found to be impractical, and four were too expensive to warrant further consideration. Formation of thicker sea ice by pumping ocean water onto the surface of ice sheets is the least expensive of the methods identified for enhancing downwelling ocean currents. Modifying downwelling ocean currents is highly unlikely to ever be a competitive method of sequestering carbon in the deep ocean, but may find future application for climate modification

  2. Alternative long term strategies for sustainable development: Rapidly increasing electricity consumption in Asian countries and future role of nuclear energy

    Sagawa, N.

    1997-01-01

    Many people in the world express the concern that global warming will become an increasingly serious problem. A rapid increase in population and demand for energy in the Asian region must be discussed in this context. Despite the forecast of an increase in demand for energy, the Asian region is short of oil and natural gas resources. In addition, only less energy can be supplied by renewable energy sources in the Asian region than in the other regions because of high population density. Nuclear energy is an important energy resource for fulfilling the future increasing energy demand in the Asian region and for contributing to the suppression of carbon dioxide emissions. In the Asian region alone, however, we cannot rely limitlessly on LWR which does not use plutonium. According to a scenario analysis, the total capacity of nuclear power plants in the Asian region would reach large scale and the cumulative amount of demand for natural uranium will increase to about 5 million tons in the Asian region alone. Just the nuclear power plants of this scale in Asia alone will rapidly consume the world's cheap natural uranium resources if we rely only on natural uranium. In the Asian region, few countries have embarked on nuclear power generation and the capacity of equipment is still small. Currently, however, many plans for nuclear power generation are being designed. Many Asian countries obviously consider nuclear power generation as a valid option. Many potential policies must be examined in the light of future uncertainty. In the future, both renewable energy and nuclear energy must be resorted to. When nuclear energy is utilized, the use of plutonium and FBR in the Asian region must be taken into account in order to attain continual growth and development. (author)

  3. Environmental issues and challenges. Tomorrow's Ocean

    Livingston, H.

    1998-01-01

    In this Un Year of the Ocean -1998- multiple activities are focusing the attention of the public, policy-makers, and media on the planet's largest natural resource. As the new millennium approaches, there is an increasing urgency to highlight the ocean's role in a broad range of human activities and to heighten awareness about the need to preserve this vital resource for the future. The health and understanding of the oceans will continue to be of critical concern for the foreseeable future. Among these many activities is a major event, led by the IAEA, to focus attention on the ocean - the International Symposium on Marine Pollution to be held in Monaco. 5-9 October 1998. This article briefly reviews major issues being examined at the Symposium that affect the ocean's health and future, and highlights cooperative initiatives involving and the IAEA and its global partners. Other featured articles in this edition of the IAEA Bulletin present contemporary examples of how the IAEA's Marine Environment Laboratory (MEL) in Monaco is serving the interests of countries in matters pertaining to the quality of the ocean environment. They address not only the activities of MEL itself, but also those organized in association with other IAEA departments, UN agencies and international organizations

  4. Cross-Mating Compatibility and Competitiveness among Aedes albopictus Strains from Distinct Geographic Origins - Implications for Future Application of SIT Programs in the South West Indian Ocean Islands.

    David Damiens

    Full Text Available The production of large numbers of males needed for a sustainable sterile insect technique (SIT control program requires significant developmental and operational costs. This may constitute a significant economic barrier to the installation of large scale rearing facilities in countries that are undergoing a transition from being largely dependent on insecticide use to be in a position to integrate the SIT against Aedes albopictus. Alternative options available for those countries could be to rely on outsourcing of sterile males from a foreign supplier, or for one centralised facility to produce mosquitoes for several countries, thus increasing the efficiency of the mass-rearing effort. However, demonstration of strain compatibility is a prerequisite for the export of mosquitoes for transborder SIT applications. Here, we compared mating compatibility among Ae. albopictus populations originating from three islands of the South Western Indian Ocean, and assessed both insemination rates and egg fertility in all possible cross-mating combinations. Furthermore, competitiveness between irradiated and non-irradiated males from the three studied strains, and the subsequent effect on female fertility were also examined. Although morphometric analysis of wing shapes suggested phenoptypic differences between Ae. albopictus strains, perfect reproductive compatibility between them was observed. Furthermore, irradiated males from the different islands demonstrated similar levels of competitiveness and induced sterility when confronted with fertile males from any of the other island populations tested. In conclusion, despite the evidence of inter-strain differences based on male wing morphology, collectively, our results provide a new set of expectations for the use of a single candidate strain of mass-reared sterile males for area-wide scale application of SIT against Ae. albopictus populations in different islands across the South Western Indian Ocean. Cross

  5. Cross-Mating Compatibility and Competitiveness among Aedes albopictus Strains from Distinct Geographic Origins - Implications for Future Application of SIT Programs in the South West Indian Ocean Islands.

    Damiens, David; Lebon, Cyrille; Wilkinson, David A; Dijoux-Millet, Damien; Le Goff, Gilbert; Bheecarry, Ambicadutt; Gouagna, Louis Clément

    2016-01-01

    The production of large numbers of males needed for a sustainable sterile insect technique (SIT) control program requires significant developmental and operational costs. This may constitute a significant economic barrier to the installation of large scale rearing facilities in countries that are undergoing a transition from being largely dependent on insecticide use to be in a position to integrate the SIT against Aedes albopictus. Alternative options available for those countries could be to rely on outsourcing of sterile males from a foreign supplier, or for one centralised facility to produce mosquitoes for several countries, thus increasing the efficiency of the mass-rearing effort. However, demonstration of strain compatibility is a prerequisite for the export of mosquitoes for transborder SIT applications. Here, we compared mating compatibility among Ae. albopictus populations originating from three islands of the South Western Indian Ocean, and assessed both insemination rates and egg fertility in all possible cross-mating combinations. Furthermore, competitiveness between irradiated and non-irradiated males from the three studied strains, and the subsequent effect on female fertility were also examined. Although morphometric analysis of wing shapes suggested phenoptypic differences between Ae. albopictus strains, perfect reproductive compatibility between them was observed. Furthermore, irradiated males from the different islands demonstrated similar levels of competitiveness and induced sterility when confronted with fertile males from any of the other island populations tested. In conclusion, despite the evidence of inter-strain differences based on male wing morphology, collectively, our results provide a new set of expectations for the use of a single candidate strain of mass-reared sterile males for area-wide scale application of SIT against Ae. albopictus populations in different islands across the South Western Indian Ocean. Cross

  6. Fish production and diversity in the Paleocene-Eocene Thermal Maximum—Increased production but no novel faunas during a "Future Earth" analog

    Tomczik, D. W.; Norris, R. D.; Gaskell, D. E.

    2014-12-01

    A partial analog for future global change is the Paleocene-Eocene Thermal Maximum—a transient episode of warming, acidification, and biogeographic change at ~55.5 Ma. The PETM is known to have triggered extinction in some deep sea biotas, extensive biogeographic range shifts, and the common occurrence of 'excursion biotas'—non-analog occurrences of species that are typically rare in the open ocean before or after the PETM. Here we report on the impact of the PETM on fish production and biodiversity. Our data include the mass accumulation rate of fish teeth and denticles as well as an analysis of tooth morphotypes for three PETM sites: ODP 1220 and 1209 in the Pacific, and ODP 1260 in the equatorial Atlantic. Tooth morphotypes hardly change through the PETM and consist of abundant midwater species (angler fish and flashlight fish) in addition to sharks and epipelagic fish. There is no evidence for a non-analog 'excursion biota' during the PETM, suggesting that fish experienced fewer geographic range shifts than the calcareous and organic-walled plankton where excursion biotas are commonplace. Fish mass accumulation rates are also relatively stable before and after the PETM although all sites show a transient rise in fish production at the onset of the PETM or within the later part of the "PETM Core". These results broadly match published estimates of PETM export production from biogenic barium fluxes. Our findings run counter to "Future Earth" models that use climate forecasts for the next century to predict the impact of global change on fish stocks. These models suggest that future warming and ocean stratification will decrease most tropical and subtropical ocean fish production, accentuate fish production in the boundary currents and generally shift production toward higher latitudes. A resolution of "Future Earth" models and PETM data may reflect the different timescales of observation and stages of ecological response to severe global change.

  7. Attributing Increased River Flooding in the Future: Hydrodynamic Downscaling Reveals Role of Plant Physiological Responses to Increased CO2 is First Order

    Fowler, M. D.; Kooperman, G. J.; Pritchard, M. S.; Randerson, J. T.

    2017-12-01

    River flooding events, which are the most frequently occurring natural disaster today, are expected to become more frequent and intense in response to climate change. However, the magnitude of these changes remains debated, in part due to uncertainty in our understanding of the physical processes that contribute to these events and their representation in global climate models. While the intensification of precipitation has been shown to be a primary driver of increased flooding, plant physiological responses to increasing CO2 may also play an important role. As the atmospheric concentration of CO2 increases, plants may respond by reducing the width of their stomata (i.e. stomatal conductance), which can decrease water lost through transpiration and in turn maintain higher soil moisture levels. On long timescales, reduced transpiration has been shown to increase average runoff, but on short timescales elevated soil moisture can also increase instantaneous runoff by limiting the rate at which water is able to infiltrate the soil surface. Here, through hydrodynamic downscaling, we isolate the portion of flooding amplification that can be attributed to the physiological response to increasing CO2. This builds on a new analysis that has revealed such physiological effects can rival changes caused by the atmospheric response alone in the tails of the runoff distribution. We use a set of four simulations run with the Community Earth System Model: one pre-industrial control simulation and three others that are forced with four times CO2. In the three climate change simulations, the increased CO2 is applied only to the land-surface, only to the atmosphere, and to both, respectively. Thirty years of daily runoff from these experiments are used as input for the hydrodynamic CaMa-Flood model. Our results reveal that both the radiative and physiological responses to climate change contribute significantly to future changes in flood return period and inundated area. This

  8. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost

    Jiang, Lei; Zhang, Fang; Guo, Ming-Lan; Guo, Ya-Juan; Zhang, Yu-Yang; Zhou, Guo-Wei; Cai, Lin; Lian, Jian-Sheng; Qian, Pei-Yuan; Huang, Hui

    2018-03-01

    This study tested the interactive effects of increased seawater temperature and CO2 partial pressure ( pCO2) on the photochemistry, bleaching, and early growth of the reef coral Pocillopora damicornis. New recruits were maintained at ambient or high temperature (29 or 30.8 °C) and pCO2 ( 500 and 1100 μatm) in a full-factorial experiment for 3 weeks. Neither a sharp decline in photochemical efficiency (Fv/Fm) nor evident bleaching was observed at high temperature and/or high pCO2. Furthermore, elevated temperature greatly promoted lateral growth and calcification, while polyp budding exhibited temperature-dependent responses to pCO2. High pCO2 depressed calcification by 28% at ambient temperature, but did not impact calcification at 30.8 °C. Interestingly, elevated temperature in concert with high pCO2 significantly retarded the budding process. These results suggest that increased temperature can mitigate the adverse effects of acidification on the calcification of juvenile P. damicornis, but at a substantial cost to asexual budding.

  9. How ocean acidification can benefit calcifiers.

    Connell, Sean D; Doubleday, Zoë A; Hamlyn, Sarah B; Foster, Nicole R; Harley, Christopher D G; Helmuth, Brian; Kelaher, Brendan P; Nagelkerken, Ivan; Sarà, Gianluca; Russell, Bayden D

    2017-02-06

    Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO 2 ) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calcifying organisms, which may counter or exacerbate direct effects, is uncertain. Using volcanic CO 2 vents, we tested the indirect effects of ocean acidification on a calcifying herbivore (gastropod) within the natural complexity of an ecological system. Contrary to predictions, the abundance of this calcifier was greater at vent sites (with near-future CO 2 levels). Furthermore, translocation experiments demonstrated that ocean acidification did not drive increases in gastropod abundance directly, but indirectly as a function of increased habitat and food (algal biomass). We conclude that the effect of ocean acidification on algae (primary producers) can have a strong, indirect positive influence on the abundance of some calcifying herbivores, which can overwhelm any direct negative effects. This finding points to the need to understand ecological processes that buffer the negative effects of environmental change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tides. Ocean Related Curriculum Activities.

    Marrett, Andrea

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  11. Energy from rivers and oceans

    Anon.

    1992-01-01

    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  12. Evaluation of the productivity decrease risk due to a future increase in tropical cyclone intensity in Japan.

    Esteban, Miguel; Longarte-Galnares, Gorka

    2010-12-01

    A number of scientists have recently conducted research that shows that tropical cyclone intensity is likely to increase in the future. This would result in an increase in the damage along with a decrease in economic productivity due to precautionary cessation of the economic activity of the affected areas during the passage of the cyclone. The economic effect of this stop in economic activity is a phenomenon that has not received much attention in the past, and the cumulative effect that it can have on the Japanese economy over the next 75 years has never been evaluated. The starting point for the evaluation of the economic risks is the change in the patterns of tropical cyclone intensity suggested by Knutson and Tuleya. The results obtained show how a significant decrease in the overall productivity of the country could be expected, which could lower GDP by between 6% and 13% by 2085. © 2010 Society for Risk Analysis.

  13. Regional Ocean Data Assimilation

    Edwards, Christopher A.

    2015-01-03

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  14. The Woods Hole Partnership Education Program: Increasing Diversity in the Ocean and Environmental Sciences in One Influential Science Community

    Jearld, A.

    2011-12-01

    To increase diversity in one influential science community, a consortium of public and private institutions created the Woods Hole Partnership Education Program, or PEP, in 2008. Participating institutions are the Marine Biological Laboratory, Northeast Fisheries Science Center of NOAA's Fisheries Service, Sea Education Association, U.S. Geological Survey, Woods Hole Oceanographic Institution, the Woods Hole Research Center, and University of Maryland Eastern Shore. Aimed at college juniors and seniors with some course work in marine and/or environmental sciences, PEP is a four-week course and a six-to-eight-week individual research project under the guidance of a research mentor. Forty-six students have participated to date. Investigators from the science institutions serve as course faculty and research mentors. We listened to experts regarding critical mass, mentoring, adequate support, network recruitment, and then built a program based on those features. Three years in we have a program that works and that has its own model for choosing applicants and for matching with mentors. We continue fine-tuning our match process, enhancing mentoring skills, preparing our students for a variety of lab cultures, and setting expectations high while remaining supportive. Our challenges now are to keep at it, using leverage instead of capacity to make a difference. Collaboration, not competition, is key since a rising tide floats all boats.

  15. Ocean acidification

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence

    2017-09-01

    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  16. Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species.

    Manríquez, Patricio H; Jara, María Elisa; Seguel, Mylene E; Torres, Rodrigo; Alarcon, Emilio; Lee, Matthew R

    2016-01-01

    The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39 °S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19 °C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15 °C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the

  17. Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species.

