WorldWideScience

Sample records for future nuclear industry

  1. Future jobs in nuclear industry

    Asquier, S.

    2017-01-01

    CEA leads research on fast reactors in the framework of Generation-4 reactors, it also brings technical support to industrial partners like EDF or AREVA for today operating reactors. Computerized simulation is strongly developed in order to get reliable computers codes able to simulate mechanical behavior of new materials or neutron transport in new reactor cores. CEA is also in charge of the dismantling and remediation of its own nuclear facilities, today about 1000 people work on the dismantling of 35 facilities. CEA is also participating in fusion research programs. This broad range of activities makes CEA an important recruiter of competencies in a lot of domains from nuclear engineering to biological impact of radiations via computer sciences. (A.C.)

  2. Future trends for electrolysers in nuclear industry

    Manifar, T.; Robinson, J.; Ozemoyah, P.; Robinson, V.; Suppiah, S.; Boniface, H.

    2011-01-01

    The nuclear industry, through the application of electrolysers, can provide a solution to energy shortage with its competitive cost and can be one of the major future sources of hydrogen production with zero carbon emission. In addition, development of complementary, yet critical processes for upgrading or detritiation of the heavy water in the nuclear industry can be advanced with the application of electrolysers. Regardless of the technology, the electrolyser's development and application are facing many technical challenges including radiation and catalysis. In this paper, three main types of electrolysers are discussed along with their advantages and disadvantages. Proton Exchange Membrane (PEM) electrolysers look promising for hydrogen (or its isotopes) production. For this reason, Atomic Energy of Canada Limited (AECL) in collaboration with Tyne Engineering has started design and fabrication of PEM electrolysers with more than 60 Nm 3 /hr hydrogen production capacity for the application in nuclear industry. This electrolyser is being designed to withstand high concentrations of tritium. (author)

  3. Future contracts in the nuclear fuel industry

    Fuller, D.M.

    1995-01-01

    In a modern futures market, standardized contracts for future delivery of a commodity are traded through an exchange that establishes contract terms and the rules of trading. The futures contract itself is simply an agreement between a buyer and a seller in which the seller is obligated to deliver and the buyer is obligated to accept a predetermined quantity of a specified commodity at a given location on a certain date in the future for a set price. Organized futures markets aid in price discovery; provide a risk management tool for those with commercial interests in a commodity; create speculative opportunities; and contribute to competitiveness, efficiency, and fairness in trading. There are, at present, no standardized futures contracts in the nuclear fuel industry, although the concept has been discovered for years. The idea has been raised again recently in relation to the disposition of Russian uranium. Some adaptation of traditional futures contracts, traded on an exchange composed of nuclear fuel industry participants, could provide many of the benefits found in other commodity futures markets

  4. The future of the nuclear plant industry

    Franklin, N.L.

    Against the background of world-wide controversy, the future of nuclear power in the United Kingdom is discussed. The various forecasts of electricity demand are considered in relation to the need for long-term planning in the nuclear industry. It is considered that towards the end of the century uranium will be in short supply for technical or political reasons, and that the emphasis would then be on the use of fast reactors (assuming nuclear power to be politically acceptable at that time). A possible UK programme is outlined, and the question of cooperation with other countries is referred to. Thermal reactors for use in the middle term are discussed. The possibilities of export are considered briefly. The effects of world economic recession, public opposition on environmental and other grounds, and the possibility of misuse of nuclear materials are considered. (U.K.)

  5. Current status and future prospects on nuclear industry in Korea

    Lee, Joongjae

    2006-01-01

    It is ny great pleasure to have this chance of speaking at twenty-first KAIF/KNS Annual Conference, with the subject of the current status and future prospects of nuclear industry in Korea. As you all know, since the start of operation in Obninsk, the former Soviet Union, on June 26th, 1954, nuclear generation in the world has expanded continuously for the past 50 years. In 1973, when the first oil crisis hit the world, there were 147 nuclear power plants in operation, supplying only 0.8% of the world energy demand. About 30 years later, by the end of last year, 443 plants were in operation in 32 countries, supplying about 16% of the world power demand. Nuclear power generation is greatly contributing to the energy security of many countries and preservation of global environments. Recently, countries all over the world are becoming aware of the values and importance of nuclear energy which can help respond to energy crises caused by a sharp rise in oil prices and protect the earth from global warming. Due to its high energy density and ability to secure fuel supply at a lower cost, in addition to its cleanliness resulting from almost no emission of greenhouse gases, nuclear power generation is the practical alternative for energy security and the prevention of global warming. However, in the rapidly changing 21st century, the nuclear industries of the world, as well as Korea, are facing more challenges than ever before. The political and social disputes on nuclear generation are continuing while we all are facing urgent challenges, including the concerns about the safety of nuclear generation, procuring site to build nuclear power plants, and the improvement of competitiveness. Please allow me to remind you that it is very important for the world's nuclear societies to cooperate together in order to overcome diverse difficulties along our path and to contribute to the development of mankind and preservation of natural environments with nuclear power as a

  6. The future of the nuclear industry in the United States

    Rosa Marina Bilbao y Leon

    1999-01-01

    This paper investigates the future role of nuclear power as most utilities face the deregulation of the electric power industry with a movement towards a competitive market and as the Kyoto Protocol calls for a significant cut in greenhouse gas emissions for most of the industrialized nations in the world. There is a full spectrum of opinions in the matter and there are no correct answers to the questions. We can only speculate about what is likely to happen, and how it is going to happen. In addition to a review of the available literature, and in an attempt to make a complete and balanced review of all the issues and implications of future choices, a survey was submitted to several experts in energy related issues in the U.S. These experts came from different backgrounds and professional status, and it was intended to have a balance between nuclear-related experts and all others. This paper collects and summarizes the responses to the survey in an ordered and objective manner. (author)

  7. The future of the nuclear industry: a matter of communication

    De Waal, H S

    1993-11-01

    Since the very first successes achieved by the early scientists the infant nuclear industry was plagued by an atmosphere of uncertainty, conflict, anxiety and expectations. After the initial euphoria the Chernobyl accident shocked public opinion and perspectives changed. Nuclear energy is experience by the public in three dimensions. Firstly there are the technical realities of the reactor and its fantastically reduced source of power. Secondly, there is a psychological and political meaning, including the association of modern technology with authority, government, and control. The third dimension is the product of old myths about `divine secrets`, mad scientists dreadful pollution and cosmic apocalypse. To a large extent the nuclear industry is at fault for these emotional connotations. An early lapse in the communication process can be blamed for many of the misconceptions. The nuclear industry lost an opportunity by sticking to `vagueness`. Recent trends show that a pattern of conditional acceptance is present in public opinion with regard to the nuclear industry. Possible solutions, including better communication, aggressive marketing, and the training of scientists to become communicators, are discussed. A study was done of community attitudes around Koeberg, and it is concluded that the public must be convinced of the fact that nuclear power is clean, safe, cheap and accepted as such by the industrially developed word. 62 refs., 13 figs.

  8. The future of the nuclear industry: a matter of communication

    De Waal, H.S.

    1993-11-01

    Since the very first successes achieved by the early scientists the infant nuclear industry was plagued by an atmosphere of uncertainty, conflict, anxiety and expectations. After the initial euphoria the Chernobyl accident shocked public opinion and perspectives changed. Nuclear energy is experience by the public in three dimensions. Firstly there are the technical realities of the reactor and its fantastically reduced source of power. Secondly, there is a psychological and political meaning, including the association of modern technology with authority, government, and control. The third dimension is the product of old myths about 'divine secrets', mad scientists dreadful pollution and cosmic apocalypse. To a large extent the nuclear industry is at fault for these emotional connotations. An early lapse in the communication process can be blamed for many of the misconceptions. The nuclear industry lost an opportunity by sticking to 'vagueness'. Recent trends show that a pattern of conditional acceptance is present in public opinion with regard to the nuclear industry. Possible solutions, including better communication, aggressive marketing, and the training of scientists to become communicators, are discussed. A study was done of community attitudes around Koeberg, and it is concluded that the public must be convinced of the fact that nuclear power is clean, safe, cheap and accepted as such by the industrially developed word. 62 refs., 13 figs

  9. The nuclear industry and its markets in Europe. 1996, strategic and financial future prospects. Synthesis

    1996-01-01

    This synthesis report assesses the strategic and financial future prospects of the nuclear industry. It includes in particular the future prospects of the nuclear energy demand increase in the world and compares the nuclear power production with the electric power production due to other energy sources. The different markets of the nuclear industry are detailed. At last are given the main European manufacturers of the nuclear sector. (O.M.)

  10. The INSTN trains the future professionals of nuclear industry

    Correa, P.

    2017-01-01

    The INSTN (Institute for Nuclear Sciences and Nuclear Technologies) is the applied school in nuclear technologies that has been present for 60 years for specialized training and vocational training. The integration of numerical technologies has allowed INSTN to adapt its way of teaching and to overcome difficulties like distances and to propose for instance practical exercises on the ISIS experimental reactor through the web for foreign graduate schools. The INSTN has realized its first SPOC (Small Private Online Course) and is preparing 2 MOOC (Massive Open Online Course). Since 2016, the INSTN has become 1 of the 2 training centers appointed as 'collaborating center' by the IAEA in the field of nuclear technologies and their industrial and radio-pharmaceutical applications. (A.C.)

  11. Actual growth and probable future of the worldwide nuclear industry

    Bupp, I.C.

    1981-01-01

    Worldwide nuclear-power-reactor manufacturing capacity will exceed worldwide demand by a factor of two or more during the 1980s. Only in France and the Soviet bloc countries is it likely that the ambitious nuclear-power programs formulated in the mid-1970s will be implemented. In all other developed countries and in most developing countries, further delays and cancellations of previously announced programs are all but certain. The stalemate over the future of nuclear power is particularly deep in America. Administrative and personnel problems in the Nuclear Regulatory Commission, slow progress on radioactive waste disposal by the Department of Energy, severe financial problems for most electric utilities, and drastic reductions in the rate of electricity demand growth combine to make continuation of the five-year-old moratorium on reactor orders inevitable. Many of the ninety plants under construction may never operate, and some of the seventy in operation may shut down before the end of their economic life. Contrary to widespread belief, further oil price increases may not speed up world-wide reactor sales. It is possible that the world is heading for a worst of all possible outcomes: a large number of small nuclear power programs that do little to meet real energy needs but substantially complicate the problem of nuclear weapons proliferation. 24 references, 4 tables

  12. Human factors in the Canadian nuclear industry: future needs

    Harrison, F.

    2008-01-01

    Currently the industry is facing refurbishment and new builds. At present most licensees in Canada do not have sufficient numbers of Human Factors staff. As a result, the activities of the CNSC are too often focused on providing guidance regarding the application of Human Factors, in addition to reviewing work submitted by the licensee. Greater efficiencies for both the licensee and the CNSC could be realized if licensee staff had greater Human Factors expertise. Strategies for developing Human Factors expertise should be explored through cooperative partnerships with universities, which could be encouraged to include Human Factors courses specific to nuclear. (author)

  13. Current status and future prospective of nuclear industry in Romania

    Lucaciu, Gheorghe; Chirica, Teodor

    2004-01-01

    After the collapse, in 1989, of the centralized communist regimes in the Central and Eastern Europe, the Romanian economy experienced significant changes. By 2001 the industrial production decline caused a dramatic drop in the country's electricity consumption. Despite it, the power sector has to cope with many difficulties to cover the electricity demand. Under the circumstances of the economy restructuring, the problems of the Romanian power sector became acute: most of thermal power units are aged (older than 20 years), with low efficiency, low performance indicators, high costs, large staff number; the dependence on imported fossil fuel is high; the environment protection requirements - emphasized by the European institutions - not met; lack of the capital required for fixing these questions. The lack of financial sources at the thermal power plants made the purchase of fuel from import extremely complicated; also, the maintenance programs at the power plants could not be accomplished. It was very difficult to attract investment funds for rehabilitation work or for construction of new capacities in the power plants. Meanwhile, in the last three years, a gradual recovery of the Romanian industry occurred. Now, it becomes less energy intensive, but the growth of the industrial production and the increasing household electricity demand induced higher energy consumption. The development of the nuclear power sector enhances these tendencies. The entire sector is under a reorganization process, with the final purpose to increase efficiency, privatizing the electrical distribution, thermal power plants, and some hydro and support services

  14. Problems and future outlook in the nuclear equipment manufacturing industry

    Suenaga, Soichiro

    1984-01-01

    The energy policy in Japan is based on a balance between the energy security and the energy cost for the purpose of realizing optimal supply/demand structure. In this field, nuclear equipment manufacturers should cooperate in the settlement of LWR power generation through plant safety and reliability and through high economical efficiency, all involving the advancement of technology. As a new concept being developed, there is an APWR (advanced PWR) which has the electric output of 1,350 MWe. The export of nuclear power plants, though there are various problems, should be enhanced in the high-technology export area. The following matters are described: the settlement of and the heightening of technology in nuclear power generation, the development of the advanced PWR, and the measures for the export of nuclear power plants and components. (Mori, K.)

  15. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  16. Actinide extractants for the nuclear industry of the future

    Musikas, C.; Morisseau, J.C.; Hoel, P.; Guillaume, B.

    1987-06-01

    Non organo-phosphorus extractants properties regarding the extractions of actinides in nuclear fuels reprocessing are presented. N,N-dialkylamides are proposed as alternatives to TBP.N,N'-tetraalkylamides or pentaalkyl propane diamides properties are reported. They show that those bidentate extractants are alternatives to bidentate organophosphorus extractants for actinides (III) extraction from concentrated nitric acid. 11 figs, 15 refs

  17. The nuclear industry and its markets in Europe. 1996, strategic and financial future prospects

    1996-01-01

    This work deals with the strategic and financial future prospects of the nuclear industry. It is divided into four parts. The first one gives the explanatory factors of the nuclear energy demand (economic and non-economic factors, energy policy..) and the future prospects of the nuclear energy demand increase in the world. It compares the nuclear power production with the electric power production due to other energy sources too. The second part details the different markets of the nuclear industry. The main markets are the extraction and concentration of natural uranium, its enrichment and conversion, the fuel production and the reactors designs. The growth markets are the spent fuels reprocessing and the nuclear energy services (maintenance, nuclear safety, radioactive materials transport..). The new markets are the nuclear wastes and the sites remedial action. The third part deals with the manufacturers responses as for the markets of the nuclear industry. The last part gives the reactors designers and the fuel cycle firms. (O.M.)

  18. Materials data in the nuclear industry. Present and future

    Rowe, J.P.

    1985-01-01

    The database for materials must address the various needs of different participants in industry. The materials producer must use the base to assure that his product meets required specifications and that his operations are under control. The designer will need the ''standard design values'' resulting from the analysis of the data, as well as the ability to examine the raw data, to assess the sensitivity of his design to postulated system conditions. Finally, the assessment of materials following extensive service must rely on this database to indicate the effect of environment on the serviceability of a given material. Encompassing all of these needs is the need to know how the data were taken; e.g., temperature control, specimen fabrication, material orientation, test machine calibration, etc. In short, the materials part of the ''common database'' is complex

  19. Key technologies for the current and future challenges of the nuclear industry

    Martinez-Sancho, Lou; Roulleaux Dugage, Martin

    2017-01-01

    The current challenges of the nuclear industry are the result of too many uncertainties: low GDP growth of OECD countries, booming state debts, deregulated electricity markets, growing safety regulation and diminishing public support. As a result, nuclear technology companies tend to entrench in their current installed base, while attempting to develop global partnerships to market their products to new nuclear countries, along with viable financing schemes. But new opportunities are lying ahead. In a future context of effective and global climate policies, nuclear energy will have to play a key role in a new energy ecosystem aside the two other clean air energy production technologies: renewable energies and electricity storage. And still, the perspective of long-term sustainability of nuclear energy is still high. This paper explores the opportunity for key innovative technologies to shift the way we think about nuclear in the future energy system while addressing these major challenges. (author)

  20. The future of the civil nuclear industry: the challenge of nuclear wastes

    2001-01-01

    This research thesis first gives an overview of the nuclear waste processing and storage in France (reasons and future of this political choice, legal framework, storage means and sites, weaknesses of waste storage). Then it comments various aspects of the processing of foreign nuclear wastes in France: economy and media impact, law and contracts, waste transport, temporary storage in France

  1. Future global manpower shortages in nuclear industries with special reference to india including remedial measures

    Ghosh Hazra, G.S.

    2008-01-01

    Full text: The Radiation Protection Program of the Environmental Protection Agencies of countries employ scientists, engineers, statisticians, economists, lawyers, policy analysts, and public affairs professionals amongst others. These professionals aim to protect workers, the general public, and the environment from harmful radiation exposures and to provide the technical basis for radiation protection policies and regulations. Professionals include Health physicists, Bio statistician, Radio chemist, Radio ecologist, Radio biologist etc. With a large proportion of the population of the nuclear workforce of many countries now approaching retirement age, existing power plants of these countries will be hard pressed to find enough qualified professionals to support their operations. The potential shortage of skilled manpower not only affects utilities, but also impacts the entire nuclear infrastructure, including national laboratories, federal and state agencies, nuclear technology vendors and manufacturing companies, nuclear construction companies, and university nuclear engineering departments. Manpower requirements exist in the nuclear power industry, universities and research establishments, hospitals, government departments, general industry e.g. radiography, transport, instrumentation etc., specialist contractors, agencies and consultancies serving radiation protection. India is no exception. India has the world's 12 th largest economy. Assuming India's average growth rate p.a. of more than 5%, total GDP by 2050 will increase substantially which will require proportionate increase of manpower for all industries. Also chance of brain drain is very high from developing countries e.g. from India to developed countries because of much higher pay and better lifestyle as there will be shortage of manpower in developed countries as explained above. With population growth to be stabilized in future in India, the working age population may not increase in the year 2030

  2. Cooperation ability of Japan to China in nuclear power industries. Present status and future

    Murakami, Tomoko

    2006-01-01

    Japan is superior to China in the field of LWR plant operation and maintenance, FBR cycle included operation and control of reactor and reprocessing facility, and measures of safeguards and non-proliferation of all commercial nuclear power facilities from the point of view that Japanese technologies are better than the other countries and China needs the technologies. It is important that Japanese electric power companies, plant makers, fuel industries and research organizations developed their business in China in the above fields on the basis of their knowledge, strategies and/or trough network of negotiation of two governments such as forum for nuclear cooperation in Asia (FNCA)·Generation IV International Forum (GIF), and World Association of Nuclear Operators (WANO)·World Nuclear Association (WNA). Outline of finding new market and technical cooperation in the industry and future of nuclear power industry in China are stated. As the supplementary materials, table of operating, building and planning nuclear power plants, estimation of demand for uranium enrichment on the basis of estimation and plans of expansion of power plant facilities, and results of calculation of Separative Work Unit (SWU) from demand for uranium are illustrated. (S.Y.)

  3. Future industrialization of the world and the necessity of nuclear power; how limited are resources?

    Jovanovic, J.

    1996-01-01

    Will the future world be forever divided into an industrial, developed and 'rich' on one side, and primitive, undeveloped, and poor on the other? Is an industrial, affluent and sustainable world of 10-15 billion people owning 5-10 billion cars physically possible to exist. Can the world have enough food, minerals and energy to support such a widespread affluence in a sustainable manner? In previous papers i have argued that even without any major breakthroughs in science and technology, an industrialized, sustainable and affluent world can be created within the next half century, but only if breeder nuclear power is widely used throughout the world. In this paper i elaborate on the question of future availability of some basic natural resources. 18 refs. 3 figs. 1 tabs

  4. The young generation - guarantors for the future of the nuclear industry

    Broy, Y.

    2001-01-01

    For several years the 'YOUNG GENERATION' has been attracting great interest all over Europe. Based on the Young Generation Network of the European Nuclear Society (ENS) founded by Jan Runermark, in a lot of European countries a national Young Generation Network has been established, as well in Germany. Since October 1998 the Young Generation in Germany has been working in the frame of a difficult political situation after the decision was made about the phasing out of nuclear energy in Germany. Nowadays, our highly qualified and motivated young people who have been working for a couple of years in the nuclear field and already took over a lot of knowledge and experiences, have to decide: Is there a future for us in the nuclear industry? The paper will briefly summarise the wide range of activities of the German Young Generation. A selection of them will be chosen to highlight our fight for the future of nuclear energy in Germany, e.g. communication with the public, know-how-transfer, improvement of links between the fuel vendor and their customers. The main purpose is to point out: There is a young generation who is ready to take over the knowledge and the responsibility for the future. (author)

  5. Government perspective on current and likely future developments affecting the nuclear industry

    Walker, A.

    2000-01-01

    In October 1998 the Government published its Energy Sources White Paper, making it clear that what it wanted was an energy policy developed in a competitive market framework. The Government considers a competitive market is absolutely essential for both industrial and domestic energy users but the challenge for energy in the twenty-first century, not only in the UK but increasingly the world over, is how to deliver a competitive market and at the same time fulfil broader expectations for energy, particularly social, environmental, security and diversity objectives. Quite clearly, the nuclear industry needs to fit into this policy and the Government recognizes that it is a key player in achieving these goals. But it must be the industry itself, not the Government, that is the driver for change. The DTI believes that if the current and future economic opportunities in the nuclear industry are to be realized then there are challenges to be met in three areas: cost; waste management; and safety, environment and public confidence. This paper discusses the ways in which the industry can, with the Government's help, successfully meet these challenges. (author)

  6. Nuclear power supply. The future perspective; services industries: scope and opportunities

    Tilbe, H.E.

    1984-01-01

    The Canadian nuclear industry seems not to have recognized the opportunities that exist in the nuclear service industries. The total market in this area ranges from $1 to $4 billion in the United States alone. The author describes briefly the experiences of his company, London Nuclear. (L.L.)

  7. Preparedness for Romanian Future Nuclear Industry - Methods to Attract Young Professionals

    Zaharov, Ionut; Goicea, Andrei

    2008-01-01

    'The management of nuclear knowledge has emerged as a growing challenge in recent years. The need to preserve, and transfer nuclear knowledge is compounded by recent trends such as ageing of nuclear-related field and a threat of loosing accumulated knowledge' as per IAEA said. Knowledge transfer is a very important task all over the word. In Romania we have some extra problems to attract young people to join us after graduation, to work in the nuclear field. Presently, Romania has two Candu Reactors in operation and our Government, decided to complete another two Nuclear Power Plants (two Candu 6 Reactors). As a result, more young engineers will be necessary to join us. We have to be prepared to assure that all the students know our needs and their possibilities to work in the nuclear field. The Prime Minister of Romania declared that 'is necessary to find a different site to build another Nuclear Power Plants in Romania'. That means other young engineers and also good young professionals must join us. The students must know their possibilities in the field after graduation. Romanian Association 'Nuclear Energy' - Young Generation must help nuclear industry in order to find solutions to attract in the nuclear field good quality people. A very alarmist statistic shows that in Romania, after graduation, most of the students prefer to change the domain, or prefer to work abroad. The reasons are various, but the most important is because the jobs for engineers are not paid well. The second most important reason is that, right now, in Romania the jobs offer for young engineers isn't various. What they do not know is that in the future possibilities in Romania will be more attractive for them and they will have well paid jobs. In this paper we present our strategies and methods used to communicated with students, and also what kind of problems has a young employer in Romania. Our mission is to convince them that we need them to work with us. We know that our results in

  8. Preparedness for Romanian Future Nuclear Industry - Methods to Attract Young Professionals

    Zaharov, Ionut; Goicea, Andrei [Nuclearelectrica Co, 65 Polona street, Bucharest (Romania)

    2008-07-01

    'The management of nuclear knowledge has emerged as a growing challenge in recent years. The need to preserve, and transfer nuclear knowledge is compounded by recent trends such as ageing of nuclear-related field and a threat of loosing accumulated knowledge' as per IAEA said. Knowledge transfer is a very important task all over the word. In Romania we have some extra problems to attract young people to join us after graduation, to work in the nuclear field. Presently, Romania has two Candu Reactors in operation and our Government, decided to complete another two Nuclear Power Plants (two Candu 6 Reactors). As a result, more young engineers will be necessary to join us. We have to be prepared to assure that all the students know our needs and their possibilities to work in the nuclear field. The Prime Minister of Romania declared that 'is necessary to find a different site to build another Nuclear Power Plants in Romania'. That means other young engineers and also good young professionals must join us. The students must know their possibilities in the field after graduation. Romanian Association 'Nuclear Energy' - Young Generation must help nuclear industry in order to find solutions to attract in the nuclear field good quality people. A very alarmist statistic shows that in Romania, after graduation, most of the students prefer to change the domain, or prefer to work abroad. The reasons are various, but the most important is because the jobs for engineers are not paid well. The second most important reason is that, right now, in Romania the jobs offer for young engineers isn't various. What they do not know is that in the future possibilities in Romania will be more attractive for them and they will have well paid jobs. In this paper we present our strategies and methods used to communicated with students, and also what kind of problems has a young employer in Romania. Our mission is to convince them that we need them to work

  9. Future of the UK nuclear industry...and a review of the principal alternatives

    1993-01-01

    A report on the 'Future of the UK Nuclear Industry and a Review of the Principal Alternatives' was published by the Institution in December 1992. It was circulated widely including the major participants in the UK power industry and its fuel suppliers, the professional institutions, engineering consultancies in the field, academics, local and national government, opposition politicians, government departments, agencies and individuals known to be involved. Criticisms and comments on the report have been received from a considerable number of such sources. These have been collected together and edited as a supplement to the original report which considered not only nuclear power but also power generation by burning coal, oil and gas, the prospects for hydroelectric power, wind power, tidal power waste, incineration and other renewables. The comments and contributions are listed in simple numerical order of paragraphs, against the chapter concerned, for easy identification and reference. Energy Board comments are indicated clearly throughout. They are interposed mainly to offer a linkage throughout, with further technical comment restricted severely. (Author)

  10. Nuclear power industry

    1999-01-01

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people's republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  11. Nuclear Industry in China

    Cong, W., E-mail: eweike@263.net.cn [Bureau of Geology, China National Nuclear Corporation, Beijing (China)

    2014-05-15

    The paper presents an overview of the present situation and future plans for the development of nuclear power in China. In particular it looks at the present electricity generation system, future demand and plans for nuclear power plants to meet the increasing demands for electrical power in the country. It summarizes the state of uranium exploration activities and planned production of uranium resources, both nationally and internationally. In addition, it provides a brief overview of the existing administrative situation in the nuclear power industry in China and sets out the main challenges to future development. (author)

  12. Lessons and future prospects for the nuclear industry in the USA

    Graham, John

    1995-01-01

    The most visible portion of the nuclear industry in the United States is its ongoing electrical generation program, in which 109 nuclear plants provide 21% of the nations electrical needs. However, the nuclear industry also includes nuclear medicine, agricultural uses of radiation sources, food irradiation, research, industrial applications of radiation sources, and even nuclear waste clean-up from old facilities and sites. Nuclear proponents need to be far more active in demonstrating to the public the wealth, and breadth, of all of the benefits that accrue from nuclear radiation even beyond the generation of electricity. We should also make known the damage that would be done to everyday lives if we were to lose the nuclear industry. There are certain issues which cut across all nuclear industries: the regulation of nuclear facilities, the disposal of wastes, the provision of isotopes, and the attitude and policy of the U. S. Government. It is necessary to understand these issues in order to formulate a proactive policy and a manner in which to conduct our advocacy of the beneficial uses of nuclear science and technology. The economic benefits, in terms of dollars and jobs, of the nuclear industry in sectors other than the power program are much larger than in the power program, and are not subject to the same hysterical opposition that has affected the power sector for the past twenty years. Moreover, industrial applications of nuclear radiation are so pervasive throughout the U. S. economy that they affect everyone. These applications have much less visibility than the power program, but they have some of the same problems. The non-power nuclear industry dose have its detractors, and, for example, the issue of low-level waste disposal, in particular, cuts across all sectors of the industry -- potentially damaging to a wide-ranging set of economic factors. Headlines seem to indicate that the end of the nuclear industry is at hand. Yet, public opinion polls

  13. The future of nuclear power

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  14. Preparing the U.S. nuclear industry for a competitive future

    Tipton, T.E.

    1996-01-01

    To prepare for the transition from a regulated environment to a more competitive environment, the U.S. commercial nuclear industry prepared and issue a 'Strategy Plan for Improvement Economic Performance' in 1993. This plan has three major areas of activity: Actions to Improve Operational cost Competitiveness; Actions to Improve Industry Interaction with External Groups; and Actions to Improve Regulations and Regulatory Processes. This paper addresses the actions taken to improve the regulations and regulatory processes. (authors)

  15. BNFL's nuclear future

    Collum, H.

    2001-01-01

    As the nuclear industry arrives at a crossroads, this paper looks at BNFL's nuclear future. It does this by addressing two key issues: the energy balance and regulation. The first issue takes in the problems of climate change and renewables, and the nuclear contribution. The second issue raises the possibility that, although safety is the top priority for BNFL, the cost of regulation may be becoming disproportionate to the advantages gained. The paper concludes that the balancing act between energy supply and CO 2 reduction can only be achieved successfully if nuclear is a significant part of the equation. (author)

  16. The current status of Chinese nuclear power industry and its future

    Lu Daogang

    2010-01-01

    During the past 30 years, economy of China has being grown strongly. Even in the year 2009, when the world was hit by the financial crisis, China still kept the 8.7% growth rate. GDP of China has reached 4222G USD. This figure makes China to become the third economic giant in the world. All of the world are focusing on the high-speed development of economy in China; meanwhile they also pay much attention on the energy consumption in China. In addition, as one of the policy to keep the stable supply of the energy and to cut off the drain of CO 2 , China now are building more and more nuclear power stations. Many developed countries are very interested in the big market. Some have already joined in the construction of nuclear power stations in China, while some may concern about the supply of the nuclear fuel, as well as nuclear safety in China. The present paper will give a close-up view on China status of the energy, especially the nuclear power industry. It is expected that the international community could have deeper and more complete understanding on the nuclear industry in China, moreover cooperate with China to improve the peace and safe utilization of nuclear energy for the sustainable development of the world. (author)

  17. The young generation - guarantors for the future of the nuclear industry

    Broy, Y.

    2000-01-01

    The concept of the 'Young Generation' has been meeting with considerable interest in many European countries for a number of years already. On the basis of the Young Generation Network initiated by Jan Runermark, Sweden, Young Generation networks have been created in a number of European countries, including Germany. Since October 1998, Germany's Young Generation has worked in a changed political environment: As a result of the outcome of the elections to the federal parliament in 1998 and the establishment of a federal government by SPD (the Social Democratic Party) and Alliance 90/The Greens, opting out of the peaceful uses of nuclear power has become one of the guiding principles and goals. Hence, the qualified and highly motivated young employees of nuclear companies are bound to ask themselves whether there is any future for them in nuclear engineering. The Young Generation will work for the future of nuclear technology by embarking on a series of activities. Discussions with the public, transfer of know-how, and also an intensification of contacts among all companies active in the nuclear field are only some of the items of their agenda. The purpose of the activities, and the principle, of the Young Generation is this: The Young Generation is aware of its responsibility for the future, and is ready to meet the challenges. (orig.) [de

  18. Nuclear safety. Summary of the intermediate report of the special joint parliamentary committee on nuclear safety, present and future outlook of the nuclear industry

    Birraux, Claude; Bataille, Christian; Sido, Bruno

    2011-09-01

    Following the Fukushima events, the Parliamentary Office for Scientific and Technological Assessment (OPECST) was officially asked at the end of March 2011 - jointly by the National Assembly Bureau and by the Senate Committee on the economy, sustainable development, territorial and regional planning - to carry out a study on nuclear safety, and the present and future outlook of the nuclear industry. To carry out this study, seven members of the National Assembly economic affairs and sustainable development committees were also involved, as well as eight members of the Senate Committee on the economy, sustainable development, territorial and regional planning. The first part of this study, devoted to nuclear safety, was completed on 30 June 2011 by the publication of an intermediate report. This report assembles and summarises the information collected during six public hearings and seven trips to nuclear sites. France is one of the nuclear countries where the management of safety is both the most demanding and the most transparent. In this respect, the independence of the Safety Authority is the best guarantee of strictness in the safety field and the existence of pluralistic bodies, such as the Local Information Committees, is the best guarantee of the transparency of safety. But no country can pride itself on being totally safe from a natural disaster of an unexpected scale. The French nuclear industry must therefore ratchet up one more notch its investment in safety and strengthen the means of university research. It must imagine events of even greater intensity, cascading accidents, with interactions between neighbouring industrial sites. Investment must be made by placing safety requirements above any economic consideration and in strict compliance with the specifications of public authorities supervising safety. (authors)

  19. The current status and future prospects of the Korean nuclear power industry

    Lee, J. J.

    2006-01-01

    Recently, countries all over the world are becoming aware of the values and importance of nuclear energy which can help respond to energy crises caused by a sharp rise in oil prices and protect the earth from global warming. Since 1978, when Kori Unit 1(587MW), opened the nuclear generation era as a semi-domestic energy resource in Korea which is absolutely in short supply of energy, nuclear power generation in Korea has developed continuously for the past 28 years. Four new units including the Yonggwang 5 and 6 and Ulchin 5 and 6 have been successfully completed, raising the total nuclear installed capacity to 17,716MW from 20 units. At present, the nuclear generation in Korea is stably supplying about 40% of total electric generation, which is the fundamental energy of the nation, supporting the dynamic economic growth of Korea. In particular, Korean nuclear industry has been achieving excellent performance in nuclear power plant operation. The average capacity factor in 2005 hit the record of 95.5%, surpassing the previous record of 94.2% in 2003 in two years. Kori Unit 4 and another four units were listed at the top five in the capacity factor rating list of 2005 released by Nucleonics Week. In 2005, the site for radioactive waste disposal, which had been a long-cherished hope and the largest pending issue of the nuclear industry, was successfully selected in Korea through resident ballot as the first case of a national policy project, and as such, a national agenda was solved after 19 long years. Such a method in site selection has a significant meaning and establishes an excellent precedence; a large national policy project was decided upon by the residents themselves. As one of the model countries of building and operating nuclear power plants and technological independence, Korea is willing to contribute to the common goals of the world nuclear circle which can be summarized into energy security and environment preservation, by sharing accumulated

  20. Preparing for the future: the implications of the information revolution for the Canadian nuclear industry

    Luke, M O [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    1997-12-31

    The information revolution provides an opportunity for the Canadian nuclear industry to reinvigorate the information environment that supports companies and employees in achieving business and personal goals. Five necessary steps are to intensify the information environment; develop a new human resources model that stresses access to, and sharing of, information, and which comes to grips with the need for better programs to retrain and retain employees and to accommodate the `mercenary` workforce; promote awareness of the information revolution; nurture individual initiatives; and develop an integrated approach called information engineering, which involves collaborative work between information technology, information management, and human resources. At the heart of all of these steps is the need for a new way of thinking about information and a determination to share information widely within our organisations and industry. Applying the recommended approaches within our industry will enable us to compete successfully in a global marketplace in which we are outnumbered and out gunned. (author) 28 refs., 2 figs.

  1. Preparing for the future: the implications of the information revolution for the Canadian nuclear industry

    Luke, M.O.

    1996-01-01

    The information revolution provides an opportunity for the Canadian nuclear industry to reinvigorate the information environment that supports companies and employees in achieving business and personal goals. Five necessary steps are to intensify the information environment; develop a new human resources model that stresses access to, and sharing of, information, and which comes to grips with the need for better programs to retrain and retain employees and to accommodate the 'mercenary' workforce; promote awareness of the information revolution; nurture individual initiatives; and develop an integrated approach called information engineering, which involves collaborative work between information technology, information management, and human resources. At the heart of all of these steps is the need for a new way of thinking about information and a determination to share information widely within our organisations and industry. Applying the recommended approaches within our industry will enable us to compete successfully in a global marketplace in which we are outnumbered and out gunned. (author)

  2. Industry plots nuclear revival

    Nogee, A.

    1984-01-01

    A successful revival of the nuclear power industry will require standardization and a reduction in the number of companies managing construction, according to Atomic Industrial Forum spokesmen. In describing the concept of a few superutilities to build nuclear plants, they emphasize the need for a nuclear culture among construction management. Future plant designs emphasize small scale, with design, engineering, licensing, financing, operator training, and paperwork completed before the sale. Utilities continue to pursue economy-of-scale despite the evidence that small-scale reactors can be economical and are more appropriate for fluctuating demand growth. Financiers want more say in construction plans in the future, while utilities want to establish generating subsidiaries for wholesale power sales

  3. Future Industrialization of the World and the Necessity of Nuclear Power, Part II: How Limited are Resources?

    Jovanovich, Jovan V.

    1997-01-01

    Will the future world be forever divided into an industrial, developed and 'rich' on one side, and the primitive, undeveloped, and poor on the other? Is an industrial, affluent and sustainable world of 10-15 billion people owning 5-10 billion cars physically possible to exist? Can the world have enough food, minerals and energy to support such a widespread affluence in a sustainable manner? In previous papers I have argued that even without any major breakthroughs in science and technology, an industrialized, sustainable and affluent world can be created within the next half a century to a century, but only if breeder nuclear power is widely used throughout the world. In this paper I elaborate on the question of future availability of some basic natural resources. (author)

  4. Future nuclear power generation

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  5. Current status and future prospects of nuclear industry in Europe and in France

    Caron, Olivier

    2006-01-01

    Because we are now in Europe and the world at a defining moment in the history of nuclear energy, facing great opportunities, when everybody is striving to access a safe, reliable and sustainable energy supply, in order to meet the rising global demand. We are currently living through a real nuclear renaissance, driven by the increase of the price of oil and gas, the effect on the environment of CO 2 emissions, and the need of people to have access to energy in order to attain a better standard of living. Nuclear energy is thus considered as one intangible component of any energy mix seeking sustainable development. It is thus a very appropriate time to take stock and evaluate the current situation in France and Europe, and look at the challenges nuclear energy will have to face in the near future. After addressing these issues, if you allow me, I would like in my conclusion to indulge in a brief overview of the world situation and global challenges

  6. The present and future of nuclear energy and industry in the USSR

    Anon.

    1991-01-01

    This article is an edited version of a speech presented by Vitaly F. Konovalov, Minister of the Soviet Union's Ministry of Atomic Energy and Industry. Mr. Kovovalov presented the speech on April 8, 1991 to the 24th Annual Conference of the Japan Atomic Industrial Forum in Tokyo, Japan. In his speech, he notes that the current number of plants in operation (46) accounted for 12.5% of the electricity generated in the USSR. According to an energy policy announced in the early 1980's, by the year 2000 electricity generated at nuclear plants would reach 40% of the total generation. Changes in attitude brought about by Chernobyl resulted in a slowdown in the development of nuclear plants, and over 100,000 MWe of new capacity have been abandoned in some stage of design or construction. Current plans call for 7,000 MWe of new capacity between the years 1991 and 1995, and 12,600 MWe over the next five-year period. Accelerated growth is anticipated between 2000 and 2010. It is stated that this growth will be in the area of new designs with enhanced safety features and better economic features. The speaker also notes the impact of decommissioning and nucelar wastes

  7. Nuclear industry will soon surface

    Anon.

    1978-01-01

    The Japan Atomic Industrial Forum has carried out the annual survey of nuclear industry from the very inception of the development of nuclear power in Japan. The aim is to research and analyze nuclear-related expenditures, sales and manpower, as well as the future prospect of mining and manufacturing industries, electric utilities, trading companies and other related industries. The 19th fact-finding survey investigated into the actual conditions of the nuclear industry from April, 1977, to March, 1978. The number of companies surveyed increased by 75 from the previous year to 1,244, of which 883 or 71% responded to the questions. 501 companies did the business in the field of nuclear power. The first thing to be pointed out about the economic conditions of the nuclear industry is that the nuclear related expenditures increased in electric utilities, mining and manufacturing industries and trading companies, and exceeded 1 trillion yen mark for the first time in the private sector. It is likely that the current nuclear-related activities of mining and manufacturing industries will soon increase, but it will not be easy to wipe off the cumulative deficit of the industries. The employees increased by more than 7% in the nuclear-related sectors of electric utilities and mining and manufacturing industries. The facilities of nuclear supply industry were operated at the average rate of 50%. (Kako, I.)

  8. Process industry properties in nuclear industry

    Zheng Hualing

    2005-01-01

    In this article the writer has described the definition of process industry, expounded the fact classifying nuclear industry as process industry, compared the differences between process industry and discrete industry, analysed process industry properties in nuclear industry and their important impact, and proposed enhancing research work on regularity of process industry in nuclear industry. (authors)

  9. Alarm systems in the nuclear industry - survey of the working situation and identification of future research issues

    Joensson, Anna; Osvalder, Anna-Lisa; Holmstroem, Conny; Dahlman, Sven

    2004-01-01

    Safety issues are important in the control of industrial processes. An essential part for interpreting and avoiding hazardous situations is the alarm system and its design. To increase the knowledge and to develop new design solutions this doctoral project was initiated. The work has been divided into three stages and this paper presents the results of the first stage. The objective of stage one was to investigate how operators in both nuclear and non-nuclear plants work. A comparison between different branches of industry was also performed. From these results a future research issue has been identified. The methods used were observations, interviews and a literature study. The results showed that the operators are satisfied with the performance of the alarm system during normal operating conditions. However, several problems could also be identified but most of them are already well-known in the nuclear industry. Since these problems are well known but still exist, this result contributes to the basic hypothesis that a theoretical basis is lacking for the design of the alarm system. The proposed issue for forthcoming work is therefore to collect and compile existing knowledge about the human information processing and alarm systems, and combine the knowledge from these areas. With a better understanding of the relation between these areas it is possible to develop new design solutions which are better adapted to the human capabilities and limitations. This would support operator performance which in turn increases plant performance and safety. (Author)

  10. The European nuclear future

    Noon, F [Energy Industries, Canterbury, Kent (United Kingdom)

    1990-06-01

    The Nuclear Industry, both reactor manufacturers and generating companies, have a responsibility to make the case for Nuclear Energy in very positive terms if Western Europe is to avoid the economic trap of serious power deficits in the early part of the next century. Significant progress will not be made without public consent, and the public must be made aware of the real needs for the future: A Commitment to Safe Nuclear Energy Utilising Economical Designs Based Upon Proven Technology. However some re-thinking of accepted energy philosophy is also called for, and the speculation here as to what could happen in Europe over the next thirty years, is one possible scenario. (author)

  11. The European nuclear future

    Noon, F.

    1990-01-01

    The Nuclear Industry, both reactor manufacturers and generating companies, have a responsibility to make the case for Nuclear Energy in very positive terms if Western Europe is to avoid the economic trap of serious power deficits in the early part of the next century. Significant progress will not be made without public consent, and the public must be made aware of the real needs for the future: A Commitment to Safe Nuclear Energy Utilising Economical Designs Based Upon Proven Technology. However some re-thinking of accepted energy philosophy is also called for, and the speculation here as to what could happen in Europe over the next thirty years, is one possible scenario. (author)

  12. Nuclear energy and the nuclear industry

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  13. The future of nuclear power: Looking ahead. Address at the Japan Atomic Industrial Forum, Sendai, 12 April 1999

    ElBaradei, M.

    1999-01-01

    In his address at the Japan Atomic Industrial Forum (Sendai, 12 April 1999), the Director General of the IAEA described the role of the IAEA for nuclear power development, emphasizing the following aspects: nuclear power and the global energy mix, nuclear safety and the importance of public confidence, economic competitiveness and the role of research and development, and the importance of nuclear verification and prevention of illicit trafficking

  14. Responsability of nuclear industry

    Cadiz Deleito, J.C.

