WorldWideScience

Sample records for future lepton-proton collider

  1. Future colliders at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Tsesmelis, E. [CERN, Geneva (Switzerland)

    2010-07-15

    Following an outline of the Large Hadron Collider, this paper will analyze CERN's scientific plans for high-energy colliders for the years to come. The immediate plans include the upgrades to the Large Hadron Collider and its injectors. This may be followed by a linear electron-positron collider, the Compact Linear Collider. This paper describes the design of these future colliders at CERN, all of which have a unique value to add to experimental particle physics. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  3. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The interna...

  4. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  5. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The internat...

  6. Heavy Neutrinos at Future Colliders

    CERN Document Server

    Dev, P S Bhupal

    2016-01-01

    We discuss the current status and future prospects of heavy neutrino searches at the energy frontier, which might play an important role in vindicating the simplest seesaw paradigm as the new physics responsible for neutrino mass generation. After summarizing the current search limits and potential improvements at hadron colliders, we highlight the unparalleled sensitivities achievable in the clean environment of future lepton colliders.

  7. Unraveling supersymmetry at future colliders

    Indian Academy of Sciences (India)

    Xerxes Tata

    2004-02-01

    After a quick review of the current limits on sparticle masses, we outline the prospects for their discovery at future colliders. We then proceed to discuss how precision measurements of sparticle masses can provide information about how SM suprpartners acquire their masses. Finally, we examine how we can proceed to establish whether or not any new physics discovered in the future is supersymmetry, and describe how we might zero in on the framework of SUSY breaking. In this connection, we review sparticle mass measurements at future colliders, and point out that some capabilities of experiments at $e^{+}e^{-}$ linear colliders may have been over-stated in the literture.

  8. Prospects for Future Collider Physics

    CERN Document Server

    Ellis, John

    2016-01-01

    One item on the agenda of future colliders is certain to be the Higgs boson. What is it trying to tell us? The primary objective of any future collider must surely be to identify physics beyond the Standard Model, and supersymmetry is one of the most studied options. it Is supersymmetry waiting for us and, if so, can LHC Run 2 find it? The big surprise from the initial 13-TeV LHC data has been the appearance of a possible signal for a new boson X with a mass ~750 GeV. What are the prospects for future colliders if the X(750) exists? One of the most intriguing possibilities in electroweak physics would be the discovery of non-perturbative phenomena. What are the prospects for observing sphalerons at the LHC or a future collider?

  9. Physics at Future Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.

    2002-08-07

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  10. Physics at future hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    U. Baur et al.

    2002-12-23

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  11. Challenges in future linear colliders

    CERN Document Server

    Chattopadhyay, S

    2002-01-01

    For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e/sup -/e /sup +/ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e/sup -/e/sup + / linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the "Future Linear Collider " (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomi...

  12. The collider of the future?

    CERN Multimedia

    2009-01-01

    Why are two studies for one linear collider being conducted in parallel? This is far from a duplication of effort or a waste of resources, since the two studies reflect a complementary strategy aimed at providing the best technology for future physics. On Friday 12 June CERN hosted the first joint meeting between CLIC, ILC and the CERN management.

  13. The collider of the future?

    CERN Multimedia

    CERN Audiovisual Service

    2009-01-01

    Why are two studies for one linear collider being conducted in parallel? This is far from a duplication of effort or a waste of resources, since the two studies reflect a complementary strategy aimed at providing the best technology for future physics. On Friday 12 June CERN hosted the first joint meeting between CLIC and ILC, which led to a host of good results and important decisions. The International Linear Collider (ILC) and Compact Linear Collider (CLIC) studies both call for cutting-edge technologies. At first glance they may appear to be in competition, but they are in fact complementary and have a common objective – namely to propose a design , as soon as possible and at the lowest possible cost, for the linear accelerator best suited to taking over the baton of physics research at the high-energy frontier after the LHC.

  14. The Global Future Circular Colliders Effort

    CERN Document Server

    Benedikt, Michael

    2013-01-01

    This presentation has been given during the P5 Workshop at BNL Brookhaven (US). It contains - Global Future Circular Collier Studies Overview and Status - Main challenges and R&D areas for hadron collider - Main challenges and R&D areas for lepton collider - Conclusions

  15. Optimizing integrated luminosity of future hadron colliders

    Directory of Open Access Journals (Sweden)

    Michael Benedikt

    2015-10-01

    Full Text Available The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical “beam-beam limit”, or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC, and of the Future Circular Collider (FCC-hh.

  16. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  17. Nuclear collisions at the Future Circular Collider

    Science.gov (United States)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C. A.; van Leeuwen, M.; Wiedemann, U. A.

    2016-12-01

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  18. Nuclear collisions at the Future Circular Collider

    CERN Document Server

    Armesto, N; d'Enterria, D; Masciocchi, S; Roland, C; Salgado, C A; van Leeuwen, M; Wiedemann, U A

    2016-01-01

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  19. Higgs and SUSY searches at future colliders

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2000-04-01

    In this talk, I discuss some aspects of Higgs searches at future colliders, particularly comparing and contrasting the capabilities of LHC and next linear collider (NLC), including the aspects of Higgs searches in supersymmetric theories. I will also discuss how the search and study of sparticles other than the Higgs can be used to give information about the parameters of the minimal supersymmetric Standard Model (MSSM).

  20. Nuclear collisions at the Future Circular Collider

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N., E-mail: nestor.armesto@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia-Spain (Spain); Dainese, A. [INFN – Sezione di Padova, 35131 Padova (Italy); D' Enterria, D. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland); Masciocchi, S. [EMMI and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Roland, C. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Salgado, C.A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia-Spain (Spain); Leeuwen, M. van [Nikhef, National Institute for Subatomic Physics, Amsterdam (Netherlands); Institute for Subatomic Physics of Utrecht University, Utrecht (Netherlands); Wiedemann, U.A. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland)

    2016-12-15

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  1. Optimizing integrated luminosity of future hadron colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Schulte, Daniel; Zimmermann, Frank

    2015-01-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical “beam-beam limit”), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value...

  2. RF pulse compression for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  3. From the LHC to Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    De Roeck, A.; Ellis, J.; /CERN; Grojean, C.; Heinemeyer, S.; /Cantabria Inst. of Phys.; Jakobs, K.; /Freiburg U.; Weiglein, G.; /Durham U., IPPP; Azuelos, G.; /TRIUMF; Dawson, S.; /Brookhaven; Gripaios, B.; /CERN; Han, T.; /Wisconsin U., Madison; Hewett, J.; /SLAC; Lancaster, M.; /University Coll. London; Mariotti, C.; /INFN, Turin; Moortgat, F.; /Zurich, ETH; Moortgat-Pick, G.; /Durham U., IPPP; Polesello, G.; /INFN, Pavia; Riemann, S.; /DESY; Assamagan, K.; /Brookhaven; Bechtle, P.; /DESY; Carena, M.; /Fermilab; Chachamis, G.; /PSI, Villigen /Taiwan, Natl. Taiwan U. /INFN, Florence /Bonn U. /CERN /Bonn U. /Freiburg U. /Oxford U. /Louvain U., CP3 /Bangalore, Indian Inst. Sci. /INFN, Milan Bicocca /Munich, Max Planck Inst. /Taiwan, Natl. Taiwan U. /Frascati /Fermilab /Warsaw U. /Florida U. /Orsay, LAL /LPSC, Grenoble /Warsaw U. /Yale U. /Stockholm U., Math. Dept. /Durham U., IPPP /DESY /Rome U. /University Coll. London /UC, San Diego /Heidelberg U. /Florida State U. /SLAC /Durham U., IPPP /Southern Denmark U., CP3-Origins /McGill U. /Durham U., IPPP; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  4. From the LHC to future colliders

    Energy Technology Data Exchange (ETDEWEB)

    De Roeck, A.; Assamagan, K.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglien, G.; Well, J.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Schumacher, M.; Bechtle, P.; Carena, M.; Chachamis, G.; Chen, K.F.; De Curtis, S.; Desch, K.; Dittmar, M.; Dreiner, H.; Duhrssen, M.; Foster, B.; Frandsen, M.T.; Giammanco, A.; Godbole, R.; Gopalakrishna, S.; Govoni, P.; Gunion, J.; Hollik, W.; Hou, W.S.; Isidori, G.; Juste, A.; Kalinowski, J.; Korytov, A.; Kou, E.; Kraml, S.; Krawczyk, M.; Martin, A.; Milstead, D.; Morton-Thurtle, V.; Moenig, K.; Mele, B.; Ozcan, E.; Pieri, M.; Plehn, T.; Reina, L.; Richter-Was, E.; Rizzo, T.; Rolbiecki, K.; Sannino, F.; Schram, M.; Smillie, J.; Sultansoy, S.; Tattersall, J.; Uwer, P., Webber, B.; and Wienemann, P.

    2010-03-02

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  5. Future high energy colliders symposium. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [Univ. of California, Santa Barbara, CA (United States). Institute for Theoretical Physics]|[Brookhaven National Lab., Upton, CA (United States)

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  6. Status of the Future Circular Collider Study

    CERN Document Server

    Benedikt, Michael

    2016-01-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute. Its main purpose and long-term goal is to design an energyfrontier hadron collider (FCC-hh) with a centre-of-mass energy of about 100 TeV in a new 80–100 km tunnel. The FCC study also includes the design of a 90–350 GeV highluminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines are being assessed and concepts for experiments will be developed by the end of 2018, in time for the next update of the European Strategy for Particle Physics. This overview summarizes the status of machine designs and parameters, and it discusses the essential technical components being developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets wit...

  7. Future Circular Colliders Study, Kickoff Meeting

    CERN Document Server

    2014-01-01

    This meeting is the starting point of a five-year international design study called “Future Circular Colliders” (FCC) with emphasis on a hadron collider with a centre-of-mass energy of the order of 100 TeV in a new 80-100 km tunnel as a long-term goal. The design study includes a 90-400 GeV lepton collider, seen as a potential intermediate step. It also examines a lepton-hadron collider option. The international kick-off meeting for the FCC design study will be held at the University of Geneva, Unimail site, on 12–15 February 2014. The scope of this meeting will be to discuss the main study topics and to prepare the groundwork for the establishment of international collaborations and future studies. The formal part of the meeting will start at noon on Wednesday 12 February and last until noon on Friday 14 February. It will be followed by break-out sessions on the various parts of the project on the Friday afternoon, with summary sessions until noon on Saturday 15 February.

  8. Heavy ions at the Future Circular Collider

    CERN Document Server

    Dainese, A; Armesto, N; d'Enterria, D; Jowett, J M; Lansberg, J -P; Milhano, J G; Salgado, C A; Schaumann, M; van Leeuwen, M; Albacete, J L; Andronic, A; Antonioli, P; Apolinario, L; Bass, S; Beraudo, A; Bilandzic, A; Borsanyi, S; Braun-Munzinger, P; Chen, Z; Mendez, L Cunqueiro; Denicol, G S; Eskola, K J; Floerchinger, S; Fujii, H; Giubellino, P; Greiner, C; Grosse-Oetringhaus, J F; Ko, C -M; Kotko, P; Krajczar, K; Kutak, K; Laine, M; Liu, Y; Lombardo, M P; Luzum, M; Marquet, C; Masciocchi, S; Okorokov, V; Paquet, J -F; Paukkunen, H; Petreska, E; Pierog, T; Ploskon, M; Ratti, C; Rezaeian, A H; Riegler, W; Rojo, J; Roland, C; Rossi, A; Salam, G P; Sapeta, S; Schicker, R; Schmidt, C; Stachel, J; Uphoff, J; van Hameren, A; Watanabe, K; Xiao, B -W; Yuan, F; Zaslavsky, D; Zhou, K; Zhuang, P

    2016-01-01

    The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode, seven times larger than the nominal LHC energies. Operating such machine with heavy ions is an option that is being considered in the accelerator design studies. It would provide, for example, Pb-Pb and p-Pb collisions at sqrt{s_NN} = 39 and 63 TeV, respectively, per nucleon-nucleon collision, with integrated luminosities above 30 nb^-1 per month for Pb-Pb. This is a report by the working group on heavy-ion physics of the FCC Study. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of the Quark-Gluon Plasma, of gluon saturation, of photon-induced collisions, as well as connections with other fields of high-energy physics.

  9. Future Circular Collider study week 2017

    CERN Document Server

    2017-01-01

    The annual meetings of the worldwide Future Circular Collider study (FCC) are major international events that review the progress in every domain which is relevant to develop feasible concepts for a next generation frontier particle accelerate based high-energy physics research infrastructure. This 3rd meeting is jointly organised by CERN and DESY. It is also the annual meeting of the EuroCirCol EC Horizon 2020 Research and Innovation Action project. Previous events took place in Washington and Rome. In 2017 the FCC Week will take place in Berlin, Germany between May 29 and June 2.

  10. Contribution of σ meson exchange to elastic lepton-proton scattering

    Science.gov (United States)

    Koshchii, Oleksandr; Afanasev, Andrei

    2016-12-01

    Lepton mass effects play a decisive role in the description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future Muon Scattering Experiment (MUSE) experiment, which is devised to solve the "Proton Radius Puzzle," is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in the comparison of elastic electron-proton vs muon-proton scattering in MUSE. In this article, we estimate the σ meson exchange contribution in the t channel. This contribution, mediated by two-photon coupling of σ , is calculated to be at most ˜0.1 % for muons in the kinematics of MUSE, and it appears to be about 3 orders of magnitude larger than for electrons because of the lepton-mass difference.

  11. Contribution of \\sigma-meson exchange to elastic lepton-proton scattering

    CERN Document Server

    Koshchii, O

    2016-01-01

    Lepton mass effects play a decisive role in description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future MUSE experiment, which is devised to solve the "Proton Radius Puzzle", is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in comparison of elastic electron-proton versus muon-proton scattering in MUSE. In this article, we estimate the $\\sigma$ meson exchange contribution in the $t$-channel. This contribution, mediated by two-photon coupling of $\\sigma$, is calculated to be at most $\\sim 0.1 \\%$ for muons in the kinematics of MUSE and it is about 3 orders in magnitude larger than for electrons because of the lepton-mass difference.

  12. World lays groundwork for future linear collider

    CERN Multimedia

    Feder, Toni

    2010-01-01

    "New physics from the Large Hadron Collider can best be explored with a large lepton collider; realizing one will require mobilizing accelerator and particle physicists, funding agencies, and politicians" (3 pages)

  13. Far Future Colliders and Required R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; /Fermilab

    2012-06-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the R&D toward near future colliders and make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  14. DIS prospects at the future muon collider facility

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J., FERMI

    1998-07-01

    We discuss prospects of deep inelastic scattering physics capabilities at the future muon collider facility. In addition to {mu}{sup +}{mu}{sup -} collider itself, the facility provides other possibilities. Among the possibilities, we present muon-proton collider and neutrino fixed target programs at the muon collider facility. This {mu}-p collider program extends kinematic reach and luminosity by an order of magnitude, increasing the possibility of search for new exotic particles. Perhaps most intriguing DIS prospects come from utilizing high intensity neutrino beam resulting from continuous decays of muons in various sections of the muon collider facility. One of the most interesting findings is a precision measurement of electroweak mixing angle, sin{sup 2}{theta}{sub W}, which can be achieved to the precision equivalent to {delta}M{sub W}{approximately} 30MeV.

  15. Exotic leptons at future linear colliders

    CERN Document Server

    Biondini, S

    2014-01-01

    Doubly charged excited leptons determine a possible signature for physics beyond the standard model at the present Large Hadron Collider. These exotic states are introduced in extended isospin multiplets and they can be treated either within gauge or contact effective interactions or a mixture of those. In this paper we study the production and the corresponding signatures of doubly charged leptons at the forthcoming linear colliders and we focus on the electron-electron beam setting. In the framework of gauge interactions, the interference between the $t$ and $u$ channel is evaluated that has been neglected so far. A pure leptonic final state is considered ($e^{-} \\, e^{-} \\rightarrow e^{-} \\, e^{-} \\, \

  16. From the LHC to Future Colliders

    DEFF Research Database (Denmark)

    De Roeck, A.; Ellis, J.; Grojean, C.

    2010-01-01

    upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10/fb of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because...

  17. Future Accelerators, Muon Colliders, and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  18. Suppressing Electron Cloud in Future Linear Colliders

    CERN Document Server

    Pivi, M T F; Le Pimpec, Frederic; Raubenheimer, Tor O

    2005-01-01

    Any accelerator circulating positively charged beams can suffer from a build-up of an electron cloud in the beam pipe. The cloud develops through ionization of residual gases, synchrotron radiation and secondary electron emission and, when severe, can cause instability, emittance blow-up or loss of the circulating beam. The electron cloud is potentially a limiting effect for both the Large Hadron Collider (LHC) and the International Linear Collider (ILC). For the ILC positron damping ring, the development of the electron cloud must be suppressed. This paper presents the various effects of the electron cloud and evaluates their significance. It also discusses the state-of-the-art of the ongoing international R&D program to study potential remedies to reduce the secondary electron yield to acceptably low levels.

  19. The future of the Large Hadron Collider and CERN.

    Science.gov (United States)

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  20. The future of the Large Hadron Collider and CERN

    CERN Document Server

    Heuer, Rolf-Dieter

    2012-01-01

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron–proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  1. The signatures of doubly charged leptons in future linear colliders

    Science.gov (United States)

    Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng

    2017-08-01

    We discuss the production of the doubly charged leptons in future linear electron positron colliders, such as the International Linear Collider and Compact Linear Collider. Such states are introduced in extended weak-isospin multiplets by composite models. We discuss the production cross section of {e}-γ \\to {L}--{W}+ and carry out analyses for hadronic, semi-leptonic and pure leptonic channels based on the full simulation performance of the silicon detector. The 3- and 5-sigma statistical significance exclusion curves are provided in the model parameter space. It is found that the hadronic channel could offer the most possible detectable signature.

  2. The signatures of doubly charged leptons in future linear colliders

    CERN Document Server

    Guo, Yu-Chen; Liu, Zhi-Cheng

    2016-01-01

    We discuss the production of the doubly charged leptons in future linear electron positron colliders, such as the International Linear Collider and Compact Linear Collider. Such states are introduced in extended weak-isospin multiplets by composite models. We discuss the production cross section of $e^-\\gamma\\rightarrow L^{--}W^{+}$ and carry out analyses for hadronic, semi-leptonic and pure leptonic channels based on the full simulation performance of the Silicon Detector. The 3- and 5-sigma statistical significance exclusion curves are provided in the model parameter space. It is found that the hadronic channel could offer the most possible detectable signature.

  3. Alignment Challenges for a Future Linear Collider

    CERN Document Server

    Durand, H; Stern, G

    2013-01-01

    The preservation of ultra-low emittances in the main linac and Beam Delivery System area is one of the main challenges for linear colliders. This requires alignment tolerances never achieved before at that scale, down to the micrometre level. As a matter of fact, in the LHC, the goal for the smoothing of the components was to obtain a 1σ deviation with respect to a smooth curve of 0.15 mm over a 150 m long sliding window, while for the CLIC project for example, it corresponds to 10 μm over a sliding window of 200 m in the Beam Delivery System area. Two complementary strategies are being studied to fulfil these requirements: the development and validation of long range alignment systems over a few hundreds of metres and short range alignment systems over a few metres. The studies undertaken, with associated tests setups and the latest results will be detailed, as well as their application for the alignment of both CLIC and ILC colliders.

  4. RF power generation for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  5. Crystal Ball: On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  6. Crystal Ball: On the Future High Energy Colliders

    CERN Document Server

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of ...

  7. SPADs for Vertex Tracker detectors in Future Colliders

    CERN Document Server

    Vilella, E; Vila, A; Dieguez, A

    2015-01-01

    Physics aims at the future linear colliders impose such stringent requirements on detector systems that exceed those met by any previous technology. Amongst other novel technologies, SPADs (Single Photon Avalanche Diodes) detectors are being developed to track high energy particles at ILC (International Linear Collider) and CLIC (Compact LInear Collider). These sensors offer outstanding qualities, such as an extraordinary high sensitivity, ultra-fast response time and virtually infinite gain, in addition to compatibility with standard CMOS technologies. As a result, SPAD detectors enable the direct conversion of a single particle event onto a CMOS digital signal in the sub-nanosecond time scale, which leads to the possibility of single BX (bunch crossing) resolution at some particle colliders. However, SPAD detectors suffer from two main problems, namely the noise pulses generated by the sensor and the low fill-factor. The noise pulses worsen the detector occupancy, while the low fill-factor reduces the detec...

  8. Status of muon collider research and development and future plans

    Directory of Open Access Journals (Sweden)

    1999-08-01

    Full Text Available The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides work on the parameters of a 3–4 and 0.5 TeV center-of-mass (COM energy collider, many studies are now concentrating on a machine near 0.1 TeV (COM that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μν_{μ} channel, muon cooling, acceleration, storage in a collider ring, and the collider detector. We also present theoretical and experimental R&D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the research and development since the feasibility study of muon colliders presented at the Snowmass '96 Workshop [R. B. Palmer, A. Sessler, and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997].

  9. 1st Annual Meeting of the Future Circular Collider study

    CERN Document Server

    2015-01-01

    This first Annual Meeting of the Future Circular Collider study is an important milestone to conclude the first, exploratory phase, leading to the identification of the baseline for the further study. Organized as an IEEE conference, it will provide the opportunity for re-enforcing the cohesion of the community and to catalyse cross-fertilization within the FCC study.

  10. ISR effects for resonant Higgs production at future lepton colliders

    CERN Document Server

    Greco, Mario; Liu, Zhen

    2016-01-01

    We study the effects of the initial state radiation on the $s$-channel Higgs boson resonant production at $\\mu^+\\mu^-$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $h\\rightarrow b\\bar b,\\ WW^*$. Our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.

  11. ISR effects for resonant Higgs production at future lepton colliders

    Science.gov (United States)

    Greco, Mario; Han, Tao; Liu, Zhen

    2016-12-01

    We study the effects of the initial state radiation on the s-channel Higgs boson resonant production at μ+μ- and e+e- colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels h → b b bar , WW*. Our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.

  12. Higgs Physics at Future Colliders recent theoretical developments

    CERN Document Server

    Djouadi, A

    2004-01-01

    I review the physics of the Higgs sector in the Standard Model and its minimal supersymmetric extension, the MSSM. I will discuss the prospects for discovering the Higgs particles at the upgraded Tevatron, at the Large Hadron Collider, and at a future high--energy $e^+e^-$ linear collider with centre--of--mass energy in the 350--800 GeV range, as well as the possibilities for studying their fundamental properties. Some emphasis will be put on the theoretical developments which occurred in the last two years.

  13. Higgs physics at future colliders: Recent theoretical developments

    Indian Academy of Sciences (India)

    Abdelhak Djouadi

    2004-02-01

    I review the physics of the Higgs sector in the standard model and its minimal supersymmetric extension, the MSSM. I will discuss the prospects for discovering the Higgs particles at the ungraded Tevatron, at the large hadron collider, and at a future high-energy $e^{+}e^{-}$ linear collider with centre-of-mass energy in the 350-800 GeV range, as well as the possibilities for studying their fundamental properties. Some emphasis will be put on the theoretical developments which occurred in the last two years.

  14. Alternate approaches to future electron-positron linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G.A. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center

    1998-07-01

    The purpose of this article is two-fold: to review the current international status of various design approaches to the next generation of e{sup +}e{sup {minus}} linear colliders, and on the occasion of his 80th birthday, to celebrate Richard B. Neal`s many contributions to the field of linear accelerators. As it turns out, combining these two tasks is a rather natural enterprise because of Neal`s long professional involvement and insight into many of the problems and options which the international e{sup +}e{sup {minus}} linear collider community is currently studying to achieve a practical design for a future machine.

  15. Beam dump experiment at future electron–positron colliders

    Directory of Open Access Journals (Sweden)

    Shinya Kanemura

    2015-12-01

    Full Text Available We propose a new beam dump experiment at future colliders with electron (e− and positron (e+ beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of e± beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at e+e− linear collider significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  16. Physics Perspectives for a Future Circular Collider: FCC-ee

    CERN Document Server

    CERN. Geneva

    2017-01-01

    The lectures will briefly discuss the parameters of a Future Circular Collider, before addressing in detail the physics perspectives and the challenges for the experiments and detector systems. The main focus will be on ee and pp collisions, but opportunities for e—p physics will also be covered. The FCC physics perspectives will be presented with reference to the ongoing LHC programme, including the physics potential from future upgrades to the LHC in luminosity and possibly energy.  

  17. Heavy-ion physics studies for the Future Circular Collider

    Science.gov (United States)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C. A.; van Leeuwen, M.; Wiedemann, U. A.

    2014-11-01

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which in the long term would allow for electron-hadron collisions. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of quark-gluon plasma, gluon saturation, photon-induced collisions, as well as connections with the physics of ultra-high-energy cosmic rays.

  18. Heavy-ion physics studies for the Future Circular Collider

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Dainese, A., E-mail: andrea.dainese@pd.infn.it [INFN — Sezione di Padova, 35131 Padova (Italy); D' Enterria, D. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland); Masciocchi, S. [EMMI and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Roland, C. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Salgado, C.A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Leeuwen, M. van [Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht (Netherlands); Wiedemann, U.A. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland)

    2014-11-15

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron–hadron collision mode including proton and nucleus beams, more than seven times larger than the nominal LHC energies. An electron–positron collider in the same tunnel is also considered as an intermediate step, which in the long term would allow for electron–hadron collisions. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of quark–gluon plasma, gluon saturation, photon-induced collisions, as well as connections with the physics of ultra-high-energy cosmic rays.

  19. Lineshape of the Higgs boson in future lepton colliders

    Science.gov (United States)

    Jadach, S.; Kycia, R. A.

    2016-04-01

    The effect of the photon emission (initial-state radiation) in the cross section of the process of direct production of the Higgs boson in future high luminosity electron and muon colliders is calculated. It was found that the cross section at the top of the Higgs boson resonance peak is reduced by a factor 0.348 for the electron collider and 0.548 for the muon collider. A centre-of-mass energy spread of the centre-of-mass energy of 4.2 MeV (equal to the Higgs width) would reduce peak cross section further, by a factor 0.170 and 0.256 (QED and energy spread) for electron and muon beams respectively. Possible uncertainties in the resummed QED calculations are discussed. Numerical results for the lineshape cross section including QED and many values of the centre-of-mass energy spread are provided.

  20. Status of Muon Collider Research and Development and Future Plans

    CERN Document Server

    Ankenbrandt, C M; Autin, Bruno; Balbekov, Valeri I; Barger, Vernon D; Benary, Odette; Berg, J Scott; Berger, Michael S; Black, Edgar L; Blondel, Alain; Bogacz, S Alex; Bolton, T; Caspi, Sholomo; Celata, Chrisine; Chou, Weiren; Cline, David B; Corlett, John; Cremaldi, Lucien; Diehl, H Thomas; Drozhdin, Alexandr; Fernow, Richard C; Finley, David A; Fukui, Yasuo; Furman, Miguel A; Gabriel, Tony; Gallardo, Juan C; Garren, Alper A; Geer, Stephen H; Ginzburg, Ilya F; Green, Michael A; Guler, Hulya; Gunion, John F; Gupta, Ramesh; Han, Tao; Hanson, Gail G; Hassanein, Ahmed; Holtkamp, Norbert; Johnson, Colin; Johnstone, Carol; Kahn, Stephen A; Kaplan, Daniel M; Kim, Eun San; King, Bruce J; Kirk, Harold G; Kuno, Yoshitaka; Paul Lebrun; Lee, Kevin; Lee, Peter; Li, Derun; Lissauer, David; Littenberg, Laurence S; Lu, Changguo; Luccio, Alfredo; Lykken, Joseph D; McDonald, Kirk T; McInturff, Alfred D; Miller, John R; Mills, Frederick E; Mokhov, Nikolai V; Moretti, Alfred; Mori, Yoshiharu; Neuffer, David V; Ng, King-Yuen; Noble, Robert J; Norem, James H; Onel, Yasar; Palmer, Robert B; Parsa, Zohreh; Pischalnikov, Yuriy; Popovic, Milorad; Prebys, EricJ; Qian, Zubao; Raja, Rajendran; Reed, Claude B; Rehák, Pavel; Roser, Thomas; Rossmanith, Robert; Scanlan, Ronald M; Sessler, Andrew M; Schadwick, Brad; Shu, Quan-Sheng; Silvestrov, Gregory I; Skrinsky, Alexandr N; Smith, Dale; Spentzouris, Panagiotis; Stefanski, Ray; Striganov, Sergei; Stumer, Iuliu; Summers, Don; Tcherniatine, Valeri; Teng, Lee C; Tollestrup, Alvin V; Torun, Yagmur; Trbojevic, Dejan; Turner, William C; Vahsen, Sven E; Van Ginneken, Andy; Vsevolozhskaya, Tatiana A; Wan, Weishi; Wang, Haipeng; Weggel, Robert; Willen, Erich H; Wilson, Edmund J N; Winn, David R; Wurtele, Jonathan S; Ankenbrandt, Charles M.

    1999-01-01

    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay ($\\pi \\to \\mu \

  1. Heavy-ion physics studies for the Future Circular Collider

    CERN Document Server

    Armesto, Nestor; d'Enterria, David; Masciocchi, Silvia; Roland, Christof; Salgado, Carlos; van Leeuwen, Marco; Wiedemann, Urs

    2014-01-01

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven-times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which would provide the electron-hadron option in the long term. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of Quark-Gluon Plasma, gluon saturation, photon-induced collisions, as well as connections with ultra-high-energy cosmic rays.

  2. Lineshape of the Higgs boson in future lepton colliders

    Directory of Open Access Journals (Sweden)

    S. Jadach

    2016-04-01

    Full Text Available The effect of the photon emission (initial-state radiation in the cross section of the process of direct production of the Higgs boson in future high luminosity electron and muon colliders is calculated. It was found that the cross section at the top of the Higgs boson resonance peak is reduced by a factor 0.348 for the electron collider and 0.548 for the muon collider. A centre-of-mass energy spread of the centre-of-mass energy of 4.2 MeV (equal to the Higgs width would reduce peak cross section further, by a factor 0.170 and 0.256 (QED and energy spread for electron and muon beams respectively. Possible uncertainties in the resummed QED calculations are discussed. Numerical results for the lineshape cross section including QED and many values of the centre-of-mass energy spread are provided.

  3. Beam physics in future electron hadron colliders

    CERN Document Server

    Valloni, A; Klein, M; Schulte, D; Zimmermann, F

    2013-01-01

    High-energy electron-hadron collisions could support a rich research programme in particle and nuclear physics. Several future projects are being proposed around the world, in particular eRHIC at BNL, MEIC at TJNAF in the US, and LHeC at CERN in Europe. This paper will highlight some of the accelerator physics issues, and describe related technical developments and challenges for these machines. In particular, optics design and beam dynamics studies are discussed, including longitudinal phase space manipulation, coherent synchrotron radiation, beam-beam kink instability, ion effects, as well as mitigation measures for beam break up and for space-charge induced emittance growth, all of which could limit the machine performance. Finally, first steps are presented towards an LHeC R&D facility, which should investigate relevant beam-physics processes.

  4. Beyond the Large Hadron Collider: a first look at cryogenics for CERN future circular colliders

    CERN Document Server

    Lebrun, Ph

    2015-01-01

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities req...

  5. Higgs production from sterile neutrinos at future lepton colliders

    CERN Document Server

    Antusch, Stefan; Fischer, Oliver

    2015-01-01

    In scenarios with sterile (right-handed) neutrinos that are subject to an approximate "lepton-number-like" symmetry, the heavy neutrinos (i.e. the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings while accounting for the smallness of the light neutrinos' masses. In these scenarios, the on-shell production of heavy neutrinos and their subsequent decays into a light neutrino and a Higgs boson constitutes a hitherto unstudied resonant contribution to the Higgs production mechanism. We investigate the relevance of this resonant mono-Higgs production mechanism in leptonic collisions, including the present experimental constraints on the neutrino Yukawa couplings, and we determine the sensitivity of future lepton colliders to the heavy neutrinos. With Monte Carlo event sampling and a simulation of the detector response we find that, at future lepton colliders, neutrino Yukawa couplings below the percent level can lead to o...

  6. Active quadrupole stabilization for future linear particle colliders

    CERN Document Server

    Collette, Christophe; Kuzmin, Andrey; Janssens, Stef; Sylte, Magnus; Guinchard, Michael; Hauviller, Claude

    2010-01-01

    The future Compact LInear particle Collider (CLIC) under study at CERN will require to stabilize heavy electromagnets, and also to provide them some positioning capabilities. Firstly, this paper presents the concept adopted to address both requirements. Secondly, the control strategy adopted for the stabilization is studied numerically, showing that the quadrupole can be stabilized in both lateral and vertical direction. Finally, the strategy is validated experimentally on a single degree of freedom scaled test bench.

  7. Electroweak precision constraints at present and future colliders

    CERN Document Server

    de Blas, Jorge; Franco, Enrico; Mishima, Satoshi; Pierini, Maurizio; Reina, Laura; Silvestrini, Luca

    2016-01-01

    We revisit the global fit to electroweak precision observables in the Standard Model and present model-independent bounds on several general new physics scenarios. We present a projection of the fit based on the expected experimental improvements at future $e^+ e^-$ colliders, and compare the constraining power of some of the different experiments that have been proposed. All results have been obtained with the HEPfit code.

  8. Beam trajectory control of the future Compact Linear Collider

    OpenAIRE

    Balik, G.; Badel, A.; Bolzon, B; Brunetti, L.; Caron, B.; Deleglise, G.; Jérémie, A.; Le Breton, R.; Lottin, J.; Pacquet, L.

    2011-01-01

    International audience; The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting fact...

  9. Status and Challenges of the Future Circular Collider Study

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude above the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) fitting the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed, concepts for experiments be worked out, and complete accelerator designs be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. Beside superconductor improvements and high-field magnet prototyping, the FCC R&D program includes the advancement of SRF cavities based on thin film coating, the development of ...

  10. COLLIDE

    CERN Multimedia

    2017-01-01

    Howie Day, Collide, Based on the original parody "Collide" by USLHC, inspired by the original song "Collide" written by Howie Day and Kevin Griffin. Re-record Produced by Mike Denneen Engineered by Patrick DiCenso -Vocals, Guitars, Keyboards- Howie Day -Guitar Patrick DiCenso -Bass- Ed Valuskas -Drums- Dave Brophy

  11. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  12. Electron cloud studies for the LHC and future proton colliders

    CERN Document Server

    Domínguez Sánchez de la Blanca, César Octavio; Zimmermann, Frank

    2014-01-01

    The Large Hadron Collider (LHC) is the world’s largest and most powerful particle collider. Its main objectives are to explore the validity of the standard model of particle physics and to look for new physics beyond it, at unprecedented collision energies and rates. A good luminosity performance is imperative to attain these goals. In the last stage of the LHC commissioning (2011-2012), the limiting factor to achieving the design bunch spacing of 25 ns has been the electron cloud effects. The electron cloud is also expected to be the most important luminosity limitation after the first Long Shut-Down of the LHC (LS1), when the machine should be operated at higher energy and with 25-ns spacing, as well as for the planned luminosity upgrade (HL-LHC) and future high energy proton colliders (HE-LHC and VHE-LHC). This thesis contributes to the understanding of the electron cloud observations during the first run of the LHC (2010-2012), presents the first beam dynamics analysis for the next generation of high en...

  13. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    CERN Document Server

    AUTHOR|(CDS)2083092; Burkart, Florian; Schmidt, Rudiger; Shutov, A; Wollmann, Daniel; Piriz, A

    2016-01-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80–100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850  km/h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC...

  14. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  15. High Energy Colliding Beams; What Is Their Future?

    CERN Document Server

    Richter, Burton

    2014-01-01

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so far unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  16. Design of beam optics for the Future Circular Collider e+e- -collider rings

    CERN Document Server

    Oide, K.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J.M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.; CERN. Geneva. ATS Department

    2016-01-01

    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Su...

  17. Design of beam optics for the future circular collider e+e- collider rings

    Science.gov (United States)

    Oide, K.; Aiba, M.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.

    2016-11-01

    A beam optics scheme has been designed for the future circular collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2 % has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further

  18. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  19. Higgs production from sterile neutrinos at future lepton colliders

    Science.gov (United States)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2016-04-01

    In scenarios with sterile (right-handed) neutrinos that are subject to an approximate "lepton-number-like" symmetry, the heavy neutrinos (i.e. the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings while accounting for the smallness of the light neutrinos' masses. In these scenarios, the on-shell production of heavy neutrinos and their subsequent decays into a light neutrino and a Higgs boson constitutes a hitherto unstudied resonant contribution to the Higgs production mechanism. We investigate the relevance of this resonant mono-Higgs production mechanism in leptonic collisions, including thepresent experimental constraints on the neutrino Yukawa couplings, and we determine the sensitivity of future lepton colliders to the heavy neutrinos. With Monte Carlo event sampling and a simulation of the detector response we find that, at future lepton colliders, neutrino Yukawa couplings below the percent level can lead to observable deviations from the SM and, furthermore, the sensitivity improves with higher center-of-mass energies (for identical integrated luminosities).

  20. DEPFET detectors for future electron-positron colliders

    Science.gov (United States)

    Marinas, C.