    Patricio H Manríquez

    Full Text Available The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39 °S to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months to contrasting pCO2 (ca. 500 and 1400 μatm and temperature (15 and 19 °C levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15 °C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response or secretion of adhesive mucous (e.g. dislodgement resistance. Moreover, we conclude that positive behavioural responses may assist

  18. Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species

    Manríquez, Patricio H.; Jara, María Elisa; Seguel, Mylene E.; Torres, Rodrigo; Alarcon, Emilio; Lee, Matthew R.

    2016-01-01

    The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39°S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19°C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15°C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the adaptation

  19. Computational Ocean Acoustics

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  20. Metals of Deep Ocean Water Increase the Anti-Adipogenesis Effect of Monascus-Fermented Product via Modulating the Monascin and Ankaflavin Production.

    Lung, Tzu-Ying; Liao, Li-Ya; Wang, Jyh-Jye; Wei, Bai-Luh; Huang, Ping-Yi; Lee, Chun-Lin

    2016-05-27

    Deep ocean water (DOW) obtained from a depth of more than 200 m includes abundant nutrients and minerals. DOW was proven to positively increase monascin (MS) and ankaflavin (AK) production and the anti-adipogenesis effect of Monascus-fermented red mold dioscorea (RMD). However, the influences that the major metals in DOW have on Monascus secondary metabolite biosynthesis and anti-adipogenesis remain unknown. Therefore, the major metals in DOW were used as the culture water to produce RMD. The secondary metabolites production and anti-adipogenesis effect of RMD cultured with various individual metal waters were investigated. In the results, the addition of water with Mg, Ca, Zn, and Fe increased MS and AK production and inhibited mycotoxin citrinin (CT). However, the positive influence may be contributed to the regulation of pigment biosynthesis. Furthermore, in the results of cell testing, higher lipogenesis inhibition was seen in the treatments of various ethanol extracts of RMD cultured with water containing Mg, K, Zn, and Fe than in those of RMD cultured with ultra-pure water. In conclusion, various individual metals resulted in different effects on MS and AK productions as well as the anti-adipogenesis effect of RMD, but the specific metals contained in DOW may cause synergistic or comprehensive effects that increase the significantly positive influence.

  1. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations

    Bjerregaard, A; Laing, I A; Backer, V

    2017-01-01

    the follow-up period. Of these, 15 (68%) had a respiratory virus detected at exacerbation. Sputum eosinophils >1% at baseline increased the risk of having a subsequent virus-induced exacerbation (HR 7.6 95% CI: 1.6-35.2, P=.010) as did having FeNO >25 ppb (HR 3.4 95% CI: 1.1-10.4, P=.033). CONCLUSION...... AND CLINICAL RELEVANCE: Established type 2 inflammation during stable disease is a risk factor for virus-induced exacerbations in a real-life setting. Measures of type 2 inflammation, such as sputum eosinophils and FeNO, could be included in the risk assessment of patients with asthma in future studies....

  2. Modeling the response of forest isoprene emissions to future increases in atmospheric CO2 concentration and changes in climate (Invited)

    Monson, R. K.; Heald, C. L.; Guenther, A. B.; Wilkinson, M.

    2009-12-01

    Isoprene emissions from plants to the atmosphere are sensitive to changes in temperature, light and atmospheric CO2 concentration in both the short- (seconds-to-minutes) and long-term (hours-to-months). We now understand that the different time constants for these responses are due to controls by different sets of biochemical and physiological processes n leaves. Progress has been made in the past few years toward converting this process-level understanding into quantitative models. In this talk, we consider this progress with special emphasis on the short- and long-term responses to atmospheric CO2 concentration and temperature. A new biochemically-based model is presented for describing the CO2 responses, and the model is deployed in a global context to predict interactions between the influences of temperature and CO2 on the global isoprene emission rate. The model is based on the theory of enzyme-substrate kinetics, particularly with regard to those reactions that produce puruvate or glyceraldehyde 3-phosphate, the two chloroplastic substrates for isoprene biosynthesis. In the global model, when we accounted for CO2 inhibition of isoprene emission in the long-term response, we observed little impact on present-day global isoprene emission (increase from 508 to 523 Tg C yr-1). However, the large increases in future isoprene emissions predicted from past models which are due to a projected warmer climate, were entirely offset by including the CO2 effects. The isoprene emission response to CO2 was dominated by the long-term growth environment effect, with modulations of 10% or less from the short-term effect. We use this analysis as a framework for grounding future global models of isoprene emission in biochemical and physiological observations.

  3. S-N secular ocean tide: explanation of observably coastal velocities of increase of a global mean sea level and mean sea levels in northern and southern hemispheres and prediction of erroneous altimetry velocities

    Barkin, Yury

    2010-05-01

    The phenomenon of contrast secular changes of sea levels in the southern and northern hemispheres, predicted on the basis of geodynamic model about the forced relative oscillations and displacements of the Earth shells, has obtained a theoretical explanation. In northern hemisphere the mean sea level of ocean increases with velocity about 2.45±0.32 mm/yr, and in a southern hemisphere the mean sea level increases with velocity about 0.67±0.30 mm/yr. Theoretical values of velocity of increase of global mean sea level of ocean has been estimated in 1.61±0.36 mm/yr. 1 Introduction. The secular drift of the centre of mass of the Earth in the direction of North Pole with velocity about 12-20 mm/yr has been predicted by author in 1995 [1], [2], and now has confirmed with methods of space geodesy. For example the DORIS data in period 1999-2008 let us to estimate velocity of polar drift in 5.24±0.29 mm/yr [3]. To explain this fundamental planetary phenomenon it is possible only, having admitted, that similar northern drift tests the centre of mass of the liquid core relatively to the centre of mass of viscous-elastic and thermodynamically changeable mantle with velocity about 2-3 cm/yr in present [4]. The polar drift of the Earth core with huge superfluous mass results in slow increase of a gravity in northern hemisphere with a mean velocity about 1.4 ?Gal and to its decrease approximately with the same mean velocity in southern hemisphere [5]. This conclusion-prediction has obtained already a number of confirmations in precision gravimetric observations fulfilled in last decade around the world [6]. Naturally, a drift of the core is accompanied by the global changes (deformations) of all layers of the mantle and the core, by inversion changes of their tension states when in one hemisphere the tension increases and opposite on the contrary - decreases. Also it is possible that thermodynamical mechanism actively works with inversion properties of molting and

  4. Ocean Acidification | Smithsonian Ocean Portal

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  5. Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk.

    Anderegg, William R L; Plavcová, Lenka; Anderegg, Leander D L; Hacke, Uwe G; Berry, Joseph A; Field, Christopher B

    2013-04-01

    Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon-cycle feedbacks. Recent drought-induced, widespread forest die-offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die-off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die-off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate-vegetation models. Finally, our findings highlight the

  6. Ocean acidification: the other CO2 problem.

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A

    2009-01-01

    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  7. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean.

    Muller, Erik B; Nisbet, Roger M

    2014-06-01

    Ocean acidification is likely to impact the calcification potential of marine organisms. In part due to the covarying nature of the ocean carbonate system components, including pH and CO2 and CO3(2-) levels, it remains largely unclear how each of these components may affect calcification rates quantitatively. We develop a process-based bioenergetic model that explains how several components of the ocean carbonate system collectively affect growth and calcification rates in Emiliania huxleyi, which plays a major role in marine primary production and biogeochemical carbon cycling. The model predicts that under the IPCC A2 emission scenario, its growth and calcification potential will have decreased by the end of the century, although those reductions are relatively modest. We anticipate that our model will be relevant for many other marine calcifying organisms, and that it can be used to improve our understanding of the impact of climate change on marine systems. © 2014 John Wiley & Sons Ltd.

  8. Is increasing industrialization affecting remote ecosystem health in the South Americas? Insights from ocean surface water measurements of As, Sb and Pb from a GEOTRACES transect

    Weiss, Dominik; Salaun, Pascal; Van den Berg, Stan; Bi, Zaoshun

    2014-05-01

    Continued industrial development of the South Americas with increasing atmospheric emission of toxic trace metals has lead to a growing concern about possible effects on pristine ecosystem health. Concentration measurements of trace metals in ocean surface waters in the North Atlantic have successfully revealed the global extent of atmospheric pollution in the Northern Hemisphere during economical growth in the USA and Europe, suggesting a similar approach can be applied to the Southern Hemisphere. To this end, we determined concentrations of lead (Pb), antimony (Sb) and arsenic (As) using voltammetry in surface water samples of the South Atlantic Ocean collected during the third leg of the GEOTRACES West Atlantic Cruise. These elements are volatile and therefore most likely suitable tracer elements of industrial emissions from South America. The samples were not filtered and the solutions were acidified and UV digested. Total concentrations of Pb were detected. Detected As levels correspond to the sum of inorganic species (AsIII + AsV) plus the mono methyl arsenic acid (MMA) while the dimethyl arsenic acid (DMA) is not detected in such conditions. For Sb, detected levels correspond at least to the sum of inorganic fractions (SbIII + SbV). The measured concentrations for Pb varied from 6 to 23 pM. Concentrations were highest at -35° latitude and lowest at -40° and -50° latitude. We found a decreasing trend from about -35° latitude southwards. The average concentrations of As was 20 nM and of Sb 1.2 nM. Arsenic showed a more significant north to south trend than Sb. Arsenic concentration was highest at -23 ° latitude (21 nM) and the lowest at -43 ° latitude (17.7 nM). Antimony concentration was highest at -31 ° latitude (1.5 nM) and lowest at -35 ° latitude (1.0 nM). Our preliminary data suggests that the major industrial centres in Brazil (i.e., Sao Paolo, Rio de Janeiro) and Argentina (i.e., Buenos Aires) affect atmospheric metal fluxes to remote

  9. Modeling of steroid estrogen contamination in UK and South Australian rivers predicts modest increases in concentrations in the future.

    Green, Christopher; Williams, Richard; Kanda, Rakesh; Churchley, John; He, Ying; Thomas, Shaun; Goonan, Peter; Kumar, Anu; Jobling, Susan

    2013-07-02

    The prediction of risks posed by pharmaceuticals and personal care products in the aquatic environment now and in the future is one of the top 20 research questions regarding these contaminants following growing concern for their biological effects on fish and other animals. To this end it is important that areas experiencing the greatest risk are identified, particularly in countries experiencing water stress, where dilution of pollutants entering river networks is more limited. This study is the first to use hydrological models to estimate concentrations of pharmaceutical and natural steroid estrogens in a water stressed catchment in South Australia alongside a UK catchment and to forecast their concentrations in 2050 based on demographic and climate change predictions. The results show that despite their differing climates and demographics, modeled concentrations of steroid estrogens in effluents from Australian sewage treatment works and a receiving river were predicted (simulated) to be similar to those observed in the UK and Europe, exceeding the combined estradiol equivalent's predicted no effect concentration for feminization in wild fish. Furthermore, by 2050 a moderate increase in estrogenic contamination and the potential risk to wildlife was predicted with up to a 2-fold rise in concentrations.

  10. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ocean tides

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  12. Multi-model analysis of expected future trends in the landfall of tropical systems from the Southwest Indian Ocean over the eastern parts of southern Africa

    Malherbe, J

    2010-09-01

    Full Text Available the southwest Indian Ocean (SWIO) over southern Africa as well as the simulated change in the frequencies, tracks and intensities of landfalling low-pressure systems in the context of climate change. The main finding in this regard is that there exists general...

  13. Impacts of ocean acidification on marine seafood.

    Branch, Trevor A; DeJoseph, Bonnie M; Ray, Liza J; Wagner, Cherie A

    2013-03-01

    Ocean acidification is a series of chemical reactions due to increased CO(2) emissions. The resulting lower pH impairs the senses of reef fishes and reduces their survival, and might similarly impact commercially targeted fishes that produce most of the seafood eaten by humans. Shelled molluscs will also be negatively affected, whereas cephalopods and crustaceans will remain largely unscathed. Habitat changes will reduce seafood production from coral reefs, but increase production from seagrass and seaweed. Overall effects of ocean acidification on primary productivity and, hence, on food webs will result in hard-to-predict winners and losers. Although adaptation, parental effects, and evolution can mitigate some effects of ocean acidification, future seafood platters will look rather different unless CO(2) emissions are curbed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Indian Ocean Rim Cooperation

    Wippel, Steffen

    Since the mid-1990s, the Indian Ocean has been experiencing increasing economic cooperation among its rim states. Middle Eastern countries, too, participate in the work of the Indian Ocean Rim Association, which received new impetus in the course of the current decade. Notably Oman is a very active...

  15. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  16. Climate Ocean Modeling on Parallel Computers

    Wang, P.; Cheng, B. N.; Chao, Y.

    1998-01-01

    Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.

  17. Role of LNG in an optimized hybrid energy network : part I. Increased operational flexibility for the future energy system by integration of decentralized LNG regasification with a CHP

    Montoya Cardona, Juliana; de Rooij, Marietta; Dam, Jacques

    2017-01-01

    The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased

  18. An isopycnic ocean carbon cycle model

    K. M. Assmann

    2010-02-01

    Full Text Available The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  19. Ejecta from Ocean Impacts

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  20. Blue ocean strategy.

    Kim, W Chan; Mauborgne, Renée

    2004-10-01

    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  1. Troubled waters. The future of the oceans. Human activity is polluting the marine environment and the economic livelihoods of millions who fish the seas. Science can help change the picture

    McIntyre, A.D.

    2003-01-01

    -fished, and 9% are depleted. In the light of this review, what can we say about the future of the oceans? One issue closely watched is global climate change. The major drivers of this are thought to be anthropogenic carbon dioxide and aerosols released by humans into the air. Climate warming will cause ocean temperatures to rise and its volume to expand, as well as melting of land-based ice that will add fresh water to the oceans. As a consequence, the sea level will rise. Unfortunately, we do not yet have sufficient understanding of the many processes at work in the ocean-atmosphere system to make accurate predictions about the physical changes that will certainly occur - nor can we be clear about the biological effects of changes in level and temperature of the oceans

  2. Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world

    Liberloo, M.; Calfapietra, C.; Lukac, M.; Godbold, D.; Luos, Z.B.; Polles, A.; Hoosbeek, M.R.; Kull, O.; Marek, M.; Rianes, Chr.; Rubino, M.; Taylors, G.; Scarascia-Mugnozza, G.; Ceulemans, R.

