WorldWideScience

Sample records for future nasa aerospace

  1. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    Science.gov (United States)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  2. An historical summary of advisory boards for aerospace medicine at NASA.

    Science.gov (United States)

    Doarn, Charles R

    2013-03-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has interacted with numerous advisory committees. These committees include those established by NASA, the National Academy of Sciences, the Institute of Medicine, or through Congressional oversight. Such groups have had a relatively passive role while providing sage advice on a variety of important issues. While these groups cover a wide range of disciplines, the focus of this paper is on those that impacted aerospace medicine and human spaceflight from NASA's beginning to the present time. The intent is to provide an historical narrative of the committees, their purpose, their outcome, and how they influenced the development of aerospace medicine within NASA. Aerospace medicine and life sciences have been closely aligned and intertwined from NASA's beginning. While several committees overlap life sciences within NASA, life sciences will not be presented unless it is in direct reference to aerospace medicine. This paper provides an historical summary chronicling those individuals and the groups they led when aerospace medicine was emerging as a discipline for human spaceflight beginning in 1957.

  3. Advanced Learning Technologies and Learning Networks and Their Impact on Future Aerospace Workforce

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    This document contains the proceedings of the training workshop on Advanced Learning Technologies and Learning Networks and their impact on Future Aerospace Workforce. The workshop was held at the Peninsula Workforce Development Center, Hampton, Virginia, April 2 3, 2003. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to: 1) provide broad overviews of the diverse activities related to advanced learning technologies and learning environments, and 2) identify future directions for research that have high potential for aerospace workforce development. Eighteen half-hour overviewtype presentations were made at the workshop.

  4. Aerospace Communications Technologies in Support of NASA Mission

    Science.gov (United States)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  5. NASA-UVa light aerospace alloy and structures technology program

    Science.gov (United States)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  6. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-153] NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting...

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  9. Introduction to NASA's Academy of Aerospace Quality

    OpenAIRE

    Smith, Alice; Smith, Jeffrey

    2016-01-01

    The NASA Academy of Aerospace Quality (AAQ) is an internet-based public domain forum of quality assurance-related educational modules for students and faculty at academic institutions targeting those involved in aerospace research, technology development, and payload design and development including Cube Sats, Small Sats, Nano Sats, Rockets and High Altitude Balloons. The target users are university project and research teams but the academy has also been used by K-12 teams, independent space...

  10. Summary of 2017 NASA Workshop on Assessment of Advanced Battery Technologies for Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2018-01-01

    A workshop on assessment of battery technologies for future aerospace applications was held in Cleveland, OH on August 16-17. The focus of the workshop, hosted by NASA GRC, was to assess (1) the battery needs for future aerospace missions, (2) the state of battery technology and projected technology advances, and (3) the need for additional investments for future aerospace missions. The workshop had 109 attendees that included internationally recognized technology leaders from academia and national laboratories, high level executives from government and industry, small businesses, and startup companies. A significant portion of the workshop was focused on batteries for electrified aircraft. The presentation will summarize the finding on the state of battery technologies for electrified aircraft and will include assessment of current state of battery technology, gaps in battery technology for application in electrified aircraft, and recommended technology development options for meeting near-term and long-term needs of electrified aircraft.

  11. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  12. Emerging and Future Computing Paradigms and Their Impact on the Research, Training, and Design Environments of the Aerospace Workforce

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    The document contains the proceedings of the training workshop on Emerging and Future Computing Paradigms and their impact on the Research, Training and Design Environments of the Aerospace Workforce. The workshop was held at NASA Langley Research Center, Hampton, Virginia, March 18 and 19, 2003. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to new computing paradigms, including grid computing, pervasive computing, high-productivity computing, and the IBM-led autonomic computing; and b) identify future directions for research that have high potential for future aerospace workforce environments. The format of the workshop included twenty-one, half-hour overview-type presentations and three exhibits by vendors.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  14. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  15. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    Science.gov (United States)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 33: Technical communications practices and the use of information technologies as reported by Dutch and US aerospace engineers

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA ARC (U.S.), and NASA LaRC (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions concerning four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  17. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    Science.gov (United States)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  19. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  20. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    Science.gov (United States)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    in fostering cross-organizational collaborations, soliciting participation of non-technical innovations, and increasing employee engagement in influencing the future of NASA Ames Research Center. The grassroots component of the Innovation Fair has been bench marked by the agency as a solid foundation for increasing employee engagement in the development of game changing aerospace technology and processes in support of NASA's mission.

  1. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  3. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXIII - Technical communications practices and the use of information technologies as reported by Dutch and U.S. aerospace engineers

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  5. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-074)] NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel...

  6. Identification of specific requirements for a NASA aerospace law information system and identification of the acquisition requirements for an aerospace law collection for the NASA law library

    Science.gov (United States)

    Morenoff, J.; Roth, D. L.; Singleton, J. W.

    1972-01-01

    The study to develop, implement, and maintain a space law library and information system is summarized. The survey plan; major interviews with individuals representative of potential sources, users and producers of information related to aerospace law; and system trade-off analyses are discussed along with the NASA/RECON system capability. The NASA publications of STAR and IAA are described, and the NASA legal micro-thesaurus is included.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  8. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  9. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  10. Smart Aerospace eCommerce: Using Intelligent Agents in a NASA Mission Services Ordering Application

    Science.gov (United States)

    Moleski, Walt; Luczak, Ed; Morris, Kim; Clayton, Bill; Scherf, Patricia; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes how intelligent agent technology was successfully prototyped and then deployed in a smart eCommerce application for NASA. An intelligent software agent called the Intelligent Service Validation Agent (ISVA) was added to an existing web-based ordering application to validate complex orders for spacecraft mission services. This integration of intelligent agent technology with conventional web technology satisfies an immediate NASA need to reduce manual order processing costs. The ISVA agent checks orders for completeness, consistency, and correctness, and notifies users of detected problems. ISVA uses NASA business rules and a knowledge base of NASA services, and is implemented using the Java Expert System Shell (Jess), a fast rule-based inference engine. The paper discusses the design of the agent and knowledge base, and the prototyping and deployment approach. It also discusses future directions and other applications, and discusses lessons-learned that may help other projects make their aerospace eCommerce applications smarter.

  11. NASA and COTS Electronics: Past Approach and Successes - Future Considerations

    Science.gov (United States)

    LaBel, Kenneth A.

    2018-01-01

    NASA has a long history of using commercial grade electronics in space. In this talk, a brief history of NASAâ's trends and approaches to commercial grade electronics focusing on processing and memory systems will be presented. This will include providing summary information on the space hazards to electronics as well as NASA mission trade space. We will also discuss developing recommendations for risk management approaches to Electrical, Electronic and Electromechanical (EEE) parts and reliability in space. The final portion of the talk will discuss emerging aerospace trends and the future for Commercial Off The Shelf (COTS) usage.

  12. The First "A" in NASA: Motivations for a Career in Aerospace Engineering

    Science.gov (United States)

    Cole, Jennifer

    2008-01-01

    This document offers a poster presentation highlighting reasons to pursue a career in aerospace engineering. These motivations are correlated with NASA's overall mission of scientific discovery and space exploration.

  13. NASA 20th Century Explorer . . . Into the Sea of Space. A Guide to Careers in Aero-Space Technology.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet lists career opportunities in aerospace technology announced by the Boards of the U. S. Civil Service for the National Aeronautics and Space Administration (NASA). Information given includes (1) the work of the NASA, (2) technical and administrative specialties in aerospace technology, (3) educational and experience requirements, and…

  14. Advanced Ceramics for NASA's Current and Future Needs

    Science.gov (United States)

    Jaskowiak, Martha H.

    2006-01-01

    Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  16. NASA Perspective and Modeling of Thermal Runaway Propagation Mitigation in Aerospace Batteries

    Science.gov (United States)

    Shack, P.; Iannello, C.; Rickman, S.; Button, R.

    2014-01-01

    NASA has traditionally sought to reduce the likelihood of a single cell thermal runaway (TR) in their aerospace batteries to an absolute minimum by employing rigorous screening program of the cells. There was generally a belief that TR propagation resulting in catastrophic failure of the battery was a forgone conclusion for densely packed aerospace lithium-ion batteries. As it turns out, this may not be the case. An increasing number of purportedly TR propagation-resistant batteries are appearing among NASA partners in the commercial sector and the Department of Defense. In the recent update of the battery safety standard (JSC 20793) to address this paradigm shift, the NASA community included requirements for assessing TR severity and identifying simple, low-cost severity reduction measures. Unfortunately, there are no best-practice guidelines for this work in the Agency, so the first project team attempting to meet these requirements would have an undue burden placed upon them. A NASA engineering Safety Center (NESC) team set out to perform pathfinding activities for meeting those requirements. This presentation will provide contextual background to this effort, as well as initial results in attempting to model and simulate TR heat transfer and propagation within battery designs.

  17. The link between aerospace industry and NASA during the Apollo years

    Science.gov (United States)

    Turcat, Nicolas

    2008-01-01

    Made in the frame of a French master on political history of USA in Paris IV La Sorbonne University, this subject is the third part of " The Economy of Apollo during the 60s". Nicolas Turcat is actually preparing his PhD in History of Innovation (DEA—Paris IV La Sorbonne). Our actual subject is " the link between aerospace industry and NASA during the Apollo years". This speech will highlight on some aspects of the link between NASA and aerospace industry. NASA could achieve the Apollo mission safely and under heavy financial pressure during the sixties due to a new type of organization for a civil agency; the contractor system. In fact, Military used it since the 1950s. And we will see how the development of this type of contract permitted a better interaction between the two parts. NASA would make another type of link with universities and technical institutes; a real brain trust was created, and between 1961 and 1967, 10,000 students worked and more than 200 universities on Apollo program. We will try to study briefly the procurement plan and process during the Apollo years. Without entering the " spin-offs debate", we will try to watch different aspects of the impacts and realities of the contractor and subcontractor system. We will see that would create a political debate inside USA when presidents Johnson and Nixon would decide to reduce Apollo program. Which states will benefit Apollo program? Or questions like how the debate at the end of the 1960s will become more and more political? Actually, almost 60% of the country's R&D was focused on Apollo, economical and moreover, political impacts would be great. We will try to study this under the light of different example: and particularly in California. The industrial and military complex was a part of the Apollo program. Apollo reoriented the aim of this complex for making it the first aerospace industry. Since this time, USA had not only acquired space ambition but real space capabilities. But more than

  18. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    Science.gov (United States)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  20. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 2, Part 3; Appendices

    Science.gov (United States)

    Jung, David S,; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume II Appendices to Part 3 - Volume I.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  4. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    Science.gov (United States)

    Gangloff, Richard P.; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program continues a high level of activity. Progress achieved between 1 Jan. and 30 Jun. 1993 is reported. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The following projects are addressed: environmental fatigue of Al-Li-Cu alloys; mechanisms of localized corrosion and environmental fracture in Al-Cu-Li-Mg-Ag alloy X2095 and compositional variations; the effect of zinc additions on the precipitation and stress corrosion cracking behavior of alloy 8090; hydrogen interactions with Al-Li-Cu alloy 2090 and model alloys; metastable pitting of aluminum alloys; cryogenic fracture toughness of Al-Cu-Li + In alloys; the fracture toughness of Weldalite (TM); elevated temperature cracking of advanced I/M aluminum alloys; response of Ti-1100/SCS-6 composites to thermal exposure; superplastic forming of Weldalite (TM); research to incorporate environmental effects into fracture mechanics fatigue life prediction codes such as NASA FLAGRO; and thermoviscoplastic behavior.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 66: Emerging Trends in the Globalization of Knowledge: The Role of the Technical Report in Aerospace Research and Development

    Science.gov (United States)

    Pinelli,Thomas E.; Golich, Vicki L.

    1997-01-01

    Economists, management theorists, business strategists, and governments alike recognize knowledge as the single most important resource in today's global economy. Because of its relationship to technological progress and economic growth, many governments have taken a keen interest in knowledge; specifically its production, transfer, and use. This paper focuses on the technical report as a product for disseminating the results of aerospace research and development (R&D) and its use and importance to aerospace engineers and scientists. The emergence of knowledge as an intellectual asset, its relationship to innovation, and its importance in a global economy provides the context for the paper. The relationships between government and knowledge and government and innovation are used to place knowledge within the context of publicly-funded R&D. Data, including the reader preferences of NASA technical reports, are derived from the NASA/DoD Aerospace Knowledge Diffusion Research Project, a ten-year study of knowledge diffusion in the U.S. aerospace industry.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 65: Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this article, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as: (a) the order in which report components are read; (b) components used to determine if a report would be read; (c) those components that could be deleted; (d) the placement of such components as the symbols list; (e) the desirability of a table of contents; (f) the format of reference citations; (g) column layout and right margin treatment; and (h) writing style in terms of person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 58; Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as (1) the order in which report components are read, (2) components used to determine if a report would be read, (3) those components that could be deleted, (4) the placement of such components as the symbols list, (e) the de-sirability of a table of contents, (5) the format of reference citations, (6) column layout and right margin treatment, and (7) and person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  8. The National Evaluation of NASA's Science, Engineering, Mathematics and Aerospace Academy (SEMAA) Program

    Science.gov (United States)

    Martinez, Alina; Cosentino de Cohen, Clemencia

    2010-01-01

    This report presents findings from a NASA requested evaluation in 2008, which contains both implementation and impact modules. The implementation study investigated how sites implement Science, Engineering, Mathematics, and Aerospace Academy (SEMAA) and the contextual factors important in this implementation. The implementation study used data…

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 23: The communications practices of US aerospace engineering faculty and students: Results of the phase 3 survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace engineering faculty and students.

  10. High-End Computing Challenges in Aerospace Design and Engineering

    Science.gov (United States)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  11. A future perspective on technological obsolescenceat NASA, Langley Research Center

    Science.gov (United States)

    Mcintyre, Robert M.

    1990-01-01

    The present research effort was the first phase of a study to forecast whether technological obsolescence will be a problem for the engineers, scientists, and technicians at NASA Langley Research Center (LaRC). There were four goals of the research: to review the literature on technological obsolescence; to determine through interviews of division chiefs and branch heads Langley's perspective on future technological obsolescence; to begin making contacts with outside industries to find out how they view the possibility of technological obsolescence; and to make preliminary recommendations for dealing with the problem. A complete description of the findings of this research can be reviewed in a technical report in preparation. The following are a small subset of the key findings of the study: NASA's centers and divisions vary in their missions and because of this, in their capability to control obsolescence; research-oriented organizations within NASA are believed by respondents to keep up to date more than the project-oriented organizations; asked what are the signs of a professional's technological obsolescence, respondents had a variety of responses; top performing scientists were viewed as continuous learners, keeping up to date by a variety of means; when asked what incentives were available to aerospace technologists for keeping up to data, respondents specified a number of ideas; respondents identified many obstacles to professionals' keeping up to date in the future; and most respondents expressed some concern for the future of the professionals at NASA vis a vis the issue of professional obsolescence.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 20: Engineers as information processors: A survey of US aerospace engineering faculty and students

    Science.gov (United States)

    Holland, Maurita Peterson; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1991-01-01

    U.S. aerospace engineering faculty and students were surveyed as part of the NASA/DoD Aerospace Knowledge Research Project. Faculty and students were viewed as information processors within a conceptual framework of information seeking behavior. Questionnaires were received from 275 faculty members and 640 students, which were used to determine: (1) use and importance of information sources; (2) use of specific print sources and electronic data bases; (3) use of information technology; and (4) the influence of instruction on the use of information sources and the products of faculty and students. Little evidence was found to support the belief that instruction in library or engineering information use has significant impact either on broadening the frequency or range of information products and sources used by U.S. aerospace engineering students.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  15. Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center

    Science.gov (United States)

    Heyward, Ann O.; Kankam, Mark D.

    2004-01-01

    During the summer of 2004, a 10-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA-ASEE Summer Faculty Fellowship Program that operated for 38 years at Glenn. The objectives of CFP parallel those of its companion, viz., (1) to further the professional knowledge of qualified engineering and science faculty,(2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants institutions, and (4) to contribute to the research objectives of Glenn. However, CFP, unlike the NASA program, permits faculty to be in residence for more than two summers and does not limit participation to United States citizens. Selected fellows spend 10 weeks at Glenn working on research problems in collaboration with NASA colleagues and participating in related activities of the NASA-ASEE program. This year's program began officially on June 1, 2004 and continued through August 7, 2004. Several fellows had program dates that differed from the official dates because university schedules vary and because some of the summer research projects warranted a time extension beyond the 10 weeks for satisfactory completion of the work. The stipend paid to the fellows was $1200 per week and a relocation allowance of $1000 was paid to those living outside a 50-mile radius of the Center. In post-program surveys from this and previous years, the faculty cited numerous instances where participation in the program has led to new courses, new research projects, new laboratory experiments, and grants from NASA to continue the work initiated during the summer. Many of the fellows mentioned amplifying material, both in

  16. The future of management: The NASA paradigm

    Science.gov (United States)

    Harris, Philip R.

    1992-01-01

    Prototypes of 21st century management, especially for large scale enterprises, may well be found within the aerospace industry. The space era inaugurated a number of projects of such scope and magnitude that another type of management had to be created to ensure successful achievement. The challenges will be not just in terms of technology and its management, but also human and cultural in dimension. Futurists, students of management, and those concerned with technological administration would do well to review the literature of emerging space management for its wider implications. NASA offers a paradigm, or demonstrated model, of future trends in the field of management at large. More research is needed on issues of leadership for Earth based project in space and space based programs with managers there. It is needed to realize that large scale technical enterprises, such as are undertaken in space, require a new form of management. NASA and other responsible agencies are urged to study excellence in space macromanagement, including the necessary multidisciplinary skills. Two recommended targets are the application of general living systems theory and macromanagement concepts for space stations in the 1990s.

  17. NASA spinoffs to energy and the environment

    Science.gov (United States)

    Gilbert, Ray L.; Lehrman, Stephen A.

    1989-01-01

    Thousands of aerospace innovations have found their way into everyday use, and future National Aeronautics and Space Administration (NASA) missions promise to provide many more spinoff opportunities. Each spinoff has contributed some measure of benefit to the national economy, productivity, or lifestyle. In total, these spinoffs represent a substantial dividend on the national investment in aerospace research. Along with examples of the many terrestrial applications of NASA technology to energy and the environment, this paper presents the mechanisms by which NASA promotes technology transfer. Also discussed are new NASA initiatives in superconductivity research, global warming, and aeropropulsion.

  18. Aerospace Medicine

    Science.gov (United States)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 49: Becoming an aerospace engineer: A cross-gender comparison

    Science.gov (United States)

    Hecht, Laura M.; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    We conducted a mail (self-reported) survey of 4300 student members of the American Institute of Aeronautics and Astronautics (AIAA) during the spring of 1993 as a Phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. The survey was designed to explore students' career goals and aspirations, communications skills training, and their use of information sources, products, and services. We received 1723 completed questionnaires for an adjusted response rate of 42%. In this article, we compare the responses of female and male aerospace engineering students in the context of two general aspects of their educational experience. First, we explore the extent to which women and men differ in regard to factors that lead to the choice to study aerospace engineering, their current level of satisfaction with that choice, and their career-related goals and aspirations. Second, we examine students' responses to questions about communications skills training and the helpfulness of that training, and their use of and the importance to them of selected information sources, products, and services. The cross-gender comparison revealed more similarities than differences. Female students appear to be more satisfied than their male counterparts with the decision to major in aerospace engineering. Both female and male student respondents consider communications skills important for professional success, but females place a higher value than males do on oral communications skills. Women students also place a higher value than men do on the roles of other students and faculty members in satisfying their needs for information.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 21: US aerospace industry librarians and technical information specialists as information intermediaries: Results of the phase 2 survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace industry librarians and technical information specialists as information intermediaries.

  3. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 25: The technical communications practices of British aerospace engineers and scientists: Results of the phase 4 RAeS mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of British aerospace engineers and scientists.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  7. Integrated Vehicle Health Management (IVHM) for Aerospace Systems

    Science.gov (United States)

    Baroth, Edmund C.; Pallix, Joan

    2006-01-01

    To achieve NASA's ambitious Integrated Space Transportation Program objectives, aerospace systems will implement a variety of new concept in health management. System level integration of IVHM technologies for real-time control and system maintenance will have significant impact on system safety and lifecycle costs. IVHM technologies will enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. IVHM also has the potential to reduce, or even eliminate many of the costly inspections and operations activities required by current and future aerospace systems. This presentation will describe the array of NASA programs participating in the development of IVHM technologies for NASA missions. Future vehicle systems will use models of the system, its environment, and other intelligent agents with which they may interact. IVHM will be incorporated into future mission planners, reasoning engines, and adaptive control systems that can recommend or execute commands enabling the system to respond intelligently in real time. In the past, software errors and/or faulty sensors have been identified as significant contributors to mission failures. This presentation will also address the development and utilization of highly dependable sohare and sensor technologies, which are key components to ensure the reliability of IVHM systems.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace Research and Development (R&D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The present exploration of the diffusion of federally-funded R&D via the information-seeking behavior of scientists and engineers proceeds under three assumptions: (1) that knowledge transfer and utilization is as important as knowledge production; (2) that the diffusion of knowledge obtained through federally-funded R&D is necessary for the maintenance of U.S. preeminence in the aerospace field; and (3) that federally-funded NASA and DoD technical reports play an important, albeit as-yet undefined, role in aerospace R&D diffusion. A conceptual model is presented for the process of knowledge diffusion that stresses the role of U.S. government-funded technical reports.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 10: Summary report to phase 3 academic library respondents including frequency distributions

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1991-01-01

    Phase 3 of a 4 part study was undertaken to study the use of scientific and technical information (STI) in the academic aerospace community. Phase 3 of this project used three questionnaires that were sent to three groups (i.e., faculty, librarians, and students) in the academic aerospace community. Specific attention was paid to the types of STI used and the methods in which academic users acquire STI. The responses of the academic libraries are focussed on herein. Demographic information on academic aerospace libraries is provided. Data regarding NASA interaction with academic aerospace libraries is also included, as is the survey instrument.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 20: The use of selected information products and services by US aerospace engineers and scientists: Results of two surveys

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally, funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from two surveys of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into aerospace knowledge diffusion focusing on the role of the industry-affiliated information intermediary.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 28: The technical communication practices of aerospace engineering and science students: Results of the phase 4 cross-national surveys

    Science.gov (United States)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate aerospace engineering and science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an aerospace engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication skills, practices, habits, and training of aerospace engineering and science students. The reported data were obtained from a survey of students enrolled in aerospace engineering and science programs at universities in India, Japan, Russia, and the United Kingdom. The surveys were undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  12. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  13. The NASA Electronic Parts and Packaging (NEPP) Program - Presentation to Korean Aerospace Research Institute

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation will provide basic information about NASA's Electronic Parts and Packaging Program (NEPP), for sharing with representatives of the South Korean Aerospace Research Institute (KARI) as part of a larger presentation by Headquarters Office of Safety and Mission Assurance. The NEPP information includes mission and goals, history of the program, basic focus areas, strategies, deliverables and some examples of current tasks.

  14. NASA Glenn Research Center Electrochemistry Branch Battery Overview

    Science.gov (United States)

    Manzo, Michelle A.

    2010-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Specific areas of focus are Li-ion batteries and their development for future Exploration missions. Current component development efforts for high energy and ultra high energy Li-ion batteries are addressed. Electrochemical systems are critical to the success of Exploration, Science and Space Operations missions. NASA Glenn has a long, successful heritage with batteries and fuel cells for aerospace applications. GRC Battery capabilities and expertise span basic research through flight hardware development and implementation. There is a great deal of synergy between energy storage system needs for aerospace and terrestrial applications.

  15. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  16. Nanomaterials and future aerospace technologies: opportunities and challenges

    Science.gov (United States)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  17. Aerospace Engineering Systems

    Science.gov (United States)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.

  18. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  19. 76 FR 65750 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-105)] Aerospace Safety Advisory Panel... and amendment of the charter of the NASA Aerospace Safety Advisory Panel. SUMMARY: Pursuant to... determined that a renewal and amendment of the charter of the NASA Aerospace Safety Advisory Panel is in the...

  20. NASA/DoD Aerospace Knowledge Diffusion Research Project: Report 43: The Technical Communication Practices of U.S. Aerospace Engineers and Scientists: Results of the Phase 1 Mail Survey -- Manufacturing and Production Perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the Society of Manufacturing Engineers.