    2015-11-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future electron-positron collider experiments. A DEPFET sensor, by the integration of a field effect transistor on a fully depleted silicon bulk, provides simultaneous position sensitive detector capabilities and in pixel amplification. The characterization of the latest DEPFET prototypes has proven that a adequate signal-to-noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 micrometers. The close to final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the required read-out speed. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a prime candidate for the ILC. Therefore, in this contribution, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future electron-positron collider.

  1. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  2. Dump system concepts for the Future Circular Collider

    CERN Document Server

    Bartmann, Wolfgang; Barnes, Mike; Borburgh, Jan; Burkart, Florian; Goddard, Brennan; Kramer, Thomas; Lechner, Anton; Sanz Ull, Alejandro; Schmidt, Rudiger; Stoel, Linda; Ostojic, Ranko; Rodziewicz, Janusz Pawel; van Trappen, Pieter; Barna, Dani

    2017-01-01

    The Future Circular Collider (FCC-hh) beam dump system must provide a safe and reliable extraction and dilution of the stored beam onto a dump absorber. Energy deposition studies show that damage limits of presently used absorber materials will already be reached for single bunches at 50 TeV. A fast field rise of the extraction kicker is required in order to sufficiently separate swept single bunches on the extraction protection absorbers in case of an asynchronous beam dump. In line with this demand is the proposal of a highly segmented extraction kicker system which allows for accepting a single kicker switch erratic and thus, significantly reduces the probability of an asynchronous beam dump. Superconducting septa are foreseen to limit the overall system length and power consumption. Two extraction system concepts are presented and evaluated regarding overall system length, energy deposition on absorbers, hardware requirements, radiation issues, and layout flexibility.

  3. Beam Trajectory control of the future Compact LInear Collider beam

    CERN Document Server

    Balik, G; Bolzon, B; Brunetti, L; Caron, B; Deleglise, G; Jeremie, A; Le Breton, R; Lottin, J; Pacquet, L

    2011-01-01

    The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting factors for reaching the luminosity of 10^34 cm-2s-1. Several methods have been proposed to counteract this phenomena and active vibration controls based on the integration of mechatronic systems into the machine structure is probably one of the most promising. This paper studies the strategy of the vibration suppression. Active vibration control methods, such as optimized parameter of a numerical compensator, adaptive algorithm with real time control are investigated and implemented in the simulation layout. The requirement couldn’t be achieved w...

  4. Design of beam optics for the future circular collider e$^+$e$^−$ collider rings

    CERN Document Server

    Oide, Katsunobu

    2016-01-01

    A beam optics scheme has been designed for the future circular collider-e$^+$e$^−$ (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout n...

  5. 2005 Final Report: New Technologies for Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Peter McIntyre; Al McInturff

    2005-12-31

    This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design.

  6. 2005 Final Report: New Technologies for Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Peter McIntyre; Al McInturff

    2005-12-31

    This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design.

  7. Singlet-like Higgs bosons at present and future colliders

    CERN Document Server

    Buttazzo, Dario; Tesi, Andrea

    2015-01-01

    The presence of extra scalar singlets is a feature of several motivated extensions of the Standard Model, and the mixing of such a singlet with the Higgs boson is allowed to be quite large by current experiments. In this paper we perform a thorough phenomenological study of this possibility. We consider both direct and indirect searches, and we quantify the current constraints as well as the prospects for future hadron and lepton machines - from the forthcoming LHC run up to a futuristic 100 TeV proton-proton collider. The direct reaches are obtained extrapolating the current limits with a technique that we discuss and check with various tests. We find a strong complementarity between direct and indirect searches, with the former dominating for lower values of the singlet mass. We also find that the trilinear Higgs coupling can have sizeable deviations from its Standard Model value, a fact for which we provide an analytical understanding. The results are first presented in a general scalar singlet extension o...

  8. Resolving gluon fusion loops at current and future hadron colliders

    Science.gov (United States)

    Azatov, Aleksandr; Grojean, Christophe; Paul, Ayan; Salvioni, Ennio

    2016-09-01

    Inclusive Higgs measurements at the LHC have limited resolution on the gluon fusion loops, being unable to distinguish the long-distance contributions mediated by the top quark from possible short-distance new physics effects. Using an Effective Field Theory (EFT) approach we compare several proposed methods to lift this degeneracy, including toverline{t}h and boosted, off-shell and double Higgs production, and perform detailed projections to the High-Luminosity LHC and a future hadron collider. In addition, we revisit off-shell Higgs production. Firstly, we point out its sensitivity to modifications of the top- Z couplings, and by means of a general analysis we show that the reach is comparable to that of tree-level processes such as toverline{t}Z production. Implications for composite Higgs models are also discussed. Secondly, we assess the regime of validity of the EFT, performing an explicit comparison for a simple extension of the Standard Model containing one vector-like quark.

  9. Simulation of laser-Compton cooling of electron beams for future linear colliders

    Directory of Open Access Journals (Sweden)

    T. Ohgaki

    2001-11-01

    Full Text Available We study a method of laser-Compton cooling of electron beams for future linear colliders. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for Japan Linear Collider/Next Linear Collider at E_{0}=2 GeV is considered.

  10. Large Hadron Collider slideshow shows future of physics

    CERN Multimedia

    Kramer, S E

    2007-01-01

    "The European organization for Nuclear Research (CERN) has been building the Large Hadron Collider for many years, but it's finally taking shape and prepping to operate at full power in 2008." (1/2 page)

  11. Beamstrahlung and QED backgrounds at future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.V.

    1990-10-01

    This dissertation is a detailed study of several aspects of beamstrahlung and related phenomena. The problem is formulated as the relativistic scattering of an electron from a strong but slowly varying potential. The solution is readily interpreted in terms of a classical electron trajectory, and differs from the solution of the corresponding classical problem mainly in the effect of quantum recoil due to the emission of hard photons. When the general solution is expanded for the case of an almost-uniform field, the leading term is identical to the well-known formula for quantum synchrotron radiation. The first non-leading term is negligible in all cases of interest where the expansion is valid. In applying the standard synchrotron radiation formula to the beamstrahlung problem, the effects of radiation reaction on the emission of multiple photons can be significant for some machine designs. Another interesting feature is the helicity dependence of the radiation process, which is relevant to the case where the electron beam is polarized. The inverse process of coherent electron-positron pair production by a beamstrahlung photon is a potentially serious background source at future colliders, since low-energy pairs can exit the bunch at a large angle. Pairs can also be produced incoherently by the collision of the two photons, either real or virtual. The rates, spectra, and angular distributions for both the coherent and incoherent processes are estimated here. At a 1/2 TeV machine the incoherent process will be more common, resulting in roughly 10{sup 6} pairs per bunch crossing. One member of each pair is always pushed outward, at an angle determined by its energy, by the field of the oncoming bunch. In addition, a small number of pairs are initially produced with a comparable or larger angle.

  12. Beauty and charm to study new physics at future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M. [Santa Cruz Institute of Particle Physics, University of California at Santa Cruz, CA 95064 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); CERN, DG Department, CH-1211 Geneva (Switzerland)

    2011-01-15

    The b and c hadrons are instrumental to the identification and study of the Higgs sector and new physics at a future lepton collider. This paper reviews highlights of b and c physics for the linear collider programs and the directions of ongoing R and D on pixellated silicon sensors for its vertex tracker.

  13. Strategies for using GAPDs as tracker detectors in future linear colliders

    Science.gov (United States)

    Vilella, Eva; Alonso, Oscar; Vilà, Anna; Diéguez, Angel

    2016-04-01

    This work presents the development of a Geiger-mode Avalanche PhotoDiode pixel detector in standard CMOS technologies aimed at the vertex and tracker regions of future linear colliders, i.e. the International Linear Collider and the Compact LInear Collider. In spite of all the advantages that characterize this technology, GAPD detectors suffer from noise pulses that cannot be distinguished from real events and low fill-factors that reduce the detection efficiency. To comply with the specifications imposed by the next generation of particle colliders, solutions to minimize the intrinsic noise pulses and increase the fill-factor have been thoroughly investigated.

  14. Novel final focus design for future linear colliders.

    Science.gov (United States)

    Raimondi, P; Seryi, A

    2001-04-23

    The length, complexity, and cost of the present final focus designs for linear colliders grow very quickly with the beam energy. In this Letter, a novel final focus system is presented and compared with the one proposed for the Next Linear Collider (NLC Zeroth-Order Design Report, edited by T. O. Raubenheimer, SLAC Report No. 474, 1996). This new design has fewer optical elements and is much shorter, nonetheless achieving better chromatic properties. Moreover, the new system is more suitable for operation over a larger energy range.

  15. Positrons sources and related activities for Future Linear Collider at LAL Orsay Laboratory

    CERN Document Server

    Dadoun, Olivier

    2012-01-01

    In the context of the positrons sources studies for the Future Linear Collider, the Accelerator Department at LAL Orsay is involved since several years in different activities both experiments and simulations.

  16. SLAC linear collider: the machine, the physics, and the future

    Energy Technology Data Exchange (ETDEWEB)

    Richter, B.

    1981-11-01

    The SLAC linear collider, in which beams of electrons and positrons are accelerated simultaneously, is described. Specifications of the proposed system are given, with calculated preditions of performance. New areas of research made possible by energies in the TeV range are discussed. (GHT)

  17. Detectors for Superboosted $\\tau$-leptons at Future Circular Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sourav [Duke U.; Kotwal, Ashutosh [Fermilab; Chekanov, Sergei [Argonne; Gray, Lindsey [Fermilab; Tran, Nhan Viet [Fermilab; Yu, Shin-Shan [Taiwan, Natl. Central U.

    2016-12-21

    We study the detector performance of τ -lepton identification variables at very high energy proton colliders. We study hadronically-decaying τ -leptons with transverse momentum in the TeV range. Calorimeters are benchmarked in various configurations in order to understand the impact of granularity and resolution on boosted τ -lepton discrimination.

  18. Future Linear Colliders: Detector R&D, Jet Reconstruction and Top Physics Potential

    CERN Document Server

    AUTHOR|(CDS)2098729; Ros Martinez, Eduardo

    During the 20th century, discoveries and measurements at colliders, combined with progress in theoretical physics, allowed us to formulate the Standard Model of the in- teractions between the constituents of matter. Today, there are two advanced projects for a new installation that will collide electrons and positrons covering an energy range from several hundreds of GeV to the multi-TeV scale, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). These Future Linear Colliders give the opportunity to study the top quark with unprecedented precision. Measurements of top quark properties are of special interest, as the top quark is the heaviest ele- mentary particle of the SM. Precision measurements of top quark properties at e+e colliders promise therefore to be highly sensitive to physics beyond the SM. This thesis has three complementary parts. The first is dedicated to the R&D of the ILD detector concept for future e+e- colliders, more precisely, the innermost region of the de...

  19. First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC

    CERN Document Server

    Alemany Fernandez, R

    2014-01-01

    The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.

  20. High Energy Booster Options for a Future Circular Collider at CERN

    CERN Document Server

    Stoel, Linda; Bartmann, Wolfgang; Burkart, Florian; Goddard, Brennan; Herr, Werner; Kramer, Thomas; Milanese, Attilio; Rumolo, Giovanni; Shaposhnikova, Elena

    2016-01-01

    In case a Future Circular Collider for hadrons (FCC-hh) is constructed at CERN, the tunnels for SPS, LHC and the 100 km collider will be available to house a High Energy Booster (HEB). The different machine options cover a large technology range from an iron-dominated machine in the 100 km tunnel to a superconducting machine in the SPS tunnel. Using a modified LHC as reference, these options are compared with respect to their energy reach, magnet technology and filling time of the collider. Potential issues with beam transfer, reliability and beam stability are presented.

  1. eRHIC, the BNL design for a future Electron-Ion Collider

    Science.gov (United States)

    Roser, Thomas

    2016-03-01

    With the addition of a 20 GeV polarized electron accelerator to the existing Brookhaven Relativistic Heavy Ion Collider (RHIC), the world's only high energy heavy ion and polarized proton collider, a future eRHIC facility will be able to produce polarized electron-nucleon collisions at center-of-mass energies of up to 145 GeV and cover the whole science case as outlined in the Electron-Ion Collider White Paper and endorsed by the 2015 Nuclear Physics Long Range Plan with high luminosity. The presentation will describe the eRHIC design concepts and recent efforts to reduce the technical risks of the project.

  2. New ideas on SUSY searches at future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Hesselbach, S. [Institut fuer Theoretische Physik, Universitaet Wien, A-1090 Vienna (Austria); Kittel, O. [Instituto de Fisica Corpuscular - C.S.I.C., Universitat de Valencia, E-46071 Valencia (Spain); Moortgat-Pick, G. [IPPP, University of Durham, Durham DH1 3LE (United Kingdom); Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Oeller, W. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, A-1050 Vienna (Austria)

    2004-07-01

    Several results obtained within the SUSY group of the ECFA/DESY linear collider study are presented: (i) a possibility to determine tan {beta} and the trilinear couplings A{sub f} via polarisation in sfermion decays, (ii) the impact of complex MSSM parameters on the third generation sfermion decays, (iii) determination of CP violation in the complex MSSM via T-odd asymmetries in neutralino production and decay, and (iv) an analysis of the chargino and neutralino mass parameters at one-loop level. (orig.)

  3. Thermal production of charm quarks in heavy ion collisions at the Future Circular Collider

    Science.gov (United States)

    Liu, Yunpeng; Ko, Che Ming

    2016-12-01

    By solving the rate equation in an expanding quark-gluon plasma (QGP), we study thermal production of charm quarks in central Pb + Pb collisions at the Future Circular Collider. With the charm quark production cross section taken from the perturbative QCD at the next-to-leading order, we find that charm quark production from the QGP can be appreciable compared to that due to initial hard scattering between colliding nucleons.

  4. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  5. ICFA announces launch of technology recommendation process for future linear collider

    CERN Multimedia

    2003-01-01

    The International Committee for Future Accelerators has announced the membership and chair of the 12-person International Technology Recommendation Panel. The ITRP, with four members each from Europe, North America and Asia, is charged with recommending which of two leading accelerating technologies will form the best choice for a future international linear collider (1 page).

  6. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-15

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation.

  7. Wino-like Minimal Dark Matter and future colliders

    CERN Document Server

    Cirelli, Marco; Taoso, Marco

    2014-01-01

    We extend the Standard Model with an EW fermion triplet, stable thanks to one of the accidental symmetries already present in the theory. On top of being a potential Dark Matter candidate, additional motivations for this new state are the stability of the vacuum, the fact it does not introduce a large fine-tuning in the Higgs mass, and that it helps with gauge coupling unification. We perform an analysis of the reach for such a particle at the high-luminosity LHC, and at a futuristic 100 TeV pp collider. We do so for the monojet, monophoton, vector boson fusion and disappearing tracks channels. At 100 TeV, disappearing tracks will likely probe the mass region of 3 TeV, relevant for thermally produced Dark Matter. The reach of the other channels is found to extend up to ~ 1.3 (1.7) TeV for 3 (30) ab^-1 of integrated luminosity, provided systematics are well under control. This model also constitutes a benchmark of a typical WIMP Dark Matter candidate, and its phenomenology reproduces that of various models of ...

  8. An SLC-type $e^{+}e^{-}/\\gamma\\gamma$ facility at a Future Circular Collider

    CERN Document Server

    Belusevic, Radoje

    2016-01-01

    It is proposed to place the arcs of an SLC-type facility inside the tunnel of a Future Circular Collider (FCC). Accelerated by a single linac, electron and positron beams would traverse the bending arcs in opposite directions and collide at centre-of-mass (c.m.) energies considerably exceeding those attainable at circular $e^{+}e^{-}$ colliders. The proposed SLC-type facility would have the same luminosity as a conventional two-linac collider. Using an optical free electron laser, the facility could be converted into a $\\gamma\\gamma$ collider. For some processes within and beyond the Standard Model, the required c.m. energy is much lower in $\\gamma\\gamma$ collisions than in $e^{+}e^{-}$ interactions. A 400-GeV superconducting L-band linac at the SLC-type facility may form, together with a 3.3-TeV energy booster, the injector chain for a proton collider in the FCC tunnel. The whole accelerator complex would serve as a source of $e^{+}e^{-}$, $\\gamma\\gamma$, $pp$ and $e^{-}p$ interactions.

  9. Vector resonances in weak-boson-fusion at future pp colliders

    Science.gov (United States)

    Mohan, Kirtimaan; Vignaroli, Natascia

    2015-10-01

    We present a first estimate of the reach of future pp colliders, the 14 TeV LHC and a futuristic 100 TeV pp collider, on a vector resonance, specifically a W', produced via weak-boson-fusion, and decaying dominantly into tb. The analysis is motivated by Composite Higgs, Randall-Sundrum and Little Higgs scenarios, which predict the existence of vector resonances with a large coupling to W and Z longitudinal bosons. In particular, in composite Higgs models with partial compositeness, the standard Drell-Yan production channel is suppressed at large coupling while the weak-boson-fusion is enhanced and could thus provide a unique opportunity to directly test the large coupling regime of the theory. We outline a search strategy for the W' in the weak-boson-fusion channel and present the reach of future colliders on the W' mass vs coupling parameter space.

  10. Availability modeling approach for future circular colliders based on the LHC operation experience

    CERN Document Server

    Niemi, Arto; Gutleber, Johannes; Sollander, Peter; Penttinen, Jussi-Pekka; Virtanen, Seppo Johannes

    2016-01-01

    Reaching the challenging integrated luminosity production goals of a future circular hadron collider (FCC-hh) and high luminosity LHC (HL-LHC) requires a thorough understanding of today’s most powerful high energy physics research infrastructure, the LHC accelerator complex at CERN. FCC-hh, a 4 times larger collider ring aims at delivering 10–20 ab−1 of integrated luminosity at 7 times higher collision energy. Since the identification of the key factors that impact availability and cost is far from obvious, a dedicated activity has been launched in the frame of the future circular collider study to develop models to study possible ways to optimize accelerator availability. This paper introduces the FCC reliability and availability study, which takes a fresh new look at assessing and modeling reliability and availability of particle accelerator infrastructures. The paper presents a probabilistic approach for Monte Carlo simulation of the machine operational cycle, schedule and availability for physics. T...

  11. Availability modeling approach for future circular colliders based on the LHC operation experience

    CERN Document Server

    AUTHOR|(CDS)2096726; Apollonio, Andrea; Gutleber, Johannes; Sollander, Peter; Penttinen, Jussi-Pekka; Virtanen, Seppo Johannes

    2016-01-01

    Reaching the challenging integrated luminosity production goals of a future circular hadron collider (FCC-hh) and high luminosity LHC (HL-LHC) requires a thorough understanding of today’s most powerful high energy physics research infrastructure, the LHC accelerator complex at CERN. FCC-hh, a 4 times larger collider ring aims at delivering 10–20  ab$^-$$^1$ of integrated luminosity at 7 times higher collision energy. Since the identification of the key factors that impact availability and cost is far from obvious, a dedicated activity has been launched in the frame of the future circular collider study to develop models to study possible ways to optimize accelerator availability. This paper introduces the FCC reliability and availability study, which takes a fresh new look at assessing and modeling reliability and availability of particle accelerator infrastructures. The paper presents a probabilistic approach for Monte Carlo simulation of the machine operational cycle, schedule and availability for p...

  12. Vector resonances in weak-boson-fusion at future pp colliders

    CERN Document Server

    Mohan, Kirtimaan

    2015-01-01

    We present a first estimate of the reach of future pp colliders, the 14 TeV LHC and a futuristic 100 TeV pp collider, on a vector resonance, specifically a $W^{'}$, produced via weak-boson-fusion, and decaying dominantly into $tb$. The analysis is motivated by Composite Higgs, Randall-Sundrum and Little Higgs scenarios, which predict the existence of vector resonances with a large coupling to $W$ and $Z$ longitudinal bosons. In particular, in composite Higgs models with partial compositeness, the standard Drell-Yan production channel is suppressed at large coupling while the weak-boson-fusion is enhanced and could thus provide a unique opportunity to directly test the large coupling regime of the theory. We outline a search strategy for the $W^{'}$ in the weak-boson-fusion channel and present the reach of future colliders on the $W^{'}$ mass-coupling parameter space.

  13. Probing the Higgs sector of the minimal Left-Right symmetric model at future hadron colliders

    Science.gov (United States)

    Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao

    2016-05-01

    If neutrino masses arise from a TeV-scale minimal Left-Right seesaw model, the ensuing extended Higgs sector with neutral, singly and doubly-charged scalars has a plethora of implications for new Higgs boson searches beyond the Standard Model at future hadron colliders, such as the √{s} = 14 TeV High-Luminosity Large Hadron Collider (HL-LHC) and the proposed √{s} = 100 TeV collider (FCC-hh or SPPC). In this article, we provide a glimpse of this new physics in the Higgs sector. Our discussion focuses on the minimal non-supersymmetric version of the Left-Right model with high-scale parity breaking but TeV-scale SU(2) R -breaking, a property desirable to suppress the type-II seesaw contribution to neutrino masses. We analyze the masses and couplings of the physical Higgs bosons in this model, and discuss their dominant production and decay modes at hadron colliders. We identify the best discovery channels for each of the non-SM Higgs bosons and estimate the expected SM backgrounds in these channels to derive the sensitivity reaches for the new Higgs sector at future hadron colliders under discussion. Following a rather conservative approach, we estimate that the heavy Higgs sector can be effectively probed up to 15 TeV at the √{s} = 100 TeV machine. We also discuss how the LR Higgs sector can be distinguished from other extended Higgs sectors.

  14. The Standard Model from LHC to future colliders.

    Science.gov (United States)

    Forte, S; Nisati, A; Passarino, G; Tenchini, R; Calame, C M Carloni; Chiesa, M; Cobal, M; Corcella, G; Degrassi, G; Ferrera, G; Magnea, L; Maltoni, F; Montagna, G; Nason, P; Nicrosini, O; Oleari, C; Piccinini, F; Riva, F; Vicini, A

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the "What Next" Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.

  15. The Standard Model from LHC to future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Forte, S., E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy); Nisati, A. [INFN, Sezione di Roma, Piazzale Aldo Moro 2, 00185, Rome (Italy); Passarino, G. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Turin (Italy); INFN, Sezione di Torino, Via P. Giuria 1, 10125, Turin (Italy); Tenchini, R. [INFN, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa (Italy); Calame, C. M. Carloni [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100, Pavia (Italy); Chiesa, M. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Cobal, M. [Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Via delle Scienze, 206, 33100, Udine (Italy); INFN, Gruppo Collegato di Udine, Via delle Scienze, 206, 33100, Udine (Italy); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044, Frascati (Italy); Degrassi, G. [Dipartimento di Matematica e Fisica, Università’ Roma Tre, Via della Vasca Navale 84, 00146, Rome (Italy); INFN, Sezione di Roma Tre, Via della Vasca Navale 84, 00146, Rome (Italy); Ferrera, G. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy); Magnea, L. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Turin (Italy); INFN, Sezione di Torino, Via P. Giuria 1, 10125, Turin (Italy); Maltoni, F. [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Montagna, G. [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100, Pavia (Italy); INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Nason, P. [INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); Nicrosini, O. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Oleari, C. [Dipartimento di Fisica, Università di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); Piccinini, F. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Riva, F. [Institut de Théorie des Phénoménes Physiques, École Polytechnique Fédérale de Lausanne, 1015, Lausanne (Switzerland); Vicini, A. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy)

    2015-11-25

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the “What Next” Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.

  16. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Evdokimov, Valery [Inst. for High Energy Physics (IHEP), Protvino (Russian Federation); Lukić, Strahinja [Univ. of Belgrade (Serbia)

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  17. The Standard Model from LHC to future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Forte, S.; Ferrera, G.; Vicini, A. [Universita di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano, Milan (Italy); Nisati, A. [INFN, Sezione di Roma, Rome (Italy); Passarino, G.; Magnea, L. [Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Tenchini, R. [INFN, Sezione di Pisa, Pisa (Italy); Calame, C.M.C. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); Chiesa, M.; Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia, Pavia (Italy); Cobal, M. [Universita di Udine, Dipartimento di Chimica, Fisica e Ambiente, Udine (Italy); INFN, Gruppo Collegato di Udine, Udine (Italy); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Degrassi, G. [Universita' Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); INFN, Sezione di Roma Tre, Rome (Italy); Maltoni, F. [Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Montagna, G. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); INFN, Sezione di Pavia, Pavia (Italy); Nason, P. [INFN, Sezione di Milano-Bicocca, Milan (Italy); Oleari, C. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca, Milan (Italy); Riva, F. [Ecole Polytechnique Federale de Lausanne, Institut de Theorie des Phenomenes Physiques, Lausanne (Switzerland)

    2015-11-15

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the ''What Next'' Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators. (orig.)

  18. Design and R&D of very forward calorimeters for detectors at future e+ e- collider

    CERN Document Server

    AUTHOR|(CDS)2073074

    2011-01-01

    Detectors at future e+ e-collider need special calorimeters in the very forward region for a fast estimate and precise measurement of the luminosity, to improve the hermeticity and mask the central tracking detectors from backscattered particles. Design optimized for the ILC collider using Monte Carlo simulations is presented. Sensor prototypes have been produced and dedicated FE ASICs have been developed and tested. For the first time, sensors have been connected to the front-end and ADC ASICs and tested in an electron beam. Results on the performance are discussed.

  19. Physics Perspectives for a Future Circular Collider: FCC-hh - Accelerator & Detectors

    CERN Document Server

    CERN. Geneva

    2017-01-01

    The lectures will briefly discuss the parameters of a Future Circular Collider, before addressing in detail the physics perspectives and the challenges for the experiments and detector systems. The main focus will be on ee and pp collisions, but opportunities for e—p physics will also be covered. The FCC physics perspectives will be presented with reference to the ongoing LHC programme, including the physics potential from future upgrades to the LHC in luminosity and possibly energy.

  20. From the LHC to future colliders. CERN Theory Institute summary report

    Energy Technology Data Exchange (ETDEWEB)

    Roeck, A. de [CERN, Dept. of Physics, Geneva (Switzerland); Univ. of Antwerp, Wilrijk (Belgium); Ellis, J.; Wells, J.; Gripaios, B.; Dittmar, M. [CERN, Dept. of Physics, Geneva (Switzerland); Grojean, C. [CERN, Dept. of Physics, Geneva (Switzerland); CEA, Saclay (France); Heinemeyer, S. [Inst. de Fisica de Cantabria, CSIC-UC, Santander (Spain); Jakobs, K.; Schumacher, M.; Duehrssen, M. [Albert-Ludwigs-Univ., Physikalisches Inst., Freiburg (Germany); Weiglein, G.; Moortgat-Pick, G.; Morton-Thurtle, V.; Rolbiecki, K.; Smillie, J.; Tattersall, J. [Univ. of Durham, IPPP, Durham (United Kingdom); Azuelos, G. [Univ. de Montreal, Montreal (Canada); TRIUMF, Vancouver (Canada); Dawson, S.; Assamagan, K.; Gopalakrishna, S. [Brookhaven National Lab., Upton, NY (United States); Han, T. [Univ. of Wisconsin, Dept. of Physics, Madison (United States); Hewett, J.; Rizzo, T. [SLAC National Accelerator Lab., Menlo Park (United States); Lancaster, M.; Ozcan, E. [UCL, London (United Kingdom); Mariotti, C. [Sezione di Torino, INFN, Torino (Italy); Moortgat, F. [ETH Honggerberg, Dept. of Physics, Zurich (Switzerland); Polesello, G. [Sezione di Pavia, INFN, Pavia (Italy); Riemann, S.; Bechtle, P. [DESY, Hamburg (Germany); Carena, M.; Juste, A. [Fermi National Accelerator Lab., Batavia (United States); Chachamis, G. [Paul Scherrer Inst., Villigen (Switzerland); Chen, K.F.; Hou, W.S. [National Taiwan Univ., Dept. of Physics, Taipei (China); Curtis, S. de [Univ. of Florence (Italy); INFN, Dept. of Physics, Sezione di Firenze (Italy); Desch, K.; Wienemann, P. [Univ. Bonn, Physikalisches Inst., Bonn (Germany); Dreiner, H. [Bonn Univ., Bethe Center for Theoretical Physics and Physikalisches Inst., Bonn (Germany); Foster, B. [Univ. of Oxford, Particle Physics, Oxford (United Kingdom); Frandsen, M.T. [Univ. of Southern Denmark, CP3 - Origins, Odense (Denmark); Univ. of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford (United Kingdom)] [and others

    2010-04-15

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions. (orig.)

  1. Phenomenology of a Higgs triplet model at future $e^{+}e^{-}$ colliders

    CERN Document Server

    Blunier, Sylvain; Díaz, Marco Aurelio; Koch, Benjamin

    2016-01-01

    In this work, we investigate the prospects of future $e^{+}e^{-}$ colliders in testing a Higgs triplet model with a scalar triplet and a scalar singlet under $SU(2)$. The parameters of the model are fixed so that the lightest $CP-$even state corresponds to the Higgs particle observed at the LHC at around $125$ GeV. This study investigates if the second heaviest $CP-$even, the heaviest $CP-$odd and the singly charged states can be observed at existing and future colliders by computing their accessible production and decay channels. In particular, the LHC is not well equipped to produce a Higgs boson which is not mainly doublet-like, so we turn our focus to lepton colliders. We find distinctive features of this model in cases when the second heaviest $CP-$even Higgs is triplet-like, singlet-like or a mixture. These features could distinguish the model from other scenarios at future $e^{+}e^{-}$ colliders.

  2. Simulation of Head-on Beam-Beam Limitations in Future High Energy Colliders

    CERN Document Server

    Buffat, Xavier; Florio, Adrien; Pieloni, Tatiana; Tambasco, Claudia

    2016-01-01

    The Future Circular Hadron Collider (FCC-hh) project calls for studies in a new regime of beam-beam interactions. While the emittance damping due to synchrotron radiation is still slower than in past or existing lepton colliders, it is significantly larger than in other hadron colliders. The slow reduction of the emittance is profitable for higher luminosity in term of transverse beam size at the interaction points and also to mitigate long-range beam-beam effects, potentially allowing for a reduction of the crossing angle between the beams during the operation. In such conditions, the strength of head-on beam-beam interactions increases, potentially limiting the beam brightness. 4D weak-strong and strong-strong simulations are performed in order to assess these limitations.

  3. Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider

    CERN Document Server

    Lebrun, Philippe

    2010-01-01

    High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

  4. Future Circular Collider Study (FCC) kick-off meeting | 12-15 February

    CERN Multimedia

    2014-01-01

    The kick-off meeting of the international "Future Circular Collider Study" (FCC) will take place in Geneva from 12 to 15 February 2014 at the University of Geneva, Unimail site. The programme and registration details can be found on the meeting's website. This meeting is the starting point of the five-year international "Future Circular Collider Study" (FCC). The main emphasis of the conceptual design study will be on a hadron collider with a centre-of-mass energy of the order of 100 TeV in a new tunnel with a 80-100 km circumference for the purposes of studying physics at the highest energies. The study will also include a lepton collider, as a potential intermediate step towards realisation of the hadron facility. Options for e-p scenarios will also be considered. The main purpose of this meeting is to discuss the study topics and to prepare international collaborations. The meeting is a public meeting with a registration deadline closing on Friday 31 Janua...

  5. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the art of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.

  6. Physics opportunities at the future eRHIC electron-ion collider

    Science.gov (United States)

    Fazio, Salvatore

    2017-03-01

    The 2015 nuclear physics long-range plan endorsed the realization of an electron-ion collider as the next large construction project in the United States. This new collider will provide definite answers to the following questions: How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How are these quark and gluon distributions correlated with overall nucleon properties, such as spin direction? What is the role of the orbital motion of sea quarks and gluons in building up the nucleon spin? The eRHIC project is the Brookhaven National Laboratory's vision for the realization of the future electron-ion collider. eRHIC, with its high luminosity (> 1033 cm-2 s-1), wide kinematic reach in center-of-mass-energy (45 GeV to 145 GeV) since day-1 and highly polarized nucleon (P ≈ 70%) and electron (P ≈ 80%) beams provides an unprecedented opportunity to reach new frontiers in our understanding of the internal dynamic structure of nucleons. We give a brief description of the eRHIC project and highlight several key high precision measurements from the planned broad physics program at the future electron-ion collider and the expected impact on our current understanding of the spatial structure of nucleons and nuclei, and the transition from a non-saturated to a saturated state of nuclear matter.

  7. Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering

    CERN Document Server

    Airapetian, A; Amarian, M; Arrington, J; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brauksiepe, S; Braun, B; Brückner, W; Brüll, A; Budz, P; Bulten, H J; Capitani, G P; Carter, P; Chumney, P; Cisbani, E; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Dvoredsky, A P; Elbakian, G M; Ely, J; Fantoni, A; Feshchenko, A; Felawka, L; Ferro-Luzzi, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Iarygin, G; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Jung, P; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Lindemann, T; Lorenzon, W; Makins, N C R; Martin, J W; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; McKeown, R D; Meissner, F; Menden, F; Metz, A; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Negodaeva, K; Nowak, Wolf-Dieter; Oganesyan, K A; O'Neill, T G; Openshaw, R; Ouyang, J; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Rakness, G; Rappoport, V; Redwine, R P; Reggiani, D; Reolon, A R; Ristinen, R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sato, F; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schnell, G; Schüler, K P; Schwind, A; Seibert, J; Seitz, B; Shibata, T A; Shin, T; Shutov, V B; Simani, C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Sutter, M F; Szymanowski, L; Taroian, S P; Terkulov, A R; Teryaev, O V; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Volk, E; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Yen, S; Yoneyama, S; Zohrabyan, H G

    2001-01-01

    Evidence for a positive longitudinal double-spin asymmetry = 0.24 +-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive rho^0(770) vector meson production in polarised lepton-proton scattering was observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA positron beam was scattered off a longitudinally polarised pure hydrogen gas target. The average invariant mass of the photon-proton system has a value of = 4.9 GeV, while the average negative squared four-momentum of the virtual photon is = 1.7 GeV^2. The ratio of the present result to the corresponding spin asymmetry in inclusive deep-inelastic scattering is in agreement with an early theoretical prediction based on the generalised vector meson dominance model.

  8. Exotic decays of the 125 GeV Higgs boson at future e+e- colliders

    Science.gov (United States)

    Liu, Zhen; Wang, Lian-Tao; Zhang, Hao

    2017-06-01

    The discovery of unexpected properties of the Higgs boson would offer an intriguing opportunity to shed light on some of the most profound puzzles in particle physics. Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future e+e- lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, (10-3-10-5) limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator Z boson in the associated production mode e+e-→ ZH. We further discuss the interplay between detector performance and Higgs exotic decays, and other possibilities of exotic decays. Our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key area of Higgs physics that deserves further investigation. Supported by Fermi Research Alliance, LLC (DE-AC02-07CH11359) with the U.S. Department of Energy, DOE (DE-SC0013642), IHEP(Y6515580U1), and IHEP Innovation (Y4545171Y2)

  9. Magnetic refrigeration down to 1.6 K for the future circular collider e$^+$e$^-$

    CERN Document Server

    Tkaczuk, Jakub; Millet, Francois; Rousset, Bernard; Duval, Jean Marc

    2017-01-01

    High-field superconducting rf cavities of the future circular collider e+e− may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 103 times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  10. DEPFET active pixel detectors for a future linear $e^+e^-$ collider

    CERN Document Server

    Alonso, O; Dieguez, A; Dingfelder, J; Hemperek, T; Kishishita, T; Kleinohl, T; Koch, M; Krueger, H; Lemarenko, M; Luetticke, F; Marinas, C; Schnell, M; Wermes, N; Campbell, A; Ferber, T; Kleinwort, C; Niebuhr, C; Soloviev, Y; Steder, M; Volkenborn, R; Yaschenko, S; Fischer, P; Kreidl, C; Peric, I; Knopf, J; Ritzert, M; Curras, E; Lopez-Virto, A; Moya, D; Vila, I; Boronat, M; Esperante, D; Fuster, J; Garcia Garcia, I; Lacasta, C; Oyanguren, A; Ruiz, P; Timon, G; Vos, M; Gessler, T; Kuehn, W; Lange, S; Muenchow, D; Spruck, B; Frey, A; Geisler, C; Schwenker, B; Wilk, F; Barvich, T; Heck, M; Heindl, S; Lutz, O; Mueller, Th; Pulvermacher, C; Simonis, H.J; Weiler, T; Krausser, T; Lipsky, O; Rummel, S; Schieck, J; Schlueter, T; Ackermann, K; Andricek, L; Chekelian, V; Chobanova, V; Dalseno, J; Kiesling, C; Koffmane, C; Gioi, L.Li; Moll, A; Moser, H.G; Mueller, F; Nedelkovska, E; Ninkovic, J; Petrovics, S; Prothmann, K; Richter, R; Ritter, A; Ritter, M; Simon, F; Vanhoefer, P; Wassatsch, A; Dolezal, Z; Drasal, Z; Kodys, P; Kvasnicka, P; Scheirich, J

    2013-01-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

  11. The reach of a future Linear Collider after the g-2 result

    CERN Document Server

    Richard, F

    2001-01-01

    Combining the cosmological requirement on dark matter with the recent BNL g-2 measurement it is argued that, within the mSUGRA framework, the preferred region for SUSY mass parameters falls well inside the area covered by the future linear colliders under consideration for right handed sleptons and of the 2 lightest neutralinos. The coverage for the lightest chargino and left handed sleptons is also favoured but with smaller confidence.