    2006-01-01

    The quickly rising atmospheric carbon dioxide (CO2)-levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar

  3. Oceanic archipelagos

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  4. Ocean acidification postcards

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  5. Carbon–climate feedbacks accelerate ocean acidification

    R. J. Matear

    2018-03-01

    Full Text Available Carbon–climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010. By modifying the future atmospheric CO2 concentrations, the carbon–climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon–climate feedbacks. We show that simulated carbon–climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6, the carbon–climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon–climate feedbacks are most significant for the medium- (RCP4.5 and low-emissions (RCP2.6 scenarios. For the RCP4.5 scenario, by 2100 the carbon–climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon–climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon–climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon–climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  6. Carbon-climate feedbacks accelerate ocean acidification

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  7. Ocean transportation

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  8. Power from Ocean Waves.

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  9. Multiple stressors for oceanic primary production

    Agusti, Susana

    2015-12-15

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  10. Multiple stressors for oceanic primary production

    Agusti, Susana; Llabré s, Moira; Lubiá n, Luis M.; Moreno-Ostos, Enrique; Estrada, Marta; Duarte, Carlos M.; Cerezo, Maria I.

    2015-01-01

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  11. Implications of synergetic indirect effects and increased flexibility for municipal solid waste management within future framework conditions

    Cimpan, Ciprian; Rothmann, Marianne; Wenzel, Henrik

    and compared against a large variety of background system scenarios, consisting of the most probable future development of the Danish energy system (and surrounding countries) towards 2050. Specific focus was placed on identification and modelling of possible indirect effects on adjoining systems that would......Life cycle assessments addressing municipal solid waste management systems (MSWMS) most often represent and evaluate these systems or compare isolated technological and management solutions in a much too simplistic interaction with their surroundings, accounting for a minimum of probable future...... potential (GWP) of different waste management strategies. Within the study reported here, a number of alternative MSWMS were simulated and evaluated, comprising combinations of separate collection and different downstream treatment/handling approaches for remaining residual waste, including advanced...

  12. The role stratification on Indian ocean mixing under global warming

    Praveen, V.; Valsala, V.; Ravindran, A. M.

    2017-12-01

    The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.

  13. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  14. The ocean carbon sink - impacts, vulnerabilities and challenges

    Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Steinfeldt, R.; Chang, N.; Le Quéré, C.; Bakker, D. C. E.

    2015-06-01

    Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth's climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air-sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed.

  15. Increasing Potential Risk of a Global Aquatic Invader in Europe in Contrast to Other Continents under Future Climate Change

    Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming

    2011-01-01

    Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop

  16. Ocean technology

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  17. Ocean acidification

    Gattuso, J.P; Hansson, L

    2011-01-01

    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  18. Our Changing Oceans: All about Ocean Acidification

    Rickwood, Peter

    2013-01-01

    The consequences of ocean acidification are global in scale. More research into ocean acidification and its consequences is needed. It is already known, for example, that there are regional differences in the vulnerability of fisheries to acidification. The combination of other factors, such as global warming, the destruction of habitats, overfishing and pollution, need to be taken into account when developing strategies to increase the marine environment’s resilience. Among steps that can be taken to reduce the impact is better protection of marine coastal ecosystems, such as mangrove swamps and seagrass meadows, which will help protect fisheries. This recommendation was one of the conclusions of a three-day workshop attended by economists and scientists and organized by the IAEA and the Centre Scientifique de Monaco in November 2012. In their recommendations the workshop also stressed that the impact of increasing ocean acidity must be taken into account in the management of fisheries, particularly where seafood is a main dietary source

  19. Marine Biology Activities. Ocean Related Curriculum Activities.

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  20. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models

    Bopp, L.; Resplandy, L.; Untersee, A.; Le Mezo, P.; Kageyama, M.

    2017-08-01

    All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O2sat) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  1. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models.

    Bopp, L; Resplandy, L; Untersee, A; Le Mezo, P; Kageyama, M

    2017-09-13

    All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O 2sat ) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O 2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O 2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  2. The Increased Role of Regional Organizations in Peacekeeping and Effects on the United Nations Preeminence in Future Peace Operations

    Dhanoa, Birender

    2003-01-01

    .... The UN, drawn into a plethora of peacekeeping operations in the 1990s, has relied increasingly on regional organizations and alliances to take the lead in conflict resolution, especially for peace enforcement...

  3. Uranium Isotope Compositions of Mid-Proterozoic Organic-rich Mudrocks: Evidence for an Episode of Increased Ocean Oxygenation at ca. 1.36 Ga and Evaluation of the Effect of Post-Depositional Hydrothermal Fluid Flow

    Kendall, B.; Yang, S.; Lu, X.; Zhang, F.; Zheng, W.

    2016-12-01

    The U isotope system represents a relatively new paleoredox proxy that can help trace the evolution of global ocean redox chemistry, but has rarely been applied to the Mid-Proterozoic. We report U isotope data for marine black shales of the early Mesoproterozoic Velkerri Formation (Roper Group) and late Paleoproterozoic Wollogorang Formation (Tawallah Group) from the McArthur Basin, Northern Australia. An average authigenic δ238U of 0.13 ± 0.04‰ (1SD; relative to standard CRM145) was obtained for six euxinic shales from a 1 m interval that previously yielded a precise Re-Os depositional age of 1361 ± 21 Ma. After correcting for a U isotope fractionation of 0.60-0.85‰ between seawater and open-ocean euxinic sediments, we infer that coeval global seawater had a δ238U of -0.47‰ to -0.72‰, which is 0.1-0.3‰ lighter than modern seawater (-0.40 ± 0.03‰). A U isotope mass-balance model suggests that anoxic marine environments accounted for 25-50% of the global oceanic U sink at 1.36 Ga, which is 3-7 times greater than today. The model suggests that a significant proportion, potentially even a majority, of the seafloor was not covered by anoxic waters. Hence, we infer that a significant extent of the ocean floor was covered by O2-bearing waters at 1.36 Ga. The O2 concentrations of those waters were not necessarily high, and a large expanse of weakly to mildly oxygenated deep waters is consistent with the U isotope data. Uranium isotope data from a 1 m interval in the lower Velkerri Formation, deposited at 1417 ± 29 Ma based on Re-Os geochronology, yield a greater estimate for the extent of ocean anoxia. Hence, the upper Velkerri Formation may capture a transient episode of increased ocean oxygenation. Previous Re-Os isotope data from black shales of the ca. 1.73 Ga Paleoproterozoic Wollogorang Formation yielded an erroneously young date of 1359 ± 150 Ma because hydrothermal fluids percolated through the Tawallah Group rocks at ca. 1640 Ma. Higher δ238U

  4. Ocean energy

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  5. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.

    Hernán, Gema; Ortega, María J; Gándara, Alberto M; Castejón, Inés; Terrados, Jorge; Tomas, Fiona

    2017-11-01

    Increases in seawater temperature are expected to have negative consequences for marine organisms. Beyond individual effects, species-specific differences in thermal tolerance are predicted to modify species interactions and increase the strength of top-down effects, particularly in plant-herbivore interactions. Shifts in trophic interactions will be especially important when affecting habitat-forming species such as seagrasses, as the consequences on their abundance will cascade throughout the food web. Seagrasses are a major component of coastal ecosystems offering important ecosystem services, but are threatened by multiple anthropogenic stressors, including warming. The mechanistic understanding of seagrass responses to warming at multiple scales of organization remains largely unexplored, especially in early-life stages such as seedlings. Yet, these early-life stages are critical for seagrass expansion processes and adaptation to climate change. In this study, we determined the effects of a 3 month experimental exposure to present and predicted mean summer SST of the Mediterranean Sea (25°C, 27°C, and 29°C) on the photophysiology, size, and ecology (i.e., plant-herbivore interactions) of seedlings of the seagrass Posidonia oceanica. Warming resulted in increased mortality, leaf necrosis, and respiration as well as lower carbohydrate reserves in the seed, the main storage organ in seedlings. Aboveground biomass and root growth were also limited with warming, which could hamper seedling establishment success. Furthermore, warming increased the susceptibility to consumption by grazers, likely due to lower leaf fiber content and thickness. Our results indicate that warming will negatively affect seagrass seedlings through multiple direct and indirect pathways: increased stress, reduced establishment potential, lower storage of carbohydrate reserves, and increased susceptibly to consumption. This work provides a significant step forward in understanding the

  6. Fully Integrating Academic Advising with Career Coaching to Increase Student Retention, Graduation Rates and Future Job Satisfaction: An Industry Approach

    Tudor, Thomas R.

    2018-01-01

    Higher education institutions in the United States are under increasing pressure to retain and graduate more students. Traditionally, the academic advisor helps students to meet degree graduation requirements and may also do some minor career advising. A new approach is proposed, in which career coaching with industry help becomes just as…

  7. The car that looks like me : similarity cues can increase trust in the self-driving cars of the future

    Verberne, F.M.F.; Ham, J.R.C.; Midden, C.J.H.

    2013-01-01

    Modern-day technologies are capable of introducing intelligent automation in vehicles, ultimately leading to the possibility of a driverless vehicle. Such intelligent automation can have several advantages such as saving energy and increasing safety on the road. In this multidisciplinary project

  8. Ocean transportation

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... The discussion of technology considers the ocean transportation system as a whole, and the composite subsystems such as hull, outfit, propulsion, cargo handling, automation, and control and interface technology...

  9. Ocean transportation

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  10. Ocean Color

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  11. Towards improved socio-economic assessments of ocean acidification's impacts.

    Hilmi, Nathalie; Allemand, Denis; Dupont, Sam; Safa, Alain; Haraldsson, Gunnar; Nunes, Paulo A L D; Moore, Chris; Hattam, Caroline; Reynaud, Stéphanie; Hall-Spencer, Jason M; Fine, Maoz; Turley, Carol; Jeffree, Ross; Orr, James; Munday, Philip L; Cooley, Sarah R

    2013-01-01

    Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.

  12. Ocean Quality

    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis

    2017-01-01

    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  13. Increased labor market participation can't do the job of mastering Germany's demographic change in the future

    Brenke, Karl; Clemens, Marius

    2017-01-01

    In the last decade the available labor force has expanded in Germany-despite the decline in the working-age population. The reason: labor market participation has increased, for women in particular and older people in general. Also noticeable was a rise in qualification level because well-educated people have a particularly high propensity to participate in the labor market. Most recently, Germany's potential labor force has grown as a consequence of many factors, including migration-from oth...

  14. Increasing the public health impact of evidence-based interventions in behavioral medicine: new approaches and future directions.

    Buscemi, Joanna; Janke, E Amy; Kugler, Kari C; Duffecy, Jenna; Mielenz, Thelma J; St George, Sara M; Sheinfeld Gorin, Sherri N

    2017-02-01

    The dissemination and implementation of evidence-based behavioral medicine interventions into real world practice has been limited. The purpose of this paper is to discuss specific limitations of current behavioral medicine research within the context of the RE-AIM framework, and potential opportunities to increase public health impact by applying novel intervention designs and data collection approaches. The MOST framework has recently emerged as an alternative approach to development and evaluation that aims to optimize multicomponent behavioral and bio-behavioral interventions. SMART designs, imbedded within the MOST framework, are an approach to optimize adaptive interventions. In addition to innovative design strategies, novel data collection approaches that have the potential to improve the public-health dissemination include mHealth approaches and considering environment as a potential data source. Finally, becoming involved in advocacy via policy related work may help to improve the impact of evidence-based behavioral interventions. Innovative methods, if increasingly implemented, may have the ability to increase the public health impact of evidence-based behavioral interventions to prevent disease.

  15. Remote Sensing of Ocean Color

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  16. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Nelson, Joanna L; Zavaleta, Erika S

    2012-01-01

    Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4)NO(3))-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a) aboveground biomass, b) plant tissue N concentrations, c) N stock sequestered in plants, and d) shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.

  17. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Joanna L Nelson

    Full Text Available Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4NO(3-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a aboveground biomass, b plant tissue N concentrations, c N stock sequestered in plants, and d shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.

  18. Smoking modifies the associated increased risk of future cardiovascular disease by genetic variation on chromosome 9p21.

    Viktor Hamrefors

    Full Text Available AIMS: Genetic predisposition for cardiovascular disease (CVD is likely to be modified by environmental exposures. We tested if the associated risk of CVD and CVD-mortality by the single nucleotide polymorphism rs4977574 on chromosome 9p21 is modified by life-style factors. METHODS AND RESULTS: A total of 24,944 middle-aged subjects (62% females from the population-based Malmö-Diet-and-Cancer-Cohort were genotyped. Smoking, education and physical activity-levels were recorded. Subjects were followed for 15 years for incidence of coronary artery disease (CAD; N = 2309, ischemic stroke (N = 1253 and CVD-mortality (N = 1156. Multiplicative interactions between rs4977574 and life-style factors on endpoints were tested in Cox-regression-models. We observed an interaction between rs4977574 and smoking on incident CAD (P = 0.035 and CVD-mortality (P = 0.012. The hazard ratios (HR per risk allele of rs4977574 were highest in never smokers (N = 9642 for CAD (HR = 1.26; 95% CI 1.13-1.40; P<0.001 and for CVD-mortality (HR = 1.40; 95% CI 1.20-1.63; P<0.001, whereas the risk increase by rs4977574 was attenuated in current smokers (N = 7000 for both CAD (HR = 1.05; 95%CI 0.95-1.16; P = 0.326 and CVD-mortality (HR = 1.08; 95%CI 0.94-1.23; P = 0.270. A meta-analysis supported the finding that the associated increased risk of CAD by the risk-allele was attenuated in smokers. Neither education nor physical activity-levels modified the associated risk of CAD, ischemic stroke and CVD mortality conferred by rs4977574. CONCLUSION: Smoking may modify the associated risk of CAD and CVD-mortality conferred by genetic variation on chromosome 9p21. Whether the observed attenuation of the genetic risk reflects a pathophysiological mechanism or is a result of smoking being such a strong risk-factor that it may eliminate the associated genetic effect, requires further investigation.

  19. Prothrombotic factors do not increase the risk of recurrent ischemic events after cryptogenic stroke at young age: the FUTURE study.

    Schellekens, Mijntje M I; van Alebeek, Mayte E; Arntz, Renate M; Synhaeve, Nathalie E; Maaijwee, Noortje A M M; Schoonderwaldt, Hennie C; van der Vlugt, Maureen J; van Dijk, Ewoud J; Rutten-Jacobs, Loes C A; de Leeuw, Frank-Erik

    2018-05-01

    The role of hypercoagulable states and preceding infections in the etiology of young stroke and their role in developing recurrent ischemic events remains unclear. Our aim is to determine the prevalence of these conditions in patients with cryptogenic stroke at young age and to assess the long-term risk of recurrent ischemic events in patients with and without a hypercoagulable state or a recent pre-stroke infection with Borrelia or Syphilis. We prospectively included patients with a first-ever transient ischemic attack or ischemic stroke, aged 18-50, admitted to our hospital between 1995 and 2010. A retrospective analysis was conducted of prothrombotic factors and preceding infections. Outcome was recurrent ischemic events. Prevalence of prothrombotic factors did not significantly differ between patients with a cryptogenic stroke and with an identified cause (24/120 (20.0%) and 32/174 (18.4%) respectively). In patients with a cryptogenic stroke the long-term risk [mean follow-up of 8.9 years (SD 4.6)] of any recurrent ischemic event or recurrent cerebral ischemia did not significantly differ between patients with and without a hypercoagulable state or a recent infection. In patients with a cryptogenic stroke 15-years cumulative risk of any recurrent ischemic event was 24 and 23% in patients with and without any prothrombotic factor respectively. The prevalence of prothrombotic factors and preceding infections did not significantly differ between stroke patients with a cryptogenic versus an identified cause of stroke and neither is significantly associated with an increased risk of recurrent ischemic events after cryptogenic stroke.