  1. Servant Leadership: How does NASA Serve the Interests of Humankind in Aerospace Exploration and the Role STEM Plays in it?

    Science.gov (United States)

    Miranda, Felix A.

    2013-01-01

    This presentation provides a description of technology efforts illustrative of NASA Glenn Research Center Core competencies and which exemplifies how NASA serves the interest of humankind in aerospace exploration. Examples are provided as talking points to illustrate the role that career paths in science, technology, engineering and mathematics (STEM) plays in the aforementioned endeavor.

  2. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    Science.gov (United States)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  3. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  4. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  5. NASA technology investments: building America's future

    Science.gov (United States)

    Peck, Mason

    2013-03-01

    Investments in technology and innovation enable new space missions, stimulate the economy, contribute to the nation's global competitiveness, and inspire America's next generation of scientists, engineers and astronauts. Chief Technologist Mason Peck will provide an overview of NASA's ambitious program of space exploration that builds on new technologies, as well as proven capabilities, as it expands humanity's reach into the solar system while providing broadly-applicable benefits here on Earth. Peck also will discuss efforts of the Office of the Chief Technologist to coordinate the agency's overall technology portfolio, identifying development needs, ensuring synergy and reducing duplication, while furthering the national initiatives as outlined by President Obama's Office of Science and Technology Policy. By coordinating technology programs within NASA, Peck's office facilitates integration of available and new technology into operational systems that support specific human-exploration missions, science missions, and aeronautics. The office also engages other government agencies and the larger aerospace community to develop partnerships in areas of mutual interest that could lead to new breakthrough capabilities. NASA technology transfer translates our air and space missions into societal benefits for people everywhere. Peck will highlight NASA's use of technology transfer and commercialization to help American entrepreneurs and innovators develop technological solutions that stimulate the growth of the innovation economy by creating new products and services, new business and industries and high quality, sustainable jobs.

  6. NASA total quality management 1990 accomplishments report

    Science.gov (United States)

    1991-01-01

    NASA's efforts in Total Quality Management are based on continuous improvement and serve as a foundation for NASA's present and future endeavors. Given here are numerous examples of quality strategies that have proven effective and efficient in a time when cost reduction is critical. These accomplishment benefit our Agency and help to achieve our primary goal, keeping American in the forefront of the aerospace industry.

  7. Aerospace Technology Innovation. Volume 10

    Science.gov (United States)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    Science.gov (United States)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 55: Career goals and educational preparation of aerospace engineering and science students: An international perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1995-01-01

    Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.

  10. Current and Future Parts Management at NASA

    Science.gov (United States)

    Sampson, Michael J.

    2011-01-01

    This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

  11. Knowledge-based diagnosis for aerospace systems

    Science.gov (United States)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  12. NASA Applications of Molecular Nanotechnology

    Science.gov (United States)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace

    Science.gov (United States)

    Bishop, Ann Peterson; Pinelli, Thomas E.

    1995-01-01

    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  15. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  16. Variational analysis and aerospace engineering mathematical challenges for the aerospace of the future

    CERN Document Server

    Mohammadi, Bijan; Pironneau, Olivier; Cipolla, Vittorio

    2016-01-01

    This book presents papers surrounding the extensive discussions that took place from the ‘Variational Analysis and Aerospace Engineering’ workshop held at the Ettore Majorana Foundation and Centre for Scientific Culture in 2015. Contributions to this volume focus on advanced mathematical methods in aerospace engineering and industrial engineering such as computational fluid dynamics methods, optimization methods in aerodynamics, optimum controls, dynamic systems, the theory of structures, space missions, flight mechanics, control theory, algebraic geometry for CAD applications, and variational methods and applications. Advanced graduate students, researchers, and professionals in mathematics and engineering will find this volume useful as it illustrates current collaborative research projects in applied mathematics and aerospace engineering.

  17. Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections

    Science.gov (United States)

    McCubbin, F. M.; Allton, J. H.; Evans, C. A.; Fries, M. D.; Nakamura-Messenger, K.; Righter, K.; Zeigler, R. A.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "...curation of all extra-terrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "...documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the past, present, and future activities of the NASA Curation Office.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 26: The technical communication practices of aerospace engineering students: Results of the phase 3 AIAA National Student Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate engineering students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an engineer, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication practices, habits, and training of aerospace engineering students. The reported data were obtained from a survey of student members of the American Institute of Aeronautics and Astronautics (AIAA). The survey was undertaken as a phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance; use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  19. Update on NASA Microelectronics Activities

    Science.gov (United States)

    Label, Kenneth A.; Sampson, Michael J.; Casey, Megan; Lauenstein, Jean-Marie

    2017-01-01

    Mission Statement: The NASA Electronic Parts and Packaging (NEPP) Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test. and usage of EEE parts by NASA as well as in collaboration with other government Agencies and industry. NASA Space Technology Mission Directorate (STMD) "STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise." Mission Statement: The Space Environments Testing Management Office (SETMO) will identify, prioritize, and manage a select suite of Agency key capabilities/assets that are deemed to be essential to the future needs of NASA or the nation, including some capabilities that lack an adequate business base over the budget horizon. NESC mission is to perform value-added independent testing, analysis, and assessments of NASA's high-risk projects to ensure safety and mission success. NASA Space Environments and Avionics Fellows as well as Radiation and EEE Parts Community of Practice (CoP) leads.

  20. A Future-Based Risk Assessment for the Survivability of Long Range Strike Systems

    Science.gov (United States)

    2007-03-01

    Aeronautics and Space Administration ( NASA ) investigated alternative futures to help generate a viable science strategy to address the future aerospace...World American World View ΔTeK World Power Grid Name 1 Global Exponential Dispersed DIGITAL CACOPHONY 2 Global Exponential Concentrated STAR TREK ...The United States has become the “United Kingdom of the Twenty-first Century.” 2.2.3. NASA Study (1997) In the NASA study, the National Research

  1. 76 FR 23339 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-04-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-043)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting... Register of April 6, 2011, announcing a meeting of the Aerospace Safety Advisory Panel (ASAP) to take place...

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 22: US academic librarians and technical information specialists as information intermediaries: Results of the phase 3 survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. academic librarians and technical information specialists as information intermediaries.

  3. Aerospace Safety Advisory Panel

    Science.gov (United States)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  4. NASA Software Engineering Benchmarking Effort

    Science.gov (United States)

    Godfrey, Sally; Rarick, Heather

    2012-01-01

    Benchmarking was very interesting and provided a wealth of information (1) We did see potential solutions to some of our "top 10" issues (2) We have an assessment of where NASA stands with relation to other aerospace/defense groups We formed new contacts and potential collaborations (1) Several organizations sent us examples of their templates, processes (2) Many of the organizations were interested in future collaboration: sharing of training, metrics, Capability Maturity Model Integration (CMMI) appraisers, instructors, etc. We received feedback from some of our contractors/ partners (1) Desires to participate in our training; provide feedback on procedures (2) Welcomed opportunity to provide feedback on working with NASA

  5. Civil Service Workforce Market Supply and the Effect on Cost Estimating Relationship (CERS) that May Effect the Productivity Factors for Future NASA Missions

    Science.gov (United States)

    Sterk, Steve; Chesley, Stephan

    2008-01-01

    The upcoming retirement of the Baby Boomers will leave a workforce age gap between the younger generation (the future NASA decision makers) and the gray beards. This paper will reflect on the average age of the workforce across NASA Centers, the Aerospace Industry and other Government Agencies, like DoD. This paper will dig into Productivity and Realization Factors and how they get applied to bi-monthly (payroll) data for true full-time equivalent (FTE) calculations that could be used at each of the NASA Centers and other business systems that are on the forefront in being implemented. This paper offers some comparative costs analysis/solutions, from simple FTE cost-estimating relationships (CERs) versus CERs for monthly time-phasing activities for small research projects that start and get completed within a government fiscal year. This paper will present the results of a parametric study investigating the cost-effectiveness of alternative performance-based CERs and how they get applied into the Center's forward pricing rate proposals (FPRP). True CERs based on the relationship of a younger aged workforce will have some effects on labor rates used in both commercial cost models and other internal home-grown cost models which may impact the productivity factors for future NASA missions.

  6. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications, Report on NASA-Kamatics SAA3-1288

    Science.gov (United States)

    Dellacorte, Christopher; Jefferson, Michael

    2015-01-01

    Under NASA Space Act Agreement (SAA3-1288), NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54 kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  7. Aerospace engineering educational program

    Science.gov (United States)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  8. Ultrasonic Characterization of Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  9. Civil Service Workforce Market Supply and the Effect on the Cost Estimating Relationships (CERs) that may effect the Productivity Factors for Future NASA Missions

    Science.gov (United States)

    Sterk, Steve; Chesley, Stephen

    2008-01-01

    The upcoming retirement of the Baby Boomers on the horizon will leave a performance gap between younger generation (the future NASA decision makers) and the gray beards. This paper will reflect on the average age of workforce across NASA Centers, the Aerospace Industry and other Government Agencies, like DoD. This papers will dig into Productivity and Realization Factors and how they get applied to bimonthly (payroll data) for true FTE calculations that could be used at each of the NASA Centers and other business systems that are on the forefront in being implemented. This paper offers some comparative costs solutions, from simple - full time equivalent (FTE) cost estimating relationships CERs, to complex - CERs for monthly time-phasing activities for small research projects that start and get completed within a government fiscal year. This paper will present the results of a parametric study investigating the cost-effectiveness of different alternatives performance based cost estimating relationships (CERs) and how they get applied into the Center s forward pricing rate proposals (FPRP). True CERs based on the relationship of a younger aged workforce will have some effects on labor rates used in both commercial cost models and internal home-grown cost models which may impact the productivity factors for future NASA missions.

  10. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  11. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  12. NASA/DoD aerospace knowledge diffusion research project. VIII - The role of the information intermediary in the diffusion of aerospace knowledge

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The U.S. aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. This article presents a conceptual framework for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  13. NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)

    Science.gov (United States)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1992-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 8: The role of the information intermediary in the diffusion of aerospace knowledge

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The United States aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. Presented here is a conceptual framework for understanding the diffusion of technology. A conceptual framework is given for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  15. Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1

    Science.gov (United States)

    Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.

  16. NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview

    Science.gov (United States)

    Manzo, Michelle A.

    2011-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.

  17. Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases.

  19. IT Data Mining Tool Uses in Aerospace

    Science.gov (United States)

    Monroe, Gilena A.; Freeman, Kenneth; Jones, Kevin L.

    2012-01-01

    Data mining has a broad spectrum of uses throughout the realms of aerospace and information technology. Each of these areas has useful methods for processing, distributing, and storing its corresponding data. This paper focuses on ways to leverage the data mining tools and resources used in NASA's information technology area to meet the similar data mining needs of aviation and aerospace domains. This paper details the searching, alerting, reporting, and application functionalities of the Splunk system, used by NASA's Security Operations Center (SOC), and their potential shared solutions to address aircraft and spacecraft flight and ground systems data mining requirements. This paper also touches on capacity and security requirements when addressing sizeable amounts of data across a large data infrastructure.

  20. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    Science.gov (United States)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  1. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    Science.gov (United States)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  2. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  3. Curating NASA's Future Extraterrestrial Sample Collections: How Do We Achieve Maximum Proficiency?

    Science.gov (United States)

    McCubbin, Francis; Evans, Cynthia; Zeigler, Ryan; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "... documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working towards a state of maximum proficiency.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 40: Technical communications in aerospace education: A study of AIAA student members

    Science.gov (United States)

    Kennedy, John M.; Pinelli, Thomas E.; Barclay, Rebecca O.

    1994-01-01

    This paper describes the preliminary analysis of a survey of the American Institute of Aeronautics and Astronautics (AIAA) student members. In the paper we examine (1) the demographic characteristics of the students, (2) factors that affected their career decisions, (3) their career goals and aspirations, and (4) their training in technical communication and techniques for finding and using aerospace scientific and technical information (STI). We determine that aerospace engineering students receive training in technical communication skills and the use of STI. While those in the aerospace industry think that more training is needed, we believe the students receive the appropriate amount of training. We think that the differences between the amount of training students receive and the perception of training needs is related partially to the characteristics of the students and partially to the structure of the aerospace STI dissemination system. Overall, we conclude that the students' technical communication training and knowledge of STI, while limited by external forces, makes it difficult for students to achieve their career goals.

  5. Aerospace reliability applied to biomedicine.

    Science.gov (United States)

    Lalli, V. R.; Vargo, D. J.

    1972-01-01

    An analysis is presented that indicates that the reliability and quality assurance methodology selected by NASA to minimize failures in aerospace equipment can be applied directly to biomedical devices to improve hospital equipment reliability. The Space Electric Rocket Test project is used as an example of NASA application of reliability and quality assurance (R&QA) methods. By analogy a comparison is made to show how these same methods can be used in the development of transducers, instrumentation, and complex systems for use in medicine.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 26: The relationship between technology policy and scientific and technical information within the US and Japanese aerospace industries

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  7. Identity Federation and Its Importance for NASA's Future: The SharePoint Extranet Pilot

    Science.gov (United States)

    Baturin, Rebecca R.

    2013-01-01

    My project at Kennedy Space Center (KSC) during the spring 2013 Project Management and Systems Engineering Internship was to functionalJy test and deploy the SharePoint Extranet system and ensure successful completion of the project's various lifecycle milestones as described by NASA Procedural Requirement (NPR) 7 120.7. I worked alongside NASA Project Managers, Systems Integration Engineers, and Information Technology (IT) Professionals to pilot this collaboration capability between NASA and its External Partners. The use of identity federation allows NASA to leverage externally-issued credentials of other federal agencies and private aerospace and defense companies, versus the traditional process of granting and maintaining full NASA identities for these individuals. This is the first system of its kind at NASA and it will serve as a pilot for the Federal Government. Recognizing the novelty of this service, NASA's initial approach for deployment included a pilot period where nearby employees of Patrick Air Force Base would assist in testing and deployment. By utilizing a credential registration process, Air Force users mapped their Air Force-issued Common Access Cards (CAC) to a NASA identity for access to the External SharePoint. Once the Air Force stands up an Active Directory Federation Services (ADFS) instance within their Data Center and establishes a direct trust with NASA, true identity federation can be established. The next partner NASA is targeting for collaboration is Lockheed Martin (LMCO), since they collaborate frequently for the ORION Program. Through the use of Exostar as an identity hub, LMCO employees will be able to access NASA data on a need to know basis, with NASA ultimately managing access. In a time when every dollar and resource is being scrutinized, this capability is an exciting new way for NASA to continue its collaboration efforts in a cost and resource effective manner.

  8. Perspectives on Emerging/Novel Computing Paradigms and Future Aerospace Workforce Environments

    Science.gov (United States)

    Noor, Ahmed K.

    2003-01-01

    The accelerating pace of the computing technology development shows no signs of abating. Computing power reaching 100 Tflop/s is likely to be reached by 2004 and Pflop/s (10(exp 15) Flop/s) by 2007. The fundamental physical limits of computation, including information storage limits, communication limits and computation rate limits will likely be reached by the middle of the present millennium. To overcome these limits, novel technologies and new computing paradigms will be developed. An attempt is made in this overview to put the diverse activities related to new computing-paradigms in perspective and to set the stage for the succeeding presentations. The presentation is divided into five parts. In the first part, a brief historical account is given of development of computer and networking technologies. The second part provides brief overviews of the three emerging computing paradigms grid, ubiquitous and autonomic computing. The third part lists future computing alternatives and the characteristics of future computing environment. The fourth part describes future aerospace workforce research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on future computing paradigms.

  9. CSIR in aerospace: An engine for future industrial growth

    CSIR Research Space (South Africa)

    Naidoo, Kavendra

    2017-10-01

    Full Text Available for industry impact 3 A brief summary of previous and current activities in SA aerospace Argos-II Airborne Observation System SumbandilaSat Satellite 4 RAVIN Light Aircraft JS1 Championship Glider Sling Light Sport Aircraft AIRBUS SUPPLIER... BOEING SUPPLIER SAAB Light Fighter Aircraft Airbus Military Transport Agusta Military Helicopter A brief summary of previous and current activities in SA aerospace A-Darter Short Range Air to Air Missile 5 Test flight centre Alkantpan...

  10. Cognitive engineering in aerospace applications

    Science.gov (United States)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  11. The Status and Future of Aerospace Engineering Education in Turkey.

    Science.gov (United States)

    Hale, Francis J.

    There is no aerospace industry in Turkey, and the level of operational activity is low even though the potential for the exploitation of aviation is high. The government of Turkey hopes to establish an aircraft factory in conjunction with a foreign contractor and is aware of the need for aerospace engineering education. This paper describes the…

  12. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 497

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention.

  13. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXVI - The relationship between technology policy and scientific and technical information within the U.S. and Japanese aerospace industries

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 42: An analysis of the transfer of Scientific and Technical Information (STI) in the US aerospace industry

    Science.gov (United States)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura F.; Barclay, Rebecca O.

    1994-01-01

    The U.S. aerospace industry has a long history of federal support for research related to its needs. Since the establishment of the National Advisory Committee for Aeronautics (NACA) in 1915, the federal government has provided continuous research support related to flight and aircraft design. This research has contributed to the international preeminence of the U.S. aerospace industry. In this paper, we present a sociological analysis of aerospace engineers and scientists and how their attitudes and behaviors impact the flow of scientific and technical information (STI). We use a constructivist framework to explain the spotty dissemination of federally funded aerospace research. Our research is aimed towards providing federal policymakers with a clearer understanding of how and when federally funded aerospace research is used. This understanding will help policymakers design improved information transfer systems that will aid the competitiveness of the U.S. aerospace industry.

  15. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    Science.gov (United States)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  16. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    Science.gov (United States)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  17. Aerospace dermatology

    Directory of Open Access Journals (Sweden)

    Sandeep Arora

    2017-01-01

    Full Text Available Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  18. Aerospace Dermatology.

    Science.gov (United States)

    Arora, Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  19. NASA Glenn Research Center Electrochemistry Branch Overview

    Science.gov (United States)

    Manzo, Michelle A.; Hoberecht, Mark; Reid, Concha

    2010-01-01

    This presentation covers an overview of NASA Glenn's history and heritage in the development of electrochemical systems for aerospace applications. Current programs related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions. The presentation covers details of current component development efforts for high energy and ultra high energy Li-ion batteries and non-flow-through fuel cell stack and balance of plant development. Electrochemistry Branch capabilities and facilities are also addressed.

  20. High-Performing, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants

    Science.gov (United States)

    Joshi, Prakash

    2015-01-01

    Long-duration space exploration will require spacecraft systems that can operate effectively over several years with minimal or no maintenance. Aerospace lubricants are key components of spacecraft systems. Physical Sciences Inc., has synthesized and characterized novel ionic liquids for use in aerospace lubricants that contribute to decreased viscosity, friction, and wear in aerospace systems. The resulting formulations offer low vapor pressure and outgassing properties and thermal stability up to 250 C. They are effective for use at temperatures as low as -70 C and provide long-term operational stability in aerospace systems. In Phase II, the company scaled several new ionic liquids and evaluated a novel formulation in a NASA testbed. The resulting lubricant compounds will offer lower volatility, decreased corrosion, and better tribological characteristics than standard liquid lubricants, particularly at lower temperatures.

  1. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  2. Aerospace Environmental Technology Conference: Exectutive summary

    Science.gov (United States)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  3. Aerospace engineering training: universities experience

    Directory of Open Access Journals (Sweden)

    Mertins Kseniya

    2016-01-01

    Full Text Available Contemporary professional working in aerospace engineering must have a set of soft and hard skills. The experience gained in universities shows that training of a competent professional is impossible without an employer involved in this process. The paper provides an analysis of missions, tasks and experience of aerospace professionals and identifies the present and future roles, missions and required skills of a highly qualified specialist in aerospace engineering. This analysis can be used to design a master’s program aiming at providing students with the required knowledge, know-how and attitudes needed to succeed as professionals in industrial companies.

  4. NASA Image Exchange (NIX)

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Technical Reports Server (NTRS) provides access to aerospace-related citations, full-text online documents, and images and videos. The types of information...

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 35: The use of computer networks in aerospace engineering

    Science.gov (United States)

    Bishop, Ann P.; Pinelli, Thomas E.

    1995-01-01

    This research used survey research to explore and describe the use of computer networks by aerospace engineers. The study population included 2000 randomly selected U.S. aerospace engineers and scientists who subscribed to Aerospace Engineering. A total of 950 usable questionnaires were received by the cutoff date of July 1994. Study results contribute to existing knowledge about both computer network use and the nature of engineering work and communication. We found that 74 percent of mail survey respondents personally used computer networks. Electronic mail, file transfer, and remote login were the most widely used applications. Networks were used less often than face-to-face interactions in performing work tasks, but about equally with reading and telephone conversations, and more often than mail or fax. Network use was associated with a range of technical, organizational, and personal factors: lack of compatibility across systems, cost, inadequate access and training, and unwillingness to embrace new technologies and modes of work appear to discourage network use. The greatest positive impacts from networking appear to be increases in the amount of accurate and timely information available, better exchange of ideas across organizational boundaries, and enhanced work flexibility, efficiency, and quality. Involvement with classified or proprietary data and type of organizational structure did not distinguish network users from nonusers. The findings can be used by people involved in the design and implementation of networks in engineering communities to inform the development of more effective networking systems, services, and policies.

  6. Advanced Curation Activities at NASA: Implications for Astrobiological Studies of Future Sample Collections

    Science.gov (United States)

    McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  7. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    Science.gov (United States)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  8. Photovoltaic cell and array technology development for future unique NASA missions

    Science.gov (United States)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; hide

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  9. Historical Evolution of NASA Standard Materials Testing with Hypergolic Propellants and Ammonia (NASA Standard 6001 Test 15)

    Science.gov (United States)

    Greene, Benjamin; McClure, Mark B.

    2012-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) has performed testing of hazardous and reactive aerospace fluids, including hypergolic propellants, with materials since the 1960s with the Apollo program. Amongst other test activities, Test 15 is a NASA standard test for evaluating the reactivity of materials with selected aerospace fluids, in particular hydrazine, monomethylhydrazine, uns-dimethylhydrazine, Aerozine 50, dinitrogen tetroxide oxidizers, and ammonia. This manuscript provides an overview of the history of Test 15 over a timeline ranging from prior to its development and first implementation as a NASA standard test in 1974 to its current refinement. Precursor documents to NASA standard tests, as they are currently known, are reviewed. A related supplementary test, international standardization, and enhancements to Test 15 are also discussed. Because WSTF was instrumental in the development and implementation of Test 15, WSTF experience and practices are referred to in this manuscript.

  10. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    Science.gov (United States)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  11. Benefits of NASA to the USA and Humanity

    Science.gov (United States)

    Duarte, Alberto

    2017-01-01

    During his 28+ as a NASA employee, Mr. Duarte has had the privilege to work in several programs and projects (Space Shuttle Main Engine; Advanced Solid Rocket Booster; X-33; X-34; X-36; External Tank for the Space Shuttle; Space Shuttle missions and others) related to the NASA aerospace exploration program. At the VIII version of F-AIR COLOMBIA, the organizers want to have Colombian born aerospace professionals with experience in aerospace matters to contribute as panelists for this years theme, Benefits of Space Development for A Country. For more than 50 years NASA has lead the world in exploration through continuous advancement in science and innovative technologies. The results have been not only of a service to the nation but to humankind, as well. Those remarkable developments have resulted in positive impact in social and economic growth, enhancements in academics and educational horizons, creation of numerous investment opportunities for large corporations and small business, and a more comprehensive understanding of the universe. NASA has layout path for space exploration and has been of inspiration for scientist, academics and students. Benefits of NASA to the USA and Humanity, will provide a relevant contribution to the theme and objectives of this national event in Colombia.