    1985-01-01

    Since the beginning of nuclear industry, civil responsibility with damages to the public health and properties was a critical problem, because the special conditions of this industry (nuclear accident, damages could be very high but probability of these events is very low). Legal precepts, universally accepted, in the first 60 years for all countries interested in nuclear energy are being revised, then 20 years of experience. The civil responsibility limited is being questioned and indemnities updated. (author)

  15. Spanish nuclear industry

    1994-01-01

    In this book published to commemorate the twentieth anniversary of the Spanish Nuclear Society, it is included a report on the Spanish Nuclear Industry. The Spanish Companies and Organizations in nuclear world are: CIEMAT, Empresarios Agrupados, ENRESA, ENUSA, ENDESA, Grupo Iberdrola, LAINSA, INITEC AND TECNATOM. Activities, history and research programs of each of them are included

  16. Spain's nuclear components industry

    Kaibel, E.

    1985-01-01

    Spanish industrial participation in supply of components for nuclear power plants has grown steadily over the last fifteen years. The share of Spanish companies in work for the five second generation nuclear power plants increased to 50% of total capital investments. The necessity to maintain Spanish technology and production in the nuclear field is emphasized

  17. Nuclear industry technology boomerang

    Scholler, R.W.

    1987-01-01

    The benefits to the medical, pharmaceutical, semiconductor, computer, video, bioscience, laser, defense, and numerous high-tech industries from nuclear technology development fallout are indeed numerous and increase every day. Now those industries have made further progress and improvements that, in return, benefit the nuclear industry. The clean-air and particle-free devices and enclosures needed for protection and decontamination are excellent examples

  18. Future of nuclear science

    Anon.

    1977-01-01

    A report is presented by the Ad Hoc Panel on the Future of Nuclear Science on its assessment of the scientific objectives and unexplored questions of nuclear science and recommendations of the manpower, funding, and facilities required to realize its full potential. Nuclear research and its facilities and budgetary, sociological, and application aspects of this research are considered

  19. Nuclear energy, future of ecology?

    Comby, B.

    1995-01-01

    This work can surprise; because it is said that nuclear energy is the only one that will allow to satisfy the energy needs of the planet by reducing the pollution. It gives answers on: Chernobyl accident, the existence of natural radioactivity, the comparison between natural radioactivity and medical, military and industrial irradiation, the pollution of our environment, the petroleum whom reserves are going to decrease, the advantages of the 'clever' nuclear and the disadvantages of the 'dustbin' nuclear, why some of ecologists are favourable to the nuclear, the effects of radiations on health, the foods irradiation, the wastes processing and the future of our planet. (N.C.)

  20. Transition in the nuclear industry

    Olyniec, J.H.

    1985-01-01

    Not long ago, nuclear energy was forecast to be the dominant force in the utility industry. An environmentally safe clean and inexpensive way to produce electricity would be welcomed by all. Civil engineering challenges on the leading edge of technology awaited the designer and constructor. As we now know, changes within the past 10 years have taken place that radically alter this outlook. Energy demand, thought to be ever increasing, was shocked by the rising costs. Plant construction delays, coupled with ever increasing regulatory requirements and higher interest rates, fueled the spiral or more cost. Economy of operation became overwhelmed by utility debt burden. Where is the nuclear utility industry now and what direction can we foresee. this symposium addresses the nuclear industry past, present, and future. The first session highlights some lessons learned from past experiences that must be applied in the future to be beneficial. Existing and future challenges are presented in the sessions on plant modifications and nuclear waste and decommissioning. The final session looks at the nuclear industry in transition from the perspectives of the different segments that make up the industry

  1. I-RobCELL: the factory of the future for nuclear industry

    Nozais, D.; Larousse, B.

    2016-01-01

    The I-RobCELL project (Innovative Robotic Center with online Examination) is a concept of a totally automated cell for the production and control of small parts for the high-precision mechanical market. The I-RobCELL will play on 4 fields: 1) a totally digital driving of the fabrication process involving various fabrication processes for the same part, 2) the integration of non-destructive testing technologies based on ultrasound, 3) automated diagnostic of defects through the comparison between real-time measured values given by probes and references values stored in a database, and 4) on-line monitoring of the welding. The technology of ultrasonic testing without couplant substance between the transducer and the part to be tested, is being developed to be integrated to the I-RobCELL, other non-destructive testing like guided waves or X-ray tomography will be implemented in the future versions of the I-RobCELL. The I-RobCELL will occupy a 2-3 m"3 volume allowing a very accurate monitoring of the temperature and a high level of cleanliness. The I-RobCELL concept will prefigure the factory of the future. (A.C.)

  2. 21 reports of future industry

    2001-02-01

    This book deals with 21 reports on future industry, which contain revolution of digital educations, genetic engineering, the newest medical device, environmental industry, artificial intelligence, virtual reality, bio-green revolution, energy of the future, advanced concept computer, e-commerce, digital cash, game industry, information technology for future, next DRAM, information protection industry, robot to replace manpower, medium for information display, navigation systems, a space development, design industry and, home automation.

  3. South Korea's nuclear fuel industry

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  4. Nuclear techniques in industry

    Hammad, F.H.

    1994-01-01

    Nuclear techniques are utilized in almost every industry. The discussion in this paper includes discussions on tracer methods and uses nucleonic control systems technology; non-destructive testing techniques and radiation technology. 1 fig., 2 tabs

  5. Nuclear measurements in industry

    Rozsa, S.

    1989-01-01

    In this book the author provides a description of nuclear measurements in industry, covering the physical principles, methods, instruments and equipment, and industrial applications. One of the great advantages of industrial nuclear measurements is that their use ensures the optimum use of raw material. The increasing cost of raw materials makes it essential to adhere strictly to the standards and prescriptions related to the product and this is possible only by the application of continuous and accurate measurements. As a result, the importance of nuclear instruments is rapidly growing particularly in fields where the application of alternative methods is not possible. This is illustrated by several practical examples described in the book. Similarly important are nuclear measuring the process control equipment which serve to optimize the use of energy in industrial processes

  6. Nuclear energy and its future

    Cook, D.J.

    1990-01-01

    The status of nuclear power in the world and its future are briefly discussed. It is shown that nuclear power capacity is increasing in the Asian and Pacific rim region and that new reactor designs, with the increased emphasis on safety and standardisation, could make nuclear power a more acceptable option in the future. The author also outlines the Australian Nuclear Science and Technology Organization wide range of skills and facilities which are bringing the benefits of nuclear science and technology to Australia. These include: the development of Synroc as an advanced second generation waste management; production of radiotracers for biomedical researches and environmental problems; application of gamma irradiation in industry and of ion beam analysis in biology, archaeology, semi-conductor and environmental science. 2 tabs

  7. Future industrial issues for ANDRA

    Auverlot, D.

    1998-01-01

    ANDRA manages industrially 90 % in volume of radioactive waste produced in France. This is short life waste of low and medium activity. In compliance with the law of 1991, which transformed it into a public body with an industrial and commercial character, ANDRA also heads aspect 2 of the research into the 10 % of remaining highly active long life waste, by attempting to evaluate the possibilities of storing it in deep geological layers, either reversibly or irreversibly. The industrial issues of the future for ANDRA can be in different forms, following three meeting of major importance for ANDRA and for the producers of nuclear waste. These are: the meeting of 2006, at the end of which, in compliance with the law of 1991, the Parliament must re-examine the question of the management of highly active, long life waste; the renewal of nuclear facilities; the future meeting concerning future generations. However, whatever these different stage and whatever the different types of waste considered, the single and major challenge with which ANDRA is confronted is to prove that it is capable of providing a sure danger-free management of all radioactive waste. In this context, it appears necessary, today, to intensify research into aspects 1 and 3 of the law of 1991, to respect the balance of the three aspects. This in fact constitutes an essential pledge of the credibility of the procedure instituted by the law: at present, to clearly specify the research into surface storing in the short or long terms; building the three laboratories, the authorization for which has been subject to public inquiry. And also to keep, for 2006, the largest possible choice of the geological environment. (author)

  8. Nuclear industry chart

    Anon.

    1975-01-01

    As part of a survey on Switzerland a pull-out organisation chart is presented of the nuclear industry showing Swiss government bodies and industrial concerns. Their interests, connections with each other and their associations with international and other national organizations and firms are indicated. (U.K.)

  9. Nuclear power - the future

    Hann, J.

    1991-01-01

    It is asserted by the author that nuclear power is the only available resource - indeed the only solution to an ever-increasing demand for energy in the United Kingdom over the next 50-100 years. It must be the cornerstone of a practical integrated energy policy, covering that sort of time-scale. In fact, it is going to be a strategic necessity. In this paper the background to establishing a policy is sketched. An explanation is given of what the nuclear industry is doing so as to ensure that the nuclear option is very definitely retained as a result of the 1994 Review of nuclear power in the UK. (author)

  10. Future developments in nuclear power

    Phillips, G.J.

    1978-12-01

    To date, the peaceful application of nuclear energy has been largely restricted to the generation of electricity. Even with such an application there is potential for wider use of the nuclear energy generated in providing heat for dwellings, control of climate for the production of vegetables and providing warm water for fish and lobster farming. It is possible to envisage specific applications of nuclear power reactors to process industries requiring large blocks of energy. These and other future developments are reviewed in this report. (author)

  11. Nuclear industry and territories

    Le Ngoc, B.

    2016-01-01

    Nuclear industry being composed of plants, laboratories, nuclear power stations, uranium mines, power lines and fluxes of materials from one facility to another is a strong shaper of the national territory. Contrary to other European countries, French nuclear industry is present all over the national territory. In 64 departments out of 101 there is at least one enterprise whose half of the revenues depends on nuclear activities. The advantage of such a geographical dispersion is when a nuclear activity is given up the social impact is less important: people tend to find a new job in the same region. French Nuclear power plants are generally set in remote places where population density is low and being the first employer by far of the area and being a major contributor to the city revenues, they are perceived as a key element the local population is proud of. In Germany, nuclear power plants are set inside dense industrial regions and appear as an industry just like any other.(A.C.)

  12. Nuclear power - the future

    Hawley, R.

    1993-01-01

    Following the Coal Review earlier this year, the UK government took the decision to bring forward the Nuclear Review from 1994 to this year. When the nuclear element was removed from the privatisation of the UK electricity industry, decommissioning costs were perceived to be too great a burden for the private sector to bear. Four years on a more optimistic picture is beginning to emerge. (author)

  13. Nuclear power industry, 1981

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  14. Industrial nuclear property

    Lepetre, M.

    1976-01-01

    The first requests for patents for the use of nuclear power filed in France in 1939. This paper reviews the regulations on industrial nuclear property in various countries. The patenting system in several socialist countries is characterized by the fact that inventions on the production and use of radioactive materials may not be patented. This equally applies in India. In the United States, this type of invention may be patented except for those involving military uses and which must be notified to the federal authorities. In France, all industrial nuclear property is grouped under the same body, Brevatome, created in 1958, which enables the allocation of rights to be negotiated between the different interested parties, the Atomic Energy Commission (CEA), Electricite de France (EDF) and private industry. Under the Euratom Treaty, all inventions, even those governed by secrecy in Member countries, must be communicated to the Commission of the European Communities. (NEA) [fr

  15. Future of nuclear licensing

    Denton, H.R.

    1984-01-01

    The following topics are outlined: Comparison of US and best foreign experience in nuclear power plant construction and operation; Status of licensing and construction; Observed attributes; Reduced construction time; Fewer reactor trips; Higher capacity factor; Diesel generator reliability; Steam generator tube leakage; and US regulatory initiatives: NRC efforts and industry efforts

  16. Nuclear weapons industry

    Bertsch, K.A.; Shaw, L.S.

    1984-01-01

    This unique study was written specifically as a reference source for institutional investors concerned about the threat posed to their stock portfolios by the debate over nuclear arms production. The authors focus their analysis on the 26 leading companies in the field. The perspective is neutral and refreshing. Background information on strategic policy, arms control and disarmament, and the influence of the industry on defense policy and the economy is presented rationally. The study also discusses the economic significance of both the conversion from military to civilian production and nuclear freeze initiatives. An appendix contains a fact-filled guide to nuclear weapon systems

  17. The future of nuclear power in Mexico

    Morales, A.A.

    1980-01-01

    The future of nuclear power in Mexico shows interesting aspects: the nuclear power is the source of energy that can supply large proportions of energy, that the country needs; the Kw/h of nuclear power is the most economic energy; the installation of 20 nucleoelectric plants will grant future jobs, the associated nuclear industry can be nationally integrated in the natural uranium cycle. (author)

  18. Industrial nuclear gauges

    Bennerstedt, T.

    1986-01-01

    A great number of industrial nuclear gauges are used in Sweden. The administrative routines for testing, approval and licensing are briefly described. Safety standards, including basic ICRP criteria, are summarized and a theoretical background to the various measuring techniques is given. Numerous practical examples are given. (author)

  19. Nuclear power - assures the energy future. V. 2

    1982-01-01

    Papers presented at the conference surveyed the present status of nuclear projects and future nuclear power plans, the export of electricity and technology, Canada's nuclear industry, and innovative nuclear opportunities

  20. Nuclear Security Futures Scenarios

    Keller, Elizabeth James Kistin; Warren, Drake Edward; Hayden, Nancy Kay; Passell, Howard D.; Malczynski, Leonard A.; Backus, George A.

    2017-01-01

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  1. Nuclear Security Futures Scenarios.

    Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warren, Drake Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  2. Union innovation in Ontario's nuclear industry

    MacKinnon, D.

    2003-01-01

    Over the last decade the Power Worker's Union (PWU) has embarked on a number of innovative approaches that have provided significant benefit to the nuclear industry. These include advanced labour relations approaches, equity participation and groundbreaking skills training initiatives. This presentation outlines these and other initiatives in the context of the union's view of the nuclear generation industry's future. (author)

  3. Future for nuclear data research. Human resources

    Baba, Mamoru

    2006-01-01

    A comment is given on the problem of human resources to support the future nuclear data activity which will be indispensable for advanced utilization of nuclear energy and radiations. Emphasis is put in the importance of the functional organization among the nuclear data center (JAEA), industries and universities for provision of human resources. (author)

  4. Political electricity: What future for nuclear energy

    Price, T.

    1993-01-01

    Political Electricity first reviews the history of nuclear power development in nine countries (USA, France, Japan, UK, West Germany, Sweden, Italy, Switzerland, Australia). Second the book analyses major issues shaping the future of the industry: nuclear power economincs, nuclear hazards, alternative energy economics, and greenhouse gas constraints

  5. The UK nuclear power industry

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  6. Nuclear Industry Family Study

    1993-01-01

    This is a copy of the U.K.A.E.A. Question and Answer brief concerning an epidemiological study entitled the Nuclear Industry Family Study, to investigate the health of children of AEA, AWE, and BNFL Workers. The study is being carried out by an independent team of medical research workers from the London School of Hygiene and Tropical Medicine, and the Imperial Cancer Research Fund. (UK)

  7. News from nuclear industry

    Anon.

    2008-01-01

    A cooperation agreement has been signed between Indian and French governments concerning energy and research. This agreement opens the Indian market to Areva for the supply of power reactors. Areva will face Russian and American competitors. Areva is already present in India in the sectors of power transmission and distribution, it employs 3500 people and operates 8 industrial plants. Areva and Northrop Grumman have signed an agreement to build the biggest site on American soil dedicated to the manufacturing of big nuclear components like reactor vessels, steam generators and pressurizers. An opinion poll shows that 78% Americans favor the use of nuclear energy for producing electricity, while 24% are opposed to it and that nuclear power plants are considered safe by 78% of the population. The Areva-Bechtel corporation has signed an agreement with Unistar Nuclear Energy for doing the preliminary studies for the construction of an EPR near the Calvert Cliffs site. More than 500 engineers are working on the project that benefit from the feedback experience of 4 EPR that are presently being built in Finland, France and China. The European Commission wants the European Union to play a major role in nuclear safety, a task group has been created whose purpose is to define new regulations illustrating common priorities and approaches for unifying national nuclear safety standards among the member states. (A.C.)

  8. The future of nuclear power in Europe

    Kurtz, D.

    1996-01-01

    The current and future prospects of the nuclear power industry in Europe are assessed in this Financial Times Energy Publishing report. Key issues relating to the development of the industry in both Eastern and Western Europe are addressed. Changing governmental and popular attitudes to nuclear power are described and nuclear energy's likely future contribution to Europe's energy needs is discussed. Detailed production and consumption statistics make the document useful reading for those in nuclear generating companies, electric utilities, major power consumers, waste management companies, governments, regulatory bodies, investors and environmental groups amongst others. (UK)

  9. Nuclear industry almanac v.1

    Greenhalgh, G.; Jeffs, E.

    1982-01-01

    Nuclear Industry Almanac. National energy profiles of 17 Western European countries are given, concentrating on electricity supply and the role nuclear power plays in meeting the demand for electric power. The nuclear industries of Austria, Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden, Switzerland and the United Kingdom are described and addresses of establishments and industries are listed. (U.K.)

  10. Nuclear process steam for industry

    Seddon, W.A.

    1981-11-01

    A joint industrial survey funded by the Bruce County Council, the Ontario Energy Corporation and Atomic Energy of Canada Limited was carried out with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. Its objective was to identify and assess the future needs and interest of energy-intensive industries in an Industrial Energy Park adjacent to the Bruce Nuclear Power Development. The Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station. Four industries with an integrated steam demand of some 1 x 10 6 lb/h were found to be prepared to consider seriously the use of nuclear steam. Their combined plants would involve a capital investment of over $200 million and provide jobs for 350-400 people. The high costs of transportation and the lack of docking facilities were considered to be the major drawbacks of the Bruce location. An indication of steam prices would be required for an over-all economic assessment

  11. Pumps for nuclear industry

    Tanguy, L.

    1978-01-01

    In order to meet the requirements of nuclear industry for the transfer of corrosive, toxic, humidity sensitive or very pure gases, different types of pumps were developped and commercialized. Their main characteristics are to prevent pollution of the transfered fluid by avoiding any contact between this fluid and the lubricated parts of the machine, and to prevent a contamination of the atmosphere or of the fluid by a total tightness. Patellar pumps have been particularly developped because the metallic bellows are quite reliable and resistant in this configuration. Two types are described: patellar pumps without friction and barrel pumps whose pistons are provided with rings sliding in the cylinders without lubrication [fr

  12. Obsolescence in nuclear industry

    Mondal, U.

    2000-01-01

    Most nuclear plants around the world are roughly 15 to 30 years old. The design and procurement of CANDU plants took place from the late 60's to mid 80's (i.e., 20 to 30 years vintage). Most equipment originally installed in these plants is obsolete or the manufactures are out of business or their production has been discontinued due to technological evolution. In order to maintain operation of nuclear plants with safety integrity and commercial viability, certain spare parts must be available at the plant all the time. The objective of this paper is to identify an optimum, cost-effective approach that solves obsolescence problem efficiently and without duplicating efforts. The Nuclear Utility Obsolescence Group (NUOG) has embarked upon the following major tasks: Developing a Guideline for use by the utilities that addresses obsolescence; Collection of obsolescence data in a database (Web-based) to be shared by all members; Motivation of the suppliers to engage them in obsolescence solutions; Increase in awareness among the utility management to consider obsolescence as a priority issue and allocate funds to address them pro-actively; and Coordination with other industry groups (EPRI, INPO, NEI, BWROG etc.) to avoid duplication of effort in obsolescence resolution process. The NUOG strategy is based upon the principles of sharing. It advocates sharing of obsolescence solutions and concerns among the utilities. Candu Owners Group Inc. (COG) has initiated self-assessment of obsolescence in the members' plants. The purpose of self-assessment is to provide baseline information that would help identification of obsolescence and coordination of their solutions. The following areas are covered in the self-assessment initiative: Identification of obsolete components in selected systems in the plant. Assess effectiveness of the current obsolescence identification process and in resolution of obsolescence Issues in the plant. Identification of common Candu plant design

  13. The Canadian nuclear power industry. Background paper

    Nixon, A.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab

  14. The Canadian nuclear power industry. Background paper

    Nixon, A [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab.

  15. Future of nuclear energy research

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  16. Nuclear power. What policies for what future

    Thiriet, Lucien.

    1976-01-01

    A long- and very long-dated estimation of the world uranium resources are given comparatively to that of fissile energies, and the short- and mean-dated distributions of these resources and uranium economy are discussed in the light of foresights concerning the energy consumption provided for France and the most important industrial countries in 1985. The competitive character and the economic future of nuclear power are discussed. The incidence that the evolution in the nuclear policies of the principal industrial countries had, in the past, on the formation and growth of the market of nuclear power production is shown. The future possibilities of nuclear reactors and nuclear hydrogen are evaluated with the role of nuclear power in an economic policy in national independence [fr

  17. Working in nuclear industry? why not?

    Brechet, Y.

    2017-01-01

    Today 200 nuclear reactors are being built or scheduled in the world and despite this, nuclear energy in western countries seems to collapse under the weights of prejudices and false ideas. No matter what the opponents say, nuclear energy is safe and clean and is a bringer of jobs. In France nuclear industry is one of a few industrial sectors that have been spared by massive de-industrialization. Nuclear energy as a carbon-free energy, has an important role to play to mitigate climate warming by working with renewable energies to provide a reliable electric power. This future is a new future for nuclear energy as new challenges have to be overcome, for instance nuclear energy has to adapt itself to the intermittency of wind and solar energies, nuclear industry has to be innovative and has to fully appropriate numerical technologies. Nuclear industry is a promising sector that proposes interesting scientific and technical jobs and is also a vital interest for the country. (A.C.)

  18. Future gripper needs in nuclear environments

    Ham, A.C. van der; Holweg, E.G.M.; Jongkind, W.

    1993-01-01

    This paper is concerned with the requirements of teleoperated grippers for work in hazardous situations and nuclear environments. A survey among users in the nuclear industry was performed by means of questionnaires of the present grippers in use and the future gripper needs. The survey covers reliability, tasks to be done, object properties, accuracy, environmental requirements, required grasps, mechanical and sensorial requirements. The paper will present the proposal for a future gripper. (author)

  19. US nuclear policy and business trend of Japan's nuclear industries

    Matsuo, Yuji

    2010-01-01

    As several countries in the east-Asia and middle-east area have been taking an increasing interest in the deployment of nuclear power generation, Japan's nuclear industries have promoted international business activities including the success in the bid of second nuclear power plants in Vietnam. While there are plans for more than thirty of new reactors in the US, the lifetime extension of existing aged reactors, development of non-existing natural gas and trend of greenhouse gases reduction measures have dampened these plans and probably most of new units will not start construction by 2030. This article reviewed the details of US's new nuclear power introduction, trend of recent government's policies, future perspective of nuclear power construction and business trend of Japan's nuclear industries. Japan's industries should be flexible regarding nuclear power as one option to realize low-carbon society. (T. Tanaka)

  20. Future development of nuclear energy systems

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  1. Nuclear, future of ecology? 2. ed.

    Comby, B.

    1995-01-01

    According to the author, who is a famous ecologist and nuclear specialist, nuclear power is the only energy source which will be able to supply the energy needs of the 21. century and reduce the pollution. This digest book answers several questions frequently asked about: the Tchernobyl accident; the natural radioactivity; the natural, medical, military and industrial irradiation intensities; the environmental pollution; the behaviour of oil reserves; the advantages of ''clever'' nuclear and the risks linked with ''garbage'' nuclear; why many ecologists agree with nuclear power; the effects of ionizing radiations on health; the irradiation of foods; the processing of radioactive wastes; the future of the Earth etc.. (J.S.)

  2. Industrial Applications of Nuclear Energy

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  3. The future of the uranium mining industry

    Capus, G.; Galaud, G.

    1993-01-01

    This paper presents the state of natural Uranium market today. In a first part, the author gives a brief history about nuclear programs history in Usa and Europe and describes natural Uranium demand and supply (Uranium mines, recycling, excessive civil stocks, military stocks using). In a second part, evolutions and futures of Uranium industry is studied: using of excessive stocks in Western Europe, using of military stocks, recycling of Uranium from spent fuels reprocessing, uranium deposits, future natural uranium market. 6 refs., 4 figs., 3 tabs., 3 photos

  4. The nuclear industry in Canada

    Anderson, D.; Broughton, W.

    1992-01-01

    The nuclear industry in Canada comprises three identifiable groups: (1) Atomic Energy of Canada Limited (AECL), (2) electrical utilities that use nuclear power plants, (3) private engineering and manufacturing companies. At the end of World War II, AECL was charged with investigating and developing peaceful uses of atomic power. Included in the results is the Canada deuterium uranium (CANDU) reactor, a peculiarly Canadian design. The AECL maintains research capability and operates as the prime nuclear steam supply system supplier. Utilities in three Canadian provinces operate nuclear power plants, New Brunswick, Quebec, and Ontario, with the majority in Ontario. From the beginning of the nuclear program in Canada, private industry has been an important partner to AECL and the utilities, filling roles as manufacturing subcontractors and as component designers. The prime objective of this paper is to illuminate the role of private industry in developing and maintaining a competitive world-class nuclear industry

  5. Future nuclear regulatory challenges

    Royen, J.

    1998-01-01

    In December 1996, the NEA Committee on Nuclear Regulatory Activities concluded that changes resulting from economic deregulation and other recent developments affecting nuclear power programmes have consequences both for licensees and regulatory authorities. A number of potential problems and issues which will present a challenge to nuclear regulatory bodies over the next ten years have been identified in a report just released. (author)

  6. German-German energy industry - on the future cooperation of enterprises in the field of nuclear energy

    Strassburg, W.

    1990-01-01

    A joint venture for a nuclear power plant in operation or under construction poses for more open questions than a joint venture for a western-standard plant still to be erected. Both solutions have in common that resistance against the peaceful uses of nuclear energy in the former GDR is groving. It is too early to make a statement concerning joint ventures regarding other nuclear facilities, e.g. final repositories. That there will be no 'nuclear export' as such after unification does not imply a lot. The changes in eastern Europe are one of the biggest challenges in history. They are to be conquered by joining forces. This also goes for nuclear energy where not only safety but also the environment is at stake. Legislation should pay appropriate heed to these problems. (orig./HSCH) [de

  7. Future nuclear systems technology

    Brooks, H.

    1979-01-01

    Five directions can be identified for evolution of nuclear systems, possibly a sixth. These are, first, and perhaps most important, toward a means of extending fissile resources through improvement of the efficiency of their use; second, improvements in nuclear safety; third, reduction in the environmental impacts of nuclear electric power generation, particularly water requirements; fourth, improvements in proliferation resistance of the nuclear fuel cycle; and fifth, improvements in economics. And added in a sixth, and somewhat more speculative direction, the use of nuclear power for purposes other than the direct generation of electricity

  8. Global perspectives on future nuclear energy utilisation

    Watts, G.L.

    1998-01-01

    This paper is presented as an overview of the nuclear sector from a global perspective. The aim is to show that nuclear power does have a future but that this will only be fully realised when the industry is able to demonstrate that it is part of the solution to the world's energy and environmental difficulties rather than part of the problem. The paper looks at the projected world energy demand as the population increases and countries develop, showing that nuclear power is required to meet this demand. In presenting nuclear power as a solution, the paper addresses the challenges facing us such as public confidence, environmental opposition, political issues and finance. It addresses the debate over reprocessing and direct disposal of irradiated nuclear fuel and looks at the competition from other fuels. The paper suggests how the industry might approach these issues such that nuclear power is indeed regarded globally as a solution to some of the worlds most pressing problems. (author)

  9. Present and Future of Nuclear Robotics

    Bielza Ciaz-Caneja, M.; Carmena Servet, P.; Gomez Santamaria, J.; Gonzalez Fernandez, J.; Izquierdo Mendoza, J.A.; Linares Pintos, F.; Martinez Gonzalez; Muntion Ruesgas, A.; Serna Oliveira, M.A.

    1997-01-01

    New technologies have increased the use of robotic systems in fields other than Industry. As a result, research and developers are focusing their interest in concepts like Intelligent Robotics and Robotics in Services. This paper describes the use of Robotics in Nuclear facilities, where robots can be used to protect workers in high radiation areas, to reduce total worker exposure and to minimise downtime. First, the structure of robot systems is introduced and the benefits of nuclear robots is presented. Next, the paper describes some specific nuclear applications and the families of nuclear robots present in the market. After that, a section is devoted to Nuclear Robotics in Spain, with emphasis in some of the developments being carried out at present. Finally, some reflections about the future of robots in Nuclear Industry are offered. (Author) 18 refs

  10. Nuclear power now and in the future

    Collier, J G [Nuclear Electric (United Kingdom)

    1991-08-01

    The future of the nuclear industry in the United Kingdom is considered from the perspective of the new public sector utility, Nuclear Electric, set up to retain control of nuclear power stations on the privatization of the rest of the electricity supply industry. Two major objectives are the increased nuclear generation of electricity and the cutting of costs. These are discussed in terms of life extension programmes for the magnox reactors, improved performance of AGR reactors and expectations for the Sizewell B PWR station now under construction; waste management, reactor decommissioning and fuel-cycle costs are also considered. Economic, environmental and political criteria are outlined which need to be addressed in relation to the government's review of nuclear power in 1991. Because of the marginal economic advantages of nuclear power in the United Kingdom, it will be important to quantify the environmental and diversity benefits of this source. (UK).

  11. Asia's nuclear future

    Overholt, W.H.

    1977-01-01

    The book is a collection of seven papers by five specialists--two political scientists; a sociologist; and two specialists in the interaction between science and international affairs. They share a disregard for conventional boundaries between disciplines and for the emphasis on method over substance which have tended to fragment knowledge into ever-smaller and smaller fragments. The papers are: The Next Phase in Nuclear Proliferation Research, L.A. Dunn and W.H. Overholt; China as a Nuclear Power, J. D. Pollack; Nuclear Arms and Japan, Herbert Passin; Nuclear Proliferation in Eastern Asia, W. H. Overholt; India's Nuclear Program: Decisions, Intent, and Policy, 1950 to 1976, Onkar Marwah; India, Pakistan, Iran--A Nuclear Proliferation Chain, L. A. Dunn; and A U.S. Nuclear Posture for Asia, W. H. Overholt

  12. Nuclear energy has a future

    Sorin, F.

    2012-01-01

    Nuclear energy appears to be a main asset to France in the context of the worldwide economic slump. Nuclear power provides a cheap electricity that spares the buying power of households and increases the competitiveness of French enterprises. Nuclear industry with major companies like EDF, AREVA and CEA and 450 small and medium-sized enterprises, represents a core resistant to industrial decline. Nuclear industry is a good provider of work and globally it represents 2% of all the jobs in France. Concerning the trade balance, nuclear power plays twice; first by exporting equipment and services for a value of 7 billions euros a year and secondly by sparing the cost of energy imports that would be necessary if nuclear power was not here which is estimated to 20 billions euros a year. (A.C.)

  13. The nuclear industry in France

    Degot, D.

    1981-02-01

    The French nuclear industry is organized around the following main participants: - The E.D.F., owners, industrial architects and operators of the power stations, - The C.E.A. for research and development, with its subsidiary the COGEMA, who deal with all problems involving the fuel cycle, - The Industry with FRAMATOME in charge of the manufacture of nuclear boilers, and ALSTHOM-ATLANTIQUE in charge of turbo-generator units. This paper deals with the activities covered by FRAMATOME and its industrial environment. The standardization of PWR power stations built by French industry and the possibilities of exporting PWR power stations are given a brief mention [fr

  14. Long-Term Nuclear Industry Outlook - 2004

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  15. A New approach to the spread of safety culture. The trend of studies and practice in the foreign nuclear power industry, and future approach

    Hasegawa, Naoko; Takano, Kenichi

    2001-01-01

    The purpose of this study is to clarify organizational factors influencing on safety and to suggest future approach for the spread of safety culture. As the results of investigations on safety companies, characteristics of organizational policies, those of safety activities' purposes, and organizational factors which encourage workers to take a positive attitude toward the safety activities were clarified. Based on the clarified characteristics and the trend of studies and practice in the foreign nuclear power industry, it was suggested that it would be necessary for the spread of safety culture in an organization to learn lessons for the prevention of accidents' recurring and to maintain safety behavior and attitude for the prevention of accidents' occurring. For support of this, it is desired to develop the assessment system of organizational safety and the planning system of safety management. The new approach was also suggested with the process model for influence of organizational factors which include workers' psychological aspects. (author)

  16. Nuclear power's burdened future

    Flavin, C.

    1987-01-01

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  17. Privatisation of the UK's nuclear power industry: nuclear's triple challenge

    Fraser, W.R.I.

    1997-01-01

    At the British Nuclear Congress in December 1996, Lord Fraser of Caryllie, then UK energy minister, set out the three key issues the nuclear industry must tackle for a successful future: (1) increased competition from other energy sources, (2) a growing world market for its skills and (3) a continuing tough regulatory regime. Nuclear power, with electricity generated in the UK rising to 25%, has responded well to competition from other energy sources, and also to the further competition generated by privatisation which has already generated benefits for the public. As other countries with nuclear programmes diversify and upgrade their technology this will create new export opportunities for Britain over and above those already in existence, notably by BNFL in Japan. Other areas that Britain has to offer relate to safety improvements, notably in eastern Europe, and decommissioning, in which Magnox Electric is one of the few operators in the world with experience in decommissioning a full scale commercial reactor. The regulatory framework for the nuclear industry will continue to be as rigorous as ever, but, however the industry is structured, it should be noted that commercial success and continued safe operations are inextricably linked. The industry must operate within the framework of the development of international treaties and agreements in the nuclear field. The Government will continue to take a close interest in the safety, security and prosperity of the nuclear industry, and help Britain as a whole to be a successful and influential player in the international nuclear community. (UK)

  18. Strategy for a non-nuclear future

    Carlson, R.; Freedman, D.; Scott, R.

    1979-01-01

    The need for nuclear power may not be as great as the electric power industry has led the nation to believe, according to the authors. They argue that 64 of the 72 nuclear plants operating in the United States could be shut down immediately if the existing non-nuclear capacity of the electric power industry were fully utilized; and the remaining 8 plants could be phased out within a few years. They cite already-available alternative power sources that could guarantee the additional energy needed for a non-nuclear future. They state that the transition to a nuclear-free electric system could be implemented with little or no increased expense to consumers or taxpayers; that, in fact, elimination of all nuclear plants might actually be cheaper, given the rapid rise in nuclear construction costs as more and more new flaws are discovered or old ones acknowledged. The authors feel that environmental risks of nuclear power plant operation could be eliminated in exchange for a small, temporary increase in air pollution from coal- and oil-fired plants. The increase in sulfur dioxide and particulate pollution could be offset within several years by an accelerated program to install flue-gas scrubbing equipment. Suggestions for meeting a projected shortfall in future capacity are given. The authors also touch lightly on institutional barriers that would have to be overcome before phasing out nuclear power. 4 figures, 4 tables

  19. The financing of nuclear industry

    Cazauran, B.

    1978-01-01

    Having first recalled the usual financing rules related to the economic activities, the author analyses the applying of those rules in the nuclear field, taking into account the specific characteristics of this industrial branch [fr

  20. Future financial liabilities of nuclear activities

    1996-01-01

    This report deals with future financial liabilities arising from nuclear activities, in particular electricity generation. Future financial liabilities are defined as costs which an organisation or company is expected to meet beyond some five years as a consequence of its current and past activities. The study provides a comprehensive picture on policies for recognizing and funding future financial liabilities arising from nuclear activities and their implementation schemes in Nea Member countries. Mechanisms for reporting and funding future financial liabilities are described, analysed and compared. The report offers some findings, conclusions and recommendations for consideration by Member countries. The nuclear activities considered in the report include nuclear research and development, nuclear industry sectors such as uranium mining and milling, conversion and enrichment, nuclear fuel fabrication, nuclear power plant operation and maintenance, and radioisotopes production. Future financial liabilities arising from these activities cover management and disposal of radioactive wastes, reprocessing of spent fuels when applicable and decommissioning of facilities at the end of their life time. 12 refs., 14 figs., 16 tabs

  1. Situation of nuclear industry in Japan

    2002-08-01

    This document is a reprint of a note published by the nuclear service of the French embassy in Japan. It evokes the present day situation of nuclear facilities in Japan, the public acceptance and its attitude in front of accidents, the national energy program, the deregulation and competitiveness of nuclear power, the carrying out of the nuclear program, the future reactors, the fast neutron reactors, the dismantling activities, the fuel enrichment and reprocessing of spent fuels, the use of MOX fuel, the off-site storage, the vitrified and radiological wastes, the geological disposal of wastes, the prospects of the nuclear program, the companies involved in the Japan nuclear industry, the French-Japanese bilateral cooperation, and the ITER project in the domain of nuclear fusion. (J.S.)

  2. Nuclear industry takes off

    Du Plessis, A.; Stevens, R.C.B.

    1982-01-01

    For more than a decade irradiation sterilisation of medical and pharmaceutical products proved a highly successful semi-commercial operation at Pelindaba, until it made way recently for the first full-scale radiation processing industry in SA - a classic case of science transferring technology to industry

  3. U.S. nuclear industry

    Sherman, R.

    1979-01-01

    At present, 72 power reactors are in the condition of being able to operate in U.S., and the total installation capacity has reached 55 million kW, which is equivalent to about 9.5% of the total power generation capacity in U.S. The nuclear power stations produced 12.5% of the total electricity consumption in 1978. Especially in the north eastern part of the U.S., the nuclear power generation occupied 42% of the total power generation at the time of recent peak load, and 47 million barrels of crude oil and 517 million dollars of foreign currency were able to be saved. Moreover, 96 plants amounting to 105 million kW are under construction, and 30 plants of 35 million kW were ordered. Electric power companies, nuclear reactor makers, nuclear fuel and other related industries believe the merits of nuclear power generation and expect that it will flourish if a certain problem is solved. Especially serious problem to which the U.S. nuclear industry is facing now is the problem of uncertainty. Many orders of nuclear power plants have been canceled, and the constructions have been postponed. The capability of the U.S. nuclear industry to construct more than the required facilities, and its extent and the necessary conditions have been investigated by the Atomic Industrial Forum. The important national and international problems of atomic energy are discussed. (Kako, I.)

  4. Industrial applications of nuclear technology

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  5. Nuclear energy - the future climate

    Ash, Eric Sir

    2000-01-01

    In June 1999, a report entitled Nuclear Energy-The Future Climate was published and was the result of a collaboration between the Royal Society and the Royal Academy of Engineering. The report was the work of a group of nine people, made up of scientists, engineers and an economist, whose purpose was to attempt a new and objective look at the total energy scene and specifically the future role of nuclear energy. This paper discusses the findings of that report. (author)

  6. The future of nuclear energy

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  7. Nuclear energy facing the future

    Laue, H.J.

    1982-01-01

    In conjunction with the 25th anniversary of the establishment of the IAEA, the contribution that nuclear energy can make to future world energy requirements is discussed and nuclear power generation statistics examined with especial reference to data on capacity and outages. (U.K.)

  8. Radioactive wastes of Nuclear Industry

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  9. The future of nuclear power

    Burtak, F.

    1993-01-01

    Nuclear power in Germany at present is confronting two challenges: On the one hand, technical innovations are required in order to meet the expectations of nuclear proponents while, on the other hand, a public stand must be taken vis-a-vis the demand to opt out of nuclear power. This means that nuclear engineers not only must perform their technical functions, but increasingly also engage themselves socially. Neglecting just one of these two challenges is likely to impair severely the future of nuclear power in Germany. In the absence of a swing in public opinion it will not be possible to build a new nuclear plant, and nuclear power will be doomed to extinction, at least in a number of countries, within a matter of decades. In the absence of technical innovation, today's LWR technology will cause the fissile uranium available naturally to be consumed, thus killing nuclear power for lack of future fissile material. In responding to the two challenges, nuclear technology must safeguard its future by not retreating into an ivory tower of pure technology; on the other hand, technical innovation is a prerequisite for its continued existence. (orig.) [de

  10. Russian nuclear industry exports

    Gorbatchev, A.

    2016-01-01

    Rosatom is the world leader for the export of nuclear technologies. 34 reactors of Russian technology are being built or planned worldwide. Most reactors proposed by Rosatom are third generation VVER-1200 units with an electric power output of 1200 MWe. Although the nuclear island is always built by Rosatom, the remain of the plant can be subcontracted to other enterprises and European companies are sought because they would bring a european quality touch to Russian works. One of the main assets of Rosatom is to propose an integrated offer from supplying nuclear fuel to managing nuclear waste via the turnkey building of nuclear power plants. Another important asset is the financial assistance of the Russian state through state credit or the support from Russian national banks that appears to be a decisive advantage in the international competition to win markets. We have to temper the Russian export perspectives by noting that most projects are set in countries that are prone to instabilities and that the economic crisis affecting Russia has a negative impact on its financial means. (A.C.)

  11. Special issue: the nuclear industry in Europe

    Anon.

    1982-01-01

    This special issue contains papers on the following topics: French nuclear policy; nuclear energy development in Europe; nuclear diversification; Alsthom-Atlantique in the nuclear field; 1981 nuclear electricity generation; EDF siting policy; the N4 model of the 1300 MW series; Creys-Malville; the nuclear industry in Europe; pumps in the nuclear industry [fr

  12. Human capital in nuclear industry

    Anon.

    2010-01-01

    On June 7, 2010, as part of the Atomexpo 2010 exhibition, a round-table discussion took place on the topic Human capital in the nuclear industry: challenges and solutions. The article summarizes reports made during the meeting. Tatiana Kozhevnikova, deputy director general of the Rosatom Corporation, made a report about the strategy and best human resource management practices in member companies of the Corporation. She briefly described the state of the human capital in the Russian nuclear industry and outlined the key provisions of the human resource management strategy. Attendees to the round-table discussion elaborated further on the key statements of the report. The discussion has given an evidence that the Russian nuclear industry is giving an enormous importance to human resource management and is firmly intended on successfully tacking the issues associated with the provision of sufficient staff for the industry's safe and efficient development [ru

  13. The nuclear industry and the young generation

    Hanti, A.

    2000-01-01

    The European Nuclear Society was founded in 1975. It is a federation of 25 nuclear societies from 24 countries-stretching from the Atlantic to the Urals and on across Russia to the Pacific. Through Russia's membership in the Pacific Nuclear Council. ENS is directly linked to that area, too. ENS comprises more than 20 000 professionals from industry, power stations, research centers and authorities, working to advance nuclear energy. ENS has three Member Societies in Australia, Israel and Morocco. Also it has collaboration agreements with the American Nuclear Society, the Argentinean Nuclear Energy Association, the Canadian and the Chinese Nuclear Societies. ENS is doing pioneering work with its Young Generation Network, standing for positive measures to recruit and educate young people as engineers, technicians and skilled staff ion the nuclear field: from school to university and in industry. The goals of the YGN are: to promote the establishment of national Young Generation networks; to promote the exchange of knowledge between older and younger generation cross-linked all over Europe; to encourage young people in nuclear technology to provide a resource for the future; to communicate nuclear issues to the public (general public, media, politicians). (N.C.)

  14. Dutch industry prepares for the future

    Anon.