  20. Seagrass ecophysiological performance under ocean warming and acidification.

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  1. Ocean energy

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  2. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    Marie-Béatrice Forel

    2012-09-01

    Full Text Available Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO2, raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1 problems with evidence for ocean acidification preserved in sedimentary rocks, where proposed marine dissolution surfaces may be subaerial. Sedimentary evidence that the extinction was partly due to ocean acidification is therefore inconclusive; (2 Fossils of marine animals potentially affected by ocean acidification are imperfect records of past conditions; selective extinction of hypercalcifying organisms is uncertain evidence for acidification; (3 The current high rates of acidification may not reflect past rates, which cannot be measured directly, and whose temporal resolution decreases in older rocks. Thus large increases in CO2 in the past may have occurred over a long enough time to have allowed assimilation into the oceans, and acidification may not have stressed ocean biota to the present extent. Although we acknowledge the very likely occurrence of past ocean acidification, obtaining support presents a continuing challenge for the Earth science community.

  3. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-01-01

    Due to increasing atmospheric CO 2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO 2 and those which involve CO 2 -induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO 2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO 2 -induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO 2 -induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change. (letters)

  4. Are Global In-Situ Ocean Observations Fit-for-purpose? Applying the Framework for Ocean Observing in the Atlantic.

    Visbeck, M.; Fischer, A. S.; Le Traon, P. Y.; Mowlem, M. C.; Speich, S.; Larkin, K.

    2015-12-01

    There are an increasing number of global, regional and local processes that are in need of integrated ocean information. In the sciences ocean information is needed to support physical ocean and climate studies for example within the World Climate Research Programme and its CLIVAR project, biogeochemical issues as articulated by the GCP, IMBER and SOLAS projects of ICSU-SCOR and Future Earth. This knowledge gets assessed in the area of climate by the IPCC and biodiversity by the IPBES processes. The recently released first World Ocean Assessment focuses more on ecosystem services and there is an expectation that the Sustainable Development Goals and in particular Goal 14 on the Ocean and Seas will generate new demands for integrated ocean observing from Climate to Fish and from Ocean Resources to Safe Navigation and on a healthy, productive and enjoyable ocean in more general terms. In recognition of those increasing needs for integrated ocean information we have recently launched the Horizon 2020 AtlantOS project to promote the transition from a loosely-coordinated set of existing ocean observing activities to a more integrated, more efficient, more sustainable and fit-for-purpose Atlantic Ocean Observing System. AtlantOS takes advantage of the Framework for Ocean observing that provided strategic guidance for the design of the project and its outcome. AtlantOS will advance the requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic. AtlantOS will bring Atlantic nations together to strengthen their complementary contributions to and benefits from the internationally coordinated Global Ocean Observing System (GOOS) and the Blue Planet Initiative of the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill gaps of the in-situ observing system networks and will ensure that their data are readily accessible and useable. AtlantOS will demonstrate the utility of

  5. Late Cretaceous seasonal ocean variability from the Arctic.

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  6. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE)

    Greely, T. M.; Lodge, A.

    2009-12-01

    attitudes significantly contributed to ocean literacy. Teens demonstrated a 2-32% increase in content knowledge following the OCG learning experience. The most significant content gains correlated with ocean literacy Essential Principles 1, 2 and 5. Analysis of environmental reasoning patterns revealed that biocentric reasoning (71%) was most important to teens in solving ocean dilemmas. Further, teens reasoning about challenging ocean dilemmas were capable of supporting a position, counter-argument, rebuttal, and accurately use scientific information. Findings provide empirical evidence that connects field studies with ocean literacy. Current guidelines for ocean literacy address cognitive understanding but lack multimodality. The need for ocean literacy that goes beyond content to include reasoning and actions is relevant towards preparing students, teachers and citizens to regularly contribute to decisions about ocean issues and undertake actions as consumer, citizen or steward. This research supports the use of socioscientific issues and stewardship to advance ‘functional’ ocean literacy.

  7. Ocean Acidification

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin

    2015-01-01

    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  8. Trends in continental temperature and humidity directly linked to ocean warming.

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  9. Proceedings of oceans '91

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  10. Slow science: the value of long ocean biogeochemistry records.

    Henson, Stephanie A

    2014-09-28

    Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled by SOs, which include areas such as trophic dynamics, understanding variability, improved biogeochemical models and the role of ocean biology in the global carbon cycle. In the near future, SOs are poised to make progress on several fronts, including detecting climate change effects on ocean biogeochemistry, high-resolution observations of physical-biological interactions and greater observational capability in both the mesopelagic zone and harsh environments, such as the Arctic. We are now entering a new era for biological SOs, one in which our motivations have evolved from the need to acquire basic understanding of the ocean's state and variability, to a need to understand ocean biogeochemistry in the context of increasing pressure in the form of climate change, overfishing and eutrophication.

  11. Open ocean tide modelling

    Parke, M. E.

    1978-01-01

    Two trends evident in global tidal modelling since the first GEOP conference in 1972 are described. The first centers on the incorporation of terms for ocean loading and gravitational self attraction into Laplace's tidal equations. The second centers on a better understanding of the problem of near resonant modelling and the need for realistic maps of tidal elevation for use by geodesists and geophysicists. Although new models still show significant differences, especially in the South Atlantic, there are significant similarities in many of the world's oceans. This allows suggestions to be made for future locations for bottom pressure gauge measurements. Where available, estimates of M2 tidal dissipation from the new models are significantly lower than estimates from previous models.

  12. Monitoring of ocean storage projects

    Caldeira, K. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2003-02-01

    It has been proposed that atmospheric CO2 accumulation could be slowed by capture of CO2 from point sources and subsequent storage of that CO2 in the ocean. If applied, such sequestration efforts would need to be monitored for compliance, effectiveness, and unintended consequences. Aboveground inspection and monitoring of facilities and practices, combined with ocean observations, could assure compliance with ocean sequestration guidelines and regulations. Ocean observations could be made using a variety of sensors mounted on moorings or underwater gliders. Long-term effectiveness and leakage to the atmosphere must be estimated from models, since on large spatial scales it will be impossible to observationally distinguish carbon stored by a project from variable concentrations of background carbon. Furthermore, the ocean naturally would absorb roughly 80% of fossil fuel CO2 released to the atmosphere within a millennium. This means that most of the CO2 sequestered in the ocean that leaks out to the atmosphere will be reabsorbed by the ocean. However, there is no observational way to distinguish remaining carbon from reabsorbed carbon. The science of monitoring unintended consequences in the deep ocean interior is at a primitive state. Little is understood about ecosystems of the deep ocean interior; and even less is understood about how those ecosystems would respond to added CO2. High priority research objectives should be (1) to improve our understanding of the natural ecosystems of the deep ocean, and (2) to improve our understanding of the response of these ecosystems to increased oceanic CO2 concentrations and decreased ocean pH.

  13. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations: A prospective cohort study.

    Bjerregaard, A; Laing, I A; Backer, V; Sverrild, A; Khoo, S-K; Chidlow, G; Sikazwe, C; Smith, D W; Le Souëf, P; Porsbjerg, C

    2017-08-01

    The major trigger of asthma exacerbations is infection with a respiratory virus, most commonly rhinovirus. Type 2 inflammation is known to be associated with an increased risk of exacerbations in general. Whether type 2 inflammation at baseline increases the risk of future virus-induced exacerbations is unknown. To assess whether type 2 inflammation is associated with an increased risk of virus-induced exacerbations of asthma. Stable asthmatics had spirometry, skin prick test, measurement of FeNO and sputum induced for differential cell counts. Patients were followed up for 18 months, during which they were assessed at the research unit when they had symptoms of an exacerbation. Nasal swabs collected at these assessments underwent viral detection by PCR. A total of 81 asthma patients were recruited, of which 22 (27%) experienced an exacerbation during the follow-up period. Of these, 15 (68%) had a respiratory virus detected at exacerbation. Sputum eosinophils >1% at baseline increased the risk of having a subsequent virus-induced exacerbation (HR 7.6 95% CI: 1.6-35.2, P=.010) as did having FeNO >25 ppb (HR 3.4 95% CI: 1.1-10.4, P=.033). Established type 2 inflammation during stable disease is a risk factor for virus-induced exacerbations in a real-life setting. Measures of type 2 inflammation, such as sputum eosinophils and FeNO, could be included in the risk assessment of patients with asthma in future studies. © 2017 John Wiley & Sons Ltd.

  14. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  15. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    Lø nborg, Christian; Cuevas, L. Antonio; Reinthaler, Thomas; Herndl, Gerhard J.; Gasol, Josep M.; Moran, Xose Anxelu G.; Bates, Nicholas R.; á lvarez-Salgado, Xosé A.

    2016-01-01

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  16. Ocean acidification alters predator behaviour and reduces predation rate.

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  17. Changing noise levels in a high CO2/lower pH ocean

    Brewer, P. G.; Hester, K. C.; Peltzer, E. T.; Kirkwood, W. J.

    2008-12-01

    We show that ocean acidification from fossil fuel CO2 invasion and from increased respiration/reduced ventilation, has significantly reduced ocean sound absorption and thus increased ocean noise levels in the kHz frequency range. Below 10 kHz, sound absorption occurs due to well known chemical relaxations in the B(OH)3/B(OH)4- and HCO3-/CO32- systems. The pH dependence of these chemical relaxations results in decreased sound absorption (α = dB/km) as the ocean becomes more acidic from increased CO2 levels. The scale of surface ocean pH change today from the +105 ppmv change in atmospheric CO2 is about - 0.12 pH, resulting in frequency dependent decreases in sound absorption that now exceed 12% over pre- industrial. Under reasonable projections of future fossil fuel CO2 emissions and other sources a pH change of 0.3 units or more can be anticipated by mid-century, resulting in a decrease in α by almost 40%. Increases in water temperature have a smaller effect but also contribute to decreased sound absorption. Combining a lowering of 0.3 pH units with an increase of 3°C, α will decrease further to almost 45%. Ambient noise levels in the ocean within the auditory range critical for environmental, military, and economic interests are set to increase significantly due to the combined effects of decreased absorption and increasing sources from mankind's activities. Incorporation of sound absorption in modeling future ocean scenarios (R. Zeebe, personal communication) and long-term monitoring possibly with the aid of modern cabled observatories can give insights in how ocean noise will continue to change and its effect on groups such as marine mammals which communicate in the affected frequency range.

  18. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  19. Increased Glutamate and Homocysteine and Decreased Glutamine Levels in Autism: A Review and Strategies for Future Studies of Amino Acids in Autism

    Ahmad Ghanizadeh

    2013-01-01

    Full Text Available There are many reports about the significant roles of some amino acids in neurobiology and treatment of autism. This is a critical review of amino acids levels in autism. No published review article about the level of amino acids in autism was found. The levels of glutamate and homocystein are increased in autism while the levels of glutamine and tryptophan are decreased. Findings regarding the plasma levels of taurine and lysine are controversial. The urinary levels of homocysteine and essential amino acids in both the untreated and treated autistic children are significantly less than those in the controls. The current literature suffers from many methodological shortcomings which needed to be considered in future studies. Some of them are age, gender, developmental level, autism symptoms severity, type of autism spectrum disorders, medical comorbidities, intelligent quotient, diet, concomitant medications, body mass index, and technical method of assessment of amino acids.

  20. Increased Glutamate and Homocysteine and Decreased Glutamine Levels in Autism: A Review and Strategies for Future Studies of Amino Acids in Autism

    Ghanizadeh, Ahmad

    2013-01-01

    There are many reports about the significant roles of some amino acids in neurobiology and treatment of autism. This is a critical review of amino acids levels in autism. No published review article about the level of amino acids in autism was found. The levels of glutamate and homocystein are increased in autism while the levels of glutamine and tryptophan are decreased. Findings regarding the plasma levels of taurine and lysine are controversial. The urinary levels of homocysteine and essential amino acids in both the untreated and treated autistic children are significantly less than those in the controls. The current literature suffers from many methodological shortcomings which needed to be considered in future studies. Some of them are age, gender, developmental level, autism symptoms severity, type of autism spectrum disorders, medical comorbidities, intelligent quotient, diet, concomitant medications, body mass index, and technical method of assessment of amino acids. PMID:24167375

  1. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century.

    Mora, Camilo; Wei, Chih-Lin; Rollo, Audrey; Amaro, Teresa; Baco, Amy R; Billett, David; Bopp, Laurent; Chen, Qi; Collier, Mark; Danovaro, Roberto; Gooday, Andrew J; Grupe, Benjamin M; Halloran, Paul R; Ingels, Jeroen; Jones, Daniel O B; Levin, Lisa A; Nakano, Hideyuki; Norling, Karl; Ramirez-Llodra, Eva; Rex, Michael; Ruhl, Henry A; Smith, Craig R; Sweetman, Andrew K; Thurber, Andrew R; Tjiputra, Jerry F; Usseglio, Paolo; Watling, Les; Wu, Tongwen; Yasuhara, Moriaki

    2013-10-01

    Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.

  2. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century.

    Camilo Mora

    2013-10-01

    Full Text Available Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.

  3. Ocean Ridges and Oxygen

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  4. Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System

    Rienecker, Michele M.; Balmaseda, Magdalena; Awaji, Toshiyuki; Barnier, Bernard; Behringer, David; Bell, Mike; Bourassa, Mark; Brasseur, Pierre; Breivik, Lars-Anders; Carton, James; hide

    2009-01-01

    Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.

  5. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  6. Anthropogenic CO2 in the ocean

    Tsung-Hung Peng

    2005-06-01

    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  7. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  8. Turbines in the ocean

    Smith, F. G. W.; Charlier, R. H.

    1981-10-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami; here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  9. The geological record of ocean acidification

    Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; Kiessling, W.; Ries, J.; Zachos, J.C.; Royer, D.L.; Barker, S.; Marchitto Jr., T.M.; Moyer, R.; Pelejero, C.; Ziveri, P.; Foster, G.L.; Williams, B.