  12. NASA Technology Applications Team: Commercial applications of aerospace technology

    Science.gov (United States)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  13. Multifunctional Composites for Future Energy Storage in Aerospace Structures

    Directory of Open Access Journals (Sweden)

    Till Julian Adam

    2018-02-01

    Full Text Available Multifunctionalization of fiber-reinforced composites, especially by adding energy storage capabilities, is a promising approach to realize lightweight structural energy storages for future transport vehicles. Compared to conventional energy storage systems, energy density can be increased by reducing parasitic masses of non-energy-storing components and by benefitting from the composite meso- and microarchitectures. In this paper, the most relevant existing approaches towards multifunctional energy storages are reviewed and subdivided into five groups by distinguishing their degree of integration and their scale of multifunctionalization. By introducing a modified range equation for battery-powered electric aircrafts, possible range extensions enabled by multifunctionalization are estimated. Furthermore, general and aerospace specific potentials of multifunctional energy storages are discussed. Representing an intermediate degree of structural integration, experimental results for a multifunctional energy-storing glass fiber-reinforced composite based on the ceramic electrolyte Li1.4Al0.4Ti1.6(PO43 are presented. Cyclic voltammetry tests are used to characterize the double-layer behavior combined with galvanostatic charge–discharge measurements for capacitance calculation. The capacitance is observed to be unchanged after 1500 charge–discharge cycles revealing a promising potential for future applications. Furthermore, the mechanical properties are assessed by means of four-point bending and tensile tests. Additionally, the influence of mechanical loads on the electrical properties is also investigated, demonstrating the storage stability of the composites.

  14. Advances in control system technology for aerospace applications

    CERN Document Server

    2016-01-01

    This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.

  15. Engineering in the 21st century. [aerospace technology prospects

    Science.gov (United States)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  16. Handbook of Aerospace and Operational Physiology, 2nd Edition

    Science.gov (United States)

    2016-10-01

    Gender w = wt in kg h = ht in cm a = age in yr MGF a Harris-Benedict Men (13.75 x w) + (5 x h) - (6.76 x a) + 66 Women (9.56 x w) + (1.85 x h...Responses to the Aerospace Environment. Volume 3, Sections 10 – 16. Oxygen-CO2-Energy. NASA CR-1205 (3). NASA Contractor Report. United States. National...Challenger (28 Jan 86) and Columbia (01 Feb 03) led a NASA team of government employees and civilian contractors to take a hard look at their

  17. NASA 3D Models: TRMM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study...

  18. Recent advances in the development of aerospace materials

    Science.gov (United States)

    Zhang, Xuesong; Chen, Yongjun; Hu, Junling

    2018-02-01

    In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 69: Writing for the Aerospace Industry. Chapter 3; The Practice of Technical and Scientific Communication: Writing in Professional Contexts

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.

    1997-01-01

    The large and complex aerospace industry, which employed approximately 850,000 people in 1994 (Aerospace Facts, 1994-95, p. 11), plays a vital role in the nation's economy. Although only a small percentage of those employed in aerospace are technical communicators, they perform a wide variety of communication duties in government and the private sector.

  1. Organizational structure and operation of defense/aerospace information centers in the United States of America

    Science.gov (United States)

    Sauter, H. E.; Lushina, L. N.

    1983-01-01

    U.S. Government aerospace and defense information centers are addressed. DTIC and NASA are described in terms of their history, operational authority, information services provided, user community, sources of information collected, efforts under way to improve services, and external agreements regarding the exchange of documents and/or data bases. Contents show how DTIC and NASA provide aerospace/defense information services in support of U.S. research and development efforts. In a general introduction, the importance of scientific and technical information and the need for information centers to acquire, handle, and disseminate it are stressed.

  2. NASA University Program Management Information System

    Science.gov (United States)

    1999-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA's objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well-being. NASA field codes and certain Headquarters program offices provide funds for those activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. (See the bar chart on the next page). This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.

  3. Aerospace Medicine and Biology. A continuing bibliography with indexes

    Science.gov (United States)

    1982-01-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.

  4. Aerospace medicine and biology. A continuing bibliography with indexes

    International Nuclear Information System (INIS)

    1982-03-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

  5. NASA University Program Management Information System

    Science.gov (United States)

    2000-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA:s objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well-being. NASA field codes and certain Headquarters program offices provide funds for those activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA:s Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.* This report was prepared by the Education Division/FE, Office of Human Resources and Education, using a management information system which was modernized during FY 1993.

  6. Total quality management - It works for aerospace information services

    Science.gov (United States)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle.

  7. Risk communication strategy development using the aerospace systems engineering process

    Science.gov (United States)

    Dawson, S.; Sklar, M.

    2004-01-01

    This paper explains the goals and challenges of NASA's risk communication efforts and how the Aerospace Systems Engineering Process (ASEP) was used to map the risk communication strategy used at the Jet Propulsion Laboratory to achieve these goals.

  8. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    Science.gov (United States)

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  10. An operating system for future aerospace vehicle computer systems

    Science.gov (United States)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  11. Information Technology and Aerospace Knowledge Diffusion: Exploring the Intermediary-End User Interface in a Policy Framework.

    Science.gov (United States)

    Pinelli, Thomas E.; And Others

    1992-01-01

    Discusses U.S. technology policy and the transfer of scientific and technical information (STI). Results of a study of knowledge diffusion in the aerospace industry are reported, including data on aerospace information intermediaries, use of computer and information technologies, and the use of NASA (National Aeronautics and Space Administration)…

  12. Aeromedical solutions for aerospace safety.

    Science.gov (United States)

    Kapoor, Pawan; Gaur, Deepak

    2017-10-01

    All facets of activity in the speciality of Aviation Medicine are essentially aimed at enhancing aerospace safety. This paper highlights some innovative changes brought about by Aerospace Medicine in the three major fields of the speciality namely, medical evaluation, aeromedical training and research. Based on lab and field studies, military aircrew are now permitted flying with Modifinil as 'Go' Pill and Zolpidem as 'No-Go' Pill during sustained operations. Several other drugs for disabilities like Hypertension and CAD are now permitted for aviators. Comprehensive revision of policy permitting early return to flying is an on-going process. OPRAM courses for all three streams of aircrew in IAF have contributed to reduce aircraft accident rates. Human Engineering Consultancy and expert advice is provided by specialists at IAM as well as those in the field. In future, the country needs to provide better post-service opportunities to aerospace medicine specialists. This, in turn, will attract bright young minds to the specialty. The ISRO Humanin-Space programme will be an exciting challenge for all in this unique field. Aerospace Medicine continues to provide aerospace safety solutions to the IAF and the aviation industry. The nation needs to continue to utilize and support this specialty.

  13. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 499

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth#s atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  14. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 485

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  15. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 506

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.

  16. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 496

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth#s atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.

  17. NADA/DOD Aerospace Knowledge Diffusion Research Project. Report number 19: The US government technical report and the transfer of federally funded aerospace R/D: An analysis of five studies

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the 'NASA/DoD Aerospace Knowledge Diffusion Research Project'. In this report, we summarize the literature on technical reprts and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from five studies of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into the use of the U.S. government technical report as a rhetorical device for transferring federally funded aerospace R&D.

  18. Total quality management: It works for aerospace information services

    Science.gov (United States)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle. Four projects are described that utilize cross-functional, problem-solving teams for identifying requirements and defining tasks and task standards, management participation, attention to critical processes, and measurable long-term goals. The implementation of these projects provides the customer with measurably improved access to information that is provided through several channels: the NASA STI Database, document requests for microfiche and hardcopy, and the Centralized Help Desk.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 38: Computer Mediated Communication (CMC) and the communication of technical information in aerospace

    Science.gov (United States)

    Murphy, Daniel J.; Pinelli, Thomas E.

    1994-01-01

    This paper discusses the use of computers as a medium for communication (CMC) used by aerospace engineers and scientists to obtain and/or provide technical information related to research and development activities. The data were obtained from a questionnaire survey that yielded 1006 mail responses. In addition to communication media, the research also investigates degrees of task uncertainty, environmental complexity, and other relevant variables that can affect aerospace workers' information-seeking strategies. While findings indicate that many individuals report CMC is an important function in their communication patterns, the research indicates that CMC is used less often and deemed less valuable than other more conventional media, such as paper documents, group meetings, telephone and face-to-face conversations. Fewer than one third of the individuals in the survey account for nearly eighty percent of the reported CMC use, and another twenty percent indicate they do not use the medium at all, its availability notwithstanding. These preliminary findings suggest that CMC is not as pervasive a communication medium among aerospace workers as the researcher expect a priori. The reasons underlying the reported media use are not yet fully known, and this suggests that continuing research in this area may be valuable.

  20. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 489

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  1. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 498

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  2. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  3. Wireless Sensing Opportunities for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    William Wilson

    2008-07-01

    Full Text Available Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  4. Aerospace technology transfer to the public sector; Proceedings of the Conference, Crystal City, Va., November 9-11, 1977

    Science.gov (United States)

    Grey, J. (Editor); Newman, M.

    1978-01-01

    The dynamics of aerospace technology transfer is discussed with reference to the agencies which facilitate the transfer to both the public and private sectors. Attention is given to NASA's Technology Utilization Program, and to specific applications of aerospace technology spinoff in the daily life of Americans.

  5. Emerging Trends in the Globalization of Knowledge: The Role of the Technical Report in Aerospace Research and Development

    Science.gov (United States)

    Pinelli, Thomas E.; Golich, Vicki L.

    1997-01-01

    Economists, management theorists, business strategists, and governments alike recognize knowledge as the single most important resource in today's global economy. Because of its relationship to technological progress and economic growth, many governments have taken a keen interest in knowledge, specifically its production, transfer, and use. This paper focuses on the technical report as a product for disseminating the results of aerospace research and development (R&D) and its use and importance to aerospace engineers and scientists. The emergence of knowledge as an intellectual asset, its relationship to innovation, and its importance in a global economy provides the context for the paper. The relationships between government and knowledge and between government and innovation are used to placed knowledge within the context of publicly-funded R&D. Data, including the reader preferences of NASA technical reports, are derived from the NASA/DOD Aerospace Knowledge Diffusion Research Project, a ten-year study of knowledge diffusion in the U.S. aerospace industry.

  6. NASA, Building Tomorrow's Future

    Science.gov (United States)

    Mango, Edward

    2011-01-01

    We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight

  7. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  8. University Program Management Information System: NASA's University Program Active Projects

    Science.gov (United States)

    Gans, Gary (Technical Monitor)

    2003-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA's objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well being. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data. This report was prepared by the Office of Education/N.

  9. 43rd Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  10. Resource Management and Contingencies in Aerospace Concurrent Engineering

    Science.gov (United States)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  11. Aerospace Technology (Aerospace Engineering Degree)

    OpenAIRE

    Tiseira Izaguirre, Andrés Omar; Blanco Rodríguez, David; Carreres Talens, Marcos; FAJARDO PEÑA, PABLO

    2013-01-01

    Apuntes de la asignatura Tecnología Aeroespacial Tiseira Izaguirre, AO.; Blanco Rodríguez, D.; Carreres Talens, M.; Fajardo Peña, P. (2013). Aerospace Technology (Aerospace Engineering Degree). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/35263

  12. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  13. Applied Computational Fluid Dynamics at NASA Ames Research Center

    Science.gov (United States)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  14. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  15. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  16. Analysis and Perspective from the Complex Aerospace Systems Exchange (CASE) 2013

    Science.gov (United States)

    Jones, Kennie H.; Parker, Peter A.; Detweiler, Kurt N.; McGowan, Anna-Maria R.; Dress, David A.; Kimmel, William M.

    2014-01-01

    NASA Langley Research Center embedded four rapporteurs at the Complex Aerospace Systems Exchange (CASE) held in August 2013 with the objective to capture the essence of the conference presentations and discussions. CASE was established to provide a discussion forum among chief engineers, program managers, and systems engineers on challenges in the engineering of complex aerospace systems. The meeting consists of invited presentations and panels from industry, academia, and government followed by discussions among attendees. This report presents the major and reoccurring themes captured throughout the meeting and provides analysis and insights to further the CASE mission.

  17. Adopting exergy analysis for use in aerospace

    Science.gov (United States)

    Hayes, David; Lone, Mudassir; Whidborne, James F.; Camberos, José; Coetzee, Etienne

    2017-08-01

    Thermodynamic analysis methods, based on an exergy metric, have been developed to improve system efficiency of traditional heat driven systems such as ground based power plants and aircraft propulsion systems. However, in more recent years interest in the topic has broadened to include applying these second law methods to the field of aerodynamics and complete aerospace vehicles. Work to date is based on highly simplified structures, but such a method could be shown to have benefit to the highly conservative and risk averse commercial aerospace sector. This review justifies how thermodynamic exergy analysis has the potential to facilitate a breakthrough in the optimization of aerospace vehicles based on a system of energy systems, through studying the exergy-based multidisciplinary design of future flight vehicles.

  18. NASA technology applications team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.

  19. A Program of Research and Education in Aerospace Structures at the Joint Institute for Advancement of Flight Sciences

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the cooperative effort with NASA was to conduct research related to aerospace structures and to increase the quality and quantity of highly trained engineers knowledgeable about aerospace structures. The program has successfully met the objectives and has been of significant benefit to NASA LARC, the GWU and the nation. The program was initiated with 3 students in 1994 under the direction of Dr. Robert Tolson as the Principal Investigator. Since initiation, 14 students have been involved in the program, resulting in 11 MS degrees with 2 more expected in 2000. The 11 MS theses and projects are listed. For technology transfer purposes some research is not reported in thesis form. Graduates from the program have been hired at aerospace and other companies across the nation, providing GWU and LARC with important industry and government contacts.

  20. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 494

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes--subject and author are included after the abstract section.

  1. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 504

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes- subject and author are included after the abstract section.

  2. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 490

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  3. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 487

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  4. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 502

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  7. Aerospace Payloads Leak Test Methodology

    Science.gov (United States)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  8. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    Science.gov (United States)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  9. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    Science.gov (United States)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  10. Accessing NASA Technology with the World Wide Web

    Science.gov (United States)

    Nelson, Michael L.; Bianco, David J.

    1995-01-01

    NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer and technology awareness applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology OPportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. The NASA Technical Report Server (NTRS) provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people.

  11. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    Science.gov (United States)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  12. Recent Investments by NASA's National Force Measurement Technology Capability

    Science.gov (United States)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  13. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  14. NASA Technologies for Product Identification

    Science.gov (United States)

    Schramm, Fred, Jr.

    2006-01-01

    Since 1975 bar codes on products at the retail counter have been accepted as the standard for entering product identity for price determination. Since the beginning of the 21st century, the Data Matrix symbol has become accepted as the bar code format that is marked directly on a part, assembly or product that is durable enough to identify that item for its lifetime. NASA began the studies for direct part marking Data Matrix symbols on parts during the Return to Flight activities after the Challenger Accident. Over the 20 year period that has elapsed since Challenger, a mountain of studies, analyses and focused problem solutions developed by and for NASA have brought about world changing results. NASA Technical Standard 6002 and NASA Handbook 6003 for Direct Part Marking Data Matrix Symbols on Aerospace Parts have formed the basis for most other standards on part marking internationally. NASA and its commercial partners have developed numerous products and methods that addressed the difficulties of collecting part identification in aerospace operations. These products enabled the marking of Data Matrix symbols in virtually every situation and the reading of symbols at great distances, severe angles, under paint and in the dark without a light. Even unmarkable delicate parts now have a process to apply a chemical mixture called NanocodesTM that can be converted to a Data Matrix. The accompanying intellectual property is protected by 10 patents, several of which are licensed. Direct marking Data Matrix on NASA parts virtually eliminates data entry errors and the number of parts that go through their life cycle unmarked, two major threats to sound configuration management and flight safety. NASA is said to only have people and stuff with information connecting them. Data Matrix is one of the most significant improvements since Challenger to the safety and reliability of that connection. This presentation highlights the accomplishments of NASA in its efforts to develop

  15. International aerospace engineering: NASA shuttle and European Spacelab

    Science.gov (United States)

    Bilstein, R. E.

    1981-01-01

    NASA negotiations and contractual arrangements involving European space research organizations' participation in manned space operations and efforts in building Spacelab for the U.S. Reusable Space Shuttle are discussed. Some of the diplomatic and technical collaboration involved in the international effort is reviewed.

  16. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  17. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  18. Research and Development of Rapid Design Systems for Aerospace Structure

    Science.gov (United States)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  19. Application of aerospace failure-reporting systems to power plants. Final report

    International Nuclear Information System (INIS)

    Koukol, J.F.; Lapin, E.E.; Leverton, W.F.; Pickering, W.H.

    1980-06-01

    Failure reporting and analysis is a principal element of the overall quality assurance scheme that helped achieve, and now sustains, a high level of reliability in our national aerospace effort. The aerospace endeavor has many points of congruence with other highly technological activities. These are marked by great economic investment, an extended interval between concept and final implementation, the involvement of many independent entities with the government exercising a dominating influence, a considerable exposure to public view and review by public bodies, a notoriety accompanying untoward events, and extreme consequences attending failure. This report is written in the expectation that the lessons learned in arriving at the present state in aerospace can be adopted by others. It is the object of the report to illuminate the essential features of the aerospace failure reporting system. Two schemes are described. One typifies that which is currently employed by the Jet Propulsion Laboratory (JPL) operated by the California Institute of Technology for the NASA/JPL Voyager project and is based on procedures developed over several decades of deep space exploration. The other is typical of that employed by the Space Divison of the Air Force for military space programs

  20. Quantitative NDE of Composite Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.

    2015-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  1. A brief overview of NASA Langley's research program in formal methods

    Science.gov (United States)

    1992-01-01

    An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

  2. Curating NASA's future extraterrestrial sample collections: How do we achieve maximum proficiency?

    Science.gov (United States)

    McCubbin, Francis; Evans, Cynthia; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael; Zeigler, Ryan

    2016-07-01

    Introduction: The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "…documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working to-wards a state of maximum proficiency. Founding Principle: Curatorial activities began at JSC (Manned Spacecraft Center before 1973) as soon as design and construction planning for the Lunar Receiving Laboratory (LRL) began in 1964 [1], not with the return of the Apollo samples in 1969, nor with the completion of the LRL in 1967. This practice has since proven that curation begins as soon as a sample return mission is conceived, and this founding principle continues to return dividends today [e.g., 2]. The Next Decade: Part of the curation process is planning for the future, and we refer to these planning efforts as "advanced curation" [3]. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. We are (and have been) planning for future curation, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, curation of organically- and biologically-sensitive samples, and the use of minimally invasive analytical techniques (e.g., micro-CT, [4]) to characterize samples. These efforts will be useful for Mars Sample Return

  3. NASA's Earth Science Enterprise: Future Science Missions, Objectives and Challenges

    Science.gov (United States)

    Habib, Shahid

    1998-01-01

    NASA has been actively involved in studying the planet Earth and its changing environment for well over thirty years. Within the last decade, NASA's Earth Science Enterprise has become a major observational and scientific element of the U.S. Global Change Research Program. NASA's Earth Science Enterprise management has developed a comprehensive observation-based research program addressing all the critical science questions that will take us into the next century. Furthermore, the entire program is being mapped to answer five Science Themes (1) land-cover and land-use change research (2) seasonal-to-interannual climate variability and prediction (3) natural hazards research and applications (4) long-term climate-natural variability and change research and (5) atmospheric ozone research. Now the emergence of newer technologies on the horizon and at the same time continuously declining budget environment has lead to an effort to refocus the Earth Science Enterprise activities. The intent is not to compromise the overall scientific goals, but rather strengthen them by enabling challenging detection, computational and space flight technologies those have not been practically feasible to date. NASA is planning faster, cost effective and relatively smaller missions to continue the science observations from space for the next decade. At the same time, there is a growing interest in the world in the remote sensing area which will allow NASA to take advantage of this by building strong coalitions with a number of international partners. The focus of this presentation is to provide a comprehensive look at the NASA's Earth Science Enterprise in terms of its brief history, scientific objectives, organization, activities and future direction.

  4. The World Wide Web and Technology Transfer at NASA Langley Research Center

    Science.gov (United States)

    Nelson, Michael L.; Bianco, David J.

    1994-01-01

    NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.

  5. Determinants of premiums in aerospace mergers and acquisitions: A preliminary analysis

    Science.gov (United States)

    Bryant, John K.

    There is a large body of literature on different aspects of premiums as they relate to mergers and acquisitions. However, there is very little literature that specifically discusses the determinants of premiums in aerospace. Few industries have experienced the prolonged consolidation that the aerospace industry has seen. Today, the industry is dominated by a few large firms, but there is still merger activity continuing especially with second-tier firms attempting to secure their future through growth. This paper examines several determinants as applied to 18 aerospace mergers of publicly held companies and divisions from 1991 through April of 2002.

  6. An overview of NASA ISS human engineering and habitability: past, present, and future.

    Science.gov (United States)

    Fitts, D; Architecture, B

    2000-09-01

    The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.

  7. NASA Life Sciences Data Repositories: Tools for Retrospective Analysis and Future Planning

    Science.gov (United States)

    Thomas, D.; Wear, M.; VanBaalen, M.; Lee, L.; Fitts, M.

    2011-01-01

    As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future

  8. NASA-Navy Telemedicine: Autogenic Feedback Training Exercises for Motion Sickness

    Science.gov (United States)

    Acromite, Michael T.; Cowings, Patricia; Toscano, William; Davis, Carl; Porter, Henry O.

    2010-01-01

    Airsickness is the most significant medical condition affecting naval aviation training. A 2001 study showed that airsickness was reported in 81% of naval aviation students and was associated with 82% of below average flight scores. The cost to a single training air-wing was over $150,000 annually for fuel and maintenance costs alone. Resistent cases are sent to the Naval Aerospace Medical Institute (NAMI) for evaluation and desensitization in the self-paced airsickness desensitization (SPAD) program. This approach is 75% successful, but can take up to 8 weeks at a significant travel cost. NASA Ames Research Center's Autogenic Feedback Training Exercises (AFTE) uses physiological and biofeedback training for motion sickness prevention. It has a remote capability that has been used from Moffett Field, CA to Atlanta, GA . AFTE is administered in twelve (30-minute) training sessions. The success rate for the NASA AFTE program has been over 85%. Methods: Implementation Phases: Phase I: Transfer NASA AFTE to NAMI; NASA will remotely train aviation students at NAMI. Phase II: NAMI-centered AFTE application with NASA oversight. Phase III: NAMI-centered AFTE to remotely train at various Navy sites. Phase IV: NAMI to offer Tri-service application and examine research opportunities. Results: 1. Use available telemedicine connectivity between NAMI and NASA. 2. Save over $2,000 per student trained. 3. Reduce aviation training attrition. 4. Provide standardization of multi-location motion sickness training. 5. Future tri-service initiatives. 6. Data to NASA and Navy for QA and research opportunities.

  9. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    Science.gov (United States)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  10. NASA Composite Materials Development: Lessons Learned and Future Challenges

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  11. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 18:] Scientific and Technical Information (STI) policy and the competitive position of the US aerospace industry

    Science.gov (United States)

    Hernon, Peter; Pinelli, Thomas E.

    1992-01-01

    With its contribution to trade, its coupling with national security, and its symbolism of U.S. technological strength, the U.S. aerospace industry holds a unique position in the Nation's industrial structure. Federal science and technology policy and Federal scientific and technical information (STI) policy loom important as strategic contributions to the U.S. aerospace industry's leading competitive position. However, three fundamental policy problems exist. First, the United States lacks a coherent STI policy and a unified approach to the development of such a policy. Second, policymakers fail to understand the relationship of STI to science and technology policy. Third, STI is treated as a part of general information policy, without any recognition of its uniqueness. This paper provides an overview of the Federal information policy structure as it relates to STI and frames the policy issues that require resolution.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 18: Scientific and Technical Information (STI) policy and the competitive position of the US aerospace industry

    Science.gov (United States)

    Hernon, Peter; Pinelli, Thomas E.

    1992-01-01

    With its contribution to trade, its coupling with national security, and its symbolism of U.S. technological strength, the U.S. aerospace industry holds a unique position in the Nation's industrial structure. Federal science and technology policy and Federal scientific and technical information (STI) policy loom important as strategic contributions to the U.S. aerospace industry's leading competitive position. However, three fundamental policy problems exist. First, the United States lacks a coherent STI policy and a unified approach to the development of such a policy. Second, policymakers fail to understand the relationship of STI to science and technology policy. Third, STI is treated as a part of general information policy, without any recognition of its uniqueness. This paper provides an overview of the Federal information policy structure as it relates to STI and frames the policy issues that require resolution.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 30: Computer-Mediated Communication (CMC) and the communication of technical information in aerospace. Ph.D Thesis - Rensselaer Polytechnic Inst. Final Report

    Science.gov (United States)

    Murphy, Daniel J.; Pinelli, Thomas E.