    1978-01-01

    In a review of the Dutch nuclear industry descriptions are given of the contributions of the following: Rotterdam Dockyard Company (RDM), manufacturers of nuclear pressure vessels; Rheine-Schelde-Verolme and Comprimo BV who co-operate in the field of nuclear engineering and turnkey power plants; Neeratom, which leads the industry in the SNR fast reactor project; and Royal Schelde an engineering company with many activities in the nuclear engineering field, and particularly in welding technology. (UK)

  15. Nuclear industry review

    1982-01-01

    This review examines the consequences of projected excess electrical generating capacity for the maintenance of an independent nuclear power capability in Canada. Although consumption of electricity will continue to grow at rages well below historical averages, significant additions to capacity will be required in all parts of Canada in the 1990s. CANDU reactors are an attractive option for meeting load growth, particularly east of Manitoba. However, the absence of domestic orders in the 1980s may threaten the maintenance of this option. Even the most optimistic projections indicate that only one supplier of each component will remain in the nuclear business in the 1990s

  16. Nuclear regulation in Australia - future possibilities

    Carlson, J.; Bardsley, J.

    1997-01-01

    Australia's current nuclear regulatory arrangements reflect two major factors: that we are a federation, with a constitutional division of powers between the Commonwealth and the States, and that we have no nuclear industry, other than uranium mining. Australia's only nuclear facilities are operated by a Commonwealth instrumentality, ANSTO. Current Commonwealth regulatory arrangements are a response to international treaty commitments -principally the NPT (Treaty on the Non-Proliferation of Nuclear Weapons) -and to the commencement of commercial uranium mining and export in the late 1970's. Although at present no nuclear industry activities, other than mining, are in prospect, this might not always be the case, and with the establishment of ARPANSA (the Australian Radiation Protection and Nuclear Safety Agency) it is timely to give some thought to regulatory arrangements which might be appropriate to Australia's future circumstances. This paper will discuss the regulation activities relating to the nuclear fuel cycle , i e activities involved with the production and use of nuclear materials (uranium, thorium and plutonium) for the generation of energy through nuclear fission

  17. Nuclear's future role?

    Jefferson, M.

    1995-01-01

    This report from the sixteenth World Energy Council congress focuses on two fundamental challenges of providing commercial energy to over two billion people worldwide, many in rural areas, and of achieving a path to sustainable long term development. The congress concluded that a much wider range of energy forms will be required over the next thirty years than is currently in commercial use. The current availability of fossil fuel geologic resources should not stand in the way of the development of other resources such as publicly acceptable nuclear development and those forms of new renewable energy sources which can be made viable. (UK)

  18. Toward an acceptable nuclear future

    Weinberg, A.M.

    1977-11-01

    The nuclear option is in danger of being foreclosed. The trend toward antinuclearism may be reversed if concerns about low-level radiation insult can be shown ultimately to be without foundation; evidence for this speculation is presented. Nevertheless it is suggested that the nuclear enterprise itself must propose new initiatives to increase the acceptability of nuclear energy. A key element of an acceptable nuclear future is cluster siting of reactors. This siting plan might be achieved by confining new reactors essentially to existing sites

  19. Nuclear for Sustainable Future

    Wambani, S.

    2017-01-01

    Since 2010, Male and female Kenyan life expectancy has gone up from 55 to 57 and 56 to 59 respectively (A United Nations Population Fund report released Wednesday ( 27th Nov 2011). In Kenya, for example CT scanners have increased by over 80% in the last decade resulting in over seventy facilities. Although the benefit from a radiological procedure to the patient outweighs the potential radiation risk, the total number of patients was large and increasing. Therefore, small individual radiation risk, multiplied by the large number of patient, adds up resulting in a major public health problem that may not become clearly evident for many years under inadequate quality assurance program. Most examinations are relatively infrequent, contributing less than 5% each to the total number of x-ray examinations in Kenya. The procedures are arranged in descending order of their collective dose. In setting optimization strategy for a country, it is important that the choice of examinations be based on collective dose contribution and the frequency of the examination to maximize the overall benefit to a given population. According to Grid Radiography - Optimization of patient protection in Kenya is possible. Capacity building and developing technical capabilities in quality assurance (QA) & control (QC) is required. Networking and research data exchange of African Nuclear Scientists in developing African Standards in Nuclear Applications

  20. Partnering for Canada's nuclear future

    Koenderman, P.P.

    1997-01-01

    ''Partnering'' is an evolving relationship that could lead to a partnership or joint ownership. Babcock and Wilcox (BW) has used a variety of forms of contracting and partnering to develop global strategy for the supply of its products, both fossil and nuclear steam generating equipment. A strategic mix of consortia, strategic alliances and joint ventures has provided the impetus for BW to lead in worldwide market share in many categories, including the supply of nuclear replacement steam generators to the USA since 1992. The implication is that continuing cooperation with BW will benefit the Canadian nuclear industry. 6 refs., 12 figs

  1. Nuclear energy and the nuclear energy industry

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  2. Nuclear power - a reliable future

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  3. Future of nuclear medicine

    Ganatra, R D

    1993-12-31

    When it comes to setting up nuclear medicine in a developing country, there is a group of people, who feel that such high technology has no place in a developing country. RIA is likely to remain the method of choice for the research laboratory. The use of radioisotopic label has many advantages compared to the use of an enzyme marker. Generally, iodination is simpler than the preparation of an enzyme labelled substance, especially since there has been no agreement as to which enzyme is best for substances as small as steroids or a large as viruses. In addition, there may be some change in the configuration of the enzyme or the substance to be labelled during the conjugation procedure. Monoclonal antibodies can provide virtually unlimited amounts of homogenous antibodies against a specific antigenic site. The heterogeneous antibodies are more likely to provide more sensitive assays than the monoclonal antibodies, although assays employing the latter are likely to be more specific. The optimal choice of the antiserum may depend on whether sensitivity or specificity is required for the assays

  4. Future of nuclear medicine

    Ganatra, R.D.

    1992-01-01

    When it comes to setting up nuclear medicine in a developing country, there is a group of people, who feel that such high technology has no place in a developing country. RIA is likely to remain the method of choice for the research laboratory. The use of radioisotopic label has many advantages compared to the use of an enzyme marker. Generally, iodination is simpler than the preparation of an enzyme labelled substance, especially since there has been no agreement as to which enzyme is best for substances as small as steroids or a large as viruses. In addition, there may be some change in the configuration of the enzyme or the substance to be labelled during the conjugation procedure. Monoclonal antibodies can provide virtually unlimited amounts of homogenous antibodies against a specific antigenic site. The heterogeneous antibodies are more likely to provide more sensitive assays than the monoclonal antibodies, although assays employing the latter are likely to be more specific. The optimal choice of the antiserum may depend on whether sensitivity or specificity is required for the assays

  5. Environmental management in nuclear industry

    Pillai, K.C.; Bhat, I.S.

    1988-01-01

    Safety of the environment is given due attention right at the design state of nuclear energy installations. Besides this engineered safety environmental protection measures are taken on (a) site selection criteria (b) waste management practices (c) prescribing dose limits for the public (d) having intensive environmental surveillance programme and (e) emergency preparedness. The paper enumerates the application of these protection measures in the environmental management to make the nuclear industry as an example to follow in the goal of environmental safety. (author)

  6. European PV industry -- The future beckons

    Shah, D.J.

    1994-01-01

    The author believes that there are reasons to believe that the solar industry is poised on the brink of rapid commercial growth, leading to broadly-based industry viability. The author discusses the role that the European solar industry has to play in helping to bring about a better future. He begins his discussion with the current state of the European industry and follows with recommendations of what the European industry should be doing to encourage the solar industry growth

  7. Nuclear techniques in industry

    Barnette, P.

    The long term development and successful utilization of the Tongonan geothermal field for electric power generation is ultimately a function of the response of the reservoir to extensive exploitation. A field drawdown test of several years duration has been planned to test this response. A number of nuclear chemical techniques have been incorporated into this to assist in quantitatively tracing the subsurface movements of both reservoir and reinjected fluids; and to provide an early warning of changes in the physical and chemical properties of the reservoir fluids with respect to natural recharge. The programme will be implemented by Philippine Atomic Energy Commission (PAEC) under contract to Philippine National Oil Company - Energy Development Corporation (PNOC-EDC). (author)

  8. Feeding the nuclear pipeline: Enabling a global nuclear future

    Walter, A.E.

    2004-01-01

    Nuclear energy, which exhibits a unique combination of environmental and sustainable attributes, appears strongly positioned to play a much larger and more pivotal role in the mix of future global energy supplies than it has played in the past. Unfortunately, enrolment patterns in nuclear engineering programmes have seriously eroded over the past decade - causing alarmingly low enrolment levels in many countries by the turn of the century and a sobering concern that the nuclear manpower pipeline cannot keep up with the emerging needs of the nuclear industry. On the positive side, enrolment patterns within the United States are now generally on the rise, at least at the undergraduate level. A few of the particularly successful efforts initiated by various sectors of the U.S. nuclear infrastructure to stimulate this rebound are shared in this paper with the hope that some of them might be beneficially employed in other global settings. (author)

  9. Transforming and Building the Future Energy Industry

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  10. Transforming and Building the Future Energy Industry

    Ellis, Vernon

    1999-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  11. Ranking French nuclear industry on international market

    Labbe, B.

    1987-01-01

    Based on the success of its own ambitious nuclear power station program, France has been able to export its technology to many parts of the world, providing everything from individual components to complete power stations on a turnkey basis. Industrial partners who regurarly work together have set up the necessary structures to ensure the dovetailing of their activities during joint operations on the foreign market. These structures are matched to the needs of individual clients, and can be dispensed with completely in cases where a sole supplier is involved. Not one single unit under construction has been halted and no contract cancelled after the Chernobyl accident. France, like Japan and the USSR, is pressing on with its nuclear power program. China has ordered two PWR units for Daya Bay, while Britain has decided to construct its first PWR at Sizewell. Although a number of countries have deferred decisions in this field, this has been mainly on financial grounds. The French nuclear power industry has demonstrated its mastery of the technology, which can now be placed at the disposal of countries wishing to build nuclear power units, to improve their existing nuclear capacity, to develop parts of this future-oriented industry, or to supply their power stations with advanced nuclear fuel

  12. Nuclear industry and radioecological safety

    Semenov, V. G.

    2006-01-01

    The beginning of XXI century is marked with increasing public concern over impact of man-made activity, including nuclear technologies, on the environment. Currently, the anthropocentric principle is applied in the course of the radioecological safety guaranteeing for the environment, which postulates that human protectability serves as guarantee of the environmental one. However, this principle correctness is called in question recently. The ecocentric principle is proposed as an alternative doctrine, defining balance between human importance and that of any other elements of biota. The system recommended isn't intended for the regulatory standards development yet, because of substantial gaps in scientific knowledge. Nevertheless, renunciation of the anthropocentric principle can result in unwarranted tightened regulatory basis, decreasing of nuclear industry evolution rates, and, consequently, breaching of societal and economical priorities. It is obvious that for the safety guaranteeing, nuclear industry shouldn't stand out against a background of other fields of human activity involved hazard factors. Therefore, new conceptions applying within the regulatory system is to be weighted and exclude formal using of discussion theses. More than semi-centennial experience of the anthropocentric approach applying serves as an evidence of safe protection of ecosystems against radiation exposure that ensures safe ecological development of nuclear power industry and other fields of nuclear technologies application. (author)

  13. Future of nuclear power in the Northeast

    Sailor, V.L.; Shore, F.J.

    1976-01-01

    As of July 1975, there were 15 operable nuclear power plants in the Northeast, representing approximately 11 percent of the regional electric generating capability. Construction plans for the next two decades show a strong preference for nuclear units, there being 18 new units under construction and 33 additional units announced. Three projections (scenarios) covering the period from 1976 to 2000 are presented. The Base Case Nuclear Scenario assumes that the construction schedules as of August 31, 1975 are implemented. A Nuclear Moratorium Scenario assumes that no new plants are undertaken after January 1, 1977. Finally, a Maximum Nuclear Growth Scenario postulates a concerted effort to add additional nuclear capacity beginning in 1982, but constrained by the ability of industry to expand the capabilities needed to supply the components and fuel. Appreciable differences in the three scenarios do not appear until about 1985, a consequence of the long lead time in making plans and completing construction. The cumulative incremental costs of the Nuclear Moratorium Scenario postulated in this study exceed $160 billion by the year 2000. Despite the present favorable economics and performance of the nuclear units, and despite the strong preference of the planners for nuclear capacity to meet future demands, there are many factors which cast doubt on whether these plans will be executed. Cost escalation, combined with difficulties in raising capital funds, have forced many units to be deferred or canceled

  14. The future of nuclear deterrence

    Quester, G.H.

    1986-01-01

    Nuclear deterrence has been in existence for almost four decades. Yet, analysts from the left and the right keep reemphasizing the dangers and problems with deterrence without always remembering its purpose-the prevention of nuclear war or the prevention of all war. In this book. George Quester analyzes the future of nuclear deterrence in light of its past, and discovers that the fundamental tenets of nuclear deterrence remain unchanged. George Quester considers the overwhelming tensions present in a society threatened by the prospect of a nuclear holocaust and a lingering nuclear winter. But he also acknowledges that nuclear deterrence has prevented a great deal of global and local warfare that otherwise would have occurred. He spotlights the basic military problems facing the world today, including the shadow cast on all levels of strategic planning by the threat of nuclear war. Quester warns against charging forth with radical new alternatives, such as the Strategic Defense Initiative and deep-cut disarmament. He argues that initiatives such as these reflect a return to traditional military thinking about waging and winning wars that pose serious possibilities for a breakdown in deterrence policy.

  15. The future of nuclear engineering

    Beeden, Jeffrey

    2003-01-01

    Today, nuclear power refers to the splitting of large uranium atoms into smaller atoms with a net release of energy. Tomorrow, nuclear power will refer to the combining of hydrogen into larger atoms with a net release of energy. Nuclear power's future is fusion. The Mechanical Engineers of tomorrow will need to be familiar with the process of creating and harnessing the energy from a fusion reaction. During the oil shortage in the 1970's, America scrambled to initiate alternative methods of producing power. Nuclear fusion was one of them. As time passes, the solution to the world's energy crisis presses the countries of the world to find alternative forms of energy; nuclear fusion may contain the answer. In the near future, the field of fusion will open up and a new wave of engineers will flood into this field. Mechanical engineers will lead the way with advances in materials, computational fluid dynamics, finite element analysis for thermal and structural systems, and heat transfer designs to optimize nuclear fusion reactors and power plants. All this effort is in anticipation of creating a sustained fusion reaction that can generate enough heat to transfer to steam in order to generate electric power to sustain the fusion reaction and introduce power to the grid. (author)

  16. Overview of the Russian nuclear industry

    2008-02-01

    In 2004, President Poutine decided to replace the atomic energy ministry (Minatom) by the federal atomic energy agency (Rosatom). Several projects were launched during the next two years which aimed at bringing back Russia to the fore front of the world leaders of nuclear energy use and nuclear technology export. In 2007, Rosatom agency was changed to a public holding company and a new company, named Atomenergoprom, was created which gathers all civil nuclear companies (AtomEnergoMash for the exploitation of power plants, Technabsexport (Tenex) specialized in enrichment or Atomstryexport in charge of export activities). Thus, Rosatom is at the head of all civilian and military nuclear companies, of all research centers, and of all nuclear and radiological safety facilities. In 2006, Russian nuclear power plants supplied 15.8% of the whole power consumption. Russia wishes to develop its nuclear program with the construction of new reactors in order to reach a nuclear electricity share of 25% from now to 2020. This paper presents first the 2007 institutional reform of the Russian atomic sector, and the three sectorial federal programmes: 1 - development of the nuclear energy industrial complex for the 2007-2010 era and up to 2015 (future power plants, nuclear fuel centers and reactor prototypes), 2 - nuclear safety and radioprotection for the 2008-2015 era (waste management, remedial actions, radiation protection), 3 - military program (confidential). Then, the paper presents: the international actions (export of Russian technology, cooperation agreements, non-proliferation), the situation of the existing nuclear park (reactors in operation, stopped, under construction and in project), the fuel cycle activities (production of natural uranium, enrichment, fuel fabrication, spent fuel storage, reprocessing, waste management), the nuclear R and D in Russia, and the nuclear safety authority. (J.S.)

  17. Computer aided design for the nuclear industry

    Basson, Keith

    1986-01-01

    The paper concerns the new computer aided design (CAD) centre for the United Kingdom nuclear industry, and its applications. A description of the CAD system is given, including the current projects at the CAD centre. Typical applications of the 3D CAD plant based models, stress analysis studies, and the extraction of data from CAD drawings to produce associated documentation, are all described. Future developments using computer aided design systems are also considered. (U.K.)

  18. Future energy mix - also without nuclear power?

    George, C.

    2005-01-01

    The considerable rises in the price of oil in the months of October and November 2004 assigned topical importance to the 'Future Energy Mix - also without Nuclear Power?' meeting of young nuclear engineers and students with experts from politics, industry, and research at the YOUNG GENERATION event organized at the Biblis nuclear power station on November 4-6, 2004. Specialized presentations were made about these topics: The Biblis Nuclear Power Plant Site. The Effects of Deregulation on the Electricity Market Emission Trading - a Combination of Economy and Ecology? Energy Mix for the 21 st Century. The event was completed by a round-table discussion among leading experts, and a presentation of perspectives in university education in areas encompassing power technology. (orig.)

  19. Future of nuclear power after Chernobyl

    Asselstine, J.K.

    1987-01-01

    If nuclear power plants are to have a future in the US, existing plants must demonstrate a safe and accident-free operation, the public must perceive that the Nuclear Regulatory Commission (NRC) is independent and objective, safety corrections must make operating plants more reliable, and the US must develop an acceptable way to dispose of high-level radioactive wastes. Focusing on safe operation and public confidence in the NRC, the author examines the consequences of the Chernobyl accident and compares public opinion reactions with those following the Three Mile Island accident. He notes the recent NRC decisions have been counterproductive to the nuclear industry, but that other countries have demonstrated that the goal of safe nuclear power is achievable. The NRC will have to increase the level of public participation in the regulatory process if it hopes to restore its former level of credibility

  20. The future of nuclear energy in Europe

    Polie, P.

    1996-01-01

    An overview of current situation and future trends in nuclear energy production in Europe is made. Main factors characterizing differences in atomic policy of each particular European country are discussed. They are: readiness of the governments to implement a long-term energy policy; technical, economical and energy aspects; public opinion. Future development of new power plants is connected with overproduction of electricity, safety operation of present NPP, reduction of CO 2 emissions and public opinion. The energy policy of the European Union is also discussed and the necessity of transparency in industrial strategy of the governments is outlined

  1. Nuclear industry prospects: A Canadian perspective

    Morden, Reid

    1995-01-01

    Canada, with its proven, safe and versatile CANDU reactor is well poised for the second half-century of nuclear fission. Canada's nuclear pedigree goes back to the turn-of-the-century work of Ernest Rutherford in Montreal. This year, Canada's nuclear industry celebrates the 50th anniversary of the start-up of its first research reactor at Chalk River. Last year, the pioneering work of Bert ram Blockhouse in Physics was honoured with a Nobel Prize. Future international success for the nuclear industry, such as has been achieved here in Korea, depends on continued cooperative and collaborative team work between the public and private sectors, continued strong research and development backing by the government, and new strategic partnerships. The biggest challenge is financing for the emerging markets. The brightness or dimness of future prospects are relative to the intensity of the lessons learned from history. In Canada we have a fairly long nuclear pedigree, It goes back almost a century to 1898, when Ernest Rutherford set up a world centre at McGill University in Montreal for research into the structure of the atom and into radioactivity

  2. The future of nuclear energy (group 17)

    Moncomble, J.E.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the perspective of nuclear energy in France. Nuclear energy is an important element to assure the stability of the energy supply of the country. Uranium purchases appear to be safe for being diversified and the price of the nuclear fuel contributes to only 20% of the price of the kWh compared to 40% for natural gas. Today the competitiveness of nuclear energy is assured but technological progress concerning gas turbines might challenge it in the years to come. Sustainable development implies not only abundant energy for all but also a preserved environment for the generations to come. The development of nuclear energy is hampered by the lack of satisfactory answers to the problem of fuel back-end cycle and more generally to the issue of radioactive wastes. On the other hand nuclear energy presents serious assets concerning the preservation of environment: nuclear energy as a whole from the uranium ore mining to the production of electricity emits very few atmospheric pollutants and greenhouse effect gases, and requires little room for its installations. The composition of the future energy mix will depend greatly on opinions and assumptions made about the reserves of fossil fuels, technological perspectives and the perception by the public of industrial risks (environmental damage, nuclear accidents...). (A.C.)

  3. Q and A. The future of nuclear energy in Spain

    Kraev, Kamen [NucNet, The Independent Global Nuclear News Agency, Brussels (Belgium)

    2017-11-15

    Nuclear is the primary source of electricity in Spain. Wind is second. In the first quarter of 2017 nuclear's contribution was 25 %, but by the end of the year it will even out to more or less the same level of 2016. Nuclear is still very important for Spain's energy mix. The question is, what will happen with nuclear in the near future? NucNet spoke to Ignacio Araluce, president of Spanish industry group Foro Nuclear, about energy policy, plant shut-downs and how Spain's nuclear industry is successfully diversifying overseas.

  4. The future of nuclear reactors

    Teller, E.

    1989-01-01

    The Atomic Energy Commission Advisory Committee on Reactor Safeguards began work in early 1948 with the firm and unanimous conviction that nuclear power could not survive a significant damaging accident. They as a committee felt that their job was to make reactors so safe that no such event would ever occur. However, ambitious reactor planners did not like all the buts and cautions that the committee was raising. They seemed to delay unduly their setting sail into the brave new world of clean, cheap, safe nuclear energy. The committee was soon nicknamed the Committee on Reactor Prevention. Reactors, of course, represented a tremendous step into the future. To an unprecedented extent, they were based on theory. But the committee did not have the luxury of putting a preliminary model into operation and waiting for difficulties to show up. In assessing new designs and developments, they had to anticipate future difficulties. Their proposals in good part were accepted, but their deep emphasis on safety did not become a part of the program. Today, forty years later, the author still believes both in the need for nuclear reactors and in the need of a thorough-going, pervasive emphasis on their safety. Real, understandable safety can be achieved, and that achievement is the key to our nuclear future. The details he gives are only examples. The need for reactors that are not only safe but obviously safe can be ignored only at our peril

  5. The future for nuclear power

    Marshall of Goring, Lord.

    1989-01-01

    Lord Marshall explains how the situation for nuclear power in late 1989 in the United Kingdom had come about. Despite warnings that for a successful nuclear programme a large generator which has the obligation to supply in a defined geographical area should operate, this is not what will happen under the plans to privatise the electricity supply industry in the UK. Under these no body will have the obligation to supply electricity and the distribution Company will not have the obligation to supply after the first few years. Other problems with the privatisation plans are discussed. The implications of the government's decisions on nuclear power, first to maintain the Magnox stations in the government sector, second to abandon the full PWR construction programme and thirdly not to transfer the AGRs to the private sector, are discussed. (UK)

  6. JAIF formulates policy for strengthening foundation of nuclear industry

    Anon.

    1986-01-01

    With recognition that conditions surrounding the nuclear industry are becoming severe with the slowdown in the growth of the Japanese economy, the Japan Atomic Industrial Forum has been discussing ways and means of strengthening the foundations of the nuclear industry. A subcommittee of the Power Reactor Development Committee has been formed. It comprizes two divisions. The first division focused on economic and social prospects for the future and other basic questions. The second division dealt with specific problems viewed from the position of the nuclear quipment supply industry and measures to resolve them. The report was prepared based on the studies done by the two divisions, and focusing on the strengthening of the basis of the nuclear industry through the year 2010. The report estimates that construction of nuclear power plants will be less than 2 units a year in the coming five year period, and will continue at about 2 units a year until about the year 2000. From this outlook, it discusses the work facing the nuclear industry and the steps to be taken to reduce nuclear power generation costs, efficient research and development and the promotion of international cooperation. The report covers four sections: the position of nuclear power development in the national economy; the present state and tasks of the nuclear industry and the nuclear equipment supply industry; measures for maintaining and strengthening the foundations of the nuclear industry, and the tasks to be done. (Nogami, K.)

  7. Computer systems and nuclear industry

    Nkaoua, Th.; Poizat, F.; Augueres, M.J.

    1999-01-01

    This article deals with computer systems in nuclear industry. In most nuclear facilities it is necessary to handle a great deal of data and of actions in order to help plant operator to drive, to control physical processes and to assure the safety. The designing of reactors requires reliable computer codes able to simulate neutronic or mechanical or thermo-hydraulic behaviours. Calculations and simulations play an important role in safety analysis. In each of these domains, computer systems have progressively appeared as efficient tools to challenge and master complexity. (A.C.)

  8. The importance of Forensic research in the Nuclear Power Industry. What the OECD Three Mile Island reactor vessel investigation. Means to the future of commercial nuclear power

    Rogers, K.C.

    1994-01-01

    TMI-2 altered the perception of the likelihood of severe accidents and their precursors and shortly after the accident, changes began at the NRC. NRC required its nuclear power licensees to make a rather large number of back fits to respond to the lessons learned; NRC broadened the study of severe accident phenomena (focus on studies involving molten core materials); other lessons learned concerned the severe accident source terms and the shift from a deterministic tradition point of view to a probabilistic risk assessment formalism. A Revised Severe Accident Research Program Plan was issued in 1989. A review of what was known before the TMI-Vessel Investigation Project and what was not known, is presented

  9. The future of nuclear power

    Mahaffey, James

    2012-01-01

    Newly conceived, safer reactor designs are being built in the United States (and around the world) to replace the 104 obsolete operating nuclear power reactors in this country alone. The designs--which once seemed exotic and futuristic--are now 40 years old, and one by one these vintage Generation II plants will reach the end of productive service in the next 30 years. The Future of Nuclear Power examines the advanced designs, practical concepts, and fully developed systems that have yet to be used. This book introduces readers to the traditional, American system of units, with some archaic te

  10. Present situation and future prospects for French nuclear power plants

    Carle, R.

    1984-01-01

    The author depicts the present situation and future of the French nuclear power programme which has now become a major industrial reality after successful acceptance of a twofold challenge: the technical problem and that of training the personnel responsible for operating the power stations. The large number of nuclear plants now in operation and planned for the next few years makes electricity generated from nuclear power a ''new industrial reality'', which we must still learn to utilize to the best effect [fr

  11. The future of nuclear power

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  12. The future of nuclear power

    Greenhalgh, G.

    1988-01-01

    The desire for safe and plentiful forms of energy led to the rapid development of the nuclear power industry in the years following the Second World War. Although initially embraced as the answer to the dwindling supply of non-renewable fuel resources, plans to expand nuclear power generation have met with growing public resistance as investigations point to the possible harmful effects of radiation, an unavoidable by-product of the process. This book presents the case for nuclear power in the light of the increasing amount of controversy surrounding the issue. Diverse and often contradicting nuclear policies in different countries are examined with reference to the political, historical and economic factors which account for these wide variations in public sentiment. A detailed analysis is given of the growth of world energy demand, energy vs economic growth and alternative energies, and particular emphasis is given to aspects of the environment, pollution, safety, health hazards and the measurement and control of radiation. The role of public attitudes and awareness also receives special attention: a fuller and less emotional public understanding of nuclear power is necessary to assess the various benefits and risks which accompany this important source of energy

  13. Applications of nuclear physics: Future trends

    Eichler, R.

    2005-01-01

    Nuclear physics and energy research depends on and advances science and technology outside of the nuclear field. Perhaps the most commonly perceived benefits to society from nuclear and particle physics are those derived from particle beam technology. Charged particle accelerators play an increasing role in applications in industry and medicine. Neutrons produced with a high power proton accelerator in a spallation process are used from basic research, radiography in automotive industry (example fuel cell development) to transmutation of highly radioactive fission products. Production and acceleration of ultra cold neutrons provide intense and almost mono-energetic neutrons to study soft matter. Heavier radioisotopes are used in a wide field ranging from medicine to semiconductor industry (ion implantation for doping or coating technologies). Concrete examples and future trends will be given. Detailed understanding of ion physics at low energy allows the design of compact accelerator mass spectroscopy (close to table top size). The ability to measure concentrations of specific radioactive isotopes even below the natural radioactivity widens the scope of applications from archaeology, climate research to food industry. Such a compact device is close to commercialisation. (author)

  14. The future of nuclear power

    Holzer, J.

    1989-01-01

    Irrespective of the nuclear controversy which continues undiminished in the Federal Republic of Germany, the future of nuclear power is going to be determined by facts also in this country. Of course, the attitude of people plays an important role in this process, all the more so as it is highly emotionally biased in this matter. However, this attitude may change. Factors which could influence such a swing stem from the growing tendency to weigh the risks of all sources of energy, but also from the attitudes of the partner countries within and outside the European Community. Undoubtedly, also the growing energy requirement of the developing countries will be one of the factors determining the fate of nuclear power in this country. However, a key factor is politics which, after having weighed all possibilities, is required to always create optimal boundary conditions to ensure the long-term prosperity of the population. (orig.) [de

  15. Nuclear sector foresees future role

    Anon.

    1991-01-01

    The latest annual symposium of the Uranium Institute (the international association of organizations connected with nuclear energy) covered a broad spectrum of topics. The symposium is reviewed. The position of nuclear power in the USA, Germany, Korea, Hungary and Czechoslovakia was studied. Although future electricity demand was difficult to predict the coupling between economic and electricity consumption growths was expected to continue. In spite of energy conservation and demand-side management, new generations capacity will be needed in the next 20 years. This would include some nuclear generating capacity which would affect the uranium market. The topics covered at the symposium included the greenhouse effect, the uranium market, uranium production, radioactive waste management and public opinion under the influence of changing ethics. (UK)

  16. The future of nuclear power

    Maichel, G.

    2001-01-01

    The market and competition, political boundary conditions, ecological boundary conditions, science and technology as well as international aspects are factors decisive in the future use of nuclear power. The agreement reached between the federal government and the power utilities in June 2000 represents a workable compromise - without winners or losers - in a situation in which action was urgently required. Once the agreement has been put into effect by legislators and the executive, operation of the nuclear power plants still on stream can be continued on a long term basis under safe boundary conditions. This requires an amendment to the Atomic Energy Act reflecting the sense of the agreement reached, the constructive inclusion of the federal states, and the immediate, legally assured execution of necessary transports of spent fuel and the construction of on-site stores for spent fuel. In the common interest, the question of final storage should not suffer from politically motivated delays. Factors favoring the further use of nuclear power continue to be mainly ecological and economic ones. The economic performance of plants is being documented very clearly, especially in the course of the deregulation of the electricity market, and the objective of finding a power supply system which protects the climate seems to be attainable only by nuclear power also in countries other than Germany. In the course of globalization, and in the light of thoughts about building new nuclear power plants also in European countries, it must also be in the public interest to preserve competence in nuclear technology, together with a capable infrastructure, in Germany. In addition, strengthening research and development is important in securing the future technical performance capability of Germany. (orig.) [de

  17. Nuclear energy in our future

    Hennies, H.H.

    1988-01-01

    Nuclear energy for electricity generation will extend its market portion in Europe in the coming decades because: 1) its economic and/or environment-relevant advantages compared with the fossil energy sources are so explicit that the latter will no longer be competitive; 2) the improvements of the system engineering, which are presently being implemented and are to be expected in the future, will enhance the safety facilities to the extent that accident risk will cease to be a decisive factor; 3) energy-saving effects or the use of solar energy will not provide an appropriate large scale alternative for coal and/or nuclear energy; 4) the problems of radioactive waste disposal will be definitely solved within the foreseeable future. Considering all the technological systems available the light water reactor will continue to dominate. The change to the breeder reactor is not yet under discussion because of the medium-term guaranteed uranium supply. The use of nuclear technology in the heating market will depend for the moment on the availability and cost of oil and gas development. In principle nuclear energy can play an important role also in this sector

  18. Future demands for an Industrialized Architecture?

    Beim, Anne

    2011-01-01

    When speaking about the future demands for industrialized architecture – or how to translate industrialized processes into tectonic sustainable design strategies in architecture – several questions come to mind. First of all, why is the building industry in comparison to the production industry...... these questions raise a wide-spread discussion, one could argue that the building industry can benefit from different ways of architectural synthesis thinking as a basis for improving. This understood in such a way that industrialized manufacturing technologies and products should be driven by ideas...

  19. Technological and social change and the future of nuclear power

    Douglas, H.

    1988-01-01

    Over the past decade and a half, the nuclear power industry has experienced growing public opposition. Underlying the nuclear industry's problems is a very fundamental anti-technology outlook by the public - visibly apparent in the environmental movement - that not only affects nuclear power but business in general. Is this anti-technology attitude of the public and media writers a passing phase, or will it wane and yield to a positive attitude toward technology? This paper discusses historical, sociological and technological change in the Western industrial world, and how changing attitudes might affect nuclear power in the future. (author)

  20. The political economy of the nuclear industry

    Falk, J.

    1981-01-01

    The changing international context, in particular declining estimates of nuclear capacity and a depression in the nuclear reactor market will influence prospects for a nuclear industry in Australia. Effects of the opposition by trade unions and community groups to uranium mining are discussed. The relationship between political decisions and the economics of the nuclear power industry is stressed

  1. Nuclear industry after the Fukushima accident

    Branche, Thomas; Billes-Garabedian, Laurent; Salha, Bernard; Behar, Christophe; Dupuis, Marie-Claude; Labalette, Thibaud; Lagarde, Dominique; Planchais, Bernard; West, Jean-Pierre; Stubler, Jerome; Lancia, Bruno; Machenaud, Herve; Einaudi, Andre; Anglaret, Philippe; Brachet, Yves; Bonnave, Philippe; Knoche, Philippe; Gasquet, Denis

    2013-01-01

    This special dossier about the situation of nuclear industry two years after the Fukushima accident comprises 15 contributions dealing with: the nuclear industry two years after the Fukushima accident (Bernard Salha); a low-carbon electricity at a reasonable cost (Christophe Behar); nuclear engineering has to gain even more efficiency (Thomas Branche); how to dispose off the most radioactive wastes (Marie-Claude Dupuis, Thibaud Labalette); ensuring the continuation for more than 40 years onward (Denis Gasquet); developing and investing in the future (Philippe Knoche); more than just signing contracts (Dominique Lagarde); immersed power plants, an innovative concept (Bernard Planchais); R and D as a source of innovation for safety and performances (Jean-Pierre West); dismantlement, a very long term market (Jerome Stubler, Bruno Lancia); a reference industrial model (Herve Machenaud); recruiting and training (Andre Einaudi); a diversity of modern reactors and a world market in rebirth (Philippe Anglaret); an industrial revolution is necessary (Yves Brachet); contracts adapted to sensible works (Philippe Bonnave)

  2. Oleochemical industry future through biotechnology.

    Abdelmoez, Wael; Mustafa, Ahmad

    2014-01-01

    Lipases are the most widely used class of enzymes in organic synthesis. Enzymatic processes have been implemented in a broad range of industries as they are specific, save raw materials, energy and chemicals, environmentally friendly and fast in action compared to conventional processes. The most notable benefit is the moderate process temperature and pressure with no unwanted side reactions. In the past two decades, intensive research was carried out towards enzymatic synthesis of oleochemicals. This review has a sharp focus on the current implemented enzymatic processes for producing different oleochemicals such as fatty acids, glycerin, biodiesel, biolubricant and different alkyl esters via different processes including hydrolysis, esterification, transesterification and intraesterification.

  3. Corrosion management in nuclear industry

    Kamachi Mudali, U.

    2012-01-01

    Corrosion is a major degradation mechanism of metals and alloys which significantly affects the global economy with an average loss of 3.5% of GDP of several countries in many important industrial sectors including chemical, petrochemical, power, oil, refinery, fertilizer etc. The demand for higher efficiency and achieving name plate capacity, in addition to ever increasing temperatures, pressures and complexities in equipment geometry of industrial processes, necessitate utmost care in adopting appropriate corrosion management strategies in selecting, designing, fabricating and utilising various materials and coatings for engineering applications in industries. Corrosion control and prevention is an important focus area as the savings achieved from practicing corrosion control and prevention would bring significant benefits to the industry. Towards this, advanced corrosion management strategies starting from design, manufacturing, operation, maintenance, in-service inspection and online monitoring are essential. At the Indira Gandhi Centre for Atomic Research (IGCAR) strategic corrosion management efforts have been pursued in order to provide solutions to practical problems emerging in the plants, in addition to innovative efforts to provide insight into mechanism and understanding of corrosion of various engineering materials and coatings. In this presentation the author highlights how the nuclear industry benefited from the practical approach to successful corrosion management, particularly with respect to fast breeder reactor programme involving both reactor and associated reprocessing plants. (author)

  4. Nuclear Futures Analysis and Scenario Building

    Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

    1999-01-01

    This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios

  5. Development and issues of nuclear industry in Taiwan

    Kuangchi Liu

    1994-01-01

    Industrial and economic developments in Taiwan have achieved a so-called 'miracle' in the last decades. Endeavors by the private enterprise, prudent planning by the government, and the devoted efforts by the diligent and creative labor forces have been credited jointly with the result. To develop a sustainable nuclear industry in support of an efficient and safe power generation and other applications of nuclear energy in Taiwan, continuing efforts from the private industry, government and each individual of the nuclear industry will be required. In this paper, milestones of the past and major issues for future developments will be discussed

  6. Capitalizing the contribution of the nuclear industry

    Donnadieu, G.

    1984-01-01

    The main contributions of the French nuclear industry to the country, and ways to make the most of them are presented. The advantages acquired include the nuclear power stations built; mastering of the combustion cycle; a powerful, well structured nuclear construction industry; and a nuclear-industrial complex giving France an important industrial potential. It is recommended that the industrial and research effort be maintained. The proposed strategy consists of defining an electronuclear program and associated economic development program and sticking to them; promoting exports; possibly merging certain industrial capacities; and strengthening the national position and independence concerning the fuel cycle [fr

  7. (Nuclear) energy policy in future

    1982-01-01

    With this report the German Federal Diet submits the final results of the opinion-forming and decision-making process concerning the recommendations made by the investigation committee 'Future Nuclear Energy Policy' in June 1980. By means of this report it is intended to point out to an interested public the difficult and time-consuming process of parliamentary decision-making. This report is also to be seen as the final opinion delivered on the recommendations made by the investigation committee. The recommendations were to continue to pursue the peaceful use of nuclear energy, the necessity and technical justifiability of which had basically been approved by all parliamentary groups. In view of the import of the subject and in recognition of the work done by the investigation committee, the German Parliament has thoroughly discussed the report and has reviewed the analyses and recommendations in conjunction with other political fields to be considered. One part of the recommendations was taken up almost unanimously. As far as the safety of nuclear installations is concerned, the investigation committee could not submit any new findings which would give reasons for modifying the hitherto positive assessment of the safety of nuclear installations. The recommendations of the investigation committee mainly referred to the decision-making process in the field of energy policy which will effect the next decade. What fundamental decisions are to be made until when was pointed out as well as the findings and experience to be made until then. (orig./HP) [de

  8. The nuclear industries in the European community

    Anon.

    1986-01-01

    The paper discusses the nuclear industries within the European Community. The strategic importance of nuclear energy is outlined, along with the economic benefits of nuclear power. The objectives of the Community's nuclear programme are described, and include nuclear requirements in Europe, uranium supplies and management of radioactive waste. (UK)

  9. The future of nuclear power

    Horton, S.G.

    1987-01-01

    Canadians are heavily dependent upon reliable and affordable sources of energy to sustain their lifestyle. In a world threatened by diminishing energy resources, Canadians need to plan for the future. Canadian electrical utilities must respond to rapidly changing circumstances and uncertainties to ensure that the public's demand for electricity is met with a high quality product. There is a need to strike a proper balance between demand management alternatives and new supply options. Nuclear power will remain as an alternative supply option. The place of CANDU will depend upon its continued high performance, public acceptance and the leadership given to the program

  10. The future of nuclear energy

    Cockcroft, J.; Bhabha, H.J.; Goldschmidt, B.

    1959-01-01

    A public discussion on the future of nuclear energy was organized by the Director General of the International Atomic Energy Agency in Vienna on 22 September 1959 in conjunction with the third regular session of the Agency's General Conference. The three eminent scientists who participated in the discussion - Dr. Homi J. Bhabha of India, Sir John Cockcroft of the United Kingdom and Dr. Bertrand Goldschmidt of France - are members of the Agency's Scientific Advisory Committee. The Secretary of the Committee, Dr. Henry Seligman, Deputy Director General of IAEA, acted as moderator. The meeting was presided over by the Director General, Mr. Sterling Cole. The discussion began with opening statements by the three scientists surveying recent developments, current trends and future possibilities. After these general statements, they answered a number of questions from the audience. A record of the discussion, including the opening statements as well as the questions and answers, is contained in this special number of the IAEA Bulletin. (author)

  11. Nuclear energy and the steel industry

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  12. The Philippine nuclear power project, its past, present and future

    Jovellanos, J.U.

    1993-01-01

    The article discussed the historical background of the nuclear power plants; how it operates; the government opinion on the operation of the nuclear power plant; the application of power resources to industry; the implementation of PNPP-1 particularly the economic aspects of energy in the near future. (IMA)

  13. Current and future industrial energy service characterizations

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  14. Enhanced security in the nuclear industry

    Frappier, G.

    2007-01-01

    This article describes the security in the nuclear industry. After 9/11, Canada's nuclear regulator - the Canadian Nuclear Safety Commission (CNSC) - determined that the entire industry (including its own organization) faced a need for significant enhancements in their approach to security.

  15. Directory of the French nuclear industry

    2002-10-01

    This directory includes data sheets on the French companies operating in the nuclear industry. It begins with an introduction containing information on the French nuclear industry: 1 - nuclear power development in France (national energy plan, history, organization, economic advantages, reactors); 2 - French operator: Electricite de France (EdF); 3 - the industry (Areva, Cogema, mining activities, uranium chemistry and enrichment, processing, recycling, engineering, services, Framatome ANP); 4 - R and D and knowledge dissemination: French atomic energy commission (CEA); 5 - nuclear safety, security, control and regulation: nuclear safety authority (ASN), general direction of nuclear safety and radioprotection (DGSNR), institute of radioprotection and nuclear safety (IRSN), radioactive wastes, ANDRA's role; 6 - associations: French atomic forum (FAF), French nuclear industry trade association (GIIN), French nuclear energy society (SFEN), French radiation protection society (SFRP). Then, the data sheets of the directory follows. (J.S.)

  16. Nuclear power industry and environment

    Sivintsev, Yu.V.

    1979-01-01

    Estimated is the environmental impact of the developing nuclear power in the UK. The radiation levels of the population due to natural and artificial sources are considered. Among the natural sources singled out are the following ones: 238 U occuring in the surface layer of the earth-crust, 40 K which is the component of man muscles and which is the most important source of internal irradiation, and the cosmic radiation as well. Among the man-made radiation sources the dominant ones are X-ray diagnostics, nuclear tests and radioactive fall-out resulted from them. It is stated that nowdays the dose, caused by nuclear power industry in the UK, constitutes approximately 0.5 mrem/yr, which is considerably less than the dose variations due to residence change within the country or frequency of X-ray diagnostical examinations. The high level of the risk for the population in the NPS vicinity and for the personnel is estimated with the help of linear extrapolation of ''dose-response'' curve regarding the natural variations caused by residence variations and occupational hazard. According to the ICRP data, the risk of late effects is 10 -4 for man-rem. Considered are the existing and perspective management methods for NPS the high-level radioactive wastes in the UK as well as the equipment

  17. Nuclear power industry and environment

    Sivintsev, Yu V

    1979-01-01

    Estimated is the environmental impact of the developing nuclear power in the UK. The radiation levels of the population due to natural and artificial sources are considered. Among the natural sources singled out are the following ones: /sup 238/U occuring in the surface layer of the earth-crust, /sup 40/K which is the component of man muscles and which is the most important source of internal irradiation, and the cosmic radiation as well. Among the man-made radiation sources the dominant ones are X-ray diagnostics, nuclear tests and radioactive fall-out resulted from them. It is stated that nowdays the dose, caused by nuclear power industry in the UK, constitutes approximately 0.5 mrem/y, which is considerably less than the dose variations due to residence change within the country or frequency of X-ray diagnostical examinations. The high level of the risk for the population in the NPS vicinity and for the personnel is estimated with the help of linear extrapolation of ''dose-response'' curve regarding the natural variations caused by residence variations and occupational hazard. According to the ICRP data, the risk of late effects is 10/sup -4/ for man-rem. Considered are the existing and perspective management methods for NPS the high-level radioactive wastes in the UK as well as the equipment.