    2012-01-01

    Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record

  10. Using the Alaska Ocean Observing System to Inform Decision Making for Coastal Resiliency Relating to Inundation, Ocean Acidification, Harmful Algal Blooms, Navigation Safety and Impacts of Vessel Traffic

    McCammon, M.

    2017-12-01

    State and federal agencies, coastal communities and Alaska Native residents, and non-governmental organizations are increasingly turning to the Alaska Ocean Observing System (AOOS) as a major source of ocean and coastal data and information products to inform decision making relating to a changing Arctic. AOOS implements its mission to provide ocean observing data and information to meet stakeholder needs by ensuring that all programs are "science based, stakeholder driven and policy neutral." Priority goals are to increase access to existing coastal and ocean data; package information and data in useful ways to meet stakeholder needs; and increase observing and forecasting capacity in all regions of the state. Recently certified by NOAA, the AOOS Data Assembly Center houses the largest collection of real-time ocean and coastal data, environmental models, and biological data in Alaska, and develops tools and applications to make it more publicly accessible and useful. Given the paucity of observations in the Alaska Arctic, the challenge is how to make decisions with little data compared to other areas of the U.S. coastline. AOOS addresses this issue by: integrating and visualizing existing data; developing data and information products and tools to make data more useful; serving as a convener role in areas such as coastal inundation and flooding, impacts of warming temperatures on food security, ocean acidification, observing technologies and capacity; and facilitating planning efforts to increase observations. In this presentation, I will give examples of each of these efforts, lessons learned, and suggestions for future actions.

  11. GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean

    Duce, Robert; Liss, Peter

    2014-05-01

    There is growing recognition of the impact of the atmospheric input of both natural and anthropogenic substances on ocean chemistry, biology, and biogeochemistry as well as climate. These inputs are closely related to a number of important global change issues. For example, the increasing input of anthropogenic nitrogen species from the atmosphere to much of the ocean may cause a low level fertilization that could result in an increase in marine 'new' productivity of up to ~3% and thus impact carbon drawdown from the atmosphere. Similarly, much of the oceanic iron, which is a limiting nutrient in significant areas of the ocean, originates from the atmospheric input of minerals as a result of the long-range transport of mineral dust from continental regions. The increased supply of soluble phosphorus from atmospheric anthropogenic sources (through large-scale use of fertilizers) may also have a significant impact on surface-ocean biogeochemistry, but estimates of any effects are highly uncertain. There have been few assessments of the atmospheric inputs of sulfur and nitrogen oxides to the ocean and their impact on the rates of ocean acidification. These inputs may be particularly critical in heavily trafficked shipping lanes and in ocean regions proximate to highly industrialized land areas. Other atmospheric substances may also have an impact on the ocean, in particular lead, cadmium, and POPs. To address these and related issues the United Nations Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) initiated Working Group 38, The Atmospheric Input of Chemicals to the Ocean, in 2008. This Working Group has had four meetings. To date four peer reviewed papers have been produced from this effort, with a least eight others in the process of being written or published. This paper will discuss some of the results of the Working Group's deliberations and its plans for possible future work.

  12. The Second International Indian Ocean Expedition (IIOE-2)

    Cowie, Greg; Hood, Raleigh

    2015-04-01

    The International Indian Ocean Expedition (IIOE) was one of the greatest international, interdisciplinary oceanographic research efforts of all time. Planning for the IIOE began in 1959 and the project officially continued through 1965, with forty-six research vessels participating under fourteen different flags. The IIOE motivated an unprecedented number of hydrographic surveys (and repeat surveys) over the course of the expedition covering the entire Indian Ocean basin. And it was an interdisciplinary endeavor that embraced physical oceanography, chemical oceanography, meteorology, marine biology, marine geology and geophysics. The end of 2015 will mark the 50th Anniversary of the completion of the IIOE. SCOR and the IOC are working to stimulate a new phase of coordinated international research focused on the Indian Ocean for a 5-year period beginning in late 2015 and continuing through 2020. The goal is to help to organize ongoing research and stimulate new initiatives in the 2015-2020 time frame as part of a larger expedition. Several International programs that have research ongoing or planned in the Indian Ocean during this time period and many countries are planning cruises in this time frame as well. These programs and national cruises will serve as a core for the new Indian Ocean research focus, which has been dubbed "IIOE-2." The overarching goal of the IIOE-2 is to advance our understanding of interactions between geological, oceanic and atmospheric processes that give rise to the complex physical dynamics of the Indian Ocean region, and to determine how those dynamics affect climate, extreme events, marine biogeochemical cycles, ecosystems and human populations. This understanding is required to predict the impacts of climate change, pollution, and increased fish harvesting on the Indian Ocean and its nations, as well as the influence of the Indian Ocean on other components of the Earth System. New understanding is also fundamental to policy makers for

  13. Planet Ocean

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  14. Predictors of what smokers say they will do in response to future price increases. Findings from the International Tobacco Control (ITC) Four Country Survey.

    Ross, Hana; Blecher, Evan; Yan, Lili; Cummings, K Michael

    2011-06-01

    Given the impact of higher tobacco prices on smoking cessation, we studied the role of future cigarette prices on forming expectation about smoking behavior. Using a random sample of 9,058 adult cigarette smokers from the United States, Canada, Australia, and the United Kingdom collected in 2002, we examined predictors of what smokers say they will do in response to a hypothetical 50% increase in the price they paid for their last cigarette purchase. A series of regression analyses examined factors associated with intentions that have a positive impact on health, that is, intentions to quit and/or to consume fewer cigarettes. The quit and/or smoke less intentions were more pronounced among those who lived in areas with higher average cigarette prices and who paid higher prices for their brand of choice during the last purchase. The magnitude of the price increase is a more important predictor of an intention to quit/smoke less compared with the average cigarette price. The availability of alternative (cheaper) cigarette sources may reduce but would not eliminate the impact of higher prices/taxes on smokers' expected behavior that has been linked to actual quit intentions and quitting in follow-up surveys.

  15. Portal Vein Embolization with Contralateral Application of Stem Cells Facilitates Increase of Future Liver Remnant Volume in Patients with Liver Metastases

    Ludvík, Jaroslav; Duras, Petr; Třeška, Vladislav; Matoušková, Táňa; Brůha, Jan; Fichtl, Jakub; Lysák, Daniel; Ferda, Jiří; Baxa, Jan

    2017-01-01

    ObjectivesThis study aimed to evaluate the progress of future liver remnant volume (FLRV) in patients with liver metastases after portal vein embolization (PVE) with the application of hematopoietic stem cells (HSCs) and compare it with a patients control group after PVE only.MethodsTwenty patients (group 1) underwent PVE with contralateral HSC application. Subsequently, CT volumetry with the determination of FLRV was performed at weekly intervals, in total three weeks. A sample of twenty patients (group 2) who underwent PVE without HSC application was used as a control group.ResultsThe mean of FLRV increased by 173.2 mL during three weeks after the PVE/HSC procedure, whereas by 98.9 mL after PVE only (p = 0.015). Furthermore, the mean daily growth of FLRV by 7.6 mL in group 1 was significantly higher in comparison with 4.1 mL in group 2 (p = 0.007).ConclusionsPVE with the application of HSC significantly facilitates growth of FLRV in comparison with PVE only. This method could be one of the new suitable approaches to increase the resectability of liver tumours.

  16. Portal Vein Embolization with Contralateral Application of Stem Cells Facilitates Increase of Future Liver Remnant Volume in Patients with Liver Metastases

    Ludvík, Jaroslav, E-mail: ludvikj@fnplzen.cz; Duras, Petr [Charles University, Department of Imaging Methods, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Třeška, Vladislav [Charles University, Department of Surgery, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Matoušková, Táňa [Charles University, Department of Imaging Methods, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Brůha, Jan; Fichtl, Jakub [Charles University, Department of Surgery, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Lysák, Daniel [Charles University, Department of Haemato-Oncology, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Ferda, Jiří; Baxa, Jan [Charles University, Department of Imaging Methods, University Hospital and Faculty of Medicine in Pilsen (Czech Republic)

    2017-05-15

    ObjectivesThis study aimed to evaluate the progress of future liver remnant volume (FLRV) in patients with liver metastases after portal vein embolization (PVE) with the application of hematopoietic stem cells (HSCs) and compare it with a patients control group after PVE only.MethodsTwenty patients (group 1) underwent PVE with contralateral HSC application. Subsequently, CT volumetry with the determination of FLRV was performed at weekly intervals, in total three weeks. A sample of twenty patients (group 2) who underwent PVE without HSC application was used as a control group.ResultsThe mean of FLRV increased by 173.2 mL during three weeks after the PVE/HSC procedure, whereas by 98.9 mL after PVE only (p = 0.015). Furthermore, the mean daily growth of FLRV by 7.6 mL in group 1 was significantly higher in comparison with 4.1 mL in group 2 (p = 0.007).ConclusionsPVE with the application of HSC significantly facilitates growth of FLRV in comparison with PVE only. This method could be one of the new suitable approaches to increase the resectability of liver tumours.

  17. Future trends in environmental mercury concentrations: implications for prevention strategies

    Sunderland Elsie M

    2013-01-01

    Full Text Available Abstract In their new paper, Bellanger and coauthors show substantial economic impacts to the EU from neurocognitive impairment associated with methylmercury (MeHg exposures. The main source of MeHg exposure is seafood consumption, including many marine species harvested from the global oceans. Fish, birds and other wildlife are also susceptible to the impacts of MeHg and already exceed toxicological thresholds in vulnerable regions like the Arctic. Most future emissions scenarios project a growth or stabilization of anthropogenic mercury releases relative to present-day levels. At these emissions levels, inputs of mercury to ecosystems are expected to increase substantially in the future, in part due to growth in the legacy reservoirs of mercury in oceanic and terrestrial ecosystems. Seawater mercury concentration trajectories in areas such as the North Pacific Ocean that supply large quantities of marine fish to the global seafood market are projected to increase by more than 50% by 2050. Fish mercury levels and subsequent human and biological exposures are likely to also increase because production of MeHg in ocean ecosystems is driven by the supply of available inorganic mercury, among other factors. Analyses that only consider changes in primary anthropogenic emissions are likely to underestimate the severity of future deposition and concentration increases associated with growth in mercury reservoirs in the land and ocean. We therefore recommend that future policy analyses consider the fully coupled interactions among short and long-lived reservoirs of mercury in the atmosphere, ocean, and terrestrial ecosystems. Aggressive anthropogenic emission reductions are needed to reduce MeHg exposures and associated health impacts on humans and wildlife and protect the integrity of one of the last wild-food sources globally. In the near-term, public health advice on safe fish consumption choices such as smaller species, younger fish, and harvests

  18. Increased production of cosmogenic 10Be recorded in oceanic sediment sequences: Information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama-Brunhes transition

    Simon, Quentin; Thouveny, Nicolas; Bourlès, Didier L.; Bassinot, Franck; Savranskaia, Tatiana; Valet, Jean-Pierre; Aster Team

    2018-05-01

    New high-resolution authigenic 10Be/9Be ratio (Be-ratio) records covering the last geomagnetic reversal, i.e. the Matuyama-Brunhes transition (MBT), have been obtained and set on a time scale using benthic δ18O (Cibicides wuellerstorfi) records. The geographic distribution of the four studied sites allows global comparison between the North Atlantic, Indian and Pacific Oceans. All Be-ratio records contain a two-fold increase triggered by the geomagnetic dipole moment (GDM) collapse associated with the MBT. The stratigraphic position of the Be-ratio spike, relative to marine isotope stages, allows establishment of a robust astrochronological framework for the MBT, anchoring its age between 778 and 766 ka (average mid-peaks at 772 ka), which is consistent with all other available 10Be-proxy records from marine, ice and loess archives. The global 10Be atmospheric production doubling represents an increase of more than 300 atoms m-2 s-1 that is compatible with the increased magnitude of atmospheric 10Be production obtained by simulations between the present GDM and a null-GDM. The minimum 10Be-derived GDM average computed for the 776-771 ka interval is 1.7 ± 0.4 ×1022 Am2, in agreement with model simulations and absolute paleointensities of transitional lava flows.

  19. Ocean Uses: Hawaii (PROUA)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  20. High Tide, Low Tide. Ocean Related Curriculum Activities.

    Snively, Gloria

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  1. Life Cycle of the Salmon. Ocean Related Curriculum Activities.

    Tarabochia, Kathy

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  2. Coral calcification and ocean acidification

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    calcification and increases in Gnet. These relationships result in a correlation between Gnet and Ωarag, with both parameters being variables dependent on Pnet. Consequently the correlation between Gnet and Ωarag varies widely between different locations and times depending on the relative metabolic contributions of various calcifying and photosynthesizing organisms and local rates of carbonate dissolution. High rates of H+ efflux continue for several hours following the mid-day Gnet peak suggesting that corals have difficulty in shedding waste protons as described by the Proton Flux Model. DIC flux (uptake) tracks Pnet and Gnet and drops off rapidly after the photosynthesis-calcification maxima, indicating that corals can cope more effectively with the problem of limited DIC supply compared to the problem of eliminating H+. Predictive models of future global changes in coral and coral reef growth based on oceanic Ωarag must include the influence of future changes in localized Pnet on Gnet as well as changes in rates of reef carbonate dissolution. The correlation between Ωarag and Gnet over the diel cycle is simply the result of increasing pH due to photosynthesis that shifts the CO2-carbonate system equilibria to increase [CO32] relative to the other DIC components of [HCO3] and [CO2]. Therefore Ωarag closely tracks pH as an effect of Pnet, which also drives changes in Gnet. Measurements of DIC flux and H+ flux are far more useful than concentrations in describing coral metabolism dynamics. Coral reefs are systems that exist in constant disequilibrium with the water column.

  3. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context.

    Garrard, Samantha L; Beaumont, Nicola J

    2014-09-15

    Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately £500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Climate-change driven increase in high intensity rainfall events: Analysis of development in the last decades and towards an extrapolation of future progression

    Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel

    2015-04-01

    Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum

  5. Ocean uptake of carbon dioxide

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  6. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    National Research Council

    2011-04-22

    The United States has jurisdiction over 3.4 million square miles of ocean expanse greater than the land area of all fifty states combined. This vast marine area offers researchers opportunities to investigate the ocean's role in an integrated Earth system, but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance our still-incomplete understanding of the ocean. The National Research Council (NRC)'s Ocean Studies Board was asked by the National Science and Technology Council's Subcommittee on Ocean Science and Technology, comprised of 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; issues brought to the nation's attention in 2004 by the U.S. Commission on Ocean Policy. A 15-member committee of experts identified four themes that encompass 32 future ocean research questions enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions in the report (e.g., sea level rise, sustainable fisheries, the global water cycle) reflect challenging, multidisciplinary science questions that are clearly relevant today, and are likely to take decades of effort to solve. As such, U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations or autonomous monitoring at a broad range of spatial and temporal scales

  7. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

    Trull, Thomas W.; Passmore, Abraham; Davies, Diana M.; Smit, Tim; Berry, Kate; Tilbrook, Bronte

    2018-01-01

    restricted to subtropical and northern subantarctic waters. The cause of the strong southward decrease in PIC abundance in the Southern Ocean is not yet clear. The poleward decrease in pH is small, and while calcite saturation decreases strongly southward, it remains well above saturation ( > 2). Nitrate and phosphate variations would predict a poleward increase. Temperature and competition with diatoms for limiting iron appear likely to be important. While the future trajectory of coccolithophore distributions remains uncertain, their current low abundances suggest small impacts on overall Southern Ocean pelagic ecology.