    1994-01-01

    This research used survey research to examine the use of communication media in general and electronic media specifically in the U.S. aerospace industry. The survey population included 1,006 randomly selected U.S. aerospace engineers and scientists who belong to the American Institute of Aeronautics and Astronautics (AIAA). Survey data were compared with qualitative information obtained from 32 AIAA members in telephone and face-to-face conversations. The Information Processing (IP) model developed by Tushman and Nadler and Daft and Lengel constituted the study's theoretical basis. This research analyzed responses regarding communication methods of U.S. aerospace engineers and scientists who create use and disseminate aerospace knowledge and explored selected contextual environmental variables related to media use and effective performance. The results indicate that uncertainty is significantly reduced in environments when levels of analyzability are high. When uncertainty is high there is significantly more use of electronic media. However no relation was found between overall effectiveness and media use in environments stratified by levels by analyzability or equivocality. The results indicate modest support for the influences of uncertainty and analyzability on electronic media use. Although most respondents reported that electronic networks are important for their work the data suggest that there are sharply disparate levels of use.

  14. Research reports: 1990 NASA/ASEE Summer faculty fellowship program

    International Nuclear Information System (INIS)

    Freeman, L.M.; Chappell, C.R.; Six, F.; Karr, G.R.

    1990-10-01

    Reports on the research projects performed under the NASA/ASEE Summer faculty fellowship program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1: The value of scientific and technical information (STI), its relationship to Research and Development (R/D), and its use by US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.

    1990-01-01

    This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.

  16. Development of Risk Uncertainty Factors from Historical NASA Projects

    Science.gov (United States)

    Amer, Tahani R.

    2011-01-01

    NASA is a good investment of federal funds and strives to provide the best value to the nation. NASA has consistently budgeted to unrealistic cost estimates, which are evident in the cost growth in many of its programs. In this investigation, NASA has been using available uncertainty factors from the Aerospace Corporation, Air Force, and Booz Allen Hamilton to develop projects risk posture. NASA has no insight into the developmental of these factors and, as demonstrated here, this can lead to unrealistic risks in many NASA Programs and projects (P/p). The primary contribution of this project is the development of NASA missions uncertainty factors, from actual historical NASA projects, to aid cost-estimating as well as for independent reviews which provide NASA senior management with information and analysis to determine the appropriate decision regarding P/p. In general terms, this research project advances programmatic analysis for NASA projects.

  17. Activities of the NASA sponsored SRI technology applications team in transferring aerospace technology to the public sector

    Science.gov (United States)

    Berke, J. G.

    1971-01-01

    The organization and functions of an interdisciplinary team for the application of aerospace generated technology to the solution of discrete technological problems within the public sector are presented. The interdisciplinary group formed at Stanford Research Institute, California is discussed. The functions of the group are to develop and conduct a program not only optimizing the match between public sector technological problems in criminalistics, transportation, and the postal services and potential solutions found in the aerospace data base, but ensuring that appropriate solutions are acutally utilized. The work accomplished during the period from July 1, 1970 to June 30, 1971 is reported.

  18. Terrestrial Environment (Climatic) Criteria Guidelines for use in Aerospace Vehicle Development. 2008 Revision

    Science.gov (United States)

    Johnson, D. L. (Editor)

    2008-01-01

    This document provides guidelines for the terrestrial environment that are specifically applicable in the development of design requirements/specifications for NASA aerospace vehicles, payloads, and associated ground support equipment. The primary geographic areas encompassed are the John F. Kennedy Space Center, FL; Vandenberg AFB, CA; Edwards AFB, CA; Michoud Assembly Facility, New Orleans, LA; John C. Stennis Space Center, MS; Lyndon B. Johnson Space Center, Houston, TX; George C. Marshall Space Flight Center, Huntsville, AL; and the White Sands Missile Range, NM. This document presents the latest available information on the terrestrial environment applicable to the design and operations of aerospace vehicles and supersedes information presented in NASA-HDBK-1001 and TM X-64589, TM X-64757, TM-78118, TM-82473, and TM-4511. Information is included on winds, atmospheric thermodynamic models, radiation, humidity, precipitation, severe weather, sea state, lightning, atmospheric chemistry, seismic criteria, and a model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. In addition, a section has been included to provide information on the general distribution of natural environmental extremes in the conterminous United States, and world-wide, that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. A section on atmospheric attenuation has been added since measurements by sensors on certain Earth orbital experiment missions are influenced by the Earth s atmosphere. There is also a section on mission analysis, prelaunch monitoring, and flight evaluation as related to the terrestrial environment inputs. The information in these guidelines is recommended for use in the development of aerospace vehicle and related equipment design and associated operational criteria, unless otherwise stated in contract work specifications. The terrestrial environmental data in these guidelines are

  19. NASA preferred reliability-practices for design and test

    Science.gov (United States)

    Lisk, Ronald C.

    1992-01-01

    NASA HQ established the NASA R&M Steering Committee (R&MSC) comprised of membership from each NASA field center. The primary charter of the R&MSC is to obtain, record, and share the best design practices that NASA has applied to successful space flight programs and current design considerations (guidelines) that should enhance flight reliability on emerging programs. The practices and guidelines are being assembled in a living document for distribution to NASA centers and the aerospace community. The document will be updated annually with additional practices and guidelines as contributions from the centers are reviewed and approved by the R&MSC. Practices and guidelines are not requirements, but rather a means of sharing procedures and techniques that a given center and the R&MSC together feel have strong technical merit and application to the design of space-related equipment.

  20. Strain characterization of embedded aerospace smart materials using shearography

    NARCIS (Netherlands)

    Anisimov, A.; Muller, B.; Sinke, J.; Groves, R.M.

    2015-01-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities

  1. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    Science.gov (United States)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  2. NASA reliability preferred practices for design and test

    Science.gov (United States)

    1991-01-01

    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  3. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    Science.gov (United States)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  4. Aerospace Toolbox---a flight vehicle design, analysis, simulation ,and software development environment: I. An introduction and tutorial

    Science.gov (United States)

    Christian, Paul M.; Wells, Randy

    2001-09-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provides a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed include its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics to be covered in this part include flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this paper, to be published at a later date, will conclude with a description of how the Aerospace Toolbox is an integral part of developing embedded code directly from the simulation models by using the Mathworks Real Time Workshop and optimization tools. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment

  5. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 2:] Technical communications in aeronautics: Results of an exploratory study. An analysis of managers' and nonmanagers' responses

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1989-01-01

    Data collected from an exploratory study concerned with the technical communications practices of aerospace engineers and scientists were analyzed to test the primary assumption that aerospace managers and nonmanagers have different technical communications practices. Five assumptions were established for the analysis. Aerospace managers and nonmanagers were found to have different technical communications practices for three of the five assumptions tested. Although aerospace managers and nonmanagers were found to have different technical communications practices, the evidence was neither conclusive nor compelling that the presumption of difference in practices could be attributed to the duties performed by aerospace managers and nonmanagers.

  6. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    Science.gov (United States)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    For the past 5 years, the MY NASA DATA (MND) project at NASA Langley has developed and adapted tools and materials aimed at enabling student access to real NASA Earth science satellite data. These include web visualization tools including Google Earth capabilities, but also GPS and graphing calculator exercises, Excel spreadsheet analyses, and more. The project team, NASA scientists, and over 80 classroom science teachers from around the country, have created over 85 lesson plans and science fair project ideas that demonstrate NASA satellite data use in the classroom. With over 150 Earth science parameters to choose from, the MND Live Access Server enables scientific inquiry on numerous interconnected Earth and environmental science topics about the Earth system. Teachers involved in the project report a number of benefits, including networking with other teachers nationwide who emphasize data collection and analysis in the classroom, as well as learning about other NASA resources and programs for educators. They also indicate that the MND website enhances the inquiry process and facilitates the formation of testable questions by students (a task that is typically difficult for students to do). MND makes science come alive for students because it allows them to develop their own questions using the same data scientists use. MND also provides educators with a rich venue for science practice skills, which are often overlooked in traditional curricula as teachers concentrate on state and national standards. A teacher in a disadvantaged school reports that her students are not exposed to many educational experiences outside the classroom. MND allows inner city students to be a part of NASA directly. They are able to use the same information that scientists are using and this gives them inspiration. In all classrooms, the MND microsets move students out of their local area to explore global data and then zoom back into their homes realizing that they are a part of the

  7. Materials Lifecycle and Environmental Consideration at NASA

    Science.gov (United States)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  8. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  9. Future NASA Power Technologies for Space and Aero Propulsion Applications

    Science.gov (United States)

    Soeder, James F.

    2015-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development. Finally, the presentation examines what type of non-traditional learning areas should be emphasized in student curriculum so that the engineering needs of the third decade of the 21st Century are met.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 17: The relationship between seven variables and the use of US government technical reports by US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Nanci; Demerath, Loren

    1991-01-01

    A study was undertaken to investigate the relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and seven selected sociometric variables. Data were collected by means of a self-administered mail survey which was distributed to a randomly drawn sample of American Institute of Aeronautics and Astronautics (AIAA) members. Two research questions concerning the use of conference meeting papers, journal articles, in-house technical reports, and U.S. government technical reports were investigated. Relevance, technical quality, and accessibility were found to be more important determinants of the overall extent to which U.S. government technical reports and three other information products were used by U.S. aerospace engineers and scientists.

  11. Technology R&D for space commerce

    Science.gov (United States)

    Sadin, Stanley R.; Christensen, Carissa B.; Steen, Robert G.

    1992-01-01

    The potential effects of reserach conducted by the NASA Office of Aeronautics and Space Technology, OAST, on the aerospace industry are addressed. Program elements aimed at meeting commercial needs and those aimed at meeting NASA needs which have secondary effects benefiting aerospace firms are considered. Particular attention is given to current and future NASA programs for cooperating with industry and the potential effects of OAST research on nonaerospace industries.

  12. NASA Excellence Award for Quality and Productivity 1989 highlights. The 1989 recipient: Lockheed Engineering and Sciences Company

    Science.gov (United States)

    1990-01-01

    The NASA Excellence Award for Productivity and Quality is the result of NASA's desire to encourage superior quality and the continuous improvement philosophy in the aerospace industry. It is awarded to NASA contractors, subcontractors, and suppliers who have demonstrated sustained excellence, customer orientation, and outstanding achievements in a total quality management (TQM) environment. The 'highlights' booklet is intended to transfer successful techniques demonstrated by the performance and quality of major NASA contractors.

  13. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  14. Science, Engineering, Mathematics and Aerospace Academy

    Science.gov (United States)

    1997-01-01

    This is an annual report on the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA), which is run as a collaborative effort of NASA Lewis Research Center, and Cuyahgoga Community College. The purpose of SEMA is to increase the percentage of African Americans, and Hispanics in the fields of science and technology. The SEMAA program reaches from kindergarden, to grade 12, involving the family of under-served minorities in the education of the children. The year being reported (i.e., 1996-1997) saw considerable achievement. The program served over 1,939 students, and 120 parents were involved in various seminars. The report goes on to review the program and its implementation for each grade level. It also summarizes the participation, by gender and ethnicity.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 32: A new era in international technical communication: American-Russian collaboration

    Science.gov (United States)

    Flammia, Madelyn; Barclay, Rebecca O.; Pinelli, Thomas E.; Keene, Michael L.; Burger, Robert H.; Kennedy, John M.

    1993-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information (STI). This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, their views regarding the appropriate content for an undergraduate technical communication course, and their use of computer technology. Finally, the implications of these findings for future collaboration between Russian and U.S. engineers and scientists are examined.

  16. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXII - A new era in international technical communication: American-Russian collaboration

    Science.gov (United States)

    Flammia, Madelyn; Barclay, Rebecca O.; Pinelli, Thomas E.; Keene, Michael L.; Burger, Robert H.; Kennedy, John M.

    1993-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information. This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, their views regarding the appropriate content for an undergraduate technical communication course, and their use of computer technology. Finally, the implications of these findings for future collaboration between Russian and U.S. engineers and scientists are examined.

  17. NASA: Investing in Our Future

    Science.gov (United States)

    1992-01-01

    A short explanation of NASA's accomplishments and goals are discussed in this video. Space Station Freedom, lunar bases, manned Mars mission, and robotic spacecrafts to explore other worlds are briefly described.

  18. Curating NASA's Past, Present, and Future Astromaterial Sample Collections

    Science.gov (United States)

    Zeigler, R. A.; Allton, J. H.; Evans, C. A.; Fries, M. D.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    's Astromaterials Research Office, which houses a world-class suite of analytical instrumentation and scientists. We leverage these labs and personnel to better curate the samples. Part of the cu-ration process is planning for the future, and we refer to these planning efforts as "advanced curation". Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envi-sioned by NASA exploration goals. We are (and have been) planning for future cu-ration, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, and curation of organically- and biologically-sensitive samples.

  19. Aerospace Transparency Research Compendium

    National Research Council Canada - National Science Library

    Pinkus, Alan

    2003-01-01

    ... (ARRL), located at Wright-Patterson AFB OH, has advanced aerospace transparency technology through the investigative research of numerous optical and visual parameters inherent in aerospace transparencies...

  20. Modernization and unification: Strategic goals for NASA STI program

    Science.gov (United States)

    Blados, W.; Cotter, Gladys A.

    1993-01-01

    Information is increasingly becoming a strategic resource in all societies and economies. The NASA Scientific and Technical Information (STI) Program has initiated a modernization program to address the strategic importance and changing characteristics of information. This modernization effort applies new technology to current processes to provide near-term benefits to the user. At the same time, we are developing a long-term modernization strategy designed to transition the program to a multimedia, global 'library without walls.' Notwithstanding this modernization program, it is recognized that no one information center can hope to collect all the relevant data. We see information and information systems changing and becoming more international in scope. We are finding that many nations are expending resources on national systems which duplicate each other. At the same time that this duplication exists, many useful sources of aerospace information are not being collected because of resource limitations. If nations cooperate to develop an international aerospace information system, resources can be used efficiently to cover expanded sources of information. We must consider forming a coalition to collect and provide access to disparate, multidisciplinary sources of information, and to develop standardized tools for documenting and manipulating this data and information. In view of recent technological developments in information science and technology, as well as the reality of scarce resources in all nations, it is time to explore the mutually beneficial possibilities offered by cooperation and international resource sharing. International resources need to be mobilized in a coordinated manner to move us towards this goal. This paper reviews the NASA modernization program and raises for consideration new possibilities for unification of the various aerospace database efforts toward a cooperative international aerospace database initiative that can optimize the cost

  1. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    Science.gov (United States)

    2005-01-01

    This is a listing of recent unclassified RTO technical publications for January 1, 2005 through March 31, 2005 processed by the NASA Center for AeroSpace Center available on the NASA Aeronautics and Space Database. Contents include 1) Electronic Information Management; 2) Decision Support to Combined Joint Task Force and Component Commanders; 3) RTO Technical Publications : A Quarterly Listing (December 2004); 4) The Role of Humans in Intelligent and Automated Systems.

  2. Langley Research Highlights 1999: Advanced Aerospace Technology Clouds That Help Create the Ozone Hole Capturing Comet Dust

    Science.gov (United States)

    2000-01-01

    This report contains highlights of some of the major accomplishments and applications made by NASA Langley Research Center and its university partners and industry colleagues during 1999. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. The Center's historic national role since 1917 continues in Aerospace Technology research with an additional major role in Earth Science research. Langley also partners closely with other NASA Centers and the Jet Propulsion Laboratory in Space Science and the Human Exploration and Development of Space. A color version is available at http://larcpubs.larc.nasa.gov/randt/1999/. For further information, contact Dennis Bushnell, Senior Scientist, Mail Stop 110, NASA Langley Research Center, Hampton, Virginia 23681-2199, (757)-864-8987, e-mail address: d.m.bushnell@larc.nasa.gov.

  3. Study of Delft aerospace alumni

    NARCIS (Netherlands)

    Smits, G.N.

    2008-01-01

    This thesis reports on an alumni study of the Faculty Aerospace Engineering at Delft University of Technology to discover what the impact is of the degree in aerospace engineering on an alumnus' professional success and comment on what are important qualities for aerospace engineers to have in order

  4. NASA advanced space photovoltaic technology-status, potential and future mission applications

    Science.gov (United States)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  5. Aerospace Accident - Injury Autopsy Data System -

    Data.gov (United States)

    Department of Transportation — The Aerospace Accident Injury Autopsy Database System will provide the Civil Aerospace Medical Institute (CAMI) Aerospace Medical Research Team (AMRT) the ability to...

  6. Technology Applications Team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  7. NASA Access Mechanism - Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy F.; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited by factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  8. NASA access mechanism: Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited to factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  9. Sustaining PICA for Future NASA Robotic Science Missions Including NF-4 and Discovery

    Science.gov (United States)

    Stackpoole, Mairead; Venkatapathy, Ethiraj; Violette, Steve

    2018-01-01

    Phenolic Impregnated Carbon Ablator (PICA), invented in the mid 1990's, is a low-density ablative thermal protection material proven capable of meeting sample return mission needs from the moon, asteroids, comets and other unrestricted class V destinations as well as for Mars. Its low density and efficient performance characteristics have proven effective for use from Discovery to Flag-ship class missions. It is important that NASA maintain this thermal protection material capability and ensure its availability for future NASA use. The rayon based carbon precursor raw material used in PICA preform manufacturing has experienced multiple supply chain issues and required replacement and requalification at least twice in the past 25 years and a third substitution is now needed. The carbon precursor replacement challenge is twofold - the first involves finding a long-term replacement for the current rayon and the second is to assess its future availability periodically to ensure it is sustainable and be alerted if additional replacement efforts need to be initiated. This paper reviews current PICA sustainability activities to identify a rayon replacement and to establish that the capability of the new PICA derived from an alternative precursor is in family with previous versions.

  10. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    Science.gov (United States)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  11. Nanotechnology research for aerospace applications

    Science.gov (United States)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  12. ASRC Aerospace Corporation Selects Dynamically Reconfigurable Anadigm(Registered Trademark) FPAA For Advanced Data Acquisition System

    Science.gov (United States)

    Mata, Carlos T.

    2003-01-01

    Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.

  13. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    Science.gov (United States)

    Chambers, Joseph

    2010-01-01

    The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific

  14. Personality and organizational influences on aerospace human performance

    Science.gov (United States)

    Helmreich, Robert L.

    1989-01-01

    Individual and organizational influences on performance in aerospace environments are discussed. A model of personality with demonstrated validity is described along with reasons why personality's effects on performance have been underestimated. Organizational forces including intergroup conflict and coercive pressures are also described. It is suggested that basic and applied research in analog situations is needed to provide necessary guidance for planning future space missions.

  15. Aerospace medicine at Brooks AFB, TX: hail and farewell.

    Science.gov (United States)

    Nunneley, Sarah A; Webb, James T

    2011-05-01

    With the impending termination of USAF operations at Brooks Air Force Base (AFB) in San Antonio, TX, it is time to consider its historic role in Aerospace Medicine. The base was established in 1917 as a flight training center for the U.S. Army Air Service and in 1926 became home to its School of Aviation Medicine. The school moved to San Antonio's Randolph Field in 1931, but in 1959 it returned to Brooks where it occupied new facilities to support its role as a national center for U.S. Air Force aerospace medicine, including teaching, clinical medicine, and research. The mission was then expanded to encompass support of U.S. military and civilian space programs. With the abrupt termination of the military space program in 1969, research at Brooks focused on clinical aviation medicine and support of advanced military aircraft while continuing close cooperation with NASA in support of orbital spaceflight and the journey to the Moon. Reorganization in the 1990s assigned all research functions at Brooks to the Human Systems Division and its successors, leaving to USAFSAM the missions related to clinical work and teaching. In 2002 the USAF and the city of San Antonio implemented shared operation of Brooks as a "City-Base" in the hope of deflecting threatened closure. Nevertheless, under continuing pressure to consolidate military facilities in the United States, the 2005 Base Closure and Realignment Commission ordered Brooks closed by 2011, with its aerospace medicine functions relocated to new facilities at Wright-Patterson AFB in Dayton, OH.

  16. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    Science.gov (United States)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 64: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: 1.) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; 2.) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; 3.) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 60: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the Large Commercial Aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk- sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a 'program participant' in the production of the Boeing Company's 777; the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decisionmaking-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; and those cultural determinants thought to influence the information- seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this paper, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  19. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  20. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    Science.gov (United States)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  1. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 2:] External Information Sources and aerospace R&D: The use and importance of technical reports by US aerospace engineers and scientists

    Science.gov (United States)

    Blados, Walter R.; Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    This paper formulates and studies two propositions. Proposition 1 states that information that is external to the aerospace organization tends to be used less than internal sources of information; the more geographically removed the information is from the organization, the less likely it is to be used. Proposition 2 states that of the various sociometric variables assumed to influence the use of an information channel or source, perceived accessibility exerts the greatest influence. Preliminary analysis based on surveys supports Proposition 1. This analysis does not support Proposition 2, however. Evidence here indicates that reliability and relevance influence the use of an information source more than the idea of perceived accessibility.

  2. Aerospace toxicology overview: aerial application and cabin air quality.

    Science.gov (United States)

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  3. Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future

    Science.gov (United States)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith

    2011-01-01

    Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.

  4. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  5. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 3:] Technical communications in aeronautics: Results of an exploratory study. An analysis of profit managers' and nonprofit managers' responses

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1989-01-01

    Data collected from an exploratory study concerned with the technical communications practices of aerospace engineers and scientists were analyzed to test the primary assumption that profit and nonprofit managers in the aerospace community have different technical communications practices. Five assumptions were established for the analysis. Profit and nonprofit managers in the aerospace community were found to have different technical communications practices for one of the five assumptions tested. It was, therefore, concluded that profit and nonprofit managers in the aerospace community do not have different technical communications practices.

  6. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    Science.gov (United States)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 37: The impact of political control on technical communications: A comparative study of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Flammia, Madelyn; Kennedy, John M.

    1994-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information (STI). This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, and their use of computer technology, and their use of and the importance to them of libraries and technical information centers. The data are discussed in terms of tentative conclusions drawn from the literature. Finally, we conclude with four questions concerning government policy, collaboration, and the flow of STI between Russian and U.S. aerospace engineers and scientists.

  8. From Landsat through SLI: Ball Aerospace Instrument Architecture for Earth Surface Monitoring

    Science.gov (United States)

    Wamsley, P. R.; Gilmore, A. S.; Malone, K. J.; Kampe, T. U.; Good, W. S.

    2017-12-01

    The Landsat legacy spans more than forty years of moderate resolution, multi-spectral imaging of the Earth's surface. Applications for Landsat data include global environmental change, disaster planning and recovery, crop and natural resource management, and glaciology. In recent years, coastal water science has been greatly enhanced by the outstanding on-orbit performance of Landsat 8. Ball Aerospace designed and built the Operational Land Imager (OLI) instrument on Landsat 8, and is in the process of building OLI 2 for Landsat 9. Both of these instruments have the same design however improved performance is expected from OLI 2 due to greater image bit depth (14 bit on OLI 2 vs 12 bit on OLI). Ball Aerospace is currently working on two novel instrument architectures applicable to Sustainable Land Imaging for Landsat 10 and beyond. With increased budget constraints probable for future missions, technological improvements must be included in future instrument architectures to enable increased capabilities at lower cost. Ball presents the instrument architectures and associated capabilities enabling new science in past, current, and future Landsat missions.

  9. Aerospace Systems Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Title: Aerospace Systems Monitor PHASE 1 Technical Abstract: This Phase II STTR project will continue development and commercialization of the Aerospace...

  10. High Technology and Education. Proceedings of Fueling the Education Explosion Conference 4 (Cleveland, Ohio, September 20-21, 1984).

    Science.gov (United States)

    Gardner, Mary, Ed.; Reed-Mundell, Charlene, Ed.

    This document provides nine papers presented at a 2-day conference where representatives of the National Aeronautics and Space Administration (NASA) described the future of space exploration and discussed the implications of that future for educators. The proceedings begins with an introduction by Ralph Winrich, NASA Aerospace Education…

  11. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1:] The value of Scientific and Technical Information (STI), its relationship to Research and Development (R&D), and its use by US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1990-01-01

    The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.