  18. Radioactive waste: the poisoned legacy of the nuclear industry

    Rousselet, Y.

    2011-01-01

    The nuclear industry produces a huge amount of radioactive waste from one end to the other of the nuclear cycle: i.e. from mining uranium to uranium enrichment through reactor operating, waste reprocessing and dismantling nuclear power plants. Nuclear power is now being 'sold' to political leaders and citizens as an effective way to deal with climate change and ensure security of energy supplies. Nonetheless, nuclear energy is not a viable solution and is thus a major obstacle to the development of clean energy for the future. In addition to safety and security issues, the nuclear industry is, above all, faced with the huge problem of how to deal with the waste it produces and for which it has no solution. This ought to put a brake on the nuclear industry, but instead, against all expectations, its development continues to gather pace. (author)

  19. Applications of nuclear energy in future

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  20. Chemical sensors for nuclear industry

    Gnanasekaran, K.I.

    2012-01-01

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H 2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH 3 and H 2 S sensors for use in Heavy water production industries and NO x sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  1. Feeding the nuclear pipeline: Enabling a global nuclear future

    Waltar, Alan E.

    2002-01-01

    Full text: There is nothing more vital to the advancement of human civilization than the abundance of usable and affordable energy. It underpins national security, economic prosperity, and global stability. Nuclear energy, which exhibits a unique combination of environmental and sustainable attributes, appears strongly positioned to play a much larger and more pivotal role in the mix of future global energy supplies than it has played in the past. Unfortunately, after a fairly rapid growth period within the industrialized nations in the 1960 to 1980 time frame, a variety of factors led to a substantial reduction in commercial nuclear power plant construction (with the possible exception of several Pacific Rim countries). This, in turn, led to a serious erosion in the enrollment patterns of nuclear engineering programs - causing alarmingly low enrollment levels in many counties by the turn of the century. Numerous studies conducted over the past five years have soberly come to the consistent conclusion that the nuclear pipeline cannot keep up with the needs of the nuclear industry. In fact, when combining the aging work force with low matriculation rates in most nuclear engineering academic programs, a huge (and unacceptable) mismatch between needs and supply is strikingly evident. This is further exasperated by the lack of meaningful efforts to capture the knowledge of the 'first nuclear era' professionals in a form that can be effectively transferred to the upcoming generation. Methods must be found to better capture the enormous body of experience already accumulated and both document it and then mentor the new nuclear engineers that do enter the work force to enable them to build upon this experience, rather than having to re-create it. On the positive side, enrollment patterns in the majority of nuclear engineering programs still in existence within the United States are now generally on the rise, at least at the undergraduate level. Some programs have

  2. Implications of nuclear industry globalization for chinese nuclear industry: opportunities and challenges

    Guo Zhifeng; Ding Qihua; Wang Zheng

    2014-01-01

    In recent years, globalization of the world nuclear industry has developed into a new phase. Chinese nuclear industry will be inevitably integrated into this trend. Globalization will bring both positive and adverse effects on Chinese nuclear industry. Facing the fierce competition, Chinese companies must rise to many challenges to enter the global nuclear market. And China need to make scientific decisions and take effective measures in various fields of nuclear industry to realized the goal of global development. (authors)

  3. Nuclear instrumentation for the industrial measuring systems

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  4. Integrated project management information systems: the French nuclear industry experience

    Jacquin, J.-C.; Caupin, G.-M.

    1990-01-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK)

  5. Integrated project management information systems: the French nuclear industry experience

    Jacquin, J.-C.; Caupin, G.-M.

    1990-03-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK).

  6. Manipulating meanings. [Advertising by the nuclear industry

    Burgess, J. (University College, London (United Kingdom). Dept. of Geography)

    Nuclear industry advertising in the United Kingdom is becoming more and more frequent, and is often controversial. The content and impact of recent campaigns are considered, especially the advertisement which portrays nuclear power as beneficial to the greenhouse effect. (author).

  7. Nuclear power has a future

    Majewski, O.

    2000-01-01

    Consensus is possible. This is the message of the President of the Deutsches Atomforum, Dr. Otto Majewski, at the opening of the Forum's Winter Meeting in Berlin. Majewski emphasized that the operators of nuclear power plants urgently needed security in planning, given the rapid change in the European electricity market. It was time to get away from the onesided discussion about running times and opt-out, and focus again on the entire spectrum of a long term, calculable, reliable energy policy. Besides a sustainable clarification of the transport issue, the retroactive taxation of the reserves accumulated for waste management constituted an unacceptable burden on operators. Companies would take legal action against these measures, should it turn out to be necessary. Dr. Majewski expressed himself unequivocally in favour of the EPR as a reactor line for the future. (orig.) [de

  8. The impact of computers on the nuclear utility industry

    Taylor, J.J.

    1984-01-01

    The applications of computer technology to the nuclear utility industry are discussed in light of recent phenomenal growth of computer hardware and software. Computer applications in existence in the power plants are presented, as well as potential future development for plant design, construction, operation, maintenance and retrofit. Utility concerns are addressed. The study concludes that the applications of computer technology to the nuclear utility industry are highly promising and evolutionary in nature

  9. Market competition in the nuclear industry

    Taylor, M.

    2008-01-01

    The nuclear industry provides a wide variety of specialized equipment and services to support the construction and operation of nuclear power plants (NPPs). This includes the supply of NPPs themselves, the range of materials and services required in the nuclear fuel cycle, and the services and equipment needed for maintenance and upgrading. The markets to provide these have changed substantially as they have evolved from the government-led early stages of the nuclear industry to predominantly competitive, commercial markets today. (author)

  10. Industrial application of nuclear techniques in Australia

    Easey, J.F.

    1981-01-01

    The applications of nuclear techniques in Australia was reviewed - the work has been to aid: mining and mineral sector, the manufacturing, chemical and petroleum industries, hydrology and sedimentology

  11. The future of the nuclear option

    Frost, B.R.T.

    1992-01-01

    This paper reports on the future of the nuclear option. No nuclear power reactors have been ordered in the U.S.A. since 1975, but the number of operating reactors has increased to the 115 operating today. The demand for electric power continues to grow. At this time, concern over the environmental effects of fossil fuels has grown; global warming and acid rain effects are major determinants of energy policy. In these circumstances nuclear power may be the only viable option to meet the growing demand for electricity. In the past decade the nuclear power industry has addressed its major critics by standardizing designs, improving operator training, and developing safe methods of disposing of waste products. Fast breeder reactors have taken a new lease on life through the American Integral Fast Reactor (IFR) design which is inherently safe, proliferation resistant, and helps the waste-disposal problem. It will probably not be commercially available until well into the next century. The extension of reactor life raises questions of long-term thermal and radiation effects

  12. Nuclear engineering career path - Past, present and future in Europe

    Dragusin, O.; Goicea, A.

    2005-01-01

    Full text: Today's nuclear workforce is growing older. The nuclear industry is at a turning point, mainly when we try to evaluate future needs. The paper tries to explore what is the present status of nuclear engineering career in Europe and which are the future trends. Today's students are either unaware of, or indifferent to, nuclear power. But it is not their fault - after all, an entire generation has grown to adulthood since the Three Miles Island and Chernobyl accidents. If their parents' views about nuclear power have been changed after these unhappy accidents, today's teens appear to be almost ambivalent toward it. What could be done to attract younger to the nuclear field in Europe? Probably the main key is in education and even more in a positive image-making of nuclear industry. Creation of more possibilities for gaining work experience and an improvement of economical situation and successful completion of reforms in the industry could attract young people. Political viewpoint is very important, if we consider that people in general thinks that nuclear will be phased out within a short future. A good advertising about job opportunities to come is another factor that plays a role in information of young generation. The paper provides information about university programmes in nuclear engineering in European countries. (authors)

  13. Germany, an industrialized country, and nuclear power

    Wartenberg, L. v.

    2001-01-01

    The question of the future of nuclear power in Germany, and the agreement between the federal government and industry of June 14, 2000 about the future operation of plants, are important far beyond the confines of this sector of industry. In times of economic globalization and of competition among national economies, questions of location have become key issues in meeting future challenges. For this purpose, there must be more freedom for the economy; entrepreneurial action must be regarded as a positive duty to be fulfilled by society. Personal responsibility and competition, with room for self-responsibility, must not be hampered further by interventions and red tape. This applies to all sectors of the economy, in particular to the power supply sector, as is borne out by the current debate about the quota regulations for cogeneration systems (CHP). Social justice, one of the most important unifying forces in this modern society, must be interpreted as solidarity. This solidarity must be sought also in an international context. Supplying the basic necessities to all inhabitants of this earth requires all sources of energy, also in the interest of achieving sustainability. This term should be interpreted, above and beyond its meaning in environmental protection, as a concept in all areas of politics, implying that the future must be taken into account in all decisions made today. In the light of the problems associated with establishing a worldwide sustainable power supply system, inter alia meeting the objectives of climate protection, continuity of supply, and economic viability, there is no way around nuclear power. Free decisions are required in the sense of sustainable economic management, and the political boundary conditions must be created for this to be possible. (orig.) [de

  14. The World Nuclear Industry Status Report 2013

    Schneider, Mycle; Froggatt, Antony; Hosokawa, Komei; Thomas, Steve; Yamaguchi, Yukio; Hazemann, Julie; Bradford, Peter A.

    2013-07-01

    Two years after the Fukushima disaster started unfolding on 11 March 2011, its impact on the global nuclear industry has become increasingly visible. Global electricity generation from nuclear plants dropped by a historic 7 percent in 2012, adding to the record drop of 4 percent in 2011. This World Nuclear Industry Status Report 2013 (WNISR) provides a global overview of the history, the current status and the trends of nuclear power programs worldwide. It looks at nuclear reactor units in operation and under construction. Annex 1 provides 40 pages of detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the second time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. Annex 6 provides an overview table with key data on the world nuclear industry by country. The 2013 edition of the World Nuclear Industry Status Report also includes an update on nuclear economics as well as an overview of the status, on-site and off-site, of the challenges triggered by the Fukushima disaster. However, this report's emphasis on recent post-Fukushima developments should not obscure an important fact: as previous editions (see www.WorldNuclearReport.org) detail, the world nuclear industry already faced daunting challenges long before Fukushima, just as the U.S. nuclear power industry had largely collapsed before the 1979 Three Mile Island accident. The nuclear promoters' invention that a global nuclear renaissance was flourishing until 3/11 is equally false: Fukushima only added to already grave problems, starting with poor economics. The performance of the nuclear industry over the year from July 2012 to July 2013 is summed up in this report

  15. International nuclear energy law - present and future

    Barrie, G.N.

    1988-01-01

    International nuclear energy law, as discussed in this article, is the law relating to the global, peaceful uses of nuclear science and technology. The position of nuclear law in the wide realm of law itself as well as the present status of nuclear legislation is assessed. This article also covers the development of international nuclear energy law, from the first nuclear law - the New Zealand Atomic Energy Act of 1945-, the present and the future. National and international organizations concerned with nuclear energy and their contribribution to nuclear law are reviewed

  16. Nuclear energy for technology and industry

    Kemeny, L.G.

    1987-01-01

    It is a sad commentary on the complete lack of informed realism of the Government and people of Australia that, after thirty years of vacillation and political chicanery, nuclear technology, one of this nation's potential ''sunrise industries'' is in its death throes. Whilst our third world neighbours, in particular Indonesia, Malaysia, the Philippines, the People's Republic of China and even impoverished Bangladesh are making giant strides to develop an autonomous expertise Australia's potential has been dissipated and its opportunities for leadership and technology transfer lost. By chance this paper was written some weeks before the nuclear accident at Chernobyl (U.S.S.R.) and many years after accidents at the Three Mile Island nuclear power plant (U.S.A.) and the plutonium production reactor at Windscale (U.K.). None of these incidents alter the basic arguments or conclusions contained in this manuscript. (See Appendix). The year 1986 might represent the final opportunity for concerned professionals to seek to improve the quality of public education and information to end ''the war against the atom''. It will be necessary to re-motivate the public and private sector of a demoralised technology and to launch it on a road of responsible and successful expansion unshackled by beaurocratic interference. It is the purpose of this paper to examine why the first three decades of nuclear technology in Australia have been so singularly unsuccessful and to discuss a coherent and rational implementation of plans and policies for the future. (author)

  17. Nuclear energy in the future

    Chaussade, J.P.

    1994-01-01

    Nuclear energy plays a major role in the French economy because of the lack of fossil fuels on the French territory. About 75% of the French electric power is of nuclear origin. This paper gives an analysis of the French public attitude about nuclear energy and the methods used by the nuclear industrialists to better the electro-nuclear image. Communication, advertising and transparency are the best attitudes for a suitable public information and are necessary to reduce the public anxiety after the Chernobyl accident. Television advertising, magazines and organized visits of nuclear installations have allowed to explain the interest of nuclear energy in the environmental reduction of pollutants. However, public information must include the topic about nuclear wastes to remain credible. (J.S.)

  18. The future of nuclear energy

    El-Hinnawi, E.E.

    1980-01-01

    The subject is discussed under the headings: introduction; nuclear power as a public issue; issues of major concern (environmental aspects); effects of radiation on man; the safety of nuclear power plants (risk analysis; Three Mile Island accident); radioactive waste management; nuclear proliferation and safeguards; conclusion. (U.K.)

  19. The Canadian nuclear industry - a national asset

    1985-03-01

    The economic importance of the Canadian nuclear industry in saving costs and creating jobs is expounded. The medical work of Atomic Energy of Canada Limited is also extolled. The Canadian Nuclear Association urges the federal government to continue to support the industry at home, and to continue to promote nuclear exports. This report was prepared in response to the Federal Finance Minister's 'A New Direction for Canada'

  20. Status of nuclear power industry in Ukraine

    Kadenko, I.M.; Vlasenko, M.I.

    2007-01-01

    There are five nuclear power plants and sites (NPPs) with 15 units in operation, 3 units under decommissioning and 1 drastically known as the 'Shelter' object in Ukraine. Ukraine has ambitions plans to develop nuclear industry based on own mineral, human financial resources as well as world wide international cooperation with nuclear countries

  1. Problems of nuclear industry in Japan

    Yoshiyama, Hirokichi

    1976-01-01

    The past twenty years growth of Japanese reactor plant makers is historically reviewed in the first part of this report. The first ten years were devoted for the construction of research reactors and for the design studies of power plants. The next ten years were devoted for the construction of power stations. Total income and expenditures of Japanese makers for these two periods are presented. It is emphasized that expenditures always exceeded income. The second part previews the projected growth of nuclear power generation. Generating capacities of 49,000 MW at 1985 and 90,000 MW at 1990 is assumed. To meet this demand, Japanese makers must have the ability of supplying about 8000 MW per year and the number of personnel (at present, about 9,000) must be increased to 25,000 in next ten years. The third part discusses the roles of plant makers. Establishment of safe and reliable technology, promotion of standardization, improvement of economical bases, and the promotion of associated industries (such as nuclear fuel makers and operator training institutions) are the main subjects. The roles of government are also shortly discussed. The rest of this paper shortly discusses about the participation to the national project (ATR, FBR, and centrifuge enrichment) and about future problems in growing to an exporting industry. (Aoki, K.)

  2. Learning curve estimation techniques for nuclear industry

    Vaurio, Jussi K.

    1983-01-01

    Statistical techniques are developed to estimate the progress made by the nuclear industry in learning to prevent accidents. Learning curves are derived for accident occurrence rates based on actuarial data, predictions are made for the future, and compact analytical equations are obtained for the statistical accuracies of the estimates. Both maximum likelihood estimation and the method of moments are applied to obtain parameters for the learning models, and results are compared to each other and to earlier graphical and analytical results. An effective statistical test is also derived to assess the significance of trends. The models used associate learning directly to accidents, to the number of plants and to the cumulative number of operating years. Using as a data base nine core damage accidents in electricity-producing plants, it is estimated that the probability of a plant to have a serious flaw has decreased from 0.1 to 0.01 during the developmental phase of the nuclear industry. At the same time the frequency of accidents has decreased from 0.04 per reactor year to 0.0004 per reactor year

  3. Preliminary cost estimating for the nuclear industry

    Klumpar, I.V.; Soltz, K.M.

    1985-01-01

    The nuclear industry has higher costs for personnel, equipment, construction, and engineering than conventional industry, which means that cost estimation procedures may need adjustment. The authors account for the special technical and labor requirements of the nuclear industry in making adjustments to equipment and installation cost estimations. Using illustrative examples, they show that conventional methods of preliminary cost estimation are flexible enough for application to emerging industries if their cost structure is similar to that of the process industries. If not, modifications can provide enough engineering and cost data for a statistical analysis. 9 references, 14 figures, 4 tables

  4. The World Nuclear Industry Status Report 2004

    Schneider, Mycle; Froggatt, Antony

    2004-12-01

    Fifty years ago, in September 1954, the head of the US Atomic Energy Commission stated that nuclear energy would become 'too cheap to meter': The cost to produce energy by nuclear power plants would be so low that the investment into electricity meters would not be justified. By coincidence the US prophecy came within three months of the announcement of the world's first nuclear power plant being connected to the grid in.. the then Soviet Union. In June 2004, the international nuclear industry celebrated the anniversary of the grid connection at the site of the world's first power reactor in Obninsk, Russia, under the original slogan '50 Years of Nuclear Power - The Next 50 Years'. This report aims to provide a solid basis for analysis into the prospects for the nuclear power industry. Twelve years ago, the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the World Nuclear Industry Status Report 1992. In the current international atmosphere of revival of the nuclear revival debate - it has been a periodically recurring phenomenon for the past twenty years - two of the authors of the 1992 report, now independent consultants, have carried out an updated review of the status of the world nuclear industry. The performance of the nuclear industry over the past year is summed up in this report

  5. Nuclear energy and the nuclear industry

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  6. Forest Products Industry of the Future

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  7. The worldwide nuclear industry and its markets

    Mons, L.

    2000-06-01

    The world nuclear industry has entered a phase of low activity since the beginning of the 90's. The opening of electricity markets to competition, the reserve of part of the public opinion with respect to nuclear energy and the competition of other power production sources explain the lack of dynamism of nuclear markets. In this context of uncertainties, the nuclear sector has started a re-structuration in depth with new strategic trends which will be decisive for the perenniality of the nuclear industry. The front-end of the fuel cycle is disturbed by production over-capacities which lead to strong tensions on prices. The veering of the German and Belgian policies has had strong impacts on the spent fuels reprocessing activity and the reactor construction activity is in decline in Europe and in the US. On the other hand, services are developing with the extension of the service life of nuclear plants and the waste management and dismantling markets are emerging. The main stakes that the occidental nuclear actors have to face today are: improving the competitiveness of nuclear industry, mastering the management of long-living radioactive wastes, proving the safeness of nuclear power, countering the arrival of Asian competitors. In front of these stakes, the nuclear actors have to take initiatives such as: concentration, vertical integration, technological innovation, communication, diversification etc.. This study examines the overall segments of the world nuclear industry. It comprises also a behaviour and strategy analysis of 13 major actors of this sector. (J.S.)

  8. NIASA: Nuclear Industry Association of South Africa

    Mollard, P.; Louf, P.H.; Gentet, G.; Doix, G.

    2015-01-01

    NIASA (Nuclear Industry Association of South Africa) aims at promoting the highest standards in the development and use of nuclear technologies. NIASA was founded in 2007. South-Africa has a long history in nuclear activity since the construction of the first nuclear power plant ever built on African soil was commissioned in 1984 in South-Africa (Koeberg plant equipped with two 900 MW reactors). There is also an important center for nuclear research near Pretoria that was founded in 1948 to regulate the prospecting for uranium. NECSA (South African Nuclear Energy Corporation is a state-owned public company) that manages nuclear research, operates the Safari-1 (2 MWe - commissioned in 1965) research reactor and manages the national radioactive waste center located at Vaalputs. The South African nuclear industry employs about 4000 people. (A.C.)

  9. Perspectives on the future of nuclear power

    Chernoff, H.; Friedman, D.

    1990-01-01

    The US outlook on the future of nuclear power can be divided into three perspectives, here termed the macroeconomic perspective, the technological perspective, and the utility perspective (including independent power producers, or IPPs). A brief review of the macroeconomic and technological perspectives shows how differently the public, the media, politicians, and many nonutility advocates of nuclear power view the future of nuclear power (and, especially, the requirements for new orders) compared with the utilities and prospective IPPs

  10. Nuclear energy, understand the future

    Bauquis, P.R.; Barre, B.

    2006-01-01

    In spite of its first use for military needs, the nuclear became a substitution energy, especially for the electric power production. For many scientist the nuclear seems to be the main part to the world energy supply in an economic growth context, provided the radioactive wastes problems is solved. From the military origins to the electric power generation, this book explains the technical economical and political aspects of the nuclear energy. (A.L.B.)

  11. Nuclear science, technology and innovation in Canada - securing the future

    Walker, R.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    As a Tier 1 Nuclear Nation, Canada has a rich and proud history of achievement in nuclear Science, Technology and Innovation (ST&I) -- from commercializing the CANDU power system around the world, advancing fuel technology and nuclear safety, to protecting human health through nuclear medicine and cancer therapy technology. Today, the nuclear industry in Canada is actively working to secure its promising, long-term place in the world and is embracing the change necessary to fulfill the enormous potential for good of nuclear technology. For its part, the Canadian Government is taking a bold new public policy approach to nuclear ST&I, by restructuring its large, multi-faceted AECL Nuclear Laboratories. Through the restructuring, AECL, as Canada's premier nuclear science and technology organization, will be better positioned for success via an incentivized 'Government-owned-Contractor-operated', private-sector management model. The aim of this new approach is to enhance and grow high-value nuclear innovation for the marketplace, strengthen the competitiveness of Canada's nuclear sector, and reduce costs to the Government of Canada with time. This approach will play a key role in ensuring a bright future for the Canadian Nuclear Industry domestically and globally as it launches its 25-year Vision and Action Plan, where one of the priority action areas is support for a strong, forward-looking, nuclear ST&I agenda. As the new model for the Nuclear Laboratories is moved forward by the Government, with the support of AECL and industry, Canada's nuclear expertise and knowledge continue to be expanded and deepened through the work of the Laboratories' ten Centres of Excellence, where AECL's fundamental approach is guided by the reality that ST&I is needed in all aspects of the nuclear cycle, including decommissioning, waste management and environmental protection. (author)

  12. Modelling human resource requirements for the nuclear industry in Europe

    Roelofs, Ferry [Nuclear Research and Consultancy Group (NRG) (Netherlands); Flore, Massimo; Estorff, Ulrik von [Joint Research Center (JRC) (Netherlands)

    2017-11-15

    The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.

  13. Modelling human resource requirements for the nuclear industry in Europe

    Roelofs, Ferry; Flore, Massimo; Estorff, Ulrik von

    2017-01-01

    The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.

  14. Nuclear Research and Development Capabilities Needed to Support Future Growth

    Wham, Robert M. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6154 (United States); Kearns, Paul [Battelle Memorial Institute (United States); Marston, Ted [Marston Consulting (United States)

    2009-06-15

    The energy crisis looming before the United States can be resolved only by an approach that integrates a 'portfolio' of options. Nuclear energy, already an important element in the portfolio, should play an even more significant role in the future as the U.S. strives to attain energy independence and reduce carbon emissions. The DOE Office of Nuclear Energy asked Battelle Memorial Institute to obtain input from the commercial power generation industry on industry's vision for nuclear energy over the next 30-50 years. With this input, Battelle was asked to generate a set of research and development capabilities necessary for DOE to support the anticipated growth in nuclear power generation. This presentation, based on the report generated for the Office of Nuclear Energy, identifies the current and future nuclear research and development capabilities required to make this happen. The capabilities support: (1) continued, safe operation of the current fleet of nuclear plants; (2) the availability of a well qualified and trained workforce; (3) demonstration of the next generation nuclear plants; (4) development of a sustainable fuel cycle; (5) advanced technologies for maximizing resource utilization and minimization of waste and (6) advanced modeling and simulation for rapid and reliable development and deployment of new nuclear technologies. In order to assure these capabilities are made available, a Strategic Nuclear Energy Capability Initiative is proposed to provide the required resources during this critical period of time. (authors)

  15. Nuclear power: the future reassessed

    Roberts, L [East Anglia Univ., Norwich (UK). Environmental Risk Assessment Unit (ERAU)

    1991-02-01

    In recommending that consent be given for the construction of a further Pressurized Water Reactor at Hinkley Point in Somerset, UK, the Inspector at the Public Inquiry underlined two major benefits: (i) the contribution an additional large nuclear plant would make to the strategic objective of diversity of supply, and (ii) the environmental benefits of nuclear power compared to many alternative forms of electricity generation. The major environmental advantages of nuclear power over fossil fuel combustion arise both because of the small amounts of fuel required - 1/18,000 compared to coal - thus minimizing transport needs and land use, and because of the virtual absence of atmospheric emissions from nuclear stations. Nuclear reactors emit no acid gases and the nuclear fuel cycle gives rise to only small amounts of carbon dioxide. An expansion of the nuclear option is often opposed on three grounds; the need to dispose of radioactive waste; the danger of the proliferation of nuclear weapons and the risk of a large scale accident. However all these doubts can be answered and the arguments supporting nuclear safety are summarized. It is argued that the contribution to primary energy demand in Europe could be doubled or trebled by 2020 with considerable benefits in overall safety environmental impacts at no extra cost. (author).

  16. Nuclear power: the future reassessed

    Roberts, L.

    1991-01-01

    In recommending that consent be given for the construction of a further Pressurized Water Reactor at Hinkley Point in Somerset, UK, the Inspector at the Public Inquiry underlined two major benefits: (i) the contribution an additional large nuclear plant would make to the strategic objective of diversity of supply, and (ii) the environmental benefits of nuclear power compared to many alternative forms of electricity generation. The major environmental advantages of nuclear power over fossil fuel combustion arise both because of the small amounts of fuel required - 1/18,000 compared to coal - thus minimizing transport needs and land use, and because of the virtual absence of atmospheric emissions from nuclear stations. Nuclear reactors emit no acid gases and the nuclear fuel cycle gives rise to only small amounts of carbon dioxide. An expansion of the nuclear option is often opposed on three grounds; the need to dispose of radioactive waste; the danger of the proliferation of nuclear weapons and the risk of a large scale accident. However all these doubts can be answered and the arguments supporting nuclear safety are summarized. It is argued that the contribution to primary energy demand in Europe could be doubled or trebled by 2020 with considerable benefits in overall safety environmental impacts at no extra cost. (author)

  17. Japan's nuclear industry; taking off in the mist

    1979-01-01

    This survey of the nuclear industry aimed at investigating the results and prospects of nuclear energy-related sales, expenditures and manpower in electric utilities, mining and manufacturing industries and trading companies in Japan, so that the study of the economic aspects of the nuclear industry and the analysis of problems may contribute to the sound development of the industry and provide with fundamental informations for interested persons in all sectors. It covers the fiscal year 1978, and is the 20th of a series of annual investigations. The fiscal year 1978 began with the court ruling on the Ikata case, and ended with the impact of the accident in the Three Mile Island plant, USA. As for the results of survey, the answers to questionnaire, the trend of expenditures, the trend of sales, the trend of manpower, the prospects for the future, and the flow of money in the nuclear industry are reported. The gross expenditures in private industries increased by 41% to 1,450 billion yen in comparison with the previous fiscal year. Sales exceeded expenditures by 12,600 million yen in mining and manufacturing industries. Manpower increased by 9% in electric utilities and 7% in mining and manufacturing industries. The construction of 3 nuclear power plants is due to start in fiscal 1978. (Kako, I.)

  18. Building world-wide nuclear industry success stories - Safe management of nuclear waste and used nuclear fuel

    Saint-Pierre, S.

    2005-01-01

    Full text: This WNA Position Statement summarizes the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating experience and

  19. Nuclear energy: basics, present, future

    Ricotti M. E

    2013-06-01

    Full Text Available The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  20. Future Remains: Industrial Heritage at the Hanford Plutonium Works

    Freer, Brian

    This dissertation argues that U.S. environmental and historic preservation regulations, industrial heritage projects, history, and art only provide partial frameworks for successfully transmitting an informed story into the long range future about nuclear technology and its related environmental legacy. This argument is important because plutonium from nuclear weapons production is toxic to humans in very small amounts, threatens environmental health, has a half-life of 24, 110 years and because the industrial heritage project at Hanford is the first time an entire U.S. Department of Energy weapons production site has been designated a U.S. Historic District. This research is situated within anthropological interest in industrial heritage studies, environmental anthropology, applied visual anthropology, as well as wider discourses on nuclear studies. However, none of these disciplines is really designed or intended to be a completely satisfactory frame of reference for addressing this perplexing challenge of documenting and conveying an informed story about nuclear technology and its related environmental legacy into the long range future. Others have thought about this question and have made important contributions toward a potential solution. Examples here include: future generations movements concerning intergenerational equity as evidenced in scholarship, law, and amongst Native American groups; Nez Perce and Confederated Tribes of the Umatilla Indian Reservation responses to the Hanford End State Vision and Hanford's Canyon Disposition Initiative; as well as the findings of organizational scholars on the advantages realized by organizations that have a long term future perspective. While these ideas inform the main line inquiry of this dissertation, the principal approach put forth by the researcher of how to convey an informed story about nuclear technology and waste into the long range future is implementation of the proposed Future Remains clause, as

  1. Atomic nanoscale technology in the nuclear industry

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  2. The effect of costs on the future of nuclear power

    Walske, C.

    1984-01-01

    The author discusses the future of the nuclear power industry from an economics and cost-factor point of view, from the point of view of plant management, as it affects and requires personnel training, as R and D cost and competition is involved, as end-user cost is involved, and as efficiency and cost effectiveness of nuclear power fare in comparison with other sources of electrical energy

  3. Best practice asset management in the nuclear industry

    Maxey, Terry M.

    2004-01-01

    Pursuit of operational excellence is the goal of every nuclear plant operator. Implementation of Enterprise Asset Management(EAM) solutions in the nuclear industry has significantly contributed to record performance over the last decade in the areas of reliability and production, nuclear and personnel safety, and production cost. This presentation will outline the scope of best practice EAM implementation and highlight performance results achieved from EAM deployment. It will also explore areas of future opportunity in which EAM solutions will support an era of new nuclear plant construction in the United States

  4. Nuclear industry: a young sector of excellence

    Varin, P.

    2017-01-01

    Nuclear industry is the 3. industrial sector in France and is the good reason why the French energy mix is largely carbon-free. The medium term challenges that faces nuclear industry in this country is first to succeed the extensive refit of nuclear power plants with a view on getting the extension of their operating life and secondly to recruit the skilled staff nuclear industry needs. About 8000 jobs dispatched in the 2500 enterprises that forms the nuclear sector will be available each year up to 2020. The age pyramid shows that numerous retirements are expected in the years to come so the issue of skill and knowledge transfer is looming. 25% of recruitment will be made on the basis of work-study contracts particularly for technical jobs. Concerning recruitment, the nuclear sector is competing with other high-tech sectors like aeronautics or the automobile sector, which make things harder. The image that nuclear industry wants to promote of itself is the image of a young, modern, high-tech industry that appeared less than 50 years ago and whose main purpose is to provide a carbon-free electricity to an avid world. (A.C.)

  5. Applications of neutron radiography for the nuclear power industry

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  6. Future nuclear energy scenarios for Europe

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  7. Nuclear insurance in the future Internal Market

    Mueller-Stein, J.

    1991-01-01

    Summarizing, it is prognosticated that nuclear insurance practice will not drastically change on account of the Internal Market. This assumption is based on the unanimous estimation of the nuclear energy risk by the international insurance industry, as is documented by their traditional good cooperation in pools. (orig.) [de

  8. Where is the future of nuclear chemistry

    1980-01-01

    The future potentials of nuclear chemistry as a natural science with a strong orientation towards practical applications has been discussed at this meeting of 45 experts coming from research institutes and laboratories working in the fields of radiochemistry, nuclear chemistry, inorganic and applied chemistry, hot-atom chemistry, radiobiology, and nuclear biology, and from the two nuclear research centres at Juelich and Karlsruhe. The discussion centred around the four main aspects of future work, namely 1. basic research leading to an extension of the periodic table, nuclear reactions, the chemistry of superheavy elements, cosmochemistry; 2. radionuclide technology and activation analysis; 3. nuclear fuel cycle and reprocessing processes together with ultimate disposal methods; 4. radiochemistry in the life sciences, including nuclear chemistry and applications. (HK) [de

  9. Nuclear fuel industry of the republic of Kazakhstan

    Parfenov, D.; Dara, S.

    2001-01-01

    National Atomic Company Kazatomprom has been established in 1997 by special presidential decree with the purpose to coordinate the former USSR Nuclear Industry enterprises located on the territory of Kazakhstan. The Government of Kazakhstan entrusts the republican nuclear sector's future to Kazatomprom. Although Kazatomprom is a state-owned company and operates on behalf of the government, it is private in terms of ownership, being organized in a form of a closed type joint stock company, and within its structure there are daughter companies with a certain share of private capital. Formally Kazatomprom has started only a few years ago, but it should not create confusion. Because Kazatomprom has only united the USSR traditional nuclear cycle units, which, I want to emphasize for, count as long history as that of the nuclear industry itself. This fact is the guarantee of high quality production culture inherent to the former USSR Defense Industry

  10. Nuclear industry chart no. 21 - France

    Anon.

    1976-01-01

    A fold-out chart shows the relationship between the government bodies and industrial concerns. Nuclear power plant orders under the 1970-84 programme are tabulated. A directory is included of national bodies, firms and establishments. (U.K.)

  11. Trends in risk management in nuclear industry

    Kim, Inn Seock

    1996-01-01

    Safety management may be classified into three dimensions: risk management, accident management, and emergency management. This paper addresses the recent trends of safety management in nuclear industry, focussing on risk management and accident management

  12. Hazard and safety in the nuclear industry

    Tadmor, J.

    1978-01-01

    Although the number of victims in the nuclear industry has been extremely low as compared with the number of victims in other spheres of human activity society has been willing to put up with a high number of accidents resulting in few victims per accident but refuses to accept an extremely rare accident resulting in a high number of victims. The U.S. nuclear industry is spending almost 2000 dollars for each reduction of a man x rem unit and this investment raises the ''man-life value'' in the nuclear industry to 10 million dollars as compared with 10,000 to 20,000 dollars spent in other activities (roentgen, early cancer detection, etc.). To reduce the exaggerated burden placed on the nuclear industry the safety expenditures should be spread over a maximum possible range of human activities. (B.G.)

  13. US nuclear power industry overview

    Wood, C.J.

    1995-01-01

    The electric utilities in the United States are facing a number of challenges as deregulation proceeds. Cost control is one of these challenges that impacts directly the operators of nuclear power plants. This presentation reviews recent data on the performance of nuclear power plants and discusses technical developments to reduce operating costs, with particular reference to low-level radioactive waste issues

  14. Nuclear industry (Finance) Act 1981

    1981-01-01

    The purpose of the Act is to enable British Nuclear Fuels Limited to make borrowings backed by Government guarantees in order to finance its ten year investment programme. More specifically, the Act raises the financial limit applicable to British Nuclear Fuels Limited from pound 500 million to pound 1,000 million. (NEA) [fr

  15. Nuclear industry project audit and countermeasures

    Li Yongxin; Zhang Jian

    2012-01-01

    With China's increasing use of nuclear energy, nuclear power related construction projects related to the deepening of the audit, some of the nuclear industry in construction field of the dominant issues have been more effective containment, such as inflated workload, high-set fixed standards, to improve billing unit price, which overestimate the risk calculation tools and behavior completed audit of the accounts have been able to escape his stuff. However, some nuclear industry construction field with a hidden problem because of its hidden nature, not easily found, and some even have intensified the trend. Construction funds to the country such problems caused by the loss of waste is enormous, to the breeding of corruption provided the soil is fertile, if not promptly and effectively to stop the breeding will spread. This paper on the current construction of the nuclear industry in several major areas of the hidden problems are discussed, and the angle from the audit of appropriate countermeasures. (authors)

  16. The World Nuclear Industry Status Report 2012

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie

    2012-07-01

    Twenty years after its first edition, World Nuclear Industry Status Report 2012 portrays an industry suffering from the cumulative impacts of the world economic crisis, the Fukushima disaster, ferocious competitors and its own planning and management difficulties. The report provides a global overview of the history, the current status and trends of nuclear power programs in the world. It looks at units in operation and under construction. Annex 1 also provides detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the first time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. The performance of the nuclear industry over the 18 months since the beginning of 2011 is summed up in this report

  17. Options contracts in the nuclear fuel industry

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  18. Continuous improvement methods in the nuclear industry

    Heising, Carolyn D.

    1995-01-01

    The purpose of this paper is to investigate management methods for improved safety in the nuclear power industry. Process improvement management, methods of business process reengineering, total quality management, and continued process improvement (KAIZEN) are explored. The anticipated advantages of extensive use of improved process oriented management methods in the nuclear industry are increased effectiveness and efficiency in virtually all tasks of plant operation and maintenance. Important spin off include increased plant safety and economy. (author). 6 refs., 1 fig

  19. Personal radiation protection in nuclear industry

    Gol'dshtejn, D.S.; Koshcheev, V.S.

    1983-01-01

    Specific peculiarities of organization of personal radiation protection at various nuclear industry enterprises when dealing with radioactive and other toxic substances are illuminated. Effect of heatin.g and cooling microclimate is discussed. Medical and technical requirements for personal protection means and tasks of personal protection in the field of nuclear industry are considered in short along with some peculiarities of application of different kinds of personal protection means and psychological aspects of personnel protection

  20. Trends which will shape our nuclear future

    Bray, A.P.

    1984-01-01

    The technology record of the US nuclear industry is excellent. The design and safety record of the light water reactor has made nuclear programs in countries which lack the US societal and administrative structures very successful. The challenges facing the US program are institutional. Through more sensible regulation, financing reform, and the recognition of safety improvements, our society can capitalize on the benefits of current light water technology. Nuclear industry regulators should recognize, encourage, and give credit for the investment protection efforts taken on standard plants

  1. Status of Chinese NPP Industry and Nuclear Fuel Cycle Policy

    Gao, R. X. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, W. I.; Kim, S. K. [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    China still extended their experiences to both domestic and overseas so far. Chinese State Council approved its 'Medium and Long-term Nuclear Power Development Plan' in November 2007, indicating further definition for nuclear energy as indispensable energy option and future self-reliance development of nuclear industry. China intends to become self-sufficient not only in NPPs capacity, but also in the fuel production for all those plants. There are currently 17 NPPs in operation, and 28 NPPs under construction. However, domestic uranium mining supplying is currently less than a quarter of nuclear fuel demands. This paper investigated and summarized the updated status of NPP industry in China and Nuclear Fuel Cycle(NFC) policy. There still remain a number of technical innovation and comprehensive challenges for this nuclear developing country in the long-term, but its large ambitions and dramatic improvements toward future should not be ignored. As shown in this paper, the most suitable approach for China to achieve both environmentally-friendly power supplying and increasing energy demands meeting simultaneously must be considered. Nuclear energy now was recognized as the most potential and optimal way of energy supply system. In addition, to accommodate such a high-speed NPP construction in China, it should also focus on when and how spent nuclear fuel should be reprocessed. Finally, the nuclear back-end fuel cycle policy should be established, taking into accounts of all costs, uranium resource security, spent fuel management, proliferation resistance and environmental impact.

  2. Human resources in the Japanese nuclear industry

    Katayama, M.

    1995-01-01

    Japan is becoming rapidly a nation with an elderly population. Japanese students are turning away from the manufacturing industries, including the nuclear industry, and turning towards more service oriented industries that are considered to be cleaner and to pay better. Studies have been performed to devise ways to attract young workers to the nuclear industry, which is projected to continue to grown under the current long range energy plants. The paper summarizes the findings and recommendations of the recent studies conducted by the nuclear industry and academic circles. All studies point out that insufficient emphasis is placed on science in the present Japanese educational programme and that implementation of effective programmes to revitalize education in science is most urgently needed to keep Japan in the forefront of high technology. Utilization of advanced computer technology and automation is promoted to improve working conditions and efficiency in the nuclear industry. In addition, the establishment of a professional status of engineers and technicians will be vital for an effective utilization of qualified workers in the nuclear industry. (author). 3 refs, 1 tab

  3. Future prospects for nuclear power in France

    Maïzi, Nadia; Assoumou, Edi

    2014-01-01

    Highlights: • Applies a bottom-up energy system optimization model to define future energy choices. • Derive scenarios to explore different combination of nuclear policy and emission target up to 2050. • Underline the resulting challenges in term of power capacity renewal rate and flexibility. - Abstract: Taking different nuclear policy options from a French perspective, we look at the issues that we were able to pinpoint thanks to the TIMES-FR model. The technico-economic analysis supported by the TIMES-FR model brings robust lessons, whichever technological options are selected: • The cliff effect puts the French system “up against the wall”: sustained investments must be made to renew electricity production facilities coming to the end of their lives. • This situation opens up opportunities to all industrial channels, with the main challenge being to sustain an ambitious pace of constructing new capacities and answering specific questions for each of them, such as acceptability and reliability. • In parallel, the current paradigm of increasing electricity consumption is likely to be challenged over the coming decades if environmental issues are still part of public policy. • These factors make it possible to consider that the question of political options in terms of long-term energy cannot be restricted to a technological choice and must go beyond pro- or anti-nuclear lobbying. This contribution, which is mainly based on a technical thought process, should fit into the wider framework of a debate on society and behavior choices. The issue of the electricity user will be unavoidable

  4. Dikkers Valves for nuclear industry

    Anon.

    1975-01-01

    Most countries have adopted the ASME Boiler and Pressure Vessel Code Section III, as the basis of their national requirements for licensing nuclear components. This Code gives clear directives for defining design requirements coupled with a controlled manufacturing system. It has always been and still is the policy of Dikkers to manufacture high-quality products. Dikkers manufacture nuclear products in accordance with this Code, Section III; indeed many features exceed these minimum requirements. At the Nuclex Exhibition in Basel, Dikkers Valves BV will exhibit its main products for use in nuclear power plants. (Auth.)

  5. The nuclear power industry: financial considerations

    Leward, S.J.

    1984-01-01

    It is important not to allow the present liquidity crisis to escalate into economic and political dislocations that could result in a prolonged cessation of necessary capital investment. In assessing the future growth of nuclear power in other parts of the world, it may be instructive to consider the plight of the U.S. industry and the parallels that are apparent. In the United States, electric utility debt is growing too fast; a structural imbalance has developed even on the better corporate balance sheets; and cash flow or internal generation has diminished, particularly as the time needed to complete nuclear plants has extended, thereby precluding revenue production for as long as 10 to 15 years from the beginning of construction. Newcomers to the lending business may have little appetite to lend in unfavorable climates, and regulatory (political) bodies may irresponsibly allow unproductive use of resources and refuse to adopt difficult but essential economic policies to preserve the financial integrity of the borrower. These issues are relevant in the examination of any lender/borrower relationship, whether it be between sovereign nations, banker and borrower, or vendor and vendee. (author)

  6. Nuclear industry chart no. 20 - Sweden

    Anon.