  12. Precision study of MSSM at future e+e- linear colliders

    CERN Document Server

    Fujii, K; Tsukamoto, T; Fujii, Keisuke; Nojiri, Mihoko M; Tsukamoto, Toshifumi

    1995-01-01

    The lighter scalar tau lepton \\sti may be the lightest scalar lepton and therefore would be found earlier in future collider experiments. We point out the impact of the measurement of the mass and the mixing angle of \\st to discriminate the models of SUSY breaking. Furthermore, the measurement of the polarization of \\tau lepton(P_{\\tau}) from the decaying \\sti helps to determine the Yukawa sector of minimal supersymmetric standard model. We present our MC study of the production and the decay of \\sti lepton at a future linear collider at \\sqrt{s}=500 GeV. The mass, mixing angle of \\sti and P_{\\tau}(\\sti\\rightarrow\\tau \\chi_1^0) would be measured precisely at the future LC. ( talks given at Yukawa International Seminar(YIKS) '95 on some very hot and humid day in August, and also at Workshop on {\\it Physics and Experiments with Linear e^+e^- Colliders} Appi, Iwate Japan Sep.8-12 1995.)

  13. Availability modeling approach for future circular colliders based on the LHC operation experience

    Science.gov (United States)

    Niemi, Arto; Apollonio, Andrea; Gutleber, Johannes; Sollander, Peter; Penttinen, Jussi-Pekka; Virtanen, Seppo

    2016-12-01

    Reaching the challenging integrated luminosity production goals of a future circular hadron collider (FCC-hh) and high luminosity LHC (HL-LHC) requires a thorough understanding of today's most powerful high energy physics research infrastructure, the LHC accelerator complex at CERN. FCC-hh, a 4 times larger collider ring aims at delivering 10 - 20 ab-1 of integrated luminosity at 7 times higher collision energy. Since the identification of the key factors that impact availability and cost is far from obvious, a dedicated activity has been launched in the frame of the future circular collider study to develop models to study possible ways to optimize accelerator availability. This paper introduces the FCC reliability and availability study, which takes a fresh new look at assessing and modeling reliability and availability of particle accelerator infrastructures. The paper presents a probabilistic approach for Monte Carlo simulation of the machine operational cycle, schedule and availability for physics. The approach is based on best-practice, industrially applied reliability analysis methods. It relies on failure rate and repair time distributions to calculate impacts on availability. The main source of information for the study is coming from CERN accelerator operation and maintenance data. Recent improvements in LHC failure tracking help improving the accuracy of modeling of LHC performance. The model accuracy and prediction capabilities are discussed by comparing obtained results with past LHC operational data.

  14. From the LHC to Future Colliders CERN Theory Institute Summary Report

    CERN Document Server

    de Roeck, A; Grojean, C; Heinemeyer, S; Jakobs, K; Weiglein, G; Wells, J; Azuelos, Georges; Dawson, S; Gripaios, B; Han, T; Hewett, J; Lancaster, M; Mariotti, C; Moortgat, F; Moortgat-Pick, G; Polesello, G; Riemann, S; Schumacher, M; Assamagan, K; Bechtle, P; Carena, M S; Chachamis, G; Chen, K F; De Curtis, S; Desch, K; Dittmar, M; Dreiner, H; Dührssen, M; Frandsen, M T; Giammanco, A; Godbole, R; Govoni, P; Gunion, J F; Hollik, W; Hou, W S; Isidori, G; Juste, A; Kalinowski, J; Korytov, A; Kou, E; Kraml, S; Krawczyk, M; Martin, A; Milstead, D; Morton-Thurtle, V; Mönig, K; Melé, B; Pieri, M; Plehn, T; Reina, L; Richter-Was, E; Rizzo, T; Rolbiecki, K; Sannino, F; Schram, M; Smillie, J; Sultansoy, S; Uwer, P

    2010-01-01

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300/fb of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10/fb of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discover...

  15. Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders

    CERN Document Server

    Dev, P S Bhupal; Zhang, Yongchao

    2016-01-01

    If neutrino masses arise from a TeV-scale minimal Left-Right seesaw model, the ensuing extended Higgs sector with neutral, singly and doubly-charged scalars has a plethora of implications for new Higgs boson searches beyond the Standard Model at future hadron colliders, such as the $\\sqrt s=14$ TeV LHC and the proposed $\\sqrt s=100$ TeV FCC-hh. In this article, we provide a glimpse of this new physics in the Higgs sector. Our discussion focuses on the minimal non-supersymmetric version of the Left-Right model with high-scale parity breaking but TeV-scale $SU(2)_R$-breaking, a property desirable in the non-supersymmetric version to suppress the type-II seesaw contribution to neutrino masses. We analyze the masses and couplings of the physical Higgs bosons in this model, and discuss their production and decay mechanisms at hadron colliders. We derive the sensitivity reach of the new Higgs sector at future hadron colliders under discussion and find that the heavy Higgs sector can be effectively probed up to abou...

  16. Evaluation of the radiation field in the future circular collider detector

    CERN Document Server

    Besana, Maria Ilaria; Ferrari, Alfredo; Riegler, Werner; Vlachoudis, Vasilis

    2016-01-01

    The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the future circular collider (FCC) study, is presented. A first concept of the detector has been modeled and relevant fluence and dose distributions have been calculated using the FLUKA Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and photons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different subdetectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technologies. The effect of the magnetic field is also discussed. Two shielding solutions have been conceived to minimize the backscattering from the forward calorimeters to the muon chambers and the forward tracking stations. The two possible designs are presented and their effectiveness is discussed.

  17. Consideration of Photon Radiation in Kinematic Fits for Future e+ e- Colliders

    CERN Document Server

    Beckmann, Moritz; List, Jenny

    2010-01-01

    Kinematic fitting is an important tool to improve the resolution in high-energy physics experiments. At future e+e- colliders, photon radiation parallel to the beam carrying away large amounts of energy and momentum will become a challenge for kinematic fitting. A photon with longitudinal momentum pz({\\eta}) is introduced, which is parametrized such that {\\eta} follows a normal distribution. In the fit, {\\eta} is treated as having a measured value of zero, which corresponds to pz = 0. As a result, fits with constraints on energy and momentum conservation converge well even in the presence of a highly energetic photon, while the resolution of fits without such a photon is retained. A fully simulated and reconstructed e+e- -> qqqq event sample at sqrt(s) = 500 GeV is used to investigate the performance of this method under realistic conditions, as expected at the International Linear Collider.

  18. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  19. Top quark pair production and calorimeter energy resolution studies at a future collider experiment

    CERN Document Server

    Seidel, Katja

    This thesis is focused on detector concepts and analyses investigated at a future linear electron positron collider. For precision measurements at such a collider, the CALICE collaboration develops imaging calorimeters, which are characterized by a fine granularity. CALICE has constructed prototypes of several design options for electromagnetic and hadronic calorimeters and has successfully operated these detectors during combined test beam programs at DESY, CERN and Fermilab. To improve the hadronic energy reconstruction and energy resolution of a hadron calorimeter prototype with analog readout three software compensation techniques are presented in this thesis, of which one is a local and two are global software compensation approaches. One method is based on a neural network to optimize the energy reconstruction, while two are energy weighting techniques, depending on the energy density. Weight factors are extracted from and applied to simulated and test beam data and result in an average energy resolutio...

  20. Probing gluon number fluctuation effects in future electron-hadron colliders

    CERN Document Server

    Amaral, J T; Kugeratski, M S

    2013-01-01

    The description of the QCD dynamics in the kinematical range which will be probed in the future electron - hadron colliders is still an open question. Although phenomenological studies indicate that the gluon number fluctuations, which are related to discreteness in the QCD evolution, are negligible at HERA, the magnitude of these effects for the next generation of colliders still should be estimated. In this paper we investigate inclusive and diffractive $ep$ observables considering a model for the physical scattering amplitude which describes the HERA data. Moreover, we estimate, for the first time, the contribution of the fluctuation effects for the nuclear structure functions. In the case of electron-proton collisions, our results indicate that the study of the longitudinal and diffractive structure functions can be useful to constrain the presence of gluon number fluctuations. In the case of electron-ion collisions, these effects are small.

  1. Evaluation of the radiation field in the future circular collider detector

    Directory of Open Access Journals (Sweden)

    M. I. Besana

    2016-11-01

    Full Text Available The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the future circular collider (FCC study, is presented. A first concept of the detector has been modeled and relevant fluence and dose distributions have been calculated using the fluka Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and photons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different subdetectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technologies. The effect of the magnetic field is also discussed. Two shielding solutions have been conceived to minimize the backscattering from the forward calorimeters to the muon chambers and the forward tracking stations. The two possible designs are presented and their effectiveness is discussed.

  2. ATF2 for Final Focus Test Beam for Future Linear Colliders

    Science.gov (United States)

    Kuroda, S.; ATF2 Collaboration

    2016-04-01

    In future linear colliders, extremely small beam size is required at collision point for high luminosity. For example, it is of order of nanometer in ILC(International Linear Collider). ATF2 is a project at ATF(Accelerator Test Facility) in KEK which demonstrates performance of final focus system experimentally. ATF2 beam line is a prototype of ILC final focus system where the local chromaticity correction scheme is adopted. The optics is basically the same and the natural chromaticity, too. Thus the tolerance of magnet alignment and field error is similar for both of the beam lines. We report here observation of small beam size of about 45nm there. We also report plan for smaller beam size with higher beam intensity.

  3. A Quartz Cherenkov Detector for Compton-Polarimetry at Future e+e- Colliders

    CERN Document Server

    List, Jenny; Vormwald, Benedikt

    2015-01-01

    Precision polarimetry is essential for future e+ e- colliders and requires Compton polarimeters designed for negligible statistical uncertainties. In this paper, we discuss the design and construction of a quartz Cherenkov detector for such Compton polarimeters. The detector concept has been developed with regard to the main systematic uncertainties of the polarisation measurements, namely the linearity of the detector response and detector alignment. Simulation studies presented here imply that the light yield reachable by using quartz as Cherenkov medium allows to resolve in the Cherenkov photon spectra individual peaks corresponding to different numbers of Compton electrons. The benefits of the application of a detector with such single-peak resolution to the polarisation measurement are shown for the example of the upstream polarimeters foreseen at the International Linear Collider. Results of a first testbeam campaign with a four-channel prototype confirming simulation predictions for single electrons ar...

  4. Experimental validation of a novel compact focusing scheme for future energy-frontier linear lepton colliders.

    Science.gov (United States)

    White, G R; Ainsworth, R; Akagi, T; Alabau-Gonzalvo, J; Angal-Kalinin, D; Araki, S; Aryshev, A; Bai, S; Bambade, P; Bett, D R; Blair, G; Blanch, C; Blanco, O; Blaskovic-Kraljevic, N; Bolzon, B; Boogert, S; Burrows, P N; Christian, G; Corner, L; Davis, M R; Faus-Golfe, A; Fukuda, M; Gao, J; García-Morales, H; Geffroy, N; Hayano, H; Heo, A Y; Hildreth, M; Honda, Y; Huang, J Y; Hwang, W H; Iwashita, Y; Jang, S; Jeremie, A; Kamiya, Y; Karataev, P; Kim, E S; Kim, H S; Kim, S H; Kim, Y I; Komamiya, S; Kubo, K; Kume, T; Kuroda, S; Lam, B; Lekomtsev, K; Liu, S; Lyapin, A; Marin, E; Masuzawa, M; McCormick, D; Naito, T; Nelson, J; Nevay, L J; Okugi, T; Omori, T; Oroku, M; Park, H; Park, Y J; Perry, C; Pfingstner, J; Phinney, N; Rawankar, A; Renier, Y; Resta-López, J; Ross, M; Sanuki, T; Schulte, D; Seryi, A; Shevelev, M; Shimizu, H; Snuverink, J; Spencer, C; Suehara, T; Sugahara, R; Takahashi, T; Tanaka, R; Tauchi, T; Terunuma, N; Tomás, R; Urakawa, J; Wang, D; Warden, M; Wendt, M; Wolski, A; Woodley, M; Yamaguchi, Y; Yamanaka, T; Yan, J; Yokoya, K; Zimmermann, F

    2014-01-24

    A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [P. Raimondi and A. Seryi, Phys. Rev. Lett. 86, 3779 (2001)]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeV electron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider.

  5. Reconstruction of $\\pi^{0}$s in the Electromagnetic Calorimeter (ECAL) of the Future Circular Collider (FCC-hh)

    CERN Document Server

    AUTHOR|(CDS)2266510

    2018-01-01

    This project has been dedicated to learn about the design and optimization of detectors for the Future Circular Collider (FCC)-hh in hadron mode, with special focus on the validation of the clustering algorithm used for photon reconstruction.

  6. Beyond the LHC: A Conceptual Approach to a Future High Energy Hadron Collider

    CERN Document Server

    Syphers, M J; Peggs, S

    1996-01-01

    The concept of a post LHC hadron collider operating in the ra- diation damping regime was discussed in the DPF workshop on future hadron facilities[1]. To date hadron colliders have all op- erated in a state of insigni®cant damping, where phase space di- lution from any source results in a costly degradation of instanta- neous and thus integrated luminosity. The concept of using radi- ation damping to enhance the integrated luminosity results in an effective decoupling of the machine performance from the ini- tial beam parameters. By relying more heavily on the damping mechanism, the requirements for tight emittance control through the injector chain and during the collider ®ll process can be re- laxed allowing for less stringent injection ®eld quality and the possibilities for looser tolerances in many other aspects of the machine. In this paper we present some generic parameters and machine characteristics before examining options for lengthen- ing the standard cell (quadrupole and spool piece reduction...

  7. Searching for Lepton Flavor Violation at a Future High Energy Electron-Positron Collider

    CERN Document Server

    Murakami, Brandon

    2014-01-01

    We consider theories where lepton flavor is violated, in particular concentrating on the four fermion operator consisting of three electrons and a tau. Strong constraints are available from existing searches for tau -> eee, requiring the scale of the contact interaction to be less than ~(9 TeV)^-2. We reexamine this type of physics, assuming that the particles responsible are heavy (with masses greater than ~TeV) such that a contact interaction description continues to be applicable at the energies for a future e+e- collider. We find that the process e+e- -> e tau can be a very sensitive probe of this kind of physics (even for very conservative assumptions about the detector performance), already improving upon the tau decay bounds to less than ~(11 TeV)^-2 at collider energy sqrt(s) 500 GeV, or reaching beyond ~(35 TeV)^-2 for sqrt(s) = 3 TeV. Even stronger bounds are possible at e-e- colliders in the same energy range.

  8. Production and Decay of Di-photon Resonance at Future $e^+e^-$ Colliders

    CERN Document Server

    Ito, Hayato

    2016-01-01

    Motivated by the ATLAS and CMS announcements of the excesses of di-photon events, we discuss the production and decay processes of di-photon resonance at future $e^+e^-$ colliders. We assume that the excess of the di-photon events at the LHC is explained by a scalar resonance decaying into a pair of photons. In such a case, the scalar interacts with standard model gauge bosons and, consequently, the production of such a scalar is possible at the $e^+e^-$ colliders. We study the production of the scalar resonance via the associated production with photon or $Z$, as well as via the vector-boson fusion, and calculate the cross sections of these processes. We also study the backgrounds, and discuss the detectability of the signals of scalar production with various decay processes of the scalar resonance. We also consider the case where the scalar resonance has an invisible decay mode, and study how the invisible decay can be observed at the $e^+e^-$ colliders.

  9. Physics of e/sup +/-e/sup -/ colliders: present, future, and far future

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1984-10-01

    The presentation of this lecture will proceed as follows: Section 2 reviews the features of e/sup +/-e/sup -/ collisions according to the standard gauge theory of strong, weak, and electromagnetic interactions. This discussion reviews a few of the most important features of e/sup +/-e/sup -/ collisions at currently accessible energies and the expectations for e/sup +/-e/sup -/ reactions which produce the intermediate vector bosons Z/sup 0/ and W/sup + -/. Section 3 reviews some of the experimental work done at the current generation of e/sup +/-e/sup -/ colliders; this discussion emphasizes the search for new types of elementary particles. Section 4 is a theoretical digression, introducing a number of ideas about physics at the energy scale of 1 TeV. Section 5 discusses (rather superficially) a number of technical aspects of electron-positron colliders designed to reach the TeV energies. Finally, Section 6 discusses various possible effects which could appear in e/sup +/-e/sup -/ collisions as the result of new physics appearing at 1 TeV or above. 41 refs., 35 figs.

  10. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    CERN Document Server

    Boscolo, Manuela; Sullivan, Michael Kenneth

    2017-01-01

    The interaction region layout for the e$^+$e$^−$ future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. The design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication of tolerable synchrotron radiation.

  11. Investigation of beam self-polarization in the future e+e− circular collider

    CERN Document Server

    AUTHOR|(CDS)2075800

    2016-01-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the eþe− Future Circular Collider (FCC-eþe−) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of selfpolarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-eþe− ring are presented.

  12. Updates on the optics of the future hadron-hadron collider FCC-hh

    CERN Document Server

    Chance, Antoine; Dalena, Barbara; Holzer, Bernhard; Langner, Andy Sven; Schulte, Daniel

    2017-01-01

    The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The layout of FCC-hh has been optimized to a more compact design following recommendations from civil engineering aspects. The updates on the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV. Special emphasis is put on the dispersion suppressors and general beam cleaning sections as well as first considerations of injection and extraction sections.

  13. Investigation of beam self-polarization in the future e$^+$e$^−$ circular collider

    CERN Document Server

    Gianfelice-Wendt, Eliana

    2016-01-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e$^+$e$^−$ Future Circular Collider (FCC-e$^+$e$^−$) for $Z$ and $WW$ physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the $Z$ peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e$^+$e$^−$ ring are presented.

  14. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    Directory of Open Access Journals (Sweden)

    Manuela Boscolo

    2017-01-01

    Full Text Available The interaction region layout for the e^{+}e^{-} future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. The design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication of tolerable synchrotron radiation.

  15. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    Science.gov (United States)

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    2017-01-01

    The interaction region layout for the e+e- future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. The design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication of tolerable synchrotron radiation.

  16. Higgs Physics at future Linear Colliders - A Case for precise Vertexing

    CERN Document Server

    Simon, Frank

    2014-01-01

    The discovery of a Higgs boson by the experiments at the LHC marks a major breakthrough in particle physics, with far-reaching consequences for our understanding of the fundamental principles of our Universe. To fully explore this unique particle, experiments at high-energy electron-positron colliders are being planned, providing substantial added benefit over the capabilities of the LHC alone, such as model-independent measurements of couplings, constraints on invisible decays and precise measurements of the self-coupling. This contribution summarizes the Higgs physics program at such future facilities, highlighting in particular also the role of precise vertexing in achieving the ambitious goals of these experiments.

  17. Helicity Parton Distributions at a Future Electron-Ion Collider: A Quantitative Appraisal

    CERN Document Server

    Aschenauer, Elke C; Stratmann, Marco

    2012-01-01

    We present a quantitative assessment of the impact a future electron-ion collider will have on determinations of helicity quark and gluon densities and their contributions to the proton spin. Our results are obtained by performing a series of global QCD analyses at next-to-leading order accuracy based on realistic sets of pseudo-data for the inclusive and semi-inclusive deep-inelastic scattering of longitudinally polarized electrons and protons at different, conceivable center-of-mass system energies.

  18. Testing Contact Interactions of Quarks and Gluons at Future pp Colliders

    Science.gov (United States)

    Argyres, E. N.; Katsilieris, G. A.; Papadopoulos, C. G.; Vlassopulos, S. D. P.

    We calculate the contributions of the allowed qqqq, GGG, GGGG, qqG and qqGG contact interactions of the standard QCD quarks and gluons, at a common scale Λ, to jet cross sections at the future hadron colliders. Assuming that the two-jet normalized angular-distribution measurements will be consistent with QCD, to 95% CL we obtain bounds Λ>35-40 TeV at LHC or Λ>50-80 TeV at SSC. A similar analysis of the three-jet events would give Λ>13-15 TeV or Λ>10-25 TeV, respectively.

  19. The semi-digital hadronic calorimeter (SDHCAL) for future leptonic colliders

    CERN Document Server

    Pingault, Antoine

    2016-01-01

    The first technological SDHCAL prototype having been successfully tested, a new phase of R&D, to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the International Linear Collider (ILC), has started with the conception and the realisation of a new prototype. The new one is intended to host few but large active layers of the future SDHCAL. The new active layers, made of Glass Resistive Plate Chambers (GRPC) with sizes larger than 2m^2 will be equipped with a new version of the electronic readout, fulfilling the requirements of the future ILD detector. The new GRPC are conceived to improve the homogeneity with a new gas distribution scheme. Finally the mechanical structure will be achieved using the electron beam welding technique. The progress realised will be presented and future steps will be discussed.

  20. Diffractive ρ production at small x in future electron-ion colliders

    Science.gov (United States)

    Gonçalves, V. P.; Navarra, F. S.; Spiering, D.

    2016-09-01

    The future electron-ion (eA) collider is expected to probe the high energy regime of the quantum chromodynamics (QCD), with the exclusive vector meson production cross section being one of the most promising observables. In this paper we complement previous studies of exclusive processes presenting a comprehensive analysis of diffractive ρ production at small x. We compute the coherent and incoherent cross sections taking into account non-linear QCD dynamical effects and considering different models for the dipole-proton scattering amplitude and vector meson wave function. The dependence of these cross sections on the energy, photon virtuality, nuclear mass number and squared momentum transfer is analysed in detail. Moreover, we compare the non-linear predictions with those obtained in the linear regime. Finally, we also estimate the exclusive photon, J/{{\\Psi }} and ϕ production and compare with the results obtained for ρ production. Our results demonstrate that the analysis of diffractive ρ production in future electron-ion colliders will be important in understanding the non-linear QCD dynamics.

  1. Probing the Higgs with angular observables at future e+e- colliders

    Science.gov (United States)

    Liu, Zhen

    2016-10-01

    I summarize our recent works on using differential observables to explore the physics potential of future e+e- colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e+e-→ ZHℓ+ℓ-bb¯ channel at future circular e+e- colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy s = 240 GeV and 5 (30) ab-1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. We also discuss the possibility of using ZZ-fusion at e+e- machines at different energies to probe new operators.

  2. Testing sterile neutrino extensions of the Standard Model at future lepton colliders

    CERN Document Server

    Antusch, Stefan

    2015-01-01

    Extending the Standard Model (SM) with sterile ('right-handed') neutrinos is one of the best motivated ways to account for the observed neutrino masses. We discuss the expected sensitivity of future lepton collider experiments for probing such extensions. An interesting testable scenario is given by 'symmetry protected seesaw models', which theoretically allow for sterile neutrino masses around the electroweak scale with up to order one mixings with the light (SM) neutrinos. In addition to indirect tests, e.g. via electroweak precision observables, sterile neutrinos with masses around the electroweak scale can also be probed by direct searches, e.g. via sterile neutrino decays at the Z pole, deviations from the SM cross section for four lepton final states at and beyond the WW threshold and via Higgs boson decays. We study the present bounds on sterile neutrino properties from LEP and LHC as well as the expected sensitivities of possible future lepton colliders such as ILC, CEPC and FCC-ee (TLEP).

  3. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  4. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  5. Top quark pair production and calorimeter energy resolution studies at a future collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Katja

    2012-03-27

    This thesis is focused on detector concepts and analyses investigated at a future linear electron positron collider. For precision measurements at such a collider, the CALICE collaboration develops imaging calorimeters, which are characterized by a fine granularity. CALICE has constructed prototypes of several design options for electromagnetic and hadronic calorimeters and has successfully operated these detectors during combined test beam programs at DESY, CERN and Fermilab. To improve the hadronic energy reconstruction and energy resolution of a hadron calorimeter prototype with analog readout three software compensation techniques are presented in this thesis, of which one is a local and two are global software compensation approaches. One method is based on a neural network to optimize the energy reconstruction, while two are energy weighting techniques, depending on the energy density. Weight factors are extracted from and applied to simulated and test beam data and result in an average energy resolution improvement of 15 - 25% compared to a reconstruction without software compensation. Whether such software compensation techniques are also applicable to a detector concept for a future linear electron positron collider is studied in the second part of this thesis. Simulated data, two different hadronic detector models and a local software compensation technique are used for this study. The energy resolutions for single hadrons and for jets are presented with and without software compensation. In the third part of this thesis, a study on top quark pair production at a center-of-mass energy of 500 GeV at the proposed electron positron collider CLIC is presented. The analysis is based on full detector simulations, including realistic background contributions dominated by two photon processes. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of top quark pairs using event samples of signal and Standard Model background

  6. Constraining RS Models by Future Flavor and Collider Measurements: A Snowmass Whitepaper

    Energy Technology Data Exchange (ETDEWEB)

    Agashe, Kaustubh [Maryland U.; Bauer, Martin [Chicago U., EFI; Goertz, Florian [Zurich, ETH; Lee, Seung J. [Korea Inst. Advanced Study, Seoul; Vecchi, Luca [Maryland U.; Wang, Lian-Tao [Chicago U., EFI; Yu, Felix [Fermilab

    2013-10-03

    Randall-Sundrum models are models of quark flavor, because they explain the hierarchies in the quark masses and mixings in terms of order one localization parameters of extra dimensional wavefunctions. The same small numbers which generate the light quark masses suppress contributions to flavor violating tree level amplitudes. In this note we update universal constraints from electroweak precision parameters and demonstrate how future measurements of flavor violation in ultra rare decay channels of Kaons and B mesons will constrain the parameter space of this type of models. We show how collider signatures are correlated with these flavor measurements and compute projected limits for direct searches at the 14 TeV LHC run, a 14 TeV LHC luminosity upgrade, a 33 TeV LHC energy upgrade, and a potential 100 TeV machine. We further discuss the effects of a warped model of leptons in future measurements of lepton flavor violation.

  7. Study of New Silicon Sensors for Experiments at Future Particle Colliders

    CERN Document Server

    Muñoz Sánchez, Francisca Javiela

    In this work, two new technologies for future tracker detectors at future colliders are studied. In addition, the characterization techniques are described and the obtained results are presented. On one side, we studied two-dimensional position-sensitive microstrip sensors. This sensors use a resistive material as electrode instead of the standard metallic one. In this way, using a single sensor we can get information about two coordinates of a particle hit. On the other side, we studied double-sided double-type 3D pixel sensors. This sensors are manufactured in 3D technology instead of in the planar technology. They show more radiation hardness and require less energy to be efficiently operated than sensors manufactured in planar technology. With this work, we demonstrate the resistive microstrip sensors functionality as particle detector and the radiation hardness of 3D pixel detectors has been evaluated.

  8. Treatment of photon radiation in kinematics fits at future e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M.; List, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); List, B. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2010-05-15

    Kinematic fitting, where constraints such as energy and momentum conservation are imposed on measured four-vectors of jets and leptons, is an important tool to improve the resolution in high-energy physics experiments. At future e{sup +}e{sup -} colliders, photon radiation parallel to the beam carrying away large amounts of energy and momentum will become a challenge for kinematic fitting. A photon with longitudinal momentum p{sub z,{gamma}} ({eta}) is introduced, which is parametrized such that {eta} follows a normal distribution. In the fit, {eta} is treated as having a measured value of zero, which corresponds to p{sub z,{gamma}}, = 0. As a result, fits with constraints on energy and momentum conservation converge well even in the presence of a highly energetic photon, while the resolution of fits without such a photon is retained. A fully simulated and reconstructed e{sup +}e{sup -}{yields}q anti qq anti q event sample at {radical}(s)=500 GeV is used to investigate the performance of this method under realistic conditions, as expected at the International Linear Collider. (orig.)

  9. Aspects of pQCD at a 100 TeV future hadron collider

    CERN Document Server

    Bothmann, Enrico; Krauss, Frank; Kuttimalai, Silvan; Schumann, Steffen; Thompson, Jennifer

    2016-01-01

    In this publication we consider particle production at a future circular hadron collider with 100 TeV centre of mass energy within the Standard Model, and in particular their QCD aspects. Accurate predictions for these processes pose severe theoretical challenges related to large hierarchies of scales and possible large multiplicities of final state particles. We investigate scaling patterns in multijet-production rates allowing to extrapolate predictions to very high final-state multiplicities. Furthermore, we consider large-area QCD jets and study the expectation for the mean number of subjets to be reconstructed from their constituents and confront these with analytical resummed predictions and with the expectation for boosted hadronic decays of top-quarks and W-bosons. We also discuss the validity of Higgs-Effective-Field-Theory in making predictions for Higgs-boson production in association with jets. Finally, we consider the case of New Physics searches at such a 100 TeV hadron-collider machine and disc...

  10. Future 100 TeV colliders' safety in the context of stable micro black holes production

    CERN Document Server

    Sokolov, Anton V

    2016-01-01

    In the theories with extra dimensions the higher-dimensional Planck mass could be as small as 1 TeV, that entails the possibility that a considerable amount of microscopic black holes can be produced during runs of future high energy colliders. According to the laws of quantum theory, these black holes are supposed to evaporate immediately; however, due to the lack of the experimental data confirming this process as well as in absence of a reliable theory of quantum gravity, for the exhaustive analysis of safety one has to consider the worst case in which the micro black holes could be stable. In this paper we consider the theories with the different number of extra dimensions and deduce which of them yield Earth's accretion times smaller than the lifetime of the Solar system. We calculate the cross sections of the black hole production at the 100 TeV collider, the fraction of the black holes trapped inside the Earth and the resulting rate of production. We study the astrophysical consequences of stable micro...

  11. Evaluation of the radiation field in the future circular collider detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211473; Cerutti, Francesco; Ferrari, Alfredo; Riegler, Werner; Vlachoudis, Vasilis; CERN. Geneva. ATS Department

    2016-01-01

    The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the Future Circular Collider (FCC) study, is presented. A peak luminosity of 30 1034 cm−2s−1 and a total integrated luminosity of 30 ab−1 are assumed for these radiation studies. A first concept of the detector foresees the presence of central and forward sub-detectors that provide acceptance up to |η|=6 inside a magnetic field generated by the combination of a central solenoid and two forward dipoles. This layout has been modelled and relevant fluence and dose distributions have been calculated using the FLUKA Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and pho- tons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different sub-detectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technol...

  12. Precision Muon Tracking at Future Hadron Colliders with sMDT Chambers

    CERN Document Server

    INSPIRE-00218368; Kroha, Hubert; Müller, Felix; Nowak, Sebastian; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers are a cost-effective technology for high-precision muon tracking. The rate capability of the sMDT chambers has been extensively tested at the Gamma Irradiation Facility at CERN in view of expected rates at future high-energy hadron colliders. Results show that it fulfills the requirements over most of the acceptance of muon detectors. The optimization of the read-out electronics to further increase the rate capability of the detectors is discussed. Chambers of this type are under construction for upgrades of the muon spectrometer of the ATLAS detector at high LHC luminosities. Design and construction procedures have been optimized for mass production while providing a precision of better than 10 micrometers in the sense wire positions and the mechanical stability required to cover large areas.

  13. DEPFET: A silicon pixel detector for future colliders. Fundamentals, characterization and performance

    CERN Document Server

    Marinas Pardo, Carlos Manuel; Vos, Marcel Andre

    2011-01-01

    The future electron-positron colliders, either breaking the energy frontier (like ILC or CLIC) or the luminosity frontier (SuperKEKB), impose unprecedented constraints over the new generation of detectors that will be operated in those facilities. In particular, the vertex detectors must be designed for an efficient flavour tagging and excellent vertex reconstruction. To cope with these requirements, highly pixelated sensors with a fast readout, very low material budget and low power consumption must be developed. Although the combination of these factors is a substantial challenge, the DEPFET Collaboration has developed a new generation of sensors that can be operated in such a harsh environment. The DEpleted P-channel Field Effect Transistor (DEPFET) is a pixel sensor that combines detection and internal amplification at the same time. With such configuration, thin detectors with good signal-to-noise ratio and low power consumption can be produced. In this thesis, the optimization and performance of two gen...

  14. Minimal left-right symmetric models and new $Z'$ properties at future electron-positron colliders

    CERN Document Server

    Almeida, F M L; Martins-Simões, J A; Ponciano, J; Ramalho, A J; Wulck, S; Do Vale, M A B; Wulck, Stenio

    2004-01-01

    It was recently shown that left-right symmetric models for elementary particles can be built with only two Higgs doublets. The general consequence of these models is that the left and right fermionic sectors can be connected by a new neutral gauge boson $Z'$ having its mass as the only additional new parameter. In this paper we study the influence of the fundamental fermionic representation for this new neutral gauge boson. Signals of possible new heavy neutral gauge bosons are investigated for the future electron-positron colliders at $\\sqrt s = 500$ GeV, 1 TeV and 3 TeV. The total cross sections, forward-backward and left-right asymmetries and model differences are calculated for the process $e^+ e^- \\longrightarrow \\mu^+ \\mu^-$. Bounds on $Z'$ masses are estimated.

  15. High field septum magnet using a superconducting shield for the Future Circular Collider

    CERN Document Server

    AUTHOR|(CDS)2069375

    2017-01-01

    A zero-field cooled superconducting shield is proposed to realize a high-field (3–4 T) septum magnet for the Future Circular Collider hadron-hadron (FCC-hh) ring. Three planned prototypes using different materials and technical solutions are presented, which will be used to evaluate the feasibility of this idea as a part of the FCC study. The numerical simulation methods are described to calculate the field patterns around such a shield. A specific excitation current configuration is presented that maintains a fairly homogeneous field outside of a rectangular shield in a wide range of field levels from 0 to 3 Tesla. It is shown that a massless septum configuration (with an opening in the shield) is also possible and gives satisfactory field quality with realistic superconducting material properties.

  16. Strong field effects on physics processes at the Interaction Point of future linear colliders

    CERN Document Server

    Hartin, A; Porto, S

    2013-01-01

    Future lepton colliders will be precision machines whose physics program includes close study of the Higgs sector and searches for new physics via polarised beams. The luminosity requirements of such machines entail very intense lepton bunches at the interaction point with associated strong electromagnetic fields. These strong fields not only lead to obvious phenomena such as beamstrahlung, but also potentially affect every particle physics process via virtual exchange with the bunch fields. For precision studies, strong field effects have to be understood to the sub-percent level. Strong external field effects can be taken into account exactly via the Furry Picture or, in certain limits, via the Quasi-classical Operator method . Significant theoretical development is in progress and here we outline the current state of play.

  17. Effect of Beamstrahlung on Bunch Length and Emittance in Future Circular e+e- Colliders

    CERN Document Server

    Valdivia Garcia, Marco Alan

    2016-01-01

    In future circular e+e− colliders, beamstrahlung may limit the beam lifetime at high energies, and increase the energy spread and bunch length at low energies. If the dispersion or slope of the dispersion is not zero at the collision point, beamstrahlung will also affect the transverse emittance. In this paper, we first examine the beamstrahlung properties, and show that for the proposed FCC-ee, the radiation is fairly well modelled by the classical formulae describing synchrotron radiation in bending magnets. We then derive a set of equations determining the equilibrium emittances in the presence of a nonzero dispersion at the collision point. An example case from FCC-ee will serve as an illustration.

  18. Unveiling the Proton Spin Decomposition at a Future Electron-Ion Collider

    CERN Document Server

    Aschenauer, Elke C; Stratmann, M

    2015-01-01

    We present a detailed assessment of how well a future Electron-Ion Collider could constrain helicity parton distributions in the nucleon and, therefore, unveil the role of the intrinsic spin of quarks and gluons in the proton's spin budget. Any remaining deficit in this decomposition will provide the best indirect constraint on the contribution due to the total orbital angular momenta of quarks and gluons. Specifically, all our studies are performed in the context of global QCD analyses based on realistic pseudo-data and in the light of the most recent data obtained from polarized proton-proton collisions at BNL-RHIC that have provided evidence for a significant gluon polarization in the accessible, albeit limited range of momentum fractions. We also present projections on what can be achieved on the gluon's helicity distribution by the end of BNL-RHIC operations. All estimates of current and projected uncertainties are performed with the robust Lagrange multiplier technique.

  19. Future e(+)e(-) colliders' sensitivity to Hbb coupling and CP violation.

    Science.gov (United States)

    Braguta, V; Chalov, A; Likhoded, A; Rosenfeld, R

    2003-06-20

    We perform a complete simulation of the process e(+)e(-)-->bbvv, where nu can be an electron, muon, or tau neutrino, in the context of a general Higgs coupling to b quarks. We parametrize the Hbb; coupling as (m(b)/v)(a+igamma(5)b). Taking into account interference effects between pure Higgs and Standard Model contributions, we find that sensitivities of the order of 2% and 20% can be obtained at a future e(+)e(-) collider for deviations of the a and b parameters, respectively, from their Standard Model values. Combining our analysis with an independent measurement of Gamma(H-->bb) can provide evidence about the CP nature of the Higgs sector.