  12. Elements of a collaborative systems model within the aerospace industry

    Science.gov (United States)

    Westphalen, Bailee R.

    2000-10-01

    Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been

  13. IPAD applications to the design, analysis, and/or machining of aerospace structures. [Integrated Program for Aerospace-vehicle Design

    Science.gov (United States)

    Blackburn, C. L.; Dovi, A. R.; Kurtze, W. L.; Storaasli, O. O.

    1981-01-01

    A computer software system for the processing and integration of engineering data and programs, called IPAD (Integrated Programs for Aerospace-Vehicle Design), is described. The ability of the system to relieve the engineer of the mundane task of input data preparation is demonstrated by the application of a prototype system to the design, analysis, and/or machining of three simple structures. Future work to further enhance the system's automated data handling and ability to handle larger and more varied design problems are also presented.

  14. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  15. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  16. Center for Advanced Computational Technology

    Science.gov (United States)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  17. Economic Analysis on the Space Transportation Architecture Study (STAS) NASA Team

    Science.gov (United States)

    Shaw, Eric J.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) performed the Space Transportation Architecture Study (STAS) to provide information to support end-of-the-decade decisions on possible near-term US Government (USG) investments in space transportation. To gain a clearer understanding of the costs and benefits of the broadest range of possible space transportation options, six teams, five from aerospace industry companies and one internal to NASA, were tasked to answer three primary questions: a) If the Space Shuttle system should be replaced; b) If so, when the replacement should take place and how the transition should be implemented; and c) If not, what is the upgrade strategy to continue safe and affordable flight of the Space Shuttle beyond 2010. The overall goal of the Study was "to develop investment options to be considered by the Administration for the President's FY2001 budget to meet NASA's future human space flight requirements with significant reductions in costs." This emphasis on government investment, coupled with the participation by commercial f'trms, required an unprecedented level of economic analysis of costs and benefits from both industry and government viewpoints. This paper will discuss the economic and market models developed by the in-house NASA Team to analyze space transportation architectures, the results of those analyses, and how those results were reflected in the conclusions and recommendations of the STAS NASA Team. Copyright 1999 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.$. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

  18. Bigelow aerospace colonizing space one module at a time

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    Here for the first time you can read: how a space technology start-up is pioneering work on expandable space station modules how Robert Bigelow licensed the TransHab idea from NASA, and how his company developed the technology for more than a decade how, very soon, a Bigelow expandable module will be docked with the International Space Station. At the core of Bigelow's plan is the inflatable module technology. Tougher and more durable than their rigid counterparts, these inflatable modules are perfectly suited for use in the space, where Bigelow plans to link them together to form commercial space stations. This book describes how this new breed of space stations will be built and how the link between Bigelow Aerospace, NASA and private companies can lead to a new economy—a space economy. Finally, the book touches on Bigelow's aspirations beyond low Earth orbit, plans that include the landing of a base on the lunar surface and the prospect of missions to Mars.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 27: The technical communication practices of engineering and science students: Results of the phase 3 academic surveys

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Hecht, Laura M.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate engineering science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication practices, habits, and training of engineers and science (Physics) students. The reported data were obtained from a survey of students enrolled in the College of Engineering at the University of Illinois at Urbana-Champaign, Bowling Green State University, and Texas A&M University. The survey was undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign technical reports; and foreign language (reading and speaking) skills.

  20. Centennial Challenges Program Overview: How NASA Successfully Involves the General Public in the Solving of Current Technology Gaps

    Science.gov (United States)

    Roman, Monsi C.; Kim, Tony; Sudnik, Janet; Sivak, Amy; Porter, Molly; Cylar, Rosaling; Cavanaugh, Dominique; Krome, Kim

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Centennial Challenges Program, part of the Space Technology Mission Directorate (STMD), addresses key technology needs of NASA and the nation, while facilitating new sources of innovation outside the traditional community. This is done by the direct engagement of the public at large, through the offering of Congressional authorized prize purses and associated challenges developed by NASA and the aerospace community and set up as a competition awarding the prize money for achieving the specified technology goal.

  1. Summary of aerospace and nuclear engineering activities

    Science.gov (United States)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  2. Pathways and Challenges to Innovation in Aerospace

    Science.gov (United States)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  3. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  4. Complex monitoring of aerospace and mountain environment at Beo Mussala

    International Nuclear Information System (INIS)

    Angelov, I.; Angelov, C.; Barnekov, L. and others

    2006-01-01

    The mission of BEO Moussala is the observing, complex monitoring and studies of global change processes, aerospace and mountain environment, natural hazards and technological risks. BEO Moussala is the focal point of the BEO Centre of Excellence established and promoted in the framework of FP5 project HIMONTONET essentially improving its research capacities in frame of the FP6 project BEOBAL. The basic fields of current and future activities and studies at BEO Moussala are: global change, aerospace and mountain environment, natural hazards and technological risks and not at least development, design and enhancement of measurement devices and systems. The basic parameters and characteristics of the new measuring facilities are given and discussed from the point of view of the requirements of Global Atmospheric Watch (GAW) and Global Change Programs

  5. Research progress in mutational effects of aerospace on crop and ground simulation on aerospace environment factors

    International Nuclear Information System (INIS)

    Liu Luxiang; Wang Jing; Zhao Linshu; Guo Huijun; Zhao Shirong; Zheng Qicheng; Yang Juncheng

    2004-01-01

    In this paper, the current status of aerospace botany research in aboard was briefly introduced. The research progress of mutational effects of aerospace on crop seed and its application in germplasm enhancement and new variety development by using recoverable satellite techniques in China has been reviewed. The approaches and its experimental advances of ground simulation on aerospace environmental factors were analyzed at different angles of particle biology, physical field biology and gravity biology

  6. SOFIA Technology: The NASA Airborne Astronomy Ambassador (AAA) Experience and Online Resources

    Science.gov (United States)

    Clark, C.; Harman, P. K.; Backman, D. E.

    2016-12-01

    SOFIA, an 80/20 partnership of NASA and the German Aerospace Center (DLR), consists of a modified Boeing 747SP carrying a reflecting telescope with an effective diameter of 2.5 meters. SOFIA is the largest airborne observatory in the world, capable of observations impossible for even the largest and highest ground-based telescopes. The SOFIA Program Office is at NASA ARC, Moffett Field, CA; the aircraft is based in Palmdale, CA. During its planned 20-year lifetime, SOFIA will foster development of new scientific instrumentation and inspire the education of young scientists and engineers. Astrophysicists are awarded time on SOFIA to study many kinds of astronomical objects and phenomena. Among the most interesting are: Star birth, evolution, and death Formation of new planetary systems Chemistry of complex molecules in space Planet and exoplanet atmospheres Galactic gas & dust "ecosystems" Environments around supermassive black holes SOFIA currently has eight instruments, five US-made and three German. The instruments — cameras, spectrometers, and a photometer,— operate at near-, mid- and far-infrared wavelengths, each spectral range being best suited to studying particular celestial phenomena. NASA's Airborne Astronomy Ambassadors' (AAAs) experience includes a STEM immersion component. AAAs are onboard during two overnight SOFIA flights that provide insight into the acquisition of scientific data as well as the interfaces between the telescope, instrument, & aircraft. AAAs monitor system performance and view observation targets from their dedicated workstation during flights. Future opportunities for school district partnerships leading to selection of future AAA cohorts will be offered in 2018-19. AAAs may access public archive data via the SOFIA Data Cycle System (DCS) https://dcs.sofia.usra.edu/. Additional SOFIA science and other resources are available at: www.sofia.usra.edu, including lessons that use photovoltaic circuits, and other technology for the

  7. 44th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A. (Compiler)

    2018-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.

  8. Development of Methodologies for the Estimation of Thermal Properties Associated with Aerospace Vehicles

    Science.gov (United States)

    Scott, Elaine P.

    1996-01-01

    A thermal stress analysis is an important aspect in the design of aerospace structures and vehicles such as the High Speed Civil Transport (HSCT) at the National Aeronautics and Space Administration Langley Research Center (NASA-LaRC). These structures are complex and are often composed of numerous components fabricated from a variety of different materials. The thermal loads on these structures induce temperature variations within the structure, which in turn result in the development of thermal stresses. Therefore, a thermal stress analysis requires knowledge of the temperature distributions within the structures which consequently necessitates the need for accurate knowledge of the thermal properties, boundary conditions and thermal interface conditions associated with the structural materials. The goal of this proposed multi-year research effort was to develop estimation methodologies for the determination of the thermal properties and interface conditions associated with aerospace vehicles. Specific objectives focused on the development and implementation of optimal experimental design strategies and methodologies for the estimation of thermal properties associated with simple composite and honeycomb structures. The strategy used in this multi-year research effort was to first develop methodologies for relatively simple systems and then systematically modify these methodologies to analyze complex structures. This can be thought of as a building block approach. This strategy was intended to promote maximum usability of the resulting estimation procedure by NASA-LARC researchers through the design of in-house experimentation procedures and through the use of an existing general purpose finite element software.

  9. NASA Program Office Technology Investments to Enable Future Missions

    Science.gov (United States)

    Thronson, Harley; Pham, Thai; Ganel, Opher

    2018-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86

  10. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    Science.gov (United States)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  11. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  12. NASA Global Hawk Project Update and Future Plans: A New Tool for Earth Science Research

    Science.gov (United States)

    Naftel, Chris

    2009-01-01

    Science objectives include: First demonstration of the Global Hawk unmanned aircraft system (UAS) for NASA and NOAA Earth science research and applications; Validation of instruments on-board the Aura satellite; Exploration of trace gases, aerosols, and dynamics of remote upper Troposphere/lower Stratosphere regions; Sample polar vortex fragments and atmospheric rivers; Risk reduction for future missions that will study hurricanes and atmospheric rivers.

  13. Smart antennas in aerospace applications

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with

  14. 32 CFR 705.30 - Aerospace Education Workshop.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... of Naval Operations has cognizance of all assistance provided by the Navy to all Aerospace Education...

  15. Performance and technological feasibility of rocket powered HTHL-SSTO with take-off assist (aerospace plane/ekranoplane)

    Science.gov (United States)

    Tomita, Nobuyuki; Nebylov, Alexander V.; Sokolov, Victor V.; Ohkami, Yoshiaki

    It might be said that it is common understanding that rocket-powered single stage to orbit (SSTO) aerospace planes will become feasible with near-term technology as described in [1] (Koelle, D. E. Survey and comparison of winged launch vehicle options, ISTS 94-g-11 V 1994) and [2] (Bekey, I. Why SSTO rocket launch vehicles are now feasible and practical, IAF-94-V.1.524 1994). Among two methods of launching aerospace planes into orbit, vertical take-off (VT) and horizontal take-off (HT), it seems that VT takes the lead from HT [1, 2]. The decision for the X-33 program by NASA, also, seems to favor VT. In retrospect, almost all of the launch vehicles in the past have been VT, mainly because VT solved the problem of exit from atmosphere to space. However, broadening the range of requirements for space transportation systems from military to commercial and unmanned to manned seems to favor the need for HT. In this paper, the authors are going to prove that aerospace plane/ekranoplane system, which is a reusable launch vehicle system based on the HT concept, with ekranoplane as a take-off and possibly, landing assist, could be competitive with the VT concept from both technological and economical view points. Ekranoplane is a wing-in-ground-effect craft (WIG), which moves at a speed of approximately 0.5 M, carrying heavy loads above the sea surface. Combination of high initial velocity and high performance tri-propellant engine for aerospace plane makes it possible to configure an aerospace plane which is competitive with VT. Other specific features of HT in comparison with VT are discussed.

  16. NASA Microgravity Science Competition for High-school-aged Student Teams

    Science.gov (United States)

    DeLombard, Richard; Stocker, Dennis; Hodanbosi, Carol; Baumann, Eric

    2002-01-01

    NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA and student teams which are mentored by NASA centers. This participation by NASA in public forums serves to bring the excitement of aerospace science to students and educators. A new competition for highschool-aged student teams involving projects in microgravity has completed two pilot years and will have national eligibility for teams during the 2002-2003 school year. A team participating in the Dropping In a Microgravity Environment will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a microgravity drop tower facility. A team of NASA scientists and engineers will select the top proposals and those teams will then design and build their experiment apparatus. When the experiment apparatus are completed, team representatives will visit NASA Glenn in Cleveland, Ohio for operation of their facility and participate in workshops and center tours. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first two pilot years, and a status of the first national competition.

  17. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  18. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 492

    Science.gov (United States)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  19. Aerospace Training. Washington's Community and Technical Colleges

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  20. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    Science.gov (United States)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  1. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    Science.gov (United States)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized <70%. Findings from Phase 2 human factors testing showed no statistically significant evidence that the NASA approved ISS fluorescent lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform

  2. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-088)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics and Space...

  3. 78 FR 1265 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-01-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-001] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel..., Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  4. Optimal Composite Materials using NASA Resins or POSS Nanoparticle Modifications for Low Cost Fabrication of Large Composite Aerospace Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reduced mass composite materials are crucial to the success of aerospace systems, but their adoption is inhibited because they require autoclave consolidation, a...

  5. NASA Innovation Fund 2010 Project Elastically Shaped Future Air Vehicle Concept

    Science.gov (United States)

    Nguyen, Nhan

    2010-01-01

    This report describes a study conducted in 2010 under the NASA Innovation Fund Award to develop innovative future air vehicle concepts. Aerodynamic optimization was performed to produce three different aircraft configuration concepts for low drag, namely drooped wing, inflected wing, and squashed fuselage. A novel wing shaping control concept is introduced. This concept describes a new capability of actively controlling wing shape in-flight to minimize drag. In addition, a novel flight control effector concept is developed to enable wing shaping control. This concept is called a variable camber continuous trailing edge flap that can reduce drag by as much as 50% over a conventional flap. In totality, the potential benefits of fuel savings offered by these concepts can be significant.

  6. High-school Student Teams in a National NASA Microgravity Science Competition

    Science.gov (United States)

    DeLombard, Richard; Hodanbosi, Carol; Stocker, Dennis

    2003-01-01

    The Dropping In a Microgravity Environment or DIME competition for high-school-aged student teams has completed the first year for nationwide eligibility after two regional pilot years. With the expanded geographic participation and increased complexity of experiments, new lessons were learned by the DIME staff. A team participating in DIME will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a NASA microgravity drop tower. A team of NASA scientists and engineers will select the top proposals and then the selected teams will design and build their experiment apparatus. When completed, team representatives will visit NASA Glenn in Cleveland, Ohio to operate their experiment in the 2.2 Second Drop Tower and participate in workshops and center tours. NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA (e.g. NASA Student Involvement Program) and student teams mentored by NASA centers (e.g. For Inspiration and Recognition of Science and Technology Robotics Competition). This participation by NASA in these public forums serves to bring the excitement of aerospace science to students and educators.Researchers from academic institutions, NASA, and industry utilize the 2.2 Second Drop Tower at NASA Glenn Research Center in Cleveland, Ohio for microgravity research. The researcher may be able to complete the suite of experiments in the drop tower but many experiments are precursor experiments for spaceflight experiments. The short turnaround time for an experiment's operations (45 minutes) and ready access to experiment carriers makes the facility amenable for use in a student program. The pilot year for DIME was conducted during the 2000-2001 school year with invitations sent out to Ohio- based schools and organizations. A second pilot year was conducted during the 2001-2002 school year for teams in the six-state region

  7. 76 FR 19147 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2011-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-030)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel.... Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  8. 78 FR 56941 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-09-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-114] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  9. 77 FR 25502 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-04-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-030)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel... FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive Director...

  10. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-044] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  11. 75 FR 61219 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-10-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-116)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  12. 77 FR 58413 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-074] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  13. Capital raising of aerospace companies: equities or debts?

    Science.gov (United States)

    Hui-Shan, L.; Taw-Onn, Y.; Wai-Mun, H.

    2016-10-01

    Aerospace products enhance national and economic activities, thus maintaining the sustainability of aerospace industry is crucial. One of the perspectives in ensuring sustainability of aerospace companies is expansion of firms by raising funds for research and development in order to provide a reasonable profitability to the firms. This study comprises a sample of 47 aerospace companies from 2009 to 2015 to analyze the impact of raising fund by equities or debts to the profitability of the firms. The result indicates that capital raising through equities is preferable than debts. Moreover, the study also identifies that the profit of aerospace industry is volatile and there is cyclical reduction of the net income in the first quarter of the year. The management needs to make wise decisions in raising fund to ensure a healthy growth of the aerospace company.

  14. 75 FR 6407 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10- 020)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel... FURTHER INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National...

  15. Polymeric Materials for Aerospace Power and Propulsion: Overview of Polymer Research at NASA Glenn

    Science.gov (United States)

    Meador, Michael A.

    2007-01-01

    Weight, durability and performance are all major concerns for any NASA mission. Use of lightweight materials, such as fiber reinforced polymer matrix composites can lead to significant reductions in vehicle weight and improvements in vehicle performance. Research in the Polymeric Materials Branch at NASA Glenn is focused on improving the durability, properties, processability and performance of polymeric materials by utilizing both conventional polymer science and engineering as well as nanotechnology and bioinspired approaches. This presentation will provide an overview of these efforts and highlight recent progress.

  16. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-06-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-068] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel..., Huntsville, AL 35805 FOR FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel...

  17. 75 FR 36697 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-071)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel..., Room 116, Hampton, VA 23681. FOR FURTHER INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety...

  18. NASA Dryden Status: Aerospace Control and Guidance Sub-Committee Meeting 109

    Science.gov (United States)

    Jacobson, Steven R.

    2012-01-01

    NASA Dryden has been engaging in some exciting work that will enable lighter weight and more fuel efficient vehicles through advanced control and dynamics technologies. The main areas of emphasis are Enabling Light-weight Flexible Structures, real time control surface optimization for fuel efficiency and autonomous formation flight. This presentation provides a description of the current and upcoming work in these areas. Additionally, status is for the Dreamchaser pilot training activity and KQ-X autonomous aerial refueling.

  19. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 50: From student to entry-level professional: Examining the role of language and written communications in the reacculturation of aerospace engineering students

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Kennedy, John M.; Hecht, Laura F.

    1995-01-01

    When students graduate and enter the world of work, they must make the transition from an academic to a professional knowledge community. Kenneth Bruffee's model of the social construction of knowledge suggests that language and written communication play a critical role in the reacculturation process that enables successful movement from one knowledge community to another. We present the results of a national (mail) survey that examined the technical communications abilities, skills, and competencies of 1,673 aerospace engineering students, who represent an academic knowledge community. These results are examined within the context of the technical communications behaviors and practices reported by 2,355 aerospace engineers and scientists employed in government and industry, who represent a professional knowledge community that the students expect to join. Bruffee's claim of the importance of language and written communication in the successful transition from an academic to a professional knowledge community is supported by the responses from the two communities we surveyed. Implications are offered for facilitating the reacculturation process of students to entry-level engineering professionals.

  1. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  2. Avionics System Architecture for the NASA Orion Vehicle

    Science.gov (United States)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of

  3. Supporting the industrialisation of aerospace technologies

    CSIR Research Space (South Africa)

    Botha, M

    2015-10-01

    Full Text Available rates do not offer a competitive advantage; an insufficient skills pipeline; loss of skills; and risk of exclusion from secondary markets, due to rising aerospace emerging market economies. The Aerospace Industry Support Initiative (AISI) is a Department...

  4. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    Science.gov (United States)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  5. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  6. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  7. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    Science.gov (United States)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given

  8. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    Science.gov (United States)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  9. Managing Space System Faults: Coalescing NASA's Views

    Science.gov (United States)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  10. NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education. Volumes 2 and 3

    Science.gov (United States)

    Coleman, Tommy L. (Editor); White, Bettie (Editor); Goodman, Steven (Editor); Sakimoto, P. (Editor); Randolph, Lynwood (Editor); Rickman, Doug (Editor)

    1998-01-01

    This volume chronicles the proceedings of the 1998 NASA University Research Centers Technical Conference (URC-TC '98), held on February 22-25, 1998, in Huntsville, Alabama. The University Research Centers (URCS) are multidisciplinary research units established by NASA at 11 Historically Black Colleges or Universities (HBCU's) and 3 Other Minority Universities (OMU's) to conduct research work in areas of interest to NASA. The URC Technical Conferences bring together the faculty members and students from the URC's with representatives from other universities, NASA, and the aerospace industry to discuss recent advances in their fields.

  11. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    Science.gov (United States)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  12. NASA strategic plan

    Science.gov (United States)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  13. Commercialization of terrestrial applications of aerospace power technology

    International Nuclear Information System (INIS)

    Landsberg, D.R.

    1992-01-01

    The potential for commercialization of terrestrial energy systems based upon aerospace power technology's explored. Threats to the aerospace power technology industry, caused by the end of the cold war and weak world economy are described. There are also new opportunities caused by increasing terrestrial energy needs and world-wide concern for the environment. In this paper, the strengths and weaknesses of the aerospace power industry in commercializing terrestrial energy technologies are reviewed. Finally, actions which will enable the aerospace power technology industry to commercialize products into terrestrial energy markets are described

  14. High Flight. Aerospace Activities, K-12.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  15. Behavioral Health and Performance at NASA JSC: Recent Successes and Future Plan for BHP Research and Operations

    Science.gov (United States)

    Leveton, L. B.; VanderArk, S. T.

    2014-01-01

    The Behavioral Health and Performance discipline at NASA Johnson Space Center is organized into two distinct Divisions (Biomedical Research and Environmental Science Division and Space and Clinical Operations Division) but is integrated and interrelated in its day-to-day work. Ongoing operations supporting NASA's spaceflight goals benefit from the research portfolios that address risks to mission success. Similarly, these research portfolios are informed by operations to ensure investigations stay relevant given the dynamic environment of spaceflight. There are many success stories that can be presented where initial work begun as a BHP Research project, and funded through the Human Research Program, was fully implemented in operations or addressed an operational need. Examples include improving effectiveness of the debriefings used within Mission Control by the Mission Operations Directorate and countermeasures for fatigue management. There is also ongoing collaboration with research and operations for developing selection methods for future generation astronauts, and to enhance and inform the current family support function. The objective of this panel is to provide examples of recent success stories, describe areas where close collaboration is benefitting ongoing research and operations, and summarize how this will come together as NASA plans for the one year ISS mission - a unique opportunity for both BHP operations and research to learn more about preparing and supporting crewmembers for extended missions in space. The proposed panel will be comprised of six presentations, each describing a unique aspect of research or operations and the benefits to current and future spaceflight.

  16. Exploring Stakeholder Definitions within the Aerospace Industry: A Qualitative Case Study

    Science.gov (United States)

    Hebert, Jonathan R.

    while project stakeholders included a wider range of stakeholders from young employees to union workers. Practical application recommendations, based on the study's findings, include that companies start to develop company-specific definitions of the term stakeholder. Recommendations for future research should focus on exploring how CEOs, executive members, new hires, and hourly workers define and use the term stakeholder in the aerospace industry.

  17. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    Science.gov (United States)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  18. Oshkosh Logistic Management and Public Relations Responsibilities at NASA Langley

    Science.gov (United States)

    Beck, Danielle

    1995-01-01

    The central focus of my study for the summer of 1995 was to provide logistical support to Margaret Hunt, the logistics manager of the OSHKOSH airshow. In this capacity responsibilities included making arrangements for participants from NASA centers and SBIR companies for their stay in Wisconsin, while visiting the airshow, and managing staff for exhibits and the aerospace theater. A secondary purpose was to serve in other public service capacities by writing news releases, fact sheets, announcements, and articles for the Researcher News.

  19. Caution and Warning Alarm Design and Evaluation for NASA CEV Auditory Displays: SHFE Information Presentation Directed Research Project (DRPP) report 12.07

    Science.gov (United States)

    Begault, Durand R.; Godfroy, Martine; Sandor, Aniko; Holden, Kritina

    2008-01-01

    The design of caution-warning signals for NASA s Crew Exploration Vehicle (CEV) and other future spacecraft will be based on both best practices based on current research and evaluation of current alarms. A design approach is presented based upon cross-disciplinary examination of psychoacoustic research, human factors experience, aerospace practices, and acoustical engineering requirements. A listening test with thirteen participants was performed involving ranking and grading of current and newly developed caution-warning stimuli under three conditions: (1) alarm levels adjusted for compliance with ISO 7731, "Danger signals for work places - Auditory Danger Signals", (2) alarm levels adjusted to an overall 15 dBA s/n ratio and (3) simulated codec low-pass filtering. Questionnaire data yielded useful insights regarding cognitive associations with the sounds.