    1976-01-01

    A folding chart is presented of the Swedish nuclear industry, which shows the government bodies, companies, utilities and other groups who participate in the nuclear field. Their special interests and activities and affiliations with each other and with international organisations are indicated. (U.K.)

  7. Organization of the German nuclear industry

    Anon.

    1992-01-01

    Corporate ownership within the German nuclear industry has evolved constantly during the last decade, and recent acquisitions and mergers, reunification of the country, as well as preparation for a unified European power market, have led to many significant changes during the past two years. The country's nuclear industry continues to struggle under an increasingly anti-nuclear political environment, yet nuclear power provided more than one-third of Germany's total electricity generation in 1991. As in many countries, particularly in western Europe, many German companies involved in different facets of the nuclear industry are interrelated. Usually as a means of horizontal or vertical integration, the country's nuclear utilities own, directly or indirectly, shares in uranium mining projects; conversion, enrichment, and fabrication companies; or other utilities' nuclear power plants. The utilities own partial interests in companies in supporting industries as well, including transportation firms, waste management companies, uranium broker/traders, and nuclear equipment manufacturers. While the majority of the companies owned are German, numerous investments are made in non-German firms also

  8. The Future of Nuclear Energy

    Alonso, A.

    2005-01-01

    Current nuclear energy represents 23.5% of the total electrical power available within the OECD countries. This is the energy offering the lowest costs to generate, it does not emit greenhouse-effect fumes nor does it contribute to global warming, however, it does generate radioactive and toxic waste which society perceives as an unacceptable risk. For this reason the development of new nuclear installation in Europe is at a stand still or moving backward. Truthful information and social participation in decisions is the best way to achieve the eradication of the social phobia produced by this energy source. (Author)

  9. Future trends in nuclear fuels

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  10. Westinghouse support for Spanish nuclear industry

    Rebollo, R.

    1999-01-01

    One of the major commitments Westinghouse has with the nuclear industry is to provide to the utilities the support necessary to have their nuclear units operating at optimum levels of availability and safety. This article outlines the organization the Energy Systems Business Unit of Westinghouse has in place to fulfill this commitment and describes the evolution of the support Westinghouse is providing to the operation o f the Spanish Nuclear Power plants. (Author)

  11. The World Nuclear Industry Status Report: 1992

    Flavin, Christopher; Lenssen, Nicholas; Froggatt, Antony; Willis, John; Kondakji, Assad; Schneider, Mycle

    1992-05-01

    The World Nuclear Industry Status Report provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. This first WNISR Report was issued in 1992 in a joint publication with WISE-Paris, Greenpeace International and the World Watch Institute, Washington

  12. The technical and industrial evolutions in the nuclear fuel cycle

    Rougeau, J.P.; Guais, J.C.

    1989-01-01

    The fuel cycle industry is a vital part of nuclear energy generation. Producers in every step of this industry, from uranium to reprocessing are working to adapt their products and services both to the more and more competitive conditions of the market and to the utilities evoluting specific needs. For the next decade, the main trend is uranium economy and reduction of industrial costs. For the longer term, the difficult prevision of nuclear energy developments, in particular with new types of reactors necessitates a true capacity of adaptation both from the utilities and from the fuel cycle industry. Cogema has already demonstrated the ability to adapt its industrial capabilities and therefore can prepare confidently for the future challenges [fr

  13. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is, providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century

  14. The American nuclear power industry. A handbook

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index

  15. Prospects of nuclear industry in Latin American

    Brito, S.; Consentino, J.; Eibenschuts, J.; Gasparian, A.E.; Lepecki, W.; Mueller, A.E.F.; Spitalnik, J.

    1984-01-01

    The prospects of nuclear generation in Latin America are presented. It is mentioned that prior to the implementation of a nuclear power programme a legal, organizational and industrial infrastructure has to be developed as a condition for an effetive technology transfer. It is also mentioned that by the expansion of regional cooperation, existing experience and know-how in Latin America nuclear industry, specially regarding small and medium power reactors, could become an important development factor for the whole region. (R.S.) [pt

  16. Nuclear industry is ready for digitalization

    Le Ngoc, B.

    2017-01-01

    Nuclear industry is now embracing the digital revolution by adapting existing digital technologies concerning big data, additive manufacturing, connected objects or enhanced reality to the constraints of nuclear industry. The expected benefits will be manifold: to assure and improve the competitiveness of new reactors, to accelerate the implementation of innovations, to develop preventive maintenance, and to allow a better communication between teams working on the same project. In some big enterprises a chief digital officer has been commissioned to prioritize the introduction of digital technologies in industrial projects. (A.C.)

  17. Renewable and nuclear power: A common future?

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  18. A view from the nuclear industry

    Berry, R.J.

    1989-01-01

    The Conference is reminded that the nuclear industry regards occupational radiation-induced cancer as a putative rather than a demonstrated hazard at current dose levels. Although epidemiological studies have shown possible dose-response correlation, all such studies of nuclear industry personnel show an overall risk of malignant disease lower than that for the general public. Doses to workers in the nuclear industry have been reducing since the 1970s, largely in consequence of the optimisation of radiation protection and the injunction ''to keep doses as low as reasonably achievable'' without reduction in occupational dose limits over this period. It is argued that further reduction in individual dose limits will act to increase collective dose. The nuclear industry no longer has either the highest individual average or collective radiation doses to its workforce within British industry; higher average individual doses occur in the non-coal mining industry and the collective dose to coal miners is greater than that of nuclear fuel cycle workers and comparable to the sum of collective doses to fuel cycle and power generation workers. (author)

  19. Role of high technology in the nuclear industry

    Cain, D.G.

    1986-01-01

    A discussion of high technology identifies the characteristics which distinguish it from conventional technologies, and the impact high technology will have in the nuclear power industry in the near future. The basic theme is that high technology is an ensemble of competing technological developments that shifts with time and technological innovation. The attributes which current distinguish high technology are compactness, plasticity, convergence, and intelligence. These high technology attributes are presented as a prelude to some examples of high technology developments which are just beginning to penetrate the nuclear industry. Concluding remarks address some of the challenges which must be faced in order to assure that high technology is successfully adapted and used

  20. Nuclear reactors for the future

    Vijayan, P.K.; Kamble, M.T.; Dulera, I.V.

    2013-01-01

    For the sustainable development of nuclear power plants with enhanced safety features, economic competitiveness, proliferation resistance and physical protection, several advanced reactor developments have been initiated world-wide. The major advanced reactor initiatives and the proposed advanced reactor concepts have been briefly reviewed along with their advantages and challenges. Various advanced reactor designs being pursued in India have also been briefly described in the paper. (author)

  1. Nuclear industry - challenges in chemical engineering

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  2. Assurance of durable nuclear industry

    Fortescue, P [General Atomic Co.

    1976-10-01

    The problem of conservation of fuel resources resulting in a need for reactor systems with more economical fuel cycles, is discussed. Breeders and advanced converters are first considered. An examination is then made of symbiotic arrangements to form a self-sufficient power-producing complex. An illustration is given of a gas breeder-HTGR combination. The ratio of HTGR to breeder thermal power is calculated for a self-sufficient combination without provision of industry expansion, and also when allowing for industry expansion. It is shown that fuel resources can be extended and become most rapidly useful by proper portions of LWRs, fast breeders, and HTGRs.

  3. Finance and the nuclear industry

    Radtke, G.G.

    1983-01-01

    The subject is discussed under the headings: the energy situation today; energy investment and capital requirements (finding the necessary funds); further possibilities; future financing (project financing); summary. (U.K.)

  4. Present and Future of Nuclear Robotics; Presente y futuro de la robotica nuclear

    Bielza Ciaz-Caneja, M [ENDESA, (Spain); Carmena Servet, P [AMYS, (Spain); Gomez Santamaria, J [IBERDROLA, (Spain); Gonzalez Fernandez, J [NUCLENOR, (Spain); Izquierdo Mendoza, J A [C.N. COFRENTES, (Spain); Linares Pintos, F [ENSA, (Spain); Gonzalez, Martinez [CASA, (Spain); Muntion Ruesgas, A [C.N. STA Maria de Garona, (Spain); Serna Oliveira, M A [CEIT, (Spain)

    1997-10-01

    New technologies have increased the use of robotic systems in fields other than Industry. As a result, research and developers are focusing their interest in concepts like Intelligent Robotics and Robotics in Services. This paper describes the use of Robotics in Nuclear facilities, where robots can be used to protect workers in high radiation areas, to reduce total worker exposure and to minimise downtime. First, the structure of robot systems is introduced and the benefits of nuclear robots is presented. Next, the paper describes some specific nuclear applications and the families of nuclear robots present in the market. After that, a section is devoted to Nuclear Robotics in Spain, with emphasis in some of the developments being carried out at present. Finally, some reflections about the future of robots in Nuclear Industry are offered. (Author) 18 refs.

  5. IEC ready for turnaround in nuclear industry

    Schomberg, R.; Corte, E.; Thompson, I.

    2005-01-01

    The activity of IEC Technical Committee (TC) 45 (Nuclear Instrumentation) in conditions of turnaround in nuclear industry is considered. TC 45's main task is to lay down a comprehensive strategy for itself and its two subcommittees as well as to improve the relevance of the nuclear safety standards. Subcommittee 45A develops standards that apply to the electronic and electrical functions and associated systems and equipment used in the instrumentation and control systems of nuclear energy generation facilities. Subcommittee 45B develops and issues standards covering all aspects of instrumentation associated with radiation protection including radiation detectors, radiation monitoring, dosimetry and radiology [ru

  6. Perspectives of development in the nuclear industry

    Barthelt, K.

    1987-01-01

    Modern economy cannot do without electricity, and safe and reliable electricity supply cannot do without nuclear power. This implies that the F.R.G. will continue to build nuclear power stations, and as the power stations of the future benefit from the experience gained with existing plant, there will be continuous improvement in terms of safety, pollution control, and economics. (orig.) [de

  7. Latest technological achievements and future prospects in the RCR industry

    Corny, F.

    1998-01-01

    As the international utilities community enters an era marked by new patterns such as deregulation, industrial nuclear companies must offer a broad and attractive series of flexible services in order to match with the utilities needs. COGEMA Group has therefore developed a global industrial answer-thanks to various technological tools-covering reprocessing of spent nuclear fuel, treatment of waste, and recycling of reusable materials as well as a transportation system. According to this framework, spent fuel is first shipped from the nuclear power plant to the. La Hague reprocessing site. The La Hague site-1997 reprocessed spent fuel quantities exceed 11,100 tU-offers a technically mastered and economically proven solution for spent fuel reprocessing. Besides the acquired industrial maturity, specially in the waste treatment and conditioning area-i.e., vitrification of high level waste reached more than 5,500 canisters at beginning 1998-future improvements are being prepared steadily. For instance, the construction of a new workshop, known as the ACC, for medium activity materials (hulls, end-pieces, and technological waste) compaction will be a milestone in the waste management concept. Industrial recycling of reusable materials (uranium and plutonium) is also implemented at full-throttle. For instance, the MELOX manufacturing plant-whose production reached 102 tHM in 1997 thanks to evolutive processes such as AMIMAS-allows to feed with efficiency the European MOX loading program (28 reactors: 15 in France, 8 in Germany, 3 in Switzerland and 2 in Belgium). Last, a dedicated transport organization-through highly specialized subsidiaries such as TRANSNUCLEAIRE-gives this industrial and technical scheme its consistency as shown by the successful return of vitrified residue to Japan. The development of new transport casks for instance MOX transport casks called the MX family-and the implementation of new techniques, like satellite tracking of trucks..., will give

  8. Pressurized water reactor and its development for nuclear power plants A survey the beginning, development, transfer, industrial application and; the future of a technology

    Khazaneh, Reza.

    1996-01-01

    Discussion about PWR type reactors is forwarded to production and technology developments in various countries. Technology transfer to different countries is reviewed in chapter two. The third chapter is about specifications and main components of the reactors. The fourth chapter outlooks to safety in nuclear technology which has a crucial importance in nuclear technology. The first PWR type reactor built in Russia has had some deficiencies; after that, i.e. in the eighties its quality improved and its criteria was met with international criteria. The sixth chapter describe reactor operation and some problems due to its operation. The use of advanced reactors which has had better quality in respect to its safety in the eighties is presented in seventh chapter. The final chapter is devoted to the new generation of reactor design for twenty first century

  9. Nuclear energy and its future prospects

    Fells, I.

    1981-01-01

    The most difficult task for the nuclear industry to cope with is education of the public and the politicians in such manner that the emotional reaction resulting from insufficient information is replaced by critical, well-balanced consideration of the hazards and benefits associated with nuclear energy. Only if this is achieved the influential politicians can, according to the author, represent public opinion and set up an acceptable energy strategy. (orig.) [de

  10. Future prospects of nuclear power stations

    Teoeke, G.

    1980-01-01

    On the basis of an extensive study of the literature the energy problems of the world are analysed. The main directions of the development in the nuclear industry are outlined with special emphasis on the new uranium enrichment process. The environmental problems are also treated in the view of the Three Mile Island incident. The nuclear program of the Comecon countries is shortly presented. (R.J.)

  11. The future of nuclear energy. A perspective on nuclear power development

    Sackett, J.I.

    2000-01-01

    Nuclear power has made a huge contribution to the quality of life for millions, providing electrical power without emitting green house gasses to the environment. Its safety record is sterling when compared to any major industrial undertaking by any measure. Yet the much of the public and many policy makers remain skeptical of nuclear power, if not down right frightened of it or opposed to it. 'The Future of Nuclear Power' examines what must be achieved by nuclear power itself to attain public support. Dr. John Sackett, a world leader in nuclear reactor safety, examines the four areas which must be addressed as this technology moves into the future proliferation of weapons material; waste management; safety; and, economics and concludes that the key to success in each of these areas is United States leadership in determining how nuclear power is developed and applied

  12. What nuclear industry after Fukushima?

    Barre, Bertrand

    2011-01-01

    Nuclear power experienced a fast growth during the 70's and 80's, but a quasi-stagnation during the 90's. Since the beginning of the 21. century, a so-called renaissance could be witnessed, fuelled by concerns about energy security of supply, volatility of oil and gas prices, fear of an incoming 'peak oil', and, last but not least, the threat of global climate change due to the anthropogenic emissions of greenhouse effect gases. Then, on March 11 2011, a monster earthquake followed by a violent tsunami triggered an accident which all but destroyed four nuclear reactors on the Fukushima-Daiichi site, on the east coast of Honshu, the main Japanese island. There was meltdown in three reactor cores, hydrogen explosions which blew off the upper structures of four reactor buildings, and massive radioactive contamination of a spread of land north-west of the site as well as radioactive releases to the ocean. This accident triggered reactions of various intensities throughout the world, awakening the fears, and questions raised 25 years before by the Chernobyl accident. But the tsunami did not make the fundamentals of the renaissance disappear. After a pause, to fully learn lessons from the accident, the renaissance is likely to start again, all the much since the 'third generation' nuclear plants would have survived unscathed the Fukushima earthquake and tsunami. (author)

  13. Knowledge management for nuclear industry operating organizations

    2006-10-01

    The nuclear energy sector is characterized by lengthy time frames and technical excellence. Early nuclear plants were designed to operate for 40 years but their service life now frequently extends between 50 and 60 years. Decommissioning and decontamination of nuclear plants will also be spread over several years resulting in a life cycle - from cradle to grave - in excess of 100 years, which gives rise to two challenges for the nuclear industry: (1) Retention of existing skills and competencies for a period of over fifty years, particularly in countries where no new nuclear power plants are being planned; and (2) Development of new skills and competencies in the areas of decommissioning and radioactive waste management in many industrialized countries if younger workers cannot continue to be attracted to the nuclear disciplines. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. Typically, these retirees are individuals who can answer questions very easily and who possess tacit knowledge never before extracted from them. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear power plants (NPPs). Therefore, the primary challenge of preserving such knowledge is to determine how best to capture tacit knowledge and transfer it to successors. These problems are exacerbated by the deregulation of energy markets around the world. The nuclear industry is now required to reduce its costs dramatically in order to compete with generators that have different technology life cycle profiles. In many countries, government funding has been dramatically reduced or has disappeared altogether while the profit margins of generators have been severely squeezed. The result has been lower electricity prices but also the loss of expertise as a result of downsizing to reduce salary costs, a loss of

  14. Future cyclotron systems : an industrial perspective

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modem cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, we investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century. (author)

  15. Future cyclotron systems: An industrial perspective

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century

  16. Corrosion issues in nuclear industry today

    Cattant, F.; Crusset, D.; Feron, D.

    2008-01-01

    In the context of global warming, nuclear energy is a carbon-free source of power and so is a meaningful option for energy production without CO 2 emissions. Currently, there are more than 440 commercial nuclear reactors, accounting for about 15% of electric power generation in the world, and there has not been a major accident in over 20 years. The world's fleet of nuclear power plants is, on average, more than 20 years old. Even though the design life of a nuclear power plant is typically 30 or 40 years, it is quite feasible that many nuclear power plants will be able to operate for longer than this. The re-emergence of nuclear power today is founded on the present generation of nuclear reactors meeting the demands of extended service life, ensuring the cost competitiveness of nuclear power and matching enhanced safety requirements. Nuclear power plant engineers should be able to demonstrate such integrity and reliability of their system materials and components as to enable nuclear power plants to operate beyond their initial design life. Effective waste management is another challenge for sustainable nuclear energy today; more precisely, a solution is needed for the management of high-level and long-lived intermediate-level radioactive waste over the very long term. Most nuclear countries are currently gathering the data needed to assess the feasibility of a deep geological waste repository, including the prediction of the behaviour of materials over several thousands of years. The extended service life of nuclear power plants and the need for permanent disposal for nuclear waste are today's key issues in the nuclear industry. We focus here on the major role that corrosion plays in these two factors, and on the French approaches to these two issues. (authors)

  17. Activities of nuclear human resource development in nuclear industry

    Tsujikura, Yonezo

    2010-01-01

    Since 2007, the JAIF (Japan Atomic Industrial Forum) had established the nuclear energy human resource development council to make analysis of the issue on nuclear human resource development. The author mainly contributed to develop its road map as a chairman of working group. Questionnaire survey to relevant parties on issues of nuclear human resource development had been conducted and the council identified the six relevant issues and ten recommendations. Both aspects for career design and skill-up program are necessary to develop nuclear human resource at each developing step and four respective central coordinating hubs should be linked to each sector participating in human resource development. (T. Tanaka)

  18. Nuclear power: benefits for the future

    Vultur, G.; Vultur, C.

    2000-01-01

    This paper explains how nuclear power was implemented in Romania, why Romania chose nuclear energy, and what the impact of building a power plant is on the industry and environment of Romania. In the 1960's, Romania started discussions with different partners to cooperate in the development and application of atomic energy for a peaceful purpose. In 1977, the Romanian Government decided that the Candu-600 would be the basic unit for its nuclear program. The contract between Romania and Canada was for 5 units. In 1979, the construction of the first Candu unit started in Cernavoda, on the Danube 160 km east of Bucharest. (authors)

  19. The refining industry and the future of the fuel oils

    Soleille, S.

    2004-01-01

    The fuel oils consumption decrease in France since 1970, because of the two petroleum crisis, the nuclear energy competition and the air pollution. The fuel oils industry is then looking other export possibilities. This report aims to offer a first approach of the problem and presents the main challenges. The first part is devoted to the technical context (definition, production and outlet. The second part presents the environmental context and the fuel oils market. In the third part the market is studied at the world scale, in the fourth at the french scale and in the fifth at the scale of other countries as United States, Japan and european Union. A synthesis tables is given in the last part to compare and propose some hypothesis concerning the future of fuel oils and the french refining industry. (A.L.B.)

  20. Diffusion of information about the nuclear industry

    Galvan, C.G.

    1983-01-01

    The diffusion of nuclear technology means a development of a large network of activities (e.g. capital goods, construction, metallurgical and chemical industries) than a path for solving energy problems. Its ties with the arms race cause specific non-proliferation problems. A close state-capital articulation emerges, which strengthens the subsumption of labour and introduces new processes of social control. Already fulfilled investments give impulse to this tendency. The Tlatelolco regime, banishing nuclear weapons from Latin America, seems to establish a pre-condition for a regional solution to the problems thus arising. But, besides the imperfect adhesion to the Treaty, technical and political reasons obstruct a regional integration of the nuclear fuel cycle. Among other things, a lack of regional integration in other industries makes nuclear expansion more dependent on extra-regional technological ties. (Author) [pt

  1. Investing today in energy for tomorrow. U.S. civilian nuclear industry: high-level oversight. Oil prices: getting close to the psychological threshold. The future of biofuels in question

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - Investing today in energy for tomorrow: Whether to increase or to replace generating capacity, the amount of investment needed in energy infrastructure to meet rising demand has been identified, but many obstacles must be overcome before they become a reality. A status report and personal perspective from Pierre Gadonneix, CEO of EDF, in the 'Expert opinion' section. 2 - U.S. civilian nuclear industry - high-level oversight: The approaches are clearly different, but the licensing processes for nuclear reactor development and operation in France and the United States are both strictly regulated. Alternatives delves further. 3 - Oil prices - getting close to the psychological threshold: Are we going to stop using oil sooner rather than later if crude prices keep going up? European commodities expert Philippe Chalmin shares his opinion. 4 - The future of biofuels in question In many countries, biofuels are seen as an alternative to oil. Still, farmland is not expandable forever and the economics of biofuels deserve some scrutiny

  2. Science or Fiction - Is there a Future for Nuclear

    Wenisch, A.; Kromp, R.; Reinberger, D.

    2007-07-01

    This booklet served as preparation for both participants and speakers at the conference »Science or Fiction – Is there a Future for Nuclear?«. This international conference on fusion energy and new nuclear reactor models was organized by Global 2000/Friends of the Earth Austria and took place 8 November 2007 in Vienna. This booklet contains our contribution to the ongoing discussion about future energy security and what paths we should take. We focus on the possible future scenarios for nuclear power. The nuclear industry is trying to secure its own future by reintroducing old concepts like nuclear fusion and updating old fission reactors in so-called Generation IV systems. While there is enough information available on both fission and fusion energy from project financiers, research institutions and the European Commission, who gave the lion share of energy research funds into fusion research, we attempt here to provide a broader perspective and examine how much is Fiction and what these concepts could mean in some future Reality, which is upon us to decide on Now. (author)

  3. Science or Fiction - Is there a Future for Nuclear

    Wenisch, A.; Kromp, R.; Reinberger, D.

    2007-01-01

    This booklet served as preparation for both participants and speakers at the conference »Science or Fiction – Is there a Future for Nuclear?«. This international conference on fusion energy and new nuclear reactor models was organized by Global 2000/Friends of the Earth Austria and took place 8 November 2007 in Vienna. This booklet contains our contribution to the ongoing discussion about future energy security and what paths we should take. We focus on the possible future scenarios for nuclear power. The nuclear industry is trying to secure its own future by reintroducing old concepts like nuclear fusion and updating old fission reactors in so-called Generation IV systems. While there is enough information available on both fission and fusion energy from project financiers, research institutions and the European Commission, who gave the lion share of energy research funds into fusion research, we attempt here to provide a broader perspective and examine how much is Fiction and what these concepts could mean in some future Reality, which is upon us to decide on Now. (author)

  4. Nuclear Fuels: Present and Future

    Donald R. Olander

    2009-02-01

    Full Text Available The important new developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of these fuels and the reactors they power are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel-rod designs, the hydride fuel with liquid metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the Very High Temperature Reactor and the Sodium Fast Reactor, and the accompanying reprocessing technologies, aqueous-based UREX and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the material's behavior under irradiation and in the reprocessing schemes are emphasized.

  5. Some concepts of future nuclear ship

    Fujino, Masataka

    2000-01-01

    Characteristic features of nuclear power generation are as follows: (1) Thermal energy can be continuously extracted for a long time without fuel feed, (2) Nuclear energy is suitable for generating huge power, (3) Oxygen is unnecessary for combustion of fuel, and (4) Unlike fossil fuel, nuclear power generation does not exhaust NOx, SOx, and CO 2 : it can be considered environmentally friendly. In view of these features, the Japan Atomic Energy Research Institute commissioned the Shipbuilding Research Association of Japan (JSRA) to survey what kinds of nuclear ship would be put to practical use in the near future. For this purpose, a research committee was organized in 1992 by the JSRA, and concluded its investigation in 1996. The main aim of this research was to clarify the requirements of ship performance as nuclear ships, and then to extract the technical issues of the marine reactor installed in nuclear ships to be solved. As a result of the survey, it was suggested that displacement-type large high-speed container ship would be one of the promising future nuclear merchant ships, and 6500 m deep-sea and 600 m undersea scientific research submersibles would be other promising nuclear special purpose ships. At the same time, various requirements of marine reactors, which are expected to be installed in these ships, were clarified mainly from the technical viewpoints. (author)

  6. Big problems for Swedish nuclear industry

    Holmstroem, Anton; Runesson, Linda

    2006-01-01

    A report of the problems for Swedish nuclear industry the summer of 2006. A detailed description of the 25th of July incident at Forsmark 1 is provided. The incident was classified as level two on the INIS scale. The other Swedish nuclear plants were subject to security evaluations in the aftermath, and at Forsmark 2 similar weaknesses were found in the security system (ml)

  7. Burgundy, the exemplary success of nuclear industry

    Hugue, Didier

    2013-01-01

    This article comments the successful activity of mechanical and metallurgical industries in the French region of Burgundy in relationship with the nuclear sector. This is notably due to equipment renewal and to the continuity of the French nuclear program. Consequences are also positive for subcontracting small and medium-sized companies of the region. Collaborative action for exports is also an opportunity for the concerned companies, whether big or small

  8. Nuclear industry prepares fore shortage of engineers

    Gauker, Lynn.

    1991-01-01

    It is predicted that the Canadian nuclear industry will experience a shortage of qualified personnel within the next five to ten years. The reasons for this prediction are as follows: enrollment in engineering courses, particularly five courses in nuclear engineering has been declining; immigration can no longer be expected to fill the gap; the workforce is aging. Solutions may include promotional campaigns, student employment programs, and educating workers to a professional level

  9. The nuclear industry and its European markets

    1998-01-01

    This study gives an overview of the worldwide nuclear energy demand and reviews the different markets which are classified as 'mature' (uranium extraction, enrichment, conversion and reactors building), 'developing' (reprocessing, MOX fuel fabrication, maintenance and services) and 'emerging' (waste treatment and dismantling). Then, the study analyzes the evolution of demand and the answers of companies and presents the strategies and performances of nuclear industry leaders. (J.S.)

  10. The rebirth of the US nuclear industry

    Pitron, G.

    2008-01-01

    Fought during a long time by ecologists but recently rehabilitated by politicians, the US civil nuclear industry has started its comeback in the first power-consuming country of the world. Utilities and industrialists are already in action, and the first cooperation agreements with foreign groups, like EdF or Areva, have been signed. After three decades of stagnation, the US nuclear industry has to re-launch its fuel cycle activities, from the fuel enrichment to the waste management, and the recruitment of a new competent manpower is one of the main concerns. (J.S.)

  11. The nuclear industry - pollution and risks

    Fremlin, J.H.

    1985-01-01

    Unlike other power sources, the only pollution from the nuclear industry is radioactive pollution, which on average in Britain represents 0.2% of the annual dose due to natural background radiation. This 0.2% is not spread uniformly over the population and there is genuine concern about its effects where it is most concentrated. The only significant doses of radiation to the general public due to the nuclear industry are derived from the spent-fuel reprocessing plant at Sellafield, and in particular from the concentration of Caesium-134 and Caesium-137 in fish, Ruthenium-106 in edible seaweeds and plutonium in shellfish and in silt. The concern about the possible escape of high-level wastes stored at the Sellafield site is discussed, and the hazard compared with that dangerous chemicals stored at other industrial sites. The effects of pollution by the nuclear industry, based on the conventional and generally accepted view of radiation risks, add up to a few deaths per year in the 50 million population of England and Wales from an industry producing 15% of the electricity needs of those countries. When this is compared with the risk associated with other methods of electricity production, the author concludes that replacement by nuclear power of any major source of power using fossil fuel, with the possible exception of natural gas, would save lives

  12. C. The nuclear industry in Europe

    1976-01-01

    Most of the European states have made a large commitment to nuclear power. In some aspects, such as fast breeder technology and oxide fuel reprocessing, they clearly lead the rest of the world. The industry is highly competitive, and is able to win contracts over US firms, even though the products offered are basically of US designs. It is also characterised by a large degree of co-operation and dependency amongst member countries. Many developments and services are of a joint nature. To ensure growth in the industry, and reduce foreign involvement, many of the governments have bought large segments of domestic companies, often from US firms. Government agencies themselves have transformed their service departments (such as those involved in the fuel cycle business) so that they now operate under the guise of commercial enterprises. These steps have arisen principally because of the large financial commitments normally associated with nuclear power. As a result of this, and despite the recent economic depression, the nuclear industry in Europe generally appears healthy. It does not seem to be suffering to the same extent from the problems that the industry in the USA is currently facing. Even though some states are experiencing a decrease in the projected rate of growth of energy demand, expectations are that an increasing proportion of energy requirements in most European countries will be met from nuclear power. The industry, both for the construction of generating capacity and fuel cycle services, is anticipating growth and financial profit

  13. The European nuclear industry - an overview

    Berke, Claus

    1994-01-01

    In his talk, the President of Foratom, Dr. Claus Berke, reviews the present state of the nuclear industry in Europe. The European nuclear park is still the largest of any region in the world. In some countries, there has been a moratorium on new construction in recent years. This has made life for the supplying industry very difficult. One positive side-effect o at has been a significant rationalisation of the industry. In the course of this the previous vertical integration within European states has given place to the creation of important new transnational structures. In his talk, Dr. Berke describes some of the most important facets of the 'Europeanisation' of the industry, both in the area of power-plants and of the nuclear fuel-cycle. He also describes the increasing cooperation between utilities and suppliers in Western Europe and the operators of nuclear power plant in Eastern Europe, which is aimed at introducing a safety culture and an institutional framework in the East as close as possible to that which exists in Western Europe. Dr. Berke concludes that, over the coming years, both economic and environmental arguments will start to reverse the present political opposition, in many European countries, to new building programmes, and that the industry is likely be in a healthier state by the end of the decade

  14. Present and future of Korean nuclear power

    Min, K-H

    2014-01-01

    'Full text:' The Korean nuclear power industry has devoted itself to technological development and self-reliance over the last 30 years since Kori unit 1, the first nuclear power plant commenced its commercial operation in 1978. As a result of such efforts and accumulated experiences, the Korean nuclear power industry has developed the OPR 1000 and APR 1400 units and is almost completing the development of the APR+ as a 1,500MW class reactor with its own technologies of design and manufacturing. Also, the Korean nuclear power industry has been able to build a strong supply chain from engineering, manufacturing, construction, and fuel supply, to operation and maintenance. At present, Korea is operating 23 commercial power reactors with a total installed capacity of 20,716 MW, accounting for 25 percent of the installed capacity and one third of the nation's total electricity generation. Also, the share of nuclear power generation capacity will be 29 percent by 2035 in the Long Term Energy Development Plan and 43 GW of nuclear energy capacity will be needed. Thanks to nuclear power generation as an essential driving force, Korea has been able to supply cheap and stable electricity. However, amid the growing public concerns about nuclear safety after the Fukushima accident, the Korean government and related organizations are exerting its utmost effort in all areas, for example, enhancing nuclear safety and safety culture, carrying out management innovation, and communicating with the public in order to enhance transparency. Also, the Korean government launched the Public Engagement Commission on spent nuclear fuel (SNF) management in 2013, which is tasked to initiate public consultation & discussion and submit recommendation to government after in-depth review and analysis on SNF management options by the end of 2014. Nuclear power has become very essential part of national economy in Korea because Korea has virtually no indigenous energy resources and

  15. Present and future of Korean nuclear power

    Min, K-H [Korea Atomic Industrial Forum, Inc., Seoul (Korea, Republic of)

    2014-07-01

    'Full text:' The Korean nuclear power industry has devoted itself to technological development and self-reliance over the last 30 years since Kori unit 1, the first nuclear power plant commenced its commercial operation in 1978. As a result of such efforts and accumulated experiences, the Korean nuclear power industry has developed the OPR 1000 and APR 1400 units and is almost completing the development of the APR+ as a 1,500MW class reactor with its own technologies of design and manufacturing. Also, the Korean nuclear power industry has been able to build a strong supply chain from engineering, manufacturing, construction, and fuel supply, to operation and maintenance. At present, Korea is operating 23 commercial power reactors with a total installed capacity of 20,716 MW, accounting for 25 percent of the installed capacity and one third of the nation's total electricity generation. Also, the share of nuclear power generation capacity will be 29 percent by 2035 in the Long Term Energy Development Plan and 43 GW of nuclear energy capacity will be needed. Thanks to nuclear power generation as an essential driving force, Korea has been able to supply cheap and stable electricity. However, amid the growing public concerns about nuclear safety after the Fukushima accident, the Korean government and related organizations are exerting its utmost effort in all areas, for example, enhancing nuclear safety and safety culture, carrying out management innovation, and communicating with the public in order to enhance transparency. Also, the Korean government launched the Public Engagement Commission on spent nuclear fuel (SNF) management in 2013, which is tasked to initiate public consultation & discussion and submit recommendation to government after in-depth review and analysis on SNF management options by the end of 2014. Nuclear power has become very essential part of national economy in Korea because Korea has virtually no indigenous energy resources and

  16. The nuclear industry in the European Community

    Gasterstaedt, N.

    1990-01-01

    In its reference program of 1984, the Commission presented the guidelines for the objectives in the field of nuclear electricity production within the Community. In addition, the effects have been investigated which concern the realization of these objectives for all persons involved in nuclear energy: local government, utility companies and industry. The question of nuclear energy is part of the general energy policy. Therefore, the reference program of 1984 was one of the elements which has been considered up to 1995 by the Council when defining the objectives for energy economy. The guidelines of the Commission in the reference program of 1984 are still valid today. It is important, however, to check the effects of the completion of the internal market on nuclear industry. Therefore, the Commission announced in its working program of 1989 that it will revise the reference nuclear program with regard to the prospects of the European internal market. The present document fulfills this obligation. The problems of the industry for the design and construction of nuclear power plants are treated intentionally. After the Commission for Economic and Social Affairs has given its statement, the commission will publish the document officially. (orig./UA) [de

  17. Competitiveness in Canada's nuclear industry

    Mirwald, R.

    1997-01-01

    Cameco, now a publicly traded company, mines and processes uranium. The mines are mostly in northern Saskatchewan. In 1996, Cameco increased its market share to about 15% of the western world's U 3 O 8 , and more than 20% of conversion to UF 6 . Cameco is the only commercial converter of uranium for Candu reactors. In 1996, sales were C$591 million. Net earnings last year were C$137.5 million - a fourfold increase over six years earlier - and long-term debt had been reduced to C$200 million. Cameco's position is secured by its substantial ownership position in Cigar Lake and McArthur River, the richest uranium deposits in the world. To answer questions by investors, Cameco has had to provide good public information about uranium and nuclear power

  18. The changing structure of the international commercial nuclear power reactor industry

    Forsberg, C.W.; Hill, L.J.; Reich, W.J.; Rowan, W.J.

    1992-12-01

    The objective of this report is to provide an understanding of the international commercial nuclear power industry today and how the industry is evolving. This industry includes reactor vendors, product lines, and utility customers. The evolving structure of the international nuclear power reactor industry implies different organizations making decisions within the nuclear power industry, different outside constraints on those decisions, and different priorities than with the previous structure. At the same time, cultural factors, technical constraints, and historical business relationships allow for an understanding of the organization of the industry, what is likely, and what is unlikely. With such a frame of reference, current trends and future directions can be more readily understood

  19. National standards for the nuclear industry

    Laing, W.R.; Corbin, L.T.

    1981-01-01

    Standards needs for the nuclear industry are being met by a number of voluntary organizations, such as ANS, ASTM, AWS, ASME, and IEEE. The American National Standards Institute (ANSI) coordinates these activities and approves completed standards as American National Standards. ASTM has two all-nuclear committees, E-10 and C-26. A C-26 subcommittee, Test Methods, has been active in writing analytical chemistry standards for twelve years. Thirteen have been approved as ANSI standards and others are ready for ballot. Work is continuing in all areas of the nuclear fuel cycle

  20. Laser robot in the nuclear industry

    Contre, M.

    1987-05-01

    Possibilities of power lasers for welding, cutting, drilling, plugging surface treatment and hard-facing are reviewed. CO 2 and Nd:YAG lasers only have adequate power for nuclear applications. Radiation effects on lasers and contamination problems are examined. Then examples of applications to nuclear industry are given: PWR fuel fabrication, oxide thickness measurement in Magnox reactors, laser cutting of a cylindrical piece of steel on the bottom of a fuel channel in a gas graphite reactor, nuclear plant dismantling and fuel reprocessing. 51 refs [fr

  1. Microprocessors applications in the nuclear industry

    Ethridge, C.D.

    1980-01-01

    Microprocessors in the nuclear industry, particularly at the Los Alamos Scientific Laboratory, have been and are being utilized in a wide variety of applications ranging from data acquisition and control for basic physics research to monitoring special nuclear material in long-term storage. Microprocessor systems have been developed to support weapons diagnostics measurements during underground weapons testing at the Nevada Test Site. Multiple single-component microcomputers are now controlling the measurement and recording of nuclear reactor operating power levels. The CMOS microprocessor data-acquisition instrumentation has operated on balloon flights to monitor power plant emissions. Target chamber mirror-positioning equipment for laser fusion facilities employs microprocessors

  2. Crisis in the French nuclear industry

    Nectoux, F.

    1991-02-01

    This report discusses the economics of the French nuclear power industry. It considers the dominant position of nuclear power in the French energy system, stresses the scale and causes of the current (1990) economic crisis and dispels the popular misconceptions on the cost efficiency of the French programme. The evidence is based on widely available French documents and articles. The report begins by looking at the background of nuclear power in France then discusses the problem of overcapacity, the technical problems and fall in load factors, generating costs and electricity prices and finally, strategic issues are considered. (UK)

  3. Preservation and re-use of nuclear knowledge in the UK nuclear industry

    Workman, R.

    2004-01-01

    This paper addresses the need for the UK nuclear industry to preserve knowledge generated during the 6 decades of its existence for re-use by future generations. It outlines the major government restructuring of the industry and its impact on knowledge preservation. Work within British Nuclear Fuels plc to meet the knowledge preservation requirements of its business is described. The focus is shown to be the alignment of tacit knowledge - gained through interviews with key specialists - with the explicit knowledge contained within the major knowledge base (Corporate Memory). The creation of knowledge packages to hold key knowledge on core technologies and nuclear plants is described. The paper also covers developments in securing the nuclear skill base through University Research Alliances and the Dalton Nuclear Institute. Returning to the major new challenges ahead it is shown how a knowledge portal could be implemented, linking the knowledge repositories present within the organisations that will feature in the restructured UK nuclear industry in 2005. The UK nuclear industry is facing its greatest challenge in terms of its organisation and commercial interests, at a time when the technical challenges presented by the decommissioning of old nuclear plants and the remediation of its nuclear sites are building up. In terms of knowledge preservation there has never been a greater need to ensure that knowledge associated with the key technologies that underpin the nuclear plants, and the plants themselves, is made available for use now and in the future. The Nuclear Decommissioning Authority [NDA] - a new government body that will come into being in April 2005 - will own the liabilities (the nuclear plants). Those organisations bidding to operate and decommission plants on the UK nuclear sites will utilise the assets to best effect as Site Licensing Companies [SLC] under contract to the NDA. The key asset is knowledge. Knowledge is present in explicit forms within

  4. Social costs and benefits of nuclear futures

    Pearce, D.

    1979-01-01

    The conceptual framework for evaluating which energy path is chosen is one of trading-off costs and benefits in a world of technological, economic and social uncertainty. The translation of this conceptual framework into an analytical format with empirical relevance is dealt with. Some salient features of cost benefit analysis are discussed. Actual costs and benefits of nuclear futures are then considered. Subjects discussed are: routine and non-routine radiation, waste management, proliferation, and civil liberties. A 'regret' matrix is presented showing the cost to any future generation if a decision on nuclear power is made now. (U.K.)

  5. Future of nuclear energy is promising

    Stritar, A.

    1999-01-01

    Paper is trying to clearly present the facts about World nuclear energy production in the past and in the future. The production has increased in last ten years for about 26% and will continue to grow. After next ten years we can expect between 12,5% and 25% higher production than this year. Therefore we, nuclear professionals, should not be pessimistic. We should strive not to use negative words in our communications between ourselves and especially to general public. Instead, we should proudly underline our achievements in the past and prospects for the future stressing all the benefits of this type of energy production.(author)

  6. The World Nuclear Industry Status Report 2017

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Rodriguez, Juan C.; Ruedinger, Andreas; Stienne, Agnes

    2017-09-01

    The World Nuclear Industry Status Report 2017 (WNISR2017) provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. The WNISR2017 edition includes a new assessment from an equity analyst view of the financial crisis of the nuclear sector and some of its biggest industrial players. The Fukushima Status Report provides not only an update on onsite and offsite issues six years after the beginning of the catastrophe, but also the latest official and new independent cost evaluations of the disaster. Focus chapters provide in-depth analysis of France, Japan, South Korea, the United Kingdom and the United States. The Nuclear Power vs. Renewable Energy chapter provides global comparative data on investment, capacity, and generation from nuclear, wind and solar energy. Finally, Annex 1 presents a country-by-country overview of all other countries operating nuclear power plants

  7. Perspective of nuclear power policy change and trend of nuclear industry activities from energy policy of European countries

    Murakami, Tomoko; Matsuo, Yuji; Nagatomi, Yu

    2009-01-01

    European countries of nuclear power phase-out have changed to commit to the future of nuclear energy due to the intended low-carbon power, the energy security concerns and the need of replacement reactors as current reactors approach the end of operating lives, as Italian government has passed legislation to build new nuclear power plants. This article described the perspective of nuclear power policy changes in UK, Italy an Sweden and the business trend and the SWOT analysis of related electric utilities (EDF, Enel and Vattenfall) and nuclear industries (Areva NP, Sheffield Forgemasters, ENSA and Studsvik). Policy implications obtained from this analysis were commented for Japanese nuclear industry activities. (T. Tanaka)

  8. Ion exchange in the nuclear power industry

    Lehto, J.

    1993-01-01

    Ion exchangers are used in many fields in the nuclear power industry. At nuclear power plants, organic ion exchange resins are mainly used for the removal of ionic and particulate contaminants from the primary circuit, condensate and fuel storage pond waters. Ion exchange resins are used for the solidification of low- and medium-active nuclear waste solutions. The number of applications of zeolites, and other inorganic ion exchangers, in the separation of radionuclides from nuclear waste solutions has been increasing since the 1980s. In nuclear fuel reprocessing plants, ion exchange is used for the solidification of low- and medium-active waste solutions, as well as for the partitioning of radioactive elements for further use. (Author)

  9. Managing Nuclear Knowledge: connecting past and future

    Ruyssen, M.-L.