  20. Probing the Top Quark Flavour-Changing Neutral Current at a Future Electron-Positron Collider

    Directory of Open Access Journals (Sweden)

    Hoda Hesari

    2014-01-01

    Full Text Available We present a study to examine the sensitivity of a future e-e+ collider to the anomalous top flavour-changing neutral current (FCNC to the gluon. To separate signal from background a multivariate analysis is performed on top quark pair and background events, where one top quark is considered to follow the dominant standard model (SM decay, t→Wb, and the other top decays through FCNC, t→qg, where q is a u- or a c-quark. The analysis of fully hadronic FCNC decay of the tt- pair is also presented. The 95% confidence level limits on the top quark anomalous couplings are obtained for different values of the center-of-mass energies and integrated luminosities.

  1. Exotic Decays of the 125 GeV Higgs Boson at Future $e^+e^-$ Lepton Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen [Fermilab; Wang, Lian-Tao [Chicago U., EFI; Zhang, Hao [Beijing, Inst. High Energy Phys.

    2016-12-29

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $O(10^{-3}\\sim10^{-5})$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $e^+e^-\\rightarrow Z H$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.

  2. Lepton mass effects in elastic lepton-proton scattering beyond the leading order of QED

    Science.gov (United States)

    Koshchii, Oleksandr; Afanasev, Andrei

    2017-01-01

    The future MUSE experiment is devised to solve the ``Proton Radius Puzzle'' by considering simultaneously elastic e+/- p and μ+/- p scattering. This experiment requires a per cent level accuracy in comparison of electron-proton and muon-proton scattering. Our goal is to provide all the relevant radiative corrections calculations for MUSE without using ultrarelativistic (ml -> 0) approximation. This approximation is not applicable for the scattering of muons in kinematics of MUSE. In this talk, we will present our up-to-date results on radiative corrections calculations obtained by using a Monte Carlo generator ELRADGEN modified to treat the lepton mass effects with no ultra-relativistic approximation. Next, we will discuss our estimations of the important helicity-flip contribution represented by a scalar σ meson exchange in the t-channel. This term vanishes in the ultra-relativistic and/or one-photon exchange approximation, and makes a difference in comparison of electron vs muon scattering in MUSE. This work was supported by the NSF under Grants Nos. PHY-1404342, PHY-1309130 and by The George Washington University through the Gus Weiss endowment.

  3. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    Science.gov (United States)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  4. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  5. Treatment of Photon Radiation in Kinematic Fits at Future e+ e- Colliders

    CERN Document Server

    Beckmann, Moritz; List, Jenny

    2010-01-01

    Kinematic fitting, where constraints such as energy and momentum conservation are imposed on measured four-vectors of jets and leptons, is an important tool to improve the resolution in high-energy physics experiments. At future e+ e- colliders, photon radiation parallel to the beam carrying away large amounts of energy and momentum will become a challenge for kinematic fitting. A photon with longitudinal momentum p_z^\\gamma (\\eta) is introduced, which is parametrized such that \\eta ~follows a normal distribution. In the fit, \\eta ~is treated as having a measured value of zero, which corresponds to p_z^\\gamma (\\eta)=0. As a result, fits with constraints on energy and momentum conservation converge well even in the presence of a highly energetic photon, while the resolution of fits without such a photon is retained. A fully simulated and reconstructed e+ e- -> qqqq event sample at \\sqrt{s}=500 GeV is used to investigate the performance of this method under realistic conditions, as expected at the International...

  6. R&D on GEM Detectors for Forward Tracking at a Future Electron-Ion Collider

    CERN Document Server

    Zhang, Aiwu; Hohlmann, Marcus; Bai, Xinzhan; Gnanvo, Kondo; Liyanage, Nilanga K; Posik, Matt; Surrow, Bernd

    2015-01-01

    We report the status of R&D on large triple-GEM detectors for a forward tracker (FT) in an experiment at a future Electron Ion Collider (EIC) that will improve our understanding of QCD. We have designed a detector prototype specifically targeted for the EIC-FT, which has a trapezoidal shape with 30.1 degrees opening angle. We are investigating different detector assembly techniques and signal readout technologies, but have designed a common GEM foil to minimize NRE cost for foil production. The assembly techniques comprise either a purely mechanical method including foil stretching as pioneered by CMS but with certain modifications, or gluing foils to frames that are then assembled mechanically, or gluing foils to frames that are then glued together. The first two assembly techniques allow for re-opening chambers so that a GEM foil can be replaced if it is damaged. For readout technologies, we are pursuing a cost-effective one-dimensional readout with wide zigzag strips that maintains reasonable spatial r...

  7. Studies towards optimisation of the analog hadronic calorimeter for future linear collider detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Huong Lan [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    The Analog Hadronic Calorimeter (AHCAL) is a highly granular calorimeter developed in the CALICE collaboration for future linear collider detectors. Its design concept is based on 3 x 3 cm{sup 2} scintillator tiles readout by Silicon Photomultipliers (SiPM). With this design the ambitious required jet energy resolution of 3-4 % can be achieved using the Pandora Particle Flow Algorithm (PandoraPFA). Recent discussions concerning the overall size and cost of the ILD detector has triggered new studies to optimise AHCAL cell size. A smaller number of cells can reduce the detector cost but the corresponding larger cell size can lead to a degradation of the jet energy resolution. The AHCAL optimisation study therefore has to achieve the best balance between physics performance and cost. Recent studies using the latest version of PandoraPFA with improved pattern recognition have shown significant improvement of jet energy resolution. Moreover, a better energy reconstruction of single particles, in which software compensation plays an important role, can lead to further improvements. This talk will discuss the software compensation technique and its impact on the final cell size optimisation.

  8. Superconducting Magnet with the Minimum Steel Yoke for the Hadron Future Circular Collider Detector

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Dudarev, A.; Gaddi, A.; Gerwig, H.; Mentink, M.; Da Silva, H. Pais; Rolando, G.; ten Kate, H. H. J.; Berriaud, C.P.

    2016-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T in combination with two superconducting dipole and two conventional toroid magnets is proposed for a FCC-hh experimental setup. The coil of 23.468 m long has seven 3.35 m long modules included into one cryostat. The steel yoke with a mass of 22.6 kt consists of two barrel layers of 0.5 m radial thickness, and the 0.7 m thick nose disk and four 0.6 m thick end-cap disks each side. The maximum outer diameter of the yoke is 17.7 m; the length is 62.6 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity about \\pm 2.7. The superconducting dipole magnets allow measuring the charged particle momenta in the pseudora...

  9. Superconducting Magnet with the Reduced Barrel Yoke for the Hadron Future Circular Collider

    CERN Document Server

    Klyukhin, V I; Berriaud, C; Curé, B; Dudarev, A; Gaddi, A; Gerwig, H; Hervé, A; Mentink, M; Rolando, G; Da Silva, H F Pais; Wagner, U; Kate, H H J ten

    2016-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T is proposed for a FCC-hh experimental setup. The coil of 24.518 m long has seven 3.5 m long modules included into one cryostat. The steel yoke with a mass of 21 kt consists of two barrel layers of 0.5 m radial thickness, and 0.7 m thick nose disk, four 0.6 m thick end-cap disks, and three 0.8 m thick muon toroid disks each side. The outer diameter of the yoke is 17.7 m; the length without the forward muon toroids is 33 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity of \\pm 3.5. The conventional forward muon spectrometer provides the measuring of the muon momenta in the pseudorapidity region from \\pm 2.7...

  10. Future Collider Signatures of the Possible 750 GeV State

    CERN Document Server

    Djouadi, Abdelhak; Godbole, Rohini; Quevillon, Jérémie

    2016-01-01

    If the recent indications of a possible state $\\Phi$ with mass $\\sim 750$ GeV decaying into two photons reported by ATLAS and CMS in LHC collisions at 13 TeV were to become confirmed, the prospects for future collider physics at the LHC and beyond would be affected radically, as we explore in this paper. Even minimal scenarios for the $\\Phi$ resonance and its $\\gamma \\gamma$ decays require additional particles with masses $\\gtrsim \\frac12 m_\\Phi$. We consider here two benchmark scenarios that exemplify the range of possibilities: one in which $\\Phi$ is a singlet scalar or pseudoscalar boson whose production and $\\gamma \\gamma$ decays are due to loops of coloured and charged fermions, and another benchmark scenario in which $\\Phi$ is a superposition of (nearly) degenerate CP-even and CP-odd Higgs bosons in a (possibly supersymmetric) two-Higgs doublet model also with additional fermions to account for the $\\gamma \\gamma$ decay rate. We explore the implications of these benchmark scenarios for the production of...

  11. SU(3) Simple Group Model and New Z' Properties in Future Linear Colliders

    Institute of Scientific and Technical Information of China (English)

    LIU Yao-Bei; WANG Shuai-Wei; ZHANG Wen-Qing

    2009-01-01

    In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding.In this paper, we calculate the contributions of this new particle to the processes e+e-→ l+l+, bb, and cc and study the possibility of detecting this new particle via these processes in the future high-energy linear e+ e+ collider (LC) experiments with (s)= 500 GeV and £int= 340 fb-1.We find that the new gauge boson Z' is most sensitive to the process e+e+ → b(b).As long as Mz' ≤2 TeV, the absolute values of the relative correction parameter are larger than 5%.We calculate the forward-backward asymmetries and left-right asymmetries for the process e+ e-→ c(c), with both the universal and anomaly-free fermion embeddings.Bounds on Z' masses are also estimated within 95% confidence level.

  12. Iron-free detector magnet options for the future circular collider

    CERN Document Server

    Mentink, Matthias; Pais Da Silva, Helder Filipe; Rolando, Gabriella; Cure, Benoit; Gaddi, Andrea; Klyukhin, Slava; Gerwig, Hubert; Wagner, Udo; Ten Kate, Herman

    2016-01-01

    In this paper, several iron-free solenoid-based designs of a detector magnet for the future circular collider for hadron-hadron collisions (FCC-hh) are presented. The detector magnet designs for FCC-hh aim to provide bending power for particles over a wide pseudorapidity range (0≤|η|≤4). To achieve this goal, the main solenoidal detector magnet is combined with a forward magnet system, such as the previously presented force-and-torque-neutral dipole. Here, a solenoid-based alternative, the so-called balanced forward solenoid, is presented which comprises a larger inner solenoid for providing bending power to particles at |η|≥2.5, in combination with a smaller balancing coil for ensuring that the net force and torque on each individual coil is minimized. The balanced forward solenoid is compared to the force-and-torque-neutral dipole and advantages and disadvantages are discussed. In addition, several conceptual solenoid-based detector magnet designs are shown, and quantitatively compared. The main dif...

  13. GUT models at current and future hadron colliders and implications to dark matter searches

    Directory of Open Access Journals (Sweden)

    Giorgio Arcadi

    2017-08-01

    Full Text Available Grand Unified Theories (GUT offer an elegant and unified description of electromagnetic, weak and strong interactions at high energy scales. A phenomenological and exciting possibility to grasp GUT is to search for TeV scale observables arising from Abelian groups embedded in GUT constructions. That said, we use dilepton data (ee and μμ that has been proven to be a golden channel for a wide variety of new phenomena expected in theories beyond the Standard Model to probe GUT-inspired models. Since heavy dilepton resonances feature high signal selection efficiencies and relatively well-understood backgrounds, stringent and reliable bounds can be placed on the mass of the Z′ gauge boson arising in such theories. In this work, we obtain 95% C.L. limits on the Z′ mass for several GUT-models using current and future proton–proton colliders with s=13 TeV,33 TeV,and100 TeV, and put them into perspective with dark matter searches in light of the next generation of direct detection experiments.

  14. GUT models at current and future hadron colliders and implications to dark matter searches

    Science.gov (United States)

    Arcadi, Giorgio; Lindner, Manfred; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.

    2017-08-01

    Grand Unified Theories (GUT) offer an elegant and unified description of electromagnetic, weak and strong interactions at high energy scales. A phenomenological and exciting possibility to grasp GUT is to search for TeV scale observables arising from Abelian groups embedded in GUT constructions. That said, we use dilepton data (ee and μμ) that has been proven to be a golden channel for a wide variety of new phenomena expected in theories beyond the Standard Model to probe GUT-inspired models. Since heavy dilepton resonances feature high signal selection efficiencies and relatively well-understood backgrounds, stringent and reliable bounds can be placed on the mass of the Z‧ gauge boson arising in such theories. In this work, we obtain 95% C.L. limits on the Z‧ mass for several GUT-models using current and future proton-proton colliders with √{ s} = 13 TeV , 33 TeV ,and 100 TeV, and put them into perspective with dark matter searches in light of the next generation of direct detection experiments.

  15. Iron-free detector magnet options for the future circular collider

    CERN Document Server

    AUTHOR|(CDS)2092466; Dudarev, Alexey; Pais Da Silva, Helder Filipe; Rolando, Gabriella; Cure, Benoit; Gaddi, Andrea; Klyukhin, Slava; Gerwig, Hubert; Wagner, Udo; Ten Kate, Herman

    2016-01-01

    In this paper, several iron-free solenoid-based designs of a detector magnet for the future circular collider for hadron-hadron collisions (FCC-hh) are presented. The detector magnet designs for FCC-hh aim to provide bending power for particles over a wide pseudorapidity range (0 ≤ jηj ≤ 4). To achieve this goal, the main solenoidal detector magnet is combined with a forward magnet system, such as the previously presented force-and-torque-neutral dipole. Here, a solenoid-based alternative, the so-called balanced forward solenoid, is presented which comprises a larger inner solenoid for providing bending power to particles at jηj ≥ 2.5, in combination with a smaller balancing coil for ensuring that the net force and torque on each individual coil is minimized. The balanced forward solenoid is compared to the force-and-torqueneutral dipole and advantages and disadvantages are discussed. In addition, several conceptual solenoidbased detector magnet designs are shown, and quantitatively compared. The main...

  16. The search for Higgs particles at high-energy colliders: Past, present and future

    Indian Academy of Sciences (India)

    Abdelhak Djouadi

    2003-02-01

    I briefly review the Higgs sector in the standard model (SM) and its minimal aupersymmetric extension, the MSSM. After summarizing the properties of the Higgs bosons and the present experimental constraints, I will discuss the prospects for discovering these particle at the upgraded Tevatron, the large hadron collider (LHC) and a high-energy e+ e- linear collider. The possibility of studying the properties of the Higgs particles will be then summarized.

  17. Magnetic refrigeration down to 1.6 K for the future circular collider e^{+}e^{-}

    Directory of Open Access Journals (Sweden)

    Jakub Tkaczuk

    2017-04-01

    Full Text Available High-field superconducting rf cavities of the future circular collider e^{+}e^{-} may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 10^{3} times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  18. Lattice design for the future ERL-based electron hadron colliders eRHIC and LHeC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D.; Beebe-Wang, J.; Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.; Kayran, D.; Tsoupas, N.

    2011-03-28

    We present a lattice design of a CW Electron Recovery Linacs (ERL) for future electron hadron colliders eRHIC and LHeC. In eRHIC, an six-pass ERL installed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel will collide 5-30 GeV polarized electrons with RHIC's 50-250 (325) GeV polarized protons or 20-100 (130) GeV/u heavy ions. In LHeC a stand-along, 3-pass 60 GeV CW ERL will collide polarized electrons with 7 TeV protons. After collision, electron beam energy is recovered and electrons are dumped at low energy. Two superconducting linacs are located in the two straight sections in both ERLs. The multiple arcs are made of Flexible Momentum Compaction lattice (FMC) allowing adjustable momentum compaction for electrons with different energies. The multiple arcs, placed above each other, are matched to the two linac's straight sections with splitters and combiners.

  19. A quartz Cherenkov detector for Compton-polarimetry at future e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vauth, Annika; Vormwald, Benedikt [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2015-02-15

    Precision polarimetry is essential for future e{sup +}e{sup -} colliders and requires Compton polarimeters designed for negligible statistical uncertainties. In this paper, we discuss the design and construction of a quartz Cherenkov detector for such Compton polarimeters. The detector concept has been developed with regard to the main systematic uncertainties of the polarisation measurements, namely the linearity of the detector response and detector alignment. Simulation studies presented here imply that the light yield reachable by using quartz as Cherenkov medium allows to resolve in the Cherenkov photon spectra individual peaks corresponding to different numbers of Compton electrons. The benefits of the application of a detector with such single-peak resolution to the polarisation measurement are shown for the example of the upstream polarimeters foreseen at the International Linear Collider. Results of a first testbeam campaign with a four-channel prototype confirming simulation predictions for single electrons are presented.

  20. International Symposium to assess present and future promise of world's most powerful particle colliders

    CERN Multimedia

    Goshaw, Alfred

    2006-01-01

    "An international group of researchers will meet May 22-26 at Duke University for this year's Hadron Collider Physics Symposium. Participants will review the latest results from what is now the world's most powerful subatomic particle smasher and review final planning for its even more powerful successor now nearing completion."

  1. Di-Higgs decay of stoponium at a future photon-photon collider

    Science.gov (United States)

    Ito, Hayato; Moroi, Takeo; Takaesu, Yoshitaro

    2016-05-01

    We study the detectability of the stoponium in the di-Higgs decay mode at the photon-photon collider option of the International e+e- Linear Collider, the center-of-mass energy of which is planned to reach ˜1 TeV . We find that 5 σ detection of the di-Higgs decay mode is possible with the integrated electron-beam luminosity of 1 ab-1 if the signal cross section, σ (γ γ →σt˜1→h h ) , of O (0.1 ) fb is realized for the stoponium mass smaller than ˜800 GeV at 1 TeV ILC. Such a value of the cross section can be realized in the minimal supersymmetric standard model with relatively large trilinear stop-stop-Higgs coupling constant. The implication of the stoponium cross section measurement for the minimal supersymmetric standard model stop sector is also discussed.

  2. Colour Reconnection at Future $\\mathrm{e}^\\mathbf{+}\\mathrm{e}^\\mathbf{-}$ Colliders

    CERN Document Server

    Christiansen, Jesper R

    2015-01-01

    The effects of colour reconnection (CR) at $\\mathrm{e}^+\\mathrm{e}^-$ colliders are revisited, with focus on recently developed CR models. The new models are compared with the LEP2 measurements for $\\mathrm{e}^+\\mathrm{e}^- \\to \\mathrm{W}^+\\mathrm{W}^- \\to\\mathrm{q}_1 \\overline{\\mathrm{q}}_2 \\mathrm{q}_3 \\overline{\\mathrm{q}}_4$ and found to lie within their limits. Prospects for constraints from new high-luminosity $\\mathrm{e}^+\\mathrm{e}^-$ colliders are discussed. The novel arena of CR in Higgs decays is introduced, and illustrated by shifts in angular correlations that would be used to set limits on a potential $CP$-odd admixture of the 125 GeV Higgs state.

  3. Di-Higgs Decay of Stoponium at Future Photon-Photon Collider

    CERN Document Server

    Ito, Hayato; Takaesu, Yoshitaro

    2016-01-01

    We study the detectability of the stoponium in the di-Higgs decay mode at the photon-photon collider option of the International $e^+e^-$ Linear Collider (ILC), whose center-of-mass energy is planned to reach $\\sim 1$ TeV. We find that $5\\sigma$ detection of the di-Higgs decay mode is possible with the integrated electron-beam luminosity of $1 {\\rm ab}^{-1}$ if the signal cross section, $\\sigma(\\gamma \\gamma \\rightarrow \\sigma_{\\tilde{t}_1} \\rightarrow hh)$, of ${\\cal O}(0.1)$ fb is realized for the stoponium mass smaller than $\\sim$ 800 GeV at 1 TeV ILC. Such a value of the cross section can be realized in the minimal supersymmetric standard model (MSSM) with relatively large trilinear stop-stop-Higgs coupling constant. Implication of the stoponium cross section measurement for the MSSM stop sector is also discussed.

  4. Physics Accomplishments and Future Prospects of the BES Experiments at the BEPC Collider

    CERN Document Server

    Briere, Roy A; Mitchell, Ryan E

    2016-01-01

    The cornerstone of the Chinese experimental particle physics program consists of a series of experiments performed in the tau-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer, BES, is the common root name for the particle physics detectors operated at these machines. The development of the BES program is summarized and highlights of the physics results across several topical areas are presented.

  5. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    Science.gov (United States)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Houck, T. L.; Westenskow, G. A.; Vanecek, D. L.; Yu, S. S.

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  6. Searching for the Vector-Like Top Quark T at the Future Linac-Ring-Type ep Collider

    Institute of Scientific and Technical Information of China (English)

    YUE Chong-Xing; ZHANG Feng; WANG Wei

    2005-01-01

    @@ The little-Higgs models typically contain a new vector-like top quark T, which plays a key role in breaking the electroweak symmetry. In the context of the littlest Higgs (LH) model, we study single production of this kind of new particles via the process ep → eb → veT in the future linac-ring-type ep collider (LC()LHC). We find that the production cross section is in the range of1.2 × 10-4-0.48pb at the LC()LHC with √s = 3.7 TeV.

  7. Efficient twin aperture magnets for the future circular e+ /e_ collider

    Science.gov (United States)

    Milanese, A.

    2016-11-01

    We report preliminary designs for the arc dipoles and quadrupoles of the FCC-ee double-ring collider. After recalling cross sections and parameters of warm magnets used in previous large accelerators, we focus on twin aperture layouts, with a magnetic coupling between the gaps, which minimizes construction cost and reduces the electrical power required for operation. We also indicate how the designs presented may be further optimized so as to optimally address any further constraints related to beam physics, vacuum system, and electric power consumption.

  8. Efficient twin aperture magnets for the future circular $e^+/e^- $ collider

    CERN Document Server

    AUTHOR|(CDS)2078698

    2016-01-01

    We report preliminary designs for the arc dipoles and quadrupoles of the FCC-ee double-ring collider. After recalling cross sections and parameters of warm magnets used in previous large accelerators, we focus on twin aperture layouts, with a magnetic coupling between the gaps, which minimizes construction cost and reduces the electrical power required for operation. We also indicate how the designs presented may be further optimized so as to optimally address any further constraints related to beam physics, vacuum system, and electric power consumption.

  9. Efficient twin aperture magnets for the future circular e^{+}/e^{_} collider

    Directory of Open Access Journals (Sweden)

    A. Milanese

    2016-11-01

    Full Text Available We report preliminary designs for the arc dipoles and quadrupoles of the FCC-ee double-ring collider. After recalling cross sections and parameters of warm magnets used in previous large accelerators, we focus on twin aperture layouts, with a magnetic coupling between the gaps, which minimizes construction cost and reduces the electrical power required for operation. We also indicate how the designs presented may be further optimized so as to optimally address any further constraints related to beam physics, vacuum system, and electric power consumption.

  10. Efficient twin aperture magnets for the future circular e$^+$e$^-$ collider

    CERN Document Server

    Milanese, Attilio

    2016-01-01

    We report preliminary designs for the arc dipoles and quadrupoles of the FCC-ee double-ring collider. After recalling cross sections and parameters of warm magnets used in previous large accelerators, we focus on twin aperture layouts, with a magnetic coupling between the gaps, which minimizes construction cost and reduces the electrical power required for operation. We also indicate how the designs presented may be further optimized so as to optimally address any further constraints related to beam physics, vacuum system, and electric power consumption.

  11. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; /SLAC; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  12. The SUSY seesaw model and lepton-flavor violation at a future electron-positron linear collider

    CERN Document Server

    Deppisch, F; Redelbach, A; Rückl, R; Shimizu, Y

    2003-01-01

    We study lepton-flavor violating slepton production and decay at a future e^+e^- linear collider in context with the seesaw mechanism in mSUGRA post-LEP benchmark scenarios. The present knowledge in the neutrino sector as well as improved future measurements are taken into account. We calculate the signal cross-sections \\sigma(e^{+/-}e^- -> l_{\\beta}^{+/-} l_{\\alpha}^- \\tilde{\\chi}_b^0 \\tilde{\\chi}_a^0); l_{\\delta}=e, \\mu, \\tau; \\alpha =|= \\beta and estimate the main background processes. Furthermore, we investigate the correlations of these signals with the corresponding lepton-flavor violating rare decays l_{\\alpha} -> l_{\\beta} \\gamma. It is shown that these correlations are relatively weakly affected by uncertainties in the neutrino data, but very sensitive to the model parameters. Hence, they are particularly suited for probing the origin of lepton-flavor violation.

  13. Top quark threshold scan and study of detectors for highly granular hadron calorimeters at future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, Michal

    2014-03-11

    Two major projects for future linear electron-positron colliders, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), are currently under development. These projects can be seen as complementary machines to the Large Hadron Collider (LHC) which permit a further progress in high energy physics research. They overlap considerably and share the same technological approaches. To meet the ambitious goals of precise measurements, new detector concepts like very finely segmented calorimeters are required. We study the precision of the top quark mass measurement achievable at CLIC and the ILC. The employed method was a t anti t pair production threshold scan. In this technique, simulated measurement points of the t anti t production cross section around the threshold are fitted with theoretical curves calculated at next-to-next-to-leading order. Detector effects, the influence of the beam energy spectrum and initial state radiation of the colliding particles are taken into account. Assuming total integrated luminosity of 100 fb{sup -1}, our results show that the top quark mass in a theoretically well-defined 1S mass scheme can be extracted with a combined statistical and systematic uncertainty of less than 50 MeV. The other part of this work regards experimental studies of highly granular hadron calorimeter (HCAL) elements. To meet the required high jet energy resolution at the future linear colliders, a large and finely segmented detector is needed. One option is to assemble a sandwich calorimeter out of many low-cost scintillators read out by silicon photomultipliers (SiPM). We characterize the areal homogeneity of SiPM response with the help of a highly collimated beam of pulsed visible light. The spatial resolution of the experiment reach the order of 1 μm and allows to study the active area structures within single SiPM microcells. Several SiPM models are characterized in terms of relative photon detection efficiency and probability

  14. Bulk matter physics and its future at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Hippolyte, B. [Departement de Recherches Subatomiques, Universite Louis Pasteur, Institut Pluridisciplinaire Hubert Curien, Strasbourg (France)

    2009-07-15

    Measurements at low transverse momentum will be performed at the LHC for studying particle production mechanisms in pp and heavy-ion collisions. Some of the experimental capabilities for bulk matter physics are presented, focusing on tracking elements and particle identification. In order to anticipate the study of baryon production for both colliding systems at multi-TeV energies, measurements for identified species and recent model extrapolations are discussed. Several mechanisms are expected to compete for hadro-production in the low momentum region. For this reason, experimental observables that could be used for investigating multi-parton interactions and help understanding the ''underlying event'' content in the first pp collisions at the LHC are also mentioned. (orig.)

  15. High-power multimode X-band rf pulse compression system for future linear colliders

    Directory of Open Access Journals (Sweden)

    Sami G. Tantawi

    2005-04-01

    Full Text Available We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC. The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  16. Quench Protection Study of the Eurocircol 16 T cosθ Dipole for the Future Circular Collider (FCC)

    CERN Document Server

    AUTHOR|(CDS)2151660; Caiffi, Barbara; Fabbricatore, Pasquale; Farinon, Stefania; Salmi, Tiina-Mari; Sorbi, Massimo Leone; Stenvall, Antti; Volpini, Giovanni

    2016-01-01

    After LHC will be turned off, a new, more energetic machine will be needed in order to explore unknown regions of the high-energy physics. For this reason, the project Future Circular Collider (FCC) has started, with the goal of developing a 100 km circumference collider of 50 TeV proton beams. The Eurocircol collaboration is part of the FCC study under the European Community leadership, and it aims to develop a conceptual design of FCC within 2019. One of the main targets is to design a bending dipole able to reach 16 T operation magnetic field, in order to accomplish the size and energy constraints. Such a magnetic field can be reached using Nb3Sn conductors at their highest performance. One option under exploration is the Cosθ dipole, by INFN of Milano and Genova. One of the aspects to be taken into consideration is the amount of conductor needed, because of the relatively high cost of superconducting cables involving Nb3Sn. The amount of superconductor in the cross-section conductor area is a discriminan...

  17. Detection of heavy charged Higgs bosons in $e^+e^-to tbar b H^-$ production at future Linear Colliders

    CERN Document Server

    Moretti, S

    2003-01-01

    Heavy charged Higgs bosons ($H^pm$) of a Type II 2-Higgs Doublet Model (2HDM) can be detected at future electron-positron Linear Colliders (LCs) even when their mass is larger than half the collider energy. The single Higgs mode $e^+e^-to tbar b H^- + ~{rm{c.c.}} to 4b +{rm{j}}{rm{j}} + ell + p_T^{rm{miss}}$ (where j represents a jet and with $ell=e,mu$) contributes to extend the discovery reach of $H^pm$ states into the mass region $M_{H^pm}gsim sqrt s/2$, where the well studied pair production channel $e^+e^-to H^-H^+$ is no longer available. With a technique that allows one to reconstruct the neutrino four-momentum in the decay $tto b W^+to b ell^+nu$, one can suppress the main irreducible background due to $e^+e^-to tbar t bbar b$ (via a gluon splitting into $bbar b$ pairs) to a negligible level. We prove that one can establish a statistically significant $H^pm$ signal over a region of several tens of GeV beyond $M_{H^pm}approx sqrt s/2$, as long as $tanbetagsim30$.

  18. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    Science.gov (United States)

    Cimino, R.; Baglin, V.; Schäfers, F.

    2015-12-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  19. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2084568; Baglin, Vincent; Schaefers, Franz

    2015-01-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic...

  20. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders.

    Science.gov (United States)

    Cimino, R; Baglin, V; Schäfers, F

    2015-12-31

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  1. Recent Progress at SLAC Extracting High Charge from Highly-Polarized Photocathodes for Future-Collider Applications

    CERN Document Server

    Clendenin, J E; Garwin, E L; Harvey, S; Jiang, J; Kirby, R E; Luh, D A; Maruyama, T; Prepost, R; Prescott, C Y; Turner, J L

    2004-01-01

    Future colliders such as NLC and JLC will require a highly-polarized macropulse with charge that is more than an order of magnitude beyond that which could be produced for the SLC. The maximum charge from the SLC uniformly-doped GaAs photocathode was limited by the surface charge limit (SCL). The SCL effect can be overcome by using an extremely high (>1019 cm-3) surface dopant concentration. When combined with a medium dopant concentration in the majority of the active layer (to avoid depolarization), the surface concentration has been found to degrade during normal heat cleaning (1 hour at 600 C). The Be dopant as typically used in an MBE-grown superlattice cathode is especially susceptible to this effect compared to Zn or C dopant. Some relief can be found by lowering the cleaning temperature, but the long-term general solution appears to be atomic hydrogen cleaning.

  2. Exclusive vector meson photoproduction at the LHC and a future circular collider: A closer look on the final state

    Science.gov (United States)

    da Silveira, G. Gil; Gonçalves, V. P.; Jaime, M. M.

    2017-02-01

    Over the past years, the LHC experiments have reported experimental evidence for processes associated to photon-photon and photon-hadron interactions, showing their potential to investigate the production of low- and high-mass systems in exclusive events. In the particular case of the photoproduction of vector mesons, the experimental study of this final state is expected to shed light on the description of the QCD dynamics at small values of the Bjorken-x variable. In this paper, we extend previous studies for the exclusive J /Ψ and ϒ photoproduction in p p collisions based on the nonlinear QCD dynamics by performing a detailed study of the final-state distributions that can be measured experimentally at the LHC and at a future circular collider. Predictions for the rapidity and transverse momentum distributions of the vector mesons and of final-state dimuons are presented for p p collisions at √{s }=7 , 13, and 100 TeV.

  3. Construction and testing of a large scale prototype of a silicon tungsten electromagnetic calorimeter for a future lepton collider

    CERN Document Server

    Rouëné,J

    2013-01-01

    The CALICE collaboration is preparing large scale prototypes of highly granular calorimeters for detectors to be operated at a future linear electron positron collider. After several beam campaigns at DESY, CERN and FNAL, the CALICE collaboration has demonstrated the principle of highly granular electromagnetic calorimeters with a first prototype called physics prototype. The next prototype, called technological prototype, addresses the engineering challenges which come along with the realisation of highly granular calorimeters. This prototype will comprise 30 layers where each layer is composed of four 9_9 cm2 silicon wafers. The front end electronics is integrated into the detector layers. The size of each pixel is 5_5 mm2. This prototype enter sits construction phase. We present results of the first layers of the technological prototype obtained during beam test campaigns in spring and summer 2012. According to these results the signal over noise ratio of the detector exceeds the R&D goal of10:1.

  4. Prospects for Charged Current Deep-Inelastic Scattering off Polarized Nucleons at a Future Electron-Ion Collider

    CERN Document Server

    Aschenauer, Elke C; Martini, Till; Spiesberger, Hubert; Stratmann, Marco

    2013-01-01

    We present a detailed phenomenological study of charged-current-mediated deep-inelastic scattering off longitudinally polarized nucleons at a future Electron-Ion Collider. A new version of the event generator package DJANGOH, extended by capabilities to handle processes with polarized nucleons, is introduced and used to simulate charged current deep-inelastic scattering including QED, QCD, and electroweak radiative effects. We carefully explore the range of validity and the accuracy of the Jacquet-Blondel method to reconstruct the relevant kinematic variables from the measured hadronic final state in charged current events, assuming realistic detector performance parameters. Finally, we estimate the impact of the simulated charged current single-spin asymmetries on determinations of helicity parton distributions in the context of a global QCD analysis at next-to-leading order accuracy.

  5. Testing CP-Violation in the Scalar Sector at Future $e^+e^-$ Colliders

    CERN Document Server

    Li, Gang; Zhang, Chen; Zhu, Shou-hua

    2016-01-01

    We propose a {\\em model-independent} method to test CP-violation in the scalar sector through measuring the inclusive cross sections of $e^+e^-\\rightarrow Zh_1,Zh_2,h_1h_2$ processes with the recoil mass technique, where $h_1, h_2$ stand for the 125 GeV standard model (SM) like Higgs boson and a new lighter scalar respectively. This method effectively measures a quantity $K$ proportional to the product of the three couplings of $h_1ZZ,h_2ZZ,h_1h_2Z$ vertices. The value of $K$ encodes a part of information about CP-violation in the scalar sector. We simulate the signal and backgrounds for the processes mentioned above with $m_{2}=40\\textrm{GeV}$ at the Circular Electron-Positron Collider (CEPC) with the integrated luminosity $5\\textrm{ab}^{-1}$. We find that the discovery of both $Zh_2$ and $h_1h_2$ processes at $5\\sigma$ level will indicate an $\\mathcal{O}(10^{-2})$ $K$ value which can be measured to $16\\%$ precision. The method is applied to the weakly-coupled Lee model in which CP-violation can be tested ei...

  6. Quench protection analysis integrated in the design of dipoles for the Future Circular Collider

    CERN Document Server

    Salmi, Tiina-Mari; Prioli, Marco; Ruuskanen, Janne Johannes; Verweij, Arjan; Auchmann, Bernhard; Tommasini, Davide; Schoerling, Daniel; Lorin, Clement; Toral, Fernando; Durante, Maria; Farinon, Stefania; Marinozzi, Vittorio; Fabbricatore, Pasquale; Sorbi, Massimo Leone; Munilla Lopez, Javier

    2017-01-01

    The EuroCirCol collaboration is designing a 16 T Nb$_3$Sn dipole that can be used as the main bending magnet in a 100 km long 100 TeV hadron-hadron collider. For economic reasons, the magnets need to be as compact as possible, requiring optimization of the cable cross section in different magnetic field regions. This leads to very high stored energy density and poses serious challenges for the magnet protection in case of a quench, i.e., sudden loss of superconductivity in the winding. The magnet design therefore must account for the limitations set by quench protection from the earliest stages of the design. In this paper we describe how the aspect of quench protection has been accounted for in the process of developing different options for the 16 T dipole designs. We discuss the assumed safe values for hot spot temperatures and voltages, and the efficiency of the protection system. We describe the developed tools for the quench analysis, and how their usage in the magnet design will eventually ensure a sec...

  7. Near-Threshold Production of W±, Z0, and H0 at a Fixed-Target Experiment at the Future Ultrahigh-Energy Proton Colliders

    Directory of Open Access Journals (Sweden)

    J. P. Lansberg

    2015-01-01

    Full Text Available We outline the opportunities to study the production of the Standard Model bosons, W±, Z0, and H0, at “low” energies at fixed-target experiments based on possible future ultrahigh-energy proton colliders, that is, the High-Energy LHC, the Super proton-proton Collider, and the Future Circular Collider hadron-hadron. These can be indeed made in conjunction with the proposed future colliders designed to reach up to s=100 TeV by using bent crystals to extract part of the halo of the beam which would then impinge on a fixed target. Without disturbing the collider operation, this technique allows for the extraction of a substantial amount of particles in addition to serving for a beam-cleaning purpose. With this method, high-luminosity fixed-target studies at centre-of-mass energies above the W±, Z0, and H0 masses, s≃170–300 GeV, are possible. We also discuss the possibility offered by an internal gas target, which can also be used as luminosity monitor by studying the beam transverse shape.