  8. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

    T. W. Trull

    2018-01-01

    coccolithophores as overly restricted to subtropical and northern subantarctic waters. The cause of the strong southward decrease in PIC abundance in the Southern Ocean is not yet clear. The poleward decrease in pH is small, and while calcite saturation decreases strongly southward, it remains well above saturation ( > 2. Nitrate and phosphate variations would predict a poleward increase. Temperature and competition with diatoms for limiting iron appear likely to be important. While the future trajectory of coccolithophore distributions remains uncertain, their current low abundances suggest small impacts on overall Southern Ocean pelagic ecology.

  9. Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica

    Hattermann, Tore; Levermann, Anders [Potsdam University, Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam (Germany)

    2010-10-15

    We investigate the large-scale oceanic features determining the future ice shelf-ocean interaction by analyzing global warming experiments in a coarse resolution climate model with a comprehensive ocean component. Heat and freshwater fluxes from basal ice shelf melting (ISM) are parameterized following Beckmann and Goosse [Ocean Model 5(2):157-170, 2003]. Melting sensitivities to the oceanic temperature outside of the ice shelf cavities are varied from linear to quadratic (Holland et al. in J Clim 21, 2008). In 1% per year CO{sub 2}-increase experiments the total freshwater flux from ISM triples to 0.09 Sv in the linear case and more than quadruples to 0.15 Sv in the quadratic case after 140 years at which 4 x 280 ppm = 1,120 ppm was reached. Due to the long response time of subsurface temperature anomalies, ISM thereafter increases drastically, if CO{sub 2} concentrations are kept constant at 1,120 ppm. Varying strength of the Antarctic circumpolar current (ACC) is crucial for ISM increase, because southward advection of heat dominates the warming along the Antarctic coast. On centennial timescales the ACC accelerates due to deep ocean warming north of the current, caused by mixing of heat along isopycnals in the Southern Ocean (SO) outcropping regions. In contrast to previous studies we find an initial weakening of the ACC during the first 150 years of warming. This purely baroclinic effect is due to a freshening in the SO which is consistent with present observations. Comparison with simulations with diagnosed ISM but without its influence on the ocean circulation reveal a number of ISM-related feedbacks, of which a negative ISM-feedback, due to the ISM-related local oceanic cooling, is the dominant one. (orig.)

  10. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.

    Richardson, Katherine; Bendtsen, Jørgen

    2017-09-13

    Photosynthetic O 2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O 2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O 2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O 2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q 10  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O 2 production in a warmer ocean.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  11. Seasonality in ocean microbial communities.

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  12. Ocean Prediction Center

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  13. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms

    McCormick, Lillian R.; Levin, Lisa A.

    2017-08-01

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with `fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  14. Ocean Acidification from space: recent advances

    Sabia, Roberto; Shutler, Jamie; Land, Peter; Fernandez-Prieto, Diego; Donlon, Craig; Reul, Nicolas

    2017-04-01

    The phenomenon referred to as Ocean Acidification (OA) is gathering increasing attention as one of the major foci of climate-related research, for its profound impact at scientific and socio-economic level. To date, the majority of the scientific studies into the potential impacts of OA have focused on in-situ measurements, laboratory-controlled experiments and models simulations. Satellite remote sensing technology have yet to be fully exploited, despite it has been stressed it could play a significant role by providing synoptic and frequent measurements for investigating globally OA processes, also extending in-situ carbonate chemistry measurements on different spatial/temporal scales [1,2]. Within this context, the purpose of the recently completed ESA "Pathfinders - Ocean Acidification" project was to quantitatively and routinely estimate OA-related parameters by means of a blending of satellite observations and model outputs in five case-study regions (global ocean, Amazon plume, Barents sea, Greater Caribbean and Bay of Bengal). Satellite Ocean Colour, Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) have been exploited, with an emphasis on the latter being the latest addition to the portfolio of satellite measured parameters. A proper merging of these different satellites products allows computing at least two independent proxies among the seawater carbonate system parameters: the partial pressure of CO2 in surface seawater (pCO2); the total Dissolved Inorganic Carbon (DIC), the total alkalinity (TA) and the surface ocean pH. In the project, efforts have been devoted to a systematic characterization of TA and DIC from space in the mentioned case-study regions; in this paper, also through the knowledge of these parameters, the objective is to come up with the currently best educated guess of the surface ocean pH [3] and Aragonite saturation state. This will also include an estimation of the achievable accuracy by propagating the errors in the

  15. Ocean barrier layers' effect on tropical cyclone intensification.

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  16. Sustaining observations of the unsteady ocean circulation.

    Frajka-Williams, E

    2014-09-28

    Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Studying ocean acidification in the Arctic Ocean

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  18. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Increased Risk of Pregnancy Complications After Stroke : The FUTURE Study (Follow-Up of Transient Ischemic Attack and Stroke Patients and Unelucidated Risk Factor Evaluation)

    van Alebeek, Mayte E; de Vrijer, Myrthe; Arntz, Renate M; Maaijwee, Noortje A M M; Synhaeve, Nathalie E; Schoonderwaldt, Hennie; van der Vlugt, Maureen J; van Dijk, Ewoud J; de Heus, Roel; Rutten-Jacobs, Loes C A; de Leeuw, Frank-Erik

    BACKGROUND AND PURPOSE: The study goal was to investigate the prevalence of pregnancy complications and pregnancy loss in women before, during, and after young ischemic stroke/transient ischemic attack. METHODS: In the FUTURE study (Follow-Up of Transient Ischemic Attack and Stroke Patients and

  20. ASSESSMENTS OF FUTURE ENVIRONMENTAL TRENDS AND PROBLEMS OF INCREASED USE, RECYCLING, AND COMBUSTION OF FIBER-REINFORCED, PLASTIC AND METAL COMPOSITE MATERIALS

    The purpose of the study is to identify and define future environmental concerns related to the projected utilization, recycling, and combustion of composite materials. The study is being conducted for the Office of Strategic Assessment and Special Studies (OSASS) of the U.S. Env...

  1. Oceans Melting Greenland: Early Results from NASA's Ocean-Ice Mission in Greenland

    Fenty, Ian; Willis, Josh K.; Khazendar, Ala

    2016-01-01

    the continental shelf, and about the extent to which the ocean interacts with glaciers. Early results from NASA's five-year Oceans Melting Greenland (OMG) mission, based on extensive hydrographic and bathymetric surveys, suggest that many glaciers terminate in deep water and are hence vulnerable to increased...... melting due to ocean-ice interaction. OMG will track ocean conditions and ice loss at glaciers around Greenland through the year 2020, providing critical information about ocean-driven Greenland ice mass loss in a warming climate....

  2. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to

  3. Polar ocean stratification in a cold climate.

    Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H

    2004-03-04

    The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.

  4. Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model

    Matsumoto, Katsumi; Tokos, Kathy S.; Chikamoto, Megumi O. (Geology and Geophysics, Univ. of Minnesota, MN (United States)), e-mail: katsumi@umn.edu; Ridgwell, Andy (School of Geographical Sciences, Univ. of Bristol, Bristol (United Kingdom))

    2010-10-22

    Understanding the oceanic uptake of carbon from the atmosphere is essential for better constraining the global budget, as well as for predicting the air-borne fraction of CO{sub 2} emissions and thus degree of climate change. Gaining this understanding is difficult, because the 'natural' carbon cycle, the part of the global carbon cycle unaltered by CO{sub 2} emissions, also responds to climate change and ocean acidification. Using a global climate model of intermediate complexity, we assess the evolution of the natural carbon cycle over the next few centuries. We find that physical mechanisms, particularly Atlantic meridional overturning circulation and gas solubility, alter the natural carbon cycle the most and lead to a significant reduction in the overall oceanic carbon uptake. Important biological mechanisms include reduced organic carbon export production due to reduced nutrient supply, increased organic carbon production due to higher temperatures and reduced CaCO{sub 3} production due to increased ocean acidification. A large ensemble of model experiments indicates that the most important source of uncertainty in ocean uptake projections in the near term future are the upper ocean vertical diffusivity and gas exchange coefficient. By year 2300, the model's climate sensitivity replaces these two and becomes the dominant factor as global warming continues

  5. The Southern Ocean biogeochemical divide.

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  6. Ocean eddies and climate predictability.

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  7. The Ocean Literacy Campaign

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  8. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD

    2010-04-13

    ...-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... zone on the Atlantic Ocean in the vicinity of Ocean City, Maryland to support the Ocean City Air Show. This action is intended to restrict vessel traffic movement on the Atlantic Ocean to protect mariners...

  9. Factors challenging our ability to detect long-term trends in ocean chlorophyll

    C. Beaulieu

    2013-04-01

    Full Text Available Global climate change is expected to affect the ocean's biological productivity. The most comprehensive information available about the global distribution of contemporary ocean primary productivity is derived from satellite data. Large spatial patchiness and interannual to multidecadal variability in chlorophyll a concentration challenges efforts to distinguish a global, secular trend given satellite records which are limited in duration and continuity. The longest ocean color satellite record comes from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, which failed in December 2010. The Moderate Resolution Imaging Spectroradiometer (MODIS ocean color sensors are beyond their originally planned operational lifetime. Successful retrieval of a quality signal from the current Visible Infrared Imager Radiometer Suite (VIIRS instrument, or successful launch of the Ocean and Land Colour Instrument (OLCI expected in 2014 will hopefully extend the ocean color time series and increase the potential for detecting trends in ocean productivity in the future. Alternatively, a potential discontinuity in the time series of ocean chlorophyll a, introduced by a change of instrument without overlap and opportunity for cross-calibration, would make trend detection even more challenging. In this paper, we demonstrate that there are a few regions with statistically significant trends over the ten years of SeaWiFS data, but at a global scale the trend is not large enough to be distinguished from noise. We quantify the degree to which red noise (autocorrelation especially challenges trend detection in these observational time series. We further demonstrate how discontinuities in the time series at various points would affect our ability to detect trends in ocean chlorophyll a. We highlight the importance of maintaining continuous, climate-quality satellite data records for climate-change detection and attribution studies.

  10. Changing Arctic Ocean freshwater pathways.

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  11. Radioactive dumping in the Arctic Ocean

    Lamb, J.; Gizewski, P.

    1993-01-01

    Recent revelations concerning the possible environmental hazards posed by the sunken Soviet nuclear submarine Komsomolets and the disposal of radioactive materials in the Arctic and North Atlantic oceans have generated much controversy and debate. Too often, however, the key scientific and policy issues that the dumping raises are treated as two solitudes. In reality, decisions taken by national governments and international agencies in connection with remediation, regulation, and even research must be based on both science and policy. Indeed, a sound approach to the dumping issue must integrate scientific evidence and policy considerations relating to legal, political, social, and economic matters. Radioactive waste disposal is an exceedingly difficult problem. Information detailing the Soviet Navy's past dumping practices, and increasing awareness of the problems that Russia and other states may encounter in the future disposal of radioactive waste, indicate that the global inventory of radioactive wastes requiring storage and disposal is large and growing

  12. Ocean Disposal Site Monitoring

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  13. People and Oceans.

    NatureScope, 1988

    1988-01-01

    Discusses people's relationship with oceans, focusing on ocean pollution, use, and protective measures of the sea and its wildlife. Activities included are "Mythical Monsters"; "Globetrotters"; "Plastic in the Sea"; and "Sea of Many Uses." (RT)

  14. Ocean Sediment Thickness Contours

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  15. Ocean Robotic Networks

    Schofield, Oscar [Rutgers University

    2012-05-23

    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  16. Ocean Uses: California

    National Oceanic and Atmospheric Administration, Department of Commerce — This Ocean Uses Atlas Project is an innovative partnership between NOAA's National Marine Protected Areas Center and Marine Conservation Biology Institute. The...

  17. Ethane ocean on Titan

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  18. Regional Ocean Data Assimilation

    Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.

    2015-01-01

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal

  19. Ocean Disposal Sites

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1972, Congress enacted the Marine Protection, Research, and Sanctuaries Act (MPRSA, also known as the Ocean Dumping Act) to prohibit the dumping of material into...

  20. Ocean Station Vessel

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  1. California Ocean Uses Atlas

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  2. Ocean Acidification Product Suite

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  3. International Ocean Symposium (IOS) 1996; Kokusai kaiyo symposium 1996

    NONE

    1997-02-18

    This is a proceedings of the International Ocean Symposium 1996. On the first day of the symposium, the following were given with a theme `The Ocean, Can She Save Us`: Underwater research and future of mankind as a commemorative speech; The ocean, can she save us -- trying to discover the true figure of the ocean as a keynote speech. Panel discussion was held on The global environment and the infinite potential of the ocean. On the second day, an approach was made mostly from a cultural aspect with a theme `The Ocean and the Japanese.` The following were given: Human links between east and west as a commemorative speech; The ocean and Japanese culture as a keynote speech; Civilization spanning across oceans as a panel discussion. The Japanese have been developing their individual technologies in shipbuilding, shipping, and ocean development, have been raised by Mother Ocean, and have lived together. Ocean has been supplying humans food, water, oxygen, marine routes, and even dream and hope. The environmental pollution is the result of the human greediness. It is fear and friendship between humans and ocean that can save humans and ocean.

  4. Rapid nitrous oxide cycling in the suboxic ocean

    Babbin, Andrew R.; Bianchi, Daniele; Jayakumar, Amal; Ward, Bess B.

    2015-06-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions.

  5. Pteropods in Southern Ocean ecosystems

    Hunt, B. P. V.; Pakhomov, E. A.; Hosie, G. W.; Siegel, V.; Ward, P.; Bernard, K.

    2008-09-01

    To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO 2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group. Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m -3 (max = 800 ind m -3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m -3 (max = 2681 ind m -3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m -3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed 40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes. Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also

  6. International Regulation of Central Arctic Ocean Fisheries

    Molenaar, E.J.

    Due in particular to the impacts of climate change, the adequacy of the international regulation of Central Arctic Ocean fisheries has come under increasing scrutiny in recent years. As shown in this article, however, international regulation of Central Arctic Ocean fisheries is by no means entirely

  7. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  8. Effects of ocean acidification, temperature and nutrient regimes on the appendicularian Oikopleura dioica: a mesocosm study

    Troedsson, Christofer; Bouquet, Jean-Marie; Lobon, Carla M.