    2006-01-01

    Since several years SCKoCEN has acknowledged the importance of Nuclear Knowledge Management. In recent years, a number of trends have drawn attention to the need for better management of nuclear knowledge. At the Lisbon European Council in 2000 the role of RandD was recognized as the driving force for a competitive and dynamic knowledge-based economy and linked to the economy's capacity to turn new knowledge into technological innovation. Knowledge management (KM) is therefore becoming more and more critical to exploit RandD results effectively and expect sufficient returns to balance the risk inherent in the large investments required by today's nuclear research. The SCK-CEN practical approach towards Nuclear Knowledge Management is twofold. First, the capture of tacit knowledge before the loss of key individuals as well as the preservation of various knowledge repositories address the complex issues of aging of the nuclear workforce and reduction of the number of students taking nuclear subjects. Secondly, the set up of education networks at international level aims to prevent further dilution of nuclear education and training programmes while pooling nuclear research resources in order to meet future requirements for qualified nuclear staff. Knowledge management combines therefore different sources of information with human knowledge capital

  10. Safety of nuclear installations: Future direction

    1990-04-01

    The Workshop presentations were divided into sessions devoted to the following topics: Environmental impact of fossil fuel energy technologies (5 papers), Future needs for nuclear power (7 papers), Safety objectives (10 papers), Safety aspects of the next generation of current-type nuclear power plants (8 papers), Safety aspects of new designs and concepts for nuclear power plants (6 papers), Special safety issues: Safety aspects of new designs and concepts for nuclear power plants (5 papers), Safety aspects of new designs and processes for the nuclear fuel cycle (5 papers), Closing panel (3 papers), 12 poster presentations and a Summary of the Workshop. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  11. Nuclear relations with administrations of industry services

    Bernardez Garcia, A.

    2011-01-01

    The object of the article is to try to answer to the following question that can arise to the holder of a nuclear power station: What Administration of Industry must I myself direct to be able to support my complementary facilities of Industrial Security inside the in force legality?. The raised discussion arise between if the competent administration for the legal steps, is the Central Administration across his delegates and sub delegates of government, or is of the Territorial Services of Industry of Autonomous communities. (Author)

  12. Which future for nuclear counter-proliferation?

    Duval, M.

    2010-01-01

    Dealing with the case of nuclear weapons possessed by nuclear states (but not eventually by terrorists), the author first identifies the constants of counter-proliferation: it is linked to interest conflicts between those who try to preserve their monopoly and those who try to acquire a new weapon either because of a threat or for reasons of regional prestige, the evolution from use to deterrence, the appearance of new actors after the USA and Russia, the role of nuclear tactical weapons, and the future of Russian weapons and know-how. He presents the international counter-proliferation context: the Non Proliferation Treaty (NPT), the IAEA and its controls, the Nuclear Supplier Group (NSG), the nuclear-free zones, the Comprehensive Test Ban Treaty (CTBT), the Missile Technology Control Regime (MTCR). He describes how and why proliferation occurs: uranium enrichment and plutonium technology, political reasons in different parts of the world. Then, he gives an overview of the proliferation status by commenting the cases of Israel, Iraq, India, Pakistan, North Korea, and Iran. He discusses the future of proliferation (involved countries, existence of a nuclear black market) and of counter-proliferation as far as Middle-East and North Korea are concerned. He tries finally to anticipate the consequences for nuclear deterrence strategy, and more particularly for Europe and France

  13. Usage of industrial robots in nuclear power industry

    Matsuo, Yoshio; Hamada, Kenjiro

    1982-01-01

    Japan is now at the top level in the world in robot technology.Its application to nuclear power field is one of the most expected. However, their usage spreads over various types of nuclear power plants, their manufacture and operation, and other areas such as fuel reprocessing plants and reactor plant decommissioning. The robots as used for the operation of BWR nuclear power plants, already developed and under development, are described: features in the nuclear-power usage of robots, the robots used currently for automatic fuel exchange, the replacement of control rod drives and in-service inspection; the robots under development for travelling inspection device and the inspection of main steam-relief safety valves, future development of robots. By robot usage, necessary personnel, work period and radiation exposure can be greatly reduced, and safety and reliability are also raised. (Mori, K.)

  14. The impact of deregulation on the US nuclear industry

    Baratta, A.J. [Pennsylvania State Univ., Nuclear Safety Center, University Park, PA (United States)

    2001-07-01

    In the United States, the electric utility industry is undergoing a dramatic shift away from a tightly regulated monopoly to a free market system. The impact on the nuclear utility industry of deregulation coupled with recent changes in the nuclear regulatory environment has had a dramatic impact on the future of nuclear power in the United States. Utilities have been broken up into separate generation, transmission, and distribution companies and are now allowed to sell electricity outside of their former service areas. As economic deregulation has occurred, the U.S. Nuclear Regulatory Commission has also adopted a new approach to regulation -- risk informed regulation. The implementation of risk-informed regulation has resulted in the adoption of a new regulatory format that attempts to highlight those areas having greatest risk significance. This paper explores these and other changes that have resulted because of the changing economic and regulatory environment for nuclear energy and examines their impact on the future of nuclear energy in the United States. (author)

  15. The impact of deregulation on the US nuclear industry

    Baratta, A.J.

    2001-01-01

    In the United States, the electric utility industry is undergoing a dramatic shift away from a tightly regulated monopoly to a free market system. The impact on the nuclear utility industry of deregulation coupled with recent changes in the nuclear regulatory environment has had a dramatic impact on the future of nuclear power in the United States. Utilities have been broken up into separate generation, transmission, and distribution companies and are now allowed to sell electricity outside of their former service areas. As economic deregulation has occurred, the U.S. Nuclear Regulatory Commission has also adopted a new approach to regulation -- risk informed regulation. The implementation of risk-informed regulation has resulted in the adoption of a new regulatory format that attempts to highlight those areas having greatest risk significance. This paper explores these and other changes that have resulted because of the changing economic and regulatory environment for nuclear energy and examines their impact on the future of nuclear energy in the United States. (author)

  16. Nuclear energy industry in Russia promoting global strategy

    Kobayashi, Masaharu

    2001-01-01

    Since former USSR disintegrated to birth new Russia on December, 1991, it already passed ten years. As Russian economic hardship affected its nuclear energy development, No.1 reactor of the Rostov nuclear power station (VVER-1000) established its full power operation on September, 2001 after passing eight years of pausing period as a Russian nuclear power station, at dull development of nuclear energy in the world. When beginning of its commercial operation, scale of nuclear power generation under operation in Russia will reach to the fourth one in the world by getting over the one in Germany. Russia also begins international business on reprocessing of spent fuel and intermittent storage. And, Russia positively develops export business of concentrated uranium and nuclear fuel, too. Furthermore, Russia shows some positive initiatives on export of nuclear power station to China, Iran and India, and development on advanced nuclear reactor and nuclear fuel cycle forecast to future. Here was introduced on international developmental development of nuclear energy industry activated recently at delayed time for this ten years. (G.K.)

  17. Reviewing industrial safety in nuclear power plants

    1990-02-01

    This document contains guidance and reference materials for Operational Safety Review Team (OSART) experts, in addition to the OSART Guidelines (TECDOC-449), for use in the review of industrial safety activities at nuclear power plants. It sets out objectives for an excellent industrial safety programme, and suggests investigations which should be made in evaluating industrial safety programmes. The attributes of an excellent industrial safety programme are listed as examples for comparison. Practical hints for reviewing industrial safety are discussed, so that the necessary information can be obtained effectively through a review of documents and records, discussions with counterparts, and field observations. There are several annexes. These deal with major features of industrial safety programmes such as safety committees, reporting and investigation systems and first aid and medical facilities. They include some examples which are considered commendable. The document should be taken into account not only when reviewing management, organization and administration but also in the review of related areas, such as maintenance and operations, so that all aspects of industrial safety in an operating nuclear power plant are covered

  18. Risk management of knowledge loss in nuclear industry organizations

    2006-07-01

    Maintaining nuclear competencies in the nuclear industry and nuclear regulatory authorities will be one of the most critical challenges in the near future. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear facilities. This publication is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information on knowledge loss risk management. The information provided in this it is based upon the actual experiences of Member State operating organizations and is intended to increase awareness of the need to: develop a strategic approach and action plans to address the potential loss of critical knowledge and skills; provide processes and in conducting risk assessments to determine the potential for loss of critical knowledge caused by the loss of experienced workers; and enable nuclear organizations to utilize this knowledge to improve the skill and competence of new and existing workers In 2004, the IAEA published a report entitled The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation (IAEA-TECDOC-1399). That report highlighted some of the knowledge management issues in Member States resulting from the large number of retiring nuclear power plant personnel who had been involved with the commissioning and initial operation of nuclear power plants. This publication complements that report by providing a practical methodology on knowledge loss risk management as one element of an overall strategic approach to workforce management which includes work force planning, recruitment, training, leadership development and knowledge retention

  19. Psychological attitudes of nuclear industry workers

    Faes, M.; Stoppie, J.

    1976-01-01

    An investigation was carried out within the frame of occupational medicine on the psychological attitudes of workers in the nuclear industry towards ionizing radiations. Three aspects were considered: awareness of the danger; feeling of safety in the working environment; workers' feelings following incidents or accidents; satisfaction level felt by the workers in the plant [fr

  20. Knowledge preservation in the nuclear industry

    Yanev, Y.

    2004-01-01

    The paper presents examples of knowledge loss in different areas related to attrition, retirements or layoff as well as the consequences of the loss of knowledge. The nature of the so called tacit knowledge and its role as a barrier to knowledge preservation is discussed. Strategies for knowledge preservation in the nuclear industry are presented

  1. High performance structural ceramics for nuclear industry

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  2. The adventure of nuclear energy: a scientifical and industrial history

    Reuss, P.

    2007-01-01

    The nuclear energy history is one of the most exciting scientifical and industrial adventure. In France, in a few decades, nuclear energy has become the main energy source for power generation. The aim of this book is to present the stakes of this challenge, to better outline the difficulties that have been encountered all along its development in order to better understand the complexness of such a development. After an overview of the successive advances of atomic and nuclear physics since more than a century, the book describes the genesis of nuclear energy, its industrial developments and its still wide open perspectives. The conclusions makes a status of the advantages and risks linked with this energy source. The book contains also the testimonies of two French nuclear actors: P. Benoist and S. David. The forewords by H. Langevin, daughter of F. and I. Joliot-Curie, stresses on the past and future role of nuclear energy in the live synergy between research and industry. (J.S.)

  3. The future of the chemical industries

    Shinnar, R.

    1991-01-01

    As Lincoln, we first must ask where we are before we ask whither. I'd therefore like to define where our industry is and how it got there before we look at the challenges facing us. If we view the chemical and petroleum industries through the glass of macroeconomics, they look very healthy. Let's start with size. Table 1 shows that these two industries each provide about 10% of the total U.S. manufacturing output. This paper shows the fraction of the total GNP contributed by the chemical industry and by the petroleum industry and compares them with total manufacturing. The authors note that total manufacturing grew more slowly than the total GNP, whereas over the last 40 years, the chemical industry grew close to the rate of the GNP. For a large industry, this is the best we can hope for. The chemical industry is one of the very few major industries that has consistently maintained a positive trade balance

  4. Future of nuclear energy technology in Switzerland

    Tiberini, A.; Brogli, R.; Jermann, M.; Alder, H.P.; Stratton, R.W.; Troyon, F.

    1988-01-01

    Despite the present gloom surrounding the nuclear option for electricity and heat generation, there are still people in Switzerland in industry, research, banking and even politics willing and capable to think in terms of long-range projections. The basis for these projections is the belief that a well-functioning and prosperous society always needs large and reliable sources of acceptably priced energy, which must be generated with a high respect for the necessity of a clean environment. Being aware of the current low acceptance level of the nuclear option, efforts to keep this option open are directed to achieving the following goals: to maintain and improve the country's capabilities to safely operate the four existing nuclear power plants of Beznau (twin units), Muehleberg, Goesgen and Leibstadt; to keep the capability of extending the applications of nuclear energy technology. In practice, this could be in the fields of district heating, fusion, and advanced power reactors

  5. The human factor in the nuclear industry

    Colas, Armand

    1998-01-01

    After having evoked the progressive reduction and stabilization of significant incidents occurring every year in French nuclear power plants, and the challenges faced by nuclear energy (loss of public confidence, loss of competitiveness), and then outlined the importance of safety to overcome these challenges, the author comments EDF's approach to the human factor. He first highlights the importance of information and communication towards the population. He briefly discusses the meaning of human factors for the nuclear industry, sometimes perceived as the contribution people to the company's safety and performance. He comments the evolution observed in the perception of human error in different industrial or technical environments and situations, and outlines what is at stake to reduce the production of faults and organize a 'hunt for latent defects'

  6. The future of nuclear energy in the enlarged European Union

    Comsa, Olivia; Mingiuc, C.; Paraschiva, M.V.

    2002-01-01

    should determine which, if any, of the technologies and designs will succeed - and which will not. If new plants are to be built, greater Public acceptance might be realised if they meet the same high level of safety standards throughout the Union. Here the Commission has a very important role to play together with the nuclear regulators and the industry. Greater transparency, better communication and more involvement by the Public in the decision making process - coupled with political will have to address, rather than avoid, the issues - will create the basis for the future of nuclear energy in Europe and elsewhere in the world. (authors)

  7. The nuclear industry's communication efforts viewed from outside the industry

    Tuck, Moira

    1995-01-01

    This paper describes the attitude towards nuclear power of a company specialised in behavioural communication, not employed exclusively by the nuclear power industry. Only one of it's clients has a nuclear interest and that is Eskom, South Africa electricity utility which runs 21 active power stations of which 13 are fossil-fueled, 2 hydro, 2 pump storage stations, 3 gas turbine stations and 1 nuclear. This company is a firm believer in the nuclear energy option for some very practical reasons and one or two abstract reasons. The practical reasons are the ones well known, the world needs ever-increasing amounts of base load energy in order to increase the quality of life. The world also needs clean energy so that the planet can be preserved beyond the next generation. The abstract reasons are perhaps 'not so often' thought about by nuclear, communication practitioners: in harnessing nuclear energy for the service of mankind humans have captured a miracle. The harnessing of nuclear energy is a mark of man's ability to think conceptually, to walk in the realms of the unseen and bring back from those realms a tool of progress. In more prosaic terms, the loss of nuclear expertise would, very simply be a retrogression of the human race. As behavioural communication specialist it s our job to find ways for our clients to speak truthfully about their endeavours to the hearts of their audience. It is not our job to (nor will we) either lie or cover up for our clients. That which is wrong is wrong and cannot be painted rightly spoken words or clever videos or ingenious advertising. In all cases our advice to our clients has been to assume that people will not argue against the greater good of humanity. And there is much about nuclear power that contributes to the greater good: of humanity. 'That is the factor that, is common to all of us in this room today and all our colleagues in the industry. W have only to tell the truth with words that our target audiences can

  8. Nuclear power for sustainable development. Current status and future prospects

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactors. By addressing many of the public health and safety risks that plagued the industry since the accidents at Three Mile Island and Chernobyl, these reactors may help break the current deadlock over nuclear power. In that case, nuclear power could make a significant contribution towards reducing greenhouse gas emissions. However, significant issues persist, fueling reservations among the public and many decision makers. Nuclear safety, disposal of radioactive wastes, and proliferation of nuclear explosives need to be addressed in an effective and credible way if the necessary public support is to be obtained. (author)

  9. Political electricity: what future for nuclear energy?

    Price, Terence.

    1990-01-01

    This book, written from the safe haven of recent retirement, is a personal and - so far as possible - non-technical exploration of the political and policy issues that have influenced the development of nuclear power. Part One describes the successes, failures, horse-trading, and infighting that make up nuclear power's history, taking nine countries as examples. Part Two reviews the main problems that now confront us. The story that emerges is of a nuclear industry that has rarely been guilty of dereliction of duty, though it was undeniably complacent in not addressing sooner the causes of the public's entirely reasonable anxieties. The anti-nuclear lobby has been skilled in debate, and sometimes extraordinarily percipient; but less than fair in failing to acknowledge the industry's achievements and its willingness to learn from past mistakes. As for the politicians, the book contains many examples that show how the flames of controversy can be deliberately fanned when there are votes to be gained. The story has few heroes, but within the industry fewer villains than the public has been led to believe. I hope that my anecdotal selection of events and issues may help readers to form their own judgements, and make it a little harder for glib assertions, from whatever quarter, to go unchallenged. (author)

  10. A telerobot for the nuclear industry

    Anon.

    1990-01-01

    Industrial robots are not widely used in the nuclear industry. More use is made of telemanipulators, in which tasks are performed under total human control via a master-slave actuation system. AEA Technology have developed a Nuclear Engineered Advanced TEle Robot (NEATER), a telerobot which combines industrial robot technology with the skills of a human operator. It has been designed for use in radioactive decommissioning work and has a number of radiation tolerant properties. NEATER can be operated in a pure robotic mode using a standard computer controller and software. Or it can operate as a telerobot in a remote control mode via a television input. In this mode the operator controls the robot's movement by using a joystick or a simple six degrees of freedom input device. (UK)

  11. Nuclear industry and production of energy: arguments for a discussion

    Sorin, F.

    2004-01-01

    This article reviews the advantages of nuclear energy (nuclear energy increases the energy autonomy of France, provides cheap energy, does not generate greenhouse effect gases and concerns an exporting high-tech industry that generates qualified jobs and added-value to French industry) and highlights its ability to fill the gap before renewable energies are efficient and reliable to produce large amounts of electric power and to face the present and future challenges like the progressive running dry of fossil energy sources or the compliance with the Kyoto agreement. The 2 controversial issues: the consequences of a terrorist attack on a nuclear facility and what to do with radioactive wastes are for the first one exaggerated in public opinion (some figures and facts concerning the resistance of the concrete containment that encloses a PWR type reactor are given in this article) and for the second the disposal in deep underground storage sites appears to be a solution. (A.C.)

  12. The World Nuclear Industry Status Report 2014

    Schneider, Mycle; Froggatt, Antony; Ayukawa, Yurika; Burnie, Shaun; Piria, Raffaele; Thomas, Steve; Hazemann, Julie; Suzuki, Tatsujiro

    2014-07-01

    The World Nuclear Industry Status Report 2014 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. A 20-page chapter on nuclear economics looks at the rapidly changing market conditions for nuclear power plants, whether operating, under construction, or in the planning stage. Reactor vendor strategies and the 'Hinkley Point C Deal' are analyzed in particular. The performance on financial markets of major utilities is documented. The WNISR2013 featured for the first time a Fukushima Status Report that triggered widespread media and analyst attention. The 2014 edition entirely updates that Fukushima chapter. The Nuclear Power vs. Renewable Energy chapter that provides comparative data on investment, capacity, and generation has been greatly extended by a section on system issues. How does nuclear power perform in systems with high renewable energy share? Is this the end of traditional baseload/ peak-load concepts? Finally, the 45-page Annex 1 provides a country-by-country overview of all 31 countries operating nuclear power plants, with extended Focus sections on China, Japan, and the United States

  13. Present and future nuclear power financing schemes

    Diel, R.

    1977-01-01

    The financial requirement for nuclear power plants in the Federal Republic of Germany for the period up until 1985 was estimated to run up to some DM 100 billion already in the Nuclear Energy Study published by the Dresdner Bank in 1974. This figure is not changed in any way by the reduction the nuclear power program has suffered in the meantime, because the lower requirement for investment capital is more than offset by the price increases that have occurred meanwhile. A capital requirement in the order of DM 100 billion raises major problems for the power producing industry and the banks which, however, are not going to hamper the further expansion of nuclear power, because new financing schemes have been specially developed for the nuclear field. They include financing by leasing, the use of funds from real estate credit institutions for long term financing, borrowing of long term funds in the Euro market, and financing through subsidiaries of the utilities. The new financing schemes also apply to the large financial requirement associated with the nuclear fuel cycle, waste management in particular. In this sector the utilities agree to bear the economic risk of the companies implementing the respective projects. Accordingly, financing will not entail any major difficulties. Another area of great importance is export financing. The German-Brazilian nuclear agreement is a model of this instrument. (orig.) [de

  14. Overview of the Russian nuclear industry; Le panorama nucleaire russe

    NONE

    2008-02-15

    In 2004, President Poutine decided to replace the atomic energy ministry (Minatom) by the federal atomic energy agency (Rosatom). Several projects were launched during the next two years which aimed at bringing back Russia to the fore front of the world leaders of nuclear energy use and nuclear technology export. In 2007, Rosatom agency was changed to a public holding company and a new company, named Atomenergoprom, was created which gathers all civil nuclear companies (AtomEnergoMash for the exploitation of power plants, Technabsexport (Tenex) specialized in enrichment or Atomstryexport in charge of export activities). Thus, Rosatom is at the head of all civilian and military nuclear companies, of all research centers, and of all nuclear and radiological safety facilities. In 2006, Russian nuclear power plants supplied 15.8% of the whole power consumption. Russia wishes to develop its nuclear program with the construction of new reactors in order to reach a nuclear electricity share of 25% from now to 2020. This paper presents first the 2007 institutional reform of the Russian atomic sector, and the three sectorial federal programmes: 1 - development of the nuclear energy industrial complex for the 2007-2010 era and up to 2015 (future power plants, nuclear fuel centers and reactor prototypes), 2 - nuclear safety and radioprotection for the 2008-2015 era (waste management, remedial actions, radiation protection), 3 - military program (confidential). Then, the paper presents: the international actions (export of Russian technology, cooperation agreements, non-proliferation), the situation of the existing nuclear park (reactors in operation, stopped, under construction and in project), the fuel cycle activities (production of natural uranium, enrichment, fuel fabrication, spent fuel storage, reprocessing, waste management), the nuclear R and D in Russia, and the nuclear safety authority. (J.S.)

  15. Key issues in space nuclear power challenges for the future

    Brandhorst, Henry W., Jr.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  16. Exporting nuclear engineering and the industry's viewpoint

    Barthelt, K.

    1986-01-01

    Nuclear energy offers all possibilities to reduce the energy problems in the world which arise with the world-wide increasing population and the energy demand connected with it. The Federal Republic of Germany lives on the exports of refined technical methods which also include nuclear engineering. The exports of nuclear engineering should lead to a technology transfer with guidance and training on an equal basis between the industrial and developing countries. The preconditions of exporting nuclear-technical systems are a well-functioning domestic market and a certain support by the government, especially with regard to giving guarantees for the special exports risks of these big projects. On the other hand, exports are also needed in order to be able to continue providing high-level technology for the domestic market. (UA) [de

  17. Nuclear energy - option for the future. Proceedings

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  18. Romanian nuclear fuel program: past, present and future

    Budan, O.; Rotaru, I.; Galeriu, C.A.

    1997-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. In this paper the word 'past' refers to the period before 1990 and 'present' to the 1990-1997 period. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. - ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified

  19. What SMART Technology implies for the industry of the future

    Annamalai, Leeandran

    2017-10-01

    Full Text Available This presentation discusses how SMART technology can influence the industry of the future. Topics touched on are software enabled machines able to respond relevantly to real world events, the industrial Internet of Things, and machines measurements...

  20. Nuclear data. Situation and future projects

    Bioux, P.

    1995-01-01

    Nuclear power provides the major part of the electricity generation in France, using a system of highly developed Pressurized Water Reactors. Electricite de France, which is responsible for the exploitation of this system, is concerned to ensure the continuity of the expertise and facilities which provide relevant basic scientific information contributing to the efficient exploitation of the system and, in particular, the continuity of the means for providing relevant nuclear data. The nuclear data requirements for the exploitation of the existing nuclear power system have been largely met. However, there remain some needs, in particular in the field of reactor neutronics. Furthermore if one considers the future (for example, the next 10 years) it is not certain that will be possible to meet the needs which are expected to arise. The review, commissioned on behalf of EDF, about the current status and future expectations for work in this field, has shown certain tendencies in the international situation. In particular one notes a general reduction in the effort both in Western Europe and the United States. This negative tendency can perhaps be explained by the almost general reduction world-wide in new nuclear power developments. However, unresolved problems remain, such as the development of methods for reducing the stocks of plutonium and the incineration and storage of a nuclear waste of long duration. In addition improvements in the accuracy of nuclear data could result in non-negligible economic benefits in the exploitation of the existing nuclear facilities. For these very important reasons it is desirable to reverse the present trend. (author). 2 annexes

  1. The future of nuclear energy in Europe

    Schmidt-Kuester, W.J.

    2000-01-01

    Are concerns about global warming of the Earth's atmosphere going to rekindle interest in nuclear power and in building new nuclear power plants in Europe? As a consequence of the discussions about the climate, the use of nuclear power as an important energy source is currently being re-evaluated, finds Dr. Wolf-J. Schmidt-Kuester, Secretary General of FORATOM, the European Atomic Forum, headquartered in Brussels. In his article, he argues that a renaissance of nuclear power will be possible also in Europe once politics supports resuming an unbiased discussion of all topics associated with the energy problem. Europe must face two problems in the energy sector for which solutions must be found: the growing dependence on fossil energy resources, and the need to curb greenhouse gas emissions, especially those of carbon dioxide. Nuclear power is already making a sizable contribution towards the solution of these problems, but its future potential has hardly been tapped. Public acceptance of nuclear power shows that the intention to opt out of the peaceful uses of nuclear power is not based on an identical attitude of the public, but is motivated politically, finding only little public support, as in the cases of Sweden and Germany. (orig.) [de

  2. Applications of nuclear microprobes in the semiconductor industry

    Takai, M.

    1996-01-01

    Possible nuclear microprobe applications in semiconductor industries are discussed. A unique technique using soft-error mapping and ion beam induced current measurements for reliability testing of dynamic random access memories such as soft-error immunity and noise carrier suppression has been developed for obtaining design parameters of future memory devices. Nano-probes and small installation areas are required for the use of microprobes in the semiconductor industry. Issues arising from microprobe applications such as damage induced by the probe beam are clarified. (orig.)

  3. UK strategy for nuclear industry LLW - 16393

    Clark, Matthew; Fisher, Joanne

    2009-01-01

    In March 2007 the UK Government and devolved administrations (for Scotland, Wales and Northern Ireland, from here on referred to as 'Government') published their policy for the management of solid low level waste ('the Policy'). The Policy sets out a number of core principles for the management of low level waste (LLW) and charges the Nuclear Decommissioning Authority with developing a UK-wide strategy in the case of LLW from nuclear sites. The UK Nuclear Industry LLW Strategy has been developed within the framework of the principles set out in the policy. A key factor in the development of this strategy has been the strategic partnership the NDA shares with the Low Level Waste Repository near Drigg (LLWR), who now have a role in developing strategy as well as delivering an optimised waste management service at the LLWR. The strategy aims to support continued hazard reduction and decommissioning by ensuring uninterrupted capability and capacity for the management and disposal of LLW in the UK. The continued availability of a disposal route for LLW is considered vital by both the nuclear industry and non-nuclear industry low level waste producers. Given that the UK will generate significantly more low level waste (∼ 3.1 million m 3 ) than there is capacity at the LLWR (∼0.75 million m 3 ), developing alternative effective ways to manage LLW is critical. The waste management hierarchy is central to the strategy, which includes strategic goals at all levels of the hierarchy to improve its application across the industry. (authors)

  4. The World Nuclear Industry Status Report 2015

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Thomas, Steve; Porritt, Jonathon

    2015-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Japan without nuclear power for a full calendar year for the first time since the first commercial nuclear power plant started up in the country 50 years ago. Nuclear plant construction starts plunge from fifteen in 2010 to three in 2014. 62 reactors under construction - five fewer than a year ago - of which at least three-quarters delayed. In 10 of the 14 building countries all projects are delayed, often by years. Five units have been listed as 'under construction' for over 30 years. Share of nuclear power in global electricity mix stable at less than 11% for a third year in a row. AREVA, technically bankrupt, downgraded to 'junk' by Standard and Poor's, sees its share value plunge to a new historic low on 9 July 2015-a value loss of 90 percent since 2007 China, Germany, Japan-three of the world's four largest economies-plus Brazil, India, Mexico, the Netherlands, and Spain, now all generate more electricity from non-hydro renewables than from nuclear power. These eight countries represent more than three billion people or 45 percent of the world's population. In the UK, electricity output from renewable sources, including hydropower, overtook the output from nuclear. Compared to 1997, when the Kyoto Protocol on climate change was signed, in 2014 there was an additional 694 TWh per year of wind power and 185 TWh of solar photovoltaics- each exceeding nuclear's additional 147 TWh

  5. Political crisis poses problems for nuclear industry

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2014-11-15

    The political crisis in Ukraine has given rise to several problematic issues for the nuclear industry, including the country's obvious dependence on Russia for nuclear fuel supplies and the transport of nuclear material. A 2013 report by the Polish Institute of International Affairs (PIIA) concluded that Ukraine will lean towards the development of ''intensive cooperation'' with Western nuclear regulators and companies as it seeks to increase its control over the sector and reduce its dependency on Russia. The PIIA report said the gas crises of 2006 and 2009, and especially the current destabilisation of the country, have highlighted Ukraine's ''excessive and problematic dependence'' on energy supply from Russia. The 'Energy Strategy of Ukraine Until 2030' assumes that the share of nuclear energy will remain the same in 2030 as it was in 2005 - about 50 % of the energy mix. To achieve its goals, Ukraine's strategy envisages several priority actions. Firstly, work should begin on identification of three or four sites for new nuclear stations. Secondly, the plan says that Khmelnistki-3 and -4 should be completed by 2016. Thirdly, the plan envisages six gigawatts of new nuclear capacity becoming operational between 2019 and 2021. Finally, lifetime extensions are planned for South Ukraine units 1 to 3, Zaporozhye units 1 to 6, Rovno units 2 and 3 and Khmelnitski-1.

  6. Nuclear engineering. Stable industry for bright minds

    Geisler, Maja

    2009-01-01

    The Deutsches Atomforum (DAtF) invited 35 students and graduate students for 'colloquies for professional orientation' to Luenen on March 8-11, 2009. Another 39 students were guests in Speyer between March 15 and 18 this year. Participants included graduates in physics, chemistry, radiation protection, and mechanical engineering as well as students of process engineering, electrical engineering and environmental technology. The colloquies for professional orientation are a service provided by the Informationskreis Kernenergie (IK) to member firms of DAtF. At the same time, the IK in this way fulfils its duty to promote young scientists and engineers within the framework of the DAtF's basic public relations activities. After all, nuclear technology in Germany is not about to end its life. Firms with international activities are in urgent need of highly qualified young staff members. Personnel is needed for a variety of activities ranging from nuclear power plant construction to fuel fabrication to waste management and the demolition and disposal of nuclear power plants. All these areas are in need of new qualified staff. Some 750 students so far have attended the DAtF colloquies for professional orientation since 2002. Many participants were hired by industries straight away or were given opportunities as trainees or students preparing their diploma theses in the nuclear industry. These contacts with the nuclear industry should not remain a one-off experience for the students. For this reason, the IK invites the participants in colloquies again this year to attend the Annual Meeting on Nuclear Technology in Dresden on May 12-14, 2009. (orig.)

  7. Quality management certification for the nuclear industry

    Wilmer, T.J.

    1993-01-01

    Historically for safety critical items, the United Kingdom nuclear companies either conducted their own inspection and audit of suppliers or sub-contracted staff to do so on their behalf. However, it is becoming unrealistic for these services to be undertaken in-house for economic reasons. The power industry is looking outside its own immediate expertise to that of 3rd Party Certification Bodies. There is a danger of introducing an element of risk unless the Certification Body really does understand the industry and its requirements. The Nuclear Installations Inspectorate (NII) makes it mandatory for nuclear installations to have in place Quality management systems that meet the requirements of BS 5882. This standard requires the use of quality assurance programmes and a greater degree of understanding of nuclear regulations and codes of practice than is required by BS 5750. This is a very significant factor, recognising as it does the need to harmonise the management interface between an operator of a nuclear installation and suppliers to that same installation. (author)

  8. Women in the new era of nuclear power industry

    Junko Ogawa

    2009-01-01

    In modern society, it is important that men and women share and equally participate in every aspect of society. Nevertheless the field of nuclear energy and radiation technology is traditionally a man-centric?industry, so women make up very small minority. However, recently even in this nuclear industry, we can sometimes see the phenomena that women are playing an active part.The nuclear industry has a big impact on society. It is necessary that we are accountable for all information given out to the public and we listen and respond to the public's concern. We do this so that nuclear technology will be able to grow and develop smoothly. In such area as better understanding, women working as nuclear engineers, scientists or communicators will be able to act in a significant role because women in general have excellent ability in communication and networking. Women in Nuclear, WiN is a worldwide association for the professional women working in the nuclear energy and radiation applications. WiN was founded in 1993, by European women involved in nuclear industry among the mood of anti-nuclear movement after the Chernobyl accident. The goals of WIN are to improve proper understanding of nuclear energy among the general public by presenting the factual information and to empower members' ability by world-wide exchange of lessons and human relationship. According to the recent data, there are 74 countries with at least one WiN member. and 38 chapters (countries/regions/organizations) that have WiN formal chapter like WIN-Japan, WIN-Korea, WIN-US, for examples. The registered members of WiN Global is about 2500. My presentation will introduce recent activities and topics of WiN Global and WiN Japan. I hope this will be able to convey that women working in nuclear field are indeed gaining in their brilliance and carrying out their mission steadily in our industry now and in the future. (Author)

  9. Nuclear power a viable energy choice for the future

    Omoto, Akira

    2005-01-01

    Global energy use will most likely increase to more than double by 2050, which is e.g. the medium value of the projection in the Intergovernmentals Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). How to reconcile the projections with the current nuclear status? In its first fifty years, nuclear power has grown from 5 MWe of power production to an installed worldwide capacity of 360 GWe in 30 countries. Nuclear power provides about 16% of the total electricity in the world and is contributing to the reduction of the emission of greenhouse gases from the power sector. The SRES scenarios identify a gap between the current electricity generation capacity and the capacity requirements in 2050 of 360 GWe and 1 500 GWe. Three key factors will determine the future contribution of nuclear power: - improved economics, - national energy choice and supporting infrastructure as well as institutional arrangement, and - the degree to which advances are implemented in evolutionary and innovative reactor and fuel cycle technologies, to address safety, waste and proliferation concerns, as well as economic competitiveness. The economics of nuclear power are one main topic in industrial countries. A Japanese case study on energy security credit shows that nuclear power will eventually be a winner in the long term perspective due to amortisation and stable fuel prices. Nuclear power is also a part of nuclear technologies to address daunting challenges in the developing countries - hunger, disease, poverty, and shortage of drinking water and electricity. (orig.)

  10. Domestic safeguards in the nuclear industry

    Uhrig, R.E.

    1979-01-01

    The Energy Reorganization Act of 1974 brought about markedly increased security requirements at nuclear power plants. NRC established a threat level against which the security forces were expected to defend. It is asserted that an inadequate legal basis exists for the NRC requirement that nuclear plants be defended by the use of deadly force, if necessary, and that complex issues such as apprehension, retention, and pursuit of intruders are left vague. Security measures patterned after the airline industry, resolution of the deadly force issue, and definition of a creditable threat level are proposed

  11. Economics on nuclear techniques application in industry

    Kato, Masao

    1979-01-01

    The economics of the application of nuclear techniques to industry is discussed. Nuclear techniques were applied to gauging (physical measurement), analysis, a radioactive tracer method, electrolytic dissociation, and radiography and were found to be very economical. They can be applied to manufacturing, mining, oceano-engineering, environmental engineering, and construction, all of which have a great influence on economics. However, because the application of a radioactive tracer technique does not have a direct influence on economics, it is difficult to estimate how beneficial it is. The cost-benefit ratio method recommended by IAEA was used for economical calculations. Examples of calculations made in gauging and analysis are given. (Ueda, J.)

  12. Prepare the Future Robotics in Nuclear

    Sanchez de Leon, J. N.; Ferre Perez, M.

    2013-01-01

    The design and construction of ITER has shown the relevance of Robotics for optimal maintenance and operation of facilities. The Laboratory of Remote Handling included in the design has TechnoFusion given the opportunity to carry out a reflection on the strategy to promote robotics in the nuclear sector in Spain. And take advantage of the scientific and technological potential of Spanish research groups. This work of research and reflection has led to further international standardization activities in this field. Adopted ISO TC 85/SC 2/WG in the 24 development of a standard for Telerobotics. In Spain, to follow this work was created last January 73 inside the CTN AENOR Nuclear Industry a Working Group on Nuclear Remote Handling.

  13. The nuclear marketplace. Past, present, future

    Hatcher, S.R.

    1984-01-01

    Demand for uranium and heavy water depends on demand for power reactors, which in turn depends on demand for electricity. There is electric power generation over capacity at the moment, due to the fact that during the period of rapid economic growth in the 1960s and 1970s electricity production was growing about 50% faster than the GDP. The rapid escalation of energy costs between 1973 and 1980 fueled inflation and drove interest rates up, resulting in low growth rates and a recession. Even during this period electricity production capacity grew 50% faster than the GDP. The inevitable rationalization resulted in cancellations and near bankruptcy for electric utilities. The IAEA forecasts that more than the world's total nuclear generating capacity as of 1982 will be added in the 1990s, so the long-term prospect for nuclear power remains good. Until then, the nuclear industry will be experiencing a buyer's market, and the Canadian nuclear industry must select its markets carefully, in both the domestic and the international markets. (L.L.)

  14. Nuclear techniques in coal and chemical industries

    Elbern, A.W.; Leal, C.A.

    1980-01-01

    The use of nuclear techniques for the determination of important parameters in industrial installations is exemplified; advantages of these techniques over other methods conventionally used are pointed out. The use of radiotracers in the study of physical and chemical phenomena occurring in the chemical industry is discussed. It is also shown that, using certain radioisotopes, it is possible to construct devices which enable, for example, the determination of the ash content in coal samples. These devices are economical and easy to be installed for the on-line control during coal transportation. (C.L.B.) [pt

  15. The nuclear industry and public hearings

    Mansillon, Y.

    2007-01-01

    Major decisions about the French nuclear industry have been made, it is often said, without sufficiently informing and consulting the population. Laws in 1995 and 2002 provide for public hearings in order to inform the public and obtain its reactions to big projects of national interest. The responsibility for organizing a hearing is vested in an independent administrative authority, the National Commission of Public Debate (CNDP). Within 2 years, 5 issues related to the nuclear industry have been referred to it: 1) the ITER project at Cadarache in april 2003, 2) the George-Besse-II project to replace the present uranium enrichment plant at Tricastin in april 2004, 3) the research reactor Jules-Horowitz project at Cadarache in july 2004, 4) the EPR project at Flamanville in november 2004, and 5) the management of radioactive wastes in february 2005. The hearings already represent a fundamental innovation compared with earlier practices

  16. Evolution of stainless steels in nuclear industry

    Tavassoli, Farhad

    2010-01-01

    Starting with the stainless steels used in the conventional industry, their adoption and successive evolutions in the nuclear industry, from one generation of nuclear reactors to another, is presented. Specific examples for several steels are given, covering fabrication procedures, qualification methods, property databases and design allowable stresses, to show how the ever-increasing demands for better performance and reliability, in particular under neutron irradiation, have been met. Particular attention is paid to the austenitic stainless steels types 304L, 316L, 316L(N), 316L(N)-IG, titanium stabilized grade 321, precipitation strengthened alloy 800, conventional and low activation ferritic/martensitic steels and their oxygen dispersion strengthening (ODS) derivatives. For each material, the evolution of the associated filler metal and welding techniques are also presented. (author)

  17. Future demands for an Industrialized Architecture?

    Beim, Anne

    2011-01-01

    these questions raise a wide-spread discussion, one could argue that the building industry can benefit from different ways of architectural synthesis thinking as a basis for improving. This understood in such a way that industrialized manufacturing technologies and products should be driven by ideas...

  18. Nuclear energy : Present situation and future prospects

    Gray, J.E.

    1986-01-01

    In 1953, President Eisenhower announced the U.S. ''Atoms for Peace'' program. After slightly more than 30 years, there are in operation, under construction or on order more than 400,000 MW of commercial nuclear power generation capacity located in 35 nations, representing a total investment around a trillion U.S. dollars. The situation is noteworthy in terms of the rate of technical development, deployment and transfer, the magnitude of the financial investment, economic benefits, the favorable impact on public health and safety, and the usual and positive character of cooperation among all concerned. The fundamentals of nuclear power generation with regard to economics, safety and environmental impact are likely to favor the increased use of nuclear power. The future prospect of the nuclear power in the U.S. also will be clarified positively. In many ways, U.S. commercial nuclear power continues to benefit from the Navy nuclear propulsion program. The prospect of supply demand situation in the conversion, enrichment and fabrication of uranium fuel is explained. The amount of spent fuel arising in OECD countries and their storage capability up to 2000 are shown, and the storage capability projected is well in excess. (Kako, I.)

  19. Commercial nuclear power: Assuring safety for the future

    Ramsey, C.B.; Modarres, M.

    1998-03-01

    This timely book offers insights into the benefits of nuclear power as well as the technological and environmental challenges facing the nuclear industry. Containing the results of worldwide scientific studies and industrial site visits, the book represents a timely focus on the applications of commercial nuclear power, the potential benefits to be gained from contained nuclear use, the environmental risks of nuclear power, and the prevention of nuclear accidents.This timely book offers insights into the benefits of nuclear power as well as the technological and environmental challenges facing the nuclear industry. Containing the results of worldwide scientific studies and industrial site visits, the book represents a timely focus on the applications of commercial nuclear power, the potential benefits to be gained from contained nuclear use, the environmental risks of nuclear power, and the prevention of nuclear accidents

  20. Status of nuclear regulatory research and its future perspectives

    Lee, J. I.; Kim, W. S.; Kim, M. W.

    1999-01-01

    A comprehensive investigation of the regulatory research comprising an examination of the research system, its areas and contents, and the goals and financial resources is undertaken. As a result of this study, the future direction of regulatory research and its implementation strategies are suggested to resolve the current issues emerging from this examination. The major issues identified in the study are; (a) an insufficient investment in nuclear regulatory and safety research, (b) an interfacial discrepancy between similar research areas, and (c) a limitation of utilizing research results. To resolve these issues, several measures are proposed : (1) developing a lead project to establish a comprehensive infrastructure for enhancing research cooperation between nuclear organizations including institutes, industry, and universities, with an aim to improve cooperation between projects and to strengthen overall coordination functions among research projects, (2) introducing a certification system on research outcome to promote the proliferation of both research results themselves and their application with a view to enhancing the research quality, (3) strengthening the cooperative system to promote the international cooperative research, and (4) digitalizing all documents and materials relevant to safety and regulatory research to establish KIMS (knowledge and information based management system). It is expected that the aforementioned measures suggested in this study will enhance the efficiency and effectiveness of both nuclear regulatory and safety research, if they are implemented after deliberating with the government and related nuclear industries in the near future

  1. Problems and prospects of nuclear power industry

    Karelin, A.I.

    2001-01-01

    A consideration is given to problems associated with operating nuclear power plants in many countries and building new NPPs. A special attention is given to safety operation of nuclear plants, to reprocessing and transportation of spent nuclear fuel as well as to radioactive waste disposal. In connection with difficulties in solving the above-mentioned problems a proposition is made to resume work on designing NPPs with the use of nuclear liquid salt reactors based on molten fuel fluoride salts. Advantages and disadvantages of fuel compositions of LiF-BeF 2 -UF 4 -(ThF 4 ) are listed. It is recommended that fundamental studies be carried out into such compositions as KF + CsF; BaF 2 + KF + NaF; AlF 3 + Na 3 AlF 6 , eutectics on the basis of tin and zinc fluorides and their complex salts of M x Sn(Zn)F y . An international program is suggested to be developed to find some way out of crisis of nuclear power industry using research efforts in homogeneous liquid salt nuclear underground reactors with a U(233)-Th fuel cycle [ru

  2. The future of nuclear power in Indonesia

    Sudarsono, B.