  8. Testing C P violation in the scalar sector at future e+e- colliders

    Science.gov (United States)

    Li, Gang; Mao, Ying-nan; Zhang, Chen; Zhu, Shou-hua

    2017-02-01

    We propose a model-independent method to test C P violation in the scalar sector through measuring the inclusive cross sections of e+e-→Z h1,Z h2,h1h2 processes with the recoil mass technique, where h1 , h2 stand for the 125 GeV standard model-like Higgs boson and a new lighter scalar, respectively. This method effectively measures a quantity K proportional to the product of the three couplings of h1Z Z ,h2Z Z ,h1h2Z vertices. The value of K encodes a part of information about C P violation in the scalar sector. We simulate the signal and backgrounds for the processes mentioned above with m2=40 GeV at the Circular Electron-Positron Collider (CEPC) with the integrated luminosity 5 ab-1 . We find that the discovery of both Z h2 and h1h2 processes at 5 σ level indicates an O (10-2) K value that can be measured to 16% precision. The method is applied to the weakly coupled Lee model in which C P violation can be tested either before or after utilizing a "pT balance" cut (see Sec. II B for the definition). Lastly we point out that K ≠0 is a sufficient but not a necessary condition for the existence of C P violation in the scalar sector, namely, K =0 does not imply C P conservation in the scalar sector.

  9. Total Cross Sections at current/Future Colliders, conventional models and QCD

    CERN Document Server

    Fazal-e-Aleem, M

    1999-01-01

    Rise in total cross sections for elastic scattering generated immense interest both for experimental measurements and theoretical investigations. How will total cross section behave at LHC and Cosmic Ray energies is therefore in the limelight of our future measurements. Theoretical studies become even more interesting when we take into consideration the ratio of real and imaginary parts of the scattering amplitudes. We will briefly undertake the current results and future prospects in the light of conventional as well as QCD-based phenomenology.

  10. Whither colliders after the Large Hadron Collider?

    Indian Academy of Sciences (India)

    Rolf-Dieter Heuer

    2012-11-01

    This paper presents options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy as well as upgrades to the LHC (luminosity and energy) and to its injectors. This may be complemented by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and by the International Linear Collider, by a high-energy electron– proton machine, the LHeC, and/or by a muon collider. This contribution describes the various future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining the key messages for the way forward.

  11. Laser Wire Scanner Compton Scattering Techniques for the Measurement of the Transverse Beam Size of Particle Beams at Future Linear Colliders

    CERN Document Server

    Agapov, I; Blair, G A; Bosser, J; Braun, H H; Bravin, E; Boorman, G; Boogert, S T; Carter, J; D'amico, E; Delerue, N; Howell, D F; Doebert, S; Driouichi, C; Frisch, J; Hutchins, K Honkavaaram S; Kamps, T; Lefevre, T; Lewin, H; Paris, T; Poirier, F; Price, M T; Maccaferi, R; Malton, S; Penn, G; Ross, I N; Ross, M; Schlarb, H; Schmueser, P; Schreiber, S; Sertore, D; Walker, N; Wendt, M; Wittenburg, K

    2014-01-01

    This archive summarizes a working paper and conference proceedings related to laser wire scanner development for the Future Linear Collider (FLC) in the years 2001 to 2006. In particular the design, setup and data taking for the laser wire experiments at PETRA II and CT2 are described. The material is focused on the activities undertaken by Royal Holloway University of London (RHUL).

  12. Demonstration of a high-field short-period superconducting helical undulator suitable for future TeV-scale linear collider positron sources.

    Science.gov (United States)

    Scott, D J; Clarke, J A; Baynham, D E; Bayliss, V; Bradshaw, T; Burton, G; Brummitt, A; Carr, S; Lintern, A; Rochford, J; Taylor, O; Ivanyushenkov, Y

    2011-10-21

    The first demonstration of a full-scale working undulator module suitable for future TeV-scale positron-electron linear collider positron sources is presented. Generating sufficient positrons is an important challenge for these colliders, and using polarized e(+) would enhance the machine's capabilities. In an undulator-based source polarized positrons are generated in a metallic target via pair production initiated by circularly polarized photons produced in a helical undulator. We show how the undulator design is developed by considering impedance effects on the electron beam, modeling and constructing short prototypes before the successful fabrication, and testing of a final module.

  13. 12th international conference on elastic and diffractive scattering forward physics and QCD. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Borras, K.; Diehl, M.; Jung, H. (eds.)

    2007-12-15

    The following topics are dealt with: Lepton-proton collisions, pp and anti pp collisions, heavy ion collisions, opportunities at future colliders, cosmic rays and astropoarticle physics, theoretical developments in high-energy QCD. (HSI)

  14. Intelum project: tackling the calorimetry challenge for future high-energy colliders

    CERN Document Server

    CERN Bulletin

    2015-01-01

    Intelum is one of the CERN-coordinated projects funded under H2020. It aims to develop low-cost, radiation-hard scintillating and Cherenkov crystal and glass fibres for the next generation of calorimeter detectors for future high-energy experiments. This new technology could also have important applications in the medical imaging field.     Intelum project partners at the kick-off meeting held on 11 March at CERN.   Intelum is an H2020 Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) project coordinated by CERN. This project was initiated by the Crystal Clear Collaboration (CERN’s RD18 experiment), which has been developing inorganic scintillation materials for novel ionising-radiation detectors for 25 years. Intelum is an international consortium including fifteen institutes and companies from across western and eastern Europe, Japan and the USA, all of which are experts in crystal growth, scintillating mechanisms, radiation damage and dete...

  15. PROCEEDINGS OF THE 1983 DPF WORKSHOP ON COLLIDER DETECTORS: PRESENT CAPABILITIES AND FUTURE POSSIBILITIES, FEB. 28 - MARCH 4, 1983.

    Energy Technology Data Exchange (ETDEWEB)

    Loken Ed, S.C.; Nemethy Ed, P.

    1983-04-01

    It is useful before beginning our work here to restate briefly the purpose of this workshop in the light of the present circumstances of elementary particle physics in the U.S. The goal of our field is easily stated in a general way: it is to reach higher center of mass energies and higher luminosities while employing more sensitive and more versatile event detectors, all in order to probe more deeply into the physics of elementary particles. The obstacles to achieving this goal are equally apparent. Escalating costs of construction and operation of our facilities limit alternatives and force us to make hard choices among those alternatives. The necessity to be highly selective in the choice of facilities, in conjunction with the need for increased manpower concentrations to build accelerators and mount experiments, leads to complex social problems within the science. As the frontier is removed ever further, serious technical difficulties and limitations arise. Finally, competition, much of which is usually healthy, now manifests itself with greater intensity on a regional basis within our country and also on an international scale. In the far ({ge}20 yr) future, collaboration on physics facilities by two or more of the major economic entities of the world will possibly be forthcoming. In the near future, we are left to bypass or overcome these obstacles on a regional scale as best we can. The choices we face are in part indicated in the list of planned and contemplated accelerators shown in Table I. The facilities indicated with an asterisk pose immediate questions: (1) Do we need them all and what should be their precise properties? (2) How are the ones we choose to be realized? (3) What is the nature of the detectors to exploit those facilities? (4) How do we respond to the challenge of higher luminosity as well as higher energy in those colliders? The decision-making process in this country and elsewhere depends on the answers to these technical questions

  16. A 130 nm CMOS mixed mode front end readout chip for silicon strip tracking at the future linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Pham, T.H., E-mail: pham@lpnhe.in2p3.f [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Charpy, A.; Ciobanu, C. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Comerma, A. [Universitat de Barcelona, Dept E.C.M/Dept. Electronica/ICC-Diagonal 647, planta 6, 08028 Barcelona (Spain); David, J.; Dhellot, M. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Dieguez, A.; Gascon, D. [Universitat de Barcelona, Dept E.C.M/Dept. Electronica/ICC-Diagonal 647, planta 6, 08028 Barcelona (Spain); Genat, J.F.; Savoy Navarro, A.; Sefri, R. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France)

    2010-11-01

    A 130 nm mixed (analog and digital) CMOS chip intended to read silicon strip detectors for future linear collider experiments was developed. Currently under testing, this chip has been optimized for a silicon micro-strip tracking device. It includes 88 channels of a full analog signal processing chain with the corresponding digital control and readout. Every analog channel includes (i) a low noise charge amplifier and integration with long pulse shaping, (ii) an eight by eight positions analog sampler for both storing successive events and reconstructing the full pulse shape, and (iii) a sparsifier performing analog sum of three adjacent inputs to decide whether there is signal or not. The whole system is controlled by the digital part, which allows configuring all the reference currents and voltages, drives the control signals to the analog memories, records the timing and channel information and subsequently performs the conversion to digital values of samples. The total surface of the circuit is 10x5 mm{sup 2}, with each analog channel occupying an area of 105x3500 {mu}m{sup 2}, and the remaining space of about 9000x700 {mu}m{sup 2} being filled by the analog channels on the silicon.

  17. Event generation and production of signal inputs for the search of dark matter mediator signal at a future hadron collider

    CERN Document Server

    Chalise, Darshan

    2017-01-01

    The interaction between Dark Matter particles and Standard Model particles is possible through a force mediated by a Dark Matter(DM) - Standard Model(SM) mediator. If that mediator decays through a dijet event, the reconstructed invariant mass of the jets will peak at a specific value, in contrast to the smooth QCD background. This analysis is a preliminary work towards the understanding of how changes in detector conditions at the Future Circular Collider affect the sensitivity of the mediator signal. MadGraph 5 was used to produce events with 30 TeV DM mediator and Heppy was used to produce flat n-tuples for ROOT analysis. MadAnalysis 5 was then used to produce histograms of MadGraph events and PyRoot was used to analyze Heppy output. Histograms of invariant mass of the jets after event production through MadGraph as well as after Heppy analysis showed a peak at 30 TeV. This verified the production of a 30 TeV mediator during event production.

  18. Assessing Calorimeter Requirements for a 100 TeV Future Collider With Reference to New Physics Benchmarks

    CERN Document Server

    Dylewsky, Daniel

    2014-01-01

    Plans for a future 100 TeV circular collider require the design of detection equipment capable of measuring events at such high energy. This study examined the simulated decay of hypothetical 10 TeV excited quarks in 100 TeV pp collisions with regard to the possibility of calorimeter punch-through. Two methods of parameterizing the energy resolution in detector simulations were employed to model the effects of particles escaping the hadronic calorimeter. Varying the constant term of the energy resolution parameterization caused the dijet mass distribution to broaden up to 58% with respect to the ATLAS default. Using the assumption that the jets' makeup could be approximated by 180 GeV pions, their expected signal degradation in calorimeters of varying depths was compared to the varied constant term trials. It was found that the broadening associated with a calorimeter of thickness 7 lambda was consistent with that caused by an increase of 1\\% in the constant term (from the ATLAS default).

  19. Future Circular Collider Study

    CERN Document Server

    Benedikt, Michael

    2014-01-01

    This presentation has been given during the 1st EuCARD-2 annual meeting. It contains: • Motivation & scope • Parameters & design challenges • Study organization, study time line • Preparing global FCC collaboration • Summary

  20. Lecture | CERN prepares its long-term future: a 100-km circular collider to follow the LHC? | CERN Globe | 11 March

    CERN Multimedia

    2015-01-01

    Particle physics is a long-term field of research: the LHC was originally conceived in the 1980s, but did not start running until 25 years later. An accelerator unlike any other, it is now just at the start of a programme that is set to run for another 20 years.   Frédérick Bordry. While the LHC programme is already well defined for the next two decades, it is now time to look even further ahead, and so CERN is initiating an exploratory study for a future long-term project centred on a next-generation circular collider with a circumference of 80 to 100 kilometres. A worthy successor to the LHC, whose collision energies will reach 13 TeV in 2015, such an accelerator would allow particle physicists to push the boundaries of knowledge even further. The Future Circular Collider (FCC) programme will focus especially on studies for a hadron collider, like the LHC, capable of reaching unprecedented energies in the region of 100 TeV. Opening with an introduction to the LHC and...

  1. CERN looks to the long-term future: might a 100km circular collider follow the LHC around mid-century?

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Particle physics is a long-term field of research: the LHC was originally conceived in the 1980s, but did not start running until 25 years later. An accelerator unlike any other, it is now just at the start of a programme that is set to run for another 20 years. While the LHC programme is already well defined for the next two decades, it is now time to look even further ahead, and so CERN is initiating an exploratory study for a future long-term project centred on a next-generation circular collider with a circumference of 80 to 100 kilometres. A worthy successor to the LHC, whose collision energies will reach 13 TeV in 2015, such an accelerator would allow particle physicists to push the boundaries of knowledge even further. The Future Circular Collider (FCC) programme will focus on studies for a hadron collider, like the LHC, capable of reaching unprecedented energies in the region of 100 TeV. It will also study electron-positron and electron-proton options. Opening with an introduction to the LHC and its...

  2. Readout electronics for low dark count pixel detectors based on Geiger mode avalanche photodiodes fabricated in conventional CMOS technologies for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Vilella, E., E-mail: evilella@el.ub.es [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Arbat, A. [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Comerma, A.; Trenado, J. [Department of Structure and Constituents of Matter, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Alonso, O. [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Gascon, D. [Department of Structure and Constituents of Matter, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Vila, A. [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Garrido, L. [Department of Structure and Constituents of Matter, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Dieguez, A. [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain)

    2011-09-11

    High sensitivity and excellent timing accuracy of the Geiger mode avalanche photodiodes make them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase in the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 {mu}m and a high integration 0.13 {mu}m commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.

  3. Proposal to negotiate three collaboration agreements in the context of the Future Circular Collider Study (FCC) concerning the development of HTS coated tapes integrated into the beam screen for impedance mitigation

    CERN Document Server

    2016-01-01

    Proposal to negotiate three collaboration agreements in the context of the Future Circular Collider Study (FCC) concerning the development of HTS coated tapes integrated into the beam screen for impedance mitigation

  4. Muon colliders

    Science.gov (United States)

    Palmer, R. B.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A. J.; Chen, P.; Cheng, W.-H.; Cho, Y.; Courant, E.; Fernow, R. C.; Gallardo, J. C.; Garren, A.; Green, M.; Kahn, S.; Kirk, H.; Lee, Y. Y.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; Noble, R.; Norem, J.; Popovic, M.; Schachinger, L.; Silvestrov, G.; Summers, D.; Stumer, I.; Syphers, M.; Torun, Y.; Trbojevic, D.; Turner, W.; Van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Winn, D.; Wurtele, J.

    1996-05-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity μ+μ- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  5. Muon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley Lab., CA (United States); Skrinsky, A. [BINP, RU-630090 Novosibirsk (Russian Federation)] [and others

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  6. Design Studies and Optimization of High-Field Nb$_3$Sn Dipole Magnets for a Future Very High Energy PP Collider

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. V. [Fermilab; Novitski, I. [Fermilab; Zlobin, A. V. [Fermilab

    2017-05-01

    High filed accelerator magnets with operating fields of 15-16 T based on the $Nb_3Sn$ superconductor are being considered for the LHC energy upgrade or a future Very High Energy pp Collider. Magnet design studies are being conducted in the U.S., Europe and Asia to explore the limits of the $Nb_3Sn$ accelerator magnet technology while optimizing the magnet design and performance parame-ters, and reducing magnet cost. The first results of these studies performed at Fermilab in the framework of the US-MDP are reported in this paper.

  7. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  8. Higgs bosons production and decay at future $e^+e^-$ linear colliders as a probe of the B-L model

    CERN Document Server

    Ramirez-Sanchez, F; Hernandez-Ruiz, M A

    2016-01-01

    We study the phenomenology of the light and heavy Higgs boson production and decay in the context of a $U(1)_{B-L}$ extension of the Standard Model with an additional $Z'$ boson at future $e^+e^-$ linear colliders with center-of-mass energies of $\\sqrt{s}=500-3000\\hspace{0.8mm}GeV$ and integrated luminosities of ${\\cal L}=500-2000\\hspace{0.8mm}fb^{-1}$. The study includes the processes $e^{+}e^{-}\\rightarrow (Z, Z') \\to Zh$ and $e^{+}e^{-}\\rightarrow (Z, Z') \\to ZH$, considering both the resonant and non-resonant effects. We find that the total number of expected $Zh$ and $ZH$ events can reach 909,124 and 97,487, respectively, which is a very optimistic scenario and thus it would be possible to perform precision measurements for both Higgs bosons $h$ and $H$, as well as for the $Z'$ boson in future high-energy and high-luminosity $e^+e^-$ colliders experiments. Our study complements other studies on the B-L model and on the Higgs-strahlung processes $e^{+}e^{-}\\rightarrow (Z, Z') \\to Zh$ and $e^{+}e^{-}\\right...

  9. Bottomonium production in hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brenner Mariotto, C. [Universidade de Caxias do Sul, RS (Brazil). Centro de Ciencias Exatas e Tecnologia]. E-mail: mariotto@if.ufrgs.br; Gay Ducati, M.B. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas em Altas Energias; Ingelman, G. [Uppsala Univ. (Sweden). High Energy Physics

    2004-07-01

    Production of bottomonium in hadronic collisions is studied in the framework of the soft colour approach. We report some results for production of {upsilon} in the Tevatron and predictions for the future Large Hadron Collider (LHC). (author)

  10. P{bar P} collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Demarteau, M. [State Univ. of New York, Stony Brook, NY (United States)

    1992-04-01

    A brief introduction to {bar p}p collider physics is given. Selected results from the collider experiments at the CERN S{bar p}pS and the Tevatron collider are described. The emphasis is on experimental aspects of {bar p}p collisions. Minimum bias physics and the production of jets, Intermediate Vector Bosons and heavy flavors is reviewed. The outlook for physics at hadron colliders for the near future is briefly discussed.

  11. Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e$^+$e$^-$ circular collider

    CERN Document Server

    Cerri, Olmo; Pierini, Maurizio; Podo, Alessandro; Rolandi, Gigi

    2016-01-01

    We study the expected sensitivity to measure the branching ratio of Higgs boson decays to invisible particles at a future circular \\epem collider (FCCee), considering an integrated luminosity of 3.5 ab$^{-1}$ at a center-of-mass energy $\\sqrt{s}=240$ GeV. The impact of the energy spread of the FCCee beam on the measurement is discussed. Two different detector concepts are considered: a detector corresponding to the CMS reconstruction performances and the expected design of the ILC detector. The minimum branching ratio for a $5\\sigma$ observation after 3.5ab$^{-1}$ of data taking is $1.7\\pm 0.1\\%(stat+syst) $ ($2.5\\pm 0.3\\%((stat+syst))$ ) for an ILC-like (CMS-like) detector concept. The branching ratio exclusion limit at 95\\% CL is $0.63 \\pm 0.22\\%((stat+syst))$ ($0.92\\pm0.32 \\%((stat+syst))$).

  12. 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders 

    CERN Document Server

    Vilella, E; Dieguez, A

    2013-01-01

    This paper presents an analysis of the maximum achievable fill-factor by a pixel detector of Geiger-mode avalanche photodiodes with the Chartered 130 nm/Tezzaron 3D process. The analysis shows that fillfactors between 66% and 96% can be obtained with different array architectures and a time-gated readout circuit of minimum area. The maximum fill-factor is achieved when the two-layer vertical stack is used to overlap the non-sensitive areas of one layer with the sensitive areas of the other one. Moreover, different sensor areas are used to further increase the fill-factor. A chip containing a pixel detector of the Geigermode avalanche photodiodes and aimed to future linear colliders has been designed with the Chartered 130 nm/Tezzaron 3D process to increase the fill-factor.

  13. Branching Fraction Measurements of the SM Higgs with a Mass of 160 GeV at Future Linear $e^{+}e^{-}$ Colliders

    CERN Document Server

    Boos, E; Pukhov, A E; Sachwitz, M; Schreiber, H J

    1999-01-01

    Assuming an integrated luminosity of 500 fb$^{-1}$ and a center-of-mass energy of 350 GeV, we examine the prospects for measuring branching fractions of a Standard Model-like Higgs boson with a mass of 160 GeV at the future linear \\ee collider TESLA when the Higgs is produced via the Higgsstrahlung mechanism, \\ee \\pfr HZ. We study in detail the precisions achievable for the branching fractions of the Higgs into WW$^*$, ZZ$^*$ and \\bb. However, the measurement of BF(H \\pfr \\gaga) remains a great challence. Combined with the expected error for the inclusive Higgsstrahlung production rate the uncertainty for the total width of the Higgs is estimated.

  14. Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e$^+$e$^-$ circular collider

    CERN Document Server

    Cerri, Olmo; Pierini, Maurizio; Podo, Alessandro; Rolandi, Gigi

    2017-01-01

    We study the expected sensitivity to measure the branching ratio of Higgs boson decays to invisible particles at a future circular \\epem collider (FCCee), considering an integrated luminosity of 3.5 ab$^{-1}$ at a center-of-mass energy $\\sqrt{s}=240$ GeV. The impact of the energy spread of the FCCee beam on the measurement is discussed. Two different detector concepts are considered: a detector corresponding to the CMS reconstruction performances and the expected design of the ILC detector. The minimum branching ratio for a $5\\sigma$ observation after 3.5ab$^{-1}$ of data taking is $1.7\\pm 0.1\\%(stat+syst) $ ($2.5\\pm 0.3\\%((stat+syst))$ ) for an ILC-like (CMS-like) detector concept. The branching ratio exclusion limit at 95\\% CL is $0.63 \\pm 0.22\\%((stat+syst))$ ($0.92\\pm0.32 \\%((stat+syst))$).

  15. Impact of Theory Uncertainties on the Precision of the Top Quark Mass in a Threshold Scan at Future e+e- Colliders

    CERN Document Server

    Simon, Frank

    2016-01-01

    Future energy-frontier electron-positron colliders will be capable of high-precision studies of top quark properties. The measurement of the top-pair production cross section around the threshold provides access to the mass of the top quark in theoretically well-defined schemes, with statistical uncertainties of 20 MeV or less, depending on the assumed integrated luminosity of the measurement. At this level of precision, experimental and theory systematics are likely to become important or even dominant. This contribution presents a first analysis of the impact of the remaining uncertainties of the recently completed calculation of the top pair production cross section at NNNLO QCD including the exchange of Higgs bosons on the extraction of the top quark mass from a threshold scan. The analysis is based on reconstruction efficiencies and background levels obtained in full simulation studies for CLIC, combined with signal cross sections from the higher-order calculations. To assess possible differences between...

  16. 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders

    Science.gov (United States)

    Vilella, E.; Alonso, O.; Diéguez, A.

    2013-12-01

    This paper presents an analysis of the maximum achievable fill-factor by a pixel detector of Geiger-mode avalanche photodiodes with the Chartered 130 nm/Tezzaron 3D process. The analysis shows that fill-factors between 66% and 96% can be obtained with different array architectures and a time-gated readout circuit of minimum area. The maximum fill-factor is achieved when the two-layer vertical stack is used to overlap the non-sensitive areas of one layer with the sensitive areas of the other one. Moreover, different sensor areas are used to further increase the fill-factor. A chip containing a pixel detector of the Geiger-mode avalanche photodiodes and aimed to future linear colliders has been designed with the Chartered 130 nm/Tezzaron 3D process to increase the fill-factor.

  17. Search for Resonant s-channel Higgs Production at a future high-luminosity e+e- collider (FCC-ee)

    CERN Document Server

    Wojcik, George

    2014-01-01

    In this project, the plausibility of measuring direct resonant s-channel Higgs production at a future high-luminosity e+e- collider machine (of the FCC-ee type) is examined. Using PYTHIA8 to generate expected samples for signal (e+e--->H-->WW*,ZZ*,bbar,gluon-gluon) and backgrounds (e+e- -->Z*,gamma*-->qqbar,tautau,WW,ZZ) in seven possible Higgs decay channels (combining isolated leptons, neutrinos and heavy-quark, light-quark and gluon jets), a total combined statistical significance of 3.6 sigma per experiment is obtained at an integrated luminosity of 10 $ab^{-1}$. This preliminary result, not accounting yet for signal loss from ISR and beam energy spreading, seems to confirm the possibility to access (or at least put strong constraints) on the fundamental Yukawa coupling of the Higgs boson to electrons.

  18. Higgs production in neutralino decays in the MSSM. The LHC and a future e{sup +}e{sup -} collider

    Energy Technology Data Exchange (ETDEWEB)

    Arbey, A.; Mahmoudi, F. [Universite Lyon 1, Centre de Recherche Astrophysique de Lyon, CNRS, Saint-Genis Laval Cedex (France); Ecole Normale Superieure de Lyon, Lyon (France); CERN, Geneva 23 (Switzerland); Battaglia, M. [CERN, Geneva 23 (Switzerland); University of California, Santa Cruz Institute of Particle Physics, Santa Cruz, CA (United States)

    2015-03-01

    The search for the production of weakly interacting SUSY particles at the LHC is crucial for testing supersymmetry in relation to dark matter. Decays of neutralinos into Higgs bosons occur over some significant part of the SUSY parameter space and represent the most important source of h boson production in SUSY decay chains in the MSSM. We study h production in neutralino decays using scans of the phenomenological MSSM. Whilst in constrained MSSM scenarios the decay χ{sub 2}{sup 0} → hχ{sub 1}{sup 0} is the dominant channel, this does not hold in more general MSSM scenarios. On the other hand, the χ{sub 2,3}{sup 0} → hχ{sub 1}{sup 0} decays remain important and are highly complementary to multi-lepton final states in the LHC searches. The perspectives for the LHC analyses at 8 and 14 TeV as well as the reach of an e{sup +}e{sup -} collider with √(s) = 0.5, 1, 1.5 and 3 TeV are discussed. (orig.)

  19. Search for heavy neutral CP-even Higgs within lepton-specific 2HDM at a future linear collider

    Science.gov (United States)

    Hashemi, Majid; Haghighat, Gholamhossein

    2017-09-01

    In this paper, the production process $e^- e^+ \\rightarrow A H$ is analyzed in the context of the type IV 2HDM and the question of observability of a neutral CP-even Higgs boson $H$ at a linear collider operating at $\\sqrt{s}=1$ TeV is addressed. The CP-odd Higgs is assumed to experience a gauge-Higgs decay as $A\\rightarrow ZH$ with hadronic decay of $Z$ boson as the signature of signal events. The production chain is thus $e^+e^- \\rightarrow AH \\rightarrow ZHH \\rightarrow jj\\ell\\ell\\ell\\ell$ where $\\ell$ is a $\\tau$ or $\\mu$. Four benchmark points with different mass hypotheses are assumed for the analysis. The Higgs mass $m_H$ is assumed to vary within the range 150-300 GeV in increments of 50 GeV. The anti-$k_t$ algorithm is used to perform the jet reconstruction. Results indicate that the neutral CP-even Higgs $H$ is observable through this production mechanism using the di-muon invariant mass distribution with possibility of mass measurement. The corresponding signal significances exceed $5\\sigma$ at integrated luminosity of 3000 $fb^{-1}$.

  20. High Energy Hadron Colliders - Report of the Snowmass 2013 Frontier Capabilities Hadron Collider Study Group

    CERN Document Server

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2013-01-01

    High energy hadron colliders have been the tools for discovery at the highest mass scales of the energy frontier from the SppS, to the Tevatron and now the LHC. This report reviews future hadron collider projects from the high luminosity LHC upgrade to a 100 TeV hadron collider in a large tunnel, the underlying technology challenges and R&D directions and presents a series of recommendations for the future development of hadron collider research and technology.

  1. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  2. When worlds collide: medicine, business, the Affordable Care Act and the future of health care in the U.S.

    Science.gov (United States)

    Wicks, Andrew C; Keevil, Adrian A C

    2014-01-01

    The dialogue about the future of health care in the US has been impeded by flawed conceptions about medicine and business. The present paper re-examines some of the underlying assumptions about both medicine and business, and uses more nuanced readings of both terms to frame debates about the ACA and the emerging health care environment. © 2014 American Society of Law, Medicine & Ethics, Inc.

  3. Polarized Electrons for Linear Colliders

    CERN Document Server

    Clendenin, J E; Garwin, E L; Kirby, R E; Luh, D A; Maruyama, T; Prescott, C Y; Sheppard, J C; Turner, J; Prepost, R

    2005-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%.

  4. Precise measurement of Higgs decay rate into $W W^{*}$ at future $e^{+}e^{-}$ Linear Colliders and theoretical consequences

    CERN Document Server

    Borisov, G

    1999-01-01

    Assuming a SM or MSSM scenario, one expects a light Higgs boson which could be studied in great detail with a LC operating at \\sqrt s>m_h+m_Z. In the TESLA scenario, with 500 fb^-1 accumulated at \\sqrt s = 350 GeV, about 10^5 hZ events could be produced through the Higgstrahlung process. At a future LC with a \\sim 1 cm beam-pipe radius and a thin Si detector there will be excellent separation between the various flavours. With the high statistics available it will thus become possible to measure the various branching ratios with a few % error. Typically one expects 8 % precision on BR(h\\to\\bar cc), 6 % on BR(h\\to gg) and explained in section 3, this measurement can give access to the Higgs total decay width and therefore to all partial widths. In particular one can precisely measure \\Gamma(h\\to\\bar bb) and \\Gamma(h\\to\\tau^+\\tau^-) which have a high sensitivity to MSSM effects\\cite{gunion} and therefore allow an essential test of the Higgs sector. If m_A < 1 TeV, it becomes possible to measure a significant...

  5. Study of the performance of a compact sandwich calorimeter for the instrumentation of the very forward region of a future linear collider detector

    Science.gov (United States)

    Ghenescu, V.; Benhammou, Y.

    2017-02-01

    The FCAL collaboration is preparing large scale prototypes of special calorimeters to be used in the very forward region at a future linear electron positron collider for a precise and fast luminosity measurement and beam-tuning. These calorimeters are designed as sensor-tungsten calorimeters with very thin sensor planes to keep the Moliere radius small and dedicated FE electronics to match the timing and dynamic range requirements. A partially instrumented prototype was investigated in the CERN PS T9 beam in 2014 and at the DESY-II Synchrotron in 2015. It was operated in a mixed particle beam (electrons, muons and hadrons) of 5 GeV from PS facilities and with secondary electrons of 5 GeV energy from DESY-II. The results demonstrated a very good performance of the full readout chain. The high statistics data were used to study the response to different particles, perform sensor alignment and measure the longitudinal shower development in the sandwich. In addition, Geant4 MC simulations were done, and compared to the data.

  6. Optimisation of the Read-out Electronics of Muon Drift-Tube Chambers for Very High Background Rates at HL-LHC and Future Colliders

    CERN Document Server

    Nowak, Sebastian; Gadow, Philipp; Ecker, Katharina; Fink, David; Fras, Markus; Kortner, Oliver; Kroha, Hubert; Mueller, Felix; Richter, Robert; Schmid, Clemens; Schmidt-Sommerfeld, Korbinian; Zhao, Yazhou

    2016-01-01

    In the ATLAS Muon Spectrometer, Monitored Drift Tube (MDT) chambers and sMDT chambers with half of the tube diameter of the MDTs are used for precision muon track reconstruction. The sMDT chambers are designed for operation at high counting rates due to neutron and gamma background irradiation expected for the HL-LHC and future hadron colliders. The existing MDT read-out electronics uses bipolar signal shaping which causes an undershoot of opposite polarity and same charge after a signal pulse. At high counting rates and short electronics dead time used for the sMDTs, signal pulses pile up on the undershoot of preceding background pulses leading to a reduction of the signal amplitude and a jitter in the drift time measurement and, therefore, to a degradation of drift tube efficiency and spatial resolution. In order to further increase the rate capability of sMDT tubes, baseline restoration can be used in the read-out electronics to suppress the pile-up effects. A discrete bipolar shaping circuit with baseline...

  7. 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Vilella, E., E-mail: evilella@el.ub.edu; Alonso, O.; Diéguez, A.

    2013-12-11

    This paper presents an analysis of the maximum achievable fill-factor by a pixel detector of Geiger-mode avalanche photodiodes with the Chartered 130 nm/Tezzaron 3D process. The analysis shows that fill-factors between 66% and 96% can be obtained with different array architectures and a time-gated readout circuit of minimum area. The maximum fill-factor is achieved when the two-layer vertical stack is used to overlap the non-sensitive areas of one layer with the sensitive areas of the other one. Moreover, different sensor areas are used to further increase the fill-factor. A chip containing a pixel detector of the Geiger-mode avalanche photodiodes and aimed to future linear colliders has been designed with the Chartered 130 nm/Tezzaron 3D process to increase the fill-factor. -- Highlights: •GAPD pixel detectors present a low detection efficiency due to a reduced fill-factor. •3D-ICs are proposed as a solution to increase the fill-factor of GAPD detectors. •The maximum achievable fill-factor by a GAPD detector in a 3D-IC process is analyzed. •Fill-factors between 66% and 96% can be obtained with different array architectures. •The array is operated in a time-gated mode to reduce the expected sensor noise.

  8. Conceptual design and scaled experimental validation of an actively damped carbon tie rods support system for the stabilization of future particle collider superstructures.

    Science.gov (United States)

    Collette, C; Tshilumba, D; Fueyo-Rosa, L; Romanescu, I

    2013-02-01

    This paper presents a simple solution to increase the stability of the large superstructures supporting the final electromagnets of future linear particle collider. It consists of active carbon fiber tie rods, fixed at one end on the structure and at the other end to the detector through active tendons. In the first part of the paper, the solution has been tested on a finite element model of one half of the CLIC_ILD final focus structure. With a reasonable design, it is shown numerically that the compliance can be decreased by at least a factor 4, i.e., that the structure is 4 times more robust to technical noise at low frequency. Two additional features of the active rods are that they can also actively damp the structural resonances and realign the superstructures. The second part of the paper presents a successful experimental validation of the concept, applied to a scaled test bench, especially designed to contain the same modal characteristics as the full scale superstructure.

  9. Study of the performance of a compact sandwich calorimeter for the instrumentation of the very forward region of a future linear collider detector

    CERN Document Server

    Ghenescu, V

    2016-01-01

    The FCAL collaboration is preparing large scale prototypes of special calorimeters to be used in the very forward region at a future linear electron positron collider for a precise and fast luminosity measurement and beam-tuning. These calorimeters are designed as sensor-tungsten calorimeters with very thin sensor planes to keep the Moliere radius small and dedicated FE electronics to match the timing and dynamic range requirements. A partially instrumented prototype was investigated in the CERN PS T9 beam in 2014 and at the DESY-II Synchrotron in 2015. It was operated in a mixed particle beam (electrons, muons and hadrons) of 5 GeV from PS facilities and with secondary electrons of 5 GeV energy from DESY-II. The results demonstrated a very good performance of the full readout chain. The high statistics data were used to study the response to different particles, perform sensor alignment and measure the longitudinal shower development in the sandwich. In addition, Geant4 MC simulations were done, and compared...

  10. Prospects for Colliders and Collider Physics to the 1 PeV Energy Scale

    CERN Document Server

    King, B J

    2000-01-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC -- one each of e+e- and hadron colliders and three muon colliders -- and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory

  11. Scrutinizing the Higgs quartic coupling at a future 100 TeV proton-proton collider with taus and b-jets

    Science.gov (United States)

    Fuks, Benjamin; Kim, Jeong Han; Lee, Seung J.

    2017-08-01

    The Higgs potential consists of an unexplored territory in which the electroweak symmetry breaking is triggered, and it is moreover directly related to the nature of the electroweak phase transition. Measuring the Higgs boson cubic and quartic couplings, or getting equivalently information on the exact shape of the Higgs potential, is therefore an essential task. However, direct measurements beyond the cubic self-interaction of the Higgs boson consist of a huge challenge, even for a future proton-proton collider expected to operate at a center-of-mass energy of 100 TeV. We present a novel approach to extract model-independent constraints on the triple and quartic Higgs self-coupling by investigating triple Higgs-boson hadroproduction at a center-of-mass energy of 100 TeV, focusing on the ττb b bar b b bar channel that was previously overlooked due to a supposedly too large background. It is thrown into sharp relief that the assist from transverse variables such as mT2 and a boosted configuration ensures a high signal sensitivity. We derive the luminosities that would be required to constrain given deviations from the Standard Model in the Higgs self-interactions, showing for instance that a 2σ sensitivity could be achieved for an integrated luminosity of 30 ab-1 when Standard Model properties are assumed. With the prospects of combining these findings with other triple-Higgs search channels, the Standard Model Higgs quartic coupling could in principle be reached with a significance beyond the 3σ level.

  12. A new jet reconstruction algorithm for lepton colliders

    CERN Document Server

    Boronat, Marça; Vos, Marcel

    2014-01-01

    We propose a new sequential jet reconstruction algorithm for future lepton colliders at the energy frontier. The Valencia algorithm combines the natural distance criterion for lepton colliders with the greater robustness against backgrounds of algorithms adapted to hadron colliders. Results on a detailed Monte Carlo simulation of $t\\bar{t}$ and $ZZ$ production at future linear $e^+e^-$ colliders (ILC and CLIC) with a realistic level of background overlaid, show that it achieves better performance in the presence of background.

  13. SSC [Superconducting Super Collider] Project: Technical Training for the Future of Texas. Navarro College/Dallas Community College District. Final Report for Year One.

    Science.gov (United States)

    Orsak, Charles; McGlohen, Patti J.

    The Superconducting Super Collider Laboratory (SSCL) is a national lab for research on the fundamental forces and constituents of the universe. A major part of the research will involve an oval ring 54 miles in circumference through which superconducting magnets will steer two beams of protons in opposite directions. In response to the…

  14. Radiative corrections for the LHC and linear collider era

    NARCIS (Netherlands)

    E. Laenen; D. Wackeroth

    2009-01-01

    We emphasize the importance of including radiative corrections when extracting physics from colliders such as the Tevatron Run II at Fermilab, the Large Hadron Collider (LHC) at CERN, and a future linear collider (LC). We review both well-tested methods and recent advances for calculating these corr

  15. Physics prospects at a linear + - collider

    Indian Academy of Sciences (India)

    Saurabh D Rindani

    2006-10-01

    The talk described the prospects of studying standard model parameters as well as scenarios beyond the standard model, like the minimal supersymmetric standard model, theories with extra dimensions and theories with extra neutral gauge bosons, at a future linear + - collider.