  20. NASA and ESA Collaboration on Hexavalent Chrome Alternatives: Pretreatments Only Final Test Report

    Science.gov (United States)

    Kessel, Kurt R.

    2015-01-01

    Hexavalent chromium (hex chrome or CR(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 6: The relationship between the use of US government technical reports by US aerospace engineers and scientists and selected institutional and sociometric variables. Ph.D. Thesis - Indiana Univ., Nov. 1990 No. 6

    Science.gov (United States)

    Pinelli, Thomas E.

    1991-01-01

    The relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and selected institutional and sociometric variables was investigated. The methodology used for this study was survey research. Data were collected by means of a self-administered mail questionnaire. The approximately 34,000 members of the American Institute of Aeronautics and Astronauts (AIAA) served as the study population. The response rate for the survey was 70 percent. A dependent relationship was found to exist between the use of U.S. government technical reports and three of the institutional variables (academic preparation, years of professional aerospace work experience, and technical discipline). The use of U.S. government technical reports was found to be independent of all of the sociometric variables. The institutional variables best explain the use of U.S. government technical reports by U.S. aerospace engineers and scientists.

  2. 76 FR 70042 - Airworthiness Directives; Pacific Aerospace Limited Airplanes

    Science.gov (United States)

    2011-11-10

    ... Airworthiness Directives; Pacific Aerospace Limited Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for Pacific Aerospace Limited Model FU24 Airplanes. This AD results from mandatory continuing... Schletzbaum, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri...

  3. Uncertainty quantification metrics for whole product life cycle cost estimates in aerospace innovation

    Science.gov (United States)

    Schwabe, O.; Shehab, E.; Erkoyuncu, J.

    2015-08-01

    The lack of defensible methods for quantifying cost estimate uncertainty over the whole product life cycle of aerospace innovations such as propulsion systems or airframes poses a significant challenge to the creation of accurate and defensible cost estimates. Based on the axiomatic definition of uncertainty as the actual prediction error of the cost estimate, this paper provides a comprehensive overview of metrics used for the uncertainty quantification of cost estimates based on a literature review, an evaluation of publicly funded projects such as part of the CORDIS or Horizon 2020 programs, and an analysis of established approaches used by organizations such NASA, the U.S. Department of Defence, the ESA, and various commercial companies. The metrics are categorized based on their foundational character (foundations), their use in practice (state-of-practice), their availability for practice (state-of-art) and those suggested for future exploration (state-of-future). Insights gained were that a variety of uncertainty quantification metrics exist whose suitability depends on the volatility of available relevant information, as defined by technical and cost readiness level, and the number of whole product life cycle phases the estimate is intended to be valid for. Information volatility and number of whole product life cycle phases can hereby be considered as defining multi-dimensional probability fields admitting various uncertainty quantification metric families with identifiable thresholds for transitioning between them. The key research gaps identified were the lacking guidance grounded in theory for the selection of uncertainty quantification metrics and lacking practical alternatives to metrics based on the Central Limit Theorem. An innovative uncertainty quantification framework consisting of; a set-theory based typology, a data library, a classification system, and a corresponding input-output model are put forward to address this research gap as the basis

  4. 78 FR 72554 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes

    Science.gov (United States)

    2013-12-03

    ... Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes AGENCY: Federal Aviation Administration... Gulfstream Aerospace Corporation Model GV and GV-SP airplanes. This AD was prompted by reports of two... Aerospace Corporation, Technical Publications Dept., P.O. Box 2206, Savannah, GA 31402-2206; telephone 800...

  5. AIAA/NASA International Symposium on Space Information Systems, 2nd, Pasadena, CA, Sept. 17-19, 1990, Proceedings. Vols. 1 & 2

    Science.gov (United States)

    Tavenner, Leslie A. (Editor)

    1991-01-01

    These proceedings overview major space information system projects and lessons learned from current missions. Other topics include the science information system requirements for the 1990s, an information systems design approach for major programs, the technology needs and projections, the standards for space data information systems, the artificial intelligence technology and applications, international interoperability, and spacecraft data systems and architectures advanced communications. Other topics include the software engineering technology and applications, the multimission multidiscipline information system architectures, the distributed planning and scheduling systems and operations, and the computer and information systems architectures. Paper presented include prospects for scientific data analysis systems for solar-terrestrial physics in the 1990s, the Columbus data management system, data storage technologies for the future, the German aerospace research establishment, and launching artificial intelligence in NASA ground systems.

  6. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    Science.gov (United States)

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  7. iSTEM: The Aerospace Engineering Challenge

    Science.gov (United States)

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  8. Performance of 12Ah aerospace nickel-cadmium cells of design variable groups

    Science.gov (United States)

    Vasanth, K. L.

    1985-01-01

    The design variable program of NASA is a systematic approach to evaluate the performance of 12Ah aerospace nickel-cadmium cells of 9 important cell designs. These cells were life cycled in a Low-Earth Orbit (LEO) regime for 3 to 4 years. Representative cells taken from the design variable groups after different cycling periods have been examined. The results show that: (1) positive swelling and carbonate content in the electrolyte increases as a function of the number of cycles, (2) electrolyte distribution follows the order NEG greater than POS greater than SEP, 3) control and no PQ groups outperformed the rest of the groups and (4) the polypropylene group shows very heavy cadmium migration and poor performance.

  9. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 488

    Science.gov (United States)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  10. Innovative Educational Aerospace Research at the Northeast High School Space Research Center

    Science.gov (United States)

    Luyet, Audra; Matarazzo, Anthony; Folta, David

    1997-01-01

    Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.

  11. ScienceScope: Aerospace

    CSIR Research Space (South Africa)

    CSIR

    2006-12-01

    Full Text Available In this edition of ScienceScope, innovations in and around aerodynamics research and development is explored. The publication explores activities in environmentally friendly aerospace technologies to enhance the aviation industry....

  12. 78 FR 57903 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2013-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-116] Aerospace Safety Advisory Panel... and amendment of the charter of the Aerospace Safety Advisory Panel. SUMMARY: Pursuant to sections 14... determined that renewal and amendment of the charter of the Aerospace Safety Advisory Panel is in the public...

  13. 78 FR 9781 - Airworthiness Directives; Pacific Aerospace Limited Airplanes

    Science.gov (United States)

    2013-02-12

    ... Airworthiness Directives; Pacific Aerospace Limited Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for all Pacific Aerospace Limited Models FU24-954 and FU24A-954 airplanes. This AD results... Aerospace Limited, Hamilton Airport, Private Bag, 3027 Hamilton, New Zealand; telephone: +64 7 843 6144; fax...

  14. Future NASA mission applications of space nuclear power

    International Nuclear Information System (INIS)

    Bennett, G.L.; Mankins, J.; McConnell, D.G.; Reck, G.M.

    1990-01-01

    Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby that can only be done with nuclear power. There are studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the space exploration initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars

  15. Selected aspects of the supply chain management in the aerospace industry

    Directory of Open Access Journals (Sweden)

    Ivan KOBLEN

    2013-03-01

    Full Text Available The paper in the introductory part underlines some factors concerning the aerospace supply chain management (SCM issue. Authors inform on selected definitions in this topic, levels of supply chain and its maturity. The authors are focusing on introducing of the explanation of main specifics of SCM in aerospace industry (original equipment manufacturer, processes and requirements for the suppliers selection and subsequently inform on the role and mission of selected international organizations involved in aerospace SCM and quality issues, namely The Aerospace and Defence Industries Association of Europe (ASD, International Aerospace Quality Group (IAQG and European Aerospace Quality Group (EAQG. The information on Quality Management System in the framework of aerospace industry and SCM are also introduced. The part of paper is dealing with information systems useful in the SCM (the Digital Product Chain and Enterprise Resource Planning. The last part of paper is focused on issue concerning the success factors for SCM in the aerospace industry. In the conclusion part the authors emphasize some aspects and factors regarding the aerospace SCM and summarize the key challenges in the area of SCM in the aerospace industry.

  16. NASA TEERM Hexavalent Chrome Alternatives Projects

    Science.gov (United States)

    Kessel, Kurt R.; Rothgeb, Matthew

    2011-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders. The technical stakeholders have agreed that this protocol will focus specifically on Class 3 coatings. Original Equipment Manufacturers (OEMs), depots, and support contractors have to be prepared to deal with an electronics supply chain that increasingly provides parts with lead-free finishes, some labeled no differently and intermingled with their SnPb counterparts. Allowance of lead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free terminations, termination finishes, or circuit boards presents a host of concerns to customers, suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers 2. Incompatibility of lead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system 3. Unknown material properties and incompatibilities that could reduce solder joint reliability

  17. NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993

    Science.gov (United States)

    Buttrill, Carey S. (Editor)

    1993-01-01

    This publication is a collection of materials presented at a NASA workshop on guidance, navigation, controls, and dynamics (GNC&D) for atmospheric flight. The workshop was held at the NASA Langley Research Center on March 18-19, 1993. The workshop presentations describe the status of current research in the GNC&D area at Langley over a broad spectrum of research branches. The workshop was organized in eight sessions: overviews, general, controls, military aircraft, dynamics, guidance, systems, and a panel discussion. A highlight of the workshop was the panel discussion which addressed the following issue: 'Direction of guidance, navigation, and controls research to ensure U.S. competitiveness and leadership in aerospace technologies.'

  18. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    Science.gov (United States)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  19. Open Source and Design Thinking at NASA: A Vision for Future Software

    Science.gov (United States)

    Trimble, Jay

    2017-01-01

    NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.

  20. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  1. Index of International Publications in Aerospace Medicine

    Science.gov (United States)

    2010-10-01

    Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: www.faa.gov/library...System in Space and Other Extreme Conditions. England – USA: Harwood Academic Publishers, 1991. Konstantinova IV, Petrov RV. Sistema Immuniteta v

  2. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap

    2018-01-01

    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  3. Online reinforcement learning control for aerospace systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Reinforcement Learning (RL) methods are relatively new in the field of aerospace guidance, navigation, and control. This dissertation aims to exploit RL methods to improve the autonomy and online learning of aerospace systems with respect to the a priori unknown system and environment, dynamical

  4. Big Data Analytics and Machine Intelligence Capability Development at NASA Langley Research Center: Strategy, Roadmap, and Progress

    Science.gov (United States)

    Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward

    2016-01-01

    In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.

  5. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    Science.gov (United States)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  6. The Effect of Infrastructure Sharing in Estimating Operations Cost of Future Space Transportation Systems

    Science.gov (United States)

    Sundaram, Meenakshi

    2005-01-01

    NASA and the aerospace industry are extremely serious about reducing the cost and improving the performance of launch vehicles both manned or unmanned. In the aerospace industry, sharing infrastructure for manufacturing more than one type spacecraft is becoming a trend to achieve economy of scale. An example is the Boeing Decatur facility where both Delta II and Delta IV launch vehicles are made. The author is not sure how Boeing estimates the costs of each spacecraft made in the same facility. Regardless of how a contractor estimates the cost, NASA in its popular cost estimating tool, NASA Air force Cost Modeling (NAFCOM) has to have a method built in to account for the effect of infrastructure sharing. Since there is no provision in the most recent version of NAFCOM2002 to take care of this, it has been found by the Engineering Cost Community at MSFC that the tool overestimates the manufacturing cost by as much as 30%. Therefore, the objective of this study is to develop a methodology to assess the impact of infrastructure sharing so that better operations cost estimates may be made.

  7. Nanotechnology in Aerospace Applications

    National Research Council Canada - National Science Library

    Meyyappan, M

    2007-01-01

    The aerospace applications for nanotechnology include high strength, low weight composites, improved electronics and displays with low power consumption, variety of physical sensors, multifunctional...

  8. Challenges in aerospace medicine education.

    Science.gov (United States)

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these.

  9. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    Science.gov (United States)

    Israel, David J.; Shaw, Harry

    2018-01-01

    communications space segment. For optical communications, the backbone of this effort is adoption of commercial technologies from the terrestrial high-bandwidth telecommunications industry into optical payloads. For RF communications, the explosion of software-defined radio, high-speed digital signal processing technologies and networking from areas such as 5G multicarrier will be important. Future commercial providers will not be limited to a small set of large aerospace companies. Ultimately, entirely government-owned and -operated satellite communications will phase out and make way for commercial business models that satisfy NASA's satellite communications requirements. The competition being provided by new entrants in the space communications business may result in a future in which all NASA communications needs can be satisfied commercially.

  10. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    Science.gov (United States)

    Israel, David J.

    2018-01-01

    communications space segment. For optical communications, the backbone of this effort is adoption of commercial technologies from the terrestrial high-bandwidth telecommunications industry into optical payloads. For RF communications, the explosion of software-defined radio, high-speed digital signal processing technologies and networking from areas such as 5G multicarrier will be important. Future commercial providers will not be limited to a small set of large aerospace companies. Ultimately, entirely government-owned and -operated satellite communications will phase out and make way for commercial business models that satisfy NASAs satellite communications requirements. The competition being provided by new entrants in the space communications business may result in a future in which all NASA communications needs can be satisfied commercially.

  11. Probability and Statistics in Aerospace Engineering

    Science.gov (United States)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  12. 2012 Aerospace Medical Certification Statistical Handbook

    Science.gov (United States)

    2013-12-01

    2012 Aerospace Medical Certification Statistical Handbook Valerie J. Skaggs Ann I. Norris Civil Aerospace Medical Institute Federal Aviation...Certification Statistical Handbook December 2013 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Skaggs VJ, Norris AI 9...2.57 Hayfever 14,477 2.49 Asthma 12,558 2.16 Other general heart pathology (abnormal ECG, open heart surgery, etc.). Wolff-Parkinson-White syndrome

  13. NASA's Elementary and Secondary Education Program: Review and Critique

    Science.gov (United States)

    Quinn, Helen R. (Editor); Schweingruber, Heidi A. (Editor); Feder, Michael A. (Editor)

    2008-01-01

    The federal role in precollege science, technology, engineering, and mathematics (STEM) education is receiving increasing attention in light of the need to support public understanding of science and to develop a strong scientific and technical workforce in a competitive global economy. Federal science agencies, such as the National Aeronautics and Space Administration (NASA), are being looked to as a resource for enhancing precollege STEM education and bringing more young people to scientific and technical careers. For NASA and other federal science agencies, concerns about workforce and public understanding of science also have an immediate local dimension. The agency faces an aerospace workforce skewed toward those close to retirement and job recruitment competition for those with science and engineering degrees. In addition, public support for the agency s missions stems in part from public understanding of the importance of the agency s contributions in science, engineering, and space exploration.

  14. The NASA program on nuclear electric propulsion: Preparing for the future

    International Nuclear Information System (INIS)

    Bennett, G.L.; Doherty, M.P.; Miller, T.J.

    1993-01-01

    In 1990 NASA reestablished its nuclear electric propulsion (NEP) program with the overall objective of developing the technology to support piloted missions to Mars, cargo missions to Mars and the Moon, and robotic science missions. With changing mission requirements and fiscal constraints the NEP program is now focused on studies of robotic science missions which are enabled or enhanced by NEP. These studies are closely coupled with the ongoing work on the SP-100 space nuclear reactor power system and, as such, include consideration of an early, low-power flight to demonstrate the technology and to perform a science missions. These studies have identified some possible mission candidates such as missions to Mars (including a study of Phobos and Deimos), missions to near-Earth asteroids, and missions to the Jovian Trojan asteroids. In addition, work proceeded on high-temperature components for power processing units and on high-power magnetoplasmadynamic thrusters. The paper will summarize the work and indicate future directions being considered for the program

  15. Aerogels in Aerospace: An Overview

    Directory of Open Access Journals (Sweden)

    Nadiir Bheekhun

    2013-01-01

    Full Text Available Aerogels are highly porous structures prepared via a sol-gel process and supercritical drying technology. Among the classes of aerogels, silica aerogel exhibits the most remarkable physical properties, possessing lower density, thermal conductivity, refractive index, and dielectric constant than any solids. Its acoustical property is such that it can absorb the sound waves reducing speed to 100 m/s compared to 332 m/s for air. However, when it comes to commercialization, the result is not as expected. It seems that mass production, particularly in the aerospace industry, has dawdled behind. This paper highlights the evolution of aerogels in general and discusses the functions and significances of silica aerogel in previous astronautical applications. Future outer-space applications have been proposed as per the current research trend. Finally, the implementation of conventional silica aerogel in aeronautics is argued with an alternative known as Maerogel.

  16. Green Aerospace Fuels from Nonpetroleum Sources

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; DeLaRee, Ana B.; Zubrin, Robert; Berggren, Mark; Hensel, Joseph D.; Kimble, Michael C.

    2011-01-01

    Efforts to produce green aerospace propellants from nonpetroleum sources are outlined. The paper begins with an overview of feedstock processing and relevant small molecule or C1 chemistry. Gas-to-liquid technologies, notably Fischer-Tropsch (FT) processing of synthesis gas (CO and H2), are being optimized to enhance the fraction of product stream relevant to aviation (and other transportation) fuels at the NASA Glenn Research Center (GRC). Efforts to produce optimized catalysts are described. Given the high cost of space launch, the recycling of human metabolic and plastic wastes to reduce the need to transport consumables to orbit to support the crew of a space station has long been recognized as a high priority. If the much larger costs of transporting consumables to the Moon or beyond are taken into account, the importance of developing waste recycling systems becomes still more imperative. One promising way to transform organic waste products into useful gases is steam reformation; this well-known technology is currently being optimized by a Colorado company for exploration and planetary surface operations. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs. A technology that has successfully demonstrated production of fuels and related chemicals from waste plastics developed in Northeast Ohio is described. Technologies being developed by a Massachusetts company to remove sulfur impurities are highlighted. Common issues and concerns for nonpetroleum fuel production are emphasized. Energy utilization is a concern for production of fuels whether a terrestrial operation or on the lunar (or Martian) surface; the term green relates to not only mitigating excess carbon release but also to the efficiency of grid-energy usage. For space exploration, energy efficiency can be an essential concern. Other issues of great concern include minimizing

  17. Guides to Aerospace Research and Development in NATO Countries.

    Science.gov (United States)

    1984-01-01

    The directory contains worldwide information Administrations et Services Aeroautiques. Designadores de Empresas Explotadoras about aviation/aerospace...ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARD Report No.7 18 * GUIDES TO AEROSPACE RESEARCH...and transport containing also The Tithe and Keyword Index includes titles of all establishments listed in this highly professional photographs received

  18. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  19. Second Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  20. Nanomaterials Work at NASA-Johnson Space Center

    Science.gov (United States)

    Arepalli, Sivaram

    2005-01-01

    Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.

  1. Aerospace Oil and Gas: Technologies for New Horizons

    Science.gov (United States)

    Interbartolo, Michael A.

    2014-01-01

    Innovative partnerships will enable NASA to achieve more of its technological goals with less resources Cooperative development with other industries will expand the scope of advanced technologies that will be available to future missions.

  2. Meaning and value of cloud manufacturing platform for aerospace enterprises

    Science.gov (United States)

    Tang, Wei; Xu, Wei; Xin, Xin

    2017-08-01

    Aerospace manufacturing engineering technology status it is important symbol to measure the comprehensive strength of nation. This paper analyzes the meaning and value of aerospace enterprises, based on the concept of cloud manufacturing to the practical production and application, combined with the characteristics of aerospace enterprises.

  3. MULTI-GNSS RECEIVER FOR AEROSPACE NAVIGATION AND POSITIONING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    T. R. Peres

    2014-03-01

    Full Text Available The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne, such as Georeferencing and Unmanned Aerial Vehicle (UAV navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  4. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    Science.gov (United States)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  5. Selected Research and Development Topics on Aerospace Communications at NASA Glenn Research Center

    Science.gov (United States)

    Miranda, Felix A.; Romanofsky, Robert R.; Nessel, James A.

    2014-01-01

    This presentation discusses some of the efforts on communications RD that have been performed or are currently underway at NASA Glenn Research Center. The primary purpose of this presentation is to outline some RD topics to serve as talking points for a Technical Interchange Meeting with the Ohio State University. The meeting is scheduled to take place at The ElectroScience Laboratory of the Ohio State University on February 24, 2014.

  6. NASA Pathways Co-op Tour Johnson Space Center Fall 2013

    Science.gov (United States)

    Masood, Amir; Osborne-Lee, Irwin W.

    2013-01-01

    This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole

  7. Skill gap analysis and training needs in Indian aerospace industry

    Directory of Open Access Journals (Sweden)

    Premkumar Balaraman

    2016-12-01

    Full Text Available Purpose: The main objective of the paper is on assessing the global aerospace industry as well as Indian scenario, and attempts to assess the skill gaps and training needs of Indian aerospace industry.  Design/methodology/approach: The study is qualitative in nature, and employs wide array of qualitative tools which includes desktop study, focus group interviews and secondary sources of information. Around 10 focus groups were used in the study, with each focus group having a minimum of 6 members of experts in the aerospace and allied industries. The study evolved into a 2 staged one, with the first study elucidating the growing importance and potential of aerospace industry, justifying the significance to take forward the second part of the study. And the second study specifically focuses on skill gaps and training needs. Findings and Originality/value: The Study yields varied results on existing generic expectations of aerospace industry, specific needs of aerospace industry, identification of aerospace job categories unique to aerospace industry, key issues of training in Indian scenario and recommendations. The paper in summary reflects the current scenario of aerospace industry potentials for India and its likely impact on skills gap and training needs. Practical implications: Skills gap is a significant gap between an organization’s current capabilities and the skills it needs to achieve its goals. As a number of Global forecasts project, India as an emerging aviation market, the skill gaps in this sector is predicted to be huge and necessitates the study on assessing the skill gaps and its allied training needs. Originality/value: The Study is highly original and first one of its kind in reflecting the current situation of the skills gap and training needs in Indian Aerospace industry. The focus group interviews were conducted with the experts at various levels in the industyr without any bias yielding valid and realtime data for the

  8. NASA tire/runway friction projects

    Science.gov (United States)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  9. Crew factors in the aerospace workplace

    Science.gov (United States)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  10. Scoping Aerospace: Tracking Federal Procurement and R&D Spending in the Aerospace Sector

    National Research Council Canada - National Science Library

    Hogan, Thor; Fossum, Donna; Johnson, Dana J; Painter, Lawrence S

    2005-01-01

    .... The study provides a detailed examination of the Federal Procurement Data System (FPDS), with the specific purpose of tracking all government aerospace procurement and research and development (R AND D...

  11. Future Roles of Structural Sensing for Aerospace Applications

    National Research Council Canada - National Science Library

    Derriso, Mark M; Chang, Fu-Kuo

    2006-01-01

    To reduce cost, increase availability, and maintain safety of current and future air vehicle systems, emphasis has been placed on the development of Integrated Systems Health Management (ISHM) techniques...

  12. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Supplement: Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.

    1997-01-01

    This report documents the progress achieved over the past 6 to 12 months on four graduate student projects conducted within the NASA-UVA Light Aerospace Alloy and Structures Technology Program. These studies were aimed specifically at light metallic alloy issues relevant to the High Speed Civil Transport. Research on Hydrogen-Enhanced Fracture of High-Strength Titanium Alloy Sheet refined successfully the high resolution R-curve method necessary to characterize initiation and growth fracture toughnesses. For solution treated and aged Low Cost Beta without hydrogen precharging, fracture is by ductile transgranular processes at 25 C, but standardized initiation toughnesses are somewhat low and crack extension is resolved at still lower K-levels. This fracture resistance is degraded substantially, by between 700 and 1000 wppm of dissolved hydrogen, and a fracture mode change is affected. The surface oxide on P-titanium alloys hinders hydrogen uptake and complicates the electrochemical introduction of low hydrogen concentrations that are critical to applications of these alloys. Ti-15-3 sheet was obtained for study during the next reporting period. Research on Mechanisms of deformation and Fracture in High-Strength Titanium Alloys is examining the microstructure and fatigue resistance of very thin sheet. Aging experiments on 0. 14 mm thick (0.0055 inch) foil show microstructural agility that may be used to enhance fatigue performance. Fatigue testing of Ti-15-3 sheet has begun. The effects of various thermo-mechanical processing regimens on mechanical properties will be examined and deformation modes identified. Research on the Effect of Texture and Precipitates on Mechanical Property Anisotropy of Al-Cu-Mg-X and Al-Cu alloys demonstrated that models predict a minor influence of stress-induced alignment of Phi, caused by the application of a tensile stress during aging, on the yield stress anisotropy of both modified AA2519 and a model Al-Cu binary alloy. This project

  13. NASA's Origins and the Dawn of the Space Age. No. 10; Monographs in Aerospace History

    Science.gov (United States)

    Portree, David S. F.