    1984-01-01

    The current economic development strategy of Indonesia envisages rapid expansion of the small industrial and manufacturing sector. Recently, hydrocarbons have provided 70% of government revenues, 80% of foreign earnings, and 90% of commercial domestic energy consumption. Finite resources, plus limitations on hydropower and geothermal development by the year 2000 indicate that nuclear power will be necessary. Year 2000 projected requirements for Java are 80 TWh, corresponding to 17 to 22 GWe. Year 2000 coal availability of 12 to 18 x 10 6 annual tons then indicate a residual nuclear requirement of 1 to 4 GWe, assuming reasonable geothermal and hydropower development and no new oil-burning plants. A nuclear research center will be built near Jakarta with a 30-MW multipurpose research reactor and other facilities. The next steps in the program are: (1) set up a nuclear regulatory branch of BATAN (the National Atomic Energy Agency); (2) establish a state-owned nuclear construction and operation organization; (3) establish a design engineering and management organization; and (4) decide on the type of plant and build two to four units by 2000. (author)

  3. Competency assessments for nuclear industry personnel

    2004-04-01

    In 1996, the IAEA published Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation: A Guidebook. This publication provides guidance for the development, implementation and evaluation of training programmes for all nuclear power plant personnel using the systematic approach to training (SAT) methodology. The SAT methodology has since been adopted and used for the development and implementation of training programmes for all types of nuclear facility and activities in the nuclear industry. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further guidance concerning competency assessments used for measuring the knowledge, skills and attitudes of personnel as the result of training. This publication has been prepared in response to that recommendation. A critical component of SAT (as part of the implementation phase) is the assessment of whether personnel have achieved the standards identified in the training objectives. The nuclear industry spends a significant amount of resources conducting competency assessments. Competency assessments are used for employee selection, trainee assessment, qualification, requalification and authorization (in some Member States the terminology may be 'certification' or 'licensing'), and job advancement and promotion. Ineffective testing methods and procedures, or inappropriate interpretation of test results, can have significant effects on both human performance and nuclear safety. Test development requires unique skills and, as with any skill, training and experience are needed to develop and improve them. Test item and examination development, use, interpretation of results and examination refinement, like all other aspects of SAT, should be part of an ongoing, systematic process. This publication is primarily intended for use by personnel responsible for developing and administering

  4. Nuclear power: Status report and future prospects

    Budnitz, Robert J.

    2016-01-01

    This article reviews the current status and future prospects of commercial nuclear electric power, with emphasis on issues of safety, physical security, proliferation, and economics. Discussions of these issues are presented separately for the current operating fleet, for new reactor designs similar in size to the current fleet, and for prospective new reactors of substantially smaller size. This article also discusses the issue of expansion of commercial nuclear power into new countries. The article concludes with recommendations, related both to technical issues and policy considerations. The major implications for policy are that although the level of safety and security achieved in today's operating reactor fleet worldwide is considered broadly acceptable, some advanced designs now under development potentially offer demonstrably safer performance, and may offer improved financial performance also. Management and safety culture are vital attributes for achieving adequate safety and security, as are a strong political culture that includes an absence of corruption, an independent regulatory authority, and a separation of nuclear operation from day-to-day politics. In some countries that are now considering a nuclear-power program for the first time, careful attention to these attributes will be essential for success. - Highlights: •Current status of nuclear reactor safety and security is judged to be adequate. •Strong management and safety culture are vital to achieve adequate nuclear safety. •Advanced reactor designs offer important safety advantages. •Maintaining and strengthening international nuclear institutions is important. •Achieving nuclear safety in “newcomer” countries requires a strong political culture.

  5. Nuclear technology for a sustainable future

    2012-06-01

    The IAEA helps its Member States to use nuclear technology for a broad range of applications, from generating electricity to increasing food production, from fighting cancer to managing fresh water resources and protecting the world's seas and oceans. Despite the Fukushima Daiichi accident in March 2011, nuclear power will remain an important option for many countries. Use of nuclear power will continue to grow in the next few decades, although growth will be slower than was anticipated before the accident. The factors contributing to the continuing interest in nuclear power include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. It is up to each country to choose its optimal energy mix. The IAEA helps countries which opt for nuclear power to use it safely and securely. Every day, millions of people throughout the world benefit from the use of nuclear technology. The IAEA helps to make these benefits available to developing countries through its extensive Technical Cooperation programme. For instance, we provide assistance in areas such as human health (through our Programme of Action for Cancer Therapy), animal health (we were active partners in the successful global campaign to eradicate the deadly cattle disease rinderpest), food, water and the environment. The IAEA contributes to the development of global policies to address the energy, food, water and environmental challenges the world faces. We look forward to helping to make Rio+20 a success. This brochure provides an overview of the many ways in which nuclear technology is contributing to building the future we want.

  6. Corrosion engineering in nuclear power industry

    Prazak, M.; Tlamsa, J.; Jirousova, D.; Silber, K.

    1990-01-01

    Corrosion problems in nuclear power industry are discussed from the point of view of anticorrosion measures, whose aim is not only increasing the lifetime of the equipment but, first of all, securing ecological safety. A brief description is given of causes of corrosion damage that occurred at Czechoslovak nuclear power plants and which could have been prevented. These involve the corrosion of large-volume radioactive waste tanks made of the CSN 17247 steel and of waste piping of an ion exchange station made of the same material, a crack in a steam generator collector, contamination of primary circuit water with iron, and corrosion of CrNi corrosion-resistant steel in a spent fuel store. It is concluded that if a sufficient insight into the corrosion relationships exists and a reasonable volume of data is available concerning the corrosion state during the nuclear facility performance, the required safety can be achieved without adopting extremely costly anticorrosion measures. (Z.M.)

  7. The nuclear industry within the Community

    1989-11-01

    As part of its 1989 working programme, the European Commission undertook to update the provisional nuclear programme in the view of the expected changes from the single European market. This document complies with that commitment and deals exclusively with the problems of the industry engaged in the design and construction of electro-nuclear power stations. Having analysed the context and prospects for the medium and long term development of nuclear investments, in particular in relation to the establishment of a ''common electricity market'', the practical possibility of opening up the equipment and services market is examined. Actions to be taken within the Community are indicated. Finally, the standard for power stations equipped with fast neutron breeder reactors, where European efforts are directed towards a single development project, is presented. (UK)

  8. Localization and indigenization of China nuclear power industry

    Zhang Xingfa

    2009-01-01

    It points out that China needs to develop nuclear power to solve the shortage of energy source. Localization and independence is the key for the development of nuclear power industry. Localized and independent nuclear power possesses economical competitiveness. China has the condition and capability to realize localization and independence of nuclear power industry. Technology introduction, adaptation and assimilation can enhance the R and D capability of China's nuclear power industry, and speed up the process of localization and independence. (authors)

  9. The future of nuclear power in Germany

    Holzer, J.

    1993-01-01

    The future of nuclear power in Germany is not only a matter of technology, economy and ecology but, above all, a matter of political leadership, the quality of interaction of all groups of society, the need to take ideology out of politico-economico-technical matters, and of firmly standing up for a style of democracy in which majorities, not minorities, decide. The power economy is agreed that nuclear power is indispensable in a powerful electricity supply scheme. These should be the criteria to be met by an energy consensus: No nuclear plants should be sacrificed by being shut down before the end of their technical and economic service life; spent fuel and waste management in Germany should be secured with sufficient interim storage and repository storage capacities. (orig.) [de

  10. Nuclear analytical methods: Past, present and future

    Becker, D.A.

    1996-01-01

    The development of nuclear analytical methods as an analytical tool began in 1936 with the publication of the first paper on neutron activation analysis (NAA). This year, 1996, marks the 60th anniversary of that event. This paper attempts to look back at the nuclear analytical methods of the past, to look around and to see where the technology is right now, and finally, to look ahead to try and see where nuclear methods as an analytical technique (or as a group of analytical techniques) will be going in the future. The general areas which the author focuses on are: neutron activation analysis; prompt gamma neutron activation analysis (PGNAA); photon activation analysis (PAA); charged-particle activation analysis (CPAA)

  11. The structure of the nuclear industry

    Leaist, G.T.; Morisette, E.F.

    1981-01-01

    Since 1952, when Canadians began to study the application of reactors to power generation, the CANDU reactor design and the manufacturing and and engineering capability supporting it have evolved into a world-class technology. At present, Atomic Energy of Canada Ltd. works directly with provincial electrical utilities in developing their power reactor requirements. It assumes responsibility for the detailed design of the nuclear steam supply system of stations, undertakes some procurement activities, and may represent the utilities in licensing applications. The detailed design and supply of components for the remainder of the nuclear steam plant, as well as for the secondary plant, are provided in Ontario by Ontario Hydro together with manufacturers, and in Quebec and New Brunswick by private firms. Canadian utilities have always assumed the project managment function themselves, but with export sales AECL has taken turnkey responsiblity for either the nuclear steam plant or the complete power station. AECL owns design specifications and other documentation, the use of which it can license, but manufacturing technology resides with Canadian industry. Canadian manufacturers have supported AECL design licensing initiatives overseas. The Canadian nuclear industry's major problem is the current lack of a vigorous domestic market combined with an uncertain international one

  12. Subcontracting in nuclear industry - legal aspects

    Leger, M.

    2012-01-01

    This article describes the legal framework of subcontracting in France. Subcontracting is considered as a normal mode of functioning for an enterprise: an enterprise contracts another enterprise to do what it can not do itself or does not want to do. According to the 1975 law, cascade subcontracting is allowed but subcontractors have to be accepted by the payer. In some cases the payer can share responsibility when the subcontracting enterprises do not comply to obligations like the payment of some taxes. The main subcontractor who is the one who contracted with the payer is the only one responsible for the right execution of the whole contract. In nuclear industry there are 2 exceptions to the freedom of subcontracting. The first one concerns radiation protection: in a nuclear facility the person in charge of radioprotection must be chosen among the staff. The second concerns the operations and activities that are considered important for radiation protection, it is forbidden to subcontract them. In some cases like maintenance in nuclear sector the law imposes some qualification certification for subcontracting enterprises. The end of the article challenges the common belief about subcontracting in nuclear industry. (A.C.)

  13. Situation of nuclear industry in Japan

    2004-03-01

    This document presents the situation of nuclear industry in Japan: cooperation with France in the domain of the fuel cycle (in particular the back-end) and of for the industrial R and D about fast reactors and nuclear safety; present day situation characterized by a series of incidents in the domain of nuclear safety and by an administrative reorganization of the research and safety organizations; power of local representatives, results of April 2003 elections, liberalization of the electric power sector, impact of the TEPCO affair (falsification of safety reports) on the nuclear credibility, re-start up of the Monju reactor delayed by judicial procedures, stopping of the program of MOX fuel loading in Tepco's reactors, discovery of weld defects in the newly built Rokkasho-mura reprocessing plant, an ambitious program of reactors construction, the opportunity of Russian weapons dismantling for the re-launching of sodium-cooled fast reactors; the competition between France and Japan for the setting up of ITER reactor and its impact of the French/Japanese partnership. (J.S.)

  14. Industrial aspects of nuclear energy: French experience

    Lebreton, G.

    1986-11-01

    France decides to develop nuclear energy on a wide scale about 12 years ago. To cope with this ambitious program, the roles have been distributed within a very cohesive organization, as follows: EDF, the french national electricity utility is owner, prime contractor, and plant operator. The Atomic Energy Commission, CEA performs part of the research and development work, and supplies the necessary technical support to the safety authorities. A few leading industrial firms design and build the major parts of the nuclear power plants. Among them is Framatome, which is responsible for the design, manufacture, erection, and startup of nuclear steam supply systems (the NSSSs), and related auxiliaries. Alsthom is responsible for the supply of the turbine and its auxiliaries. It would not be proper to describe the French nuclear industry without focussing our attention on the care given to transfer of technology. Technology transfer agreements can take several forms, but local factors have to be taken into account. These forms are discussed in this paper. A typical and highly significant example (KNU 9-10 project) is given

  15. The future of nuclear energy. Safety and nuclear power plants. Contribution of engineering companies

    Garcia Rodriguez, A.

    1995-01-01

    Risk, its consideration and its acceptance or rejection, are parameters which to a large extent are independent and sometimes difficult to interrelate. Nuclear energy, unlike motoring or civil aviation, has not gained sufficient public acceptance, this despite the fact that the risk to population is by far the least of the three. It is therefore necessary to continue with its improvement is an attempt to create the same confidence in the nuclear industry, as society has placed in civil aviation. Improvement in future nuclear power plants must be a combination of improved safety and a reduction in capital investment. This objective can only be reached through standardization and international cooperation. Engineering has a very important part to play in the standardization process. An increase in engineering input during the design, construction, operation and maintenance phases of future nuclear power plants, and the application of increasingly sophisticated analysis and management tools are anticipated. Nevertheless, the financial impact on the cost of each plant will fall as a result of increased input spread throughout the range of standard plants. Our current Advanced Reactor Power Plant Programme enables the Spanish industry to participate actively in the creation of future standards nuclear power plants. Having a presence in selected engineering activities, which guarantees access to the state of the art in this area, is one of our priorities, since it will facilitate the presence of the rest of the industry in future projects. If the objectives described above are to be reached, the present involvement of the spanish industry in this programme must be maintained in the medium and long term. (Author)

  16. Roadmap for human resources for expanded Indian nuclear industry

    Singh, R.K. [Bhabha Atomic Research Centre, Mumbai (India); Indian Nuclear Society (India); Srinivasan, G.R.; Goyal, O.P. [Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    This paper deals with detailed requirement of human resources for all phases of nuclear power plant, for the manufacturing sector and the probable roadmap for achieving India's target. The accident in Fukushima has brought out that only nuclear power that avoids being a threat to the health and safety of the population and the environmental will be acceptable to the society and for this to be achieved human resources could be a single major contributor. India has ambitious plan of achieving 20,000MW by 2020 and 63,000MW by 2050. It is felt out of the three resources men, material and money; the critical shortage would be human resources both in quality and quantity. As per IAEA report (Publication of 2008 edition of energy, electricity and nuclear power estimates for the period of 2030), nuclear capacity must grow to at least 1.8 times current capacity by 2030 if global temperature rises are to be kept at 2°C. Objective of recruiting and training human resources for Indian Industry can be as follows: a) For catering domestic market. b) For catering international market later on for nuclear industries outside India. As India will be an important future international player. The above would require a multiplication of human resources by nearly seven times. In addition it has to be wholesome covering all levels and all skills and all disciplines and stages covering the whole nuclear cycle including regulators. Human resources are required for design and engineering, construction, commissioning, operation, manufacturing and for support services. The manpower for these has to be trained to achieve high quality of nuclear standards. Presently Indian Department of Atomic Energy(DAE) runs several training schools giving one year Post Graduate, tailor made courses. This needs to be multiplied by Joint efforts. Training should be on 'SAT (Systematic Approach to Training)' methodology to ensure focussed, specific, needed to culminate in safe, reliable and

  17. Roadmap for human resources for expanded Indian nuclear industry

    Singh, R.K.; Srinivasan, G.R.; Goyal, O.P.

    2011-01-01

    This paper deals with detailed requirement of human resources for all phases of nuclear power plant, for the manufacturing sector and the probable roadmap for achieving India's target. The accident in Fukushima has brought out that only nuclear power that avoids being a threat to the health and safety of the population and the environmental will be acceptable to the society and for this to be achieved human resources could be a single major contributor. India has ambitious plan of achieving 20,000MW by 2020 and 63,000MW by 2050. It is felt out of the three resources men, material and money; the critical shortage would be human resources both in quality and quantity. As per IAEA report (Publication of 2008 edition of energy, electricity and nuclear power estimates for the period of 2030), nuclear capacity must grow to at least 1.8 times current capacity by 2030 if global temperature rises are to be kept at 2°C. Objective of recruiting and training human resources for Indian Industry can be as follows: a) For catering domestic market. b) For catering international market later on for nuclear industries outside India. As India will be an important future international player. The above would require a multiplication of human resources by nearly seven times. In addition it has to be wholesome covering all levels and all skills and all disciplines and stages covering the whole nuclear cycle including regulators. Human resources are required for design and engineering, construction, commissioning, operation, manufacturing and for support services. The manpower for these has to be trained to achieve high quality of nuclear standards. Presently Indian Department of Atomic Energy(DAE) runs several training schools giving one year Post Graduate, tailor made courses. This needs to be multiplied by Joint efforts. Training should be on 'SAT (Systematic Approach to Training)' methodology to ensure focussed, specific, needed to culminate in safe, reliable and viable operation of

  18. The industrial nuclear fuel cycle in Argentina

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The nuclear power program of Argentina for the period 1976-85 is described, as a basis to indicate fuel requirements and the consequent implementation of a national fuel cycle industry. Fuel cycle activities in Argentina were initiated as soon as 1951-2 in the prospection and mining activities through the country. Following this step, yellow-cake production was initiated in plants of limited capacity. National production of uranium concentrate has met requirements up to the present time, and will continue to do so until the Sierra Pintada Industrial Complex starts operation in 1979. Presently, there is a gap in local production of uranium dioxide and fuel elements for the Atucha power station, which are produced abroad using Argentine uranium concentrate. With its background, the argentine program for the installation of nuclear fuel cycle industries is described, and the techno-economical implications considered. Individual projects are reviewed, as well as the present and planned infrastructure needed to support the industrial effort [es

  19. Ethics and the future of nuclear energy

    Alonso, A.

    2000-01-01

    In democratic societies the future of nuclear energy should be considered as a strategic issue for the country and it should therefore be rationally discussed from every angle, including the moral aspects; within their own political parties, politicians should be leading such discussions. The potentialities of nuclear technology to comply with and respect the human rights, including those of future generations, need to-be evaluated. The social obligation of increasing the well-being of the civil society through the availability of sufficient and reliable electrical energy should be considered a primary condition. The risks associated to nuclear power plants and related activities must be recognized and the nature and functions of regulatory organizations discussed, mainly their independence of judgement. A set of ethical principles regarding communications need to be in place to assure democratic decisions. All concerned parties should participate with the best of the intentions. The human rights of the third generation, those related to the environment, should be given the needed attention, to prevent that the vanguards of the new revolutionary movement of ecologists produce unnecessary victims within the nuclear power plants

  20. Topics on Education Activities in Japanese Nuclear Industries

    Kuroiwa, Haruko

    2008-01-01

    The progression of an aging society with fewer children or a foreseeable decrease in population has caused the nuclear power plants under planning canceled or delayed. As a result, the number of students graduating with a nuclear degree began to decrease, while the development of the next generation light water reactor or of the practical use of the fast breeder reactor requires many skilled engineers. Atomic Energy Commission of Japan realized this potential impact of human resources. The Commission submitted the Framework for Nuclear Energy Policy including this issue to the government. The report says that without future talent development, Japan will lose its competitiveness against other industrialized countries, and that without replenishment after a large number of baby boomers retire, the shortage of specialists in the radiation field will occur. In conjunction with the Framework for Nuclear Energy Policy, the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Economy, Trade and Industry carried out the Nuclear Power Human Resources Development Program in 2007 fiscal year. The program focused on i) Support of educational activities, such as basic nuclear education and research, internship, and preparation of core curriculums and texts for nuclear power, ii) Implementation of research in the basic and infrastructure technology fields supporting the nuclear power (ex. structural strength, material strength, welding, erosion/corrosion, heat transfer, radiation safety). This program will continue till the end of 2009 fiscal year. Besides in order to promote nuclear power acceptance and to secure diversity, effective measures should be taken to support young, women, and foreign researchers and to promote their utilization. Mitsubishi accepts overseas students and researchers as an internship every year, and accelerates the safety architecture in the world. (author)

  1. Topics on Education Activities in Japanese Nuclear Industries

    Kuroiwa, Haruko [Mitsubishi Heavy Industries, LTD - MHI, 2-16-5 Kona Minato-K 108-8215 Tokyo (Japan)

    2008-07-01

    The progression of an aging society with fewer children or a foreseeable decrease in population has caused the nuclear power plants under planning canceled or delayed. As a result, the number of students graduating with a nuclear degree began to decrease, while the development of the next generation light water reactor or of the practical use of the fast breeder reactor requires many skilled engineers. Atomic Energy Commission of Japan realized this potential impact of human resources. The Commission submitted the Framework for Nuclear Energy Policy including this issue to the government. The report says that without future talent development, Japan will lose its competitiveness against other industrialized countries, and that without replenishment after a large number of baby boomers retire, the shortage of specialists in the radiation field will occur. In conjunction with the Framework for Nuclear Energy Policy, the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Economy, Trade and Industry carried out the Nuclear Power Human Resources Development Program in 2007 fiscal year. The program focused on i) Support of educational activities, such as basic nuclear education and research, internship, and preparation of core curriculums and texts for nuclear power, ii) Implementation of research in the basic and infrastructure technology fields supporting the nuclear power (ex. structural strength, material strength, welding, erosion/corrosion, heat transfer, radiation safety). This program will continue till the end of 2009 fiscal year. Besides in order to promote nuclear power acceptance and to secure diversity, effective measures should be taken to support young, women, and foreign researchers and to promote their utilization. Mitsubishi accepts overseas students and researchers as an internship every year, and accelerates the safety architecture in the world. (author)

  2. Challenging today's nuclear industry to be competitive in a changing tomorrow

    Plug, B.

    1996-01-01

    As the millennium approaches, the future of the nuclear power generation appears desolate. Today's nuclear executives are facing challenges resulting from worldwide change and have forced utilities to reevaluate their corporation's future directions. The nuclear industry must be competitive more than ever to address today's rapid changing marketplace and pressures exerted from: regulatory reformation; increased competition; changes in technology; customer evolution; and globalization. These factors have compelled nuclear executives to address questions such as: What impact will these changes have on today's marketplace, and on my corporation? What will characterize tomorrow's successful nuclear facility? How can today's nuclear corporation compete in tomorrow's marketplace? Will my corporation survive? (author)

  3. Factors affecting the future of nuclear power in OECD Europe

    Thompson, S.

    1997-01-01

    This report provides a brief review of nuclear power in OECD Europe and addresses the prospects for its future over, say, the next quarter century. Most of the data and findings are drawn from studies published by the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD). The NEA is a small agency with a rather modest budget whose 27 members are industrialized countries from North America, Asia and Europe. The Agency works to pool the expertise of our member countries to produce technical, economic and legal work of considerable depth and quality addressing issues of common interest to those countries. Our work covers such fields as nuclear science, nuclear power economics, nuclear safety, radiation protection, waste management and nuclear liability. The studies carried out in the framework of the Agency require fewer resources than would be needed by our member countries if they were to pursue them individually, which is especially important at a time of cut-backs in national programmes in such critical areas as nuclear safety research. (author)

  4. Environment and future of the nuclear energy in France

    Lebas, G.

    1999-01-01

    This work presents the problem of the renewal of the French electro-nuclear park with respect to the energetic, economical, environmental, political and ethical aspects. The theoretical framework chosen for this analysis is the one of sustainable development because of the uncertainty, irreversibility and equity aspects characterizing this choice. Thus, this work evaluates the capacity of the nuclear technology to ensure the simultaneous reproduction of the economical sphere, of the human sphere and of the biosphere. The past, present and future energy situation of France is analyzed in the first chapter together with the characteristics of the nuclear choice. In the second chapter, the analysis of the different possible energy options leads to the conclusion that the nuclear option remains the most suitable for a conciliation between economy and ecology, but that a diversification of the reactor technologies is necessary to take advantage of the efficiency of each technology with respect to its use. The nuclear choice has the advantage to limit the arbitration between the economical, ecological, political and human stakes. The realization of the diversification project supposes to leave opened all energy options and to be prepared to the replacement of the present day power plants by 2010-2020. The success of this policy will depend on the risk mastery and information efforts that public authorities and nuclear industry actors will carry on to avoid any social opposition with respect to nuclear energy. (J.S.)

  5. Double or quits?: The global future of civil nuclear energy

    Beck, Peter; Grimston, Malcolm

    2004-01-01

    Among the many disputes in the field of energy, in many countries none appear to be as acrimonious as those surrounding nuclear power. Its supporters are confident that nuclear power will have an important long-term future on the global energy scene, while its critics are equally confident that its days are numbered and that it was only developed to provide a political fig-leaf for a nuclear weapons programme. Both sides believe the other to be thoroughly biased or stupid and there is little constructive debate between them. As the disputes rage, especially over such issues as the management of nuclear waste, the economics and safety of nuclear power compared with other sources of electricity, the possible links with nuclear weapons and the attitude of the public towards the industry, decision-making is either paralysed or dominated by those who shout loudest. As a result, governments, industry and the financial sector have in recent years found it increasingly difficult to develop policy in this field. Deciding about future energy developments requires balanced and trustworthy information about issues such as the relative environmental effects of different options, the safety of installations, economics and the availability of resources. This is of particular importance now because world energy use is expected to continue to grow significantly during this century, particularly in less developed countries. In the same period, global emissions of greenhouse gases, especially carbon dioxide, will have to be severely curbed. To meet both these requirements may well involve a step change away from being able to meet growing energy needs by depending on an ever increasing supply of carboniferous fossil fuel. To address this situation, the Royal Institute of International Affairs undertook a two-year research project, aimed at providing information from the standpoint of an organization with no vested interest in either the pro or the anti camp, but close connections to

  6. The modern trends in energy and nuclear industry of Kazakhstan

    Kenzhemurat, D.; Sergey, K.; Timur, A.

    2000-01-01

    Kazakhstan has in perspective the potential to be self-sufficient in energy resources and also to export such resources to other countries. This article describes the energy sector of Kazakhstan, the perspectives of the development the energy and nuclear industry and shows the problems and methods of its solutions. The energy sector of Kazakhstan has diversified sources of energy resources. The open market of electricity will generate the investments and direct them to the development for more efficiency use of these resources. Rehabilitation of old power stations and their modernisation will allow to cover the future needs of Kazakhstan. The nuclear industry of Kazakhstan has the infrastructure, high-qualified staff, enterprises, reactors and investments for the development. The energy policy of the Republic of Kazakhstan is directed to find the balance between different sources of energy to decrease the emissions of greenhouse gas. (author)

  7. Future directions in nuclear data publication

    Firestone, R.B.; Chu, S.Y.F.; Ekstroem, L.P.; Nordberg, H.

    1997-01-01

    Rapid advances in computer based technologies provide enormous opportunities and great challenges to the way nuclear data is disseminated. Simple text databases and linear, command driven software are giving way to more complex, indexed databases and object-oriented, menu-driven applications. The Internet will clearly dominate dissemination of nuclear data in for foreseeable future, and CD-ROM technology (or similar high-density media) will replace hard-copy publication. The Isotopes Project has released Version 1.0 of VuENSDF, a versatile, 32-bit, C ++ , Internet enabled application for disseminating nuclear data. VuENSDF can automatically retrieve data over Internet; display decay scheme drawings, level tables, and references; and perform limited database searching of nuclear bands, transition coincidences, and reference authors. Version 2.0 of VuENSDF is being developed and will offer more complete database searches, plotting, and data entry utilities. The Isotopes Project has established a series of home pages on the WWW to provide data for various topics of nuclear physics. The group has also published a CD-ROM version of the Table of Isotopes using Adobe Acrobat software. Updated, Internet versions of the Table of Isotopes are planned. (author)

  8. Today's nuclear power industry and 10 years down the road

    Diamond, M.S.

    1986-01-01

    The author discusses: the changes underway in the power industry market and their implications; the strategies which can lead to profitable leadership in the kind of market they see evolving; and how, perhaps, to build a more promising long-term future for nuclear energy in the U.S. He says, there is a tough decade ahead; lots of change and a lot of pressure. Little is going to happen that is going to make life easier for the American nuclear industry. There are going to be losers in this industry but there definitely will be winners in the next decade. There is a large market to serve and service businesses can be very attractive and very profitable - and there is a real chance for the long-term future as well. But, to succeed and prosper in the coming decade a double commitment is required. First, a commitment to the effort to compete effectively in a tight, mature market. But, even as you are doing that, a further commitment is needed to continue to invest in what is likely to be both a long-term and highly uncertain future - with no guarantees, but the glimmer of possibility

  9. Industrial experience of irradiated nuclear fuel reprocessing

    Delange, M.

    1981-01-01

    At the moment and during the next following years, France and La Hague plant particularly, own the greatest amount of industrial experience in the field of reprocessing, since this experience is referred to three types of reactors, either broadly spread all through the world (GCR and LWR) or ready to be greatly developed in the next future (FBR). Then, the description of processes and technologies used now in France, and the examination of the results obtained, on the production or on the security points of view, are a good approach of the actual industrial experience in the field of spent fuel reprocessing. (author)

  10. Nuclear industry - challenges in chemical engineering

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  11. Recent Movement, Issues and Some Counter plans in Nuclear Industry

    Lee, S. K.; Lee, J. K.; Cho, C. S.; Lee, C. C.; Park, C. O.

    2007-01-01

    There is no doubt 'Nuclear Energy' is the only source that can ensure the world's steady development in the foreseeable future. Nowadays is definitely what is called 'renaissance of nuclear.' As energy demand and economy increase, and global climate warms, the trend of nuclear dependency will be accelerated further. With 30 reactors being built around the world today, another 35 or more planned to come online during the next 10 years, and over two hundred further back in the pipeline, the global nuclear industry is clearly going forward strongly. Countries are seeking to replace old reactors as well as expand capacity, and an additional 25 countries are either considering or have already decided to make nuclear energy part of their power generation capacity. On the other hand, as current movement of world nuclear field, Korea has faced to one of the most important times since introducing nuclear power. Twenty nuclear power plants are run in Korea i.e. sixteen PWRs and four PHWRs now, and the capability of nuclear power production has been ranked world number six. In spite of this grand appearance, however, the influencing power on world nuclear society is not well matched to its status since it does not have a special hidden card which can appeal and impact on international community. In the era of nuclear renaissance, paradoxically, Korea is not in the situations of optimistic or pessimistic view. Now let's As energy demand and economy increase, and global climate warms, the trend of nuclear dependency will be accelerated further. With 30 reactors being built around the world today, another 35 or more planned to come online during the next 10 years, and over two hundred further back in the pipeline, the global nuclear industry is clearly going forward strongly. Countries are seeking to replace old reactors as well as expand capacity, and an additional 25 countries are either considering or have already decided to make nuclear energy part of their power generation

  12. Mobile robotics application in the nuclear industry

    Jones, S.L.; White, J.R. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.

  13. Mobile robotics application in the nuclear industry

    Jones, S.L.; White, J.R.

    1995-01-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980's, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities

  14. Nuclear Inter Jura '91: nuclear law and nuclear energy for the future

    1992-01-01

    The 1991 congress of the International Nuclear Law Association took as its subject Nuclear Law and Nuclear Energy for the future. As well as individual reports, there were four sessions each covering the report of one or more working groups. The first session investigated licensing and decommissioning, while the second focussed on insurance and liability. The third session was devoted to nuclear supply and commerce at an international level. Finally radiological protection and nuclear waste management was discussed in the fourth session. (UK)

  15. What future for nuclear power? Workshop report

    1998-01-01

    A Workshop on this highly controversial subject, organized by the Energy and Environment Programme of the RIIA, was held on 10th November 1997 at Green College, Oxford. The meeting was attended by some forty people from eight countries, coming from the nuclear and electricity generating industry, governments, research organizations, academic institutions, environmental pressure groups and inter-governmental organizations. In addition, subsequent to this Workshop, there have been a number of smaller, more informal discussions on various aspects of the subject. This paper summarizes the main conclusions arising from the Workshop and from these later discussions

  16. Current status and future prospects of Korean standardized nuclear power plant design

    Rieh, C.-H.; Park, S.-K.; Lee, B.-R.

    1992-01-01

    The authors reviewed a brief history of Korean nuclear industry since the first Kori-1 plant operation in 1978 with special emphasis on the NSSS and BOP design and engineering, and the design approaches for nuclear power plants in the future. Continued effort to enhance plant economy and operational safety has been made by increasing plant size, and improving safety features, systems and component reliability in various design aspects. Korean nuclear industry is now trying to be one of the major contributors to the world nuclear field in sharing nuclear technology gained from past experience and developed through internation technical cooperation programs

  17. The use of nuclear heat in the steel industry

    Coche, L.

    1976-01-01

    It is possible, but not easy, to use nuclear energy for steelmaking: low temperature level, and difficulty to get a continuous energy supply, are the main limiting factors. Practically, the nuclear reactor and the steel making units will not be coupled. Among the various possible systems, the most practical one for the near future consists in using nuclear heat to produce hydrogen (using natural gas or oil products as a feedstock) and electric power. Hydrogen is used to reduce iron ore in units such as Midrex, Hyl, Armco or Purofer. Steel is produced from this reduced material in electric arc furnaces. Industrial development will be slow, since economical conditions are presently pretty far from making such a process economically competitive [fr

  18. Sustaining the future: the role of nuclear power in meeting future world energy needs

    Duffey, R.; Sun, Y.

    2003-01-01

    A description is given of recently informed analyses showing the potential that nuclear power has in meeting global energy demands. For both the electricity and transportation sectors, we can quantify the beneficial effects on the environment, and we show how nuclear power deserves credit for its role in assisting future world energy, environmental and economic sustainability. The continuing expansion of the world's and Asia's energy needs, coupled with the need to reduce greenhouse gas (GHG) and other emissions, will require new approaches for large scale energy production and use. This is particularly important for China and Asia with respect to meeting both the energy demand and sustainability challenges. We show and explore the role of nuclear power for large-scale energy applications, including electricity production and hydrogen for transportation. Advanced nuclear technologies, such as those like CANDU's next generation ACR, can meet future global energy market needs, avoid emissions, and mitigate the potential for global climate change. We use the latest IPCC Scenarios out to the year 2100 as a base case, but correct them to examine the sensitivity to large scale nuclear and hydrogen fuel penetration. We show a significant impact of nuclear energy on energy market penetration, and in reducing GHGs and other emissions in the coming century, particularly in the industrial developing world and in Asia. This is achieved without needing emissions credits, as are used or needed as economic support for other sources, or for subsidies via emissions trading schemes. Nuclear power offers the relatively emissions-free means, both to provide electricity for traditional applications and, by electrolytic production of hydrogen, to extend its use deep into the transportation sector. For the published IPCC Marker Scenarios for Asia we show the reduction in GHG emissions when electrolysis using electricity from nuclear power assists the introduction of hydrogen as a fuel

  19. There's no Nuclear Future without the Young

    Petrech, R.; Holy, R.

    2002-01-01

    Construction of Mochovce NPP started in 1981 - i.e. more than 20 years ago, however it was halted in early 90's after velvet Revolution in former Czechoslovakia. When the (I and C) system was decided in 1989 to be replaced with a state-of-the-art system of Siemens, and it was implemented in early 1990-1, the utility lacked money for further works and building works had to be halted. We were consequently thrown in difficult public and expert debates about the nuclear future: do we really need it? Nuclear is looking for new ways to persuade the public about the need to keep nuclear as a part of the world energy mix. For experts it is clear. It has already been indicated in the Green Book - a report about the future electricity demand coverage by diverse sources made out for the EC. The role of the young people is indispensable in this process. Information campaigns are focused mostly on youngsters from the very young age whose opinions are being formed. Only a long-lasting systematic work with the youth can bring better public opinion. About 95 % of Mochovce NPP visitors are students (mostly primary and secondary schools) - that is important.(author)

  20. Education for the nuclear power industry: Swedish perspective

    Blomgren, J.

    2005-01-01

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  1. Commercial basis to nuclear industry skills

    King, Mike

    1989-01-01

    The United Kingdom Atomic Energy Authority (UKAEA) has considerable experience in measurement and control systems which it has designed for nuclear reactor use. It is now using this experience to help other industries needing to monitor variables such as flow, level, position, conductivity, thickness, temperature, density, sound, vibrations, light, movement, pressure, strain and radiation. Recently British Nuclear Fuels sought UKAEA's help to solve a process measurement problem at the Sellafield encapsulation plant which is used to recycle unspent fuel and immobilise liquid wastes using a cementation process. The level and specific gravity of the liquid waste slurry must be accurately measured before the correct amount of solidifying material can be added. The solution to this problem, using pneumacator technology, is described. (author)

  2. Industrial fans used in nuclear facilities

    Carlson, J.A.

    1987-01-01

    Industrial fans are widely used in nuclear facilities, and their most common use is in building ventilation. To control the spread of contamination, airflows are maintained at high levels. Therefore, the selection of the fan and fan control are important to the safety of people, equipment and the environment. As a result, 80% of all energy used in nuclear facilities is fan energy. Safety evolves from the durability, control and redundancy in the system. In new or retrofit installations, testing and qualification of fans and systems are completed prior to start-up. Less important but necessary is the energy conservation aspect of fan selection and installations. Fan efficiency, type of control and system installation are evaluated for energy use

  3. Nuclear challenges in Asia, an industrial perception

    Tiffou, Jean-Pierre

    2015-01-01

    The author first gives a brief overview of military programmes implemented by India, China, Pakistan and North Korea to develop and manufacture the various vectors of nuclear weapons (submarines, missiles, bombers), the objective being (not always reached) to possess a nuclear triad (intercontinental ground-based missiles, submarines, and bombers). In this respect, the author briefly comments the evolutions of defence budgets, discusses the evolutions of the Chinese defence industry since the end of World War II (strong relationship with USSR, emergence of other various trade relationships, a more independent production but with a search for new technological partnerships). The author then discusses whether China is a threatening military power, more particularly for some Asian countries like Japan and South Korea

  4. Informing future societies about nuclear waste repositories

    Jensen, M.

    1994-01-01

    In 1990 a working group of the NKS (the Nordic nuclear safety program) was formed and give the task of established a basis for a common Nordic view of the need for information conservation for nuclear waste repositories. The Group investigated what tipy of information should be conserved; in what form the information should be kept; the quality of the information; and the problems of future retrieval of information, including retrieval after very long periods of time. Topics covered include the following: scientific aspects including social context of scientific solutions; information management; systems for conservation and retrieval of information including the problems of prediction; archives, markers, archives vs. markers, and continuing processes in society; Archive media including paper documents, microfilm, digital media, media lifetimes; and finally conclusions and recommendations

  5. Perception of risk and the future of nuclear power

    Slovic, P.

    1990-01-01

    Scientists and policy makers were slow to recognize the importance of public attitudes and perceptions in shaping the fate of nuclear power. In 1976, Alvin Weinberg observed: 'As I compare the issues we perceived during the infancy of nuclear energy with those that have emerged during its maturity, the public perception and acceptance of nuclear energy appears to be the question that we missed rather badly.... This issue has emerged as the most critical question concerning the future of nuclear energy.' Today, fourteen years later, the problem of public acceptance is even more critical. Either the problem is damn tough or we have not been working hard enough to solve it (I suspect that both of these assertions are true). Public support for nuclear power has declined steadily for a decade and a half, driven by a number of powerful forces and events. In mid-March of 1979, the movie The China Syndrome had its premier, dramatizing the worst-case predictions of the earliest risk assessment studies. Two weeks later, events at Three Mile Island made the movie appear prophetic. Succeeding years have brought us Chernobyl and other major technological disasters, most notably Bhopal and the Challenger accident. The public has drawn a common message from these accidents - that nuclear (and other) complex technology is unsafe, that expertise is inadequate, and that government and industry cannot be trusted to manage nuclear power safely. These dramatic accidents and the distrust they have spawned have been reinforced by numerous chronic problems involving radiation, such as the discovery of significant radon concentrations in many homes, the continuing battles over the siting of facilities to store or dispose of nuclear wastes, and the disclosures of serious environmental contamination emanating from nuclear weapons facilities (at Hanford, Fernald, Rocky Flats and Savannah River)

  6. Perception of risk and the future of nuclear power

    Slovic, P [University of Oregon and Decision Research, Eugene, OR (United States)

    1990-07-01

    Scientists and policy makers were slow to recognize the importance of public attitudes and perceptions in shaping the fate of nuclear power. In 1976, Alvin Weinberg observed: 'As I compare the issues we perceived during the infancy of nuclear energy with those that have emerged during its maturity, the public perception and acceptance of nuclear energy appears to be the question that we missed rather badly.... This issue has emerged as the most critical question concerning the future of nuclear energy.' Today, fourteen years later, the problem of public acceptance is even more critical. Either the problem is damn tough or we have not been working hard enough to solve it (I suspect that both of these assertions are true). Public support for nuclear power has declined steadily for a decade and a half, driven by a number of powerful forces and events. In mid-March of 1979, the movie The China Syndrome had its premier, dramatizing the worst-case predictions of the earliest risk assessment studies. Two weeks later, events at Three Mile Island made the movie appear prophetic. Succeeding years have brought us Chernobyl and other major technological disasters, most notably Bhopal and the Challenger accident. The public has drawn a common message from these accidents - that nuclear (and other) complex technology is unsafe, that expertise is inadequate, and that government and industry cannot be trusted to manage nuclear power safely. These dramatic accidents and the distrust they have spawned have been reinforced by numerous chronic problems involving radiation, such as the discovery of significant radon concentrations in many homes, the continuing battles over the siting of facilities to store or dispose of nuclear wastes, and the disclosures of serious environmental contamination emanating from nuclear weapons facilities (at Hanford, Fernald, Rocky Flats and Savannah River)

  7. Future applications of superconductors for industrial use

    Reddy, S.P.

    1988-01-01

    Superconductors have been in existence for many years. Recent developments in superconductivity at higher temperatures are directed towards the potential use of superconductors at ambient temperatures. The diligent efforts of the scientific, engineering, and political agencies in researching and developing superconducting materials have resulted in encouraging accomplishments. Although superconductors could be used in every branch of electrical engineering, the authors focuses on a few areas in this paper. The power distribution and utilization in a typical industry is compared to that of a system using superconductors. Brief discussions of various machines with superconductors at ambient temperatures, based on developments made so far on large superconducting machines, for potential industrial applications are included in this paper

  8. Design of nuclear instruments for industrial use

    Maggio, G.E.

    1988-01-01

    Following an introduction to the atomic structure and the radioactive desintegration, the applications of radioisotopic sealed sources are described. The laws that govern the interaction of radiation with matter and the statistics applied to the radioactive measurements are presented. Different measurement techniques, basic equations of design, the way to provide the activity calculation of a source and the detector's characteristics are given, according to the parameters to be measured and the conditions imposed. Finally, the principles of operation and the most important characteristics of different nuclear instruments to be used in industrial measurements are described. (Author) [es

  9. Government intervention in the Canadian nuclear industry

    Doern, G.B.

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors. (auth)

  10. Government intervention in the Canadian nuclear industry

    Doern, G B [Carleton Univ., Ottawa, Ontario (Canada). School of Public Administration

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors.

  11. Nuclear analytical techniques in Cuban Sugar Industry

    Diaz Riso, O.; Griffith Martinez, J.