  16. Status and future developments of the International Linear Collider%国际直线对撞机研究现状及未来发展

    Institute of Scientific and Technical Information of China (English)

    高杰

    2011-01-01

    文章介绍了国际直线对撞机(ILC)的科学目标及直线对撞机(LC)与强子对撞机(LHC)的关系.结合对正负电子直线对撞机历史的回顾及国际直线对撞机方案的选择,对国际直线对撞机的发展现状及未来发展趋势进行了介绍.对中国科学家在国际直线对撞机中所做的国际合作研究进行了简要的回顾,并强调了中国抓住国际直线对撞机国际合作机遇对中国科学发展的重要性.%The scientific goals of the International Linear Collider (ILC) and its relationship with the Large Hadron Collider are introduced. The history of linear colliders and ILC, as well as the prospects of ILC, are reviewed. A summary of China's participation in international collaboration in the ILC program is given, with stress on the important opportunities it provides for China's scientific development.

  17. Photon collider Higgs factories

    CERN Document Server

    Telnov, V I

    2014-01-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  18. Hadron Colliders and Hadron Collider Physics Symposium

    Directory of Open Access Journals (Sweden)

    Denisov D.

    2013-05-01

    Full Text Available This article summarizes main developments of the hadron colliders and physics results obtained since their inception around forty years ago. The increase in the collision energy of over two orders of magnitude and even larger increases in luminosity provided experiments with unique data samples. Developments of full acceptance detectors, particle identification and analysis methods provided fundamental discoveries and ultra-precise measurements which culminated in the completion and in depth verification of the Standard Model. Hadron Collider Physics symposium provided opportunities for those working at hadron colliders to share results of their research since 1979 and helped greatly to develop the field of particle physics.

  19. Influence of the transverse beam sizes on the ep -> ep. gamma. cross section at the HERA and a FUTURE CERN electron-proton collider

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Polityko, S.I.; Serbo, V.G.; Schiller, A.

    1988-06-01

    In the process ep -> ep..gamma.., proposed for luminosity measurements at HERA, impact parameters occur which are larger than the transverse beam sizes in the ep-colliders in HERA and a CERN option (LHC+LEP). This decreases the number of observed photons compared to the standard QED calculation. The difference is larger than 10% at photon energies E/sub ..gamma../ < 0.4E/sub e/ for the CERN option and E/sub ..gamma../ < 0.01E/sub e/ for HERA. (orig.)

  20. The development of colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1997-03-01

    During the period of the 50`s and the 60`s colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible.

  1. Muon collider design

    Science.gov (United States)

    Palmer, R.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A.; Caspi, S.; P., Chen; W-H., Cheng; Y., Cho; Cline, D.; Courant, E.; Fernow, R.; Gallardo, J.; Garren, A.; Gordon, H.; Green, M.; Gupta, R.; Hershcovitch, A.; Johnstone, C.; Kahn, S.; Kirk, H.; Kycia, T.; Y., Lee; Lissauer, D.; Luccio, A.; McInturff, A.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; K-Y., Ng; Noble, R.; Norem, J.; Norum, B.; Oide, K.; Parsa, Z.; Polychronakos, V.; Popovic, M.; Rehak, P.; Roser, T.; Rossmanith, R.; Scanlan, R.; Schachinger, L.; Silvestrov, G.; Stumer, I.; Summers, D.; Syphers, M.; Takahashi, H.; Torun, Y.; Trbojevic, D.; Turner, W.; van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Willis, W.; Winn, D.; Wurtele, J.; Zhao, Y.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \\mu^+ \\mu^- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are discussed.

  2. Considerations on Energy Frontier Colliders after LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  3. Physics with $e^{+} e^{-}$ linear colliders

    CERN Document Server

    Behnke, T; Zerwas, Peter M

    2002-01-01

    The physics programme is summarized for future e**+e**- linear colliders. These machines will allow us to perform precision studies of the top quark and the electroweak gauge bosons in a complementary way to the proton collider LHC. The Higgs boson can be discovered at the LHC within the entire range of canonical mass values. Lepton colliders are ideal instruments to investigate the properties of the Higgs boson and to establish essential elements of the Higgs mechanism as the fundamental mechanism for breaking the electroweak symmetries. In the area beyond the Standard Model, new particles and their interactions can be discovered and explored comprehensively. Supersymmetric particles can be searched for at the LHC with masses up to 2-3 TeV. Their properties can be determined at lepton colliders with very high precision so that the mechanism of supersymmetry breaking can be investigated experimentally and the underlying unified theory can be reconstructed. Stable extrapolations are possible up to scales near ...

  4. Physics at Hadronic Colliders (4/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  5. Physics at Hadronic Colliders (3/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  6. Physics at Hadronic Colliders (2/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  7. Physics at Hadronic Colliders (1/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  8. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    Energy Technology Data Exchange (ETDEWEB)

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  9. Luminosity Limitations in Linear Colliders Based on Plasma Acceleration

    CERN Document Server

    Lebedev, Valeri; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. However, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  10. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  11. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  12. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  13. Muon Colliders and Neutrino Factories

    CERN Document Server

    Kaplan, Daniel M

    2014-01-01

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  14. Supersymmetry status and phenomenology at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Alexander Belyaev

    2009-01-01

    Large Hadron Collider (LHC) has a great chance to finally reveal supersymmetry which remains a compelling theory for over 30 years in spite of lack of its discovery. It might be around the corner the present LHC era with sensitive dark matter search experiments and international linear collider hopefully coming up in the near future.

  15. Testing supersymmetry at the next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J.L.

    1994-09-01

    If new particles are discovered, it will be important to determine if they are the supersymmetric partners of standard model bosons and fermions. Supersymmetry predicts relations among the couplings and masses of these particles. The authors discuss the prospects for testing these relations at a future e{sup +}e{sup {minus}} linear collider with measurements that exploit the availability of polarized beams.

  16. The International Linear Collider

    CERN Document Server

    Barish, Barry

    2013-01-01

    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Hig...

  17. The development of colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices.

  18. Beam instrumentation for the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  19. Top quark studies at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  20. News from CERN, LHC Status and Strategy for Linear Colliders

    CERN Document Server

    Heuer, Rolf-Dieter

    2012-01-01

    This paper presents the latest development at CERN, concentrating on the status of the LHC and the strategy for future linear colliders. The immediate plans include the exploitation of the LHC at its design luminosity and energy as well as upgrades to the LHC (luminosity and energy) and to its injectors. This may be complemented by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and by the International Linear Collider and/or by a high-energy electron-proton collider. This contribution describes the various future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  1. COLLIDE Pro Helvetia Award

    CERN Document Server

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  2. Collide@CERN Geneva

    CERN Document Server

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  3. Muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley National Lab., CA (United States); Skrinsky, A. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  4. Electron lenses for super-colliders

    CERN Document Server

    Shiltsev, Vladimir D

    2016-01-01

    This book provides a comprehensive overview of the operating principles and technology of electron lenses in supercolliders.  Electron lenses are a novel instrument for high energy particle accelerators, particularly for the energy-frontier superconducting hadron colliders, including the Tevatron, RHIC, LHC and future very large hadron colliders.  After reviewing the issues surrounding beam dynamics in supercolliders, the book offers an introduction to the electron lens method and its application.  Further chapters describe the technology behind the electron lenses which have recently been proposed, built and employed for compensation of beam-beam effects and for collimation of high-energy high-intensity beams, for compensation of space-charge effects and several other applications in accelerators. The book will be an invaluable resource for those involved in the design, construction and operation of the next generation of hadron colliders.

  5. The Higgs boson and the International Linear Collider

    Directory of Open Access Journals (Sweden)

    Francesca eBorzumati

    2014-06-01

    Full Text Available The Higgs boson will be subject of intense experimental searches in future high-energy experiments. In addition to the e□ort made at the Large Hadron Collider, where it was discovered, it will be the major subject of study at the International Linear Collider. We review here the reasons for that and some of the issues to be tackled at this future accelerator.

  6. Collider signatures of hylogenesis

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2015-02-01

    We consider collider signatures of the hylogenesis—a variant of the antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  7. Collider signatures of Hylogenesis

    CERN Document Server

    Demidov, S V; Kirpichnikov, D V

    2014-01-01

    We consider collider signatures of the hylogenesis --- a variant of antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  8. The Large Hadron Collider

    CERN Multimedia

    't Hooft, Gerardus; Llewellyn Smith, Christopher Hubert; Brüning, Oliver Sim; Collier, Paul; Stapnes, Steinar; Ellis, Jonathan Richard; Braun-Munzinger, Peter; Stachel, Johanna; Lederman, Leon Max

    2007-01-01

    Several articles about the LHC: The Making of the standard model; high-energy colliders and the rise of the standard model; How the LHC came to be; Building a behemoth; Detector challenges at the LHC; Beyond the standard model with the LHC; The quest for the quark-gluon plasma; The God particle et al. (42 pages

  9. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  10. The Large Hadron Collider

    CERN Multimedia

    Wright, Alison

    2007-01-01

    "We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)

  11. Toponium at hadronic colliders

    Energy Technology Data Exchange (ETDEWEB)

    Finjord, J. (Bern Univ. (Switzerland)); Girardi, G.; Sorba, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Mery, P. (European Organization for Nuclear Research, Geneva (Switzerland))

    1982-05-27

    We calculate hadronic toponium production by specific diagrams obeying colour conservation and charge conjugation. The resulting rates, though lower than those calculated using semi-local duality arguments are encouraging and may allow for toponium discovery at hadronic colliders currently in development.

  12. Tevatron's complex collider cousins

    CERN Multimedia

    Fischer, W

    2004-01-01

    Letter referring to Schwarzschild's story "Disappointing performance and tight budgets confront Fermilab with tough decisions" and contesting that the Tevatron is not the most complex accelerator operating. They use the examples of CERN's SPS collider, HERA at DESY and the RHIC at Brookhaven (1/4 page)

  13. When stars collide

    NARCIS (Netherlands)

    Glebbeek, E.; Pols, O.R.

    2007-01-01

    When two stars collide and merge they form a new star that can stand out against the background population in a star cluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have perfor

  14. Introductory Lectures on Collider Physics

    Science.gov (United States)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  15. A robust jet reconstruction algorithm for high-energy lepton colliders

    Directory of Open Access Journals (Sweden)

    M. Boronat

    2015-11-01

    Full Text Available We propose a new sequential jet reconstruction algorithm for future lepton colliders at the energy frontier. The Valencia algorithm combines the natural distance criterion for lepton colliders with the greater robustness against backgrounds of algorithms adapted to hadron colliders. Results on a detailed Monte Carlo simulation of tt¯ and ZZ production at future linear e+e− colliders (ILC and CLIC with a realistic level of background overlaid, show that it achieves better performance in the presence of background than the classical algorithms used at previous e+e− colliders.

  16. Very large hadron collider (VLHC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  17. High luminosity muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  18. International linear collider reference design report

    Energy Technology Data Exchange (ETDEWEB)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  19. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  20. Accelerators, Colliders, and Snakes

    Science.gov (United States)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  1. Why Large Hadron Collider?

    Indian Academy of Sciences (India)

    D P Roy

    2011-05-01

    I discuss LHC physics in the historical perspective of the progress in particle physics. After a recap of the Standard Model (SM) of particle physics, I discuss the high energy colliders leading up to LHC and their role in the discovery of these SM particles. Then I discuss the two main physics issues of LHC, i.e. Higgs mechanism and supersymmetry. I briefly touch upon Higgs and SUSY searches at LHC along with their cosmological implications.

  2. Muon Collider Progress: Accelerators

    CERN Document Server

    Zisman, Michael S

    2011-01-01

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produce...

  3. Large Hadron Collider commissioning and first operation.

    Science.gov (United States)

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  4. Diphoton resonance at e+e- and photon colliders

    CERN Document Server

    Richard, F

    2016-01-01

    In this note, I will review the opportunities offered by the hint of a new resonance observed at LHC for future e+e- TeV linear collider projects. This discussion is mainly influenced by two specific scenarios of physics which assume either a (pseudo-)scalar or a tensor resonance, but these estimates can be used in most scenarios. I have assumed either a photon collider, which has a guaranteed signal with the LHC observation, or a standard e+e- collider, more straightforward to implement. Complementarity between LHC and LC measurements comes out as a firm conclusion.

  5. The eRHIC Ring-Ring Collider Design

    CERN Document Server

    Wang, Fuhua; Beebe-Wang, Joanne; Deshpande, Abhay A; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Litvinenko, Vladimir N; MacKay, William W; Milner, Richard; Montag, Christoph; Ozaki, Satoshi; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Trbojevic, Dejan; Tschalär, C; Wang, Dong; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The eRHIC ring-ring collider is the main design option of the future lepton-ion collider at Brookhaven National Laboratory. We report the revisions of the ring-ring collider design features to the baseline design presented in the eRHIC Zeroth Design Report (ZDR). These revisions have been made during the past year. They include changes of the interaction region which are required from the modifications in the design of the main detector. They also include changes in the lepton storage ring for high current operations as a result of better understandings of beam-beam interaction effects. The updated collider luminosity and beam parameters also take into account a more accurate picture of current and future operational aspects of RHIC.

  6. The Big Collider

    CERN Multimedia

    Barna-Alper Productions Inc. Toronto

    2005-01-01

    The Large Hadron Collider is a gigantic particle-smasher, designed to discover the origins of the universe. Awe-inspiring in vision and scope, it’s also the most expensive physics experiment in history with a price-tag of 4 billion dollars.Documentary series "Mega builders" : a fast-paced, character-driven show that focuses on the world’s biggest and most intriguing engineering challenges – the projects that are making history, and the people who are making it happen.

  7. Hadron-hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.; Weng, W.T.

    1983-06-21

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.

  8. Futurism.

    Science.gov (United States)

    Foy, Jane Loring

    The objectives of this research report are to gain insight into the main problems of the future and to ascertain the attitudes that the general population has toward the treatment of these problems. In the first section of this report the future is explored socially, psychologically, and environmentally. The second section describes the techniques…

  9. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  10. Muon colliders and neutrino factories

    CERN Document Server

    Geer, S

    2012-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  11. Detector for a linear collider

    CERN Document Server

    Mnich, J

    2003-01-01

    The proposals under discussion for a new e^{+}e^{-} linear collider with centre-of-mass energies around 1 TeV include designs for large detectors with unprecedented performances in energy, momentum and position resolution. These very stringent requirements are dictated by the precision measurements aimed at this collider to complement the exploratory experiments at the Large Hadron Collider. Here a status report on detector R&D projects for the liner collider is given focused on the technologies under study for the vertex detector, the large tracking chamber and the calorimeters.

  12. Linear collider development at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.

    1993-08-01

    Linear collider R&D at SLAC comprises work on the present Stanford Linear Collider (SLC) and work toward the next linear collider (NLC). Recent SLC developments are summarized. NLC studies are divided into hardware-based and theoretical. We report on the status of the NLC Test Accelerator (NLCTA) and the final focus test beam (FFTB), describe plans for ASSET, an installation to measure accelerator structure wakefields, and mention IR design developments. Finally we review recent NLC theoretical studies, ending with the author`s view of next linear collider parameter sets.

  13. Members of the global linear-collider community who attended IWLC2010 in Geneva

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    The International Workshop on Linear Colliders (IWLC2010) recently brought together many experts involved in research and development for an electron–positron linear collider – the favoured future facility to complement the LHC. Organized by the European Committee for Future Accelerators (ECFA) and hosted by CERN, the meeting took place on 18–22 October and attracted 479 registered participants.

  14. The International Linear Collider - Physics and Perspectives

    CERN Document Server

    ,

    2016-01-01

    With the discovery of a Higgs boson at LHC, all particles of the Standard Model seem to have been observed experimentally, yet many questions are left unanswered. The discovery has intensified the planning for future high-energy colliders, which aim to probe the Standard Model and the mechanism of electroweak symmetry breaking with higher precision and to extend and complement the search for new particles currently under way at the LHC. The most mature option for such a future facility is the International Linear Collider ILC, an electron-positron collider with a centre-of-mass energy of 500 GeV, and the potential for upgrades into the TeV region. The ILC will fully explore the Higgs sector, including model-independent coupling and width measurements, direct measurements of the coupling to the top quark and the Higgs self-coupling, enable precision measurements of top quark properties and couplings as well as other electroweak precision measurements and provide extensive discovery potential for new physics co...

  15. Luminosity Spectrum Reconstruction at Linear Colliders

    CERN Document Server

    Poss, Stéphane

    2014-01-01

    A good knowledge of the luminosity spectrum is mandatory for many measurements at future e+e- colliders. As the beam-parameters determining the luminosity spectrum cannot be measured precisely, the luminosity spectrum has to be measured through a gauge process with the detector. The measured distributions, used to reconstruct the spectrum, depend on Initial State Radiation, cross-section, and Final State Radiation. To extract the basic luminosity spectrum, a parametric model of the luminosity spectrum is created, in this case the spectrum at the 3 TeV Compact Linear Collider (CLIC). The model is used within a reweighting technique to extract the luminosity spectrum from measured Bhabha event observables, taking all relevant effects into account. The centre-of-mass energy spectrum is reconstructed within 5% over the full validity range of the model. The reconstructed spectrum does not result in a significant bias or systematic uncertainty in the exemplary physics benchmark process of smuon pair production.

  16. Linear Collider Physics Resource Book Snowmass 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ronan (Editor), M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  17. Test of QCD at colliders

    CERN Document Server

    Shimizu, Shima; The ATLAS collaboration

    2016-01-01

    The ATLAS and CMS collaborations measure QCD processes in a wide kinematic range using proton--proton colliding data at the Large Hadron Collider (LHC). A variety of recent results is presented. The results provide validation of the current understanding of QCD, such as the proton structure and interactions and radiations of partons.

  18. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  19. Will there be energy frontier colliders after LHC?

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.

  20. Crab Waist collision scheme: a novel approach for particle colliders

    CERN Document Server

    Zobov, Mikhail

    2016-01-01

    A new concept of nonlinear focusing of colliding bunches, called Crab Waist (CW)collision scheme, has been proposed at LNF INFN. It has been successfully tested at the Italian lepton collider DAFNE in operational conditions providing luminosity for two different experimental detectors, SIDDHARTA and KLOE-2. Considering a high efficiency of the scheme for increasing collision luminosity and its relative simplicity for implementation several new collider projects have been proposed and are under development at present. These are the SuperKEKB B-factory ready to start commissioning in 2016 in Japan, the SuperC-Tau factory proposed in Novosibirsk and entered in the short list of Russian mega-science projects, the new 100-km electron-positron Future Circular Collider (FCC-ee) under design study at CERN and some others. In this paper we describe the CW collision scheme, discuss its advantages and report principal results achieved at the electron-positron Phi-factory DAFNE.

  1. Status of the MEIC ion collider ring design

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harwood, Leigh [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hutton, Andrew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilat, Fulvia [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cai, Yunhai [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, Michael [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M.-H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, Uli [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gerity, James [Texas A & M Univ., College Station, TX (United States); Mann, Thomas [Texas A & M Univ., College Station, TX (United States); McIntyre, Peter [Texas A & M Univ., College Station, TX (United States); Pogue, Nathaniel [Texas A & M Univ., College Station, TX (United States); Sattarov, Akhdiyor [Texas A & M Univ., College Station, TX (United States)

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  2. Status of the MEIC ion collider ring design

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-07-14

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  3. FCC Based Lepton-Hadron and Photon-Hadron Colliders: Luminosity and Physics

    CERN Document Server

    Acar, Y C; Beser, S; Karadeniz, H; Kaya, U; Oner, B B; Sultansoy, S

    2016-01-01

    Construction of future electron-positron colliders (or dedicated electron linac) and muon colliders (or dedicated muon ring) tangential to Future Circular Collider (FCC) will give opportunity to utilize highest energy proton and nucleus beams for lepton-hadron and photon-hadron collisions. Luminosity values of FCC based ep, \\mup, eA, \\muA, \\gammap and \\gammaA colliders are estimated. Multi-TeV center of mass energy ep colliders based on the FCC and linear colliders (LC) are considered in detail. Parameters of upgraded versions of the FCC proton beam are determined to optimize luminosity of electron-proton collisions keeping beam-beam effects in mind. Numerical calculations are performed using a currently being developed collision point simulator. It is shown that L_{ep}\\sim10^{32}\\,cm^{-2}s^{-1} can be achieved with LHeC-like upgrade of the FCC parameters.

  4. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  5. The Dark Penguin Shines Light at Colliders

    CERN Document Server

    Primulando, Reinard; Tsai, Yuhsin

    2015-01-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For several types of DM-Standard Model couplings, a meaningful interpretation of the results requires to go beyond effective field theory, considering simplified models with light mediators. This is especially important in the case of loop-mediated interactions. In this paper we perform the first simplified model study of the magnetic dipole interacting DM, by including the one-loop momentum-dependent form factors that mediate the coupling -- given by the Dark Penguin -- in collider processes. We compute bounds from the monojet, monophoton, and diphoton searches at the $8$ and $14$ TeV LHC, and compare the results to those of direct and indirect detection experiments. Future searches at the $100$ TeV hadron collider and at the ILC are also addressed. We find that the optimal search strategy requires loose cuts on the missing transverse energy, to capture the enhancement of the form factors near the threshold fo...

  6. Searching for dark matter at colliders

    Science.gov (United States)

    Richard, Francois; Arcadi, Giorgio; Mambrini, Yann

    2015-04-01

    Dark Matter (DM) detection prospects at future colliders are reviewed under the assumption that DM particles are fermions of the Majorana or Dirac type. Although the discussion is quite general, one will keep in mind the recently proposed candidate based on an excess of energetic photons observed in the center of our Galaxy with the Fermi-LAT satellite. In the first part we will assume that DM interactions are mediated by vector bosons, or . In the case of -boson Direct Detection limits force only axial couplings with the DM. This solution can be naturally accommodated by Majorana DM but is disfavored by the GC excess. Viable scenarios can be instead found in the case of mediator. These scenarios can be tested at colliders through ISR events, . A sensitive background reduction can be achieved by using highly polarized beams. In the second part scalar particles, in particular Higgs particles, have been considered as mediators. The case of the SM Higgs mediator is excluded by limits on the invisible branching ratio of the Higgs. On the contrary particularly interesting is the case in which the DM interactions are mediated by the pseudoscalar state in two Higgs-doublet model scenarios. In this last case the main collider signature is.

  7. Seventh International Accelerator School for Linear Colliders

    CERN Document Server

    Organizers of the Seventh International Accelerator School for Linear Colliders

    2012-01-01

    We are pleased to announce the Seventh International Accelerator School for Linear Colliders. This school is a continuation of the series of schools which began six years ago.  The first school was held in 2006 in Sokendai, Japan, the second in 2007 in Erice, Italy, the third in 2008 in Oakbrook Hills, USA, the fourth in 2009 in Huairou, China, the fifth in 2010 in Villars-sur-Ollon, Switzerland, and the sixth in 2011 in Pacific Grove, USA.   The school is organized by the International Linear Collider (ILC) Global Design Effort (GDE), the Compact Linear Collider (CLIC) and the International Committee for Future Accelerators (ICFA) Beam Dynamics Panel. The school this year will take place at the Radisson Blu Hotel, Indore, India from November 27 to December 8, 2012. It is hosted by the Raja Ramanna Center for Advanced Technology (RRCAT) and sponsored by a number of funding agencies and institutions around the world including the U.S. Department of Energy (DOE), the U.S. National Science...

  8. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  9. QCD at collider energies

    Science.gov (United States)

    Nicolaidis, A.; Bordes, G.

    1986-05-01

    We examine available experimental distributions of transverse energy and transverse momentum, obtained at the CERN pp¯ collider, in the context of quantum chromodynamics. We consider the following. (i) The hadronic transverse energy released during W+/- production. This hadronic transverse energy is made out of two components: a soft component which we parametrize using minimum-bias events and a semihard component which we calculate from QCD. (ii) The transverse momentum of the produced W+/-. If the transverse momentum (or the transverse energy) results from a single gluon jet we use the formalism of Dokshitzer, Dyakonov, and Troyan, while if it results from multiple-gluon emission we use the formalism of Parisi and Petronzio. (iii) The relative transverse momentum of jets. While for W+/- production quarks play an essential role, jet production at moderate pT and present energies is dominated by gluon-gluon scattering and therefore we can study the Sudakov form factor of the gluon. We suggest also how through a Hankel transform of experimental data we can have direct access to the Sudakov form factors of quarks and gluons.

  10. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  11. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  12. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  13. Physicists dream of supersized collider

    Science.gov (United States)

    Hao, Cindy

    2015-12-01

    Particle physicists in China are hopeful that the Chinese government will allocate 1 billion yuan (about £104m) to design what would be the world's largest particle accelerator - the Circular Electron Positron Collider (CEPC).

  14. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  15. [New technology for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, P.M.

    1992-08-12

    This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

  16. SUSY Without Prejudice at Linear Colliders

    CERN Document Server

    Rizzo, Thomas G

    2008-01-01

    We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale $e^+e^-$ linear colliders(LC) are discussed.

  17. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2011-05-01

    In this talk I shall begin by summarizing the importance of the Higgs physics studies at the Large Hadron Collider (LHC). I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. I have added to the writeup, recent experimental results from the LHC which have become available since the time of the workshop.

  18. Sfermion production at photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M. E-mail: michael.klasen@desy.de

    2001-10-11

    We calculate total and differential cross-sections for sfermion production in e{sup +}e{sup -} annihilation and in photon-photon collisions with arbitrary photon polarization. The total cross-section at a polarized photon collider is shown to be larger than the e{sup +}e{sup -} annihilation cross-section up to the kinematic limit of the photon collider.

  19. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  20. High-energy high-luminosity electron-ion collider eRHIC

    CERN Document Server

    Litvinenko, Vladimir N; Belomestnykh, Sergei; Ben-Zvi, Ilan; Blaskiewicz, Michael M; Calaga, Rama; Chang, Xiangyun; Fedotov, Alexei; Gassner, David; Hammons, Lee; Hahn, Harald; Hao, Yue; He, Ping; Jackson, William; Jain, Animesh; Johnson, Elliott C; Kayran, Dmitry; Kewisch, Jrg; Luo, Yun; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Minty, Michiko; Parker, Brett; Pikin, Alexander; Pozdeyev, Eduard; Ptitsyn, Vadim; Rao, Triveni; Roser, Thomas; Skaritka, John; Sheehy, Brian; Tepikian, Steven; Than, Yatming; Trbojevic, Dejan; Tsentalovich, Evgeni; Tsoupas, Nicholaos; Tuozzolo, Joseph; Wang, Gang; Webb, Stephen; Wu, Qiong; Xu, Wencan; Zelenski, Anatoly

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. A new ERL accelerator, which provide 5-30 GeV electron beam, will ensure 10^33 to 10^34 cm^-2 s^-1 level luminosity.

  1. Intense beams at the micron level for the Next Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, J.T.

    1991-08-01

    High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.

  2. Linear Collider Flavour Identification status report: Sensors for the International Linear Collider

    Indian Academy of Sciences (India)

    K D Stefanov; for the Linear Collider Flavour Identification (LCFI) Collaboration

    2007-12-01

    The Linear Collider Flavour Identification (LCFI) collaboration is continuing the work to develop column-parallel CCDs (CPCCD) and CMOS readout chips to be used in the vertex detector at the international linear collider (ILC). The CPCCD achieves several orders of magnitude faster readout than conventional CCDs because every column is equipped with amplifier and ADC, enabling efficient data taking with low occupancy. Already two generations of CPCCDs and readout chips have been manufactured and the first chips have been fully tested. The second generation devices are now being evaluated. A new CCD-based device, the in-situ storage image sensor (ISIS) has also been developed. The ISIS offers numerous advantages in terms of relaxed readout, increased radiation hardness and great immunity to EMI. In this paper we present the results from the tests of the CPCCDs, readout chips and ISIS, as well as the plans for future developments.

  3. Understanding the nuclear initial state with an electron ion collider

    Science.gov (United States)

    Toll, Tobias

    2013-09-01

    In these proceedings I describe how a future electron-ion collider will allow us to directly measure the initial spatial distribution of gluons in heavy ions, as well as its variance ("lumpiness") in exclusive diffraction. I show the feasibility of such a measurement by means of simulated data from the novel event generator Sartre.

  4. When particles collide

    CERN Multimedia

    Jha, Alok

    2004-01-01

    Brave new physics: if the answer is this big, just imagine the question...Scientists are building the biggest atom smasher in the world under the Jura. By peeking inside the very heart of matter they will change the future of physics

  5. Prospects for collider searches for dark matter with heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Artoni, Giacomo [Brandeis Univ., Waltham, MA (United States); Lin, Tongyan [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Penning, Bjoern [Univ. of Chicago, IL (United States); Univ. of Chicago, IL (United States). Enrico Fermi Inst.; Sciolla, Gabriella [Brandeis Univ., Waltham, MA (United States); Venturini, Alessio [Brandeis Univ., Waltham, MA (United States)

    2013-08-05

    We present projections for future collider searches for dark matter produced in association with bottom or top quarks. Such production channels give rise to final states with missing transverse energy and one or more b-jets. Limits are given assuming an effective scalar operator coupling dark matter to quarks, where the dedicated analysis discussed here improves significantly over a generic monojet analysis. We give updated results for an anticipated high-luminosity LHC run at 14 TeV and for a 33 TeV hadron collider.

  6. Higgs Physics at the CLIC Electron-Positron Linear Collider

    CERN Document Server

    Roloff, Philipp Gerhard

    2016-01-01

    The Compact Linear Collider (CLIC) is an option for a future $e^+e^-$ collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper presents the Higgs physics reach of CLIC operating in three energy stages, $\\sqrt{s} =$ 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ($e^+e^-\\to ZH$) and $WW$-fusion ($e^+e^-\\to H\

  7. Unparticle Effects on Top Quark Pair Production at Photon Collider

    Institute of Scientific and Technical Information of China (English)

    LI Hai-Feng; LI Hong-Lei; SI Zong-Guo; YANG Zhong-Juan

    2009-01-01

    The unparticle effects on tt production at the future photon collider are investigated.Distributions of ttinvariant mass and that for transverse momentum of top quark with respect to Standard Model and unparticle production are predicted.An odd valley with scalar unparticle contribution appears for some values of du, which is due to the big cancellation between the contribution from SM and that from unparticle.This character may be used to study the properties of scalar unparticle.Our investigations also show that scalar unparticle may play a significant role in tt production at the photon collider if it exists.

  8. Collider to use cold technology

    CERN Document Server

    Cartlidge, Edwin

    2004-01-01

    The International Linear Collider (ILC) is being developed for use by particle physicists to make detailed studies of the Higgs boson and many other new particles. The two technologies for the ILC use different types of cavities to accelerate electrons and positrons. The German technology involves superconducting cavities operating at 2 K, whereas the approach proposed by the US and Japan relied on copper cavities that would be run at room temperature. However, due to the huge cost of the linear collider the physicists selected only one. Following evaluation of limitations of each cavity, the physicists opted for the superconducting approach. Assuming that the design work is completed on time, and if funding agencies and politicians can agree on where to build the collider, construction of the machine could start by 2010. (Edited abstract).

  9. Physics beyond Colliders Kickoff Workshop

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kickoff workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  10. Workshop on Physics Beyond Colliders

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kick-off workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  11. A Novel Collimation Method for Large Hadron Colliders

    CERN Document Server

    Zou, Ye; Tang, Jingyu

    2016-01-01

    This paper proposes a novel collimation method for large hadron colliders by arranging betatron and momentum collimation systems in the same insertion to improve the overall cleaning efficiency. The method has the potential of avoiding beam losses at the downstream dispersion suppression section following the conventional betatron collimation section, which is caused by those particles with single diffractive scattering at the collimators. Evident beam loss in arc sections should be avoided to protect the superconducting magnets from quenching, especially when the stored beam energy is up to hundreds of MJ level or even higher in modern proton-proton collider. Our studies show that it is beneficial to arrange the momentum collimation system just after the betatron collimation system so that it can clean the particles with lower momentum due to the single diffractive scattering in the betatron collimators. This method is being applied to the future proton-proton collider SPPC. Preliminary multi-particle simula...

  12. Projects for ultra-high-energy circular colliders at CERN

    Science.gov (United States)

    Bogomyagkov, A. V.; Koop, I. A.; Levichev, E. B.; Piminov, P. A.; Sinyatkin, S. V.; Shatilov, D. N.; Benedict, M.; Oide, K.; Zimmermann, F.

    2016-12-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron-positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  13. Chromaticity correction for a muon collider optics

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  14. Detector and trigger challenge for supersymmetrical dark matter scenarios at the international linear collider

    Indian Academy of Sciences (India)

    Z Zhang

    2007-12-01

    Two supersymmetrical (SUSY) dark matter scenarios are discussed to illustrate how challenging it is to detect and trigger these events out of standard model background events at a future international linear collider (ILC).

  15. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  16. Physics at the Fermilab Collider

    Energy Technology Data Exchange (ETDEWEB)

    Shochet, M.J. [Univ. of Chicago, Chicago, IL (United States)

    1994-09-01

    The CDF and D0 experiments at the Fermilab Tevatron Collider have produced many results from the search for the top quark, the study of both the electroweak and strong interactions, the production and decay of b quarks, and the search for new high mass objects. A sample of recently obtained results are presented.

  17. Working group report: Collider Physics

    Indian Academy of Sciences (India)

    Sunanda Banerjee; Rohini M Godbole; Sreerup Raychaudhuri; Ben Allanach; Sunanda Banerjee; Satyaki Bhattacharyya; Debajyoti Choudhury; Siba Prasad Das; Anindya Datta; Rohini M Godbole; Monoranjan Guchait; Sabine Kraml; Gobinda Majumdar; David Miller; Margarete Mühlleitner; Nobuchika Okada; Maxim Perelstein; Santosh K Rai; Sreerup Raychaudhuri; Saurabh D Rindani; D P Roy; K Sridhar; Rishikesh Vaidya; D Zeppenfeld

    2006-10-01

    This is summary of the activities of the working group on collider physics in the IXth Workshop on High Energy Physics Phenomenology (WHEPP-9) held at the Institute of Physics, Bhubaneswar, India in January 2006. Some of the work subsequently done on these problems by the subgroups formed during the workshop is included in this report.

  18. B physics at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  19. Electroweak results from hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Marcel Demarteau

    1999-09-02

    A very brief summary of recent electroweak results from hadron colliders is given. The emphasis is placed on inclusive W{sup {+-}} and Z{sup 0} production, the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings.

  20. Fast Timing for Collider Detectors

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  1. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S.

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  2. Design flaw could delay collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "A magnet for the Large Hadron Collider (LHC) failed during a key test at the European particle physics laboratory CERN last week. Physicists and engineers will have to repair the damaged manget and retrofil others to correct the underlying design flaw.."(1 page)

  3. Scaling Laws for $e^+ e^-$ Linear Colliders

    CERN Document Server

    Delahaye, J P; Raubenheimer, T O; Wilson, Ian H

    1999-01-01

    Design studies of a future TeV e+e- Linear Collider (TLC) are presently being made by five major laboratories within the framework of a world-wide collaboration. A figure of merit is defined which enables an objective comparison of these different designs. This figure of merit is shown to depend only on a small number of parameters. General scaling laws for the main beam parameters and linac parameters are derived and prove to be very effective when used as guidelines to optimize the linear collider design. By adopting appropriate parameters for beam stability, the figure of merit becomes nearly independent of accelerating gradient and RF frequency of the accelerating structures. In spite of the strong dependence of the wake-fields with frequency, the single bunch emittance preservation during acceleration along the linac is also shown to be independent of the RF frequency when using equivalent trajectory correction schemes. In this situation, beam acceleration using high frequency structures becomes very adv...

  4. Physics motivations for a muon collider

    CERN Document Server

    Gunion, J F

    1996-01-01

    Future muon colliders will have remarkable capability for revealing and studying physics beyond the Standard Model. A first muon collider with variable c.m.\\ energy in the range \\sqrt s = 100 to 500~GeV provides unique opportunities for discovery and factory-like production of Higgs bosons in the s-channel. For excellent (but achievable) machine energy resolution, the total width and \\mupmum coupling of a SM-like Higgs boson with mass \\lsim 2\\mw (as particularly relevant to supersymmetric/GUT models) can be directly measured with substantial precision. Multiplication of measured branching ratios by the total width yields the corresponding couplings. As a result, the light CP-even SM-like Higgs of the minimal supersymmetric model can be distinguished from the Higgs of the minimal Standard Model over a larger portion of supersymmetric parameter space than otherwise possible. Scan discovery and detailed measurements of total widths and some partial widths of the heavier CP-even and CP-odd Higgs bosons of the min...