    2012-01-01

    , temperature and nutrient levels, consistent with hypotheses concerning gelatinous zooplankton in future oceans. This suggests appendicularians will play more important roles in marine pelagic communities and vertical carbon transport under projected ocean acidification and elevated temperature scenarios....

  9. Blue Ocean vs. Five Forces

    A.E. Burke (Andrew); A.J. van Stel (André); A.R. Thurik (Roy)

    2010-01-01

    textabstractThe article reports on the authors' research in the Netherlands which focused on a profit model in Dutch retail stores and a so-called blue-ocean approach which requires a new market that attracts consumers and increases profits. Topics include the competitive strategy approach to

  10. Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect

    Robertson, Darrel

    2016-01-01

    Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).

  11. Oceanic N2O emissions in the 21st century

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2014-12-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known on how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. We implemented two different parameterizations of N2O production, which differ primarily at low oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12% in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 Tg N yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the Oxygen Minimum Zones (OMZs), i.e., in the Eastern Tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production associated primarily with denitrification. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assesment for a compensation between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next generation of Earth System Models.

  12. 78 FR 73097 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site Designation

    2013-12-05

    ...: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The EPA today designates four new Ocean... suitable dredged material generated from new work (construction) and future maintenance dredging from the... dredged material generated from new work (construction) and future maintenance dredging along the SNWW...

  13. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands

    Mosier, A.; Kroeze, C.

    2000-01-01

    In most soils, biogenic formation of N2O is enhanced by an increase in available mineral N through increased nitrification and denitrification. N-fertilization, therefore, directly results in additional N2O formation. In addition, these inputs may lead to indirect formation of N2O after N leaching

  14. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.

    Orr, James C; Fabry, Victoria J; Aumont, Olivier; Bopp, Laurent; Doney, Scott C; Feely, Richard A; Gnanadesikan, Anand; Gruber, Nicolas; Ishida, Akio; Joos, Fortunat; Key, Robert M; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard; Monfray, Patrick; Mouchet, Anne; Najjar, Raymond G; Plattner, Gian-Kasper; Rodgers, Keith B; Sabine, Christopher L; Sarmiento, Jorge L; Schlitzer, Reiner; Slater, Richard D; Totterdell, Ian J; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew

    2005-09-29

    Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

  15. Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots.

    Queiroz, Nuno; Humphries, Nicolas E; Mucientes, Gonzalo; Hammerschlag, Neil; Lima, Fernando P; Scales, Kylie L; Miller, Peter I; Sousa, Lara L; Seabra, Rui; Sims, David W

    2016-02-09

    Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat hotspots of high space use. Movement modeling showed sharks preferred habitats characterized by strong sea surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge southwest of the Azores. In these main regions, and subareas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently "tracks" oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots, our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.

  16. Ocean climate and seal condition

    Crocker Daniel E

    2005-03-01

    Full Text Available Abstract Background The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. Results The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Conclusion Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.

  17. Dynamics of a Snowball Earth ocean.

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli

    2013-03-07

    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  18. Norwegian Ocean Observatory Network (NOON)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  19. An Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming.

    Cooley, Sarah R; Rheuban, Jennie E; Hart, Deborah R; Luu, Victoria; Glover, David M; Hare, Jonathan A; Doney, Scott C

    2015-01-01

    Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean

  20. Ocean Acidification: Adaptive Challenge or Extinction Threat?

    Caldeira, K.

    2012-12-01

    Most of the carbon dioxide that we emit to this atmosphere through fossil-fuel burning and deforestation is ultimately absorbed by the oceans. The effects of excess carbon dioxide on the inorganic chemistry of the ocean are largely well understood, but it is less clear what these chemical changes mean for the future of marine biota. Excess dissolved CO2 increases hydrogen-ion concentration (i.e., decreases pH) and decreases carbonate-ion concentrations, affecting the chemical speciation of nutrients and other chemicals dissolved in the ocean, and affecting the ability of organisms to form calcium carbonate shells or skeletons. Some organisms, such as corals, develop shells or skeletons made from aragonite, a particularly soluble form of calcium carbonate. The uptake of O2 and the release of CO2 from the blood of fish are affected by pH, with lower pH leading to a decrease in both O2 uptake and CO2 release. Of these concerns, the effects of excess CO2 on calcification may be the most worrisome. Doubling or quadrupling of atmospheric CO2 content within the space of a few centuries means doubling or quadrupling hydrogen-ion concentrations and halving or quartering the carbonate-ion concentration within a few centuries. Experiments and theory indicate that chemical changes of this magnitude could have important biotic consequences. Changes of this magnitude and rapidity have not occurred on this planet with the possible exception of various paroxysmal extreme events buried deep in Earth history. Most major changes to ocean chemistry occurred over millions of years allowing (i) seawater chemistry to be in approximate equilibrium with respect to riverine and sedimentary fluxes and (ii) marine biota to adapt in evolutionary time. Man's great geochemical experiment will go on at global scale for thousands of years. But experiments can be done in the laboratory in small tanks or in the sea in small enclosures only for limited periods of time. It is difficult to infer from

  1. Satellite based Ocean Forecasting, the SOFT project

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  2. TSUNAMIGENIC SOURCES IN THE INDIAN OCEAN

    B. K. Rastogi

    2008-01-01

    Full Text Available Based on an assessment of the repeat periods of great earthquakes from past seismicity, convergence rates and paleoseismological results, possible future source zones of tsunami generating earthquakes in the Indian Ocean (possible seismic gap areas are identified along subduction zones and zones of compression. Central Sumatra, Java, Makran coast, Indus Delta, Kutch-Saurashtra, Bangladesh and southern Myanmar are identified as possible source zones of earthquakes in near future which might cause tsunamis in the Indian Ocean, and in particular, that could affect India. The Sunda Arc (covering Sumatra and Java subduction zone, situated on the eastern side of the Indian Ocean, is one of the most active plate margins in the world that generates frequent great earthquakes, volcanic eruptions and tsunamis. The Andaman- Nicobar group of islands is also a seismically active zone that generates frequent earthquakes. However, northern Sumatra and Andaman-Nicobar regions are assessed to be probably free from great earthquakes (M!8.0 for a few decades due to occurrence of 2004 Mw 9.3 and 2005 Mw 8.7 earthquakes. The Krakatau volcanic eruptions have caused large tsunamis in the past. This volcano and a few others situated on the ocean bed can cause large tsunamis in the future. List of past tsunamis generated due to earthquakes/volcanic eruptions that affected the Indian region and vicinity in the Indian Ocean are also presented.

  3. Cascading effects of ocean acidification in a rocky subtidal community.

    Valentina Asnaghi

    Full Text Available Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae and their grazers (sea urchins. Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness. There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from

  4. Cascading effects of ocean acidification in a rocky subtidal community.

    Asnaghi, Valentina; Chiantore, Mariachiara; Mangialajo, Luisa; Gazeau, Frédéric; Francour, Patrice; Alliouane, Samir; Gattuso, Jean-Pierre

    2013-01-01

    Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to

  5. 2011 Annual Survey of Journalism and Mass Communication Enrollments: Enrollments Decline, Reversing the Increase of a Year Earlier, and Suggesting Slow Growth for Future

    Becker, Lee B.; Vlad, Tudor; Kalpen, Konrad

    2012-01-01

    Enrollments in journalism and mass communication programs declined in the autumn of 2011, compared to a year earlier. Enrollments were down slightly at the senior and junior levels and substantially at the freshman level. Enrollment increased at the sophomore level. The majority of administrators say they have made curricular changes in the past…

  6. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  7. Mitigating Local Causes of Ocean Acidification with Existing Laws

    The oceans continue to absorb CO2 in step with the increasing atmospheric concentration of CO2. The dissolved CO2 reacts with seawater to form carbonic acid (H2CO3) and liberate hydrogen ions, causing the pH of the oceans to decrease. Ocean acidification is thus an inevitable a...

  8. SI-Ocean Strategic technology agenda for the ocean energy sector: From development to market

    MAGAGNA DAVIDE; TZIMAS Evangelos; HANMER Clare; BADCOCK-BROE Abbie; MACGILLIVRAY Andy; JEFFREY Henry; RAVENTOS Alex

    2014-01-01

    This paper focuses on the development of the ocean energy sector, identifying the necessary steps that are required in order to facilitate the development and deployment of ocean energy technologies towards the formation of a viable and successful industry. Europe, in particular the Atlantic Arc region, has a vast wave and tidal energy resource, which could supply a significant part of the European electricity demand and play an important role in the future European energy mix. The ...

  9. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments

    H. Thomas

    2009-02-01

    Full Text Available The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates total alkalinity (AT and increases the CO2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic AT generation in the North Sea's tidal mud flat area irreversibly facilitates 7–10%, or taking into consideration benthic denitrification in the North Sea, 20–25% of the North Sea's overall CO2 uptake. At the global scale, anaerobic AT generation could be accountable for as much as 60% of the uptake of CO2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO2 conditions oceanic CO2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.

  10. Marine oxygen holes as a consequence of oceanic acidification

    Hofmann, M.; Schellnhuber, H.-J.

    2009-04-01

    An increase of atmospheric CO2 levels will not only drive future global mean temperatures towards values unprecedented during the whole Quaternary, but will also lead to an acidification of sea water which could harm the marine biota. Here we assess possible impacts of elevated atmospheric CO2 concentrations on the marine biological carbon pump by utilizing a business-as-usual emission scenario of anthropogenic CO2. A corresponding release of 4075 Petagrams of Carbon in total has been applied to simulate the current millennium by employing an Earth System Model of Intermediate Complexity (EMIC). This work is focused on studying the implications of reduced biogenic calcification caused by an increasing degree of oceanic acidification on the marine biological carbon pump. The attenuation of biogenic calcification imposes a small negative feedback on rising atmospheric pCO2 levels, tending to stabilize the Earth's climate. Since mineral ballast, notably particulate CaCO3, plays a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a dramatic effect discovered in our model world with severe consequences: since organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans with potentially harmful impacts on a variety of marine ecosystems. Our study indicates that unbridled ocean acidification would exacerbate the observed hypoxia trends due to various environmental factors as reported in recent empirical studies.

  11. IOC-CEC-ICES-WMO-ICSU ocean climate data workshop

    1992-01-01

    The Ocean Climate Data Workshop organized in Greenbelt, Maryland, USA, on 18-21 February 1992 was attended by more than 100 people from 18 countries. The heart of the programme were three groupings of ''Case Studies'' in which scientists and data managers summarized findings on recent research projects and discussed data management aspects including recommendations for improvements needed for the future. Case studies were grouped into the following sessions: Monitoring Changes in the Ocean and Atmosphere; Data Archeology (Historical Data); Effect of Change in the Ocean and on the Life Cycle (Emphasis on Chemical and Biological Observations). A full range of technical matters associated with the collection and dissemination of data and meta-date were discussed. The topics covered were the problems associated with the increasing size of data sets like techniques for storage and retrieval of these data; increasing complexity of data (new data types especially in Chemistry and Biology, growing importance of meta-data and problems associated with the cost, formatting, storage and retrieval of this information); and for correlation of data sets across disciplinary lines, for instance development of a common geo-reference system

  12. The causes of alkalinity variations in the global surface ocean

    Fry, Claudia Helen

    2016-01-01

    Human activities have caused the atmospheric concentration of carbon dioxide (CO2) to increase by 120 ppmv from pre-industrial times to 2014. The ocean takes up approximately a quarter of the anthropogenic CO2, causing ocean acidification (OA). Therefore it is necessary to study the ocean carbonate system, including alkalinity, to quantify the flux of CO2 into the ocean and understand OA. Since the 1970s, carbonate system measurements have been undertaken which can be analyzed to quantify the...

  13. Increasing the value of health research in the WHO African Region beyond 2015--reflecting on the past, celebrating the present and building the future: a bibliometric analysis.

    Uthman, Olalekan A; Wiysonge, Charles Shey; Ota, Martin O; Nicol, Mark; Hussey, Gregory D; Ndumbe, Peter M; Mayosi, Bongani M

    2015-03-13

    To assess the profile and determinants of health research productivity in Africa since the onset of the new millennium. Bibliometric analysis. In November 2014, we searched PubMed for articles published between 2000 and 2014 from the WHO African Region, and obtained country-level indicators from World Bank data. We used Poisson regression to examine time trends in research publications and negative binomial regression to explore determinants of research publications. We identified 107,662 publications, with a median of 727 per country (range 25-31,757). Three countries (South Africa, Nigeria and Kenya) contributed 52% of the publications. The number of publications increased from 3623 in 2000 to 12,709 in 2014 (relative growth 251%). Similarly, the per cent share of worldwide research publications per year increased from 0.7% in 2000 to 1.3% in 2014. The trend analysis was also significant to confirm a continuous increase in health research publications from Africa, with productivity increasing by 10.3% per year (95% CIs +10.1% to +10.5%). The only independent predictor of publication outputs was national gross domestic product. For every one log US$ billion increase in gross domestic product, research publications rose by 105%: incidence rate ratio (IRR=2.05, 95% CI 1.39 to 3.04). The association of private health expenditure with publications was only marginally significant (IRR=1.86, 95% CI 1.00 to 3.47). There has been a significant improvement in health research in the WHO African Region since 2000, with some individual countries already having strong research profiles. Countries of the region should implement the WHO Strategy on Research for Health: reinforcing the research culture (organisation); focusing research on key health challenges (priorities); strengthening national health research systems (capacity); encouraging good research practice (standards); and consolidating linkages between health research and action (translation). Published by the BMJ

  14. The Southern Ocean Observing System

    Rintoul, Stephen R.; Meredith, Michael P.; Schofield, Oscar; Newman, Louise

    2012-01-01

    The Southern Ocean includes the only latitude band where the ocean circles the earth unobstructed by continental boundaries. This accident of geography has profound consequences for global ocean circulation, biogeochemical cycles, and climate. The Southern Ocean connects the ocean basins and links the shallow and deep limbs of the overturning circulation (Rintoul et al., 2001). The ocean's capacity to moderate the pace of climate change is therefore influenced strongly by the Southern Ocean's...