    1998-01-01

    The twenty page narrative describes historical circumstances around Sputnik, the International Geophysical Year (IGY) and the formation of NASA from NACA in 1957-1958. Appendices include reproductions of relevant historical documents.

  14. Federal R and D Reductions, Market Share, and Aerospace Information Usage

    Science.gov (United States)

    Rocker, JoAnne; Roncaglia, George

    2000-01-01

    Reductions in federally funded research have a rippling effect over the entire aerospace industry. The decline in federal R&D spending in aerospace in recent years coincides with declines in U.S. aerospace market share, One of the lesser-understood factors in the declining U.S. market share may be the differing ways and intensity with which the U.S. and its competitors approach another trend, the increasing availability of large amounts of aerospace research information on the World Wide Web. The U.S. has been a pioneer in making research information available in electronic form, and the international community has long been a heavy consumer of that information. In essence, the U.S. contributes to the research efforts of its competitors, thus contributing to foreign aerospace consortiums efforts to gain market share in the aerospace industry, This may be a cautionary note to the U.S. aerospace industry to consider the use of R&D output in its own development and strategy because the foreign competition is using the U.S. scientific and technical literature.

  15. An example of active learning in Aerospace Engineering

    NARCIS (Netherlands)

    Brugemann, V.P.; Brummelen, van E.H.; Melkert, J.A.; Kamp, A.; Saunders-Smits, G.N.; Reith, B.A.; Zandbergen, B.T.C.; Graaf, de E.; Saunders-Smits, G.N.; Nieweg, M.R.

    2005-01-01

    This paper is a showcase for an on-going active learning capstone design project in the BSe. programme at the Faculty of Aerospace Engineering at Delft University of Technology. In multi-disciplinary teams supervised by tutors from different backgrounds students work towards an Aerospace (related)

  16. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles

    Science.gov (United States)

    Glaessgen, Edward H.; Stargel, D. S.

    2012-01-01

    Future generations of NASA and U.S. Air Force vehicles will require lighter mass while being subjected to higher loads and more extreme service conditions over longer time periods than the present generation. Current approaches for certification, fleet management and sustainment are largely based on statistical distributions of material properties, heuristic design philosophies, physical testing and assumed similitude between testing and operational conditions and will likely be unable to address these extreme requirements. To address the shortcomings of conventional approaches, a fundamental paradigm shift is needed. This paradigm shift, the Digital Twin, integrates ultra-high fidelity simulation with the vehicle s on-board integrated vehicle health management system, maintenance history and all available historical and fleet data to mirror the life of its flying twin and enable unprecedented levels of safety and reliability.

  17. Challenges for Insertion of Structural Nanomaterials in Aerospace Applications

    Science.gov (United States)

    Sochi, Emilie J.

    2012-01-01

    In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.

  18. The 1975 NASA/ASEE summer faculty fellowship research program. [research in the areas of aerospace engineering, aerospace systems, and information systems

    Science.gov (United States)

    1975-01-01

    A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.

  19. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  20. NASA International Year of Astronomy 2009 Programs: Impacts and Future Plans (Invited)

    Science.gov (United States)

    Hasan, H.; Smith, D.; Stockman, S. A.

    2009-12-01

    The opportunity offered by the International Year of Astronomy (IYA) 2009 to increase the exposure of the public and students to NASA discoveries in astronomy resulted in several innovative programs which have reached audiences far and wide. Some examples of the impact of these programs and building on the success of these programs beyond 2009 will be discussed in this talk. The spectacular success of the traveling exhibit of NASA images to public libraries around the country prompted NASA to extend it to include more libraries. As a part of the IYA Cornerstone project From Earth To The Universe, NASA images were displayed at non-traditional sites such as airports, parks, and music festivals, exposing them to an audience which would otherwise have been unaware of them. The NASA IYA Student Ambassadors engaged undergraduate and graduate students throughout the U.S. in outreach programs they created to spread NASA astronomy to their local communities. NASA’s Afterschool Universe provided IYA training to community-based organizations, while pre-launch teacher workshops associated with the Kepler and WISE missions were designed to engage educators in the science of these missions. IYA activities have been associated with several missions launched this year. These include the Hubble Servicing Mission 4, Kepler, Herschel/Planck, LCROSS. NASA’sIYA website and Go Observe! feature remain popular. The associated IYA Discovery Guides and Observing with NASA MicroObservatory activities have guided the public and students to perform their own observations of the night sky and to interpret them. NASA intends to work with its Science Education and Public Outreach Forums (SEPOF) to develop a strategy to take forward the best of its IYA2009 plans forward so as to build on the momentum generated by IYA2009 and continue to keep the public and students engaged in the scientific exploration of the universe.

  1. Summary of Pressure Gain Combustion Research at NASA

    Science.gov (United States)

    Perkins, H. Douglas; Paxson, Daniel E.

    2018-01-01

    NASA has undertaken a systematic exploration of many different facets of pressure gain combustion over the last 25 years in an effort to exploit the inherent thermodynamic advantage of pressure gain combustion over the constant pressure combustion process used in most aerospace propulsion systems. Applications as varied as small-scale UAV's, rotorcraft, subsonic transports, hypersonics and launch vehicles have been considered. In addition to studying pressure gain combustor concepts such as wave rotors, pulse detonation engines, pulsejets, and rotating detonation engines, NASA has studied inlets, nozzles, ejectors and turbines which must also process unsteady flow in an integrated propulsion system. Other design considerations such as acoustic signature, combustor material life and heat transfer that are unique to pressure gain combustors have also been addressed in NASA research projects. In addition to a wide range of experimental studies, a number of computer codes, from 0-D up through 3-D, have been developed or modified to specifically address the analysis of unsteady flow fields. Loss models have also been developed and incorporated into these codes that improve the accuracy of performance predictions and decrease computational time. These codes have been validated numerous times across a broad range of operating conditions, and it has been found that once validated for one particular pressure gain combustion configuration, these codes are readily adaptable to the others. All in all, the documentation of this work has encompassed approximately 170 NASA technical reports, conference papers and journal articles to date. These publications are very briefly summarized herein, providing a single point of reference for all of NASA's pressure gain combustion research efforts. This documentation does not include the significant contributions made by NASA research staff to the programs of other agencies, universities, industrial partners and professional society

  2. A NASA/RAE cooperation in the development of a real-time knowledge based autopilot

    Science.gov (United States)

    Daysh, Colin; Corbin, Malcolm; Butler, Geoff; Duke, Eugene L.; Belle, Steven D.; Brumbaugh, Randal W.

    1991-01-01

    As part of a US/UK cooperative aeronautical research program, a joint activity between NASA-Ames and the Royal Aerospace Establishment on Knowledge Based Systems (KBS) was established. This joint activity is concerned with tools and techniques for the implementation and validation of real-time KBS. The proposed next stage of the research is described, in which some of the problems of implementing and validating a Knowledge Based Autopilot (KBAP) for a generic high performance aircraft will be studied.

  3. Proceedings from the 2001 NASA Occupational Health Conference: Risk Assessment and Management in 2001

    Science.gov (United States)

    Roberson, Sheri (Editor); Kelly, Bruce (Editor); Gettleman, Alan G. (Technical Monitor)

    2001-01-01

    This Conference convened approximately 86 registered participants of invited guest speakers, NASA presenters, and a broad spectrum of the Occupational Health disciplines representing NASA Headquarters and all NASA Field Centers. Two days' Professional Development Courses on Exposure Assessment Strategies and Statistics and on Advanced Cardiac Life Support training and recertification preceded the Conference. With the theme, 'Risk Assessment and Management in 2001,' conferees were first provided updates from the Program Principal Center Office and the Headquarters Office. Plenary sessions elaborated on several topics: biological terrorism, OSHA recordability, Workers' Compensation issues, Federal ergonomic standards, bridging aerospace medicine and occupational health-especially in management of risk in spaceflight, and EAP operations with mission failures. A keynote address dealt with resiliency skills for 21st century workers and two NASA astronaut speakers highlighted a tour of the Johnson Space Center. During discipline specific breakout sessions, current issues in occupational health management and policy, credentialing and privileging, health risk assessment, measurement and standardization, audits, database development, prevention and rehabilitation, international travel and infection control, employee assistance, nursing process, and environmental health were presented.

  4. 77 FR 54787 - Airworthiness Directives; M7 Aerospace LLC Airplanes

    Science.gov (United States)

    2012-09-06

    ... Airworthiness Directives; M7 Aerospace LLC Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Aerospace LLC Models SA226-AT, SA226-T, SA226-T(B), SA226-TC, SA227-AC (C-26A), SA227-BC (C-26A), SA227-CC..., contact M7 Aerospace LP, 10823 NE Entrance Road, San Antonio, Texas 78216; phone: (210) 824- 9421; fax...

  5. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  6. Aerospace manpower transfer to small business enterprises

    Science.gov (United States)

    Green, M. K.

    1972-01-01

    The feasibility of a program to effect transfer of aerospace professional people from the ranks of the unemployed into gainful employment in the small business community was investigated. The effectiveness of accomplishing transfer of technology from the aerospace effort into the private sector through migration of people rather than products or hardware alone was also studied. Two basic methodologies were developed. One involves the matching of ex-aerospace professionals and small companies according to their mutual needs. A training and indoctrination program is aimed at familiarizing the professional with the small company environment, and a program of follow-up counseling is defined. The second methodology incorporates efforts to inform and arouse interest among the nonaerospace business community toward affirmative action programs that will serve mutual self-interests of the individuals, companies, and communities involved.

  7. 48 CFR 1852.244-70 - Geographic participation in the aerospace program.

    Science.gov (United States)

    2010-10-01

    ... the aerospace program. 1852.244-70 Section 1852.244-70 Federal Acquisition Regulations System NATIONAL... Provisions and Clauses 1852.244-70 Geographic participation in the aerospace program. As prescribed in 1844.204-70, insert the following clause: Geographic Participation in the Aerospace Program (APR 1985) (a...

  8. Current Trends in Aerospace Engineering Education on Taiwan.

    Science.gov (United States)

    Hsieh, Sheng-Jii

    A proposal for current trends in Aerospace Engineering Education on Taiwan has been drawn from the suggestions made after a national conference of "Workshop on Aerospace Engineering Education Reform." This workshop was held in January 18-20, 1998, at the Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan,…

  9. The NASA Computational Fluid Dynamics (CFD) program - Building technology to solve future challenges

    Science.gov (United States)

    Richardson, Pamela F.; Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1993-01-01

    This paper presents the NASA Computational Fluid Dynamics program in terms of a strategic vision and goals as well as NASA's financial commitment and personnel levels. The paper also identifies the CFD program customers and the support to those customers. In addition, the paper discusses technical emphasis and direction of the program and some recent achievements. NASA's Ames, Langley, and Lewis Research Centers are the research hubs of the CFD program while the NASA Headquarters Office of Aeronautics represents and advocates the program.

  10. Mobility Research for Future Vehicles: A Methodology to Create a Unified Trade-Off Environment for Advanced Aerospace Vehicle

    Science.gov (United States)

    2018-01-31

    road-mapping and analogies. Technology road-mapping consists of projecting major technological elements of product design and manufacturing together...relevant to the UH-60 Blackhawk upgrades. GE is expected to begin production of the engine in 2025. It is designed to produce 50% more power at SL...Boeing Prof. Advanced Systems Design dimitri.mavris@aserospace.gatech.edu Kyle Collins Research Faculty kyle.collins@asdl.gatech.edu Aerospace

  11. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  12. Chromatography–mass spectrometry in aerospace industry

    International Nuclear Information System (INIS)

    Buryak, Alexey K; Serduk, T M

    2013-01-01

    The applications of chromatography–mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography–mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography–mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  13. Flexible Electronics Development Supported by NASA

    Science.gov (United States)

    Baumann, Eric

    2014-01-01

    The commercial electronics industry is leading development in most areas of electronics for NASA applications; however, working in partnership with industry and the academic community, results from NASA research could lead to better understanding and utilization of electronic materials by the flexible electronics industry. Innovative ideas explored by our partners in industry and the broader U.S. research community help NASA execute our missions and bring new American products and services to the global technology marketplace. [Mike Gazarik, associate administrator for Space Technology, NASA Headquarters, Washington DC] This presentation provides information on NASA needs in electronics looking towards the future, some of the work being supported by NASA in flexible electronics, and the capabilities of the Glenn Research Center supporting the development of flexible electronics.

  14. The NASA Astrobiology Roadmap

    Science.gov (United States)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  15. Third Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  16. Study on the control mechanism of China aerospace enterprises' binary multinational operation

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Li Hanling; Wu Weiwei

    2008-01-01

    China's aerospace enterprises carry on the multinational operation and participate in the international competition and the international division of labor and cooperation positively.This article first analyzs China aerospace enterprises' binary multinational business control objective and constructes its model.Then the article analyzes the tangible and intangible control mechanism of China aerospace enterprises' binary multinational operation respectively.Finally,the article constructs the model of China aerospace enterprises' binary multinational operation mechanisms.

  17. 7th Annual NASA/Contractors Conference on Quality and Productivity: "Total Quality Leadership"

    Science.gov (United States)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity on October 12-13, 1990, in Grenelefe, Florida. The panel presentations and keynote speeches revolving around the theme of 'Total Quality Leadership' provided a solid base of understanding of the importance, benefits, and principles of total quality management. The implementation of these strategies is critical if we are to effectively pursue our mission of continuous quality improvement and reliability in our products, processess, and services. The annual NASA/contractors conferences serve as catalysts for achieving success in this mission. The conference was highlighted by the announcement of the first recipients of the George M. Low Trophy: NASA's Quality and Excellence Award. My congratulations go out to all nine finalist organizations and to the two recipients of this prestigious honor: Rockwell Space Systems Division and Marotta Scientific Controls, Inc. (the first small business to achieve this honor). These organizations have demonstrated a commitment to quality that is unsurpassed in the aerospace industry. This report summarizes the presentations and is not intended to be a verbatim proceedings document. You are encouraged to contact the speakers with any requests for further information.

  18. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    Science.gov (United States)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  19. A NASA/RAE cooperation in the development of a real-time knowledge-based autopilot

    Science.gov (United States)

    Daysh, Colin; Corbin, Malcolm; Butler, Geoff; Duke, Eugene L.; Belle, Steven D.; Brumbaugh, Randal W.

    1991-01-01

    As part of a US/UK cooperative aeronautical research program, a joint activity between the NASA Dryden Flight Research Facility and the Royal Aerospace Establishment on knowledge-based systems was established. This joint activity is concerned with tools and techniques for the implementation and validation of real-time knowledge-based systems. The proposed next stage of this research is described, in which some of the problems of implementing and validating a knowledge-based autopilot for a generic high-performance aircraft are investigated.

  20. Intersubjective management in aerospace engineering

    Directory of Open Access Journals (Sweden)

    Arpentieva Mariam

    2017-01-01

    Full Text Available This article presents a postnonclassical approach to create the science of management processes organization in a developing society, the focus of which is “the man of culture”, i.e. the man, not just adhering to cultural norms, but also creating new concepts and products of culture. This science is proposed to be called Evergetics. The purpose of the study is the analysis science of management processes organization in a developing aerospace engineering and other industrial areas of society. The authors describe the main aspects and procedures evergetics management in aerospace engineering. They uses the comparison method, compares classical and modern approaches and technologies of management. In evergetics management model each member of society or organization is interested in augmenting his cultural heritage he is producing, which entails a raise of stability in process of engineering actions and a raise cultural potential of the society as a whole and, as a consequence, an increase in the proportion of moral and ethical managerial decisions and corresponding to them benevolent actions in organizational life. Summarize the article’s main findings, authors may in some main conclusions about necessity evergetics model and intersubjective technologies in the creation and development of aerospace engineering.

  1. Mobility Research for Future Vehicles: A Methodology to Create a Unified Trade-Off Environment for Advanced Aerospace Vehicle

    Science.gov (United States)

    2016-11-15

    structure weight technology factor TECH_air air induction system weight technology factor TECH_eng engine weight technology factor TECH_exh exhaust...required) eta_d engine inlet efficiency Nspec_tech Kspa0 piecewise linear Kspa = Kspa0 + Kspa1*theta, Kspa is static lapse rate Kspa0 Kspa0...Systems Design Laboratory Guggenheim School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 www.asdl.gatech.edu

  2. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    Science.gov (United States)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  3. 75 FR 61345 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes

    Science.gov (United States)

    2010-10-05

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes AGENCY: Federal Aviation Administration... service information identified in this AD, contact Eclipse Aerospace Incorporated, 2503 Clark Carr Loop... Kinney, Aerospace Engineer, Ft. Worth Aircraft Certification Office, FAA, 2601 Meacham Blvd., Fort Worth...

  4. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    Science.gov (United States)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  5. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 6. The Relationship between the Use of U.S. Government Technical Reports by U.S. Aerospace Engineers and Scientists and Selected Institutional and Sociometric Variables

    Science.gov (United States)

    1991-01-01

    Peter R.; James D. Schriner; Bettie F. Farace ; and Richard V. Farace . The Assessment of NASA Technical Information. NASA CR-181367. Washington, DC... Farace ; and Richard V. Farace . The Assessment of NASA Technical Information. NASA CR-181367. Washington, DC: National Aeronautics and Space

  6. Educational Advantage - E-learning helps companies capture the knowledge of retiring employees and gain competitive edge

    CERN Multimedia

    Tischelle, G

    2003-01-01

    NASA has discovered that 60% of aerospace workers will reach retirement age over the next few years so needed to find a way to capture knowledge from exiting workers and make it available to remaining and future staff (1 page).

  7. NASA/CARES dual-use ceramic technology spinoff applications

    Science.gov (United States)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  8. Oklahoma Aerospace Intellectual Capital/Educational Recommendations: An Inquiry of Oklahoma Aerospace Executives

    Science.gov (United States)

    Nelson, Erin M.

    2010-01-01

    Scope and Method of Study: The purpose of this qualitative study was to conduct detailed personal interviews with aerospace industry executives/managers from both the private and military sectors from across Oklahoma to determine their perceptions of intellectual capital needs of the industry. Interviews with industry executives regarding…

  9. Unique Education and Workforce Development for NASA Engineers

    Science.gov (United States)

    Forsgren, Roger C.; Miller, Lauren L.

    2010-01-01

    NASA engineers are some of the world's best-educated graduates, responsible for technically complex, highly significant scientific programs. Even though these professionals are highly proficient in traditional analytical competencies, there is a unique opportunity to offer continuing education that further enhances their overall scientific minds. With a goal of maintaining the Agency's passionate, "best in class" engineering workforce, the NASA Academy of Program/Project & Engineering Leadership (APPEL) provides educational resources encouraging foundational learning, professional development, and knowledge sharing. NASA APPEL is currently partnering with the scientific community's most respected subject matter experts to expand its engineering curriculum beyond the analytics and specialized subsystems in the areas of: understanding NASA's overall vision and its fundamental basis, and the Agency initiatives supporting them; sharing NASA's vast reservoir of engineering experience, wisdom, and lessons learned; and innovatively designing hardware for manufacturability, assembly, and servicing. It takes collaboration and innovation to educate an organization that possesses such a rich and important historyand a future that is of great global interest. NASA APPEL strives to intellectually nurture the Agency's technical professionals, build its capacity for future performance, and exemplify its core valuesalJ to better enable NASA to meet its strategic visionand beyond.

  10. Protons, Aerospace, and Electronics: A National Interest

    Science.gov (United States)

    LaBel, Kenneth A.; Turflinger, Thomas L.

    2018-01-01

    The aerospace and semiconductor industries lost approx. 2000 hours annually of research access when IUCF closed. An ad hoc team between the U.S. government and industry was formed to evaluate other facility options. In this presentation, we will discuss: 1) Why aerospace, semiconductor manufacturers, and others are interested in proton facility access, as well as, 2) Some of the basics of a typical test for electronics, and 3) We"ll conclude with the brief current status on progress.

  11. International R&M/Safety Cooperation Lessons Learned Between NASA and JAXA

    Science.gov (United States)

    Fernandez, Rene; Havenhill, Maria T.; Zampino, Edward J.; Kiefer, Dwayne E.

    2013-01-01

    Presented are a number of important experiences gained and lessons learned from the collaboration of the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA) on the CoNNeCT (Communications, Navigation, and Networking re-Configurable Testbed) project. Both space agencies worked on the CoNNeCT Project to design, assemble, test, integrate, and launch a communications testbed facility mounted onto the International Space Station (ISS) truss. At the 2012 RAMS, two papers about CoNNeCT were presented: one on Ground Support Equipment Reliability & System Safety, and the other one on combined application of System Safety & Reliability for the flight system. In addition to the logistics challenges present when two organizations are on the opposite side of the world, there is also a language barrier. The language barrier encompasses not only the different alphabet, it encompasses the social interactions; these were addressed by techniques presented in the paper. The differences in interpretation and application of Spaceflight Requirements will be discussed in this paper. Although many, but definitely not all, of JAXA's Spaceflight Requirements were inspired by NASA, there were significant and critically important differences in how they were interpreted and applied. This paper intends to summarize which practices worked and which did not for an international collaborative effort so that future missions may benefit from our experiences. The CoNNeCT flight system has been successfully assembled, integrated, tested, shipped, launched and installed on the ISS without incident. This demonstrates that the steps taken to facilitate international understanding, communication, and coordination were successful and warrant discussion as lessons learned.

  12. Review: laser ignition for aerospace propulsion

    Directory of Open Access Journals (Sweden)

    Steven A. O’Briant

    2016-03-01

    This paper aims to provide the reader an overview of advanced ignition methods, with an emphasis on laser ignition and its applications to aerospace propulsion. A comprehensive review of advanced ignition systems in aerospace applications is performed. This includes studies on gas turbine applications, ramjet and scramjet systems, and space and rocket applications. A brief overview of ignition and laser ignition phenomena is also provided in earlier sections of the report. Throughout the reading, research papers, which were presented at the 2nd Laser Ignition Conference in April 2014, are mentioned to indicate the vast array of projects that are currently being pursued.

  13. Engineering derivatives from biological systems for advanced aerospace applications

    Science.gov (United States)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  14. Damping in aerospace composite materials

    Science.gov (United States)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  15. In-service inspection guidelines for composite aerospace structures

    International Nuclear Information System (INIS)

    Heida, Jaap H.; Platenkamp, Derk J.

    2012-01-01

    The in-service inspection of composite aerospace structures is reviewed, using the results of a evaluation of promising, mobile non-destructive inspection (NDI) methods. The evaluation made use of carbon fibre reinforced specimens representative for primary composite aerospace structures, including relevant damage types such as impact damage, delaminations and disbonds. A range of NDI methods were evaluated such as visual inspection, vibration analysis, phased array ultrasonic inspection, shearography and thermography inspection. Important aspects of the evaluation were the capability for defect detection and characterization, portability of equipment, field of view, couplant requirements, speed of inspection, level of training required and the cost of equipment. The paper reviews the damage tolerance design approach for composites, and concludes with guidelines for the in-service inspection of composite aerospace structures.

  16. Fundamentals of Aerospace Engineering: An introductory course to aeronautical engineering

    OpenAIRE

    Soler, Manuel

    2014-01-01

    Fundamentals of Aerospace Engineering is a text book that provides an introductory, thorough overview of aeronautical engineering, and it is aimed at serving as reference for an undergraduate course on aerospace engineering.

  17. Proposal for a EU quality label for aerospace education

    NARCIS (Netherlands)

    Bernelli-Zazzera, Franco; Angeles, Maria; Prats, Martin; Marulo, Francesco; Hanus, Daniel; Melkert, J.A.; Guglieri, Giorgio; Bauer, Pascal; Pantelaki, Irene; Wasser, Iring; Deconinck, Herman; Bosilca, Ruxandra; Saari, Hanna-Kaisa; Gherman, B.; Porumbel, I.