  5. A highly granular semi-digital hadron calorimeter for a future linear e + e − collider and a model independent Higgs boson measurement in the ZH→qq+X channel

    CERN Document Server

    Haddad, Yacine

    The International Linear Collider (ILC) is a concept for a linear electron-positron accelerator with a centre-of-mass energy of up to 1 TeV. Its main purpose is the precise measurement of particles discovered by the LHC such as the Higgs boson particle. The International Large Detector (ILD) is one of its detector concepts, specifically designed for the usage of Particle Flow Algorithms requiring highly granular calorimeters. Within the CALICE collaboration, several prototypes of such calorimeters, exploring different technologies, have been developed and tested. This thesis focuses on one of them: a semi-digital hadron calorimeter (SDHCAL) equipped with Glass Resistive Plate Chambers (GRPC) sensors. It is a sampling calorimeter composed of 48 layers segmented in cells of one square centimetre for a total of half a millions channels. The first part of the present thesis describes the analysis of the data taken during beam tests at CERN, in which the detector was operated in a trigger less mode; saving of all ...

  6. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  7. R& D for Future Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Brau, J.

    2004-12-13

    Research and development of detector technology are critical to the future particle physics program. The goals of the International Linear Collider, in particular, require advances that are challenging, despite the progress driven in recent years by the needs of the Large Hadron Collider. The ILC detector goals and challenges are described and the program to address them is summarized.

  8. Genesis of the Large Hadron Collider.

    Science.gov (United States)

    Smith, Chris Llewellyn

    2015-01-13

    This paper describes the scientific, technical and political genesis of the Large Hadron Collider (LHC). It begins with an outline of the early history of the LHC, from first thoughts and accelerator and detector developments that underwrote the project, through the first studies of the LHC and its scientific potential and the genesis of the experimental programme, to the presentation of the proposal to build the LHC to the CERN Council in December 1993. The events that led to the proposal to build the LHC in two stages, which was approved in December 1994, are then described. Next, the role of non-Member State contributions and of the agreement that CERN could take loans, which allowed single stage construction to be approved in December 1996, despite a cut in the Members' contributions, are explained. The paper concludes by identifying points of potential relevance for the approval of possible future large particle physics projects.

  9. High energy particle colliders: past 20 years, next 20 years and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir D.; /Fermilab

    2012-04-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the method and the history of colliders, discuss in detail the developments over the past two decades and the directions of the R and D toward near future colliders which are currently being explored. Finally, we make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  10. High energy particle colliders: past 20 years, next 20 years and beyond

    CERN Document Server

    Shiltsev, Vladimir D

    2012-01-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the method and the history of colliders, discuss in detail the developments over the past two decades and the directions of the R&D toward near future colliders which are currently being explored. Finally, we make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  11. Future directions for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1996-10-01

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  12. Polarized proton collider at RHIC

    Science.gov (United States)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A. N.

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998 [2]), reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to s=500 GeV.

  13. Crab Cavities for Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; /Daresbury; Shulte, D.; /CERN; Jones, Roger M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; /Fermilab; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  14. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  15. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  16. Extra dimensions at particle colliders

    Energy Technology Data Exchange (ETDEWEB)

    Dvergsnes, Erik Wolden

    2004-08-01

    This thesis consists of an introduction where we consider different aspects of theories involving extra dimensions, together with four research publications (Papers I-IV) attached at the end. The introductional chapters should serve as background material for better understanding the models on which the articles are based. In Chap. 4 we also present some plots not included in the papers. The topic of Papers I-III is graviton induced Bremsstrahlung. In Paper I we consider the contribution to this process from graviton exchange through gluon-gluon fusion at the LHC, compared to the QED background. Only final-state radiation is considered in Paper I, whereas in Paper II we extend this work to include also the quark-antiquark annihilation with graviton exchange, as well as initial-state radiation for both graviton and Standard Model exchange. Paper III is a study of graviton-induced Bremsstrahlung at e{sup +}e{sup -} colliders, including both initial- and final-state radiation. Paper IV is devoted to a study of the center-edge asymmetry at hadron colliders, an asymmetry which previously had been studied for e{sup +}e{sup -} colliders. The center-edge asymmetry can be used as a method of distinguishing between spin-1 and spin-2 exchange, something which will be of major importance if a signal is observed.

  17. Towards resolving strongly-interacting dark sectors at colliders

    CERN Document Server

    Englert, Christoph; Spannowsky, Michael

    2016-01-01

    Dark sectors with strong interactions have received considerable interest. Assuming the existence of a minimally-coupled dark sector which runs to strong interactions in the infrared, we address the question whether the scaling behavior of this dark sector can be observed in missing energy signatures at present and future hadron colliders. We compare these findings to the concrete case of self-interacting dark matter and demonstrate that the energy-dependence of high momentum transfer final states can in principle be used to gain information about the UV structure of such sectors at future hadron colliders, which could complement proof-of-principle lattice investigations. We also comment on the case of dark abelian $U(1)$ theories.

  18. Towards resolving strongly-interacting dark sectors at colliders

    Science.gov (United States)

    Englert, Christoph; Nordström, Karl; Spannowsky, Michael

    2016-09-01

    Dark sectors with strong interactions have received considerable interest. Assuming the existence of a minimally coupled dark sector which runs to strong interactions in the infrared, we address the question whether the scaling behavior of this dark sector can be observed in missing energy signatures at present and future hadron colliders. We compare these findings to the concrete case of self-interacting dark matter and demonstrate that the energy dependence of high-momentum transfer final states can in principle be used to gain information about the UV structure of hidden sectors at future hadron colliders, subject to large improvements in systematic uncertainties, which could complement proof-of-principle lattice investigations. We also comment on the case of dark Abelian U (1 ) theories.

  19. MIGHTY MURINES: NEUTRINO PHYSICS AT VERY HIGH ENERGY MUON COLLIDERS

    Energy Technology Data Exchange (ETDEWEB)

    KING,B.J.

    2000-05-05

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10{sup 8} B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements {vert_bar}V{sub ub}{vert_bar} and {vert_bar}V{sub cb}{vert_bar} and, possibly, the first measurements of {vert_bar}V{sub td}{vert_bar} in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as

  20. Theory overview of electroweak physics at hadron colliders

    CERN Document Server

    Campbell, John M

    2016-01-01

    This contribution summarizes some of the important theoretical progress that has been made in the arena of electroweak physics at hadron colliders. The focus is on developments that have sharpened theoretical predictions for final states produced through electroweak processes. Special attention is paid to new results that have been presented in the last year, since LHCP2015, as well as on key issues for future measurements at the LHC.

  1. Infrastructure for Detector Research and Development towards the International Collider

    CERN Document Server

    Aguilar, J; Fiutowski, T; Idzik, M; Kulis, Sz; Przyborowski, D; Swientek, K; Bamberger, A; Köhli, M; Lupberger, M; Renz, U; Schumacher, M; Zwerger, Andreas; Calderone, A; Cussans, D G; Heath, H F; Mandry, S; Page, R F; Velthuis, J J; Attié, D; Calvet, D; Colas, P; Coppolani, X; Degerli, Y; Delagnes, E; Gelin, M; Giomataris, I; Lutz, P; Orsini, F; Rialot, M; Senée, F; Wang, W; Alozy, J; Apostolakis, J; Aspell, P; Bergsma, F; Campbell, M; Formenti, F; Santos, H Franca; Garcia, E Garcia; de Gaspari, M; Giudice, P -A; Grefe, Ch; Grichine, V; Hauschild, M; Ivantchenko, V; Kehrli, A; Kloukinas, K; Linssen, L; Cudie, X Llopart; Marchioro, A; Musa, L; Ribon, A; Trampitsch, G; Uzhinskiy, V; Anduze, M; Beyer, E; Bonnemaison, A; Boudry, V; Brient, J -C; Cauchois, A; Clerc, C; Cornat, R; Frotin, M; Gastaldi, F; Jauffret, C; Jeans, D; Karar, A; Mathieu, A; de Freitas, P Mora; Musat, G; Rougé, A; Ruan, M; Vanel, J -C; Videau, H; Besson, A; de Masi, G Claus R; Doziere, G; Dulinski, W; Goffe, M; Himmi, A; Hu-Guo, Ch; Morel, F; Valin, I; Winter, M; Bonis, J; Callier, S; Cornebise, P; Dulucq, F; Giannelli, M Faucci; Fleury, J; Guilhem, G; Martin-Chassard, G; de la Taille, Ch; Pöschl, R; Raux, L; Seguin-Moreau, N; Wicek, F; Benyamna, M; Bonnard, J; Cârloganu, C; Fehr, F; Gay, P; Mannen, S; Royer, L; Charpy, A; Da Silva, W; David, J; Dhellot, M; Imbault, D; Ghislain, P; Kapusta, F; Pham, T Hung; Savoy-Navarro, A; Sefri, R; Dzahini, D; Giraud, J; Grondin, D; Hostachy, J -Y; Morin, L; Bassignana, D; Pellegrini, G; Lozano, M; Quirion, D; Fernandez, M; Jaramillo, R; Munoz, F J; Vila, I; Dolezal, Z; Drasal, Z; Kodys, P; Kvasnicka, P; Aplin, S; Bachynska, O; Behnke, T; Behr, J; Dehmelt, K; Engels, J; Gadow, K; Gaede, F; Garutti, E; Göttlicher, P; Gregor, I -M; Haas, T; Henschel, H; Koetz, U; Lange, W; Libov, V; Lohmann, W; Lutz, B; Mnich, J; Muhl, C; Ohlerich, M; Potylitsina-Kube, N; Prahl, V; Reinecke, M; Roloff, P; Rosemann, Ch; Rubinski, Igor; Schade, P; Schuwalov, S; Sefkow, F; Terwort, M; Volkenborn, R; Kalliopuska, J; Mehtaelae, P; Orava, R; van Remortel, N; Cvach, J; Janata, M; Kvasnicka, J; Marcisovsky, M; Polak, I; Sicho, P; Smolik, J; Vrba, V; Zalesak, J; Bergauer, T; Dragicevic, M; Friedl, M; Haensel, S; Irmler, C; Kiesenhofer, W; Krammer, M; Valentan, M; Piemontese, L; Cotta-Ramusino, A; Bulgheroni, A; Jastrzab, M; Caccia, M; Re, V; Ratti, L; Traversi, G; Dewulf, J -P; Janssen, X; De Lentdecker, G; Yang, Y; Bryngemark, L; Christiansen, P; Gross, P; Jönsson, L; Ljunggren, M; Lundberg, B; Mjörnmark, U; Oskarsson, A; Richert, T; Stenlund, E; Österman, L; Rummel, S; Richter, R; Andricek, L; Ninkovich, J; Koffmane, Ch; Moser, H -G; Boisvert, V; Green, B; Green, M G; Misiejuk, A; Wu, T; Bilevych, Y; Carballo, V M Blanco; Chefdeville, M; de Nooij, L; Fransen, M; Hartjes, F; van der Graaf, H; Timmermans, J; Abramowicz, H; Ben-Hamu, Y; Jikhleb, I; Kananov, S; Levy, A; Levy, I; Sadeh, I; Schwartz, R; Stern, A; Goodrick, M J; Hommels, L B A; Ward, R Shaw D R; Daniluk, W; Kielar, E; Kotula, J; Moszczynski, A; Oliwa, K; Pawlik, B; Wierba, W; Zawiejski, L; Bailey, D S; Kelly, M; Eigen, G; Brezina, Ch; Desch, K; Furletova, J; Kaminski, J; Killenberg, M; Köckner, F; Krautscheid, T; Krüger, H; Reuen, L; Wienemann, P; Zimmermann, R; Zimmermann, S; Bartsch, V; Postranecky, M; Warren, M; Wing, M; Corrin, E; Haas, D; Pohl, M; Diener, R; Fischer, P; Peric, I; Kaukher, A; Schäfer, O; Schröder, H; Wurth, R; Zarnecki, A F

    2012-01-01

    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.

  2. Two-Flux Colliding Plane Waves in String Theory

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We construct the two-flux colliding plane wave solutions in higher-dimensional gravity theory with dilaton,and two complementary fluxes. Two kinds of solutions have been obtained: Bell-Szekeres (BS) type and homogeneous type. After imposing the junction condition, we find that only the BS type solution is physically well-defined. Furthermore, we show that the future curvature singularity is always developed for our solutions.

  3. Polarization for the by-pass SLAC/PEP collider

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1980-06-01

    It was suggested that one can collide the store e/sup +/ beam in PEP with the e/sup /minus// beam from SLAC to reach a center-of-mass energy higher than that achieved by the PEP colliding beams. Although the future of this PEP/SLAC collider is not yet certain, it is useful to first explore its physics possibilities. One possible version of the SLAC/PEP collider utilizes a by-pass at the interaction point; the stored beam is displaced vertically by a set of vertical bending magnets every time the linac beam arrives. One feature of this by-pass scheme that makes it attractive is that the amount of the vertical displacement of the by-pass can be chosen so that the spin polarization of the stored beam is made longitudinal at the point of interaction. In this note, we have studied the various depolarization effects of the stored e/sup +/ beam due to the perturbation of the by-pass magnets. 1 fig.

  4. Disambiguating seesaw models using invariant mass variables at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Dev, P.S. Bhupal [Consortium for Fundamental Physics, School of Physics and Astronomy,University of Manchester, Manchester M13 9PL (United Kingdom); Physik-Department T30d, Technische Univertität München,James-Franck-Straße 1, 85748 Garching (Germany); Kim, Doojin [Department of Physics, University of Florida,Gainesville, FL 32611 (United States); Mohapatra, Rabindra N. [Maryland Center for Fundamental Physics and Department of Physics,University of Maryland,College Park, Maryland 20742 (United States)

    2016-01-19

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same “smoking-gun” collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √s=14 and 100 TeV hadron colliders.

  5. Higgs Measurement at e+e- Circular Colliders

    CERN Document Server

    Ruan, M

    2014-01-01

    Now that the mass of the Higgs boson is known, circular electron positron colliders, able to measure the properties of these particles with high accuracy, are receiving considerable attention. Design studies have been launched (i) at CERN with the Future Circular Colliders (FCC), of which an e+e- collider is a potential first step (FCC-ee, formerly caller TLEP) and (ii) in China with the Circular Electron Positron Collider (CEPC). Hosted in a tunnel of at least 50 km (CEPC) or 80-100 km (FCC), both projects can deliver very high luminosity from the Z peak to HZ threshold (CEPC) and even to the top pair threshold and above (FCC-ee). At the ZH production optimum, around 240 GeV, the FCC-ee (CEPC) will be able to deliver 10 (5) ab-1 integrated luminosity in 5 (10) years with 4 (2) interaction points: hence to produce millions of Higgs bosons through the Higgsstrahlung process and vector boson fusion processes. This sample opens the possibility of subper-cent precision absolute measurements of the Higgs boson cou...

  6. Higgs measurement at e+e- circular colliders

    CERN Document Server

    Ruan, Manqi

    2014-01-01

    Now that the mass of the Higgs boson is known, circular electron positron colliders, able to measure the properties of these particles with high accuracy, are receiving considerable attention. Design studies have been launched (i) at CERN with the Future Circular Colliders (FCC), of which an e+e- collider is a potential first step (FCC-ee, formerly caller TLEP) and (ii) in China with the Circular Electron Positron Collider (CEPC). Hosted in a tunnel of at least 50 km (CEPC) or 80-100 km (FCC), both projects can deliver very high luminosity from the Z peak to HZ threshold (CEPC) and even to the top pair threshold and above (FCC-ee). At the ZH production optimum, around 240 GeV, the FCC-ee (CEPC) will be able to deliver 10 (5) ab-1 integrated luminosity in 5 (10) years with 4 (2) interaction points: hence to produce millions of Higgs bosons through the Higgsstrahlung process and vector boson fusion processes. This sample opens the possibility of subper- cent precision absolute measurements of the Higgs boson co...

  7. Academic Training: Physics at e+e- linear collider

    CERN Multimedia

    Françoise Benz

    2004-01-01

    15, 16, 17, 18, 19 November 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES from 11.00 to 12.00hrs - Main Auditorium, bldg. 500 Physics at e+e- linear collider K. DESCH / Desy, Hamburg, D Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale to very high precision. The lecture series introduces the possibilities of a TeV linear collider (the International Linear Collider, ILC) in the fields of Higgs physics, alternative Electro-weak Symmetry Breaking scenarios, Supersymmetry, Extra Dimensions, and more exotic models. Also the prospects for highly improved measurements of SM parameters such as the top quark mass and electro-weak gauge boson properties are discussed. The implications for the design of an appropriate detector are outlined and current R&D developments are explained. Particular emphasis will be given to the complementarity and intimate interplay of physics at the LHC and the ILC. The additional benefit of multi-TeV e+e- collisions as envisaged i...

  8. Academic Training: Physics at e+e- linear collider

    CERN Multimedia

    Françoise Benz

    2004-01-01

    15, 16, 17, 18, 19 November 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES from 11.00 to 12.00hrs - Main Auditorium, bldg. 500 Physics at e+e- linear collider K. DESCH / Desy, Hamburg, D Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale to very high precision. The lecture series introduces the possibilities of a TeV linear collider (the International Linear Collider, ILC) in the fields of Higgs physics, alternative Electro-weak Symmetry Breaking scenarios, Supersymmetry, Extra Dimensions, and more exotic models. Also the prospects for highly improved measurements of SM parameters such as the top quark mass and electro-weak gauge boson properties are discussed. The implications for the design of an appropriate detector are outlined and current R&D developments are explained. Particular emphasis will be given to the complementarity and intimate interplay of physics at the LHC and the ILC. The additional benefit of multi-TeV e+e- collisions as envisaged i...

  9. Crab Waist collision scheme: a novel approach for particle colliders

    Science.gov (United States)

    Zobov, M.; DAΦNE Team

    2016-09-01

    A new concept of nonlinear focusing of colliding bunches, called Crab Waist (CW) collision scheme, has been proposed at LNF INFN. It has been successfully tested at the Italian lepton collider DAΦNE in operational conditions providing luminosity for two different experimental detectors, SIDDHARTA and KLOE-2. Considering a high efficiency of the scheme for increasing collision luminosity and its relative simplicity for implementation several new collider projects have been proposed and are under development at present. These are the SuperKEKB B-factory ready to start commissioning in 2016 in Japan, the SuperC-Tau factory proposed in Novosibirsk and entered in the short list of Russian mega-science projects, the new 100-km electron-positron Future Circular Collider (FCC-ee) under design study at CERN and some others. In this paper we describe the CW collision scheme, discuss its advantages and report principal results achieved at the electron-positron Φ-factory DAΦNE.

  10. Design and higher order optimisation of final focus systems for linear colliders

    OpenAIRE

    Marín Lacoma, Eduardo

    2012-01-01

    The accelerator and particle physics communities are considering a lepton Linear Collider LC as the most appropriate machine to carry out high precision particle physics research in the TeV energy regime. The Compact Linear Collider CLIC and the International Linear Collider ILC are the two proposals for the future e+e- LC. Both designs achieve a luminosity L above 10^(34) cm-2 s-1 at the interaction point IP, satisfying the particle physics requirements. The LC consists of different syste...

  11. Collider design issues based on proton-driven plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Mete, O. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Aimidula, A.; Welsch, C.P. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom); Chattopadhyay, S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom); Mandry, S. [Department of Physics and Astronomy, University College London, London (United Kingdom); Wing, M. [Department of Physics and Astronomy, University College London, London (United Kingdom); Deutsche Elektronen-Synchrotron DESY, Hamburg (Germany)

    2014-03-11

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron–positron linear collider and an electron–proton collider based on the existing CERN accelerator infrastructure.

  12. Collider design issues based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Xia, G; Aimidula, A; Welsch, C; Chattopadhyay, S; Mandry, S; Wing, M

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron-positron linear collider and an electron-proton collider based on existing CERN accelerator infrastructure.

  13. Production of exotic charmonium in $\\gamma \\gamma$ interactions at hadronic colliders

    CERN Document Server

    Moreira, B D; Goncalves, V P; Navarra, F S

    2016-01-01

    In this paper we investigate the Exotic Charmonium (EC) production in $\\gamma \\gamma$ interactions present in proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN Large Hadron Collider (LHC) energies as well as for the proposed energies of the Future Circular Collider (FCC). Our results demonstrate that the experimental study of these processes is feasible and can be used to constrain the theoretical decay widths and shed some light on the configuration of the considered multiquark states.

  14. Production of exotic charmonium in γ γ interactions at hadron colliders

    Science.gov (United States)

    Moreira, B. D.; Bertulani, C. A.; Gonçalves, V. P.; Navarra, F. S.

    2016-11-01

    In this paper we investigate the exotic charmonium production in γ γ interactions present in proton-proton, proton-nucleus, and nucleus-nucleus collisions at the CERN Large Hadron Collider energies as well as for the proposed energies of the Future Circular Collider. Our results demonstrate that the experimental study of these processes is feasible and can be used to constrain the theoretical decay widths and shed some light on the configuration of the considered multiquark states.

  15. Testing Saturation at Hadron Colliders

    CERN Document Server

    Marquet, C

    2003-01-01

    We extend the saturation models a la Golec-Biernat and Wusthoff to cross-sections of hard processes initiated by virtual-gluon probes separated by large rapidity intervals at hadron colliders. We derive their analytic expressions and apply them to physical examples, such as saturation effects for Mueller-Navelet jets. By comparison to gamma*-gamma* cross-sections we find a more abrupt transition to saturation. We propose to study observables with a potentially clear saturation signal and to use heavy vector and flavored mesons as alternative virtual-gluon probes.

  16. Top production at hadron colliders

    Indian Academy of Sciences (India)

    Albert De Roeck

    2012-10-01

    New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including top quarks. The results are based on data samples of up to 5.4 fb-1 for the Tevatron experiments and 1.1 fb−1 for the LHC experiments.

  17. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  18. Standard Model Background of the Cosmological Collider

    CERN Document Server

    Chen, Xingang; Xianyu, Zhong-Zhi

    2016-01-01

    The inflationary universe can be viewed as a "Cosmological Collider" with energy of Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics Standard Model. In this paper we describe the Standard Model background of the Cosmological Collider.

  19. Disentangling heavy flavor at colliders

    Science.gov (United States)

    Ilten, Philip; Rodd, Nicholas L.; Thaler, Jesse; Williams, Mike

    2017-09-01

    We propose two new analysis strategies for studying charm and beauty quarks at colliders. The first strategy is aimed at testing the kinematics of heavy-flavor quarks within an identified jet. Here, we use the SoftDrop jet-declustering algorithm to identify two subjets within a large-radius jet, using subjet flavor tagging to test the heavy-quark splitting functions of QCD. For subjets containing a J /ψ or ϒ , this declustering technique can also help probe the mechanism for quarkonium production. The second strategy is aimed at isolating heavy-flavor production from gluon splitting. Here, we introduce a new FlavorCone algorithm, which smoothly interpolates from well-separated heavy-quark jets to the gluon-splitting regime where jets overlap. Because of its excellent ability to identify charm and beauty hadrons, the LHCb detector is ideally suited to pursue these strategies, though similar measurements should also be possible at ATLAS and CMS. Together, these SoftDrop and FlavorCone studies should clarify a number of aspects of heavy-flavor physics at colliders, and provide crucial information needed to improve heavy-flavor modeling in parton-shower generators.

  20. Coherent bremsstrahlung at colliding beams

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F. (Inst. of Mathematics, Novosibirsk (Russia)); Kotkin, G.L.; Serbo, V.G. (Novosibirsk State Univ. (Russia)); Polityko, S.I. (Irkutsk State Univ. (Russia))

    1992-07-30

    We consider a new type of radiation at colliders with short bunches - coherent bremsstrahlung (CBS). CBS can be treated as radiation of the first bunch particles caused by the collective electromagnetic field of the short second bunch. A general method for the calculation of this CBS is presented. The number of CBS photons per single collision is dN{sub {gamma}}{approx equal}N{sub 0}dE{sub {gamma}}/E{sub {gamma}} in the energy range E{sub {gamma}}colliders VEPP-4M, BEPC, CESR, TRISTAN the quantity N{sub 0}{approx equal}10{sup 8} and E{sub c}{approx equal}1-100 keV. Unusual properties of CBS and the possibility of using CBS for measuring the beam parameters are discussed. (orig.).

  1. Scaling behavior of circular colliders dominated by synchrotron radiation

    Science.gov (United States)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  2. Scaling Behavior of Circular Colliders Dominated by Synchrotron Radiation

    CERN Document Server

    Talman, Richard

    2015-01-01

    The quite low Higgs particle mass makes it natural for the next high energy facility to be a circular e+e- Higgs factory and, after that, a next-generation p,p collider in the same tunnel. Surveying the luminosity-limiting phenomena of synchrotron radiation power loss, beam-beam interaction limitations, and beamstrahlung, scaling laws are established that fix all parameters of the Higgs factory, as functions of assumed radius $r$, and RF power $P$. at least to a first approximation. Historically the accelerator formalisms of electron and hadron rings have been distinguished largely by the importance of synchrotron radiation for electrons, and its unimportance for protons. While electron beams equilibrate within seconds, proton beam distributions have survived largely intact for extended periods. For future hadron colliders, this distinction will no longer be valid. This will have a large impact on the design of the future FCC-pp proton collider whose parameters can be extrapolated using formulas previously ap...

  3. Probing contact interactions at high energy lepton colliders

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K. [Univ. of Texas, Austin, TX (United States); Godfrey, S. [Carleton Univ., Ottawa, Ontario (Canada). Ottawa Carleton Inst. for Physics; Hewett, J.A. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-12-01

    Fermion compositeness and other new physics can be signaled by the presence of a strong four-fermion contact interaction. Here the authors present a study of {ell}{ell}qq and {ell}{ell}{ell}{prime}{ell}{prime} contact interactions using the reactions: {ell}{sup +}{ell}{sup {minus}} {r_arrow} {ell}{prime}{sup +} {ell}{prime}{sup {minus}}, b{anti b}, c{anti c} at future e{sup +}e{sup {minus}} linear colliders with {radical}s = 0.5--5 TeV and {mu}{sup +}{mu}{sup {minus}} colliders with {radical}s = 0.5, 4 TeV. They find that very large compositeness scales can be probed at these machines and that the use of polarized beams can unravel their underlying helicity structure.

  4. Post Mortem System - Playback of the RHIC Collider

    CERN Document Server

    Laster, J S; D'Ottavio, T; Marusic, A; Skelly, J F

    2001-01-01

    A Post Mortem System was developed for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory to provide a playback of the collider state at the time of a beam abort, quench, or other failure event. Post Mortem data is used to provide diagnostics about the failure and to improve future stores. This data is read from hardware buffers and is written directly to the main file system by Accelerator Device Objects in the front-end computers. The Post Mortem System has facilitated analysis of loss monitor and power supply data, such as beam loss during magnet quenches, dump kicker misfires and power supply malfunctions. System details and recent operating experience will be discussed.

  5. LCIO - A persistency framework for linear collider simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Norman

    2003-06-17

    Almost all groups involved in linear collider detector studies have their own simulation software framework. Using a common persistency scheme would allow to easily share results and compare reconstruction algorithms. We present such a persistency framework, called LCIO (Linear Collider I/O). The framework has to fulfill the requirements of the different groups today and be flexible enough to be adapted to future needs. To that end we define an ''abstract object persistency layer'' that will be used by the applications. A first implementation, based on a sequential file format (SIO) is completely separated from the interface, thus allowing support to additional formats if necessary. The interface is defined with the AID (Abstract Interface Definition) tool from freehep.org that allows creation of Java and C++ code synchronously. In order to make use of legacy software a Fortran interface is also provided. We present the design and implementation of LCIO.

  6. Last magnet in place for colossal collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "Workers have installed the last magnet for the world's mew highest-energy particle smasher, the Large Hadron Collider (LHC). The installation marks an important milestone; however, researchers still may not get the collider completed in time to start it up in November as planned." (1 page)

  7. Possible limits of plasma linear colliders

    Science.gov (United States)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  8. Multibillion-dolalr collider plans unveiled

    CERN Multimedia

    Cartlidge, Edwin

    2007-01-01

    "Particle physicists released an outline design for the proposed International Linear Collider (ILC) at a meeting in Beijing this morning. The design details the components needed to build the 31 km-long facility and comes with and initial estimate of the collider's cost: a cool $6.5bn for the core project. (1 page)

  9. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  10. Reconnection of Colliding Cosmic Strings

    CERN Document Server

    Hanany, A; Hanany, Amihay; Hashimoto, Koji

    2005-01-01

    For vortex strings in the Abelian Higgs model and D-strings in superstring theory, both of which can be regarded as cosmic strings, we give analytical study of reconnection (recombination, inter-commutation) when they collide, by using effective field theories on the strings. First, for the vortex strings, via a string sigma model, we verify analytically that the reconnection is classically inevitable for small collision velocity and small relative angle. Evolution of the shape of the reconnected strings provides an upper bound on the collision velocity in order for the reconnection to occur. These analytical results are in agreement with previous numerical results. On the other hand, reconnection of the D-strings is not classical but probabilistic. We show that a quantum calculation of the reconnection probability using a D-string action reproduces the nonperturbative nature of the worldsheet results by Jackson, Jones and Polchinski. The difference on the reconnection -- classically inevitable for the vortex...

  11. Collide@CERN - public lecture

    CERN Multimedia

    2012-01-01

    CERN, the Republic and Canton of Geneva and the City of Geneva are delighted to invite you to a public lecture by Gilles Jobin, first winner of the Collide@CERN Geneva Dance and Performance Artist-in-residence Prize, and his CERN inspiration partner, Joao Pequenao. They will present their work in dance and science at the Globe of Science and Innovation on Wednesday, 23 May 2012 at 7 p.m. (doors open at 6.30 p.m.).   
                                                  Programme 19:00 Opening address by - Professor Rolf-Dieter Heuer, CERN Director-General, - Ariane Koek...

  12. Collider searches for extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, Greg; /Brown U.

    2004-12-01

    Searches for extra spatial dimensions remain among the most popular new directions in our quest for physics beyond the Standard Model. High-energy collider experiments of the current decade should be able to find an ultimate answer to the question of their existence in a variety of models. Until the start of the LHC in a few years, the Tevatron will remain the key player in this quest. In this paper, we review the most recent results from the Tevatron on searches for large, TeV{sup -1}-size, and Randall-Sundrum extra spatial dimensions, which have reached a new level of sensitivity and currently probe the parameter space beyond the existing constraints. While no evidence for the existence of extra dimensions has been found so far, an exciting discovery might be just steps away.

  13. Sensitivity on the Dipole Moments of the τ-Neutrino at e+e- Colliders: ILC and CLIC

    Directory of Open Access Journals (Sweden)

    A. Gutiérrez-Rodríguez

    2014-01-01

    Full Text Available We study the sensitivity on the anomalous magnetic and electric dipole moments of the τ-neutrino at a high-energy and high-luminosity linear electron positron collider, such as the ILC or CLIC, through the reaction e+e-→νν̅γ. We obtain limits on the dipole moments at the future linear colliders energies. For integrated luminosities of 500 fb−1 and center of mass energies between 0.5 and 3 TeV, the future e+e- colliders may improve the existing limits by two or three orders of magnitude.

  14. A muon collider as a Higgs factory

    CERN Document Server

    Neuffer, D; Alexahin, Y; Ankenbrandt, C; Delahaye, J P

    2015-01-01

    Because muons connect directly to a standard-model Higgs particle in s-channel production, a muon collider would be an ideal device for precision measurement of the mass and width of a Higgs-like particle, and for further exploration of its production and decay properties. Parameters of a high-precision muon collider are presented and the necessary components and performance are described. An important advantage of the muon collider approach is that the spin precession of the muons will enable energy measurements at extremely high accuracy (dE/E to 10-6 or better). The collider could be a first step toward a high-luminosity multi-TeV lepton collider, and extensions toward a higher-energy higher-luminosity device are also discussed.

  15. Possible future HERA analyses

    CERN Document Server

    Geiser, Achim

    2015-01-01

    A variety of possible future analyses of HERA data in the context of the HERA data preservation programme is collected, motivated, and commented. The focus is placed on possible future analyses of the existing $ep$ collider data and their physics scope. Comparisons to the original scope of the HERA programme are made, and cross references to topics also covered by other participants of the workshop are given. This includes topics on QCD, proton structure, diffraction, jets, hadronic final states, heavy flavours, electroweak physics, and the application of related theory and phenomenology topics like NNLO QCD calculations, low-x related models, nonperturbative QCD aspects, and electroweak radiative corrections. Synergies with other collider programmes are also addressed. In summary, the range of physics topics which can still be uniquely covered using the existing data is very broad and of considerable physics interest, often matching the interest of results from colliders currently in operation. Due to well-e...

  16. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    CERN Document Server

    CERN. Geneva

    2010-01-01

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  17. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    Energy Technology Data Exchange (ETDEWEB)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.; MARCIANO,W.; PAIGE,F.; TURCOT,A.S.; ET AL

    2001-05-03

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.

  18. Linear Collider Physics Resource Book for Snowmass 2001

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E

    2001-06-05

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.

  19. Physics validation studies for muon collider detector background simulations

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor

  20. Triple Higgs boson production at a 100 TeV proton-proton collider

    CERN Document Server

    Papaefstathiou, Andreas

    2016-01-01

    We consider triple Higgs boson production at a future 100 TeV proton-proton collider. We perform a survey of viable final states and compare and contrast triple production to Higgs boson pair production. Focussing on the $hhh \\rightarrow (b\\bar{b}) (b\\bar{b}) (\\gamma \\gamma)$ final state, we construct a baseline analysis for the Standard Model scenario and simple deformations, demonstrating that the process merits investigation in the high-luminosity phase of the future collider as a new probe of the self-coupling sector of the Higgs boson.

  1. Parton Distributions at a 100 TeV Hadron Collider

    CERN Document Server

    Rojo, Juan

    2016-01-01

    The determination of the parton distribution functions (PDFs) of the proton will be an essential input for the physics program of a future 100 TeV hadron collider. The unprecedented center-of-mass energy will require knowledge of PDFs in currently unexplored kinematical regions such as the ultra low-x region or the region of multi-TeV momentum transfers. In this contribution we briefly summarise the studies presented in the PDF section of the upcoming report on "Physics at a 100 TeV pp collider: Standard Model processes". First we map the PDF kinematical coverage in the $(x,Q^2)$ plane, quantify PDF uncertainties, and compute ratios of PDF luminosities between 100 TeV and 14 TeV. Then we show how the extreme kinematics of such collider lead to a number of remarkable PDF-related phenomena such as the top quark as a massless parton, an increased role of photon-initiated processes and the possible need of PDFs with high-energy resummation.

  2. Physics Opportunity with an Electron-Ion Collider

    Science.gov (United States)

    Rossi, Patrizia

    2016-11-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next “highest priority” in new facility construction, and is one of four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.

  3. Physics Opportunity with an Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Patrizia [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-12-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one of four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.

  4. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros Tuativa, Sandra Jimena [Univ. of Mississippi, Oxford, MS (United States)

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity 100 TeV proton-antiproton collider is explored with 7$\\times$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  5. Crab cavities: Past, present, and future of a challenging device

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience in earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).

  6. Crab Cavities: Past, Present, and Future of a Challenging Device

    CERN Document Server

    Wu, Q

    2015-01-01

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab- crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience in earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electronion collider under design at BNL (eRHIC).

  7. Maverick dark matter at colliders

    Science.gov (United States)

    Beltrán, Maria; Hooper, Dan; Kolb, Edward W.; Krusberg, Zosia A. C.; Tait, Tim M. P.

    2010-09-01

    Assuming that dark matter is a weakly interacting massive particle (WIMP) species X produced in the early Universe as a cold thermal relic, we study the collider signal of pp or pbar{p} rightarrow bar{X}X + jets and its distinguishability from standard-model background processes associated with jets and missing energy. We assume that the WIMP is the sole particle related to dark matter within reach of the LHC — a “maverick” particle — and that it couples to quarks through a higher dimensional contact interaction. We simulate the WIMP final-state signal Xbar{X} + jets and dominant standard-model (SM) background processes and find that the dark-matter production process results in higher energies for the colored final state partons than do the standard-model background processes. As a consequence, the detectable signature of maverick dark matter is an excess over standard-model expectations of events consisting of large missing transverse energy, together with large leading jet transverse momentum and scalar sum of the transverse momenta of the jets. Existing Tevatron data and forthcoming LHC data can constrain (or discover!) maverick dark matter.