  15. Faster recovery of a diatom from UV damage under ocean acidification.

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2014-11-01

    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses

    Wang, Gongjie; Cheng, Lijing; Abraham, John; Li, Chongyin

    2018-04-01

    Inconsistent global/basin ocean heat content (OHC) changes were found in different ocean subsurface temperature analyses, especially in recent studies related to the slowdown in global surface temperature rise. This finding challenges the reliability of the ocean subsurface temperature analyses and motivates a more comprehensive inter-comparison between the analyses. Here we compare the OHC changes in three ocean analyses (Ishii, EN4 and IAP) to investigate the uncertainty in OHC in four major ocean basins from decadal to multi-decadal scales. First, all products show an increase of OHC since 1970 in each ocean basin revealing a robust warming, although the warming rates are not identical. The geographical patterns, the key modes and the vertical structure of OHC changes are consistent among the three datasets, implying that the main OHC variabilities can be robustly represented. However, large discrepancies are found in the percentage of basinal ocean heating related to the global ocean, with the largest differences in the Pacific and Southern Ocean. Meanwhile, we find a large discrepancy of ocean heat storage in different layers, especially within 300-700 m in the Pacific and Southern Oceans. Furthermore, the near surface analysis of Ishii and IAP are consistent with sea surface temperature (SST) products, but EN4 is found to underestimate the long-term trend. Compared with ocean heat storage derived from the atmospheric budget equation, all products show consistent seasonal cycles of OHC in the upper 1500 m especially during 2008 to 2012. Overall, our analyses further the understanding of the observed OHC variations, and we recommend a careful quantification of errors in the ocean analyses.

  17. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A; Todgham, Anne E

    2015-01-01

    Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in

  18. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small

  19. Ocean Modeling and Visualization on Massively Parallel Computer

    Chao, Yi; Li, P. Peggy; Wang, Ping; Katz, Daniel S.; Cheng, Benny N.

    1997-01-01

    Climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change.

  20. Robot Futures

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  1. Process studies of the carbonate system in coastal and ocean environments of the Atlantic Ocean

    Salt, L.A.

    2014-01-01

    The increase in anthropogenic, atmospheric carbon dioxide (CO2) has been largely mitigated by ocean uptake since the start of the Industrial Revolution, with the Atlantic Ocean providing the largest store of anthropogenic carbon. The thesis of Lesley Salt examines how the uptake of CO2 varies in

  2. The impact on ocean ecosystems

    Seymour, A.H.

    1982-01-01

    A nuclear war would have less impact on ocean ecosystems than on terrestrial systems. But damage to coastal regions and estuaries might be substantial. This chapter discusses the distribution, effects, and hazards of fallout radionuclides in the ocean, and attempts to assess the impact on ocean ecosystems of dust particles in the atmosphere, ozone depletion, and temperature change following a nuclear war. The information offers some insight into the impact of such a war, but does not provide definitive predictions. Two other consequences, however, do have the potential for devastating effects upon marine ecosystems. It has been predicted that a 100-fold reduction in solar light intensity at the earth's surface due to particles in the atmosphere is possible; this would result in death to most of the phytoplankton and herbivorous zooplankton in more than half of the oceans of the Northern Hemisphere, and under some circumstances, depletion of ozone in the stratosphere by NOsub(X) could increase UV radiation at the earth's surface, the magnitude of the change being sufficient to seriously reduce the populations of organisms at the base of the food web. Temperature changes would be of little consequence. (U.K.)

  3. LiveOcean: A Daily Forecast Model of Ocean Acidification for Shellfish Growers

    MacCready, P.; Siedlecki, S. A.; McCabe, R. M.

    2016-12-01

    The coastal estuaries of the NE Pacific host a highly productive shellfish industry, but in the past decade they have suffered from many years in which no natural set of oysters occurred. It appears that coastal waters with low Aragonite saturation state may be the cause. This "acidified" water is the result of (i) upwelling of NE Pacific water from near the shelf break that is already low in pH, and (ii) further acidification of that water by productivity and remineralization on the shelf, and (iii) increasing atmospheric CO2. As part of a coordinated research response to this issue, we have developed the LiveOcean modeling system, which creates daily three-day forecasts of circulation and biogeochemical properties in Oregon-Washington-British Columbia coastal and estuarine waters. The system includes realistic tides, atmospheric forcing (from a regional WRF model), ocean boundary conditions (from HYCOM), and rivers (from USGS and Environment Canada). The model is also used for Harmful Algal Bloom prediction. There has been extensive validation of hindcast runs for currents and hydrography, and more limited validation of biogeochemical variables. Model results are pushed daily to the cloud, and made available to the public through the NANOOS Visualization System (NVS). NVS also includes automated model-data comparisons with real-time NDBC and OOI moorings. Future work will focus on optimizing the utility of this system for regional shellfish growers.

  4. Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions.

    Equihua, Miguel; Ibáñez-Bernal, Sergio; Benítez, Griselda; Estrada-Contreras, Israel; Sandoval-Ruiz, César A; Mendoza-Palmero, Fredy S

    2017-02-01

    The study was conducted in the central region of Veracruz Mexico, in the metropolitan area of Xalapa. It is a mountainous area where Aedes aegypti (L.) is not currently endemic. An entomological survey was done along an elevation gradient using the Ae. aegypti occurrences at different life cycle stages. Seven sites were sampled and a total of 24 mosquito species were recorded: 9 species were found in urban areas, 18 in non-urban areas with remnant vegetation, and 3 occurred in both environments. Ae. aegypti was found only in the urban areas, usually below 1200m a.s.l., but in this study was recorded for the first time at 1420m a.s.l. These occurrences, together with additional distribution data in the state of Veracruz were used to developed species distribution models using Maxlike software in R to identify the current projected suitable areas for the establishment of this vector and the human populations that might be affected by dengue transmission at higher elevations. Its emergence in previously unsuitable places appears to be driven by both habitat destruction and biodiversity loss associated with biotic homogenization. A border study using data from the edges of the vector's distribution might allow sensitive monitoring to detect any changes in this mosquito's distribution pattern, and any changes in the anthropic drivers or climate that could increase transmission risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  6. Strategies and future attempts to reduce stigmatization and increase awareness of mental health problems among young people: a narrative review of educational interventions.

    Yamaguchi, Sosei; Mino, Yoshio; Uddin, Shahir

    2011-08-01

    There is a need to reduce stigma and increase awareness in order to prevent social exclusion of people with mental illness and to facilitate the use of mental health services in young people. The purpose of this review was to examine the effects of educational interventions to reduce stigmatization and improve awareness of mental health problems among young people. An electronic search using MEDLINE, PsycINFO and Academic Search Complete was carried out for studies that evaluated the effectiveness of educational interventions. Forty eligible studies were identified. There were three types of educational interventions (Educational condition, Video-based Contact condition and Contact condition). Eighteen of 23 studies reported significant improvements in knowledge, 27 of 34 studies yielded significant changes in attitudes towards people with mental illness. Significant effects in social distance were found in 16 of 20 studies. Two of five studies significantly improved young people's awareness of mental illness. However, six studies reported difficulties in maintaining improved knowledge, attitudes and social distance in young people. Furthermore, the majority of studies did not measure the actual behavioral change. From the comparison of the three types of educational interventions, direct contact with people with mental illness (Contact condition) seems to be key in reducing stigmatization, while the components of Education and Video-based contact conditions are still arguable. Despite the demonstration of the positive effects of each educational intervention, their long-term effects are still unclear. Further research needs to involve measuring actual behavioral change and performing a long-term follow up. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.

  7. Coupled atmosphere-ocean models of Titan's past

    Mckay, Christopher P.; Pollack, James B.; Lunine, Jonathan I.; Courtin, Regis

    1993-01-01

    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  8. Thinking Outside of the Blue Marble: Novel Ocean Applications Using the VIIRS Sensor

    Vandermeulen, Ryan A.; Arnone, Robert

    2016-01-01

    While planning for future space-borne sensors will increase the quality, quantity, and duration of ocean observations in the years to come, efforts to extend the limits of sensors currently in orbit can help shed light on future scientific gains as well as associated uncertainties. Here, we present several applications that are unique to the polar orbiting Visual Infrared Imaging Radiometer Suite (VIIRS), each of which challenge the threshold capabilities of the sensor and provide lessons for future missions. For instance, while moderate resolution polar orbiters typically have a one day revisit time, we are able to obtain multiple looks of the same area by focusing on the extreme zenith angles where orbital views overlap, and pair these observations with those from other sensors to create pseudo-geostationary data sets. Or, by exploiting high spatial resolution (imaging) channels and analyzing patterns of synoptic covariance across the visible spectrum, we can obtain higher spatial resolution bio-optical products. Alternatively, non-traditional products can illuminate important biological interactions in the ocean, such as the use of the Day-Night-Band to provide some quantification of phototactic behavior of marine life along light polluted beaches, as well as track the location of marine fishing vessel fleets along ocean fronts. In this talk, we explore ways to take full advantage of the capabilities of existing sensors in order to maximize insights for future missions.

  9. Greenhouse effect increase and its consequences

    Royer, J.F.; Mahfouf, J.F.

    1992-01-01

    Observations on the evolution of the atmospheric composition concerning trace gases (CO 2 , CH 4 , NO 2 , CFC) are first described. Then the fundamental role played by these gases in the radiative equilibrium of the earth through the greenhouse effect is examined. Numerical models have been developed to forecast the consequences of an increase of the greenhouse effect. The importance of the feedback mechanism, where the oceans and the clouds have the central part, but not well estimated by the models, is explained. Climatic changes generally accepted are reviewed. In conclusion the need to improve our knowledge of the global climatic system to forecast future modifications is underlined

  10. Blue Ocean Thinking

    Orem, Donna

    2016-01-01

    This article describes a concept called the "blue ocean thinking strategy," developed by W. Chan Kim and Renée Mauborgne, professors at INSEAD, an international graduate school of business in France. The "blue ocean" thinking strategy considers opportunities to create new markets for services, rather than focusing solely on…

  11. Communicating Ocean Acidification

    Pope, Aaron; Selna, Elizabeth

    2013-01-01

    Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…

  12. Global Ocean Phytoplankton

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  13. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    Stephen M. Masutani

    1999-12-31

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  14. Ocean Networks Canada's "Big Data" Initiative

    Dewey, R. K.; Hoeberechts, M.; Moran, K.; Pirenne, B.; Owens, D.

    2013-12-01

    Ocean Networks Canada operates two large undersea observatories that collect, archive, and deliver data in real time over the Internet. These data contribute to our understanding of the complex changes taking place on our ocean planet. Ocean Networks Canada's VENUS was the world's first cabled seafloor observatory to enable researchers anywhere to connect in real time to undersea experiments and observations. Its NEPTUNE observatory is the largest cabled ocean observatory, spanning a wide range of ocean environments. Most recently, we installed a new small observatory in the Arctic. Together, these observatories deliver "Big Data" across many disciplines in a cohesive manner using the Oceans 2.0 data management and archiving system that provides national and international users with open access to real-time and archived data while also supporting a collaborative work environment. Ocean Networks Canada operates these observatories to support science, innovation, and learning in four priority areas: study of the impact of climate change on the ocean; the exploration and understanding the unique life forms in the extreme environments of the deep ocean and below the seafloor; the exchange of heat, fluids, and gases that move throughout the ocean and atmosphere; and the dynamics of earthquakes, tsunamis, and undersea landslides. To date, the Ocean Networks Canada archive contains over 130 TB (collected over 7 years) and the current rate of data acquisition is ~50 TB per year. This data set is complex and diverse. Making these "Big Data" accessible and attractive to users is our priority. In this presentation, we share our experience as a "Big Data" institution where we deliver simple and multi-dimensional calibrated data cubes to a diverse pool of users. Ocean Networks Canada also conducts extensive user testing. Test results guide future tool design and development of "Big Data" products. We strive to bridge the gap between the raw, archived data and the needs and

  15. Southern Ocean carbon-wind stress feedback

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  16. The great challenges in Arctic Ocean paleoceanography

    Stein, Ruediger

    2011-01-01

    Despite the importance of the Arctic in the climate system, the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, i.e., the Lomonosov Ridge, the Alpha-Mendeleev Ridge, and the Chukchi Plateau/Northwind Ridge, the Beaufort, Kara and Laptev sea continental margins, as well as the major Arctic gateways towards the Atlantic and Pacific oceans. The new detailed climate records from the Arctic Ocean spanning time intervals from the Late Cretaceous/Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world and representing short- and long-term climate variability on scales from 10 to 10 6 years, will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. With this, studying the Arctic Ocean is certainly one of the major challenges in climate research for the coming decades.

  17. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    not particularly powerful with values around 40-50 cm/s. However a detailed assessment, based on field measurements, will be conducted in the near future with the aim to identify specific areas close to the coast with stronger currents which make suitable the deployment of marine current turbines. Although the base Platform is not still available, PLOCAN has already started the activity as an ocean testbed providing services to a wave energy converter patented by the Spanish company PIPO Systems. A scaled 1:5 prototype will be deployed during January 2010 and monitored for several months. Current facilities available include some ODAS buoys (temperature, salinity, pH, oxygen, turbidity, wind, etc.), wave rider buoy, current meter profilers (ADCP and electromagnetic), system for data management, remote operated vehicles (ROV), autonomous underwater vehicles (AUV), and an oceanographic vessel. Future facilities include high frequency radar for wave and current measurements and submarine electro-optical cables to connect the Platform with the energy converters and with the shore station.

  18. Panorama 2011: Ocean renewable energies

    Demoulin, P.; Vinot, S.

    2011-01-01

    Our society is looking increasingly to renewable energy sources in the face of the energy and environmental challenges with which it is grappling. As far as ocean renewable energies are concerned, a wide range of technologies is currently being experimented with, including wind power and energy derived from waves and tidal currents. They are all at varying levels of maturity, and bring with them very different technical and economic challenges. (author)

  19. Swell Propagation over Indian Ocean Region

    Suchandra A. Bhowmick

    2011-06-01

    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  20. Enhancing Ocean Research Data Access

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter

    2014-05-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  1. Ocean energy: key legal issues and challenges

    Wright, Glen; Rochette, Julien; O'Hagan, Anne Marie; De Groot, Jiska; Leroy, Yannick; Soininen, Niko; Salcido, Rachael; Castelos, Montserrat Abad; Jude, Simon; Kerr, Sandy

    2015-01-01

    Ocean energy is a novel renewable energy resource being developed as part of the push towards a 'Blue Economy'. The literature on ocean energy has focused on technical, environmental, and, increasingly, social and political aspects. Legal and regulatory factors have received less attention, despite their importance in supporting this new technology and ensuring its sustainable development. In this Issue Brief, we set out some key legal challenges for the development of ocean energy technologies, structured around the following core themes of marine governance: (i) international law; (ii) environmental impacts; (iii) rights and ownership; (iv) consenting processes; and (v) management of marine space and resources. (authors)

  2. On the Effect of Offshore Wind Parks on Ocean Dynamics

    Ludewig, E.; Pohlmann, T.

    2012-12-01

    Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area

  3. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  4. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from warming conditions (from 26°C to 29°C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems. © 2011 Phycological Society of America.

  5. Ocean water cycle: its recent amplification and impact on ocean circulation