    2018-01-01

    The paper presents a possible roadmap for the definition of a European quality label for aerospace related higher education degrees. The proposal is the result of a two-years long Horizon 2020 project that has involved a great portion of the European stakeholders in aerospace: Universities, research

  18. International symposium on NDT in aerospace. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    The emerging use of modern materials, especially in the aerospace industry, has initiated a new discussion about the current status and performance of Non Destructive Testing and Evaluation regarding their capability and reliability in material inspection and characterization. The substitution of mono materials, like aluminium, by composite materials, especially carbon fiber reinforced plastics, requires the development of advanced testing methods or even the combination of different methods. The symposium will bridge a gap between the different experts in NDT and E and will help to intensify the dialogue between basic NDT research and industrial NDT challenges. In April 2005 the project ''Development Center for Non-Destructive Testing of New Materials in Aerospace'' (''ZeLuR'') was authorized at the ''Technikum Neue Materialien'' in Fuerth. This project with a term of 4 years is funded by the Free State of Bavaria with the support of the Objective 2 Programme Bavaria 2002 - 2006 of the European Union. This project is addressing the various demands of different methods for the non-destructive testing of new materials in the aerospace industry. The sessions of the conference include thermal imaging, ultrasound technology, optics and all aspects of X-ray testing as well as structural health monitoring, reliability and adhesive bonding. Moreover the latest results of the project ''ZeLuR'' will be presented, covering various aspects of NDT in aerospace. (orig.)

  19. Data bases and data base systems related to NASA's Aerospace Program: A bibliography with indexes

    Science.gov (United States)

    1983-01-01

    This bibliography lists 641 reports, articles, and other documents introduced into the NASA scientific and technical information system during the period January 1, 1981 through June 30, 1982. The directory was compiled to assist in the location of numerical and factual data bases and data base handling and management systems.

  20. NASA Technology Plan 1998

    Science.gov (United States)

    1998-01-01

    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  1. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    Science.gov (United States)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  2. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Science.gov (United States)

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  3. Biophysics of NASA radiation quality factors

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.

    2015-01-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. (author)

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 12: An initial investigation into the production and use of Scientific and Technical Information (STI) at five NASA centers: Results of a telephone survey

    Science.gov (United States)

    Glassman, Nanci A.; Pinelli, Thomas E.

    1992-01-01

    A study was conducted to provide NASA management with an 'initial' look at the production and use of scientific and technical information (STI) at five NASA centers (Ames, Goddard, Langley, Lewis, and Marshall). The 550 respondents who were interviewed by telephone held favorable views regarding the NASA STI system. About 65 percent of the respondents stated that it is either very or somewhat important for them to publish their work through the NASA STI system. About 10 percent of those respondents encountered problems using the NASA STI system services for publication. The most frequently reported problem was 'the process is too time consuming' (8.6 percent). Overall, those respondents using the NASA STI system to publish their work rated the system as excellent (24.6 percent) or good (37.6 percent). About 79 percent of the respondents stated that it is either very or somewhat important for them to use the NASA STI system to access information. The most frequently reported problems were 'the time and effort it takes to locate and obtain information through the system' (14.4 percent). Overall, about 83 percent of the respondents stated that the NASA STI system is important to performing their work. Overall, about 73 percent of the respondents stated that the NASA STI system meets their information needs.

  5. The NASA Astrobiology Roadmap.

    Science.gov (United States)

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  6. NASA Education: Yesterday's Dream...Today's Vision...Tomorrow's Hope

    Science.gov (United States)

    Winterton, Joyce L.

    2010-01-01

    For 50 years, NASA's journeys into air and space have developed humankind's understanding of the universe, advanced technology breakthroughs, enhanced air travel safety and security, and expanded the frontiers of scientific research. These accomplishments share a common genesis: education. Education is a fundamental element of NASA's activities, reflecting a balanced and diverse portfolio of: Elementary and Secondary Education, Higher Education, e-Education, Informal Education, and Minority University Research and Education Programs (MUREP). Previous experience has shown that implementing exciting and compelling NASA missions are critical to inspiring the next generation of explorers, innovators, and leaders. Through partnerships with the Agency's Mission Directorates, other federal agencies, private industries, scientific research, and education/academic organizations, NASA's unique mission and education initiatives (content, people, and facilities) are helping to spark student interest and to guide them toward careers in science, technology, engineering, and mathematics (STEM). NASA continues to inspire the next generation of explorers, innovators, and future leaders through its educational investments, which are designed to: (1) Strengthen NASA and the Nation's future workforce -- NASA will identify and develop the critical skills and capabilities needed to ensure achievement of exploration, science, and aeronautics. (2) Attract and retain students in STEM disciplines through a progression of educational opportunities for students, teachers, and faculty -- To compete effectively for the minds, imaginations, and career ambitions of America's young people, NASA will focus on engaging and retaining students in STEM education programs to encourage their pursuit of educational disciplines critical to NASA's future engineering, scientific, and technical missions. 3. Engage Americans in NASA's mission -- NASA will build strategic partnerships and links between formal

  7. US computer research networks: Current and future

    Science.gov (United States)

    Kratochvil, D.; Sood, D.; Verostko, A.

    1989-01-01

    During the last decade, NASA LeRC's Communication Program has conducted a series of telecommunications forecasting studies to project trends and requirements and to identify critical telecommunications technologies that must be developed to meet future requirements. The Government Networks Division of Contel Federal Systems has assisted NASA in these studies, and the current study builds upon these earlier efforts. The current major thrust of the NASA Communications Program is aimed at developing the high risk, advanced, communications satellite and terminal technologies required to significantly increase the capacity of future communications systems. Also, major new technological, economic, and social-political events and trends are now shaping the communications industry of the future. Therefore, a re-examination of future telecommunications needs and requirements is necessary to enable NASA to make management decisions in its Communications Program and to ensure the proper technologies and systems are addressed. This study, through a series of Task Orders, is helping NASA define the likely communication service needs and requirements of the future and thereby ensuring that the most appropriate technology developments are pursued.

  8. Aerospace Safety Advisory Panel Annual Report for 1999

    Science.gov (United States)

    Blomberg, Richard D.

    2000-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for the calendar year 1999.This was a year of notable achievements and significant frustrations. Both the Space Shuttle and International Space Station (ISS) programs were delayed.The Space Shuttle prudently postponed launches after the occurrence of a wiring short during ascent of the STS-93 mission. The ISS construction schedule slipped as a result of the Space Shuttle delays and problems the Russians experienced in readying the Service Module and its launch vehicle. Each of these setbacks was dealt with in a constructive way. The STS-93 short circuit led to detailed wiring inspections and repairs on all four orbiters as well as analysis of other key subsystems for similar types of hidden damage. The ISS launch delays afforded time for further testing, training, development, and contingency planning. The safety consciousness of the NASA and contractor workforces, from hands-on labor to top management, continues high. Nevertheless, workforce issues remain among the most serious safety concerns of the Panel. Cutbacks and reorganizations over the past several years have resulted in problems related to workforce size, critical skills, and the extent of on-the-job experience. These problems have the potential to impact safety as the Space Shuttle launch rate increases to meet the demands of the ISS and its other customers. As with last year's report, these work- force-related issues were considered of sufficient import to place them first in the material that follows. Some of the same issues of concern for the Space Shuttle and ISS arose in a review of the launch vehicle for the Terra mission that the Panel was asked by NASA to undertake. Other areas the Panel was requested to assess included the readiness of the Inertial Upper Stage for the deployment of the Chandra X-ray Observatory and the possible safety impact of electromagnetic effects on the Space Shuttle. The findings and

  9. NASA and ESA Collaboration on Hexavalent Chrome Alternatives - Pretreatments with Primers Screening Final Test Report

    Science.gov (United States)

    Rothgeb, Matthew J.; Kessel, Kurt R.

    2015-01-01

    Hexavalent chromium (hex chrome or Cr(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings. In the United States, Occupational Safety and Health Administration (OSHA) studies have concluded that hexavalent chromium is carcinogenic and poses significant risk to human health. On May 5, 2011, amendments to the Defense Federal Acquisition Regulation Supplement (DFARS) were issued in the Federal Register. Subpart 223.73 prohibits contracts from requiring hexavalent chromium in deliverables unless certain exceptions apply. Subpart 252.223-7008 provides the contract clause prohibiting contractors and subcontractors from using or delivering hexavalent chromium in a concentration greater than 0.1 percent by weight for all new contracts associated with supplies, maintenance and repair services, and construction materials. ESA faces its own increasingly stringent regulations within European directives such as Registration, Evaluation, Authorization and Restriction of Chemical (REACH) substances and the Restriction of Hazardous Substances Directive (RoHS) which have set a mid-2017 sunset date for hexavalent chromium. NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and

  10. Status of the NASA Micro Pulse Lidar Network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL

    Science.gov (United States)

    Welton, Ellsworth J.; Stewart, Sebastian A.; Lewis, Jasper R.; Belcher, Larry R.; Campbell, James R.; Lolli, Simone

    2018-04-01

    The NASA Micro Pulse Lidar Network (MPLNET) is a global federated network of Micro-Pulse Lidars (MPL) co-located with the NASA Aerosol Robotic Network (AERONET). MPLNET began in 2000, and there are currently 17 long-term sites, numerous field campaigns, and more planned sites on the way. We have developed a new Version 3 processing system including the deployment of polarized MPLs across the network. Here we provide an overview of Version 3, the polarized MPL, and current and future plans.

  11. NASA's Coordinated Efforts to Enhance STEM Education: Bringing NASA Science into the Library

    Science.gov (United States)

    Meinke, B. K.; Thomas, C.; Eyermann, S.; Mitchell, S.; LaConte, K.; Hauck, K.

    2015-11-01

    Libraries are community-centered, free-access venues serving learners of all ages and backgrounds. Libraries also recognize the importance of science literacy and strive to include science in their programming portfolio. Scientists and educators can partner with local libraries to advance mutual goals of connecting the public to Earth and Space Science. In this interactive Special Interest Group (SIG) discussion, representatives from the NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) community's library collaborations discussed the opportunities for partnership with public and school libraries; explored the resources, events, and programs available through libraries; explored NASA science programming and professional development opportunities available for librarians; and strategized about the types of support that librarians require to plan and implement programs that use NASA data and resources. We also shared successes, lessons learned, and future opportunities for incorporating NASA science programming into library settings.

  12. International conference on Recent Advances in Aerospace Engineering (ICRAAE-2017)

    Science.gov (United States)

    2017-10-01

    Introduction The First International conference on Recent Advances in Aerospace Engineering (ICRAAE-2017) will be conducted by the Department of Aerospace Engineering at Karunya University, Coimbatore, Tamilnadu, India, on 3rd and 4th March, 2017. The conference aims to bring together students, academicians, leading scientists, researchers and industrialists working in diverse fields of Aerospace Engineering. This conference provides an inter-disciplinary platform for the educators, researchers and practitioners to present, share and discuss the recent trends, innovations, concerns and solutions in the cutting edge technologies of Aerospace Engineering for mutual benefit and the growth of the nation. Objectives The conference is devoted to benefit the participants who will have the opportunity to gain insight into state-of-the-art technologies in the field of Aerospace Engineering by the expert lectures of scientists and pioneering researchers from India and abroad. In addition, the two-day conference will enable knowledge sharing by personnel involved in active research working on the recent developments in this diverse field. List of International Deep Drawing Research Group, Conference Topics, Facts and Statistics, Achknowledgement, Keynote Speakers, Scientific Committee, Editors all are available in this PDF.

  13. Hypersonic CFD applications at NASA Langley using CFL3D and CFL3DE

    Science.gov (United States)

    Richardson, Pamela F.

    1989-01-01

    The CFL3D/CFL3DE CFD codes and the industrial use status of the codes are outlined. Comparison of grid density, pressure, heat transfer, and aerodynamic coefficience are presented. Future plans related to the National Aerospace Plane Program are briefly outlined.

  14. Automated Modeling and Simulation Using the Bond Graph Method for the Aerospace Industry

    Science.gov (United States)

    Granda, Jose J.; Montgomery, Raymond C.

    2003-01-01

    Bond graph modeling was originally developed in the late 1950s by the late Prof. Henry M. Paynter of M.I.T. Prof. Paynter acted well before his time as the main advantage of his creation, other than the modeling insight that it provides and the ability of effectively dealing with Mechatronics, came into fruition only with the recent advent of modern computer technology and the tools derived as a result of it, including symbolic manipulation, MATLAB, and SIMULINK and the Computer Aided Modeling Program (CAMPG). Thus, only recently have these tools been available allowing one to fully utilize the advantages that the bond graph method has to offer. The purpose of this paper is to help fill the knowledge void concerning its use of bond graphs in the aerospace industry. The paper first presents simple examples to serve as a tutorial on bond graphs for those not familiar with the technique. The reader is given the basic understanding needed to appreciate the applications that follow. After that, several aerospace applications are developed such as modeling of an arresting system for aircraft carrier landings, suspension models used for landing gears and multibody dynamics. The paper presents also an update on NASA's progress in modeling the International Space Station (ISS) using bond graph techniques, and an advanced actuation system utilizing shape memory alloys. The later covers the Mechatronics advantages of the bond graph method, applications that simultaneously involves mechanical, hydraulic, thermal, and electrical subsystem modeling.

  15. Former Virginia Tech Aerospace and Ocean Engineering Department Head Dies

    OpenAIRE

    Gilbert, Karen

    2003-01-01

    James B. Eades, Jr., retired aerospace research scientist from Bluefield, W. Wa., and former professor and department head of aerospace and ocean engineering at Virginia Tech, died Dec. 14 at Veteran's Hospital in Washington, D.C. He was 80.

  16. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  17. Advanced Curation Activities at NASA: Preparation for Upcoming Missions

    Science.gov (United States)

    Fries, M. D.; Evans, C. A.; McCubbin, F. M.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-07-01

    NASA Curation cares for NASA's astromaterials and performs advanced curation so as to improve current practices and prepare for future collections. Cold curation, microbial monitoring, contamination control/knowledge and other aspects are reviewed.

  18. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  19. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  20. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    1992-01-01

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  1. The NASA risk management program

    International Nuclear Information System (INIS)

    Buchbinder, B.; Philipson, L.L.

    1989-01-01

    This paper reports that the NASA Risk Management Program has been established to ensure the appropriate application of risk-based procedures in support of the elimination, reduction, or acceptance of significant safety risks of concern in NASA. The term appropriate is emphasized, in that the particular procedures applied to each given risk are to reflect its character and prioritized importance, the technological and economic feasibility of its treatment. A number of key documents have been produced in support of this implementation. Databases, risk analysis tools, and risk communication procedures requisite to the execution of the risk management functions also are being developed or documented. Several risk management applications have been made and a comprehensive application to a major new NASA program is underway. This paper summarizes the development and current status of the NASA Risk Management Program. Some principal actions that have been carried out in NASA in consonance with the program are noted particularly, and views are presented on the program's likely future directions

  2. Status of the NASA Micro Pulse Lidar Network (MPLNET: overview of the network and future plans, new version 3 data products, and the polarized MPL

    Directory of Open Access Journals (Sweden)

    Welton Ellsworth J.

    2018-01-01

    Full Text Available The NASA Micro Pulse Lidar Network (MPLNET is a global federated network of Micro-Pulse Lidars (MPL co-located with the NASA Aerosol Robotic Network (AERONET. MPLNET began in 2000, and there are currently 17 long-term sites, numerous field campaigns, and more planned sites on the way. We have developed a new Version 3 processing system including the deployment of polarized MPLs across the network. Here we provide an overview of Version 3, the polarized MPL, and current and future plans.

  3. Overview of NASA Langley's Systems Analysis Capabilities

    Science.gov (United States)

    Cavanaugh, Stephen; Kumar, Ajay; Brewer, Laura; Kimmel, Bill; Korte, John; Moul, Tom

    2006-01-01

    The Systems Analysis and Concepts Directorate (SACD) has been in the systems analysis business line supporting National Aeronautics and Space Administration (NASA) aeronautics, exploration, space operations and science since the 1960 s. Our current organization structure is shown in Figure 1. SACD mission can be summed up in the following statements: 1. We conduct advanced concepts for Agency decision makers and programs. 2. We provide aerospace systems analysis products such as mission architectures, advanced system concepts, system and technology trades, life cycle cost and risk analysis, system integration and pre-decisional sensitive information. 3. Our work enables informed technical, programmatic and budgetary decisions. SACD has a complement of 114 government employees and approximately 50 on-site contractors which is equally split between supporting aeronautics and exploration. SACD strives for technical excellence and creditability of the systems analysis products delivered to its customers. The Directorate office is continuously building market intelligence and working with other NASA centers and external partners to expand our business base. The Branches strive for technical excellence and credibility of our systems analysis products by seeking out existing and new partnerships that are critical for successful systems analysis. The Directorates long term goal is to grow the amount of science systems analysis business base.

  4. KIBO Industry, innovates in aerospace

    Science.gov (United States)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  5. Possibilities of Mexican SMEs insertion in the aerospace industry value chain, the Baja California case

    Directory of Open Access Journals (Sweden)

    Juana Hernández Chavarria

    2018-01-01

    Full Text Available The goal of this article is to analyze the aerospace industry in Baja California, Mexico. The methodology is based on the application of an electronic questionnaire and face-to-face in depth interviews. Our results shows that the insertion of companies has been conditioned by several factors: the basic certification is only the first step; the real challenge is to find niches of opportunity and bargaining power to achieve a productive contract, which demands entrepreneurial, legal and economic skills. This analysis is a pioneer in the study of Mexican companies participating in this emerging sector. The main limitations were the access to the companies’ information and the rejection to participate in the study. The main finding is there are very few Mexican suppliers integrated to the global value aerospace chain but if the trend of growth is maintained, it may had greater integration in the near future, and possibly a greater economic spill and technology transfer.

  6. 75 FR 30282 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes

    Science.gov (United States)

    2010-06-01

    ... Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This AD requires you... reference of certain publications listed in this AD. ADDRESSES: Quartz Mountain Aerospace, Inc. is in...

  7. 75 FR 12468 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes

    Science.gov (United States)

    2010-03-16

    ... Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This proposed AD would... 5 p.m., Monday through Friday, except Federal holidays. Quartz Mountain Aerospace, Inc. is in...

  8. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXV - The impact of language and culture on technical communication in Japan

    Science.gov (United States)

    Kohl, John R.; Barclay, Rebecca O.; Pinelli, Thomas E.; Keene, Michael L.; Kennedy, John M.

    1993-01-01

    One of the most significant developments in the field of technical communication during the 1980s and 1990s has been a growing interest in international technical communication, including technical communication in Japan. This article provides insights into aspects of the Japanese language and culture that affect Japanese technical communication practices. The authors then use these insights to interpret and report the results of a survey of Japanese aerospace engineers and scientists concerning the kinds of communication products they produce, the kinds they use, and the specific recommendations they would offer to designers of academic programs in technical communication.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 25: The impact of language and culture on technical communication in Japan

    Science.gov (United States)

    Kohl, John R.; Barclay, Rebecca O.; Pinelli, Thomas E.; Keene, Michael L.; Kennedy, John M.

    1993-01-01

    One of the most significant developments in the field of technical communication during the 1980's and 1990's has been a growing interest in international technical communication, including technical communication in Japan. This article provides insights into aspects of the Japanese language and culture that affect Japanese technical communication practices. These insights are then used to interpret and report the results of a survey of Japanese aerospace engineers and scientists concerning the kinds of communication products they produce, the kinds they use, and the specific recommendation they would offer to designers of academic programs in technical communication.

  10. Damage Simulation in Composite Materials: Why It Matters and What Is Happening Currently at NASA in This Area

    Science.gov (United States)

    McElroy, Mack; de Carvalho, Nelson; Estes, Ashley; Lin, Shih-yung

    2017-01-01

    Use of lightweight composite materials in space and aircraft structure designs is often challenging due to high costs associated with structural certification. Of primary concern in the use of composite structures is durability and damage tolerance. This concern is due to the inherent susceptibility of composite materials to both fabrication and service induced flaws. Due to a lack of general industry accepted analysis tools applicable to composites damage simulation, a certification procedure relies almost entirely on testing. It is this reliance on testing, especially compared to structures comprised of legacy metallic materials where damage simulation tools are available, that can drive costs for using composite materials in aerospace structures. The observation that use of composites can be expensive due to testing requirements is not new and as such, research on analysis tools for simulating damage in composite structures has been occurring for several decades. A convenient approach many researchers/model-developers in this area have taken is to select a specific problem relevant to aerospace structural certification and develop a model that is accurate within that scope. Some examples are open hole tension tests, compression after impact tests, low-velocity impact, damage tolerance of an embedded flaw, and fatigue crack growth to name a few. Based on the premise that running analyses is cheaper than running tests, one motivation that many researchers in this area have is that if generally applicable and reliable damage simulation tools were available the dependence on certification testing could be lessened thereby reducing overall design cost. It is generally accepted that simulation tools if applied in this manner would still need to be thoroughly validated and that composite testing will never be completely replaced by analysis. Research and development is currently occurring at NASA to create numerical damage simulation tools applicable to damage in

  11. Didactic communication in the training of specialists in aerospace engineering

    Directory of Open Access Journals (Sweden)

    Arpentieva Mariam

    2018-01-01

    Full Text Available The article is devoted to the study of the problems of didactic communication in the training of engineering personnel for the aerospace industry and to the study of the problems of the communication of subjects concerning the training and education of highly qualified engineering personnel for the aerospace industry. In the training of engineering personnel for the aerospace industry the integrated model of didactic communication involves the identification and description of its various components, typical modes of interaction (modes that reflect different aspects of the person's understanding of the world around him and himself in the process of different types of education and upbringing. Didactic communication in the process of training engineering personnel for the aerospace industry is a multi-level, multi-stage and multi-component phenomenon. The modes, possibilities and limitations of this communication are related to the level and direction of personal, interpersonal and professional development of interaction subjects. The productivity of preparing engineering personnel for the aerospace industry is related to the choice of a model of didactic communication, which is addressed in different ways to the development of cognitive, value-semantic and meta-cognitive structures that form one or another type of education and upbringing.

  12. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very

  13. Reliability Constrained Priority Load Shedding for Aerospace Power System Automation

    Science.gov (United States)

    Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)

    2000-01-01

    The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.

  14. Biophysics of NASA radiation quality factors.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-09-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. NASA Missions Inspire Online Video Games

    Science.gov (United States)

    2012-01-01

    Fast forward to 2035. Imagine being part of a community of astronauts living and working on the Moon. Suddenly, in the middle of just another day in space, a meteorite crashes into the surface of the Moon, threatening life as you know it. The support equipment that provides oxygen for the entire community has been compromised. What would you do? While this situation is one that most people will never encounter, NASA hopes to place students in such situations - virtually - to inspire, engage, and educate about NASA technologies, job opportunities, and the future of space exploration. Specifically, NASA s Learning Technologies program, part of the Agency s Office of Education, aims to inspire and motivate students to pursue careers in the science, technology, engineering, and math (STEM) disciplines through interactive technologies. The ultimate goal of these educational programs is to support the growth of a pool of qualified scientific and technical candidates for future careers at places like NASA. STEM education has been an area of concern in the United States; according to the results of the 2009 Program for International Student Assessment, 23 countries had higher average scores in mathematics literacy than the United States. On the science literacy scale, 18 countries had higher average scores. "This is part of a much bigger picture of trying to grow skilled graduates for places like NASA that will want that technical expertise," says Daniel Laughlin, the Learning Technologies project manager at Goddard Space Flight Center. "NASA is trying to increase the number of students going into those fields, and so are other government agencies."

  16. Aerospace Activities in the Elementary School

    Science.gov (United States)

    Jones, Robert M.; Wiggins, Kenneth E.

    1974-01-01

    Describes 17 activities which are aerospace oriented and yet provide an interdisciplinary approach to learning. Some of the activities described involve paper airplanes, parachutes, model rockets, etc. (BR)

  17. NASA's National Center for Advanced Manufacturing

    Science.gov (United States)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  18. The Relationship of Skilled Aerospace Manufacturing Workforce Performance to Training

    Science.gov (United States)

    Malsberry, Suzanne

    2014-01-01

    A major economic driver, the aerospace industry contributes to exports and higher wage jobs, which the United States requires to maintain robust economic health. Despite the investment in vocational educational training programs, insufficient workers have been available to aerospace companies. The purpose of this study was to investigate the…

  19. Aerospace gerontology

    Science.gov (United States)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  20. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    Science.gov (United States)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full