  8. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  9. International Linear Collider Technical Review Committee: Second Report, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Loew, Gregory

    2003-02-21

    As this report is being published, the international high energy physics (HEP) community finds itself confronting a set of fascinating discoveries and new questions regarding the nature of matter and its fundamental particles and forces. The observation of neutrino oscillations that indicates that neutrinos have mass, measurements of the accelerating expansion of the universe that may be due to dark energy, and evidence for a period of rapid inflation at the beginning of the Big Bang are stimulating the entire field. Looming on the horizon are the potential discoveries of a Higgs particle that may reveal the origin of mass and of a whole family of supersymmetric particles that may be part of the cosmic dark matter. For the HEP community to elucidate these mysteries, new accelerators are indispensable. At this time, after careful deliberations, all three regional organizations of the HEP community (ACFA in Asia, HEPAP in North America, and ECFA in Europe) have reached the common conclusion that the next accelerator should be an electron-positron linear collider with an initial center-of-mass energy of 500 Giga-electronvolts (GeV), later upgradable to higher energies, and that it should be built and operated in parallel with the Large Hadron Collider under construction at CERN. Hence, this second report of the International Linear Collider Technical Review Committee (ILC-TRC) comes at a very timely moment. The report was requested by the International Committee on Future Accelerators (ICFA) in February 2001 to assess the current technical status of electron-positron linear collider designs in the various regions. Note that the ILC-TRC was not asked to concern itself with either cost studies or the ultimate selection process of a machine. This Executive Summary gives a short outline of the genesis of the report, the charge given to the committee, and its organization. It then presents a brief description of four electron-positron linear collider designs at hand. The

  10. Collider interplay for supersymmetry, Higgs and Dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, O.; Citron, M.; Vries, K. de [Imperial College, High Energy Physics Group, Blackett Lab., London (United Kingdom); Ellis, J. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); CERN, Physics Department, Geneva 23 (Switzerland); Guha, S. [CERN, Physics Department, Geneva 23 (Switzerland); BITS Pilani, Goa (India); Marrouche, J. [Imperial College, High Energy Physics Group, Blackett Lab., London (United Kingdom); CERN, Physics Department, Geneva 23 (Switzerland); Olive, K.A.; Zheng, Jiaming [Univ. of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)

    2015-10-15

    We discuss the potential impacts on the CMSSM of future LHC runs and possible e{sup +}e{sup -} and higher-energy proton-proton colliders, considering searches for supersymmetry via E{sub T} events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via E{sub T} searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2 variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m{sub 0}, m{sub 1/2} and A{sub 0} of the CMSSM. Slepton measurements at CLIC would enable m{sub 0} and m{sub 1/2} to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e{sup +}e{sup -} collider (FCC-ee, also known as TLEP) combined with LHCmeasurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stopcoannihilation strip or direct-channel A/H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton-proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level. (orig.)

  11. Design of main linac emittance tuning bumps for the Compact Linear Collider and the International Linear Collider

    Directory of Open Access Journals (Sweden)

    Peder Eliasson

    2008-01-01

    Full Text Available The installation of elements in the main linac of future linear colliders can only be done with a limited precision. The inevitable misalignments lead to unacceptable emittance growth. Beam-based alignment, e.g., one-to-one correction, dispersion free steering, or ballistic alignment, is necessary to reduce the emittance growth. In some cases, this is, however, not sufficient. For further reduction of the emittance growth, so-called emittance tuning bumps have to be used. A general strategy for the design of emittance tuning bumps has been developed and tested. Simulations suggest that the method can be conveniently used to understand the weaknesses of existing emittance tuning bumps and to significantly improve their performance in terms of, e.g., emittance reduction capability and convergence speed. An example of an application is the design of ten orthogonal knobs that, according to simulations, can reduce the normalized emittance growth in the Compact Linear Collider (CLIC main linac from 23.8 to 0.34 nm with convergence within two iterations. Four orthogonal knobs have also been designed for the International Linear Collider (ILC. Simulations show that these knobs converge within a single iteration and reduce normalized emittance growth from 3.8 to 0.05 nm.

  12. The collider calamity, publ. by Scientific American

    CERN Multimedia

    2006-01-01

    "For decades, the big guns of American science have been the U.S. Department of Energy's particle collider, which investigate the nature of matter by accelerating subatomic particles and smashing them together." (1 page)

  13. Il Collisore LHC (Large Hadron Collider)

    CERN Multimedia

    Brianti, Giorgio

    2004-01-01

    In 2007, in a new Collider in the tunnel of 27km, collisions will be made between very powerful beams of protons and ions. The energies will be very high to try to catch the most tiny particle (1 page)

  14. Facts about real antimatter collide with fiction

    CERN Document Server

    Siegfried, Tom

    2004-01-01

    When science collides with fiction, sometimes a best seller emerges from the debris. Take Dan Brown's Angels & Demons, for instance, a murder mystery based on science at CERN, the European nuclear research laboratory outside Geneva

  15. Final focus systems for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs. (LEW)

  16. Calorimetry for Lepton Collider Experiments – CALICE results and activities

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Bilki, B.; Cundiff, T.; De Lurgio, P.; Drake, G.; Francis, K.; Haberichter, B.; Guarino, V.; Kreps, A.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J.; Underwood, D.; Wood, K.; Xia, L.; Zhang, Q.; Zhao, A.; Price, T.; Watson, N.K.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dotti, A.; Duarte Ramos, F.; Elsener, K.; Folger, G.; Gerwig, H.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; Lam, C.B.; Linssen, L.; Lucaci-Timoce, A.I.; Muennich, A.; Nardulli, J.; Poss, S.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Speckmayer, P.; Strube, J.; Uzhinskiy, V.; Gay, P.; Manen, S.; Royer, L.; Soumpholphakdy, X.; Cauwenbergh, S.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Chakraborty, D.; Dyshkant, A.; Hedin, D.; Lima, J.G.R.; Salcido, R.; Zutshi, V.; Astakhov, V.; Babkin, V.A.; Bazylev, S.N.; Golovatyuk, S.; Golutvin, I.; Gorbunov, N.; Malakhov, A.; Slepnev, S.; Tyapkin, I.; Volgin, S.V.; Zanevski, Y.; Zintchenko, A.; Dzahini, D.; Gallin-Martel, L.; Giraud, J.; Grondin, D.; Hostachy, J.Y.; Menu, J.; Rarbi, F-E.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Gottlicher, P.; Gunter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Kruger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Shen, W.; Stamen, R.; Wilson, G.W.; Kawagoe, K.; Miyazaki, Y.; Oishi, K.; Sudo, Y.; Ueno, H.; Yoshioka, T.; Dauncey, P.D.; Postranecky, M.; Warren, M.; Wing, M.; Cortina Gil, E.; Mannai, S.; Bonnevaux, A.; Combaret, C.; Caponetto, L.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Buscher, V.; Masetti, L.; Schafer, U.; Tapprogge, S.; Wanke, R.; Welker, A.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Andreev, V.; Kirikova, N.; Komar, A.; Kozlov, V.; Negodaev, M.; Smirnov, P.; Soloviev, Y.; Terkulov, A.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Baranova, N.; Boos, E.; d; Gladilin, L.; Karmanov, D.; Korolev, M.; Merkin, M.; Savin, A.; Voronin, A.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Augustin, J-E.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Amjad, M.S.; Bonis, J.; Bouquet, B.; Callier, S.; Conforti, S.; Cornebise, P.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Frisson, T.; Guilhem, G.; Li, H.; Martin-Chassard, G.; Richard, F.; Poeschl, R.; Raux, L.; Rouene, J.; Seguin-Moreau, N.; Wicek, F.; Zhang, Z.; Anduze, M.; Belkadhi, K.; Boudry, V.; Brient, J-C.; Cerutti, M.; Clerc, C.; Cornat, R.; Decotigny, D.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Jeans, D.; Magniette, F.; Matthieu, A.; Mora, P.; Musat, G.; Roche, N.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Carna, M.; Gallus, P.; Lednicky, D.; Tomasek, L.; Tomasek, M.; Cvach, J.; Havranek, M.; Janata, M.; Kvasnicka, J.; Marcisovsky, M.; Polak, I.; Popule, J.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Gapienko, V.; Semak, A.; Ukhanov, M.; Belhorma, B.; Ghazlane, H.; Hamasaki, R.; Ide, H.; Inayoshi, S.; Itoh, S.; Kawakami, Y.; Kobayashi, A.; Kotera, K.; Nishiyama, M.; Obe, S.; Ono, H.; Ogawa, T.; Ohtsuka, N.; Sakuma, T.; Sato, H.; Takeshita, T.; Totsuka, S.; Tsubokawa, T.; Yanagida, K.; Yamaura, W.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Uozumi, S.; Yang, Y.; Fuchi, R.; Ukegawa, F.; Gotze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2012-01-01

    The CALICE collaboration conducts calorimeter R&D for highly granular calorimeters, mainly for their application in detectors for a future lepton collider at the TeV scale. The activities ranges from generic R&D with small devices up to extensive beam tests with prototypes comprising up to several 100000 calorimeter cells. CALICE has validated the performance of particle flow algorithms with test beam data and delivers the proof of principle that highly granular calorimeters can be built, operated and understood. The successes achieved in the past years allows the step from prototypes to calorimeter systems for particle physics detectors to be addressed.

  17. Probing LINEAR Collider Final Focus Systems in SuperKEKB

    CERN Document Server

    Thrane, Paul Conrad Vaagen

    2017-01-01

    A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077

  18. Mass-degenerate heavy vector mesons at hadron colliders

    Science.gov (United States)

    Piai, M.; Round, M.

    2010-08-01

    We study the LHC phenomenology of two mass-degenerate heavy gauge bosons with the same quantum numbers as Z and γ. We give a leading-order estimate of the number of events expected in Drell-Yan processes in terms of the parameters of the model (mass and coupling) and of the LHC machine specifications (integrated luminosity and energy). We consider the feasibility of measuring a forward-backward asymmetry for various choices of the parameters and estimate the potential reach. We comment on how the results may affect future collider design and apply our results to a specific model of electro-weak symmetry breaking by way of example.

  19. Mass-degenerate Heavy Vector Mesons at Hadron Colliders

    CERN Document Server

    Piai, Maurizio

    2009-01-01

    We study the LHC phenomenology of a couple of mass-degenerate heavy new gauge bosons with the quantum numbers of the Z and photon. We give a leading-order estimate of the number of events expected in Drell-Yan processes in terms of the parameters of the model (mass and coupling) and of the LHC machine specifications (luminosity and energy). We consider the feasibility of measuring a forward-backward asymmetry for various choices of the parameters and estimate the potential reach. We comment on how the results may affect future collider design and the results for a specific model of electro-weak symmetry breaking by way of example.

  20. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    CERN Document Server

    Jeans, Daniel; Reinhard, Marcel

    2012-01-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  1. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    Science.gov (United States)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  2. Scintillator calorimeters for a future linear collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hartbrich, Oskar

    2016-07-15

    This thesis presents the first analysis of a full calorimeter system based on the scintillator-SiPM technology. In the testbeam campaign at the Fermilab testbeam facility in May 2009, the combined scintillator-SiPM prototype calorimeter system consisting of the CALICE Scintillator Electromagnetic Calorimeter (ScECAL), the CALICE Analogue Hadronic Calorimeter (AHCAL) and the CALICE Tail Catcher and Muon Tracker (TCMT) were operated in particle beams of electrons, pions and muons in the energy range up to 32 GeV. The absorber material and sampling fraction of the ScECAL is different from the AHCAL and TCMT, which complicates the reconstruction of shower energies and potentially impacts the achievable energy resolution of showers extending through the whole calorimeter system. A clean selection of single particle events of a given particle type is obtained using the information from the beam instrumentation installed in the beam line and from the reconstruction of features of the shower topology to identify additional particles entering the detectors. The remaining contaminations are found to be small enough to not significantly bias the results. Possible selection biases on the energy response or resolution are found to be negligible in simulation studies. A detailed validation of the ScECAL model is performed with electromagnetic showers and interactions, ranging from the single cell spectra of MIP particles up to full electromagnetic shower profile and their response and resolution. Adapting the geometry of the ScECAL simulation model can reduce the observed discrepancies, however not within reasonable ranges of modification. The analysis of pion data recorded with the combined scintillator-SiPM system aims to extract the energy resolution for single, contained pion showers, both in comparison to different simulations and to the resolutions obtained from a similar setup without the ScECAL. In the ScECAL the longitudinal shower profile as a function of distance to shower start shows considerable differences between physics lists, especially for the higher end of beam energies available in this analysis. Two separate energy reconstruction algorithms are presented in this thesis. The standard reconstruction uses constant weights per sub-detector to reconstruct the primary pion energy. The implementation of a software compensation reconstruction developed for this analysis aims to distinguish electromagnetic sub-shower depositions in hadronic showers by the deposited energy in each hit. The implementation differs from a previous software compensation scheme used within CALICE by forcing less dependencies on the shapes of the optimised weights, increasing the number of free parameters but ultimately resulting in a more stable parameter optimisation. The software compensation reconstruction improves the energy resolution of data events by 10% to 20%. Applying the software compensation weights obtained from simulations to data events yields a similar performance compared to the native data weights, slightly degrading the response linearity while even slightly improving the energy resolution. The calorimeter prototypes used in the testbeam analysis presented in this thesis were built to prove the general feasibility of high granularity scintillator-SiPM calorimeters, which they fully accomplished. To demonstrate the scalability of such calorimeters to the size and requirements of a full-scale particle physics experiment as ILD, second generation prototypes with fully integrated readout electronics are developed within the CALICE collaboration. A toy simulation study performed for this thesis shows that the development of scintillator-SiPM tile systems should target a lightyield of 15 (px)/(MIP) in order to maintain a 95% MIP efficiency even for 2σ outliers, when assuming a hit energy threshold of 0.5 MIP. An efficient method to extract and validate trigger thresholds positions for all cells of the detector system is presented, requiring only minimal additional data taking during gain calibration runs with the integrated LED calibration system. A toy simulation of the testbeam readout efficiency of the second generation AHCAL prototype as a function of the ratio of noise rate to beam rate and total system size is described in this thesis. For a 1m3 testbeam prototype, a beam rate of five times higher than the noise rate is required in order to reach a 50% fraction of beam events in the recorded data. As part of this thesis, the digitisation algorithm used to efficiently and realistically model the statistical behaviour of single scintillator cells read out by SiPMs is fully validated analytically and in toy model simulations. The validated digitisation model is implemented into the ILD HCAL full simulation model.

  3. Lep vertical tunnel movements - lessons for future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, R. [CERN-Conseil Europeen pour la recherche nucleaire, Clic-Study Group and the Survey Group, Geneve (Switzerland)

    1999-07-01

    The data from 10 years of vertical surveys verify for all of LEP the previous observation, localized to region P1, that LEP floor movements are predominantly deterministic. This rules out the ATL model as being correct for this tunnel. If generalized, for yearly movements a random ATL model underestimates the possible maximum long-term motions. In contrast, extrapolation of the LEP vertical data to the short-term (hours and days) time-scale shows that the random approach predicts larger short-term movements than the deterministic model. This means that simulations using the ATL hypothesis are overtly pessimistic with regard to the frequency of operational realignments required. Depending on the constants chosen in the models these differences can be large, of the order of a magnitude and more. This paper deals solely with the directly measured months-to-years tunnel motions in rock, and the extrapolation of such ground motions to hourly or daily time-spans It does not, address the important question of the contribution of hourly-scale movements of the accelerator components, which could have a random part, to the combined motion. Nor does it address the question of movements of accelerator tunnels like HERA or TRISTAN which are built in water and debris, and not in solid rock. (author)

  4. LEP vertical tunnel movement -- Lessons for future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, R.

    1999-12-07

    The data from 10 years of vertical surveys verify for all of LEP the previous observation, localized to region P1, that LEP floor movements are predominantly deterministic. This rules out the ATL model as being correct for this tunnel. If generalized, for yearly movements a random ATL model underestimates the possible maximum long-term motions. In contrast, extrapolation of the LEP vertical data to the short-term (hours and days) time-scale shows that the random approach predicts larger short-term movements than the deterministic model. This means that simulations using the ATL hypothesis are overly pessimistic with regard to the frequency of operational re-alignments required. Depending on the constants chosen in the models these differences can be large, of the order of a magnitude and more.

  5. FUTURE SCIENCE AT THE RELATIVISTIC HEAVY ION COLLIDER.

    Energy Technology Data Exchange (ETDEWEB)

    LUDLAM, T.

    2006-12-21

    QCD was developed in the 1970's as a theory of the strong interaction describing the confinement of quarks in hadrons. An early consequence of this picture was the realization that at sufficiently high temperature, or energy density, the confining forces are overcome by color screening effects, resulting in a transition from hadronic matter to a new state--later named the Quark Gluon Plasma--whose bulk dynamical properties are determined by the quark and gluon degrees of freedom, rather than those of confined hadrons. The suggestion that this phase transition in a fundamental theory of nature might occur in the hot, dense nuclear matter created in heavy ion collisions triggered a series of experimental searches during the past two decades at CERN and at BNL, with successively higher-energy nuclear collisions. This has culminated in the present RHIC program. In their first five years of operation, the RHIC experiments have identified a new form of thermalized matter formed in Au+Au collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time ( < 1 fm/c) , has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about 2 times the critical temperature of {approx}170 MeV predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a ''perfect liquid'' that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. There are also indications that the new form of matter directly involves quarks. Comparison of measured relative hadron abundances with very successful statistical models indicates that hadrons chemically decouple at a temperature of 160-170 MeV. There is evidence suggesting that this happens very close to the quark-hadron phase transition, ie. that hadrons are born in the phase transition from quark matter, and abundance-changing interactions then quickly cease. Valence quark number scaling of the measured anisotropy parameter for all hadrons suggests that the collectively flowing matter involves quarks, not hadrons. And the striking observation of a universal, strong enhancement of baryons relative to mesons at intermediate transverse momentum has been interpreted as evidence of competition between quark coalescence of the bulk medium and jet fragmentation. It is generally agreed that the new matter is not describable in terms of ordinary color neutral hadrons, and that many observations are consistent with models that incorporate quark and gluon degrees of freedom. The evidence is consistent with the matter being a strongly coupled quark gluon plasma (sQGP), and thus it behaves quite differently from the perturbative QCD parton gas that was expected by most people prior to RHIC data. The extraordinary properties of this new state of matter demand further measurements to better understand its behavior, properties, origin and description.

  6. Photon Linear Collider Gamma-Gamma Summary

    Energy Technology Data Exchange (ETDEWEB)

    Gronberg, J

    2012-02-27

    High energy photon - photon collisions can be achieved by adding high average power short-pulse lasers to the Linear Collider, enabling an expanded physics program for the facility. The technology required to realize a photon linear collider continues to mature. Compton back-scattering technology is being developed around the world for low energy light source applications and high average power lasers are being developed for Inertial Confinement Fusion.

  7. Academic Training Lecture: Jets at Hadron Colliders

    CERN Multimedia

    PH Department

    2011-01-01

    Regular Programme 30, 31 March and 1 April  2011 from 11:00 to 12:00 -  Bldg. 40-S2-A01 - Salle Andersson Jets at Hadron Colliders by Gavin Salam These three lectures will discuss how jets are defined at hadron colliders, the physics that is responsible for the internal structure of jets and the ways in which an understanding of jets may help in searches for new particles at the LHC.

  8. Final focus designs for crab waist colliders

    Science.gov (United States)

    Bogomyagkov, A.; Levichev, E.; Piminov, P.

    2016-12-01

    The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DA Φ NE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DA Φ NE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  9. Mixed QCD-EW corrections for Higgs boson production at $e^+e^-$ colliders

    CERN Document Server

    Gong, Yinqiang; Xu, Xiaofeng; Yang, Li Lin

    2016-01-01

    Since the discovery of the Higgs boson at the Large Hadron Collider, a future electron-position collider has been proposed for precisely studying its properties. We investigate the production of the Higgs boson at such an $e^+e^-$ collider and calculate for the first time the mixed QCD-electroweak corrections to the total cross sections. We find that the $\\mathcal{O}(\\alpha\\alpha_s)$ corrections amount to a $1.2\\%$ increase of the cross section for a center-of-mass energy around 250 GeV. This is larger than the expected experimental accuracy and has to be included for extracting the properties of the Higgs boson from the measurements of the cross sections in the future.

  10. Energy exchange between (3+1)D colliding spatiotemporal optical solitons in dispersive media with cubic-quintic nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Yang Hong; Tang Yi

    2008-01-01

    We investigate the energy exchange between (3+1)D colliding spatiotemporal solitons (STSs) in dispersive media with cubic-quintic (CQ) nonlinearity by numerical simulations. Energy exchange between two (3+l)D head on colliding STSs caused by their phase difference is observed, just as occurring in other optical media. Moreover, energy exchange between two head-on colliding STSs with different speeds is firstly shown in the CQ and saturable media.This phenomenon, we believe, may arouse some interest in the future studies of soliton collision in optical media.

  11. Phenomenology of non-minimal supersymmetric models at linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Stefano

    2015-06-15

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  12. Concept for an Electron Ion Collider (EIC) detector built around the BaBar solenoid

    CERN Document Server

    Adare, A; Ajitanand, N N; Akiba, Y; Akimoto, R; Alfred, M; Apadula, N; Aramaki, Y; Asano, H; Atomssa, E T; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bandara, N S; Bannier, B; Barish, K N; Bathe, S; Baublis, V; Bazilevsky, A; Beaumier, M; Beckman, S; Belmont, R; Berdnikov, A; Berdnikov, Y; Black, D; Bok, J; Boyle, K; Brooks, M L; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Campbell, S; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Chujo, T; Citron, Z; Csanád, M; Csörgő, T; Datta, A; Daugherity, M S; David, G; DeBlasio, K; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Ding, L; Dion, A; Do, J H; Drees, A; Drees, K A; Durham, J M; Durum, A; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Feege, N; Fields, D E; Finger, M; Jr., \\,; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Gal, C; Gallus, P; Garg, P; Ge, H; Giordano, F; Glenn, A; Goto, Y; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guragain, H; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Han, S Y; Hanks, J; Hasegawa, S; He, X; Hemmick, T K; Hill, J C; Hollis, R S; Homma, K; Hong, B; Hoshino, T; Huang, J; Huang, S; Ikeda, Y; Imai, K; Imazu, Y; Inaba, M; Iordanova, A; Isenhower, D; Ivanishchev, D; Jacak, B V; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Johnson, B M; Joo, E; Joo, K S; Jouan, D; Jumper, D S; Kang, J H; Kang, J S; Kawall, D; Kazantsev, A V; Key, J A; Khachatryan, V; Khanzadeev, A; Kihara, K; Kim, C; Kim, D H; Kim, D J; Kim, E -J; Kim, H -J; Kim, M; Kim, Y K; Kistenev, E; Klatsky, J; Kleinjan, D; Kline, P; Koblesky, T; Kofarago, M; Koster, J; Kotov, D; Kurita, K; Kurosawa, M; Kwon, Y; Lacey, R; Lajoie, J G; Lebedev, A; Lee, K B; Lee, S H; Leitch, M J; Leitgab, M; Lim, S H; Liu, M X; Lynch, D; Makdisi, Y I; Makek, M; Manion, A; Manko, V I; Mannel, E; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mignerey, A C; Miller, A; Milov, A; Mishra, D K; Mitchell, J T; Miyasaka, S; Mizuno, S; Montuenga, P; Moon, T; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Mwai, A; Nagamiya, S; Nagle, J L; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakano, K; Nattrass, C; Netrakanti, P K; Nihashi, M; Niida, T; Nouicer, R; Novitzky, N; Nyanin, A S; O'Brien, E; Ogilvie, C A; Koop, J D Orjuela; Osborn, J; Oskarsson, A; Ozaki, H; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, S; Pate, S F; Patel, L; Patel, M; Peng, J -C; Perepelitsa, D; Perera, G D N; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pinson, R; Pisani, R P; Purschke, M L; Rak, J; Ravinovich, I; Read, K F; Reynolds, R; Riabov, V; Riabov, Y; Riveli, N; Roach, D; Rolnick, S D; Rosati, M; Rowan, Z; Rubin, J; Saito, N; Sakaguchi, T; Sako, H; Samsonov, V; Sarsour, M; Sato, S; Sawada, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seele, J; Seidl, R; Sen, A; Seto, R; Sett, P; Sexton, A; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Singh, B K; Singh, C P; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stepanov, M; Stoll, S P; Sugitate, T; Sukhanov, A; Sumita, T; Sun, J; Sziklai, J; Takahara, A; Taketani, A; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Timilsina, A; Todoroki, T; Tomášek, M; Torii, H; Towell, M; Towell, R; Towell, R S; Tserruya, I; van Hecke, H W; Vargyas, M; Velkovska, J; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, Y; Watanabe, Y S; Wei, F; Whitaker, S; Wolin, S; Woody, C L; Wysocki, M; Xia, B; Xue, L; Yalcin, S; Yamaguchi, Y L; Yanovich, A; Yoon, I; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A

    2014-01-01

    The PHENIX collaboration presents here a concept for a detector at a future Electron Ion Collider (EIC). The EIC detector proposed here, referred to as ePHENIX, will have excellent performance for a broad range of exciting EIC physics measurements, providing powerful investigations not currently available that will dramatically advance our understanding of how quantum chromodynamics binds the proton and forms nuclear matter.

  13. e{sup {plus}}e{sup {minus}} linear colliders and new particle searches

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L.

    1993-01-01

    We discuss future e{sup +}e{sup {minus}} linear colliders and new particle searches that can be done with them. In the discussion of new particle searches we examine the following topics: searches for gauge boson structure, searches for a strongly interacting Higgs sector, top quark studies, Higgs searches, supersymmetric particle searches and measurements of soft supersymmetry breaking parameters.

  14. International Linear Collider Steering Committee issues charge to Technology Recommendation Panel

    CERN Multimedia

    2003-01-01

    "Following its November 19 meeting in Paris, the International Linear Collider Steering Committee, a subcommittee of the International Committee for Future Accelerators, has published the charge http://www.fnal.gov/directorate/icfa/ITRP_Charge.pdf to the International Technology Recommendation Panel appointed by ICFA" (2 paragraphs).

  15. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    Science.gov (United States)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  16. Governance of the International Linear Collider Project

    Energy Technology Data Exchange (ETDEWEB)

    Foster, B.; /Oxford U.; Barish, B.; /Caltech; Delahaye, J.P.; /CERN; Dosselli, U.; /INFN, Padua; Elsen, E.; /DESY; Harrison, M.; /Brookhaven; Mnich, J.; /DESY; Paterson, J.M.; /SLAC; Richard, F.; /Orsay, LAL; Stapnes, S.; /CERN; Suzuki, A.; /KEK, Tsukuba; Wormser, G.; /Orsay, LAL; Yamada, S.; /KEK, Tsukuba

    2012-05-31

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency

  17. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    CERN Document Server

    Quigg, Chris

    2015-01-01

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. A new round of experimentation is beginning, with the energy of the proton--proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. This article summarizes what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  18. Spin asymmetries in squark and gluino production at polarized hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gehrmann, T. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: gehrt@physik.unizh.ch; Maitre, D. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: maitreda@physik.unizh.ch; Wyler, D. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: wyler@physik.unizh.ch

    2004-12-20

    We study the production cross sections for squarks and gluinos in collision of longitudinally polarized hadrons. The corresponding polarized partonic cross sections are computed in leading order supersymmetric QCD. The resulting asymmetries are evaluated for the polarized proton collider RHIC, as well as for hypothetical polarized options of the Tevatron and the LHC. These asymmetries turn out to be sizable over a wide range of supersymmetric particle masses. Once supersymmetric particles are discovered in unpolarized collisions, a measurement of the spin asymmetries would thus potentially help to establish the properties of the newly discovered particles and open a window to detailed sparticle spectroscopy at future polarized hadron colliders.

  19. Electron-Ion Collider - taking us to the next QCD frontier

    CERN Document Server

    Qiu, Jian-Wei

    2014-01-01

    In this talk, I demonstrate that the proposed Electron-Ion Collider (EIC) will be an ideal and unique future facility to address many overarching questions about QCD and strong interaction physics at one place. The EIC will be the world's first polarized electron-proton (and light ion), as well as the first electron-nucleus collider at flexible collision energies. With its high luminosity and beam polarization, the EIC distinguishes itself from HERA and the other fixed target electron-hadron facilities around the world. The EIC is capable of taking us to the next QCD frontier to explore the glue that binds us all.

  20. Study of highly-excited string states at the Large Hadron Collider

    CERN Document Server

    Gingrich, Douglas M

    2008-01-01

    In TeV-scale gravity scenarios with large extra dimensions, black holes may be produced at future colliders. Good arguments have been made for why general relativistic black holes may be just out of reach of the Large Hadron Collider (LHC). However, in weakly-coupled string theory, highly excited string states - string balls - could be produced at the LHC with high rates and decay thermally, not unlike general relativistic black holes. In this paper, we simulate and study string ball production and decay at the LHC. We specifically emphasize the experimentally-detectable similarities and differences between string balls and general relativistic black holes at a TeV scale.

  1. Studying 750 GeV di-photon resonance at photon–photon collider

    Directory of Open Access Journals (Sweden)

    Hayato Ito

    2016-05-01

    Full Text Available Motivated by the recent LHC discovery of the di-photon excess at the invariant mass of ∼750 GeV, we study the prospect of investigating the scalar resonance at a future photon–photon collider. We show that, if the di-photon excess observed at the LHC is due to a new scalar boson coupled to the standard-model gauge bosons, such a scalar boson can be observed and studied at the photon–photon collider with the center-of-mass energy of ∼1 TeV in large fraction of parameter space.

  2. Collider signatures of Higgs-portal scalar dark matter

    Science.gov (United States)

    Han, Huayong; Yang, Jin Min; Zhang, Yang; Zheng, Sibo

    2016-05-01

    In the simplest Higgs-portal scalar dark matter model, the dark matter mass has been restricted to be either near the resonant mass (mh / 2) or in a large-mass region by the direct detection at LHC Run 1 and LUX. While the large-mass region below roughly 3 TeV can be probed by the future Xenon1T experiment, most of the resonant mass region is beyond the scope of Xenon1T. In this paper, we study the direct detection of such scalar dark matter in the narrow resonant mass region at the 14 TeV LHC and the future 100 TeV hadron collider. We show the luminosities required for the 2σ exclusion and 5σ discovery.

  3. Collider Signatures of Higgs-portal Scalar Dark Matter

    CERN Document Server

    Han, Huayong; Zhang, Yang; Zheng, Sibo

    2016-01-01

    In the simplest Higgs-portal scalar dark matter model, the dark matter mass has been restricted to be either near the resonant mass ($m_h/2$) or in a large-mass region by the direct detection at LHC Run 1 and LUX. While the large-mass region below roughly 3 TeV can be probed by the future Xenon1T experiment, most of the resonant mass region is beyond the scope of Xenon1T. In this paper, we study the direct detection of such scalar dark matter in the narrow resonant mass region at the 14 TeV LHC and the future 100 TeV hadron collider. We show the luminosities required for the $2\\sigma$ exclusion and $5\\sigma$ discovery.

  4. Collider signatures of Higgs-portal scalar dark matter

    Directory of Open Access Journals (Sweden)

    Huayong Han

    2016-05-01

    Full Text Available In the simplest Higgs-portal scalar dark matter model, the dark matter mass has been restricted to be either near the resonant mass (mh/2 or in a large-mass region by the direct detection at LHC Run 1 and LUX. While the large-mass region below roughly 3 TeV can be probed by the future Xenon1T experiment, most of the resonant mass region is beyond the scope of Xenon1T. In this paper, we study the direct detection of such scalar dark matter in the narrow resonant mass region at the 14 TeV LHC and the future 100 TeV hadron collider. We show the luminosities required for the 2σ exclusion and 5σ discovery.

  5. The Superconducting Super Collider: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning.

  6. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  7. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  8. 2009 Linear Collider Workshop of the Americas

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Sally [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2009-09-29

    The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designs was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.

  9. The Next Linear Collider: NLC2001

    Energy Technology Data Exchange (ETDEWEB)

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  10. Physics Beyond the Standard Model at Colliders

    Science.gov (United States)

    Matchev, Konstantin

    These lectures introduce the modern machinery used in searches and studies of new physics Beyond the Standard Model (BSM) at colliders. The first lecture provides an overview of the main simulation tools used in high energy physics, including automated parton-level calculators, general purpose event generators, detector simulators, etc. The second lecture is a brief introduction to low energy supersymmetry (SUSY) as a representative BSM paradigm. The third lecture discusses the main collider signatures of SUSY and methods for measuring the masses of new particles in events with missing energy.

  11. Photon collider beam simulation with CAIN

    Indian Academy of Sciences (India)

    Aleksander Filip Żarnecki

    2007-11-01

    The CAIN simulation program was used to study the outgoing beam profile for the photon collider at ILC. The main aim of the analysis was to verify the feasibility of the photon linear collider running with 20 mrad electron beam crossing angle. The main problem is the distorted electron beam, which has to be removed from the interaction region. It is shown that with a new design of the final dipole, it should be possible to avoid large energy losses at the face of the magnet.

  12. Sixth international workshop on linear colliders. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Urakawa, Junji [ed.

    1995-08-01

    The sixth international workshop on linear colliders (LC95) was held by KEK at Tsukuba Center for Institute. In the workshop 8 parallel working group were organized: WG1 (beam sources and injection linacs), WG2 (damping rings and bunch compressors), WG3 (a: RF sources and structures, b: superconducting cavities, c: two beam accelerators), WG4 (beam dynamics in main linacs), WG5 (final focus and integration regions), WG6 (beam instrumentation), WG7 (overall parameters and construction techniques), WG8 (gamma-gamma collider and miscellaneous). This issue compiles materials which were used in the workshop. (J.P.N.).

  13. Precision Physics at the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, R.-D. [Institut fuer Experimentalphysik, Hamburg University, Hamburg (Germany)

    2006-10-15

    Despite the great success of the Standard Model, many key questions in particle physics and cosmology are unanswered today. Together with the Large Hadron Collider LHC, starting in 2007, the International Linear Collider ILC as the next project planned at the high energy frontier, will play a crucial role in tackling many of these most exciting questions. The high precision achievable with experiments at the ILC will be indispensable in order to reach definite conclusions about many features of new physics expected at the TeV scale. This contribution presents prominent physics examples and describes detector challenges and the project status.

  14. SUSY CP phases and asymmetries at colliders

    CERN Document Server

    Kittel, Olaf

    2009-01-01

    In the Minimal Supersymmetric Standard Model, physical phases of complex parameters lead to CP violation. We show how triple products of particle momenta or spins can be used to construct asymmetries, that allow us to probe these CP phases. To give specific examples, we discuss the production of neutralinos at the International Linear Collider. For the Large Hadron Collider, we discuss CP asymmetries in squark decays, and in the tri-lepton signal. We find that the CP asymmetries can be as large as 60%.

  15. SUSY CP phases and asymmetries at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, Olaf, E-mail: kittel@ugr.e [Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada (Spain)

    2009-06-01

    In the Minimal Supersymmetric Standard Model, physical phases of complex parameters lead to CP violation. We show how triple products of particle momenta or spins can be used to construct asymmetries, that allow us to probe these CP phases. To give specific examples, we discuss the production of neutralinos at the International Linear Collider (ILC). For the Large Hadron Collider (LHC), we discuss CP asymmetries in squark decays, and in the tri-lepton signal. We find that the CP asymmetries can be as large as 60%.

  16. Final focus designs for crab waist colliders

    CERN Document Server

    AUTHOR|(CDS)2084369; Levichev, Evgeny; Piminov, Pavel

    2016-01-01

    The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DA$\\Phi$NE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DA$\\Phi$NE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  17. Furry picture transition rates in the intense fields at a lepton collider interaction point

    Directory of Open Access Journals (Sweden)

    A. Hartin

    2015-04-01

    Full Text Available The effect on particle physics processes by intense electromagnetic fields in the charge bunch collisions at future lepton colliders is considered. Since the charge bunch fields are tied to massive sources (the e+e− charges, a reference frame is chosen in which the fields appear to be co-propagating. Solutions of the Dirac equation minimally coupled to the electromagnetic fields reasonably associated with two intense overlapping charge bunches are obtained and found to be a Volkov solution with respect to a null 4-vector whose 3-vector part lies in the common propagation direction. These solutions are used within the Furry interaction picture to calculate the beamstrahlung transition rate for electron radiation due to interaction with the electromagnetic fields of two colliding charge bunches. New analytic expressions are obtained and compared numerically with the beamstrahlung in the electromagnetic field of one charge bunch. The techniques developed will be applied to other collider physics processes in due course.

  18. Furry picture transition rates in the intense fields at a lepton collider interaction point

    CERN Document Server

    Hartin, Anthony

    2015-01-01

    The effect on particle physics processes by intense electromagnetic fields in the charge bunch collisions at future lepton colliders is considered. Since the charge bunch fields are tied to massive sources (the $e^{+}e^{-}$ charges), a reference frame is chosen in which the fields appear to be co-propagating. Solutions of the Dirac equation minimally coupled to the electromagnetic fields reasonably associated with two intense overlapping charge bunches are obtained and found to be a Volkov solution with respect to a null 4-vector whose 3-vector part lies in the common propagation direction. These solutions are used within the Furry interaction picture to calculate the beamstrahlung transition rate for electron radiation due to interaction with the electromagnetic fields of two colliding charge bunches. New analytic expressions are obtained and compared numerically with the beamstrahlung in the electromagnetic field of one charge bunch. The techniques developed will be applied to other collider physics process...

  19. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Collider Physics: Yesterday, Today and Tomorrow

    Science.gov (United States)

    Eichten, Estia

    2011-04-01

    More than a quarter century ago, theoretical issues with the Standard Model scalar boson sector inspired theorists to develop alternative models of electroweak symmetry breaking. The goal of the EHLQ study of hadron collider physics was to help determine the basic parameters of a supercollider that could distinguish these alternatives. Now we await data from the CMS and ATLAS experiments at CERN's Large Hadron Collider to solve this mystery. Does the Standard Model survive or, as theorists generally expect, does new physics appear (Strong Dynamics, SUSY, Extra Dimensions,...)? Even well into the LHC era it is likely that questions about the origin of fermion mass and mixings will remain and new physics will bring new puzzles. This time, the associated new scales are unknown. The opportunity to address new physics at a future multi-TeV lepton collider is briefly addressed.

  20. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.