    1996-01-01

    This paper is a review concerning the applications of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements ) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processes has been performed by means of Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elements sugar cane soil plant relationship and elemental composition of different types of Cuban sugar (rawr, blanco directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in other applications are given

  12. Fibre optic cable in the nuclear industry

    Roberts, Berwyn

    1987-01-01

    The uses of optical fibre cables to transmit light signals include medical applications and telecommunications. In the nuclear industry the applications include process control and monitoring, conventional datacoms, security fencing and sensors. Time division multiplexing is described and currently available fibre optic multipexers are listed and explained. Single and multimode fibres are mentioned. Fibre optics are also used in cryogenics, to monitor the integrity of the storage vessels for cryogenic liquids. The uses of fibre optics at Hartlepool, Heysham I and Torness are mentioned in particular. (UK)

  13. Economical state of nuclear industries in 1980

    1982-01-01

    The Japan Atomic Industrial Forum, Inc., has carried out the survey of the actual state of atomic energy industries in Japan every year, and the 22nd survey was performed on the state in 1980. In this survey, the atomic energy industries are classified into electric power business, mining and manufacture, and trading companies. The actual results of expenditures, sales, the investment in facilities, backlogs, the volume of business, the number of employees and so on were surveyed by questionnaire, respectively. The data show the history of the atomic energy industries for a quarter of a century, and are utilized to search for the problems. The period of survey was from April 1, 1980, to March 31, 1981. The number of enterprises surveyed was 1234, and 924 companies replied, accordingly, the ratio of reply was 75%. 546 enterprises among the 924 had some results related to atomic energy, therefore, the results of survey were classified, totalized, examined and analyzed, based on the survey papers of these 546 enterprises. As for the Japanese economy, the real growth of economy was 3.8%, the index of mining and manufacturing production increased by 4.6%, but total energy consumption decreased by 4.4%, as compared with the previous year. One nuclear power plant began the operation, and 4000 centrifuges are operated in the uranium enrichment pilot plant. The trends of expenditures, sales and employees are shown. (Kako, I.)

  14. Future nuclear energy utilization in view of the Swiss economy

    Kuendig, M.

    1990-01-01

    The tried and proven system of dividing duties between government and business should be continued. A double 'no', preserving the legal basis for the future use of nuclear energy, should therefore be the answer to the two bills aimed against it in Switzerland. Conservation, research and substitution efforts of private industry can be rewarded by providing the necessary framework. The creation of indirect incentives should further support these efforts, without federal intervention. For this reason and with the same resoluteness, the 'energy article' has to be rejected. (author)

  15. Future possibilities in pulmonary nuclear medicine

    Atkins, H.L.

    1984-01-01

    A number of recent developments in the field of nuclear medicine are of significance for future progress in the diagnosis of lung diseases. These developments have occurred in instrumentation and radiopharmaceuticals and have not necessarily been directed toward pulmonary problems. Nevertheless, they may improve the ability to diagnose pulmonary embolism and to recognize pulmonary dysfunction other than that involving ventilation and perfusion. Along with new instrumentation and tracers, one will almost certainly see continued refinement of present techniques and diagnostic criteria which will lead to improved accuracy in interpretation of standard studies

  16. Canada - committed to a nuclear future

    Caplan, M.

    2006-01-01

    There has been a flurry of activity in the Ontario electricity sector over the last 2 years as the government continued to work at averting a major crisis of supply in Canada's most populous province.As stated by the Ministry of Energy in 2004, O ntario needs to refurbish, rebuild, replace or conserve 25,000 megawatts of generating capacity by the year 2020 to meet growing demand while replacing its polluting coal-fired generating plants. That represents 80 per cent of Ontario's current generating capacity and would require an investment of $25 to $40 billion. Action has been taken. The government has completed a restructuring of the electricity market with new legislation and has undertaken a number of major procurement initiatives to enable the system to operate until about 2015. These include contracts for significant wind generation and other renewables supply, new gas generation, conservation and demand management and the refurbishment of idled nuclear units. The Ontario Power Authority as now issued it ''Supply Mix Advice'' to address the needs of the province for the long term (20 years). The recommendations would ''increase the share of renewable sources' in Ontario's supply mix, maintain the share of nuclear generation, and replace coal by increasing the share of gas-fired generation and renewable resources.'' It clearly recognizes the importance of nuclear power as a clean and economic option to meet the ongoing base load requirements and states that the nuclear share can be achieved through r efurbishing existing units, rebuilding on existing sites and undertaking ''new build'' plants . This paper will examine government's plan to maintain the share of nuclear power at about 50% of electricity generated, and address the important issues required to make decisions on future refurbishments and new build

  17. The future of nuclear power and fourth-generation reactors

    Carre, F.; Renault, C.

    2006-01-01

    Faced with the exhaustion of fossil fuel resources, the output of existing nuclear power must quadruple between now and 2050, and the Commissariat a l'Energie atomique (CEA) and its industrial partners are cooperating in a programme of R and D on future nuclear power. France strategy puts rapid neutron reactors (RNR) at the forefront, in view of their possible introduction by 2040. These reactors allow a more efficient use of uranium resources and minimise the production of long-life nuclear waste. Two technologies which use respectively, sodium and gas as their coolant are being studied. For the sodium RNR, which benefits from significant existing experience, the key is to first improve its economic performance. For the gas RNR, which draws on the principles and the generic assets of the RNR, for those using helium as the coolant, and those with applications at high temperature, it is important firstly to demonstrate the key technologies such as the fuel. The decision of President Chirac to launch the study of a prototype, fourth-generation reactor for 2020 is stimulating the research effort into France future nuclear power. (author)

  18. The world nuclear industry status report 2007

    Schneider, M.; Froggatt, A

    2007-11-15

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average

  19. The world nuclear industry status report 2007

    Schneider, M.; Froggatt, A.

    2007-11-01

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average lifetime of 40 years

  20. The British Nuclear Industry Forum's public affairs campaign

    Parker, Keith

    2000-01-01

    the view of promoting a balanced and persuasive case for nuclear energy and the achievements of the nuclear industry. There are indications that the messages are being heard and acknowledged by those whose opinions and decisions could determine the future shape of energy and environmental policy. There is, though, still a long way to go to change the prevailing climate of public and political opinion towards nuclear energy. Despite some modest successes in the first year of the Campaign, the degree of support and active involvement BNIF had hoped for from its member companies has not materialised. Therefore, the ways in which BNIF has sought to orchestrate the delivery of the Campaign will need to be reviewed and revised. (author)

  1. Improving Industry-Relevant Nuclear-Knowledge Development through Special Partnerships

    Cilliers, A.

    2016-01-01

    Full text: South African Network for Nuclear Education Science and Technology (SAN NEST) has the objective to develop the nuclear education system in South Africa to a point where suitably qualified and experienced nuclear personnel employed by nuclear science and technology programmes in South Africa are predominantly produced by the South African education system. This is done to strengthen the nuclear science and technology education programmes to better meet future demands in terms of quality, capacity and relevance. To ensure sustainable relevance, it is important to develop special partnerships with industry. This paper describes unique partnerships that were developed with nuclear industry partners. The success of these partnerships has ensured more industry partners to embrace the model which has proven to develop relevant knowledge, support research and provide innovative solutions for industry. (author

  2. Instructional skills evaluation in nuclear industry training

    Mazour, T.J.; Ball, F.M.

    1985-11-01

    This report provides information to nuclear power plant training managers and their staffs concerning the job performance requirements of instructional personnel to implement prformance-based training programs (also referred to as the Systems Approach Training). The information presented in this report is a compilation of information and lessons learned in the nuclear power industry and in other industries using performance-based training programs. The job performance requirements in this report are presented as instructional skills objectives. The process used to develop the instructional skills objectives is described. Each objective includes an Instructional Skills Statement describing the behavior that is expected and an Instructional Skills Standard describing the skills/knowledge that the individual should possess in order to have achieved mastery. The instructional skills objectives are organized according to the essential elements of the Systems Approach to Training and are cross-referenced to three categories of instructional personnel: developers of instruction, instructors, and instructional managers/supervisors. Use of the instructional skills objectives is demonstrated for reviewing instructional staff training and qualification programs, developing criterion-tests, and reviewing the performance and work products of individual staff members. 22 refs

  3. JAERI FEL applications in nuclear energy industries

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  4. Coating technologies in the nuclear industry

    Kaae, J.L.

    1993-01-01

    Metallic, ceramic, and organic coatings are so commonly used in modern industry that virtually everyone can name several applications in which coatings are employed. Thus, it is no surprise that coating technologies are widely employed in the nuclear industry. Some of these technologies utilize processes that are mature and well developed, and others utilize processes that are new and state of the art. In this paper, five generic coating processes that include almost all vapor deposition processes are described, and then applications of each of these processes for deposition of specific materials in nuclear applications are described. These latter selections, of course, are very subjective, and others will be able to name other applications. Because of their wide range of application, coating technologies are considered to be national critical technologies. The generic coating processes that cover almost all vapor deposition technologies are as follows: (1) stationary substrate chemical vapor deposition; (2) fluidized bed chemical vapor deposition; (3) plasma-assisted chemical deposition; (4) sputtering; (5) evaporation

  5. High nitrogen stainless steels for nuclear industry

    Kamachi Mudali, U.

    2016-01-01

    Nitrogen alloying in stainless steels (SS) has myriad beneficial effects, including solid solution strengthening, precipitation effects, phase control and corrosion resistance. Recent years have seen a rapid development of these alloys with improved properties owing to advances in processing technologies. Furthermore, unlimited demands for high-performance advanced steels for special use in advanced applications renewed the interest in high nitrogen steels (HNS). The combination of numbers of attractive properties such as strength, fracture toughness, wear resistance, workability, magnetic properties and corrosion resistance of HNS has given a unique advantage and offers a number of prospective applications in different industries. Based on extensive studies carried out at IGCAR, nitrogen alloyed type 304LN SS and 316LN SS have been chosen as materials of construction for many engineering components of fast breeder reactor (FBR) and associated reprocessing plants. HNS austenitic SS alloys are used as structural/reactor components, i.e., main vessel, inner vessel, control plug, intermediate heat exchanger and main sodium piping for fast breeder reactor. HNS type 304LN SS is a candidate material for continuous dissolver, nuclear waste storage tanks, pipings, etc. for nitric acid service under highly corrosive conditions. Recent developments towards the manufacturing and properties of HNS alloys for application in nuclear industry are highlighted in the presentation. (author)

  6. Environmental issues and the nuclear industry

    Castle, P.

    1995-01-01

    Health safety and environmental liabilities of the 'nuclear industry' reflect those of industry in general and may broadly be divided into two areas: criminal liability for regulatory non-compliance; and civil liability for damage caused to persons and their property (for example, neighbours, employees etc). In addition, environmental liability may be incurred as a result of powers of the regulatory authorities to clean up contamination and to recoup the cost. These are in addition to the regime of strict liability imposed, where relevant, by the Nuclear Installations Act 1965. In the case of environmental liabilities, 'owners;, 'occupiers', 'persons responsible', 'persons in control' may all be held to be liable and for the most part these terms remain undefined both under English law and European Community (now European Union) law. This potentially has ramifications for current and former owners and operators, their boards and senior managers, other employees, parent companies, shareholders and their lenders and investors - of particular relevance in the context of privatization. (author)

  7. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative

  8. Future nuclear regulatory challenges. A report by the NEA Committee on Nuclear Regulatory Activities

    1998-01-01

    Future challenges are considered that may arise from technical, socio-economic and political issues; organizational, management and human aspects; and international issues. The perceived challenges have been grouped into four categories, each covered by a chapter. Technical issues are addressed that many present regulatory challenges in the future: ageing nuclear power plants. External changes to industry are considered next that have an effect on regulators, privatization, cost reduction consequences, commercialization etc. It is followed by the impacts of internal changes: organizational, managerial, human-resources, licensing, staff training etc. Finally, international issues are discussed with potential regulatory impact. (R.P.)

  9. Nuclear Regulator Knowledge Management in a Dynamic Nuclear Industry Environment

    Turner, J.

    2016-01-01

    Full text: The paper outlines the experiences to date in developing mature knowledge management within the UK’s nuclear regulatory body The Office for Nuclear Regulation (ONR). In 2010 concerns over the loss of knowledge due to the age profile within the organization instigated a review of knowledge management and the development of a knowledge management initiative. Initially activities focused on knowledge capture but in order to move to through life knowledge transfer, knowledge management was then aligned with organizational resilience initiatives. A review of progress highlighted the need to better engage the whole organization to achieve the desired level of maturity for knowledge management. Knowledge management activities now cover organizational culture and environment and all aspects of organizational resilience. Benefits to date include clear understanding of core knowledge requirements, better specifications for recruitment and training and the ability to deploy new regulatory approaches. During the period of implementing the knowledge management programme ONR undertook several organizational changes in moving to become a separate statutory body. The UK nuclear industry was in a period of increased activity including the planning of new nuclear reactors. This dynamic environment caused challenges for embedding knowledge management within ONR which are discussed in the paper. (author

  10. Establishment of Nuclear Data for Future Nuclear R and D

    Lee, Y. O.; Gil, C. S.; Cho, Y. S.; Kim, D. H.; Kim, H. I.; Lee, C. W.; Yoo, K. J.; Yang, S. C.; Namkung, W.; Lee, H. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    A computer code system was established to process variance-covariance of the evaluated cross sections in order to quantify uncertainties of nuclear system. Covariance data of major actinides of JENDL-3.3 were processed and their inherent uncertainties and sensitivities to the nuclear system was analyzed. In collaboration with BNL, a new method for neutron resonance parameter evaluation which makes use of recent measurements as well as the existing evaluations was established and applied to the evaluation of a number of fission products. A computation code was developed to evaluate the photo-nuclear fission cross sections. Localization of the code has been examined through the evaluations for some major nuclear materials below 30 MeV region. Neutron-induced gamma spectra, which are essential in the fields of nuclear industry and space engineering, are newly evaluated for W isotopes by introducing improved gamma strength function to describe irregular bumps. The evaluated data has been processed by NJOY and validated through some benchmark calculations by MCNPX. The proton cross sections of 27Al were evaluated by theoretical model calculations. TALYS computer code system was used for the theoretical model calculation and the evaluations for Cu-nat and Fe-nat were also carried out. PAL facilities were utilized for measurements of total cross sections, activation experiments, and beam-time supports to develop various radiation detectors. Neutron total cross sections of Nb, Pb, and Tm and thermal neutron cross sections and resonance parameters of Zr-96 and Ta-181 were measured at the facility. At the Pohang neutron facility, a target system was installed to measure photo-fission cross sections using activation analysis. Photo-fission products were measured for thin film samples of Pb-nat, Pb-208, and Bi-209.

  11. Coal and nuclear power: Illinois' energy future

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations

  12. A practicable signal processing algorithm for industrial nuclear instrument

    Tang Yaogeng; Gao Song; Yang Wujiao

    2006-01-01

    In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)

  13. China's spent nuclear fuel management: Current practices and future strategies

    Zhou Yun

    2011-01-01

    Although China's nuclear power industry is relatively young and the management of its spent nuclear fuel is not yet a concern, China's commitment to nuclear energy and its rapid pace of development require detailed analyses of its future spent fuel management policies. The purpose of this study is to provide an overview of China's fuel cycle program and its reprocessing policy, and to suggest strategies for managing its future fuel cycle program. The study is broken into four sections. The first reviews China's current nuclear fuel cycle program and facilities. The second discusses China's current spent fuel management methods and the storage capability of China's 13 operational nuclear power plants. The third estimates China's total accumulated spent fuel, its required spent fuel storage from present day until 2035, when China expects its first commercialized fast neutron reactors to be operational, and its likely demand for uranium resources. The fourth examines several spent fuel management scenarios for the present period up until 2035; the financial cost and proliferation risk of each scenario is evaluated. The study concludes that China can and should maintain a reprocessing operation to meet its R and D activities before its fast reactor program is further developed. - Highlights: → This study provides an overview of China's fuel cycle program and its reprocessing policy.→ This study suggests strategies for managing its future fuel cycle program.→ China will experience no pressure to lessen the burden of spent fuel storage in the next 30 years.→ China should maintain sufficient reprocessing operations to meet its demands for R and D activities.→ China should actively invest on R and D activities of both fuel cycling and fast reactor programs.

  14. Carbon source in the future chemical industries

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  15. Nuclear Technologies Secure Food For Future

    2012-01-01

    Full text: For nearly fifty years, applications of nuclear technology have been helping the world's farmers, contributing new varieties of crops, controlling pests, diagnosing livestock disease, improving soil and water management and increasing food safety. The significant role of nuclear technology in supporting agriculture will be the focus of this year's IAEA Scientific Forum in Vienna on 18-19 September. Food for the Future: Meeting the Challenges with Nuclear Applications is the theme of the Forum, which takes place during the annual IAEA General Conference. ''Demand for food is rising significantly as the world's population grows,'' IAEA Director General Yukiya Amano said. ''Fighting hunger is a key priority. It is essential not only that the world should produce more food. We must also protect crops and livestock and make sure that food is safe to eat. Nuclear applications can make a real difference in all of these areas.'' ''The goal of the Scientific Forum is to make Member States more aware of the very important work of the IAEA in nuclear applications related to food and to encourage more countries to make use of our services.'' Nuclear technology has many possible uses in food and agriculture. By irradiation, scientists can accelerate natural spontaneous mutation and improve crop varieties to suit particular conditions. Farmers are benefitting from rice that grows in salty conditions, barley that flourishes above 4 000 metres (13 000 feet) and hundreds of other crop varieties. The use of the sterile insect technique, in which males of a targeted species such as the tsetse fly or the Mediterranean fruit fly are sterilised by radiation and released into the wild, is expanding significantly. This effectively combats insect pests that damage crops and spread disease among humans and livestock, while limiting pesticide use. The world was last year declared free of the deadly cattle disease rinderpest after a campaign made possible by nuclear techniques. The

  16. The world's nuclear future - built on material success

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  17. The future of nuclear energy in Europe

    Lauvergeon, A.

    2000-01-01

    More than 430 nuclear power plants are in operation in 33 countries worldwide. In 1999, they generated nearly 2.4 billion kilowatthours, thus meeting approximately one fifth of the world population's electricity requirement. Every third nuclear power plant is located in a member country of the European Union. These 145 plants generated an aggregate 826 billion kilowatthours last year. This corresponds to almost one third of the entire electricity generation in Europe. The special future requirements facing individual countries and power utilities not only ecologically, as a consequence of the Kyoto Protocol, but also economically, as a consequence of the deregulation of the European electricity market, make the intention of Germany to dispense with the use of nuclear power incomprehensible to the French point of view. Germany must pay special attention to fulfilling its international treaties and bilateral contracts, as Anne Lauvergeon, CEO of Cogema, explained in her presentation at the Bonn KTG conference. This applied in particular to the back end of the fuel cycle. In this respect, the head of Cogema argues that the waste and spent fuel management pathway must be chosen freely by the operator of a nuclear power plant. Within the safety requirements applying equally to all operators, the operator may freely decide under economic aspects whether he wants to recycle his spent fuel or dispose of it as waste. Only when this freedom of choice is guaranteed and used will it be ensured that the economically and technically best solution will win the day in the competition of systems. (orig.) [de

  18. The gas industry in Britain: future structures

    McKinnon, J.

    1993-01-01

    This paper is intended to provide a summary of the kind of structural changes to British Gas that can be considered in order to enable effective competition to develop in the gas market. It draws on an extensive analysis undertaken by the Office of Gas Supply (OFGAS) of recent developments in the gas market, the need to ensure the safety, efficiency and security of gas supplies under different structures and how regulation may change with different structures. Many of these issues covered are complex, and can each be discussed at length, but the intention of this paper is to provide an overview of the key options for a restructured gas market. OFGAS has also examined the regulatory environment within which competitors to British Gas who have emerged or who are likely to emerge in the future may be expected to operate. This paper describes the range of structural options we see. At one end of the spectrum there is the option of continuing with a vertically integrated but more heavily regulated monopoly; at the other end is a fully competitive structure with no or much reduced regulation. In between, there are various combinations between the degree of regulation and the extent of competition that can be considered. In analysing future structural options, we believe it necessary to consider the complete gas supply chain. The analysis therefore considers the offshore production or importation of gas, its purchase at the beach, its reception and processing at terminals, its transportation from terminal meters to customers' meters, its storage and sale to final customers. (author)

  19. Analysis on Japanese nuclear industrial technologies and their military implications

    Kim, H S; Yang, M H; Kim, H J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  20. Analysis on Japanese nuclear industrial technologies and their military implications

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months

  1. Analysis on Japanese nuclear industrial technologies and their military implications

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  2. Position paper on irradiated fuel and waste management. The Achille's heel of the nuclear industry?

    Bonin, Bernard

    2014-01-01

    The management and final disposal of irradiated fuel and nuclear waste is often presented by the media and perceived by the public as being an unsolved problem that restricts the future of nuclear energy. However, the nuclear industry focused on this problem very early on and has developed proven technical solutions. Nuclear energy will continue developing worldwide, in spite of the Fukushima accident. Even in those European countries that have decided to phase-out nuclear energy there is a legacy of nuclear waste that must be dealt with. The scientific and technical expertise needed for waste management already exists. Management decisions must be taken. Now is the time for political courage. (orig.)

  3. The nuclear electricity generating industry in England and Wales post-privatisation

    Johnson, C.B.

    1992-01-01

    This paper presents an overview of the new legal framework within which the nuclear generating industry has operated in England and Wales since 31 March 1990. It describes the formation of Nuclear Electric plc and the licensing arrangements, including the various obligations which have been placed upon Nuclear Electric by virtue of its Generation Licence. The impact of competition law is outlined, together with the commercial arrangements including electricity pooling and some of the other more important agreements which Nuclear Electric has entered into. Finally, the Paper discusses some of the constraints under which Nuclear Electric operates, and summarises Government policy towards nuclear power and its future prospects in the United Kingdom. (author)

  4. Opening Doors of Opportunity to Develop the Future Nuclear Workforce - 13325

    Mets, Mindy

    2013-01-01

    The United States' long-term demand for highly skilled nuclear industry workers is well-documented by the Nuclear Energy Institute. In addition, a study commissioned by the SRS Community Reuse Organization concludes that 10,000 new nuclear workers are needed in the two-state region of Georgia and South Carolina alone. Young adults interested in preparing for these nuclear careers must develop specialized skills and knowledge, including a clear understanding of the nuclear workforce culture. Successful students are able to enter well-paying career fields. However, the national focus on nuclear career opportunities and associated training and education programs has been minimal in recent decades. Developing the future nuclear workforce is a challenge, particularly in the midst of competition for similar workers from various industries. In response to regional nuclear workforce development needs, the SRS Community Reuse Organization established the Nuclear Workforce Initiative (NWI R ) to promote and expand nuclear workforce development capabilities by facilitating integrated partnerships. NWI R achievements include a unique program concept called NWI R Academies developed to link students with nuclear career options through firsthand experiences. The academies are developed and conducted at Aiken Technical College and Augusta Technical College with support from workforce development organizations and nuclear employers. Programs successfully engage citizens in nuclear workforce development and can be adapted to other communities focused on building the future nuclear workforce. (authors)

  5. Opening Doors of Opportunity to Develop the Future Nuclear Workforce - 13325

    Mets, Mindy [Nuclear Workforce Initiative Program, SRS Community Reuse Organization, P.O. Box 696, Aiken, SC 29802 (United States)

    2013-07-01

    The United States' long-term demand for highly skilled nuclear industry workers is well-documented by the Nuclear Energy Institute. In addition, a study commissioned by the SRS Community Reuse Organization concludes that 10,000 new nuclear workers are needed in the two-state region of Georgia and South Carolina alone. Young adults interested in preparing for these nuclear careers must develop specialized skills and knowledge, including a clear understanding of the nuclear workforce culture. Successful students are able to enter well-paying career fields. However, the national focus on nuclear career opportunities and associated training and education programs has been minimal in recent decades. Developing the future nuclear workforce is a challenge, particularly in the midst of competition for similar workers from various industries. In response to regional nuclear workforce development needs, the SRS Community Reuse Organization established the Nuclear Workforce Initiative (NWI{sup R}) to promote and expand nuclear workforce development capabilities by facilitating integrated partnerships. NWI{sup R} achievements include a unique program concept called NWI{sup R} Academies developed to link students with nuclear career options through firsthand experiences. The academies are developed and conducted at Aiken Technical College and Augusta Technical College with support from workforce development organizations and nuclear employers. Programs successfully engage citizens in nuclear workforce development and can be adapted to other communities focused on building the future nuclear workforce. (authors)

  6. French lessons - can they help the US nuclear industry?

    Jasper, J.M.

    1987-01-01

    Many analyses of the politics and economics of nuclear energy in the United States rely on comparisons of US reactor programs with those of France, which have proven to be more successful. The kernel of the comparison is that France has a large and growing nuclear system that produces most of the country's electricity, little political resistance, electric rates that are among the lowest in Europe, and independence from the vicissitudes of the oil markets. By contrast, in the US there are widespread political resistance and unfavorable public opinion, uncertainty about future plans for nuclear energy, and a generally costly set of reactors that produce about 15% of the country's electricity. What is more, the relatively expensive American plants are often thought of to be less safe than their cheaper French counterparts. In attempting to explain the French success and the US failure, observers have been all too prone to single out as the root cause a particular political or economic factor that differs between the two countries. One of the major shortcomings of this approach is that there are a number of relevant differences, any of which could play a part in affecting the countries' nuclear programs and which may not be easily changed. Moreover, implicit in each explanation is a prescription for how to aid the ailing nuclear industry in the United States--a prescription that may well be questionable

  7. Nuclear industrial and power complex of Kazakhstan

    Shemanskiy, V.A.; Cherepnin, Yu.S.; Zelenski, D.I.; Papafanasopulo, G.A.

    1997-01-01

    While selecting the national power supply strategy of economic potential development four factors are laid in the basis of discussions and technical and economic decisions: effect either power complexes on people health, consequences environmental, economics and resources existence. Atomic power requires the balanced approach to power politics which, by that, avoids the dependence on any energy source. The existing electric power generation structure in Kazakhstan is Featured by the following numbers: -TEPP on coal - 79%; - TEPP on gas-black-oil fuel - 12-13%; - HEPP - 6-7%; - Atomic PP - about 0.7%. The ground for nuclear power development is considerable uranium deposits and rather developed atomic industry. Kazakhstan atomic industry includes: - uranium extractive enterprise - State Holding Company 'Tselinnyi Mining-Chemical Plant' (SHC 'TCMP'), Stepnoy Ore Division (SOD), Central ore Division 6 (COD 6), KASKOR (Aktau); - plant on fuel pellets production for APP (JSC 'UMP'); - plants on production of rare and rare-earth metals - Irtysh Chemical and Metallurgical (JSC 'CMP') and Ulba Metallurgical Plant (JSC 'UMP'); - Mangyshlak Power Plant (MAEK); - Scientific Complex of NNC RK of Ministry of Science-Academy of Science. About 25% of world deposits and uranium resources are concentrated in Kazakhstan bowels. The scientific potential of atomic production complex of the Republic of Kazakhstan is concentrated in NNC RK divisions (IAE and INP) and at JSC 'UMP' and MAEK enterprises. Ministry Energy and Nature Resources is a Board responsible for the development of atomic industry and power branches. Atomic Energy Agency of the Republic Kazakhstan performs the independent effective state supervision and control providing safety of atomic industry power installations operation

  8. Dialogue between the nuclear industry and environmentalists is the key

    Padley, P.J.

    1987-01-01

    'Nuclear energy - the good news for British Industry' was the title of a meeting organised by the Confederation of British Industry in July 1987. This article summarizes the contributions of each of the speakers. Between them they produced figures on the importance of the nuclear industry in various countries including the USA, France and the United Kingdom. The risks were mentioned, also the public fears following the accident at Chernobyl. The UK policy on the disposal of nuclear waste is summarized. The disposal is not technically difficult, only politically so because of adverse public opinion. These points also emerged; the nuclear industry must liaise with environmentalists and the UK manufacturing industry needs low cost energy which the nuclear industry could supply. However, the long-term development of nuclear power is only possible if there are no more reactor accidents leading to injury by radioactivity. (U.K.)

  9. Chemicals-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    DOE Office of Industrial Technologies

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Chemicals. Information on what works for the Chemicals industry, examples of successful partnerships, and benefits of partnering with OIT are included

  10. Glass-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    DOE Office of Industrial Technologies

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Glass. Information on what works for the Glass industry, examples of successful partnerships, and benefits of partnering with OIT are included

  11. Steel-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    Jones, A.

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Steel. Information on what works for the Steel industry, examples of successful partnerships, and benefits of partnering with OIT are included

  12. Aluminum-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    Jones, A.

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Aluminum. Information on what works for the Aluminum industry, examples of successful partnerships, and benefits of partnering with OIT are included

  13. Forest-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    DOE Office of Industrial Technologies

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Forest Products. Information on what works for the Forest Products industry, examples of successful partnerships, and benefits of partnering with OIT are included

  14. Europairs project: creating an alliance of nuclear and non-nuclear industries for developing nuclear cogeneration

    Hittner, Dominique; Bogusch, Edgar; Viala, Celine; Angulo, Carmen; Chauvet, Vincent; Fuetterer, Michael A.; De Groot, Sander; Von Lensa, Werner; Ruer, Jacques; Griffay, Gerard; Baaten, Anton

    2010-01-01

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. HTR are thus well suited to most of the non-electric applications of nuclear energy, which represent about 80% of total energy consumption. This opens opportunities for reducing CO 2 emissions and securing energy supply which are complementary to those provided by systems dedicated to electricity generation. A strong alliance between nuclear and process heat user industries is a necessity for developing a nuclear system for the conventional process heat market, much in the same way as the electronuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project just started in the frame of the EURATOM 7. Framework Programme (FP7) under AREVA coordination. Within EUROPAIRS, process heat user industries express their requirements whereas nuclear industry will provide the performance window of HTR. Starting from this shared information, an alliance will be forged by assessing the feasibility and impact of nuclear CHP from technical, industrial, economical, licensing and sustainability perspectives. This assessment work will allow pointing out the main issues and challenges for coupling an HTR with industrial process heat applications. On this basis, a Road-map will be elaborated for achieving an industrially relevant demonstration of such a coupling. This Road-map will not only take into consideration the necessary nuclear developments, but also the required adaptations of industrial application processes and the possible development of heat transport technologies from the nuclear heat source to application processes. Although only a small and short project (21 months

  15. The role of quality assurance in the nuclear industry

    1985-01-01

    The paper reports on the proceedings of a one day conference on ''the role of quality assurance in the nuclear industry'', presented by the British Nuclear Forum Working Group on Quality Assurance, 1985. The conference reviews the application and effectiveness of the British Standards in the light of experience with the AGR programme, and considers the lessons learned that will benefit future projects. Seven papers are presented at the conference, of which five deal with the AGR experience with respect to quality assurance in design and manufacture. The remaining two papers examine quality assurance in computing software and building on the AGR experience. All seven papers are selected for INIS and indexed separately. (U.K.)

  16. The World Nuclear Industry Status Report 2016

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Fairlie, Ian; Maltini, Fulcieri; Thomas, Steve; Kaaberger, Tomas

    2016-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Nuclear power generation in the world increased by 1.3%, entirely due to a 31% increase in China. Ten reactors started up in 2015-more than in any other year since 1990-of which eight were in China. Construction on all of them started prior to the Fukushima disaster. Eight construction starts in the world in 2015-to which China contributed six-down from 15 in 2010 of which 10 were in China. No construction starts in the world in the first half of 2016. The number of units under construction is declining for the third year in a row, from 67 reactors at the end of 2013 to 58 by mid-2016, of which 21 are in China. China spent over US$100 billion on renewables in 2015, while investment decisions for six nuclear reactors amounted to US$18 billion. Eight early closure decisions taken in Japan, Sweden, Switzerland, Taiwan and the U.S. Nuclear phase-out announcements in the U.S. (California) and Taiwan. In nine of the 14 building countries all projects are delayed, mostly by several years. Six projects have been listed for over a decade, of which three for over 30 years. China is no exception here, at least 10 of 21 units under construction are delayed. With the exception of United Arab Emirates and Belarus, all potential newcomer countries delayed construction decisions. Chile suspended and Indonesia abandoned nuclear plans. AREVA has accumulated US$11 billion in losses over the past five years. French government decides euro 5.6 billion bailout and breaks up the company. Share value 95 percent below 2007 peak value. State utility EDF struggles with US$ 41.5 billion debt, downgraded by S and P. Chinese utility CGN, EDF partner for Hinkley Point C, loses 60% of its share value

  17. Energy policy and nuclear power. Expectations of the power industry

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  18. The development of Chinese power industry and its nuclear power

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  19. Environmental impact of the nuclear industry in China

    Pan Ziqiang; Wang Zhibo; Chen Zhuzhou; Zhang Yongxing; Xie Jianlun

    1996-01-01

    Since its foundation in 1955, the nuclear industry has become a comprehensive industrial, scientific and technical system in China. The nuclear industry has obviously brought great profit to the country, but how much environmental effect it has caused is a question of common interest which we should answer. This report shows the environmental assessment of the nuclear fuel cycle in China. (author). 4 refs, 1 fig., 22 tabs

  20. Safeguarding a future industrial reprocessing plant

    1978-11-01

    This paper is submitted to Working Group 5, Sub-Group B for information. It is being submitted to Working Group 4 for discussion at their meeting in January 1979 and shows that by a combination of accountancy, surveillance and containment a reliable safeguards system can be designed for the reprocessing of fuels of the BWR and PWR type. Its arguments can, in general terms, be applied to plants for reprocessing LMFBR fuels, with due allowance for future advances which should improve our overall knowledge of the reliability of safeguards systems. In the reprocessing of fast reactor (LMFBR) fuels, as compared with LWR fuels, the main differences are the higher plutonium concentration and lower heavy metal throughput in the early stages of the reprocessing operations. At later stages in the process (after plutonium/uranium separation) the plants could be similar and have similar safeguarding problems. Plants for reprocessing LMFBR on a commercial scale will not be in operation for a number of years. In these plants greater attention may have to be paid to safeguards at the early stages, especially to waste/raffinate streams, than in the PWR/BWR reprocessing plant. The actual balance between containment, surveillance and accountancy adopted will depend on the status of the technology of safeguards and reprocessing. It can be anticipated that improvements to measurement systems will be made which may allow greater reliance on actual measurement. Treatment and recycle of solid wastes will advance and could therefore lead to improvements in accountancy in, for example, the ''head-end''

  1. Quantification practices in the nuclear industry

    1986-01-01

    In this chapter the quantification of risk practices adopted by the nuclear industries in Germany, Britain and France are examined as representative of the practices adopted throughout Europe. From this examination a number of conclusions are drawn about the common features of the practices adopted. In making this survey, the views expressed in the report of the Task Force on Safety Goals/Objectives appointed by the Commission of the European Communities, are taken into account. For each country considered, the legal requirements for presentation of quantified risk assessment as part of the licensing procedure are examined, and the way in which the requirements have been developed for practical application are then examined. (author)

  2. Nuclear analytical techniques in Cuban sugar industry

    Diaz R, O.; Griffith M, J.

    1997-01-01

    This paper is a review concerning the application of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processe4s has been performed by means of instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elemental sugar cane soill-plant relationship and elemental composition of different types of Cuban sugar (raw, blanco-directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in the other applications are given. (author). 34 refs., 6 figs., 1 tab

  3. Safety goals for future nuclear power plants

    Todreas, Neil E.

    2001-01-01

    This talk presents technology goals developed for Generation IV nuclear energy systems that can be made available to the market by 2030 or earlier. These goals are defined in the broad areas of sustainability, safety and reliability, and economics. Sustainability goals focus on fuel utilization, waste management, and proliferation resistance. Safety and reliability goals focus on safe and reliable operation, investment protection, and essentially eliminating the need for emergency response. Economics goals focus on competitive life cycle and energy production costs and financial risk. Future reactors fall in three categories - those which are: Certified or derivatives; Designed to a reasonable extent and based on available technology; In conceptual form only with potential to most fully satisfy the GENIV goals

  4. Industrial development - consequences about the implantation of Brazilian Nuclear Program

    Syllus, C.

    1987-07-01

    The strategy to promote the growing industry participation in the Brazilian Nuclear Program, the difficulties, the measurements adopted for overcoming and the results obtained in terms of industrial development, are presented. (M.C.K.) [pt

  5. Accomplishments and future suggestions of 2012 seoul nuclear security summit

    Kim, Jae San [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2012-10-15

    The second Seoul Nuclear Security Summit was held in Seoul, March 26{approx}27, 2012. It was a very big political event for nuclear security. National and International organization leaders had a time to discuss in depth issues about nuclear security; nuclear terrorism, illicit trafficking of nuclear /radiological materials, sabotages for nuclear facilities, etc. Why did many national leaders still take part in the second nuclear security summit compared to Washington summit and what is the importance of nuclear security? This paper will be the answer from those questions and handle the background, outcomes and future tasks of nuclear security summit. And suggestions for the next summits were considered in the conclusion part.

  6. Accomplishments and future suggestions of 2012 seoul nuclear security summit

    Kim, Jae San

    2012-01-01

    The second Seoul Nuclear Security Summit was held in Seoul, March 26∼27, 2012. It was a very big political event for nuclear security. National and International organization leaders had a time to discuss in depth issues about nuclear security; nuclear terrorism, illicit trafficking of nuclear /radiological materials, sabotages for nuclear facilities, etc. Why did many national leaders still take part in the second nuclear security summit compared to Washington summit and what is the importance of nuclear security? This paper will be the answer from those questions and handle the background, outcomes and future tasks of nuclear security summit. And suggestions for the next summits were considered in the conclusion part

  7. Nuclear Data Uncertainty Quantification: Past, Present and Future

    Smith, D.L.

    2015-01-01

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for future investigation of this subject are also suggested

  8. Nuclear Data Uncertainty Quantification: Past, Present and Future

    Smith, D. L.

    2015-01-01

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for future investigation of this subject are also suggested.

  9. Future Expectation for China's Nuclear Power

    2009-01-01

    @@ China:the future of nuclear power Wang Yonggan:In terms of the highlighted issue of energy security,oil is of paramount importance,coal is the foundation and electricity is the pivot according to China's energy strategy.The national total installed power capacity will hit a record high of 900 GW in 2010,and will probably approach 1 500 GW in 2020 when coal-fired power will continue to dominate,and alternative energy such as nuclear energy,hydroenergy,wind energy,and others will take up only 30% at most.Therefore,China remains in dire need to create more room for alternative energy.To solve this problem,solutions should be found in the diversification of energy,especially large-scale development of alternative energy,by which a lowered-and ultimately zeroed-growth of coal-fired generating units could be realized,and the target of low,even zero carbon emission could come true.

  10. Will Future Measurement Needs of the Semiconductor Industry Be Met?

    Bennett, Herbert S

    2007-01-01

    We discuss the ability of the nation's measurement system to meet future metrology needs of the semiconductor industry. Lacking an acceptable metric for assessing the health of metrology for the semiconductor industry, we identify a limited set of unmet measurement needs. Assuming that this set of needs may serve as proxy for the galaxy of semiconductor measurement needs, we examine it from the perspective of what will be required to continue the semiconductor industry's powerful impact in the world's macro-economy and maintain its exceptional record of numerous technological innovations. This paper concludes with suggestions about ways to strengthen the measurement system for the semiconductor industry.

  11. Which Future for Nuclear Power Beyond the Year 2000

    Carle, Remy

    1990-01-01

    In today's world, and most certainly in the future, a growing number of people seek a better life - with continuing progress. To achieve this, they need more and more energy and electricity. There is, of course, a limit to this increase; the world population will stabilize and advances in energy consumption practices will limit waste. I do not intend to speculate on figures for the future; I prefer to restrict myself to present-day facts and figures: eight billion metric tons of oil equivalent are consumed each year, a quarter of which is in the form of electricity. And of this electricity, nuclear power supplies 20%. Forecasting the future is a tricky business, especially when six years of construction lie ahead, followed by forty years of industrial 'life'. I am prepared to make such forecasts, though, as my convictions are based on three extremely solid reasons. These may not seem very original and some of you have perhaps heard me give them before; however, they are sound and will remain so for many years to come. Nuclear energy guarantees security in three major areas: energy policies, the environment and the economy

  12. Brighter future predicted at nuclear meetings in Chicago

    Stein, H.

    1993-01-01

    This article discusses the future of nuclear power in the United States and the rest of the world. It is a summary of a meeting of the American Nuclear Society/European Nuclear Society in Chicago. Some topics discussed include advanced reactor design, public relations, and nuclear safety

  13. Some political issues related to future special nuclear materials production

    Peaslee, A.T. Jr.

    1981-08-01

    The Federal Government must take action to assure the future adequate supply of special nuclear materials for nuclear weapons. Existing statutes permit the construction of advanced defense production reactors and the reprocessing of commercial spent fuel for the production of special materials. Such actions would not only benefit the US nuclear reactor manufacturers, but also the US electric utilities that use nuclear reactors

  14. Small reminder for those who believe in the future of the French nuclear industry and for those who don't. The impossibility of a dispassionate debate on the future of the nuclear in France. Are nuclear and renewable really complementary?

    Audigier, Pierre

    2016-01-01

    In this article, the author briefly recalls and comments the present context: an uncertain evolution of the world fossil fuel market, a grotesque European electricity market, an always more complex and constraining regulation of nuclear safety, and a still unclear French policy. Then, he proposes a critical overview of some popular beliefs on the priority given to energy savings, on nuclear energy (its role in the energy mix and in front of renewable energies, its impact on the financial situation of EDF, its related costs), on the issue of intermittency of renewable energies, and on the strengths and weaknesses of nuclear energy. He finally proposes some initiatives to provide the public with unbiased information

  15. Assessment of demand for and supply of qualified manpower for the nuclear industry

    Morelle, J.

    1993-01-01

    The OECD Nuclear Energy Agency recently published a study which presents the results of a pioneering survey of the demand for and the supply of qualified manpower in various sectors of the nuclear industry (including medicine), and in the related areas of regulation and education in 12 OECD countries. The current manpower situation is presented and the future demand is reviewed. Present and future activities of OECD countries to ensure a balance between supply and demand of qualified manpower are discussed

  16. Some reminiscences and lessons of 50 years of the nuclear industry

    Hill, J. Sir

    2000-01-01

    The past 50 years have seen many changes in the nuclear industry. This paper looks back, first to the early years, followed by the birth of the civil nuclear programme and international enterprises, and then moves on to discuss reactor development. Finally, the paper outlines the past problems of waste disposal, including the political influences of the 1970s and 1980s, and the dilemmas facing future nuclear waste disposal. (author)

  17. The nuclear industry and the NPT: a perspective from Washington

    Porter, D.J.

    1987-01-01

    Whilst exporting nuclear reactors, the nuclear industry in the United States and other nuclear exporting countries also supports the Non-Proliferation Treaty. The nuclear industry needs the IAEA safeguards and the NPT as these allow the nuclear trade to be conducted in an orderly fashion. Non-sensitive equipment, materials and technology can be made available to other nations which adhere to the NPT. Indeed article IV of the NPT encourages this. Many developing countries do not, however, have the money to pay for the imported technology. This article looks at the current situation in the world where nuclear technology has been, is being, or will be, transferred. (U.K.)

  18. Modeling operational risks of the nuclear industry with Bayesian networks

    Wieland, Patricia; Lustosa, Leonardo J.

    2009-01-01

    Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)

  19. Modeling operational risks of the nuclear industry with Bayesian networks

    Wieland, Patricia [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Industrial; Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: pwieland@cnen.gov.br; Lustosa, Leonardo J. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Industrial], e-mail: ljl@puc-rio.br

    2009-07-01

    Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)

  20. G8 decision on fusion would herald nuclear future

    Starck, Peter

    2005-01-01

    Nuclear fusion as a future abundant energy source would receive a boost if G8 leaders agree next month on the site for the world's first fusion test reactor, two nuclear scientists said on Wednesday (1 page)